
A Framework for Web Service Usage Profiles Discovery

Bruno Vollino, Karin Becker
Instituto de Informatica

Universidade Federal do Rio Grande do Sul
Porto Alegre, Brazil

{bruno.vollino, karin.becker}@inf.ufrgs.br

Abstract—As part of web services life-cycle, providers fre-
quently face decision about changes without a clear under-
standing of the impact on their clients. The identification of
clients’ consumption patterns constitute invaluable information
to support more effective decisions. In this paper, we present a
framework that supports the discovery of service usage profiles,
to bring awareness on the distinct groups of consumers, and
their usage characterization in terms of detailed service func-
tionality. The framework encompasses monitoring of clients
requests, constituting a general purpose Usage Database, and
a process to cluster client applications and derive usage profiles.
The paper details the framework and presents experiments.

Keywords-web service; data mining; service usage;

I. INTRODUCTION

Web services became vital for the business of many
companies in the software industry, specially with the advent
of the SaaS (Software as a Service) paradigm. As in any
business, providers have interest in understand the needs
of their clients to avoid customer attrition, and to attract
new clients. Many providers focus on large scale service
provision, and have very little knowledge about their clients.
At the same time, they face hard decisions related to the
maintenance of deployed services, service versioning and
service redesign, without a clear understanding of the possi-
ble outcomes. Understanding the usage patters of clients is
thus invaluable to support web service life-cycle [1].

Data mining has been applied in many business segments
to discover knowledge about clients, which is hidden in
large volumes of data [2]. Web service mining [3] aims
at discovering patterns of service usage, i.e. specific ways
in which web services are used repeatedly by a group of
users with similar properties. Usage analysis have been
used to support the recommendation of services [4] [5] [6]
and compositions [3], the discovery of service composition
communities [7], as well as processes documentation and
conformance checking [8] [9]. Even when predefined inter-
action models are available, very often the reality differs of
the expected behavior, justifying the deployment of sophis-
ticated techniques to capture the actual usage patterns [9].

Our work [10] [11] is focused on the usage analysis as a
support for the service evolution life-cycle. Our approach is
to empower providers with an understanding of the overall
impact of changes in the whole set of client applications,

enabling sound decisions in terms of evolution strategies.
Providers can leverage usage impact information to make
decisions about the creation, maintenance and decommis-
sioning of versions. For that purpose, they must have a clear
understanding of the patterns involved in the overall requests
clients make (the operations they request, the structure of the
messages exchanged, co-occurrence of operations, among
others), and leverage these patterns to group clients with a
similar service usage behavior, which we refer to as usage
profiles. We have explored usage profiles for the quantifi-
cation of change impact in terms of affected clients [10]
or financial metrics [11]. With the proposed mechanisms,
the provider could identify which applications would be
affected by an incompatible change (if any), and quantify
this information in terms of broken applications, or financial
losses due to client attrition or penalties. Other applications
are service and process redesign, deployment provision
maintenance, service recommendation, among others.

In this paper, we detail a framework that supports the
development of a knowledge discovery process (KDD) [2]
over monitored clients requests to derive usage profiles. The
framework encompasses components for a) monitoring and
logging of clients requests, b) inputting this data in a general
purpose Usage Database, and c) applying a knowledge
discovery process to derive usage profiles. The framework
predefines tasks that requires minimum user intervention for
the selection and transformation of relevant data, data mining
using clustering techniques, and summarization of clusters
as profiles. We present experiments based on synthetic data,
simulating requests to a real service.

The paper contributes with techniques for identifying
usage patterns that existing works on service mining
(e.g. [3] [4] [5] [6] [7] [8] [9]) have not addressed yet,
namely groups of clients based on detailed service functional
properties. It details the ideas initially sketched in [10] [11].

The remaining of this paper is structured as follows.
Section II presents the fundamental concepts underlying
KDD and clustering. Section III presents an overview of the
service evolution framework, and Section IV, the compo-
nents of the Profile Manager. The KDD process to generate
usage profiles is detailed in Section V. Experimental results
are presented in Section VI and Section VII discusses related
work. Section VIII presents conclusions and future work.

II. KDD AND CLUSTERING

KDD is a process targeted at discovering new, valid and
useful information from large datasets [2]. This iterative and
interactive process involves the steps of data selection and
preprocessing, data mining, and evaluation of results. In the
mining step, algorithms are applied to find patterns in data.

