
International Journal of Web Services Research, 10(1), 1-28, January-March 2013 1

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
As part of web services life-cycle, providers frequently face decision about changes without a clear understand-
ing of the impact on their clients. The identification of clients’ consumption patterns constitutes invaluable
information to support more effective decisions. In this paper, the authors present a framework that supports
the discovery of service usage profiles, to bring awareness on the distinct groups of consumers, and their
usage characterization in terms of detailed service functionality. The framework encompasses a process to
cluster client applications and derive usage profiles. The paper also discusses how usage profiles can help to
access the real impact on clients of incompatible changes performed over service descriptions, and presents
a usage-oriented compatibility assessment algorithm. Experimental results are presented for both the profile
discovery process and profile-based compatibility analysis.

Usage Profiles:
A Process for Discovering Usage

Patterns over Web Services and its
Application to Service Evolution

Bruno Vollino, Instituto de Informática, Universidade Federal do Rio Grande do Sul
(UFRGS), Porto Alegre, Rio Grande do Sul, Brazil

Karin Becker, Instituto de Informática, Universidade Federal do Rio Grande do Sul
(UFRGS), Porto Alegre, Rio Grande do Sul, Brazil

Keywords:	 Compatibility, Data Mining, Usage Patterns, Usage Profiles, Web Service

INTRODUCTION

Web services became vital for the business of
many companies in the software industry, espe-
cially with the advent of the software on demand
paradigm, such as SaaS (Software as a Service).
As in any business, providers have interest in
understanding the needs of their clients to avoid
customer attrition, and to attract new clients.
Many providers focus on large scale service
provision, and have very little knowledge about

their clients. At the same time, they face hard
decisions related to the maintenance of deployed
services, service versioning to avoid breaking
clients, and service redesign evolution to keep up
with clients expectations. Typically, these deci-
sions are made without a clear understanding
of the possible outcomes, frequently based on
worst-case scenarios. Understanding the usage
clients make of services is thus invaluable to
support web service life-cycle (Papazoglou,
Andrikopoulos et al., 2011).

DOI: 10.4018/jwsr.2013010101

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

2 International Journal of Web Services Research, 10(1), 1-28, January-March 2013

Data mining techniques have been ap-
plied in many business segments to discover
knowledge about clients, which is hidden in
large volumes of data (Tan, Steinbach et al.,
2006). Web service mining (Liang, Chung, et
al., 2006) aims at discovering patterns of service
usage, i.e. specific ways in which web services
(or their operations) are used repeatedly by a
group of users with similar properties, as well
as are correlated to each other. Usage analysis
have been used to support the recommenda-
tion of services (Yu, 2012; Zhang, Ding et al.,
2011; Kang, Liu et al., 2012; Rong, Liu et al.,
2009), the discovery of service composition
communities (Zhang, Yin et al., 2009; Wang,
Wang et al., 2012), or process discovery for
applications such as process documentation,
conformance checking or process optimiza-
tion (Motahari-Nezhad, Saint-Paul et al.,
2011; Musaraj, Yoshida et al., 2010; Tang &
Zou 2010; van der Aalst, 2012). van der Aalst
(2012) highlights that, even when predefined
interaction models are available, very often the
reality differs of the expected behavior, justify-
ing the deployment of sophisticated techniques
to capture the actual usage patterns of services
by their client applications.

Our work is focused on the usage analysis
as a support for the service evolution life-
cycle (Yamashita, Vollino et al., 2012; Silva,
Vollino et al., 2012; Yamashita, Becker et al.,
2012). Our approach is to empower providers
with an understanding of the overall impact of
changes in the whole set of client applications,
enabling sound decisions in terms of evolution
strategies. Providers can leverage usage im-
pact information to make decisions about the
creation, maintenance and decommissioning
of versions. For that purpose, they must have
a clear understanding of the patterns involved
in the overall requests clients make (the opera-
tions they request, the structure of the messages
exchanged, co-occurrence of operations, among
others), and leverage these patterns to group
clients with a similar service usage behavior,
which we refer to as usage profiles.

We have explored usage profiles for the
quantification of change impact in terms of af-

fected clients (Yamashita, Vollino et al., 2012)
or financial metrics (Silva, Vollino et al., 2012).
Another possible application is compatibility
assessment. Compatibility has been traditionally
addressed in terms of a worst-case scenario,
i.e. based on the possibility of breaking exist-
ing clients (Andrikopoulos, Benbernou et al.,
2012; Becker, Lopes et al., 2008; Fang, Lam
et al., 2007). However, clients are bound to
specific functionality, rather than the entire
service interface, and therefore, incompatible
changes may have different effects on clients
(Yamashita, Becker et al., 2011; Zou, Fang et
al., 2008; Ponnekanti and Fox, 2004). Usage-
oriented compatibility assessment can support
service evolution management by providing
relevant information about the change impact
on client applications. For instance, providers
can evaluate the trade-offs between the costs
of provisioning multiple versions of a service,
and the benefits of not breaking clients. Service
designers can also proceed with certain incom-
patible changes they would otherwise hesitate
to perform due to the possibility of breaking
clients, in case the impact is not considered
significant to the business.

The contributions of this paper are twofold:
(a) a framework that guides the discovery of
usage profiles over monitored clients requests,
through a knowledge discovery process (KDD)
(Tan, Steinbach et al., 2006), and (b) a profile-
based compatibility assessment algorithm,
which identifies the changes that are incompat-
ible with regard to the current usage of a specific
group of clients at a fine-grain.

The usage discovery framework encom-
passes components for: (a) monitoring and
logging of clients requests, (b) inputting this
data in a general purpose Usage Database,
and (c) applying a knowledge discovery pro-
cess to derive usage profiles. The framework
predefines tasks that require minimum user
intervention for the selection and transformation
of relevant data, data mining using clustering
techniques, and summarization of clusters as
profiles. We present experiments based on
synthetic data, simulating requests to a real
service. The paper extensively details the ideas

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 10(1), 1-28, January-March 2013 3

initially sketched in our previous work (Vol-
lino et al., 2012; Silva, Vollino et al., 2012). It
extends the work reported at (Vollino & Becker
2013), presenting additional experiments and
an usage-oriented compatibility assessment
algorithm. The framework contributes with
techniques for identifying usage patterns that
existing works on service mining (e.g. Liang,
Chung, et al., 2006; Yu, 2012; Zhang, Ding et
al., 2011; Kang, Liu et al., 2012; Rong, Liu et
al., 2009; Zhang, Yin et al., 2009; Wang, Wang
et al., 2012; Motahari-Nezhad, Saint-Paul et al.,
2011), (Musaraj, Yoshida et al., 2010; Tang &
Zou 2010; van der Aalst, 2012) have not ad-
dressed yet, namely groups of clients based on
detailed service functional properties.

With regard to the profile-based compat-
ibility assessment algorithm, the paper describes
the algorithm, and illustrates the kind of result
it delivers using a real service and the profiles
identified in our experiments for that service.
Related work (Ponnekanti & Fox, 2004; Zou,
Fang et al., 2008) has proposed usage infor-
mation in the context of adapting a client ap-
plication to changes. Our point of view is the
provider, who needs an understanding of the
overall impact of changes in the whole set of
clients applications. The algorithm presented in
this paper develops an automated analysis at a
fine-grained level (operations and data types),
in which the compatibility assessment verdict
is dependent on the usage. It complements our
previous work (Yamashita, Vollino et al., 2012),
in which we developed a method to quantify
the impact of incompatible changes in terms of
each profile. The case for usage-oriented com-
patibility assessment was made in (Yamashita,
Becker et al., 2011).

The remaining of this paper is structured
as follows. First, we present the fundamental
concepts underlying KDD and clustering. Then,
we provide an overview of the service evolu-
tion framework. Usage profiles and the Profile
Manager, which is the module of the framework
responsible to monitoring the requests and
deriving the usage profiles, are then addressed.
The KDD process proposed to generate usage
profiles is detailed in the section that follows,

and experimental results are discussed next.
The usage-oriented compatibility assessment
approach is then introduced, to illustrate how
profiles can be explored for supporting service
evolution. Related work is then described and
compared to our work. Finally, we draw conclu-
sions and discuss future work.

KDD AND CLUSTERING

KDD is a process targeted at discovering new,
valid and useful information from large datasets
(Tan, Steinbach et al., 2006). This complex, it-
erative and interactive process involves the steps
of data selection and preprocessing, data mining,
and evaluation of results. In the mining step,
algorithms are applied to find patterns in data.
Clustering is a mining technique that groups data
objects according to some similarity measure.
Objects inside a cluster should have high intra-
cluster similarity, and low inter-cluster similar-
ity. The criteria for defining clusters depend on
the nature of the data and the desired results,
since distinct algorithms may output different
sets of clusters. Algorithms that adopt distinct
definitions of clusters may present conflicting
results, and it is not possible to state that there
is a superior technique.

The definitions of cluster (a group of simi-
lar objects) and clustering (the set of clusters
derived from a dataset) are used by Tan et al.
(2006) to classify the techniques over orthogonal
dimensions. A clustering may be classified as:
partitional, where clusters are non-overlapping
subsets of the whole dataset; or hierarchical,
where clusters may be nested, and organized in
a tree structure. A tree generated by hierarchical
clustering can be cut in any level to obtain a set
of partitional clusters. The clustering is exclusive
if each object belongs to a single cluster.

Clusters, on the other hand, may be clas-
sified as: a) well separated, where the objects
inside a cluster are more similar to every other
objects in the cluster than to any object outside
it; b) prototype-based, where objects inside a
cluster are more similar to its cluster prototype
(e.g. centroid) than to any other clusters’ proto-

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

4 International Journal of Web Services Research, 10(1), 1-28, January-March 2013

types; c) density-based, formed by contiguous
objects in high density areas; and d) distribution-
based, in which objects probably belong to a
same statistical distribution.

