

FACULDADE DE INFORMÁTICA

PUCRS – Brazil
http://www.inf.pucrs.br

Development of An Active Network Architecture Using
Mobile Agents – A Case Study

Lucio Mauro Duarte and Fernando Luís Dotti

TECHNICAL REPORT SERIES

Number 043
July, 2002

Contact:

lduarte@inf.pucrs.br

http://www.inf.pucrs.br/~lduarte

fldotti@inf.pucrs.br

http://www.inf.pucrs.br/~fldotti

Lucio Mauro Duarte is a part-time professor at PUCRS – Pontifícia Universidade

Católica do Rio Grande do Sul – Brazil since 2002. He got his M.Sc. in 2002 at
PPGCC/FACIN-PUCRS.

Fernando Luís Dotti works at PUCRS/Brazil since 1998. He is an associate

professor and develops research in Computer Networks, Distributed Systems and Code
Mobility. He got his Ph.D. in 1997 at Technical University of Berlin (Germany).

Copyright © Faculdade de Informática – PUCRS
Published by the Campus Global – FACIN – PUCRS
Av. Ipiranga, 6681 - Partenon
90619-900 Porto Alegre – RS – Brazil

 3

Development of An Active Network Architecture – A
Case Study

Technical Report 026/2002

Lucio Mauro Duarte (M.Sc.)
Fernando Luís Dotti (Ph.D.)

1 Introduction

The continuous growth in processing and communication capabilities led to

massive distributed computational environments, e.g. the Internet. These environments
are often called open environments, being characterized by: massive geographical
distribution; high dynamics (appearance of new nodes and services); no global control;
partial failures; lack of security; and high heterogeneity. Building distributed
applications for such environments is a complex task. Research efforts have been
directed to manage this complexity through the development of new paradigms, theories
and technologies for distributed applications. Within this context, code mobility [1] has
received special attention due to its flexibility and potential use in various application
fields, e.g. network management [2], electronic commerce [3], distributed information
retrieval [1], advanced telecommunication services [4], active networks [5], and
workflow management systems [6].

One of the objectives of the ForMOS project (Formal Methods for Mobile
Applications in Open Environments) is to create a framework to support the
development of mobile applications. The innovative aspect of the framework is the use
of Object-Based Graph Grammars (OBGG) [7] as the underlying unifying formal
method for a set of integrated tools [8]. OBGG is a restricted version of Graph
Grammars [9] that includes object-based concepts as encapsulation and communication
through message passing. Each one of the tools developed in the ForMOS project
supports a way of addressing the generation of correct mobile applications. The
framework encompasses, by now, a formal specification language, a simulation tool and
a mapping scheme to generate code from OBGG specifications.

In this report is presented the active network architecture developed as a case
study during the work presented in [10]. This architecture was modeled with the OBGG
language, what made it possible to simulate its behavior as well as to generate code for
it using the tools developed in ForMOS project. The code was generated for a mobility
support platform allowing the execution of the architecture in a real environment.

The architecture considers the use of mobile agents to implement some of its
elements. Mobile agents are mobile codes that are autonomous in the sense that they can
migrate when it is necessary and to where they need. Because of this characteristic,
mobile agents can be used to implement elements with execution independence and
migration autonomy.

This work is organized as follows: Section 2 presents the concepts involving
active networks; Section 3 presents the active network architecture; Section 4 describes

 4

the formal specification of the architecture; Section 5 discusses the simulation and
execution results of two testing scenarios; and Section 6 contains the final remarks.

2 Active Networks

The traditional function of a network is to route packets from one node to another.

Processing within the network occurs to provide routing, congestion control and quality
of service (QoS) schemes. So, in traditional networks processing occurs in a static way,
through predefined instructions used in the configuration of network devices. Because
of this limited processing capacity, these networks can be regarded as passive networks.
According to [11], some problems that can be identified considering passive networks
are:

– the difficulty of integrating new technologies and standards into the shared
network infrastructure, demanding the substitution of devices or their
reconfiguration by network administration;

– poor performance due to redundant operations at several protocol layers;
– the difficulty to accommodate new services in the existing architectural model.

Recently, some applications that require computations within the network have

emerged, such as firewalls, web proxies, multicast routers and mobile proxies,
increasing the need for an architectural support for these computations.