Clustering is a mining technique that groups data objects
according to some similarity measure. Objects inside a
cluster should have high intra-cluster similarity, and low
inter-cluster similarity. The criteria for defining clusters
depend on the nature of the data and the desired results, since
distinct algorithms may output different sets of clusters.
Algorithms that adopt distinct definitions of clusters may
present conflicting results, and it is not possible to state that
there is a superior technique.

The definitions of cluster (a group of similar objects) and
clustering (the set of clusters derived from a dataset) can
be used to classify the techniques over orthogonal dimen-
sions [2]. A clustering may be classified as: partitional,
where clusters are non overlapping subsets of the whole
dataset; or hierarchical, where clusters may be nested, and
organized in a tree structure. The clustering is exclusive if
each object belongs to a single cluster.

Clusters may be classified as: a) well separated, where the
objects inside a cluster are more similar to every other ob-
jects in the cluster than to any object outside it; b) prototype-
based, where objects inside a cluster are more similar to its
cluster prototype (e.g. centroid) than to any other clusters’
prototypes; c) density-based, formed by contiguous objects
in high density areas; and d) distribution-based, in which
objects probably belong to a same statistical distribution.

Given a clustering, it is necessary to assess that its ten-
dency is not a mere random structure, the number of clusters,
and how well data objects fit together [2]. Assessment can
be perfomed using supervised and unsupervised techniques.
Supervised evaluation compares the discovered model to
externally available information, such as a golden standard.
Metrics such as the pair-counting F-Measure [12] can be
applied to support such a comparison. However, in practice
such a reference hardly exists, and the evaluation is made by
an expert, with the help of unsupervised, internal indices. An
internal index assumes a particular cluster definition, and it
enables the comparison of clusterings and algorithms of the
same type (e.g. to find the best parameterization). Silhouette,
Cophenetic Correlation, and Dunn are examples of external
indices [2].

III. SERVICE EVOLUTION FRAMEWORK OVERVIEW

The service evolution framework [10] was proposed to
support actions and decisions underlying service evolution,
by considering the actual use clients make of services. It is
composed of three modules, as depicted in Fig. 1.

The Version Manager is responsible for maintaining, in
the Version Repository, a set of versioned service interface

descriptions, and for assessing their compatibility. It adopts
a fine-grained, feature-based versioning model [10], which
allows versioning specific portions of a service interface de-
scription, relating the unaltered parts with previously created
versions. A feature is a portion of an interface description,
such as an operation, data type, or information related to the
overall service. A service version is then represented by a
graph of interrelated feature versions.

The Profile Manager aims at discovering usage patterns in
the requests that clients issue for a service, and representing
them as usage profiles, as detailed in sections IV and V.

The Usage Manager encompasses components that ex-
plore the profiles to assess change impact based on the
actual use clients make of a service. In [10], we proposed
profile-based metrics to quantify the impact of incompatible
changes, and in [11], we explored usage profiles to measure
the financial impact of changes.

IV. USAGE PROFILES AND THE PROFILE MANAGER

The Profile Manager has two main purposes: a) to au-
tomatically monitor service requests from clients to extract
fine-grained data, and load it into a general-purpose Usage
Database that suits many types of analysis; and b) to
support the development of a KDD process to generate usage
profiles, with the least user intervention possible. The latter
is achieved by predefining the necessary tasks, which can
be configured using simple parameters.

Usage profiles are representations of groups of client
applications with similar usage patterns with regard to
functionality described in the service interface. Such patterns
describe the operations clients make use of, as well as the
types of data they exchange.

The analysis of profiles in such a detailed level can
reveal knowledge that suits many applications. For instance,
awareness of which operations and types are actually in use
may motivate providers to perform incompatible changes
to improve service quality, which normally they would not
consider due to the worst-case possibility of breaking clients.
The knowledge of which operations are used together by
relevant groups of applications may serve as a guide to
redesign large service descriptions. Thus we include in the
profiles as much information as possible, and let the provider
explore it according to his/her analysis needs.

Intercept
Interaction

Client
Applications

Feature versions
Information Compatibility

Information

Usage
Information

Usage
Data

Usage
Profiles

ProfileManagerInteraction
Monitor

Data
Loader

Profile
Generator

In
vo
ke

S
er
vi
ce

VersionManager UsageManager

Interaction
Logs

Figure 1. Service evolution framework.

Each profile (Fig. 2) is related to the applications from
which the patterns were extracted, and to the feature versions
they use. Metrics can be associated to applications (e.g.
total number of requests) or feature versions (e.g. number
of requests to an operation. Although we assume features
to identify and describe profiles, the approach is relatively
independent from any specific representation, and can be ap-
plied as long as smaller grained elements can be recognized
from service descriptions.