Once a set of clusters is found, it is neces-
sary to assess that the clustering tendency is not
a mere random structure, the number of yielded
clusters, and how well data objects fit together.
Assessment can be performed using supervised
and unsupervised techniques. Supervised
evaluation compares the discovered model to
externally available information (e.g. a golden
standard). Metrics such as the pair-counting F-
Measure (Pfitzner, Leibbrandt et al., 2009) can
be applied to support this comparison. However,
in practice such a reference hardly exists, and
the evaluation is made based on an expert’s
knowledge of which clusters are valid and
useful with the help of unsupervised, internal
indices. Usually, an internal index assumes a
particular cluster definition, making this choice
similar to the one of a clustering algorithm, and
it enables the comparison of clusterings and
algorithms of the same type (e.g. to find the
best parameterization).

For instance, Silhouette (Rousseeuw, 1987)
and SD (Halkidi, Vazirgiannis et al., 2000) are
indexes that measure the cohesion and separa-
tion of partitional, well-separated clusters. Liu,
Li et al. (2010) present a comparative analysis,
including several other internal indexes.

SERVICE EVOLUTION
FRAMEWORK OVERVIEW

We proposed in (Yamashita, Vollino et al., 2012)
a service evolution framework to support actions
and decisions underlying service evolution, by
considering the actual use clients make of ser-
vices. As depicted in Figure 1, the framework
is composed of the following modules: Version
Manager, Profile Manager and Usage Manager.

The Version Manager is responsible for
maintaining, in the Version Repository, a set
of versioned service interface descriptions,
and for assessing their compatibility. It adopts
a fine-grained, feature-based versioning model
(Yamashita, Becker et al., 2012), which allows
versioning specific portions of a service inter-
face description, relating the unaltered parts
with previously created versions. A feature is
a portion of an interface description, such as
an operation, data type, or information related
to the overall service. A service version is then
represented by a graph of interrelated feature
versions.

The Profile Manager aims at discovering
usage patterns in the requests that clients issue
for a service, and representing them as usage
profiles. This module is detailed in the next
two sections.

Finally, the Usage Manager encompasses
components that explore the profiles to assess

Figure 1. Service evolution framework

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 10(1), 1-28, January-March 2013 5

change impact based on the actual use clients
make of a service. In Yamashita, Vollino et al.
(2012), we proposed profile-based metrics to
quantify the impact of incompatible changes,
and in Silva, Vollino et al. (2012), we explored
usage profiles to measure the financial impact
of changes. In this paper, we present a novel
application for this module, namely usage-
oriented compatibility assessment.

USAGE PROFILES AND
THE PROFILE MANAGER

The Profile Manager has two main purposes:
(a) to automatically monitor service requests
from clients to extract fine-grained data, and
load it into a general-purpose Usage Database
that suits many types of analysis; and (b) to
support the development of a KDD process
to generate usage profiles, with the least user
intervention possible. The latter is achieved by
predefining the necessary tasks, which can be
configured using simple parameters.

Usage profiles are representations of groups
of client applications with similar usage patterns
with regard to functionality described in the
service interface. Such patterns describe the
operations clients make use of, as well as the
types of data they exchange. For example, some
providers may be interested in understanding
whether optional parameters are indeed used
within certain groups of applications. The
analysis of profiles in such a detailed level
can reveal interesting knowledge that suits
many applications. For instance, awareness of
which operations and types are actually in use

may motivate providers/designers to perform
incompatible changes to improve service qual-
ity, which normally they would not consider
due to the worst-case possibility of breaking
clients. The knowledge of which operations
are used together by relevant groups of appli-
cations may serve as a guide to redesign large
service descriptions. Thus we include in the
profiles as much information as possible, and
let the provider explore it according to his/her
analysis needs.

Each profile (Figure 2) is related to the
applications from which the patterns were
extracted, and to the feature versions they use.
Metrics can be associated to applications (e.g.
total number of requests) or feature versions
(e.g. number of requests to an operation or
involving a data type). Although we assume
features to identify and describe profiles, the
approach is relatively independent from any
specific representation, and can be applied as
long as smaller grained elements can be rec-
ognized from service descriptions.

Web Service Monitoring

The Interaction Monitor is responsible for in-
tercepting and logging the messages exchanged
between client applications and service versions
they are bound to. The interception of service
interactions is a challenging task, given the
distributed nature of web services. Each al-
ternative imposes distinct trade-offs in terms
of scope of extractable data and performance
of the monitoring capabilities, which must be
carefully considered when determining where

Figure 2. Usage profile structure

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

6 International Journal of Web Services Research, 10(1), 1-28, January-March 2013

the logging infrastructure will reside in the web
service architecture.

The service interactions may be intercepted
(Chuvakin & Peterson 2009): in the HTTP layer,
where the web server records the HTTP requests
in logs; in the service application server, by
implementing the adapter or interceptor pat-
terns to handle messages; by adapters in the
web services framework; in a proxy server or
application, located either in the client (Zhang,
Ding et al., 2011) or provider side (Tang &
Zou, 2010); or hard coded in the web service
itself. Given our purpose of detecting patterns
in service usage, the Interaction Monitor has to
be capable of intercepting and logging all opera-
tions requested, with the corresponding mes-
sages. These messages are usually documents
exchanged by HTTP POST requests, which
are not logged by web servers. Proxy servers
or applications result in an overhead in the
transport of messages and in the consolidation
of logs. Hard coded solutions increase the costs
of developing and maintaining the service.

Thus, the best option is to deploy inter-
ceptors in the application server or in the web
service framework. With the latter, one can take
advantage of the service framework to interpret
the messages. Another advantage is that message
handlers depend on the technology used, but are
not affected by service evolution.

We assume that messages are exchanged in
the SOAP format, and each service version has
its own message handler. The handler registers
the clients’ requests in log files. Because we
need to identify which application issued each
request, we also assume that each web service
version has a custom authentication mecha-
nism, which associates a unique identifier to
each application. It is a common practice of
providers to request this unique identifier or
some kind of access token as a parameter in
its clients’ requests.

Data Loader and Usage Database

The Usage Database is a general-purpose, cen-
tralized repository that contains detailed data
about service usage, and which suits different

types of analysis. In this way, different criteria
for defining the profiles can be experimented, as
discussed in the next sections. The Data Loader
is responsible for cleaning, interpreting and
transforming raw data collected by the monitor
and distributed in several logs, into the set of
interrelated features involved in these interac-
tions, as represented by the Usage Database.

The Loader needs to extract from logged
raw data all features used by each client appli-
cation, i.e. the service version, the operations
requested and the parameters exchanged. This
extraction is dependent on the message format
logged. In the following we assume that: (a)
the log registers the entire SOAP messages of
requests and responses; and (b) messages use
literal encoding, which means that only the
hierarchy of parameters and their values are
provided, omitting the names of the operation
and types (e.g. Figure 3). By accessing the
respective service description in the Version
Repository, the loader identifies the operation
requested, based on the parameters’ names, and
the used types, by recursing into the message
hierarchy. Note that only the requests’ structure
(operations and types used) is required, not the
actual data transmitted by the involved parties.

As illustrated in Figure 3, the Loader (i)
parses a request, (ii) retrieves the operation from
the version repository, (iii) makes a recursive
scan over the interaction parameters, identifying
the used types, and (iiii) stores the processed data
in the Usage Database. It also stores identifiers
that enable to relate, in both ways, the features
in the Usage Database and the respective ones
in the Version Repository. In this process the
Loader discards all the invalid requests (e.g.
non-conformant to the service description).

The Usage Database schema is depicted in
Figure 4. Every interaction (request or response)
is performed by or targeted at an application.
Services and operations are directly referenced
by the interaction, which is represented by the
‘Interaction Feature’ relationship. The opera-
tion parameters and type parameters used in the
interaction are represented by the ‘Interaction
Parameter’ relationship. An identifier enables

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 10(1), 1-28, January-March 2013 7

to associate each feature/parameter with its
respective version in the Version Repository.
Information about optionality of a parameter
is also retrieved from the service interface and
recorded.

Profile Generator

To hide the natural complexity of a KDD process
to the users of the framework, the discovery of

profiles is developed by parameterizing a set
of predefined tasks, as depicted in the Figure
5. The user: (a) provides parameters to select
data from the Usage Database that meets the
analysis goals, (b) selects among predefined
data transformation alternatives, (c) parameter-
ize cluster algorithms and compare the results
using metrics, and (d) triggers the automatic
generation of profiles for validated clusters.

Figure 3. Process of extracting usage data from raw interaction data

Figure 4. Usage database schema

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

8 International Journal of Web Services Research, 10(1), 1-28, January-March 2013

PROFILE GENERATION
WORKFLOW

Web Service Monitoring

Data preparation is crucial in profile discovery,
because it influences how mining algorithms
will cluster service clients. Results can be
affected by filters and transformations that
are applied over the data, because similarity
functions and clustering algorithms are very
sensitive to the characteristics of input data. So,
data must be carefully selected with regard to
the business goals for defining usage patterns.
Transformations should adjust selected data
to the mining goals and the characteristics of
the applied algorithms. Considering possible
analysis goals, we have predefined tasks for
data selection and transformation.

Data Selection

Data selection is driven by two parameters: time
interval and data granularity. Usage is temporal,
which means that clients may change overtime
the way they use services (e.g. in terms of opera-
tions requested), as expected in the decoupled
life-cycles of services and client applications.
The service provider may be interested in the
usage patterns with a temporal validity, such as
last month, or since the last version released.
So the selection component must be parameter-
ized with initial and final timestamps, such that
only the interactions within the specified time
interval are selected.

