
Supporting Strategic Decision Making on Service Evolution Context Using Business

Intelligence

Ernando Silva, Karin Becker, Renata Galante

Instituto de Informática – Universidade Federal do Rio Grande do Sul

Porto Alegre, RS - Brazil

{ernando.silva, karin.becker, galante}@ inf.ufrgs.br

Abstract—With the growing demand for service-oriented

applications, the complexity of service change management is

increasing. Existing work essentially addresses change

decisions from a technical perspective (e.g. versioning,

compatibility), but providers need to make decisions

considering the business impact in terms of clients affected,

revenues, costs and penalties. This paper suggests the use of

Business Intelligence and Data Warehousing techniques to sup-

port business-oriented decisions throughout service life-cycle in

a deep change context, i.e. a portfolio of services consumed in

large scale by direct/indirect clients. The approach is centered

on financial and usage indicators related to the service

provision business, a data warehouse that provides a unified

and integrated view of these indicators according to different

analysis perspectives, and a data warehousing architecture that

integrates heterogeneous data sources. We illustrate the impact

analysis support provided by the approach through a case

study inspired by a real world scenario.

Keywords- service evolution, deep change management,

business intelligence, data warehouse, change impact

I. INTRODUCTION

The demand for service-oriented applications has
increased in recent years and it is expected to grow even
more in the short-term. Today, many companies have
business segments focused on providing solutions based on
the Software as a Service (SaaS) paradigm. Typically, this
magnitude of service provision covers a portfolio of
interrelated services and, consequently, includes a large web
of clients [1]. As traditional software, services are subject to
continuous cycles of improvement, where changes are
motivated by new requirements or business opportunities,
new regulations, performance, etc. Changes can affect the
structure (interface), semantics or non-functional properties
(e.g. QoS) of a service [1][2].

However, the life-cycle of service-based applications is
decoupled from the one of the services they consume [3].
Therefore, applying changes to services that are incompatible
with current usage will break clients, with particularly severe
consequences in a large-scale usage scenario. Disruptions are
not limited to direct clients, i.e. clients that make requests to
the changed service. Changes can also affect indirect clients,
who do not consume explicitly the changed service, but
instead, a service that depends (directly or indirectly) on the
service changed, and is effected in a ripple effect. The
changes limited to a single service and its direct clients are

known as shallow; and the ones that cover a portfolio of
services and its whole set of direct/indirect clients are
referred to as deep [4]. A change-oriented service life-cycle,
integrated with methods and tools, is necessary to provide a
sound foundation for planning changes.

Most approaches address the technical aspects of service
changes in shallow change scenarios, such as versioning,
compatibility, and functional components for hosting and
handling versioned services [1][2][3][5][6]. Papazoglou et al.
[4] address deep changes with a methodological approach.
Their change-oriented service life-cycle is composed by
phases for identifying if a change is needed, analyzing
change alternatives and deploying changes. A change
information model [7] relates types of changes and
stakeholders, and their effects on each other. Service
governance involves the management, creation and
enforcement of policies and standards for all the processes
related to service life-cycle management, highlighting the
areas for which policies and standards should exist for
supporting decision making [8]. These works highlight tasks
and decision points involved in the evolution life-cycle, but
lack support for the underlying decision making process
related to several stakeholders (e.g. designers, providers).

In our previous work [9], we correlated service lifecycle
phases, tasks and stakeholders as a foundation for identifying
evolution decision support requirements. Our focus is on the
provider’s perspective for decision-making. Beyond the
technical scope, deciding about changes requires estimating
the impacts of change decisions and their alignment with
business strategies. For providers, knowing about
incompatibility issues between specific service versions is
not enough: they need to understand the effects of
incompatibility on their web of clients, and how their profit,
reputation and market position will be affected. Although a
more accurate impact analysis minimizes the difficulties on
decision making, finding these answers considering a deep
change context, is a non trivial challenge.

Business Intelligence (BI) has been applied to support
decision making in several fields [10][11], but its potential
for supporting service evolution decisions has not been
addressed by existing works. BI refers to the use of internal
and external organizational information assets to make better
business decisions, supporting the transformation of data into
information. A common approach is to provide analytical
resources over a centralized, integrated, historical, and
subject-oriented database referred to as Data Warehouse

(DW) [11]. Challenges towards the use of BI for supporting
service life-cycle decisions include: a) characterizing the
decisional needs in this scenario; b) identifying relevant data
about service provision and service consumption (and their
clients) that can meet these needs and organizing them in a
proper multi-dimensional model that supports an integrated
analysis of all perspectives; and c) designing a flexible
architecture capable of dealing with the unpredictable
heterogeneity of data sources, which may vary according the
environment of the service provider and its business
practices.