A. Web Service Monitoring

The Interaction Monitor is responsible for intercepting and
logging the messages exchanged between client applications
and service versions they are bound to. The interception
of service interactions is a challenging task, given the
distributed nature of web services. Each alternative imposes
distinct trade-offs in terms of scope of extractable data and
performance of the monitoring capabilities, which must be
carefully considered when determining where the logging
infrastructure will reside in the web service architecture.

The service interactions may be intercepted [13]: in
the HTTP layer, where the web server records the HTTP
requests in logs; in the service application server, by im-
plementing the adapter or interceptor patterns to handle
messages; by adapters in the web services framework; in
a proxy server or application, located either in the client [5]
or provider side [8]; or hard coded in the web service itself.

Given our purpose, the Interaction Monitor has to be capa-
ble of intercepting and logging all operations requested, with
the corresponding messages. These messages are usually
documents exchanged by HTTP POST requests, which are
not logged by web servers. Proxy servers or applications
result in an overhead in the transport of messages and in
the consolidation of logs. Hard coded solutions increase the
costs of developing and maintaining the service.

Thus, the best option is to deploy interceptors in the
application server or in the web service framework. With
the latter, one can take advantage of the service framework
to interpret the messages. Message handlers depends on the
technology used, but are not affected by service evolution.

We assume that messages are exchanged in the SOAP
format, and each service version has its own message
handler. The handler registers the clients’ requests in log
files. We also assume that each web service version has a
custom authentication mechanism, which associates a unique

Figure 2. Usage profiles structure.

identifier to each application. It is a common practice of
providers to request this unique identifier or some kind of
access token as a parameter in its clients’ requests.

B. Data Loader and Usage Database

The Usage Database is a general-purpose, centralized
repository that contains detailed data about service usage,
and which suits different types of analysis. In this way, dif-
ferent criteria for defining the profiles can be experimented,
as it will be described in Section V. The Data Loader is
responsible for cleaning, interpreting and transforming raw
data collected by the monitor and distributed in several
logs, into the set of interrelated features involved in these
interactions, as represented by the Usage Database.

The Loader needs to extract from logged raw data all fea-
tures used by each client application, i.e. the service version,
the operations requested and the parameters exchanged. This
extraction is dependent on the message format logged. In
the following we assume that a) the log registers the entire
SOAP messages of requests and responses; and b) messages
use literal encoding, which means that only the hierarchy
of parameters and their values are provided, omitting the
names of the operation and types (e.g. Fig. 3). By accessing
the respective service description in the Version Repository,
the loader identifies the operation requested, based on the
parameters’ names, and the used types, by recursing into
the message hierarchy. Note that only the requests’ structure
(operations and types used) is required, not the actual data
transmitted by the involved parties.

As illustrated in Fig. 3, the Loader (i) parses a request,
(ii) retrieves the operation from the version repository, (iii)
makes a recursive scan over the interaction parameters,
identifying the used types, and (iiii) stores the processed
data in the Usage Database. It also stores identifiers that

TradingService

PlaceOffer

OfferType

Credentials Offer

<soapenv:Envelope>
 <soapenv:Body>
 <PlaceOfferRequest>
 <Credentials>
 <AppID>id</AppID>
 </Credentials>
 <Offer>
 <ItemID>123</ItemID>
 <Quantity>1</Quantity>
 </Offer>
 <User>
 <UserID>123</UserID>
 <Email>email</Email>
 </User>
 </Offer>
 </PlaceOfferRequest>
 </soapenv:Body>
</soapenv:Envelope>

User

UserType

CredentialsType

(ii) Find operation

Usage
Database

PlaceOfferRequestType

PlaceOfferRequest

(i) Parse request

(iii) Recursive scan

(iiii) Store request
Data Loader

Figure 3. Process of extracting usage data from raw interaction data.

Figure 4. Usage Database schema.

enables to relate, in both ways, the features in the Usage
Database and the respective ones in the Version Repository.
In this process the Loader discards all the invalid requests.

The Usage Database schema is depicted in Fig. 4. Every
interaction (request or response) is performed by or tar-
geted at an application. Services and operations are directly
referenced by the interaction, which is represented by the
‘Interaction Feature’ relationship. The operation parameters
and type parameters used in the interaction are represented
by the ‘Interaction Parameter’ relationship. An identifier en-
ables to associate each feature/parameter with its respective
version in the Version Repository. Information of parameter
optionality is also recorded.