In order to overcome all the presented problems, the idea of active networks was
proposed. Active networks [5] represent a new approach for network architectures.
They are named active because the routers and switches in such networks can perform
computations on user data flowing through them. Programs can also be dynamically
inserted into the network nodes to configure them according to the needs of the
applications in execution. This way, packets have the capacity of carrying not only data
but also the code to be executed in remote nodes. Therefore, the user has the possibility
of “programming” the network, providing the programs to be used by the routers and
switches to execute their computations. In an active network the difference between
network internal nodes (routers, switches, etc.) and user nodes is tenuous, since both are
able to perform the same computations. Hence, the user can view the network as a part
of his application and can adapt the network to obtain the best performance of his/her
application.

As presented in [11], there are three approaches for active networks architectures:
• Active packets: Packets (here called capsules) flowing in the network carry

code to be executed in the nodes where they pass through. Nodes have only
the capacity of performing computations using the received codes. Some
examples of this approach are Smart Packets [12] and Active IP Option [13];

• Active nodes: Packets carry only identifiers or references to predefined
functions present in the nodes. So, packets carry the identification of what
kind of function must be executed to process their data. Nodes own the codes
of functions needed to process the data present in the packets, according to
the identification provided by them. Examples of this approach are DAN [14]
and ANTS [15];

• Active packets and nodes: This approach combines the other two presented
approaches. Packets carry real and simple codes and nodes own more
complex codes. This way, packets don’t carry a complex and large code,

 5

which resides in the nodes. The simple code carried by the packets can be
used to determine how their data must be processed or which function
provided by the node must be used to process the data. Therefore, such
architectures allow users to choose between the two other approaches
according to their applications needs, i.e., this approach allows using either
active packets or active nodes approach. As examples of this approach we can
mention SwitchWare [16] e NetScript [17] architectures.

Some known applications of active networks are network management [18],

active congestion control [19], active multicast [20] and active caching [21].

3 An Active Network Architecture

As said before, in [10] an architecture for active networks involving mobile

components was created as a case study to test the tools developed in the ForMOS
project. Such architecture, as designed, demands the intense use of mobility. This
characteristic made the development of this case study very valuable to prove the
usefulness and powerfulness of the implemented tools. Furthermore, representing active
networks in terms of our formalism makes it possible to simulate, analyze and generate
an implementation for it. Since active networks are a new area, there is a lack of
simulation and analysis tools. Besides this, the existence of a way of mapping the
specification to a programming language and to a mobility support platform prevents
the occurrence of errors when one translates from the formalism to executable code.
This helps in maintaining the correctness of the code according to the specification.

The architecture considered is composed by capsules, active nodes, services, code
bases and naming servers:

- Active nodes are the nodes of the network and can send and receive capsules
in unicast and broadcast modes. They provide services to the received
capsules;

- Capsules represent the packets transferred over the network. They can carry
data and code. Each type of capsule is handled by a service;

- A service is an entity that owns the code to be executed with the data of a
specific type of capsule. Services execute in active nodes and determine what
types of capsules can be handled in each active node;

- A code base is an entity that maintains instances of services available in the
network. It provides instances of services required to handle specific types of
capsules to the active nodes;

- A naming server is an entity that owns a list of all registered entities,
associating a name to a reference to each entity. This way, a naming server
provides the mapping of a name to an entity reference. It enables the
communication between entities with location transparency. The naming
server also contain the list of local services of an active node.

This architecture follows the active nodes approach, according to the classification

discussed in Section 2, once the capsules carry only the identification of the service it
requires to process its data.

Active nodes are static entities and capsules, services, code bases and naming
servers are mobile entities. That is, all entities of the architecture, except the active

 6

nodes, can change their location. In fact, only capsules and services take profit of
mobility in the current state of the architecture.

The basic behavior of the proposed active network architecture will be described
in the next section, where the formal specification of this architecture is presented.

4 Specification of the Proposed Architecture

The specification of each entity in OBGG involves the definition of a type graph

and a set of rules. The type graph of an entity presents its internal attributes, the
messages it can handle and the messages it can send to other entities (messages are
presented with their parameters).

The type graph for an active node (AN) is depicted in Fig. 1. The active node is
presented with its attributes on the left side. Each attribute is presented with its
respective name and type. On the right side of the AN there are the messages the active
node can receive from other entities. The parameters of each message are presented on
the right side of it. On the right side of Fig. 1 are the messages an active node can send.
The destination of each message is represented by a to arrow. The entities that behave as
a static entity are represented by two concentric ellipses and mobile entities by a simple
ellipse.

