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Abstract—Open source implementations of software-based net-
work components have become a viable alternative to deploy and
operate 5G networks. Although these implementations provide
great flexibility, overall network performance becomes dependent
not only on the choice of the software stack, but also on its
combination with suitable hardware. In this context, performance
testing becomes an essential tool to assess the behavior of these
software-based mobile networks under different deployment
scenarios. Therefore, the goal of this work is to analyze how
the different open source implementations of the 5G network
core behave for the execution of procedures at scale. To achieve
this goal, we propose and apply performance tests on some of
the main open source implementations of the SG network core.
We focus on the evaluation of the performance of two essential
procedures: (i) the user equipment registration and session
establishment and (ii) the streaming of user data over parallel
data plane connections. Among the main results obtained, it was
possible to observe that the open source implementation freeSGC
presents better performance regarding data plane bit rates, while
Open5GS shows better stability during the registration process
of multiple devices.

I. INTRODUCTION

To attain the necessary improvements for the fifth generation
of mobile networks (5G), a reformulation in the network
core was necessary, as it is considered the most critical
component of the 5G network [1]. The network core (5GC)
is responsible for establishing a stable and secure connection
between devices and providing access to fundamental services,
such as authentication, mobility, and slicing.

Researchers, standard organizations, and industry coalitions
have already recognized that softwarization, virtualization,
and disaggregation of network functions are key enablers of
5G [2]. This recognition has stimulated open source projects
for the implementation of 5G radio access and core networks,
such as freeS5GC, Open5GS, and OpenAirlnterface (OAI),
which allow complete network stacks to be implemented
over commercial-off-the-shelf hardware. Software-based im-
plementations facilitate the evolution of the network, allowing
the development and rollout of new functionality without
necessarily replacing hardware. For example, open source
software projects have become an important driver to the
establishment of private 5G network deployments, which are
becoming a viable alternative to operate large-scale wireless
networks in industrial environments [3].

Software-based networking provides great flexibility, but
that comes at a price. Suppose a particular company wants
to deploy their own private 5G network with a specific

performance target in mind. For example, they might need run
an application with a particular latency budget or connect a
large number of small devices. Not only they need to choose
the most appropriate software stack, but they also need to
understand how that piece of software would perform on top
of some specific hardware. In this context, software testing
becomes an essential tool to assess the behavior of these
mobile networks under different scenarios. Compliance and
robustness tests, for example, can ensure that the SGC func-
tions are implemented as specified. In addition, performance
tests are necessary to understand how the various network
component implementations perform over specific hardware
configurations to meet the desired application requirements.

In this work, we aim to answer the following question:
how do open source implementations of the 5SGC perform
at scale for (i) execution of registration procedures and (i7)
streaming of user data over parallel data plane connections?
This work proposes and applies performance tests on some
of the main open source implementations of the 5GC, as
an extension of the my5G Tester introduced by Silveira et
al. [4]. As contributions, our work pushes the state of the
art of performance testing in softwarized networks, especially
in the context of the SGC, bringing relevant discussions to
identify limitations and help increase the maturity levels of
open source implementations of 5G networks. In addition, our
work contributes to the development and open source release
of modular and extensible tools to automate tests and monitor
experiments over 5GC implementations, which can be used
for further investigations.

In the remainder of this paper we describe, in Section II,
the theoretical foundations on 5G and software testing, while
related work is discussed in Section III. In Section IV, we
present the conceptual building blocks of the developed solu-
tion for testing the network, collecting, and analyzing data. In
Section V, we present an analysis of the collected data, dis-
cussing the overall performance metrics and limitations found
in the tested SGC implementations. Finally, in Section VI, we
present final remarks, address limitations of our analysis, and
suggest perspective for future work.

II. 5G AND SOFTWARE-BASED NETWORK TESTING

A. 5G Networks

The Stand Alone (SA) architecture of the 5G network
introduces a new Radio Access Network (RAN), called gN-
odeB (gNB), and a network core, called 5G Core (5GC),



which includes a total of twelve components interconnected
through a service layer. Each component has its specific
responsibilities for consuming and providing services to and
from other elements of the 5G system, through an Application
Programming Interface (API) [5].