In this paper we explore how BI can support the
measurement of the impact of changes during the service
life-cycle, using financial and usage indicators. We propose a
BI approach that encompasses: (i) the identification of
metrics that measure change impact, (ii) how these metrics
can be integrated using a multi-dimensional DW model that
enable several analysis perspectives of service provision, and
(iii) a data warehousing architecture that deals with the lack
of standards and the heterogeneity of data sources in the
service provisioning context. The proposed approach
represents a novel contribution to enhance business decision
making in the context of service evolution. We complement
previous work [9] by detailing indicators to measure change
impact, discussing their integration according to distinct
analysis dimensions, and presenting a data warehousing
architecture.

The rest of this paper is organized as follows. Section II
explores the decisional needs of service providers and how
KPIs can be used for decision support based on the impacts
of changes. Section III specifies the BI proposal, detailing
how indicators are stored in a data warehouse and the
architecture. Section IV illustrates impact analysis through a
case study. Section V summarizes related work, whereas
Section VI presents conclusions and outlines future work.

II. DECISIONAL NEEDS AND IMPACT INDICATORS

Papazoglou et al. describe in [4] a methodology that
defines a full cycle for service deep changes. It identifies the
main decision points and the related tasks for evaluating or
applying the changes. The initial phase, "Need to evolve",
encompasses identifying the need for changes, their scope
and extent, and collecting KPIs. The next phase, "Analyze
the impact of changes", covers the change impact analysis,
compliance with business rules, recognizing problems
generated by the scope of changes, costs estimative and KPI
(Key Performance Indicator) analysis. These analyses result
in the decision of applying or not the change. When the
decision to implement change occurs, the final phase, "Align,
refine, and define", comprises services testing, as well as
monitoring the alignment of changed service with business
strategy. Despite the overall guidance provided by this
lifecycle, several needs can lead to decisions about changes.
Different stakeholders are involved the tasks of each phase,
with different concerns for decisions, as highlighted in [9].
For instance, designers face decisions regarding whether
requirements are met by changes in service design or
implementation. Providers, on the other hand, are more
concerned about business-oriented effects resulting from the

changes. In this paper, we assume the providers’ perspective,
and the business impact of chances as the driver for decisions
related to service changes.

A. The Impact of Service Changes

From a business perspective, changes can represent a
competitive advantage, an alignment with regard to
competitors, or financial adequacy based on profits/losses
obtained with service provision. Usage levels tuning may
also motivate changes. In fact, change motivations may have
any bias, but change impact remains a critical and central
decisional point for the service provider. Change effects can
affect both direct and indirect clients, resulting in client
attrition, financial losses or reputation damage. Because this
criticality, it is important to understand decisional needs
related to measuring impact, and related metrics that can
support these impact analysis. An example illustrates this
situation in a deep change scenario.

Example. Suppose a service provider that has a service
portfolio with thousands of clients. The provider notices a
decrease in business profit and wishes to analyze how this
situation could be reversed. He considers two alternatives: to
increase the service fees or to reduce provision costs by
decommissioning older service versions. However, which
alternative is the most appropriate, and more importantly,
will any of them solve the perceived symptoms?

The provider has a financial need that requires
adjustments in the service portfolio, but he lacks support for
decision making. For example, is it possible to understand
how profit is decreasing along the client (deep) chain? In the
case of decommissioning versions, will cost reduction be
affected by other financial variables, such as loss of revenue
due to loss of broken clients, or SLAs (Service Level
Agreements) penalties?

Therefore, the provider needs a decision support
environment relating distinct analysis perspectives that
represent the impact of changes for the business.

In this paper, we adopt two overall analysis perspectives,
namely usage and financial. We present how financial and
usage perspectives can be measured, combined and explored.
However, it should be clear that the approach can be
extended to other forms of impact measurement analysis
(e.g. the service performance, geographic information,
normative restrictions).