AN

string

List

List

CB

NS

NS

host_idlocal_ns

ns

code_base

services

pending

SendMsg

Reference

SendBCast

AllRef

StartBCast

NewCapsule

Next

Install

GetService

to
to

to

to

to

to
to

to

to

string

Capsule
capsule

host_id

string

Entity

string

integer
Capsule

AN

type_op

obj_ref

obj_name
type

an
capsule

Capsulecapsule

capsule

Listnames

Capsulecapsule

AN
an

capsule

Capsulecapsule
Service

string

Capsule

Capsule

Capsule
capsule
service_id

service_agent

string

Capsule

service_id
capsule

Exception stringexceptionType

to

List

names

boolean
inBroad
Cast capsule Resolve

NS

AN
string

string

integer
Capsule

an

type

obj_name
obj_req

type_op

Send
AN

orig

dest Capsule

GetAllRef NS

Capsule

AN

capsule

host

Clone CapsuleAN

an

host

ServiceReq CB
Capsule

AN

string

capsule
host

service_id

Service CapsuleService
s

Bind NS

Service

string

string

obj_name
type_op

obj_ref

to

to

to

to

to

to

to

Fig. 1. Type graph for an active node.

An AN is identified by a host id, which is used to communicate to other nodes.
Each AN owns a reference to a code base from which it can require instances of
services. The AN owns also a list of the local services presently available and a
reference to a local naming server used to register the references to the local instances
of the services and references to known nodes (nodes which the AN is connected to).

The type graph for a capsule is presented in Fig. 2.

 7

Capsule

string

AN

AN

AN

orig

dest

location

req_service

Send

InitCapsule

Service

Clone

GetService

 NewCapsule

AN

AN

orig

dest

AN

AN

AN

host

to

to

stringservice_id

Services

string

Capsule

service_id

capsule

Capsule capsule

Data ServicetoCapsule
capsule

to

to

to
to

AN

an

ANlocation

Fig. 2. Type graph for a capsule.

A capsule has a reference to its origin node and to its destination node as well as
to its current location. It also owns an attribute used to store the identification of the
service required to handle this capsule. This way, the active node that receives this
capsule must provide the defined service to process the data of the capsule.

Fig. 3 depicts the type graph of a service.

Service

string

AN

location

service_id

InitService

SendService

Data

Duplicate

string

Capsule

Capsule

Capsule

CB

AN

AN

service_id

capsule

capsule

capsule

host

host

code_base

Install

to

to

to

to

GetClone

AN

CB

to

to

Capsule

string

Service

Service

capsule

service_id

service_agent

service

Capsule

capsule

Capsule capsule

AN

host

ANlocation

Fig. 3. Type graph for a service.

A service has an identification and stores the information of its current location
and a reference to a capsule it must handle.

The code base (CB) stores the list of all available services in the network and a
reference to a local naming server that contains references to the services instances.
Besides this, the CB owns the information of its current location. The type graph for a
code base is presented in Fig. 4.

 8

CB

List

AN

NS

list_of_services

local_ns

location

NewService

ServiceReq

Reference

GetClone

Service

Service

Capsule

Capsule

Capsule

string

string

string

string

integer

AN

AN

service_agent

service_id

AN

capsule
service_id

host

service

host

capsule

capsule
type_op

obj_name

type

an

to

to

to

to

Bind

Resolve

Duplicate

SendService

NS

NS

Service

Service

to

to

to

to

Service

string

string

CB

string

string

Capsule

obj_ref

obj_name

type_op

integer

AN

obj_req

obj_name
type_op
capsule

type

an

AN

Capsule

host

capsule

AN

Capsule

host

capsule

CB
code_base

Fig. 4. Type graph for a code base.

The type graph of the naming server (NS) will not be presented here. It is widely
discussed in [22], presenting its basic behaviour. In this work it is just considered that
the naming server is an entity that receives requests from other entities and maps names
to references.

As said in the beginning of this section, an OBGG entity is defined by a type
graph and a set of rules. The set of rules associated to an entity defines its behavior. The
application of rules successively changes the state of the system, starting from an initial
state, called initial graph. The initial graph describes the entities involved in the system
and the initial values of their attributes. An OBGG rule is composed by a left side, a
right side and a condition. An OBGG rule is graphically represented as shown in Fig. 5.

L RRuleName
[condition]

Fig. 5. Basic OBGG rule.

A rule can be applied whenever the left side of the rule is a sub-graph of the
current system state graph. That is, whenever the graph described in the left side of the
rule is currently present in the system state graph, the rule is able to be applied. Besides
this, a rule can demand another condition to be applied. This condition is described as a
logical expression presented below the transition arrow. Since OBGG is as an object-
based formal language, the left side of a rule always must contain a message as a part of
the graph. This message represents the message received by the entity that triggers the
rule application. This defines that a rule in OBGG always handle a message. The
condition associated to the rule is optional and can only consider values of the internal

 9

attributes of the entity the rule belongs to and of the parameters of the message handled
by the rule.