The three main components are the Access and Mobility
Management Function (AMF), the Session Management Func-
tion (SMF) and the User Plane Function (UPF). The AMF
is responsible for ensuring that the communication process
takes place in a cohesive and transparent manner, considering
user mobility as the main factor. The SMF is responsible for
establishing, modifying, and releasing sessions for each User
Equipment (UE), in addition to requesting to the UPF the
allocation of an IP address to these UEs. The UPF processes
and forwards data flowing from and to the UEs and any
external network. The remaining nine components of the 5G
core perform a variety of functions, such as authentication
of UEs, applying security and control policies, control of
network slice selection by UEs, integration with non-3GPP
access networks, among others.

The Non-Access Stratum (NAS) and the NG Application
Protocol (NGAP) are the two main protocols that implement
the control plane communication between the SGC and the
RAN. NAS is used to communicate between the UE and the
AMF core function for both 3GPP and non-3GPP devices. The
main function of the NAS protocol is to support UE mobility,
including procedures such as authentication, identification,
and updating UE settings. The NAS is also responsible for
supporting session management procedures to establish and
maintain the data connection between the UE and the data
network [6]. NGAP is the standard protocol for control plane
communication between the RAN and the network core, it
encapsulates and transports NAS messages, coming from the
UE to the AMF. NGAP also manages UE context and Packet
Data Unit (PDU) sessions [7]. PDU sessions are responsible
for providing the end-to-end user plane connection between
the UE and the external data network through the UPF. The
data stream carried through PDU sessions is called a PDU
stream and its data packets are encapsulated over UDP using
a GTP-U tunnel [8].

B. Software-based Mobile Network Testing

According to Bertolino [9], software testing consists of
dynamically verifying the behavior of a program using set
of suitably selected test cases in relation to the specified
expected behavior. Regarding the behavior of wireless net-
works implemented in software, it is important to run tests
to ensure that the network works as expected. Among the
types of tests that can be performed on top of open source 5G
network implementations stand out conformance, robustness,
and performance tests [4], [10].

Sarikaya [11] defines conformance testing as the activity
performed for the purpose of verifying the capabilities and
behavior of an implementation under test against the confor-
mance requirements provided in the protocol standard. The
use of conformance tests on open source 5G network imple-

mentations is important to verify that they behave according
to the 3GPP specification.

According to Radatz et al. [12], robustness is defined as the
degree to which a system or component can function correctly
in the presence of invalid inputs or stressful environmental
conditions. Robustness tests in the core of mobile networks
verify the behavior of the network under atypical situations.
Silveira et al. [4] divide the group of robustness tests into
subgroups, involving registration, authentication and security
tests, in addition to specific tests for each protocol and core
network function.

Performance tests are important to understand the network
behavior under specific workloads. For example, a perfor-
mance test could be designed to simulate a network usage
overload, which can cause fluctuations in metrics, such as
throughput, packet loss, and jitter, or event cause the network
to malfunction partially or completely. For the execution of
performance tests, it is customary to use reference applica-
tions, called benchmarks, which reproduce the same input
parameters to comparatively evaluate the performance of dif-
ferent systems or services [13]. Metrics used in performance
tests of software-based mobile networks can be divided into
two groups [14]: (i) communication related metrics, such as
data transfer rates, latency, and packet loss, and (ii) resource
consumption related metrics, such as processor load, memory
usage, and execution time.

III. RELATED WORK

Silveira et al. [4] introduce a proof of concept SGC tester,
focusing on conformance and robustness tests considering
three of the most preeminent open source implementations
available today: free5GC, Open5GS and OAI. The study con-
cluded that all tested 5GCs had satisfactory results under
normal conditions (i.e., they comply to the specification).
However, among the three implementations analyzed, OAI was
considered by the authors as the least mature.