The granularity refers to the level of detail
used to cluster applications. The user can ana-

lyze usage either on the level of operations, or
into more details, according to operations and
data exchanged. In the first case, clients using
the same operations are similar, whereas in the
latter, they are considered similar according to
the message structures exchanged. This choice
determines the data to be extracted from the
Usage Database. If operation level is chosen,
the query to the Usage Database returns all
the features in the relationship ‘Interaction
Feature’ (Figure 4) that are used in at least one
interaction in the defined time window. If the
usage of types is additionally required, all types
referred in the ‘Interaction Parameter’ (Figure
4) relationship must be retrieved as well. Notice
that only the variable part of requests involving
a given operation must be retrieved, i.e. the
optional parameters, and the parameters they
depend on. If parameters are mandatory, at any
level of recursion, their presence is implied by
the mere usage of the operation or parameter
that depend on them, and therefore they can
be disregarded.

To illustrate how relevant data types are
retrieved, Figure 6 depicts a service with opera-
tions Op1 and Op2, and their respective complex
message structures defined in terms of 4 types.
Dotted boxes denote optional parameters (i.e.
P2, P6), and solid ones, mandatory. The type
T1 is not selected, because the parameters
P1 and P3 are mandatory, so they are always
used in requests to Op1 and Op2. The type T2
is selected, because it is referenced only by
the optional parameter P2. Thus, applications
that request Op1 and Op2 with messages that
include T2, are considered different from the

Figure 5. The tasks of the profile discovery workflow

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 10(1), 1-28, January-March 2013 9

ones that do not. Note that T4 is not selected,
because it is also referenced by the mandatory
parameter P5.

Data Transformation

Retrieved data must be transformed into a
tabular format that summarizes how each ap-
plication uses each selected feature. The rows
represent the applications, and the columns, the
features. Each row is thus an aggregation of all
interactions of a same client with regard to the
features. The user can select between two usage
representations to fill the cells, namely binary
or weighted. The former represents whether an
application uses a feature (1), or not (0). The
weighted representation adopts a measure for
weighting how often a feature was used. The
user can select in addition other types of trans-
formations that may improve the results (Tan,
Steinbach et al., 2006), such as normalization
or dimension reduction (e.g. eliminate features
never used).

The profiles generated by each type of sum-
marization answer distinct analysis questions,
and therefore the appropriate transformation
should be selected. In the context of service
evolution, profiles generated using the binary
preparation are most valuable to identify which

applications are not compatible with certain
changes, because the clustering algorithms
do not tend to split applications that use the
same set of features over distinct clusters. In
the weighted representation, applications are
considered similar when they use similar sets
of features with similar frequencies. With this
representation, the clustering algorithm is able
to distinguish between applications that use
exactly the same set of features, but not in the
same manner (e.g. heavy users of OP1 are not
considered similar to eventual users). This type
of profile is more interesting to measure the
impact of changes over distinct groups of clients.

Clustering

As already mentioned, finding which type of
clustering algorithm better fits the data at hand
is a challenge. Service usage data does not
have a priori any particular property enabling
the identification of the most appropriate
cluster definition and corresponding clustering
technique. Our approach to this problem is to
integrate in our environment several clustering
algorithms, and to compare the resulting clus-
ters through assessment metrics. In our current
implementation, we adopted four algorithms of
distinct classes: K-Means (partitional, centroid-

Figure 6. Mandatory and optional parameters

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

10 International Journal of Web Services Research, 10(1), 1-28, January-March 2013

based), Hierarchical agglomerative (hierarchi-
cal, well-separated), DBSCAN (partitional,
density-based) and Expectation-Maximization
(EM; partitional, distribution-based). We are
developing experiments to provide in the
future parameterization guidelines for these
algorithms.

Cluster assessment is also a challenge,
because there is no information on the ex-
pected partitions. To develop experiments with
synthetic data, we integrated in the framework
the pair-counting F-Measure, which enables
to compare clustering results against a golden
standard. However, in real situations one would
have to rely on an expert’s knowledge of which
clusters are valid and useful, with the help of
internal indices. We have already implemented
two internal indexes in the framework, namely
Silhouette and SD, to develop experiments
and compare their contribution to clustering
assessment. We are currently working on the
integration of additional ones, particularly
S_dbw (Halkidi & Vazirgiannis, 2001), which
aims at assessing the quality of clusters of dis-
tinct types, such as centroid or density-based,
by incorporating parameters that measure the
separation and compactness of the clustering.

Profile Building

Clusters and profiles are distinct in nature.
Clusters contain only the features that may be
used to distinguish groups of applications, as
result of the preparation step. Profiles, on the
other hand, are an enriched representation of
these groups of applications (Figure 2). Thus,
a profile includes all features used, together
with metrics that indicate the importance of
the group of applications, and of the features
the group uses. If we consider the example of
Figure 6, the features OP1, OP2 and T2 are
submitted as input to clustering. A resulting
cluster may indicate that only OP1 is used,
without the optional parameter P2. Therefore,
the profile would contain Service, OP1 and T1
(mandatory parameter P1), together with the
respective metrics. Two metrics are considered

(number of interactions per application and per
feature), but others could be adopted as well.

To automatically construct a profile,
metrics are calculated for all used features, by
querying the Usage Database. These features
are operations pointed as used in prepared data
(non-zero values) and types of parameters used
in requests for these operations, according to
the service description (Version Repository of
the Version Manager, Figure 1).

The pseudo-algorithm of Figure 7 describes
the procedure to be repeated for each valid clus-
ter. From the instances of the cluster received
as parameter, it computes, for each application,
the total number of interactions performed (line
4), and the number of interactions related to the
operation (lines 9-12). Then, it recurses over the
operation parameters trees and types subtrees,
computing the number of interactions in which
each type appears (line 11). Note that manda-
tory parameters of operations are always used
in every request, and their counting is derived
from the respective operations. We need to
retrieve the number of interactions for types
of optional parameters, and for the types of
parameters under them, in the service structure.
Finally, the usage of features of each applica-
tion is summarized in the profile (lines 13,14).

EXPERIMENTS

The objective of our experiments is to dem-
onstrate that the proposed framework can
deliver useful service usage profiles from an
interaction log, with minor parameterization
and evaluation of an expert. In the absence of
real interaction logs, we generated a synthetic
log by simulating clients’ requests over a real
service, namely eBay Trading. This is a very
popular service that supports a wide range of
applications. Its interface is described by more
than 150 operations and a thousand of data
types. The service documentation organizes
these operations in common workflows that
can be used independently, or in combination
to generate applications. We assumed that these

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 10(1), 1-28, January-March 2013 11

workflows could be combined differently to
characterize sets of applications with similar
behavior. This is a common approach for validat-
ing service mining works, due to the challenges
of obtaining real data given to its proprietary
nature (Nayak, 2008; Motahari-Nezhad, Saint-
Paul et al., 2011).

Requests were created to represent pre-
defined groups of clients, with some level of
noise. The log was loaded in the Usage Database,
from which we extracted datasets that varied
in the level of detail (operation vs. types) and
usage representation (binary vs. weighted). We
developed the experiments using four cluster-
ing algorithms from Weka (Hall, Frank et al.,
2009): K-Means, EM, DBSCAN and hierarchi-
cal agglomerative with mean linkage. We have
experimented with different parameterizations.
Only the best results are reported here due to
space limitations.

As a result, we expect to generate clusters
that match the injected usage patterns, and to
identify the best clustering algorithm(s) and
parameterization for each type of dataset.
The criteria used to evaluate the results are
based on three aspects: the number of gener-
ated clusters; the number of distinct profiles
represented by clusters, considering that a

cluster represents its predominant profile (by
number of applications); and the pair-counting
F-Measure (Pfitzner, Leibbrandt et al., 2009).
This supervised assessment metric reflects the
homogeneity of applications inside clusters and
the heterogeneity of distinct clusters, regardless
the number of clusters.

Finally, we also experimented with internal
validity indexes, in order to compare the results
of the supervised evaluation with the ones using
unsupervised clustering validation techniques.
The Silhouette Coefficient (Rosseuw 1987)
and the SD index (Halkidi, Vazirgiannis et al.,
2000) were calculated from the resulting clus-
terings, and compared with the corresponding
F-Measure values. The rationale is that if we
want to be capable of providing insights to
support the choice of the better algorithms and
parameterizations, unsupervised indexes must
have a strong correlation with the corresponding
F-Measure value.

Dataset

We adopted version 753 of the eBay Trading
service, and 7 workflows representing common
usage cases documented in the API guide1. We
used JMeter2 to generate requests to operations

Figure 7. The algorithm for building profiles

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

12 International Journal of Web Services Research, 10(1), 1-28, January-March 2013

belonging to these workflows, according to
some probability. Figure 8 depicts the simulated
profile Buyer, which has 5% of probability of
executing the workflow “Get token”, and 95%
chances of executing “Buy item”.

As summarized in Table 1, we have simu-
lated 525 applications distributed in 6 profiles,
which performed 448,703 requests for 42 dis-
tinct operations. The Venn diagram in Figure 9
shows the relationship between profiles, high-
lighting the common operations. Three of the
profiles are proper subsets of others (P1.2, P1,
P2), and two profiles (P6 and P8) use the same
set of operations with different frequencies.

The generated log consisted of SOAP
messages using literal encoding, which were
preprocessed and loaded into the Usage Data-
base. We report here three experiments based

on different sets of selected and transformed
data. We have also systematically added noisy
applications to these prepared datasets, which
have random values for the usage of features.
The noisy applications were added in propor-
tions of 10% and 30% with regard to the original
number of applications (no noise). Data objects
were labeled with the respective profile/noise
class, such that clusters could be assessed using
a supervised metric.