If the left side of a rule occurs and the condition is satisfied, the rule is said
enabled. An enabled rule is a rule that can be selected for application. Many rules may
be applied in parallel, as long as they do not have write access to the same items of the
state (even the same rule may be applied in parallel to itself, using different matches).
Two (or more) enabled rules are in conflict if their matches need write access to
common items. If rules conflict, the choice of which one of them will be applied is non-
deterministic.

As commented before, the application of a rule must consume a message (the
message handled by the rule). A rule, when applied, may also modify internal attributes
of the entity that received the message and generate new messages to other entities or to
itself. This way, an application of a rule brings the system to a new state. The right side
of a rule determines the graph that represents this new state, i.e., the graph that is the
result of the modifications that occur in the system graph when the rule is applied. The
modifications that can occur when a rule is applied are:

• Items in the left side that are not present in the right side of the rule are
removed;

• Items in the right side that are not present in the left side are created;
• Items that are present in both sides of the rule are preserved.

The basic behavior of the proposed architecture can be described by the rules

associated to the involved entities (the system behavior is composed by the behavior of
their entities and their interactions). The active nodes are the center of the architecture,
so they can be used as a starting point to explain how does the architecture work. The
active node (AN) executes three functions: sending capsules in unicast mode, sending
capsules in broadcast mode and providing services to received capsules.

4.1 Sending capsules in unicast mode

The first and simpler function of an AN is sending capsules in unicast mode. This

function is activated when the AN receives a SendMsg message, containing the capsule
to be sent and the identification of the destination of capsule, as presented in
SendMessage rule depicted in Fig. 6.

SendMsgto

SendMessage
AN

NS

local_ns
Resolve

to

AN

NS

local_ns

an

obj_req

id

0

“RESOLVE”

Capsule

capsule

Capsule

type

type_op

id
host_id

host_id

capsule

Fig. 6. SendMessage rule.

The AN then sends a request to its local naming server to get a reference to the
destination node. When the local naming server returns the requested reference
(GetReference rule in Fig. 7), the AN sends a message to the capsule informing that it
must go to the indicated node.

 10

GetReference

Reference
toAN

an

n

0

“RESOLVE”

Capsule

type

type_op

capsuleobj_name

AN2

obj_ref
Send

toAN

Capsule

orig

AN2
dest

Fig. 7. GetReference rule.

The reception of the message sent by the AN, causes the start of the capsule
moving process (GoToHost rule in Fig. 8), which takes its way to the destination node.
Whenever a capsule receives a Move Message, it sends a message to its current location
(AN where it is at) asking to move to the destination node. The AN then sends a
message to the destination node informing that the capsule wants to be received by it.
According to some requirements that must be attended to receive the capsule1, the
destination node sents back a message to the origin node informing whether it can
receive the capsule or not. If the capsule can be received by the destination node, the
origin node sends a message to the capsule informing it can move to the destination
node. As soon as the capsules receives the accept of the destination node, it moves itself
to its new location and change its internal information of current location, updating it to
refer to the new node where it is at now. The origin node updates it internal state
removing any reference to the capsule and the destination node updates its internal state
adding the new capsule. After all these updates, the capsule continues its execution at
the new node. The complete moving process specification is described in details in [10].

GoToHost
Capsule

AN1

AN2 AN3

Send
to

orig

dest

orig

dest

Capsule

AN1

AN2 AN3

Move

to

dest

comp

dest

orig

Fig. 8. GoToHost rule.

4.2 Sending capsules in broadcast mode

The second function of an AN is sending capsules in broadcast mode, i.e., sending

copies of the same capsule to all known nodes. This function is activated when the AN

1 These requirements are specified for each type of capsule and they may include processing

power, storage capacity, etc. that are needed to support the capsule execution. If we consider the use of

identifications due to security needs, the identification of the capsule should be considered appropriate

and secure to the destination node.

 11

receives a SendBCast message, containing the capsule that must be sent. Because of
some restrictions imposed in this specifications, an AN can only send capsule in
broadcast at a time. The attribute inBroadCast is used to control if the AN is currently
executing a broadcast or not (see SendBroadCast rule in Fig. 9).