C. Profile Generator

To hide the natural complexity of a KDD process to the
users of the framework, the discovery of profiles is devel-
oped by parameterizing a set of predefined tasks, as depicted
in the Fig. 5. The user: a) provides parameters to select data
from the Usage Database that meets the analysis goals, b)
selects among predefined data transformation alternatives,
c) parameterize cluster algorithms and compare the results
using metrics, and d) triggers the automatic generation of
profiles for validated clusters.

V. PROFILE GENERATION WORKFLOW

A. Data Preparation

Data preparation is crucial in profile discovery, because
it influences how mining algorithms will cluster service
clients. So, data must be carefully selected with regard to the
business goals for defining usage patterns. Transformations
should adjust selected data to the mining goals and the char-
acteristics of the applied algorithms. Considering possible
analysis goals, we have predefined tasks for data selection
and transformation.

1) Data Selection: Data selection is driven by two param-
eters: time interval and data granularity. The service provider
may be interested in the usage patterns with a temporal
validity, such as last month, or since the last version released.
So the selection component must be parameterized with
initial and final timestamps, such that only the interactions
within the specified time interval are selected.

The granularity refers to the level of detail used to cluster
applications. The user can analyze usage either on the level
of operations, or into more details, according to operations

Selection Transformation Clustering Evaluation Profile building

Usage profilesUsage Data Service graph

Figure 5. The tasks of the profile discovery workflow.

and data exchanged. In the first case, clients using the
same operations are similar, whereas in the latter, they
are considered similar according to the message structures
exchanged. If operation level is chosen, the query to the
Usage Database returns all the features in the relationship
‘Interaction Feature’ (Fig 4) that are used in at least one
interaction in the defined time window. If the usage of types
is additionally required, all types referred in the ‘Interaction
Parameter’ (Fig. 4) relationship must be retrieved as well.
Notice that only the variable part of requests involving a
given operation must be retrieved, i.e. the optional parame-
ters. If parameters are mandatory, at any level of recursion,
their presence is implied by the mere usage of the operation,
and therefore they can be disregarded.

To illustrate how relevant data types are retrieved, Fig. 6
depicts a service with operations Op1 and Op2, and their
respective complex message structures defined in terms of
4 types. Dotted boxes denote optional parameters (i.e. P2,
P6), and solid ones, mandatory. The type T1 is not selected,
because the parameters P1 and P3 are mandatory, so they
are always used in requests to Op1 and Op2. The type T2
is selected, because it is referenced only by the optional
parameter P2. Thus, applications that request Op1 and Op2
with messages that include T2, are considered different from
the ones that do not. Note that T4 is not selected, because
it is also referenced by the mandatory parameter P5.

2) Transformation: Retrieved data must be transformed
into a tabular format that summarizes how each application
uses each selected feature. The rows represent the appli-
cations, and the columns, the features. Each row is thus
an aggregation of all interactions of a same client with
regard to the features. The user can select between two usage
representations to fill the cells, namely binary or weighted.
The former represents whether an application uses a feature

Service

Op1

T4

Op2

T1

P3

T2

P1

P2

T3

P4

P6

P5

Figure 6. Mandatory and optional parameters.

(1), or not (0). The weighted representation adopts a measure
for weighting how often a feature was used. The user can
select in addition other types of transformations that may
improve the results, such as normalization or dimension
reduction [2] (e.g. eliminate features never used).

The profiles generated by each type of summarization
answer very distinct analysis questions, and therefore the
appropriate transformation should be selected. In the context
of service evolution, profiles generated using the binary
preparation are most valuable to identify which applications
are not compatible with certain changes, because the cluster-
ing algorithms do not tend to split applications that use the
same set of features over distinct clusters. In the weighted
representation, applications are considered similar when
they use similar sets of features with similar frequencies.
With this representation, the clustering algorithm is able to
distinguish between applications that use exactly the same
set of features, but not in the same manner (e.g. heavy users
of OP1 are not considered similar to eventual users). This
type of profile is more interesting to measure the impact of
changes over distinct groups of clients.