The tests performed by Silveira et al. [4] are extremely
important to evaluate the correct behavior of a 5G network
core. As briefly described in the article, the proof-of-concept
implementation also supports performing tests where multiple
UEs sequentially connect to the network to assess whether
the implementation of the SGC supports repeated executions
of standard procedures. However, tests implemented by Sil-
veira et al. did not intend to compare the performance of
these implementations in cases where a large number of UEs
connect to the core in parallel, for instance, making registration
and authentication requests in short periods of time. This type
of test would be important to evaluate the performance of
implementations under heavy workloads.

Based on the free5SGC implementation, Lee et al. [14] deals
with 5G network slicing, which allows the creation of multiple
logical networks on top of a single physical substrate. The
authors performed experiments to verify the conformance of
the network slicing functionality, as well as its performance.
They measured the performance of the network using specific
applications to overload the data network. It was found that



latency gradually increased with the number of connections,
and packets were lost at a certain point due to network over-
load. The experiments performed by Lee et al. [14] are very
important to analyze how the overload of mobile networks
affects the performance of sliced 5G networks. However, this
article carried out the experiments on the user plane of the
network, not taking into account how much the control plane
of the network was affected.

The study by Garcia et al. [15] conducts performance tests
on the user plane of real mobile networks of past generations to
compare the performance LTE in relation to the 3.5G network
using different scenarios and operators. The metrics collected
by the study were latency, throughput, and the loading time
of web pages. Each test was performed with and without
background traffic. This study only analyzes data traffic on
mobile networks, verifying the behavior of networks in normal
use and with background traffic. Since experiments were
carried out on real networks of four local operators, it is
understood that the study could not take measures related to
the control plane performance.

IV. PERFORMANCE TESTER FOR 5GC

In this paper, we propose and apply performance tests in
open source SGC implementations as an extension of the work
of Silveira et al. [4], which introduces a proof of concept
testing framework called my5G Tester. Silveira et al. proposed
and implemented a modular and extensible architecture mainly
focused in the design of conformance and robustness tests
on different open source SGC implementations. Since my5G
Tester supports expansion to other workloads, allowing the
development of other types of tests, we have proposed, imple-
mented, and integrated extra modules to allow performance
tests to be carried out!.

The high-level architecture presented in Figure 1 highlights
some of the main components we have adapted from the my5G
Tester framework, which are divided into three main layers:
Simulation, Controller and User Interface. The Simulation
layer mimics the behavior of the RAN, allowing the creation
of virtual gNB and UE devices capable of connecting and
exchanging control messages and data traffic with the 5SGC.
In this work, since we intend to simulate heavy workloads,
we introduce in the Simulation layer the possibility to connect
multiple simultaneous UEs to test SGC implementations with
many parallel execution of different procedures. The Con-
troller layer receives user commands through an interface, se-
lects tests to be executed from a set of Test plans, interacts with
the Simulation layer configuring gNBs and UEs, and sends
experiment metrics to the Metric Collector, which will store
them for future use. The present work extends the Test plan
module, adding the possibility to run connectivity tests of UEs
in parallel, to evaluate the operation of SGC implementations
under heavy workloads. Finally, the User Interface layer allows
execution and monitoring of tests, as well as exporting metrics

ISource codes are available at the PORVIR-5G project GitHub repository:
https://github.com/PORVIR-5G-Project
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Fig. 1. Tester Architecture

stored in the Controller layer. Within this layer the user can
interact with the tester through parameters sent by a command
line to be executed in the test environment.

Differently from conformance or robustness tests, which
are expected to return always the same result (true or false
values) for every run of a test plan, performance test results
might fluctuate with the randomness introduced by concurrent
access to resources. Therefore, in addition to the modules
implemented internally in the tester, it was also necessary to
design and implement mechanisms for automating the creation
and configuration of the test environment, as well as the
execution of tests. The internal modules and mechanisms
implemented to orchestrate multiple runs of test plans as
experiments and collect the generated data for further analysis
are detailed in the following.