Clustering Binary Data

The first dataset involved only operations,
prepared using binary representation. Profile
P8 was excluded from the dataset because it is
identical to P6 with regard to the binary use of
operations. Results are displayed in Table 2(A),

Figure 8. Example of a simulated application profile

Table 1. Simulated data profiling

Profile Applications Operations Requests

P1 100 12 89,996

P1.2 50 6 44,017

P2 100 28 82,538

P2.2 25 31 20,841

P6 125 33 103,232

P8 125 33 108,079

Total (distinct) 525 42 448,703

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 10(1), 1-28, January-March 2013 13

which shows the number of clusters (column C),
the number of distinct profiles they represent
(column P), and the F-measure (column F-M).
The number of clusters and profiles ideally
should be the same, i.e. each cluster represents a
predefined profile. A higher number of clusters
means that members of a same profile were
spread (i.e. profiles are redundant), whereas
a smaller number of profiles means that some
clusters mix applications of distinct profiles.
When F-measure is 1, it indicates perfectly
clustered data objects.

In general, the hierarchical algorithm, us-
ing the mean linkage, yielded the best results.
The clustering matched exactly the simulated
profiles in the presence of any level of noise.
Considering the dataset with no noise, 3 in-
stances of the profile P2.2 were grouped together
with P2 objects. K-means and the EM were
more sensitive to noise, not being able to detect
subgroups of applications. They have mixed
P1/P1.2 and P2/P2.2 data objects, and created
clusters for noisy data. DBSCAN has matched
almost exactly the simulated profiles, but, as a
density based algorithm, it tends to join in the
wrong cluster some applications with small
variations in relation to their profiles.

The second dataset varied by including
types of optional parameters, in addition to
the operations. Because the simulated log does

not cover the use of types, we have inserted 2
new profiles in the prepared data: P6T, which
includes the same operations as P6 and addition-
ally 10 randomly selected types; and P2T, with
the same behavior of P2, with additionally 10
randomly selected types.

As shown in Table 2(B), hierarchical clus-
tering yielded the best results. K-means was
not able to detect profiles with subset relations,
mixing the profiles P2/P2.2/P2T, P1/P1.2 and
P6/P6T. EM could distinguish P2 from P2.2 in
the presence of noise, and the DBSCAN was
able to detect all the distinct profiles, but the
cluster representing P1 included applications
belonging to neighbor clusters (P2, P2T, P2.2,
P6 and P6T).

The experiments over this simulated data
show evidences that the hierarchical agglom-
erative algorithm with the mean linkage yields
good results for binary data. At a first glance,
DBSCAN also seems to be a good choice, but
it requires extensive trial-error to find a good
parameterization (minimum points = 6, epsilon
= 0.5). These results may be influenced by the
number of common operations that are in the
intersection among profiles. Nevertheless, in
real situations, we hypothesize that some ser-
vices tend to have a set of core operations that
are shared among many profiles (if not most of
them), and that clustering techniques must be

Figure 9. The simulated profiles and their intersections

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

14 International Journal of Web Services Research, 10(1), 1-28, January-March 2013

able to handle this degree of similarity among
profiles. This hypothesis needs to be confirmed
by extensive experimentation, particularly with
real services.

Clustering Weighted Data

The final dataset involved operations accord-
ing to weighted representation for all profiles.
Recall that P6 and P8 are distinguished only
by usage frequency. We have normalized the
usage values (number of interactions) using the
z-score, a transformation that may reduce the
effect of noise in some clustering algorithms.

The hierarchical algorithm with mean link-
age yielded the best clustering. As displayed in
Table 2(C), it has detected the six profiles in
all cases, with the highest F-Measure values.

However, it has always misplaced a few applica-
tions of P8 in the clusters representing profiles
P1 and P1.2. The K-means and EM algorithms
could not distinguish profiles that differ only in
the usage frequencies, clustering together P6 and
P8 applications. They also could not detect sub-
set relations: K-means merged profiles P1 and
P1.2 in a single cluster, and EM merged P2 and
P2.2. The DBSCAN algorithm, using the two
best parameterizations we have found, failed to
create one cluster per profile. With minimum
points = 3, P2 was split in two clusters, one of
them melded with applications of the profiles
P2.2, P6 and P8. With minimum points = 7, it
was able to find 6 distinct profiles, but it also
created a cluster of P2 with many other nearly
applications of other profiles, a problem of the
density based approach.

Table 2. Clustering results

A. Binary Data in Granularity of Operations

Binary 10% Noise 30% Noise

Algorithm C P F-M C P F-M C P F-M

K-Means 5 5 1.00 5 5 1.00 5 4 0.94

EM 5 5 1.00 5 4 0.94 5 4 0.94

DBSCAN 5 5 0.97 5 5 0.97 5 5 0.97

Hierarch. 5 5 0.99 5 5 1.00 5 5 1.00

B. Binary Data in Granularity of Types

Binary 10% Noise 30% Noise

Algorithm C P F-M C P F-M C P F-M

K-Means 7 6 0.94 7 5 0.86 7 6 0.95

EM 7 7 1.00 7 6 0.95 7 5 0.86

DBSCAN 7 7 0.94 7 7 0.94 7 7 0.94

Hierarch. 7 7 0.99 7 7 1.00 7 7 1.00

C. Weighted Data in Granularity of Operations

Weighted 10% Noise 30% Noise

Algorithm C P F-M C P F-M C P F-M

K-Means 6 4 0.78 6 4 0.72 6 4 0.52

EM 6 5 0.88 6 5 0.95 6 5 0.95

DBSCAN (0.5, 3) 7 6 0.93 7 6 0.93 7 6 0.93

DBSCAN (0.5, 7) 6 6 0.89 6 6 0.89 6 6 0.89

Hierarch. 6 6 0.97 6 6 0.98 6 6 0.98

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 10(1), 1-28, January-March 2013 15

As mentioned, our simulated data, based
on workflows of operations and compositions
of workflows, generate profiles that are close
to each other (i.e. not very well-separated), and
this characteristic is stressed with the injection
of noise. The observed consequences are the
reduced number of identified profiles (4 out of
6 expected ones) and low F-measure for the K-
means algorithm (0.52 in the worst case), which
is particularly susceptible to noisy data. Based
on our assumptions about the characteristics
of service usage patterns, we can state that the
K-means is not a suitable technique to cluster
weighted data.

This experiment also shows evidences
that the hierarchical agglomerative algorithm
with the mean linkage also produces consistent
clustering results for weighted data. It should
be noticed that distinguishing clusters based on
weighted data is a more challenging problem.

Evaluation of Internal
Validity Indexes

In the two previous subsections, we evaluated
the resulting clusterings based on expectations
against a golden standard, i.e. the injected
profiles. However, in the real world, a priori
expectations about the profiles are unlikely to
exist. Therefore, the experiments are completed
by a comparison between the F-measure results
presented previously (Table 2), and the results
calculated by two internal indexes, namely
Silhouette and SD. Our premise is that, to be
capable of providing insights about the choice
of suitable algorithms and parameterization,
the internal indexes used to evaluate the clus-
tering must have a strong correlation with the
F-Measure value. In other words, an appropri-
ate internal index should be able to identify if
the clustering captures the inherent patterns of
the dataset, despite the presence of noise, or,
whether at least it places the noisy instances in
the clusters to which they resemble the most.

Recall these indexes are targeted at evalu-
ating well-separated, partitional clusterings.
According to Liu et al. (2010), Silhouette and
SD indexes handle well: (a) noise, which in

our dataset correspond to applications with
random behavior; b) clusters of different densi-
ties, represented by profiles with very distinct
numbers of applications; and (c) clusters of
different sizes, which occur when applications
of a same profile significantly varies either on
the features used (binary data) or the number
of requests (weighted data).

The results are shown in Table 3, consider-
ing the three previous datasets, and the respec-
tive noise levels added. The optimal value for
the Silhouette coefficient is 1, where 0 means
that no clustering tendency was detected. On
the other hand, the smallest the value for the SD
index, the better is the clustering. It can be ob-
served that, in the absence of noise, both SD and
Silhouette (Silh.) indexes match the F-Measure
(F-M) results previously discussed, regardless
the data preparation (binary and weighted) and
data granularity. This means that these three
measures agree on the best quality clusterings
for noiseless datasets. It also reveals that the
resulting clusters are fairly well-separated from
each other, despite the similarity among them.
However, these results are not observed for
noisy data. For instance, in Table 3 B, the best
Silhouette value for the dataset with 30% of
noise (0.6622) corresponds to the worst cluster-
ing according to F-Measure (0.86). Conversely,
the best clustering according to F-Measure (1)
present the worst value for Silhouette (0.4342),
and second worst value for SD index (1.4519).
This means that good clusters are evaluated as
low quality ones by unsupervised metrics, and
vice-versa. However, we acknowledge that, in
many cases, the difference between the absolute
values are not very relevant for the yielded pro-
files, in the sense that they could be assessed as
good enough for an analyst, independently of
the algorithm chosen. Further experiments are
necessary for reaching more sound conclusions
about the appropriateness of these indexes.

These results can partially be explained
by the incapacity of these indexes to deal with
clusters that are very close to each other, i.e.
which are not well-separated (Liu et al., 2010).
In the binary datasets, the clusters are naturally

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

16 International Journal of Web Services Research, 10(1), 1-28, January-March 2013

similar to each other due to the high number
of common operations, and the injection of
noise makes it even harder to separate them.
With regard to the weighted preparation, the
normalization applied to the dataset also reduces
the distance between the instances, resulting in
clusters that display high inter-cluster similar-
ity, and therefore, are difficult to separate. The
degradation of results when noise is inserted is
an evidence of this problem.