B. Clustering

As mentioned in Section II, finding which type of clus-
tering algorithm better fits the data at hand is a challenge.
Service usage data does not have a priori any particular
property enabling the identification of the most appropriate
clustering technique. Our aproach is to integrate in our
environment several clustering algorithms, and to compare
the resulting clusters through assessment metrics. In our cur-
rent implementation, we adopted four algorithms of distinct
classes: K-Means (partitional, centroid-based), Hierarchical
agglomerative (hierarchical, well-separated), DBSCAN (par-
titional, density-based) and Expectation-Maximization (EM)
(partitional, distribution-based). We are developing experi-
ments to provide in the future parameterization guidelines.

Cluster assessment is also a challenge, because there is no
information on the expected partitions. To develop experi-
ments with synthetic data, we integrated in the framework
the pair-counting F-Measure [12], which enables to compare
clustering results against a golden standard. However, in real
situations one would have to rely on an expert’s knowledge
of which clusters are valid and useful, with the help of
internal indices. We are currently implementing several
internal indexes, namely Silhouette, Cophenetic Correlation
and Dunn [2], to develop experiments and compare their
contribution to clustering assessment.

C. Profile Building

Clusters and profiles are distinct in nature. Clusters con-
tain only the features that may be used to distinguish
groups of applications, as result of the preparation step
(Section V-A). Profiles, on the other hand, are an enriched
representation of these groups of applications (Fig. 2). Thus,

1: procedure BUILDPROFILE(cluster, initDate, finalDate)
2: p← Profile()
3: instances← cluster.instances
4: p.apps← processAppsAndMetrics(initDate,
5: finalDate, instances)
6: for all app from p.apps do
7: for all attr from cluster.attributes do
8: ft← versionRepository.feature(attr.featId)
9: if ft is Operation and

10: instances(app).value(attr) > 0 then
11: opUsage← usageDB.numInteractions(
12: initDate, finalDate, app, ft)
13: app.usageMap(ft)← opUsage
14: app.usageMap← recurseParameters(
15: initDate, finalDate, app,
16: ft, app.usageMap, opUsage)

17: for all (f, val) from app.usageMap do
18: p.usageMap(f)← p.usageMap(f) + val

19: return p

Figure 7. The algorithm for building profiles.

a profile includes all features used, together with metrics that
indicate the importance of the group of applications, and
of the features the group uses. If we consider the example
of Fig.6, the features OP1, OP2 and T2 are submitted as
input to clustering. A resulting cluster may indicate that only
OP1 is used, without the optional parameter P2. Therefore,
the profile would contain Service, OP1 and T1 (mandatory
parameter P1), together with the respective metrics. Two
metrics are considered (number of interactions per appli-
cation and per feature), but others could be adopted as well.

To automatically construct a profile, metrics are calculated
for all used features, by querying the Usage Database. These
features are operations pointed as used in prepared data
(non-zero values) and types of parameters used in requests
for these operations, according to the service description
(Version Repository of the Version Manager - Fig. 1).

The pseudo algorithm of Fig. 7 describes the procedure to
be repeated for each valid cluster. From the instances of the
cluster received as parameter, it computes, for each appli-
cation, the total number of interactions performed (line 4),
and the number of interactions related to the operation (lines
9-13). Then, it recurses over the operation parameters trees
and types subtrees, computing the number of interactions
in which each type appears (line 14). Note that mandatory
parameters of operations are always used in every request,
and their counting is derived from the respective operations.
We need to retrieve the number of interactions for types of
optional parameters, and for the types of parameters under
them, in the service structure. Finally, the usage of features
of each application is summarized in the profile (line 18).

VI. EXPERIMENTS

The objective of our experiments is to demonstrate that
the proposed framework can deliver useful service usage

profiles from an interaction log, with minor parameterization
and evaluation of an expert.

In the absence of real interaction logs, we generated a
synthetic log by simulating clients’ requests over a real
service, namely eBay Trading. This is a very popular service
that supports a wide range of applications. Its interface is de-
scribed by more than 150 operations and a thousand of data
types. The service documentation organizes these operations
in common workflows that can be used independently, or in
combination to generate applications. We assumed that these
workflows could be combined differently to characterize sets
of applications with similar behavior.

Requests were created to represent predefined groups of
clients, with some level of noise. The log was loaded in
the Usage Database, from which we extracted datasets that
varied in the level of detail (operation vs. types) and usage
representation (binary vs. weighted). We developed the ex-
periments using four clustering algorithms from Weka [14]:
KMeans, EM, DBSCAN and hierarchical agglomerative
with mean linkage. We have experimented with different
parameterizations. Only the best results are reported here
due to space limitations.