B. Impact KPIs

KPI analysis is central to understanding the need for
changes and measuring its impacts, and it is one of the first
tasks in the deep change life-cycle [4]. According to [12],
KPIs are indicators used by organizations as a mix of
performance measures, which cover both Key Result
Indicators (KRIs) and simple Performance Indicators (PIs).
We consider KPI as a measuring of organization’s business
performance and its results, and thus, each metric represents
an aspect of overall organizational strategy. The analysis of
these KPIs enable to answer questions related to decisional
needs of a service provider, as in the scenario detailed on
Section II.A. We propose an initial set of financial and usage
KPIs, summarized in Table I. In the next section, we show

how to represent and integrate them in a DW.
From a financial perspective, typical metrics are related

to revenues and costs of service provisioning, which need to
be considered in the evolution context. It is often the case
that, to avoid breaking clients due to incompatible changes,
several versions of a same service are available. Metrics that
consolidate infrastructure spending or make accounts about
penalties caused by SLA disruptions (e.g. service
unavailability) can be weighted on the decisions about
providing a specific service or version, thus influencing on
the decision of creating, maintaining or decommissioning
versions. Additionally, with measures representing service
revenue, the provider has interesting information to derive
the profitability of each service/version.

Considering the service usage perspective, one can
measure the amount of requests to services, specific versions
of a service, or even specific operations of a service/version
[5]. We can further distinguish between direct and indirect
requests, in order to cope with both shallow and deep
scenarios. These KPIs are valuable because they indicate
how much a service/version/operation is used, influencing a
possible decision to create new service/version/operation, or
decommission existing ones.

TABLE I. KPIS CONSIDERING FINANCIAL AND USAGE PERSPECTIVES

Perspective Direct KPI Derived KPI

Financial

 Revenue

 Estimate Infrastructure Spending

 Penalties Costs

 Profit

Usage

 Quantity of Direct Requests

 Quantity of Indirect Requests

 Number of Client Applications

 Total Requests

III. A DATA WAREHOUSING ENVIRONMENT FOR

ASSESSING CHANGE IMPACT

BI is a means to empower providers with insight about
the impact of changes from a business perspective. Data
warehousing [10][11] is a common foundation for BI, which
is centered in providing analytical resources over a
centralized, integrated, historical, and subject-oriented data
warehouse. A complex process to Extract, Transform and
Load (ETL) is required to access different internal and
external data sources, and consolidate all this raw data in the
DW.

In this section we detail the DW model and the ETL
architecture for the described service evolution context. On
the one hand, the design of a DW involves considering the
available, correct and useful granularity of the data to
compose useful indicators for business oriented analysis, as
well as their integration to provide a unified view of the
service provision business. On the other hand, the ETL
process of the Data Warehousing architecture must deal with
lack of standards and well-defined processes in the domain,
distribution of data sources, and their heterogeneity. We
assume that the DW can be explored using traditional BI
analytical tools (e.g. pivot tables, dashboards, alerts) [10],
adapted according to the decision-maker profile.

The ultimate goal is to lay foundations for an insightful
environment supporting the service provider with useful

analysis for assessing the impact of change alternatives in
terms of business variables. The discussion in this paper is
limited to the usage and financial perspectives, using the
indicators defined in the previous section, but it should be
clear the approach can be extended to other indicators and
perspectives.

A. Data Granularity

The modeling of an integrated and unified view of
business metrics about service provision and its environment
requires identifying: a) the smallest granularity of relevant
data as it exists, and b) the trade-offs involved in
representing it in the appropriate detailed/aggregated level,
according to the decisional needs. Next, we discuss the
characteristics of data in the service context and the
implications for DW modeling.

1) Quantity of Direct and Indirect Requests
A common scenario for providers is the existence of

multiple active versions of a same service being used by
different clients. So, usage information represents the
interactions between clients and operation of a specific
service version. Although very relevant for analysis
purposes, collecting this data is challenging due to the
distributed nature of services. Techniques to collect service
usage data by monitoring, intercepting and logging of client
requests are discussed in [13]. Each alternative imposes
trade-offs in terms of scope of extractable data (ranging from
service version to specific service operations), cost and
performance of the monitoring capabilities, which must be
carefully considered [5].

The choice about the approach to monitor interactions
influences the level of detail of available information, and
determines the metrics that can be represented and their
usefulness, particularly when combining metrics for decision
making. For instance, collecting usage data at service version
level prevents one to have a correct perception about the key
operations from the client perspective, as well as to
(correctly) derive metrics about indirect requests. At most,
one can assume an inaccurate worst-case scenario where a
service can trigger requests in another one (e.g. by
examining the services coordination model). On the other
hand, capturing and representing information at service
operation level enables one to understand exactly which
operations clients tend to use most. This fine-grained data
can derive useful information that can be used for various
purposes, such as envisaging service design alternatives,
deriving deep change impact measures, usage-oriented
compatibility, and so forth [5]. In this paper, we consider the
technique described in [9] to collect direct/indirect requests
at service operation level, although there are other
approaches (e.g. collecting direct requests and estimating
indirect requests from a BPEL definition [14]).