These experiments provide evidences that
these measures cannot handle noisy data at the
appropriate level for this domain, which can
hinder their use as quality assessment metrics in
usage profiles. However, further experimenta-
tions are necessary. We are also implementing

the S_dbw index (Halkidi & Vazirgiannis 2001),
which, according to Liu et al. (2010), can handle
both close clusters and noise.

USAGE-ORIENTED
COMPATIBILITY ASSESSMENT

In this section, we propose a profile-based com-
patibility assessment algorithm. It is at the core
of the Profile-based Compatibility analyzer,
one of the applications encompassed in the Us-
age Manager module of the service evolution
framework (Figure 1). Other applications that
explore usage profiles are the Usage Analyzer
(Silva, Vollino et al., 2012) and the Business

Table 3. Internal validity assessment

A. Binary Data in Granularity of Operations

Binary 10% Noise 30% Noise

Algor. Sillh. SD F-M Sillh. SD F-M Sillh. SD F-M

K-Means 0.9667 0.9450 1.00 0.7366 1.1552 1.00 0.5769 1.0529 0.94

EM 0.9667 0.9450 1.00 0.8541 0.8402 0.94 0.7142 0.8281 0.94

DBSCAN 0.9340 0.9618 0.97 0.6525 1.0059 0.97 0.4589 0.8226 0.97

Hierarch. 0.9576 0.9583 0.99 0.7214 1.1654 1.00 0.4588 1.5094 1.00

B. Binary Data in Granularity of Types

Binary 10% Noise 30% Noise

Algor. Sillh. SD F-M Sillh. SD F-M Sillh. SD F-M

K-Means 0.9456 0.9326 0.94 0.7473 1.0015 0.86 0.5283 0.9352 0.95

EM 0.9676 0.9080 1.00 0.8504 0.7678 0.95 0.6622 1.5998 0.86

DBSCAN 0.9004 0.9495 0.94 0.6811 1.0512 0.94 0.5115 1.0814 0.94

Hierarch. 0.9605 0.9252 0.99 0.7000 1.1465 1.00 0.4342 1.4519 1.00

C. Weighted Data in Granularity of Operations

Weighted 10% Noise 30% Noise

Algor. Sillh. SD F-M Sillh. SD F-M Sillh. SD F-M

K-Means 0.3141 1.6136 0.78 0.4787 0.6755 0.72 0.3002 1.4660 0.52

EM 0.4035 1.6986 0.88 0.4276 0.7579 0.95 0.3771 0.7158 0.95

DBSCAN (0.5, 3) 0.3952 0.6576 0.93 0.3037 0.7122 0.93 0.2312 0.7144 0.93

DBSCAN (0.5, 7) 0.3976 0.7030 0.89 0.3287 0.7079 0.89 0.2377 0.6906 0.89

Hierarch. 0.4662 0.6459 0.97 0.3731 0.7349 0.98 0.2553 0.9174 0.98

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 10(1), 1-28, January-March 2013 17

Intelligence environment for supporting deci-
sions about service evolution (Silva, Vollino et
al., 2012). The former enables to quantify the
impact of (incompatible) changes. The latter
provides a central repository that integrates
usage and financial metrics, together with
analytical resources to gain insight about the
impact of changes.

Compatibility, particularly backward com-
patibility (Andrikopoulos, Benbernou et al.,
2012) (Fang, Lam et al., 2007) (Becker, Lopes
et al., 2008), is crucial in service change man-
agement, because it defines whether existing
clients will be affected by changes introduced
into newer versions of a service. The assess-
ment of compatibility is traditionally focused
on the worst case of total compatibility, which
means that if a single element of service ver-
sion S is incompatible with the same element in
version S’, then S and S’ are totally incompat-
ible (Andrikopoulos, Benbernou et al., 2012;
Becker, Lopes et al., 2008; Fang, Lam et al.,
2007). However, assessing the compatibility of
service versions does not necessarily capture
the impact of the incompatible changes, because
client applications are not bound to the whole
service (as described by the service interface),
but rather to specific features within the offered
functionality (Yamashita, Vollino et al., 2012;
Yamashita, Becker et al., 2012; Zou, Fang et al.,
2008; Ponnekanti and Fox, 2004). Therefore,
client applications can be impacted in different
ways, or even not be impacted at all.

Usage-oriented compatibility assessment
focus on identifying the changes that are incom-
patible with the current usage of a specific group
of clients, as represented by a usage profile. It
can support service evolution management by
providing relevant information regarding the
effects of changes on client applications. For
instance, providers can evaluate the trade-offs
between the costs of provisioning multiple
versions of a service, and the benefits of not
breaking their clients (e.g. Silva, Vollino et
al., 2012). Service designers can also proceed
with certain incompatible changes they would
otherwise hesitate to perform due to the pos-

sibility of breaking clients, in case the impact
is not considered significant to the business.

In the remaining of this section, we provide
some background on the versioning model
and Version Manager, which is necessary for
explaining the algorithm for usage-oriented
compatibility assessment. We also illustrate
how the algorithm could be applied to the same
case study developed in the previous section,
and discuss the type of insights it yields.

The Version Manager

The Version Manager is the component of the
framework responsible for detecting changes,
versioning service descriptions, and assessing
version compatibility. It relies on a finer-grained
version unit referred to as feature, which cor-
responds to a portion of an interface description,
such as an operation, data type, or information
related to the overall service.

The feature-based versioning model is de-
picted in Figure 10. Each Feature has a unique
name, and it is related to at least one Version.
A Version is thus a generalization of Service,
Operation and Type. In turn, each Version is
associated to a number, description (a textual
description of the WSDL document), and pos-
sibly a set of dependent versions that are used
to describe it (relationship ’Dependency’). For
instance, a service depends on its operations, an
operation depends on the types used to describe
its messages, and so forth. Hence, a service
version is represented as a graph of interrelated
feature versions. Versions are uniquely identi-
fied by the pair Feature.name,Version.number.

When a new service interface document is
exposed, the Version Manager converts it into
this abstract internal representation. The features
are extracted from the document, their respec-
tive descriptions and relationships are compared
to the corresponding existing versions, and new
versions are created only for detected changes.
A new service is represented by a rooted graph
that encompasses existing or new versions of
the features that compose the service.

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

18 International Journal of Web Services Research, 10(1), 1-28, January-March 2013

In Figure 11 we illustrate the versioning
results after submitting three interface descrip-
tions of the classical W3C StockQuote service3.
The different colors represent the new versions
created for each description. When the first
service description is submitted, features for
the service, operation and data types are created
with the corresponding versions (graph rooted
at StockQuote,1). Suppose the second descrip-
tion introduces a new operation GetBestOffer,
with related to new data types. New features
and respective versions are created for these
additions. However, considering all previously
existing features, only StockQuote feature is
versioned (StockQuote,2) due the inclusion
of the new operations. Notice StockQuote,2

is related to existing versions (e.g. GetLast-
TradePrice,1), due to the unchanged parts of
the service description. Finally, assume the
third description changes the primitive type
associated with TradePrice to double. A new
version is created (TradePrice,2), and due to
the ripple effect, feature versions that depends
on it directly (GetLastTradePriceOutput,1),
or indirectly (e.g. StockQuote,3) are equally
versioned. Further details can be obtained in
(Yamashita, Becker et al., 2012).

Another component of the Version Man-
ager is the Compatibility Analyzer, It aims
at assessing automatically the compatibility
of two service descriptions (i.e. total service
compatibility), using the algorithm described

Figure 10. Feature-based versioning model

Figure 11. Version graphs of 3 interface descriptions of StockQuote service

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 10(1), 1-28, January-March 2013 19

in (Yamashita, Becker et al., 2012). Given the
set of compatibility rules displayed in Table 4,
the algorithm analyzes and records the compat-
ibility of any two versions of a same feature
(relationship ’Service Compatibility’ in Figure
10). Any other change is considered incompat-
ible. These compatibility rules represent the
consensus on the literature about compatibility
(Fang, Lam et al., 2007; Andrikopoulos, Ben-
bernou et al., 2012).

When two service versions are compared,
the algorithm assesses recursively all dependent
features. For instance, when the graph rooted
at StockQuote,3 is recursively compared to the
one rooted at StockQuote,2, the services are
assessed as incompatible. In this comparison,
TradePrice,2 is compared to TradePrice,1;
GetLastTradePriceOutput,2 is compared to Get-
LastTradePriceOutput,1; GetLastTradePrice,2
is compared to GetLastTradePrice,1; and final-
ly, StockQuote,3 is compared to StockQuote,2.
Despite the incompatible change actually was
applied to TradePrice,2, all feature versions
that depend on it directly or indirectly are also
assessed as incompatible due to the ripple

effect. Table 5 summarizes the compatibility
assessments for this example: the feature, the
versions compared, the compatibility verdict,
and whether it corresponds to a direct change or
was affected by one. Notice that if the version
graphs rooted at StockQuote,2 and StockQuote,1
were analyzed, these would be the only two ver-
sions compared, as all the remaining changes
correspond to new features. According to the
rules, they would be assessed as compatible.