As a result, we expect to generate clusters that match the
injected usage patterns, and to identify the best clustering
algorithm(s) and parameterization for each type of dataset.
The criteria used to evaluate clustering results are based on
three aspects: the number of generated clusters; the number
of distinct profiles represented by clusters, considering that
a cluster represents its predominant profile (by number of
applications); and the pair-counting F-Measure [12]. This
supervised assessment metric reflects the homogeneity of
applications inside clusters and the heterogeneity of distinct
clusters, regardless the number of clusters.

A. Dataset

We adopted version 767 of the eBay Trading service, and
7 workflows representing common usage cases documented
in the API guide1. We used JMeter2 to generate requests
to operations belonging to these workflows, according to
some probability. Fig. 8 depicts the simulated profile Buyer,
which has 5% of probability of executing the workflow “Get
token”, and 95% chances of executing “Buy item”.

As summarized in Table I, we have simulated 525 appli-
cations distributed in 6 profiles, which performed 448,703
requests for 42 distinct operations. The Venn diagram in
Fig. 9 shows the relationship between profiles, highlighting
the common operations. Three of the profiles are proper
subsets of others (P1.2, P1, P2), and two profiles (P6 and P8)
use the same set of operations with different frequencies.

The generated log consisted of SOAP messages using
literal encoding, which were preprocessed and loaded into

1http://developer.ebay.com/DevZone/XML/docs/WebHelp
2http://jmeter.apache.org/

the Usage Database, as described in Section IV-B. We report
here three experiments based on different sets of selected and
transformed data. We have also systematically added noisy
applications to these prepared datasets, which have random
values for the usage of features. The noisy applications were
added in proportions of 10% and 30% with regard to the
original number of applications (no noise). Data objects
were labeled with the respective profile/noise class, such that
clusters could be assessed using a supervised metric.

B. Clustering binary data

The first dataset involved only operations, prepared using
binary representation. Profile P8 was excluded from the
dataset because it is identical to P6 with regard to the binary
use of operations. Results are displayed in Table II.(A),
which shows the number of clusters (column C), the number
of distinct profiles they represent (column P), and the F-
measure (column F-M). The number of clusters and profiles
ideally should be the same, i.e. each cluster represent a
predefined profile. A higher number of clusters means that
members of a same profile were spread (i.e. profiles are
redundant), whereas a smaller number of profiles means that
some clusters mix applications of distinct profiles. When F-
measure is 1, it indicates perfectly clustered data objects.

In general, the hierarchical algorithm, using the mean
linkage, yielded the best results. The clustering matched
exactly the simulated profiles in the presence of any level
of noise. Considering the dataset with no noise, 3 instances
of the profile P2.2 were grouped together with P2 objects.

K-means and the EM were more sensitive to noise, not
being able to detect subgroups of applications. They have
mixed P1/P1.2 and P2/P2.2 data objects, and created clusters
for noisy data. DBSCAN has matched almost exactly the

GetSessionID

GetEbayOfficialTime

FetchToken

PlaceOffer

LeaveFeedback

AddMemberMessage

Get token workflow
(5% probability)

Buy item workflow
(95% probability)

Profile 1.2: Buyer

Figure 8. Example of a simulated application profile.

Table I
SIMULATION TOTALS.

Profile Applications Operations Requests
P1 100 12 89,996

P1.2 50 6 44,017
P2 100 28 82,538

P2.2 25 31 20,841
P6 125 33 103,232
P8 125 33 108,079

Total (distinct) 525 42 448,703

P6,P8

5Ops P1

P1.2

3Ops

16Ops 6Ops
3Ops

P2

P2.2

3Ops 3Ops

3Ops

Figure 9. The simulated profiles and their intersections.

simulated profiles, but, as a density based algorithm, it tends
to join in the wrong cluster some applications with small
variations in relation to their profiles.

The second dataset varied by including types of optional
parameters, in addition to the operations. Because the sim-
ulated log does not cover the use of types, we have inserted
2 new profiles in the prepared data: P6T, which includes
the same operations as P6 and additionally 10 randomly
selected types; and P2T, with the same behavior of P2, with
additionally 10 randomly selected types.

As shown in Table II.(B), hierarchical clustering yielded
the best results. K-means was not able to detect profiles with
subset relations, mixing the profiles P2/P2.2/P2T, P1/P1.2
and P6/P6T. EM could distinguish P2 from P2.2 in the
presence of noise, and the DBSCAN was able to detect all
the distinct profiles, but the cluster representing P1 included
applications belonging to neighbor clusters.