A. Test Module

For the execution of performance tests, a module was
developed for the tester that allows the execution of mul-
tiple connections of simultaneous UEs. This module was
implemented supporting configuration parameters to facilitate
variations between tests. Therefore, it is possible to define the
number of UEs to be connected, the delay in milliseconds (ms)
between one connection and another and the delay in seconds
(s) to start the experiment execution.

At the beginning of execution, this module simulates a gNB
and starts connecting it to the SGC. After the gNB connection
is successful, the tester waits for a configurable amount of time
to start running the experiment. After that the module starts a
parallel workflow to create a new UE instance and connect it
to the SGC. After starting the parallel workflow, the module
waits for the user-defined interconnect delay before starting the
next workflow, until the defined number of devices is reached.

During the module development, a limitation was found in
the implementation of the my5G Tester that did not allow the
simulation of more than 255 UEs connected simultaneously.
Analyzing the code and discussing with original developers,
we observed that the correction of the limitation would require
time and resources unanticipated for the scope of this project.
Therefore, instead of fixing the implementation, to circumvent



this limitation, we decided to use multiple instances of the
tester. Thus, each instance simulates a different gNB connected
simultaneously to the SGC and, to each gNB, we connect up
to 255 UEs, allowing the simulation of large scale a RAN.

B. Data Collection Module

The data collection module is responsible for gathering data
both from the inner workings of the 5GC components as
well as from the infrastructure that surrounds it. Regarding
the internal SGC components behavior, our data collection
module runs a parallel execution flow that records the time, in
nanoseconds, that each UE took to switch between states dur-
ing its connection to the 5GC (e.g., registration initialization
and acceptance, PDU session establishment, etc.). The timing
information for each state change is written to the standard text
output of the tester instance for later collection and analysis.
This module provides valuable information for the breakdown
of the overall execution time of the registration procedure,
providing insight on the contribution of each individual state
change in relation to the whole process.

Regarding infrastructure metrics, this module configures
monitoring flows using an application called Node-RED. Since
we use Docker to deploy the SGC components (more details
on the experimentation setup in Section V), a flow was
developed to list all containers running on a host machine,
collect metrics from the Docker stats API, and store them
in a time series database called InfluxDB. This flow was set
to run automatically after Node-RED is initialized, allowing
the collection of disk, network, processor, and memory usage,
among other metrics, in an automated way.

C. Orchestrator

In order to carry out all the executions of the experiments
as similarly as possible, an orchestrator was developed that
manages the entire execution of the experiment. Figure 2
represents the orchestrator’s execution algorithm. The orches-
trator runs through a command-line user interface, supporting
several parameters to customize and automate the experiment
execution in a simplified way. The orchestrator is designed to
support different implementations of the SGC.

When starting the orchestrator, an analysis of the com-
patibility of the operating system’s kernel is carried out,
verifying if it meets the requirements of the SGC. Afterward,
the orchestrator verifies that all dependencies are correctly
installed and configured. Otherwise, the it makes the necessary
modifications automatically. Once the system is ready, the
execution of the desired experiment begins. First, the chosen
5GC source code is downloaded, compiled, and built into
Docker images, which are then launched. Then, the core’s
database is filled with the necessary information for connecting
the UEs according to the experiment settings. Finally, the
data collection module and the tester, with the user-defined
parameters, are started as containers.
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V. ANALYSIS OF COLLECTED DATA
A. Infrastructure and parameters

To carry out the experiments and validate the results we
used virtual machines running the Ubuntu Server 20.04.4 LTS
operating system with different resource configurations: 4, 6,
8 and 12 virtual cores of an Intel Core i7 processor, 4 and 8
GB RAM, and a 64 GB virtual disk stored on an M.2 NVMe
SSD. Summary details of the setup can be found in Table I.

TABLE I
TEST MACHINE CONFIGURATION

Virtual Machines
CPU Intel Core 17 8700T @ 2.4 GHz
4 cores [ 6 cores | 8 cores | 12 cores
DDR4 2666 MHz
RAM 4GB [ 8GB | 8GB [ 8GB
Storage SSD M.2 64GB NVMe
Operating System Ubuntu Server 20.04.4 LTS

Two different experiments were carried out on different
configurations of this infrastructure. The experiments were
5GC session establishment and registration times tests and
5GC data plane performance tests.