Profile-Oriented Compatibility
Assessment

The goal of the usage-oriented compatibility
assessment is to detect the incompatible changes
with regard to identified usage patterns, such
that the impact can be quantified and its rel-
evance analyzed with regard to business objec-
tives. Suppose that two profiles are detected
over StockQuote,2: clients that invoke both
operations (P1), and clients that invoke only
GetBestOffer (P2). Thus, the following profiles
would be created:

Table 4. Compatibility cases

Cases Change Feature Type Description Verdict

1 Add Operation Add new operation as dependent of a service Compatible

2 Add Type Add new type as dependent of a new operation/type Compatible

3 Add Type Add new type as dependent of an existent operation/type Incompatible

4 Update Type Change in description due to order, cardinality or type update Incompatible

5 Remove Operation Remove operation as dependent of a service Incompatible

6 Remove Type Remove type as dependent of a service/type Incompatible

Table 5. Compatibility assessment for StockQuote service versions

Feature Older, Newer Compatibility Verdict Reason

TradePrice v1, v2 incompatible changed

GetLastTradePriceOutput v1, v2 incompatible affected

GetLastTradePrice v1, v2 incompatible affected

StockQuote v2, v3 incompatible affected

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

20 International Journal of Web Services Research, 10(1), 1-28, January-March 2013

•	 P1 = {StockQuote,2; GetBestOffer,1;
GetBestOfferInput,1; GetBestOfferOut-
put,1; BestOffer,1; GetLastTradePrice,1;
GetLastTradePriceInput,1; GetLast-
TradePriceOutput,1; TradePrice,1;
TradePriceRequest,1};

•	 P2 = {StockQuote,2; GetBestOffer,1; Get-
BestOfferInput,1; GetBestOfferOutput,1;
BestOffer,1}.

The result of the profile-oriented compat-
ibility assessment of StockQuote,2 and Stock-
Quote,3 with regard to each profile is displayed
in Table 6. Considering only profile P2, the
incompatible changes that were introduced in
the graph rooted at StockQuote,3 do not affect
clients because they do not use GetLastTrade-
Price operation. Recall that StockQuote,3 and
StockQuote,2 were only assessed as incompat-
ible in Table 5 because the former was affected
by a change performed on TradePrice,2, which
was cascaded upwards. However, this version is
not in profile P2, nor the ones that depend on it
(e.g. GetLastTradePrice,2). Thus, StockQuote,2
and StockQuote,3 are assessed as compatible,
with regard do P2. On the other hand, P1 clients
are impacted, and therefore StockQuote,2 and
StockQuote,3 are assessed as incompatible with
regard to P1.

Suppose that, using the quantification and
analysis mechanisms proposed in (Silva, Vollino
et al., 2012), the provider realizes that 90% of
the clients are related to P2, and that they rep-
resent the paying clients. P1, on the other hand,
encompasses clients which use the service for

free. By knowing the impact, a service designer
can decide whether he/she should publish the
new description, or consider a design alternative
that would not break any client. The provider,
on the other hand, can weigh the trade-offs
between the cost of provisioning two versions
against the benefits for the business of not
breaking P1 clients.

The algorithm proposed in this paper
assesses the compatibility between two fea-
ture versions (older and newer) with regard
to a profile. It extends the one presented in
(Yamashita, Becker et al., 2012) in order to
relax some incompatible cases of Table 4, in
case the changed/affected incompatible ver-
sions are not included in the profile. Once the
compatibility is assessed, it is recorded in the
Version Repository (’Profile Compatibility’ in
Figure 10). The pseudo-algorithm is presented in
Figure 12. Recall that a Profile contains a set of
Feature Versions (Figure 2), which correspond to
the concept of Version in the versioning model
(Figure 10). These versions can be related to a
Service, an Operation, or a Type feature.

The algorithm aims to recursively evaluate
the compatibility relationship between two fea-
ture versions (old and new), within the context
provided by the usage profile (prof) according
to the rules summarized in Table 4. We assume
that both versions relate to the same feature (i.e.
have the same name). The version graph rooted
at old is traversed and compared to the one rooted
at new in a depth-first manner, which enables
the propagation of detected incompatibilities to
the versions that depend directly or indirectly
on a version assessed as incompatible.

Table 6. Profile-based assessment for StockQuote service versions

Profile Feature Older, Newer Usage-Oriented
Compatibility Verdict

P2 StockQuote v2, v3 compatible

P1 StockQuote v2, v3 incompatible

P1 TradePrice v1, v2 incompatible

P1 GetLastTradePriceOutput v1, v2 incompatible

P1 GetLastTradePrice v1, v2 incompatible

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 10(1), 1-28, January-March 2013 21

The algorithm assesses only versions that
are present in the profile prof (line 2), otherwise
it simply disregards the change, because it will
not affect the clients represented by the profile.
Then, it verifies (lines 4-6) if no dependents
were removed (cases 5 and 6), except if the
removal concerns a dependent version that is
not in the profile. In this case, the removal is
also disregarded as an incompatible change.
Recall that this situation corresponds to op-
erations that are not invoked by the clients of
the profile, or optional parameters that they
never include in exchanged messages. Then,
it recursively evaluates the compatibility of all
corresponding dependent versions of new with
regard to old (lines 7-14). If a corresponding
feature version is found (same feature name
with different version numbers), the algorithm
recursively assesses their compatibility (lines
10-11). If it corresponds to a new feature (lines
12-13), it considers as compatible only the case
of operation addition (case 1) and type addition
unrelated to existing types (case 2), otherwise it
assesses the change as incompatible due to case
3. Finally, the description fragment associated

with the compared versions is compared (lines
15-16), and the compatibility relationship, with
respective verdict, is recorded (line 17). Func-
tion compatibleDescription currently evalu-
ates true if: a) in the case of Type versions, it
interprets the XML for the rules of case 4, and
b) for Operation and Service versions, if the
descriptions are exactly the same. Notice that the
algorithm does not stop when an incompatibility
is detected because we need to assess all feature
versions that compose the service description.
In the future we plan to adopt less restrictive
compatibility rules (e.g. input compatibility
(Becker, Lopes et al., 2008), T-shape changes
(Andrikopoulos, Benbernou et al., 2012)).

Illustration

We illustrate the application of the usage-
oriented compatibility algorithm using the
clusters discovered in the previous section.
We adopted again the eBay Trading service,
for which a new version is released every two
weeks. For each version, there is a release
notes entry on the eBay website4 that reports

Figure 12. Usage-oriented compatibility assessment algorithm

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

22 International Journal of Web Services Research, 10(1), 1-28, January-March 2013

the explicit changes with regard to the previous
version. For this experiment, we considered two
successive versions, identified as 753 and 757.
For version 757, the release notes reports 14
incompatibly changed operations with regard to
the previous one. The service WSDL document
is very long (approximately 130.000 lines), and
therefore it is very difficult to locate the exact
changes, and how they affect applications. With
regard to compatibility, it should be noticed
that eBay establishes an evolution policy that
requires that applications handle unrecognized
data. Comparing to the compatibility rules of
Table 4, the major difference is that case 3 is
relaxed. So we changed our algorithm to apply
our understanding of eBay compatibility rules.

For this experiment, we considered the
five (5) clusters yielded using the hierarchi-
cal clustering technique, applied over the first
dataset (i.e. only operations, prepared using
binary representation), and with no noise. Three
important remarks need to be made over this set
of clusters: (a) the dataset did not include the
simulated profile P8; (b) we did not consider
noisy data because there were no corresponding
interactions in the Usage Database to quantify
the profile metrics; and (c) recall there were three
misplaced applications (F-Measure 0.99), which
were clustered together with the applications
included in P2, instead of P2.2. So we shall refer
to these clusters as P2’ and P2.2’. Clusters P1,
P1.2 and P6 correspond exactly to the expected
simulated profiles described in Table 1.

Table 7 reports the results of our experi-
ments. It compares the results as reported on
eBay release notes (columns labeled as eBay
release notes), and the ones found by our algo-
rithm (columns labeled as eBay compatibility
rules). For each case we report the number of
incompatibly changed operations with regard to
a profile (the number of operations used in the
profile is indicated in parenthesis), the number
of impacted applications (the number in paren-
thesis correspond to the total of applications in
the profile) and impacted requests. It is possible
to see that only 10 out of these 14 operations
documented by eBay as incompatible affect
the applications of the profiles. However, the
rules applied to by our algorithm assessed 34
operations as incompatible, of which 13 affect
the applications in the profile. This difference
highlights the importance of having very explicit
compatibility rules, as discussed in more details
in (Yamashita, Becker et al., 2012). Regardless
the criteria used assess compatibility, in both
cases, none of the applications in profiles P1 and
P1.2 were affected (150 applications), whereas
100% of the applications on the other profiles
were (250 applications). Thus, usage-oriented
compatibility analysis enables to understand
that 63% of the applications will be impacted
by the changes. However, the number of im-
pacted requests is much smaller (17% and 22%,
respectively).

Table 8 displays the impact on the profiles
per incompatible operation, which is another
result that is output by our algorithm. For each

Table 7. Usage-oriented compatibility assessment of eBay trading 757 and 753

eBay Release Notes eBay Compatibility Rules

Profile Incomp. Ops Impacted
Apps

Impacted
Requests

Incomp.
Ops.

Impacted
Apps

Impacted
Requests

P2’ 6 (28) 103 (103) 25,898 9 (28) 103 (103) 32,750

P2.2’ 6 (31) 22 (22) 4,651 9 (31) 22 (22) 5847

P6 5 (33) 125 (103) 25,830 9 (33) 125 (103) 34,981

P1.2 0 (6) 0 (100) 0 0 (6) 0 (100) 0

P1 0 (12) 0 (50) 0 0 (12) 0 (50) 0

Total 10 (48) 250 (63%) 56,379 (17%) 13 (48) 250 (63%) 73,578 (22%)

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 10(1), 1-28, January-March 2013 23

profile, it shows the impacted requests for an
operation, the number of profiles affected by
the operation, and the total affected requests.
For the sake of illustration, we considered
only the operations reported as incompatible
by eBay documentation. It is possible to see
that, despite these profiles share a number of
common operations (Figure 9), only 3 out of
the 16 common operations were changed. It is
also possible to see that changes that affected
P2.2’ and P2’ refer to 3 out of the 6 operations
in the intersection of these two profiles.

In conclusion, profiles and usage-oriented
compatibility assessment enable a more fine-
grained analysis that could be considered by the
designer before proceeding with the changes.
It can lead to the insight of the critical opera-
tions, in terms of current usage, and possible
design alternatives to be considered in order
not to break clients.