The experiments over this simulated data show evidences
that the hierarchical agglomerative algorithm with the mean
linkage yields good results for binary data. At a first glance,
DBSCAN also seems to be a good choice, but it required
extensive trial-error to find a good parameterization.

C. Clustering weighted data

The final dataset involved operations according to
weighted representation for all profiles. Recall that P6 and
P8 are distinguished only by usage frequency. We have
normalized the usage values (number of interactions) using
the z-score, a transformation that may reduce the effect of
noise in some clustering algorithms.

The hierarchical algorithm with mean linkage yielded the
best clustering. As displayed in Table II.(C), it has detected
the six profiles in all cases, with the highest F-Measure
values. However, it has always misplaced a few applications
of P8 in the clusters representing profiles P1 and P1.2.

The K-means and EM algorithms could not distinguish
profiles that differ only in the usage frequencies, clustering
together P6 and P8 applications. They also could not detect
subset relations: K-means merged profiles P1 and P1.2 in a
single cluster, and EM merged P2 and P2.2.

The DBSCAN algorithm, using the two best parameteri-
zation we have found, failed to create one cluster per profile.

Table II
CLUSTERING RESULTS

A. Binary data in granularity of operations
Binary 10% noise 30% noise

Algor. C P F-M C P F-M C P F-M
K-Means 5 5 1.00 5 5 1.00 5 4 0.94

EM 5 5 1.00 5 4 0.94 5 4 0.94
DBSCAN 5 5 0.97 5 5 0.97 5 5 0.97
Hierarc. 5 5 0.99 5 5 1.00 5 5 1.00

B. Binary data in granularity of types
Binary 10% noise 30% noise

Algor. C P F-M C P F-M C P F-M
K-Means 7 6 0.94 7 5 0.86 7 6 0.95

EM 7 7 1.00 7 6 0.95 7 5 0.86
DBSCAN 7 7 0.94 7 7 0.94 7 7 0.94
Hierarc. 7 7 0.99 7 7 1.00 7 7 1.00

C. Weighted data in granularity of operations
Weighted 10% noise 30% noise

Algor. C P F-M C P F-M C P F-M
K-Means 6 4 0.78 6 4 0.72 6 4 0.52

EM 6 5 0.88 6 5 0.95 6 5 0.95
DBSCAN (0.5,3) 7 6 0.93 7 6 0.93 7 6 0.93
DBSCAN (0.5,7) 6 6 0.89 6 6 0.89 6 6 0.89

Hierarc. 6 6 0.97 6 6 0.98 6 6 0.98

With minimum points = 3, P2 was split in two clusters, one
of them melded with applications of the profiles P2.2, P6 and
P8. With minimum points = 7, it was able to find 6 distinct
profiles, but it also created a cluster of P2 with many other
nearly applications of other profiles, a problem of the density
based approach.

This experiment also shows evidences that the hierar-
chical agglomerative algorithm with the mean linkage also
produces consistent clustering results for weighted data.
It should be noticed that distinguishing clusters based on
weighted data is a more challenging problem.

VII. RELATED WORK

Three types of service usage patterns are highlighted
in [3]: users access, service composition, and business
process. Access patterns are explored in [4], where clients
are clustered according to historical QoS and similarity
over service invocation, to build a predictive model for
future users. The similarity of functional and non-functional
queries, of the resulting service invocations, and invocations
recency, are explored in [5] to recommend services. To
improve service recommendation, [6] find similar users
according to service invocation patterns, and enrich users
interest by discovering association rules that relate services
they use in combination. Dynamic service compositions are
discovered in [7] from access patterns, by clustering groups
of services in terms of the strenght of their interactions. The
discovery of business workflows are proposed in [3] [8] [9],
for purposes such as documentation, process optimization
and conformance checking.

All these works explore usage data either to define
similarity of clients in terms of the services they use, or
relationships between services in terms of compositions and

processes they take part on. Our work differs from the
above in terms of the granularity of patterns we seek (how
service functionality is used), and on the ability to relate and
describe similar clients in terms of quantified usage patterns.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a framework that supports the application of
a KDD process over interaction logs to discover groups of
clients with similar usage characteristics. By collecting and
storing fine-grained usage data, applications can be clustered
according to different criteria, without having to recollect
and reprocess raw interaction data. To reduce the complexity
inherent to any KDD process, the user is supported through
predefined tasks that can be parameterized. Data selection
and transformation tasks enable the generation of distinct
types of profiles, according to the analysis goal. Whereas
binary preparation is better to identify the applications
impacted by changes, the weighted preparation is better to
measure the change impact.