Usage information analysis can thus be as detailed as per
service operation, version and client, such that it represents
the quantity of direct/indirect requests of some client in a
specific time for a service operation belonging to some
service version. This data can be aggregated in different
ways, such as per service/version and per group of clients.

2) Revenue
Revenue is how much the provider charges clients

according to respective consumption of service. The
charging type varies according to different factors and this
diversity causes difficulties to analyze in a unified and
integrated manner. For example, services providing some
cloud storage functionality may have at least two factors to
determine the charging type: the period of usage (e.g. by
month) and the amount of data stored. Services that focus on
financial transactions outsourcing may have a charging type
based on percentage of the value of the transactions. For
services that offer cloud databases, the charging type may be
composed by three factors: consumption per hours/month,
storage space according specific plans, and amount of data
transferred by month. Other services may be charged
considering essentially the consumption volume, as in
services that provide resizable computing capacity.

Unlike usage data, the granularity of revenue metrics is at
service version level, since it is quite unusual for providers to
charge according to each specific operation requested from a
service. Revenue can be detailed per service version, per
charging type, and per client, and it can be aggregated per
service and per group of clients.

3) Costs and Profitability
Costs metrics can be divided into infrastructure spending

for service provision and penalties caused by SLAs
disruptions. While SLA fees or compensation costs can be
related to specific clients and respective usage contracts,
provision costs are much more complex. They can be a
composition of fixed (e.g. same costs for all clients) or
variable costs (e.g. considering some differenced distribution
between distinct clients), according service characteristics or
organizational policies. Determining provision costs on a
service portfolio may be an arduous and complex process,
because it implies defining dependency matrixes and several
coefficients that are quite difficult to establish. Frequently,
simplifications are done on organizational costs structure
(e.g. prorating equally between each group of client, or with
balancing costs according volume of client requests), making
the analytical process simpler. In general, possible
discrepancies due to costs simplification are covered by
profit margin. Therefore, mechanisms of cost prorating can
be applied in order to provide integration of this type of cost
with the previously discussed financial metrics. In addition,
it is essential to be able to combine costs and revenue to
derive service profitability measures.

Assuming a proper prorating function for provision costs,
it is possible to detail metrics related to cost and profitability
per service version, per charging type, and per client. The
aggregation can occur per service and per group of clients.

B. Representing Data in a Dimensional Model

Data Warehouses are modeled in terms of Fact and
Dimension tables. The former contain the measurements, and
the later represents the analysis perspective over
measurements. A Dimension organizes a hierarchy of
attributes that represent the ability to detail or aggregate
measurement data.

It is important to establish a unified and integrated view

of data, yet being able to preserve differences that are useful
for analysis. Table II summarizes the minimum granularity
of the data and their analysis dimensions, as discussed in the
previous section. As it can be seen in Table II, despite the
existence of common dimensions, indicators have
differences that need to be taken into account.

TABLE II. GRANULARITY AND SCOPE OF FINANCIAL AND USAGE

METRICS.

Dimension
Requests, Applications Revenue, Costs, Profit

Analysis

Dimensions
Grain

Analysis

Dimensions
Grain

Time Yes Month* Yes Month*

Client Yes Client Yes Client

Service Yes Operation Yes Version

Status Yes Status Yes Status

Charging

Type
No - Yes

Charging

Type

Thus, we modeled the DW using a multiple fact table

schema (MFTS), which is commonly used to model a set of
multiple, interrelated subjects [11]. A MFTS schema is
composed of several fact tables, relatable through a set of
conformed dimensions, i.e. dimensions that have the same
meaning at every possible fact table. We propose two facts
tables, FINANCIAL_FACT and USAGE_FACT, which group
the respective KPIs (Table I) and relate them through
conformed dimensions. In this way, we are able to combine
financial and usage information through conformed
dimensions, yet preserving the differences between them,
such as the different granularity of usage and financial with
regard to service/operation, or the additional charging type
dimension for financial facts. The resulting DW model is
depicted in Fig. 1.

Figure 1. MFTS schema for the DW model.