B. Session Establishment and Registration Time Tests

The experiment for measuring registration times and session
establishment of the 5G core consists of simulating multiple
UEs trying to connect and establish a PDU session with the
5G core to be tested. In this way, it is possible to measure the
latency between each stage of the connection and its variation
according to the workload applied to the core. In order to
be able to measure this latency in different scenarios in an
automated way, configuration parameters were added both in
the experiment orchestrator and in the testing module. In this
experiment, the metrics of processor, RAM, disk and network



usage were also collected from all components of the SGC
and the tester, using the tools for exporting metrics from the
Docker containers.

For this experiment, a virtual machine configuration with
12 virtual cores and 8 GB RAM was used. 1Regarding
the experiment settings, the SGC versions free5SGC v3.2.1
were used, the most recent being available at the time of
the experiments, and Open5GS v2.3.6, which is the version
recommended by the tester developers. For each core, the
following tester settings were used: number of gNB ranging
from 1 to 11, with a step of 2, interval between connections
from 100 ms to 500 ms, with a step of 100 ms, and each
egNB connecting 100 UEs. This experiment was performed 10
times, to obtain an amount of relevant data, where external
noises to the experiment were mitigated.

During the tests to carry out, some limitations were found
and should be highlighted. Firstly, we intended to use free5GC
version v3.0.6, which is recommended by the developers of the
tester. However, this version failed after connecting 10 UEs,
which would make this experiment unfeasible. OAI v1.4.0,
which is the latest available, had a similar limitation failing
after connecting exactly 15 UEs. Open5GS v2.3.6 is able to
connect exactly 1024 devices simultaneously before crashing
the AMF network function. Therefore, it was decided that at
most 11 gNBs would used in our experiments, accounting for
a total of 1100 connected UEs.

C. Data Plane Performance Tests

The experiment for measuring the performance of the 5G
core data plane consists of simulating 1 or more UEs per-
forming the registration in the network core and initiating a
data plane. After the registration is completed, the data plane
capacity is measured using iPerf version 2.0.

To carry out this experiment, it was decided to use version
2.0 of iPerf, instead of the latest version, due to its ability
to support multiple client connections on a single server
instance, in addition to allowing exporting metrics from the
experiment in a comma-separated text file, making it easier to
post-process the data. Tests were carried out with all virtual
machine configurations of Table I. In this experiment, the main
metric to be observed is the bit rate, in bits per second (Bps),
representing the maximum data traffic capacity between the
UE and the 5G network, passing through the UPF. In this
experiment, the metrics of processor, RAM, disk and network
usage were also collected from all the components of the 5SGC
core and the tester, using the tools for exporting metrics from
the Docker containers.

Regarding the parameters used for the execution of the
experiment, the configuration of 1, 2, 4, 6, 8 and 10 gNBs
with 1 UE each was used, recording and connecting the data
plane before the execution of each performance test. As for
the parameters of the iPerf tool, the experiment execution time
was set to 60 s, reporting the test metrics every second. The
tested SGCs were free5GC v3.0.6 and Open5GS v2.3.6, both
recommended by the tester. This experiment was performed

16 times, to obtain an amount of relevant data, where external
noises to the experiment were attenuated.

Some limitations were observed during the preparation
and execution of this experiment. Since the latest version of
free5GC was used in the previous experiment, it was intended
to use the same version for this experiment. However, the
tutorials for the v3.2.1 implementation failed to establish the
necessary routes for the data plane, making the connection
between the iPerf server and client unfeasible. Therefore, we
decided to use a previous version of this SGC, which had
been approved by the tester’s developers. In this experiment,
the OAI had the same problem, with failures to establish the
routes between the UE and the 5G network in versions v1.3.0
and v1.4.0, the latter being the most recent to date. Therefore,
it was decided not to carry out the experiments on this SGC.