The framework integrates different algorithms that can be
experimented and the results assessed using known external
assessment measures. Experiments on synthetic data have
displayed encouraging results even in the presence of sig-
nificant amount of noise. Synthetic data was generated based
on the workflows described in the documentation of a real,
complex service, describing thus potential client applications
that fit distinct profiles. Further experimentation needs to be
developed with real data.

The knowledge extracted by the proposed process cannot
be derivedby investigating the expected service workflows.
Even when the provider expect interactions to follow a
model, clients may not conform to it [9], or it may include
several variability points that enable one to derive at most a
worst case scenario, rather than the actual one [8].

Providers can leverage usage impact information to make
decisions about the creation, maintenance and decommis-
sioning of versions, but the segmentation of clients according
to temporal usage activities or preferences suits other ap-
plications (e.g. service recommendation, optimization, load
balance, redesign, etc).

Currently we are implementing unsupervised clustering
assessment measures, and experimenting with more data
to recommend clustering parameters in the future. We are
also integrating it with the applications of the Usage Man-
ager [10] [11]. Future work includes an evaluation of the
costs involved in the collection of detailed data, mechanisms
for exploring and interpreting the profiles, developing usage
profiles for combined use of services in portfolios and
service versions, as well as new applications, such as usage-
oriented compatibility and service recommendation.

ACKNOWLEDGMENTS

We would like to thank Lucas Alves who has helped with
the implementation. This research is financially supported
by FAPERGS, CNPq and CAPES - Brazil.

REFERENCES

[1] M. P. Papazoglou, V. Andrikopoulos, and S. Benbernou,
“Managing evolving services,” IEEE Software, vol. 28, no. 3,
pp. 49–55, 2011.

[2] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to data
mining. Addison Wesley, 2006.

[3] Q. A. Liang, J.-Y. Chung, S. Miller, and Y. OUYang, “Service
pattern discovery of web service mining in web service
registry-repository,” in e-Business Engineering, 2006. ICEBE
’06. IEEE International Conference on, 2006, pp. 286–293.

[4] Q. Yu, “Decision tree learning from incomplete qos to boot-
strap service recommendation,” in ICWS, 2012, june 2012,
pp. 194 –201.

[5] Q. Zhang, C. Ding, and C. Chi, “Collaborative Filtering Based
Service Ranking Using Invocation Histories,” in ICWS, 2011.
IEEE, 2011, pp. 195–202.

[6] W. Rong, K. Liu, and L. Liang, “Personalized Web Service
Ranking via User Group Combining Association Rule,” 2009
IEEE International Conference on Web Services, pp. 445–
452, Jul. 2009.

[7] X. Zhang, Y. Yin, M. Zhang, and B. Zhang, “Web service
community discovery based on spectrum clustering,” 2012
Eighth International Conference on Computational Intelli-
gence and Security, vol. 2, pp. 187–191, 2009.

[8] R. Tang and Y. Zou, “An approach for mining web service
composition patterns from execution logs,” in Web Systems
Evolution (WSE), 2010 12th IEEE International Symposium
on. IEEE, 2010, pp. 53–62.

[9] W. van der Aalst, “Service mining: Using process mining
to discover, check, and improve service behavior,” Services
Computing, IEEE Transactions on, vol. PP, no. 99, p. 1, 2012.

[10] M. Yamashita, B. Vollino, K. Becker, and R. Galante, “Mea-
suring change impact based on usage profiles,” in Web Ser-
vices (ICWS), 2012 IEEE 19th International Conference on.
IEEE, june 2012, pp. 226 –233.

[11] E. Silva, B. Vollino, K. Becker, and R. Galante, “A business
intelligence approach to support decision making in service
evolution management,” in Services Computing (SCC), 2012
IEEE Ninth International Conference on. IEEE, june 2012,
pp. 41 –48.

[12] D. Pfitzner, R. Leibbrandt, and D. Powers, “Characterization
and evaluation of similarity measures for pairs of clusterings,”
Knowledge and Information Systems, vol. 19, no. 3, pp. 361–
394, Jul. 2009.

[13] A. Chuvakin and G. Peterson, “Logging in the age of web
services,” Security & Privacy, IEEE, vol. 7, no. 3, pp. 82–85,
2009.

[14] M. Hall, E. Frank, and G. Holmes, “The WEKA data mining
software: an update,” ACM SIGKDD, vol. 11, no. 1, pp. 10–
18, 2009.