The three common dimensions are Time, Client and
Service Status. Time dimension indicates a time period that
groups direct/indirect requests or the revenue/profit/losses
obtained. We suggest month as the minimum granularity
because generally the provider charges clients monthly,
indicating that the data summarization by month is more
appropriate. However, the analysis could be more detailed
(e.g. two weeks, week), according to providers’ needs.
Notice that usage measurements could be related to a much
smaller grain with regard to time (e.g. requests per hour, or

day), but this is hardly the case for financial measurements.
If that is the case, the same modeling alternative used for
Service dimension could be used, as discussed below.

Client dimension is designed to characterize the origin of
service requests or financial revenue/cost. Client dimension
is described by a two level hierarchy, client and client group,
the later considering the ability of grouping clients according
to some similarity criteria. Several criteria could be used for
grouping clients (e.g. strategic importance). In [3][9], we
proposed a knowledge discovery process to group
applications based on service usage patterns. Other
dimensions could be used to characterize clients, such as
geographic location, segment of business, which should
simply be added as dimension to the fact tables.

Service Status dimension is used to indicate the stage in
the provision life-cycle (e.g. active, deprecated, and
decommissioned). This analysis perspective is related to both
usage (e.g. how many clients are consuming a deprecated
version) and finance. The later is especially interesting when
the provider analyzes the profit of a deprecated service
version or wishes to align an organizational strategy with
results being obtained with a newly deployed service.

Another conformed dimension should be Service, but as
discussed, usage and financial metrics have different
minimum granularity for analysis, per operation and per
version, respectively. In order to analyze the service usage,
service dimension hierarchy is characterized as operation,
version and service, whereas for financial metrics, operation
detailing is a very unusual granularity. To consolidate
distinct granularity information, each fact is related to a
service dimension with specific granularity,
Service_Operation and Service_Version, respectively. Thus,
these dimensions are similar when usage facts are considered
at aggregate level (per version or per service), at the same
time preserving the ability of considering at operation level.

As mentioned, this same alternative could be used if
providers wish to maintain different Time granularity for
usage and financial variables.

Finally, there are dimensions that are specific only to the
financial context. Charging Type dimension is restricted to
financial perspective because it is related with charging
according the kind of service. This dimension allows the
adequacy of model to the several charging methods, as
previously discussed.

This model could be enriched with other fact tables, as
additional impact indicators are considered, or dimensions, if
more analysis details are required. In that case, the same
considerations discussed here about data availability,
granularity, and analysis detailing/aggregation apply.

C. ETL Architecture

The ETL architecture presented in Fig. 2 is responsible
for extracting data from heterogeneous data sources, and
loading it in the DW after the proper transformation.

1) Data Sources Area
A distinctive feature of this domain is the lack of

standards and well established processes and practices. Large
scale service provision is a relatively new business area and
demands distinct operational management applications,
which have their own repository with specific data models.
Service providers can use several applications to store
business and service data, as internal operational
applications, CRM (Customer Relationship Management)
and ERP (Enterprise Resource Planning) systems, service
metadata (e.g. the WSDL specification of services), SLAs,
service usage log files, usage mining databases, etc. Also
there is no standardization in the choice of applications, nor
on the way providers store service data. Furthermore, some
types of data may not even exist, and must be derived from
raw data extracted from existent sources.

Figure 2. ETL architecture to populate the DW

2) Staging Area and Extraction Wrappers
The Staging Area aims at providing a normalized model

in which the heterogeneous data from all data sources can be
converted to. The approach proposed to deal with the
different types of heterogeneity is to combine the data
sources and the data staging layers using extraction
wrappers, as in [15]. Wrappers are software artifacts that use
a unique interface for encapsulating one or more
applications. Wrappers will extract necessary data and
transform them according to the normalized model
established in the staging area. Wrappers may need to
integrate raw data spread in different data sources in order to
derive data for the normalized model.

For example, an organization may have part of the
financial data in an ERP system, and the charging types and
the factors that affect can be characterized in other types of
systems. In this case, a wrapper should be implemented to
extract data from various sources and store it into the staging
area. All this information will then be consolidated in a
single attribute that represents the revenue in a common unit,
regardless the charging type.

With the wrapper-based approach, the process becomes
more adaptable for adding of new and diversified sources,
making the adoption of approach easier for distinct service
provision environments.