D. Discussion on Session Establishment and Registration

For the experiment to measure the connection time of UEs,
the total time between the beginning of the registration process
and obtaining the data plane was taken into account. After
collecting and processing the data from this experiment, the
charts in Figure 3 were generated to allow the visualization and
analysis of the collected data. The chart represents the average
connection time for each burst of simultaneous connections,
with the X axis representing the experiment execution time,
in s, and the Y axis representing the total time to establish
the connection and start the data plane of this UE, in ms. In
the left column, the results for free5GC are presented, and
in the right, Open5GS. For each 5GC, 5 charts were drawn,
with different variations in the interval between bursts of UEs
connections.

When analyzing the data, it is possible to infer that, for
the conditions of the experiment, free5GC had an average
connection time of 1089 ms, when each connection started
500 ms after the previous one. In this experiment, the median
connection time was 853 ms and the maximum connection
time was 5.57 s. For an interval between connections of 100
ms, the average connection time was 7731 ms, with its median
being 3027 ms and the maximum just over 54 s.

As for the behavior of Open5GS, it can be seen that for
an interval of 500 ms, the average time was 306 ms, with its
median at 305 ms and its maximum connection time at 345
ms. For the 100 ms interval, the mean rose to 364 ms, while
the median rose to 358 ms and the maximum value reached
490 ms. Thus, considering only the connection time, Open5GS
shows better performance, withstanding several bursts of con-
nections in different scenarios, with its average time varying
around 58 ms.

During the execution of the experiments, the rate of un-
successful connections between the UE and the core of the
network was significant between each execution of the exper-
iment for each of the cores tested. Therefore, the charts in
Figure 4 were drawn with the comparison of the average error
rate between the two evaluated implementations.

In the boxplot, the line inside the box represents the median
of the connection error rate values. The ends represent half of
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Fig. 3. PDU session registration and establishment time for each 5G core

these values closest to the median. The top and bottom lines
represent the extremes of the connection error rates. The small
circles represent the outliers. These circles show unrepresenta-
tive data for the experiment, which may be caused by external
agents during any of the executions of the experiment. The
larger the chart box, the larger the data spacing.

In this chart, it is possible to notice that the two cores tend
to behave satisfactorily for a low UE concurrent connection
rate. However, a few outliers exhibited some failures occurred
during the execution. When increasing the UE concurrent con-
nection rate, both cores present instability, having a high vari-
ation rate during the execution of the experiment. Open5GS
presents a consistent failure rate at 11 gNBs. This failures can
be explained by the limitation on this implementation. Upon
reaching the limit of 1024 devices simultaneously connected,
all attempts are unsuccessful.

E. Discussion on Data Plane Performance

For the experiment to evaluate the performance of the data
plane of the SGC, iPerf 2.0 was run simultaneously for 60 s
on each UE connected to the 5G core. iPerf was configured
to generate TCP data. In a real world usage, this type of data
traffic simulates a file download, for example, when the UE
whats to download the file as fast as possible. At first, the
virtual machine was used in its maximum configuration, with
12 virtual CPU cores and 8 GB RAM. After collecting and
processing the data provided by the iPerf tool, charts were
generated representing the average bit rate per second of the
tested 5GCs.

Figure 5 shows the aggregated value of the bit rate for each
UE for all virtual machines. The first line of charts represents
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the virtual machine configuration with 12 virtual cores and 8
GB RAM. While the last line of charts represents the virtual
machine configuration with 4 virtual cores and 4 GB RAM.
The X axis of the chart represents the amount of UEs in each
round of the experiment, where the bar segment represents the
UE of the same color in the two previous figures. Each bar of
the chart represents the average bit rate in Mbps aggregated
between the UEs.
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Fig. 5. Bit rate aggregate value for each UE number setting



In this experiment, for the virtual machine with 12 virtual
cores and 8 GB RAM, we noticed that in free5GC the total bit
rate between each execution increases according to the number
of connected UEs. The average bit rate value for this core
with one UE connected is 338.4 Mbps, increasing to 777.0
Mbps with 4 UEs connected and 1001.1 Mbps with 8 UEs
connected. In contrast, the behavior of the Open5GS core is
opposed to free5GC. In the Open5GS core, the average bit
rate value for a connected UE is 314.5 Mbps, reducing to
262.7 Mbps with 4 UEs connected and 241.1 Mbps when
connecting 8 simultaneous UEs. This experiment demonstrates
that free5GC performs better handling data traffic of UEs at
scale than Open5GS.