RELATED WORK

Liang et al. (2006) define three types of service
usage patterns: users access, service composi-
tion, and business process. According to them,
patterns are organized into three levels: user
request, template and instance. User request

level is mainly focused on clients and how
they submit requests, such that users concerns
and interests can be connected with related
Web services. At template level, the concern
is to explore the abstract structure of services
(service interfaces, operations, messages) to
understand how the components of services
correlate, particularly in terms of compositions
and processes. At instance level, service usage
concerns the constraints over specific service
providers.

Works such as (Yu, 2012; Zhang, Ding et
al., 2011; Kang, Liu et al., 2012, Rong, Liu et
al., 2009) address user access patterns at user
request level, mainly for the purpose of service
recommendation. In this type of application, a
similarity model is built either over clients (col-
laborative filtering), items to be recommended
(content-based filtering), or both. Clients are
clustered in (Yu, 2012) according to historical
QoS and similarity over service invocation,
in order to build a predictive model for future
users. It proposes an approach for the so-called
cold start problem, when there is not enough
data to characterize users’ interests. Known and
inferred QoS values for service invocations are
represented in a sparse matrix, which is used
to cluster users according to QoS similarity. A

Table 8. Impact of incompatible operations per profile

Operations P2’ P2.2’ P6 Affected
Profiles

Affected
Requests

AddFixedPriceItem 6,160 1 6,160

AddItem 6,089 1,089 2 7,178

GetItem 6,599 1,187 6,747 3 14,533

RelistFixedPriceItem 595 1 595

RelistItem 518 100 2 618

ReviseFixedPriceItem 6,150 1 6,150

ReviseItem 6,078 1,085 2 7,163

GetItemTransactions 2,283 399 2,289 3 4,971

GetMemberMessages 2,288 399 2,293 3 4,980

GetMyeBaySelling 2,283 1 2,283

Affected Requests 23,855 4,259 26,517 16%

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

24 International Journal of Web Services Research, 10(1), 1-28, January-March 2013

decision tree is then learned for each cluster,
which is used to predict the cluster of new users.
Similarity is defined in Zhang, Ding et al. (2011),
& Kang, Liu et al. (2012) in terms of both QoS
and functional attributes used to formulate que-
ries to the registry. These attributes are related
to the respective service invocations in order
to construct the users’ similarity model, which
is then used to rank service recommendations.
Template level patterns are additionally em-
ployed in the approach proposed in Rong, Liu et
al. (2009) to improve service recommendation.
The approach combines user similarity models
with discovered dependencies between service
compositions frequently observed, with the
premise that dependency information between
services is a strong indicative hint for web ser-
vice selection. It first clusters clients according
to service invocation patterns. Afterwards, a
database containing all web service composi-
tion transactions of these users over a specified
time interval is constituted, and mined using
association techniques. Finally, the strongest
association rules are used to improve the rank-
ing of recommended services. Our work differs
from the above mentioned by the criteria used
to group users, the usage pattern level, the data
mining techniques used, as well as the purpose
of the application. We cluster clients based on
detailed information about service invocation
(i.e. features), whereas these works use func-
tional or non-functional attributes used to find
and invoke services. They also disregard the
specific functionality invoked, concentrating
in a much larger granularity, i.e. the whole
service. We integrate in our patterns both user
request and template levels, as (Rong, Liu
et al., 2009). We also contribute in different
ways of preparing invocation-related data to
be clustered, through the proposed selection
and transformation filters. Finally, although the
profiles aim to support decisions about service
evolution, they can suit very different applica-
tions such as service recommendation, service
design, workload balancing, etc.

Template level composition patterns are
the focus of works such as (Zhang, Yin et al.,
2009; Wang, Wang et al., 2012). The architecture

proposed by Zhang, Yin et al. (2009) suggests
that the composition engine monitors and logs
all requests to services involved in composi-
tion, together with timestamp and process
identification. A graph that relates services is
then constructed, where weights are assigned
to the edges to determine the strength of the
connection. As compositions are dynamic
and evolve overtime, the approach considers
specific time-horizons, and use time-related
information to determine the weights. The
elements of these graphs are clustered, using a
graph-based clustering algorithm, in order to
find closely related services that compose the
so-called service communities, i.e. services that
are frequently used in compositions. A semi-
empirical composition approach is described by
Wang et al. (2012) which aims at supporting
on-line service recommendation for optimal
compositions. First, the method clusters similar
services (based on information available in the
registry) and similar service requests (expressed
as functional and non-functional properties
in historical queries to the registry). Then,
statistical analysis is employed to establish
probabilistic correspondences between the two
types of clusters. These clusters are used to
recommend services during real-time service
composition. The above mentioned works find
clusters of related services, but do not associate
them with the clients that invoked similar service
compositions. Additionally, our work could be
extended to consider profiles based on service
composition patterns. For this purpose, instead
of extracting only features of a single service
version, one should extract the features of all
service versions involved in the composition.
This perspective must be further investigated.

The discovery of business workflows at
template and request level is addressed in works
such as in (Motahari-Nezhad, Saint-Paul et al.,
2011), (Musaraj, Yoshida et al., 2010; Tang and
Zou 2010), in an area more commonly referred
to as process mining (van der Aalst, 2012). In
this case, the patterns sought aim at document-
ing the actual processes that involve service
compositions/business processes, checking the
conformance between process instances and a

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 10(1), 1-28, January-March 2013 25

process model, or optimizing a process. These
works focus on discovering the actual usage of
a set of related services, but do not relate clients
that invoke similar workflows.

Compatibility is addressed by many works
that suggest compatibility rules or design
guidelines (Andrikopoulos, Benbernou et al.,
2012; Fokaefs, Mikhaiel et al., 2011), automatic
compatibility assessment (Becker, Lopes et al.,
2008; Becker, Pruyne et al., 2011), or functional
components for handling versioned services
(e.g. Fang, Lam et al., 2007). These approaches
are conservative, in the sense that they always
assume a worst-case scenario, i.e. clients that
possibly will be impacted by incompatible
changes. However client applications are bound
to specific features within offered functionality.
The larger the interface, the more distinct us-
age patterns it may subsume. Usage has been
considered for purposes such as producing
custom-made documentation (Zou, Fang et al.,
2008) and discovering substitute services in an
interoperability context (Ponnekanti & Fox,
2004). However, these works assume the point
of view of a single client application, and how
it can adapt itself to changes. Our point of view
is the provider, who needs an understanding
of the overall impact of changes in the whole
set of clients applications to make sound deci-
sions about service lifecycle. To the best of our
knowledge, no similar usage-oriented assess-
ment algorithm was proposed in the literature.
The idea of usage-oriented compatibility was
introduced in our early work (Yamashita, Becker
et al., 2012). The approach is complimentary
to our previous work on service compatibility
assessment and quantification of change impact
(Yamashita, Vollino et al., 2012).

CONCLUSION AND
FUTURE WORK

We presented a framework that supports the
application of a KDD process over interaction
logs to discover groups of clients with similar
usage characteristics. By collecting and storing
fine-grained usage data, applications can be

clustered according to different criteria, without
having to recollect and reprocess raw interaction
data. To reduce the complexity inherent to any
KDD process, the user is supported through
predefined tasks that can be parameterized.
Data selection and transformation tasks enable
the generation of distinct types of profiles, ac-
cording to the analysis goal. Whereas binary
preparation is better to identify the applications
impacted by changes, the weighted preparation
is better to measure the change impact.

We also introduced an algorithm for usage-
oriented compatibility assessment to illustrate
one of the possible uses of profiles within the
service evolution context. It allows the detec-
tion of incompatible changes with regard to
specific profiles at a very detailed level (types
and operations). The service evolution frame-
work provides analytical mechanisms that allow
quantifying and analyzing such impact, in order
to make better decisions about service evolution.

One of the major challenges involved in
service mining is the availability of data due to
its proprietary nature (Nayak, 2008; Motahari-
Nezhad, Saint-Paul et al., 2011). Indeed, data
is a valuable business asset, and frequently it is
not available at public domain, nor it is released
to other parties unless the return is clearly
perceived. Our approach is feasible because it
involves proprietary data of the party interested
in knowing the profiles. However, further stud-
ies need to be developed in terms of the costs
of collecting such detailed data, and the trade-
offs with regard to the main type of analyses
providers need to perform over profiles.

The KDD framework integrates different
algorithms that can be experimented and the
results assessed using known external assess-
ment measures. Experiments on synthetic data
have displayed encouraging results even in the
presence of significant amount of noise. How-
ever, the unsupervised metrics experimented
do not seem the best ones, as they did not cor-
relate to the supervised assessment technique
for noisy data. As mentioned, we are currently
implementing other internal indexes for further
experimentations. Synthetic data was generated

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

26 International Journal of Web Services Research, 10(1), 1-28, January-March 2013

based on the workflows described in the docu-
mentation of a real, complex service, describing
thus potential client applications that fit distinct
profiles. Further experimentation needs to be
developed with real data.

As mentioned, there is a tremendous dif-
ficulty in obtaining real data due to proprietary
ownership of data. Notice that we need a mod-
erately complex service with at least hundreds
of client applications. In our experiments, we
generated data based on a real system, and ex-
plored different ways that such a service could
be used according to the service documenta-
tion. This is a common approach for validating
service mining research (e.g. Yu, 2012; Zhang,
Ding et al., 2011; Rong, Liu et al., 2009; Zhang,
Yin et al., 2009; Motahari-Nezhad, Saint-Paul
et al., 2011).

The knowledge extracted by the proposed
process cannot be derived merely by investi-
gating the expected service workflows. Even
when the provider expect interactions to follow
a model, clients may not conform to it (van der
Aalst, 2012), or it may include several vari-
ability points that enable one to derive at most
the worst case scenario, rather than the actual
one (Tang & Zou 2010).