3) Dimension and Fact Loading
The normalized model of the Staging Area enables to

abstract from the heterogeneity and idiosyncrasies of the
original, raw data sources. The Dimension and Fact Loading
layer is responsible for transforming normalized data
according to the multi-dimensional model concepts
(dimensions and facts), and loading data in the DW.

The Dimension Loader performs the process of slowly
changing dimensions. After handling data compliance and
integrity checking, this component acts according strategies
related to structural changes on dimensions. Although
dimensions change infrequently over time [11], several
alternatives may be adopted to represent these changes for
the provider (e.g. overwrite old values or maintain historical
values in specific fields), according the decisional needs.
This component is interesting for the service domain because
dimensions like Service_Version/Service_Operation and
Client can be changed more frequently that the others. In
first case, new service versions or even services can be
regularly created and, in the later, new groups of clients can
be detected or clients can be reclassified over time.

The Fact Loader has a set of components to transform
measurable data and load it into the fact tables, namely:

 Lookup Function, used to match non-loaded fact data
with existent dimension data in the DW, ensuring that
only valid entries are inserted. This mechanism
contributes to the consistency of the DW.

 Prorating Function. It is applied when prorating of costs
is necessary to determine costs KPIs. For example,
penalties can be calculated by client, but provision costs
need to be prorated among a set of clients. This function
can apply fixed prorating (homogeneous distributing of
costs among clients), variable prorating according

requests volume of clients, variable prorating according
absolute number of clients, among others.

 Aggregator Function, which groups metrics according
specific aggregation parameterizations and analysis
levels. It is applied over raw data available at a more
detailed grain than correspondent fact table. For
example, direct/indirect requisitions must be grouped by
month, lowest level of our time hierarchy, despite daily
information may exist.

 Composite Metrics Function, which refers to the
creation of derived metrics based on existing ones (e.g.
profit, calculated based on difference between revenue
and costs).

IV. ILLUSTRATION

To demonstrate how our proposal may be applied to the
service evolution scenario, we present a hypothetical case
study inspired by the AWS (Amazon Web Services

1
)

portfolio, of which the relevant features are summarized in
Table III. The portfolio includes services in different
segments, of different complexities (as represented by
number of operations), and distinct charging types. The
dependencies between services allow us to assume a large
web of direct and indirect clients for services in this
portfolio. Also, the more operations a service offers (e.g.
EC2), the more we can assume clients have several
alternatives for using the service, implying distinctive usage
patterns.

TABLE III. SELECTED SERVICES TO COMPOSE THE CASE STUDY BASED

ON THE AWS PORTFOLIO.

Service Segment # Operations Depends on Charge by

FPS Payment 25
Simple DB

RDS

Financial

transaction

S3 Storage 16 EC2
Storage by
month

EC2 Computing 137

Consumption

(by hour and
by traffic)

Simple
DB

Database 10 S3

Storage by

month;
Consumption

(by hour)

RDS Database 28
S3

EC2

Consumption;
Data transfer;

Storage plans

Considering this set of services, synthetic data was

created to simulate aspects of this service portfolio, such as:

 Usage data at operation granularity, obtained from log
files generated from the simulation of direct and indirect
requests of clients. This data enables: (a) the
measurement of the service usage level, by varying the
set of operations used by each client; and (b) the
grouping of the clients according to similar usage. We
applied the service usage mining process proposed in
[3][9], which clusters clients into groups according to
similarity of operations requested (or their frequency).

1
 http://aws.amazon.com/

 Direct and indirect clients. Services can be used by
client applications (direct clients), or by other services of
the portfolio, which in turn have their own clients.
Considering Table III, all services depend on EC2 either
directly (S3 and RDS) or indirectly (FPS and
SimpleDB). These interdependences enable to
characterize the indirect clients of each service, which
would be affected as a ripple effect.

 Frequent versioning of each service, as a result of some
maintenance policy (e.g. monthly, as most AWS
services). We assume dependent services and clients are
not required to migrate to the newest version
immediately, and therefore multiple concurrent versions
of a same service exist, with their own clients and
provision costs;

 Service revenue according service characteristics and
distinct charging types, distributed by versions;

 Service costs, with an arbitrary estimative of spending
related to provisioning service versions, and financial
losses due violations of SLAs.

Considering this scenario, it is possible to explore how
the BI approach supports some decisional needs of service
provider, as detailed in Fig. 3.

Figure 3. Dashboard that relates (i) EC2 direct/indirect requests by client

group (left side) and (ii) the historical evolution of revenue and costs for a
specific group (right side).