By limiting the amount of resources available for the
execution of the experiment, decreasing the amount of virtual
processor cores and RAM of the virtual machine, it can be
seen that the data plane performance for the free5GC core is
directly proportional to the number of virtual cores available.
In the virtual machine with 8 virtual processor cores and 8
GB RAM, represented by the second line of charts on Figure
5, maximum data plane bit rate for core free5GC is reduced
to 927.6 Mbps when running with 8 concurrent UEs. This
performance reduction can be explained due to the limitation
on the maximum processing load supported by the virtual
machine.

The performance degradation of the data plane becomes
more visible by further limiting the amount of virtual cores
available for the experiment. At the third line of charts on
the Figure 5, where the virtual machine runs with 6 virtual
processor cores and 8 GB RAM, one can see that the max-
imum data plane performance of free5GC is achieved with
four simultaneous UEs. The same behavior is present when
the virtual machine has its available resources reduced to 4
virtual processor cores and 4 GB RAM. The performance
reduction for tests with a greater number of simultaneous UEs
is explained by the processor usage overhead caused by the
number of UEs generating data traffic in parallel.

F. Discussion on Resource Consumption

This section focuses the analysis of the processor usage
during the execution of the experiments. We also collected
data on RAM, disk, and network usage, but since these metrics
did not provide significant insight to compare both tested
implementations, we decided not to present them in this paper.
In Figures 6 and 8, the CPU usage data for each container has
been grouped into three sets to make it easier to visualize.
The first set represents the aggregated data from all instances
of the tester, referred to in the charts as Tester. The second
set represents the aggregated data of all core functions under
test, referred to in the charts as Core. The third set represents
the aggregated data from the rest of the running services, such
as the containers used to run the core data collection module
and the iPerf application server used in the second experiment,
named in the charts as Others. A more detailed analysis of the
use of resources for each component running during the period
of the experiment is possible when using the tool to generate

views of the collected data available through the InfluxDB
application. This tool is part of the data collection module
and collects more metrics than those presented here.

1) Analysis of resource consumption in the 5GC session
establishment and registration tests: For the analysis of the
use of processor resources for the execution of the experiment
of registration and establishment of the 5G core session, an
execution of the experiment was used with an interval between
connections of UEs of 500 ms and 9 gNBs connecting UEs
in parallel. The aggregated results can be seen in Figure 6.
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Fig. 6. CPU usage for execution with 500 ms delay between connections

This figure shows the CPU usage according to the ex-
periment execution time for free5GC and Open5GS. The X
axis of the charts represents the time in seconds referring
to the total data collection of the experiment, considering
the time for the initialization, execution and termination of
the experiment, and the Y axis represents the percentage of
CPU usage. When looking at resource usage only during the
experiment execution period, the average processor usage of
Jree5GC was 37.31%, while Open5GS used 8.98%. The results
described above demonstrate that Open5GS presented a 4.1x
higher performance in terms of processor usage compared to
free5GC.

Figure 7 presents the breakdown of processor usage for
each component of free5GC and Open5GS for the session
establishment and registration experiment with an interval of
500ms between each burst of connections. As expected for this
experiment, the AMF is one of the components that uses most
resources in both 5GC implementations. Nevertheless, it is
possible to notice that processor usage of other core functions
vary for each of the implementation. As an example, while
free5GC uses a significant amount processing resources in the
Network Repository Function (NRF), Open5GS uses propor-
tionally more compute resources in Unified data management
(UDM) and Policy Control Function (PCF) components. It is
important to notice that the Binding Support Function (BSF)
is not present in this free5GC deployment.