Providers can leverage usage impact infor-
mation to make decisions about the creation,
maintenance and decommissioning of versions,
but the segmentation of clients according to
temporal usage activities or preferences suits
other applications (e.g. service recommenda-
tion, optimization, load balance, redesign, etc.).

Currently we are implementing unsuper-
vised clustering assessment measures, and
experimenting with more data to recommend
clustering parameters in the future. We are also
integrating it with the applications of the Usage
Manager (Yamashita, Vollino et al., 2012; Silva,
Vollino et al., 2012). Future work includes an
evaluation of the costs involved in the collec-
tion of detailed data, mechanisms for explor-
ing and interpreting the profiles, developing
usage profiles for combined use of services in
portfolios and service versions, as well as new

applications, such as usage-oriented compat-
ibility and service recommendation.

ACKNOWLEDGMENT

We would like to thank Lucas Alves who has
helped with the implementation. This research
is financially supported by FAPERGS, CNPq
and CAPES Brazil. This paper is an extended
version of the one accepted as Research Paper
at ICWS 2013 (Vollino & Becker 2013).

REFERENCES

Aalst, W. van der. (2012). Service mining: Using
process mining to discover, check, and improve
service behavior. IEEE Transactions on Services
Computing, 99(1).

Andrikopoulos, V., Benbernou, S., & Papazoglou, M.
P. (2012). On the evolution of services. IEEE Trans-
actions on Software Engineering, 38(3), 609–628.
doi:10.1109/TSE.2011.22.

Becker, K., Lopes, A., Milojicic, D., Pruyne, J.,
& Singhal, S. (2008). Automatically determining
compatibility of evolving services. In Proceedings
of the 2008 IEEE International Conference on Web
Services, Beijing, China (pp. 161–168).

Becker, K., Pruyne, J., Singhal, S., Lopes, A., &
Milojicic, D. (2011). Automatic determination of
compatibility in evolving services. International
Journal of Web Services Research, 8(1), 21–40.
doi:10.4018/jwsr.2011010102.

Chuvakin, A., & Peterson, G. (2009). Logging in
the age of web services. IEEE Security and Privacy,
7(3), 82–85. doi:10.1109/MSP.2009.70.

Fang, R., Lam, L., Fong, L., Frank, D., Vignola, C.,
Chen, Y., et al. (2007). A version-aware approach for
web service directory. In Proceedings of the 2007
IEEE International Conference on Web Services,
Salt Lake City, UT (pp. 406–413).

Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia,
E., & Lau, A. (2011). An empirical study on web
service evolution. Proceedings of the 2011 IEEE
International Conference on Web Services, Wash-
ington, DC (pp. 49–56).

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 10(1), 1-28, January-March 2013 27

Halkidi, M., & Vazirgiannis, M. (2001). Clustering
validity assessment: Finding the optimal partitioning
of a data set. In Proceedings of the IEEE Interna-
tional Conference on Data Mining, San Jose, CA
(pp. 187–194).

Halkidi, M., Vazirgiannis, M., & Batistakis, Y. (2000).
Quality scheme assessment in the clustering process.
Principles of Data Mining and Knowledge Discovery
(pp. 265–276).

Hall, M., Frank, E., & Holmes, G. (2009). The WEKA
data mining software: An update. ACM SIGKDD,
11(1), 10–18. doi:10.1145/1656274.1656278.

Kang, G., Liu, J., Tang, M., Liu, X., Cao, B., & Xu, Y.
(2012). AWSR: Active web service recommendation
based on usage history. In Proceedings of the 2012
IEEE International Conference on Web Services,
Honolulu, HI (pp. 186-193).

le Zou, Z., Fang, R., Liu, L., Wang, Q., & Wang, H.
(2008). On synchronizing with web service evolu-
tion. In Proceedings of the 2008 IEEE International
Conference on Web Services, Beijing, China (pp.
329–336).

Liang, Q. A., Chung, J.-Y., Miller, S., & Ouyang,
Y. (2006). Service pattern discovery of web service
mining in web service registry-repository. In Proceed-
ings of the 2006 IEEE International Conference on
e-Business Engineering, Shanghai (pp. 286–293).

Liu, Y., Li, Z., Xiong, H., Gao, X., & Wu, J. (2010).
Understanding of internal clustering validation
measures. In Proceedings of the IEEE International
Conference on Data Mining, Sydney (pp. 911–916).

Motahari-Nezhad, H., Saint-Paul, R., Casati, F., &
Benatallah, B. (2011). Event correlation for pro-
cess discovery from web service interaction logs.
The VLDB Journal, 20(3), 417–444. doi:10.1007/
s00778-010-0203-9.

Musaraj, K., Yoshida, T., Daniel, F., Hacid, M.-
S., Casati, F., & Benatallah, B. (2010). Message
correlation and web service protocol mining from
inaccurate logs. In Proceedings of the 2010 IEEE
International Conference on Web Services, Miami,
FL (pp. 259–266).

Nayak, R. (2008). Data mining in web services
discovery and monitoring. International Journal of
Web Services Research, 5(1), 63–81. doi:10.4018/
jwsr.2008010104.

Papazoglou, M. P., Andrikopoulos, V., & Benber-
nou, S. (2011). Managing evolving services. IEEE
Software, 28(3), 49–55. doi:10.1109/MS.2011.26.

Pfitzner, D., Leibbrandt, R., & Powers, D. (2009).
Characterization and evaluation of similarity
measures for pairs of clusterings. Knowledge and
Information Systems, 19(3), 361–394. doi:10.1007/
s10115-008-0150-6.

Ponnekanti, S., & Fox, A. (2004). Interoperability
among independently evolving web services. In
Proceedings of the 2004 International Middleware
Conference, Toronto, Canada (pp. 331–351).

Rong, W., Liu, K., & Liang, L. (2009). Personal-
ized web service ranking via user group combining
association rule. In Proceedings of the 2009 IEEE
International Conference on Web Services, Los
Angeles, CA (pp. 445–452).

Rousseeuw, P. (1987). Silhouettes: A graphical aid to
the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics,
20(1), 53–65. doi:10.1016/0377-0427(87)90125-7.

Silva, E., Vollino, B., Becker, K., & Galante, R.
(2012). A business intelligence approach to support
decision making in service evolution management.
In Proceedings of the IEEE 2012 International
Conference on Services Computing, Honolulu, HI
(pp. 41-48).

Tan, P.-N., Steinbach, M., & Kumar, V. (2006). Intro-
duction to data mining. Boston, MA: Addison Wesley.

Tang, R., & Zou, Y. (2010). An approach for mining
web service composition patterns from execution
logs. In Proceedings of the 12th IEEE International
Symposium on Web Systems Evolution, Timisoara
(pp. 53–62).

Vollino, B., & Becker, K. (2013). A framework for
web service usage profiles discovery. In Proceedings
of the 2013 IEEE International Conference on Web
Services, Santa Clara Marriott.

Wang, X., Wang, Z., & Xu, X. (2012). Effective
service composition in large scale service market:
An empirical evidence enhanced approach. Inter-
national Journal of Web Services Research, 9(1),
74–94. doi:10.4018/jwsr.2012010104.

Yamashita, M., Becker, K., & Galante, R. (2011).
Service evolution management based on usage pro-
file. In Proceedings of the 2011 IEEE International
Conference on Web Services, Washington, DC (pp.
746–747).

Yamashita, M., Becker, K., & Galante, R. (2012).
A feature-based versioning approach for assessing
service compatibility. Journal of Information and
Data Management, 3(2), 120–131.

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

28 International Journal of Web Services Research, 10(1), 1-28, January-March 2013

Bruno Vollino is a graduate student at the Computer Science Institute of Universidade Federal
do Rio Grande do Sul (UFRGS), Brazil. He obtained his B. degree in Computer Science from
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil, in 2010. His current
interests include data mining, knowledge discovery, software engineering and software develop-
ment process.

Karin Becker received a Ph.D. degree in Computer Science from the Facultés Universitaires
Notre-Dame de la Paix (Belgium), and a M.Sc. degree from UFRGS (Brazil). She holds a large
background on research and development in both the academia and industry, mainly in the ar-
eas of data and web mining, software engineering and service computing. Since 2010, she is an
Associate Professor at the Computer Science Institute of UFRGS, where she develops research
projects in the area of business intelligence for supporting service evolution, and opinion mining.
Her current interests are focused on the application of data mining techniques to web-related data
(opinion mining, web services, social networks), as well as agile software development practices.

Yamashita, M., Vollino, B., Becker, K., & Galante,
R. (2012). Measuring change impact based on usage
profiles. In Proceedings of the 2012 IEEE Interna-
tional Conference on Web Services, Honolulu, HI
(pp. 226-233).

Yu, Q. (2012). Decision tree learning from incom-
plete QoS to bootstrap service recommendation. In
Proceedings of the 2012 IEEE International Confer-
ence on Web Services, Honolulu, HI (pp. 194-201).

Zhang, Q., Ding, C., & Chi, C. (2011). Collabora-
tive filtering based service ranking using invocation
histories. In Proceedings of the 2011 IEEE Interna-
tional Conference on Web Services, Washington,
DC (pp. 195–202).

Zhang, X., Yin, Y., Zhang, M., & Zhang, B. (2009).
Web service community discovery based on spectrum
clustering. In Proceedings of the 2009 International
Conference on Computational Intelligence and Se-
curity, Beijing, China (vol. 2, pp. 187-191).

ENDNOTES
1 	 Developer.ebay.com/DevZone/XML/docs/

WebHelp
2 	 jmeter.apache.org
3 	 www.w3.org/TR/wsdl
4 	 www.x.com/developers/ebay/products/

trading-api