In this first illustration, the provider wishes to determine
possible impacts resulting from changing the current version
of the EC2 service. Since other services depend on the EC2
service, the provider must treat the spread of the impact over
its indirect clients. As mentioned, we assume the use of
typical analytical tools available in BI environments, such as
pivot tables and dashboards. So, using the BI environment,
the provider can develop the analysis in two fronts: (a)
identifying client groups that make large amounts of direct
and indirect requests, an indicative of the most (directly and
indirectly) affected clients, as illustrated on pizzas chart in
left side of Fig. 3; (b) detailing the evolution of revenue and
costs associated that specific groups of clients over the last
quarter, as illustrated by lines chart in right side of Fig. 3.
With this consolidated perspective, the provider observes
that clients in Group 5 make few direct requests to EC2
service, but consume it largely indirectly, whereas clients of
Group 4 have the opposite behavior. When the provider

details revenue and costs related to these two groups of
clients over the last months, she discovers that the revenue
related to Group 5 has grown considerably, whereas the cost
of providing this service has remained stable. On the other
hand, the revenue due to direct requests of Group 4 is much
lower, and the costs are higher. So, it reveals that the deep
indirect change impact can cause more negative financial
consequences than the set of direct clients.

Another analytical possibility addresses the provider
considering how to revert a situation of decreasing profit
described in Section II.A. One of the considered solutions
was decommissioning non-profitable service versions to
reduce costs, a situation that can be analyzed using the
proposed approach. Fig. 4 illustrates a pivot table resultant
from a filtering of the 3 service versions with the least
requests. The provider has an indicator that relates the
quantity of requests and the service profit. The last column
indicates profit or loss, using green or red arrows,
respectively. The provider can also detail profit according
charging types, which could reveal some pattern relating
unprofitable services and some technical deficit (e.g. outages
of storage mechanisms that cause breaking of SLAs). So the
provider has more insight for decisions related to
decommissioning versions unused or affecting negatively
business financial health.

Figure 4. Pivot table on report that lists the bottom 3 versions with least

requests to each service, relating them to the quantity of requests, the profit
and an indicator to demonstrate how profitable is the version.

V. RELATED WORK

Considering the diversity of proposals covering the
service changes management, and targeting shallow changes
or deep changes as introduced in [1], is possible notice that
most works in the service evolution domain address the
former. These approaches specially focus compatibility and
versioning issues [1][2][3][5][6]. Despite the importance of
this type of technical support for service designers to
understand the effects of shallow changes and typically the
worst-case impact scenario, it disregards the fact that
services may be used differently. Usage oriented impact
assessment is addressed in works such as [1][5], restricted to
the context of shallow changes.

Few works are oriented towards deep change impacts,
particularly according to a business perspective. In terms of
deep impacts, a dependency model for quantifying the effect

of changes considering a SOA ecosystem is presented in
[14]. It assumes that boundaries, dependencies and
components are previously known, but it does not specify
how this data can be derived.

The change-oriented service life-cycle presented in [4]
provides an important framework for the deep change
scenario, but it needs to be refined for considering
stakeholders, tools and models to support decision making
and its features. In [9], we integrated this change-oriented
methodology with a complementary set of tasks defined in
[6], which relates change events, their relationship and
stakeholders involved, as well as with service governance
concepts [8]. SOA governance highlights the areas for which
policies and standards should exist for supporting decision
making, but there are not details about decision activities and
stakeholders in the service evolution context. Our work is
complementary to [4][6][8], by focusing on decision support.
This integration supported the identification of decisional
requirements related to service lifecycle decisions.

Also in [9], we proposed initial ideas towards a BI
environment to support decision making in this context. The
current work extends this previous work presenting a more
mature model, and the data warehousing architecture.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a BI proposal to support
business-oriented decision making in service evolution
management from the provider´s perspective. Our approach
allows the assessment of change impacts according financial
and usage indicators that provide insights about the
consequences of changes in the business. A DW fact
constellation schema was used to represent these measures
and their respective analytical perspectives, allowing the
representation of their common aspects, yet preserving the
ability to analyze them according to specific dimensions. The
data warehousing architecture proposed handles
heterogeneous sources, aggregations and prorating of costs,
which reflects the lack of standards and business practices
typical of the current state of the practice. With a case study,
we demonstrate how to combine distinct type of indicators to
improve the support to the service evolution in a business
perspective. The data is synthetic, but it presents properties
that are typical of a real case scenario. The usage and
financial indicators suggested provide important insight for
typical service evolution dilemmas that providers face, but
the approach goes beyond these specific indicators. Indeed,
other classes of indicators relevant to business can be
adopted, for which the tasks of analyzing data granularity,
multidimensional modeling and insertion in the ETL
structure must be developed, as discussed Section III.
Addressing business decision needs, in addition to technical
concerns, will grow in importance with the increasing
investments on large-scale service-based applications.