2) Analysis of resource consumption in the data plane
performance tests: To perform the analysis of the use of
resources during the execution of the experiment for the
evaluation of the performance of the data plane, the metrics
for processor usage resources was chosen. This analysis com-
plements the explanation of the experiment demonstrated in
Section V-E. The experiments were conducted in four different
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between connections

configurations. However, the analysis of resource consumption
was focused on only one configuration, using the virtual
machine with the lowest amount of resources. By looking at
the CPU resource usage for the virtual machine with 4 virtual
processor cores and 4GB RAM, it is possible to explain the
performance drop of free5GC data plane after tests with more
than 4 simultaneous UEs. Figure 8 represents the charts of
processor usage for an execution of the data plane performance
experiment.
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Fig. 8. CPU usage for the data plane experiment with 4 UEs connected

It is possible to observe that the processor usage for the
execution of four connected UEs and using the data plane of
free5GC is very close to 100%, reaching the maximum usage
of the processor in several moments. Of the total processor
usage, 91.87% of usage is represented by the testers and
UEs performing the tests, 0.17% was used by free5GC, and
the remaining was used for other containers running on this
machine. This demonstrates that this SGC uses few processor
resources to manage the data plane of the connected UEs.

Regarding Open5GS, which is not optimized to manage
the data plane in parallel threads, the total average processor
usage during the execution of the experiment was 93.75%.
The total processor usage during experiment execution is
mainly split between the tester instances and the 5SGC, with
the tester representing 60.24% of the processor usage and the
core representing 22.1%. The reduction in processor usage
by the tester instances and UEs compared to the experiment
performed with the free5GC core is explained by the low bit
rates achieved by Open5GS.

A possible explanation of these results is that the core
free5GC probably uses parallelization to manage the data
plane processing of the UEs. This would justify the ease

of scaling the number of connected UEs, subtly reducing
the performance of individual UEs. On the other hand, the
Open5GS core does not have the same behavior. According
to the results, the Open5GS core used 22.1% of the total
processing available in the virtual machine which is equivalent
to slightly less than the capacity of one available processor
core. Possibly, this 5G core is not optimized to parallelize
data plane processing when multiple UEs are connected. This
would explain the poor performance observed in the Open5GS
core results.

VI. FINAL CONSIDERATIONS AND FUTURE WORK

The present work proposed, implemented, and applied
performance tests on some of the main open source 5GC
implementations. The findings and limitations discussed can be
useful to guide the evolution of software-based 5G technolo-
gies. Likewise, our proposal can be used to test and evaluate
other SGC implementations.

One of our main contributions to state of the art of per-
formance testing in softwarized networks is relative to the
assessment of the maturity level of current open source im-
plementations of the 5GC. The two implementations evaluated
have presented major limitations in terms of performance at
scale, hindering their implementation in real large-scale 5G
network deployments. Our results demonstrated that free5GC
presents better performance regarding data plane bit rates,
scaling up to roughly 1Gbps with multiple UEs connected.
On the other hand, Open5GS shows better stability during the
registration process of multiple UEs, keeping connection times
generally under half of a second. Also, this work shows that
the OAI 5GC implementation was considered least mature and
was not able to run any of the performance tests proposed.

Another practical contribution was the development a mod-
ule integrated in the my5G Tester. This module is available
in the PORVIR-5G project code repository and is open to
the community. Thus, it is possible to use the available
tester implementation to reproduce the experiments carried
out in this work, as well as perform tests on other 5GC
implementations.

The present work opens opportunities for future investiga-
tions regarding the performance of the SGC. As an example,
one could extend the proposed test mechanisms to evaluate
other 5GC procedures, such as handling user mobility, han-
dover, slice selection, etc. Moreover, the results of performance
tests carried out could provide meaningful inputs in the form
of datasets to help designing intelligent orchestration mecha-
nisms for the SGC. Based on the performance test results an
algorithm could automate decisions upon replication of overly
stressed core components, vertically or horizontally scaling the
underlying infrastructure, just to name a few.
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