As future work, we intend to explore analysis
perspectives related to compatibility and versioning, deriving
new metrics that translate technical aspects as impact
indicators for the service provider. We also consider

exploring multiversion DW capabilities to represent what-if
analysis, allowing sensitivity analysis over the impact of
changes according to given hypotheses, following new
trends in BI [10]. We also want to evaluate the performance
of our approach considering a big data scenario, applying our
model in a real scenario of some large-scale service provider.
The main challenge to do this validation is to get real data
related to strategic needs of service providers.

ACKNOWLEDGMENT

This research is financially supported by FAPERGS and
CNPq– Brazil.

REFERENCES

[1] V. Andrikopoulos, S. Benbernou, and M. Papazoglou, “On the
evolution of services,” Software Engineering, IEEE Transactions on,
vol. 38, no. 3, May-June 2012, pp. 609-628.

[2] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “End-to-end
versioning support for web services,” Services Computing, 2008.
SCC '08. IEEE International Conference on, 1, July 2008, pp. 59-66.

[3] K. Becker, A. Lopes, D. Milojicic, J. Pruyne, and S. Singhal,
“Automatically determining compatibility of evolving services,” in
Proc. IEEE International Conference on Web Services (ICWS’08),
Sept. 2008, pp. 161-168.

[4] M. P. Papazoglou, V. Andrikopoulos, and S. Benbernou, “Managing
evolving services,” IEEE Software, vol. 28, no. 3, May-June 2011,
pp. 49-55, doi:10.1109/MS.2011.26.

[5] M. Yamashita, B. Vollino, K. Becker, and R. Galante, “Measuring
change impact based on usage profiles,” Proc. IEEE 19th
International Conference on Web Services (ICWS 2012), June 2012,
pp. 226-233, doi:10.1109/ICWS.2012.35.D.

[6] Frank, L. Lam, L. Fong, R. Fang and M. Khangaonkar, “Using an
interface proxy to host versioned web services,” Services Computing,
2008. SCC '08. IEEE International Conference on, vol. 2, July 2008,
pp. 325-332, doi:10.1109/SCC.2008.84.M.

[7] Treiber, H. Truong, S. Dustdar, G. Feuerlicht, W. Lamersdorf, “On
analyzing evolutionary changes of web services,” Lecture Notes in
Computer Science, vol. 5472, 2009, Springer Berlin Heidelberg, pp.
284-297, doi:10.1007/978-3-642-01247-1_29.

[8] B. Woolf, “Introduction to SOA governance - Governance: The
official IBM definition, and why you need it,” 2006. [Online].
Available: http://www.ibm.com/developerworks/library/ar-servgov/
[Accessed: February 03, 2013].

[9] E. Silva, B. Vollino, K. Becker, R. Galante, “A Business Intelligence
approach to support decision making in service evolution
management,” Proc. IEEE Ninth International Conference on
Services Computing (SCC), 2012, June 2012, pp. 41-48.

[10] M. Golfarelli, S. Rizzi, I. Cella, “Beyond data warehousing: what's
next in business intelligence?,” Proc. 7th ACM International
Workshop on Data warehousing and OLAP, 2004, pp. 1-6.

[11] R. Kimball, M. Ross, The Data Warehouse Toolkit, 2nd ed., John
Willey & Sons, 2002.

[12] D. Parmenter, Key performance indicators (KPI) - Developing,
Implementing, and Using Winning KPIs, Hoboken: J. Wiley, 2010.

[13] A. Chuvakin, G. Peterson, “Logging in the age of web services,”
IEEE Security & Privacy, vol. 7, no. 3, May-June 2009, pp. 82-85.

[14] S. Wang, M. Capretz, “A dependency impact analysis model for web
services evolution,” Proc. IEEE 7th International Conference on Web
Services (ICWS 2009), July 2009, pp. 359-365

[15] P. Silveira, K. Becker, D. Ruiz, “SPDW+: a seamless approach for
capturing quality metrics in software development environments,”
Software Quality Journal, vol. 18 (2), 2010, pp. 227-268.