SendBCast
to SendBroadCastAN

NS

local_ns

Capsule

capsule

GetAllRef
to

AN

NS

local_ns

Capsule

capsule
host

false
inBroadCast

true
inBroadCast

Fig. 9. SendBroadCast rule.

If the AN is not executing a broadcast when it receives a request to do it so, it asks
the local naming server for a list of all known nodes. The list is returned by the naming
server and is stored in the names attribute of the AN (see StartBroadCast rule in Fig.
10). The AN then sends itself a message (StartBCast) to start the broadcast.

StartBroadCast

AllRef
toAN

Capsule

capsule

n

names

v

names

StartBCast
toAN

Capsule

capsule

n

names

not n.isEmpty()

Fig. 10. StartBroadCast rule.

This message causes the activation of the ResolveNextName rule (Fig. 11). The
AN removes the first identification of the list of known nodes and send it to the naming
server requesting a reference to this node.

StartBCast
to ResolveNextNameAN

NS

local_ns

Capsule
capsule

Resolve
to

AN

NS

local_ns

Capsule

capsule
obj_req

n
names

n.remove()
names

n.get()
obj_name

“RESOLVE”

type_op
1

typean

Fig. 11. ResolveNextName rule.

When the reference is received (CloneCapsule rule in Fig. 12), the AN send a
message to the capsule that must be sent in broadcast, asking it to clone itself, and
another message to itself to get the next identification of the list.

 12

CloneCapsule

Clone

to

AN

Capsule

Reference
toAN

Capsule

capsule

n
obj_name

“RESOLVE”

type_op

1

type

AN2

obj_ref

Next
capsule

to

AN2

host

an

an

Fig. 12. CloneCapsule rule.

The duplication of the capsule is necessary to generate copies of it to be sent to
each node in the list. The duplication of a capsule occurs according to the CreateClone
rule scheme (Fig. 13). A rule scheme is like a template of a rule, presenting the basic
components of the rule. This means that each specific application can add other
components if necessary. That is, considering the case of CreateClone rule, the Init
message used to initialize a capsule could have other parameters besides the service_id
that would be useful to a given application.

CreateClone
Clone

to
Capsule

s

req_service

ANlocation

ANDest

an

host
NewCapsule

to

Capsule

s

req_service

ANlocation

ANDest

an

Capsule new_
capsule

Init

s
service_id

Fig. 13. CreateClone rule scheme.

Once the copy of the capsule is created, it is initialized with the Init message (Fig.
14) and a message containing a reference to the newly created capsule is sent to the AN
that has requested the duplication.

location
location

Initialize
InitCapsule

toCapsule

r

req_service service_id

s

Capsule

s

req_service

AN2AN

location

AN2AN

Fig. 14. Initialize rule.

As soon as the NewCapsule message is received by the AN, it sends a message to
the capsule sending it to the destination node (SendToNext rule in Fig. 15). After this,
the capsule moves to the destination as already commented in Section 4.1.

 13

NewCapsule
to SendToNextAN

AN2

an

Capsule

new_capsule

Send

to

AN

Capsule

orig

AN2

dest

Fig. 15. SendToNext rule.

While the list is not empty, the AN repeat the described process to send copies of
the capsule (GetNext rule in Fig. 16). When the list is empty, the broadcast is finished
(EndBCast rule in Fig. 17).

GetNext
Next

toAN

Capsule

capsule

n

names

not n.isEmpty()

NS

local_ns Resolve
to

AN

NS

local_ns

Capsule

capsule
obj_req

n.remove()
names

n.get()
obj_name

“RESOLVE”

type_op
1

typean

Fig. 16. GetNext rule.

EndBCast
n.isEmpty()

Next
toAN

Capsule

capsule

n

names

AN

n

names

v
inBroadCast

false
inBroadCast

Fig. 17. EndBCast rule.

4.3 Providing service to a received capsule

After the sending of a capsule in unicast or broadcast mode, the basic behavior of

the proposed architecture involves the reception of a capsule by an AN. When a capsule
arrives at an AN, it requests the service necessary to handle it, as presented in
AskForService rule in Fig. 18.

 14

AskForService
Continue

toCapsule

s

req_service

AN

locationdest
GetService

to

Capsule

s

req_service

AN

locationdest

s

service_id

capsule

Fig. 18. AskForService rule.

In this situation, two things could happen: i) the AN currently owns an instance of
the service needed to handle the received capsule; ii) the AN does not owns an instance
of the required service and the capsule cannot be handled. In the first case, the AN
simply provide the necessary service to the capsule obtaining a reference to the local
instance of the service (FindService rule in Fig. 19) and forwarding this reference to the
capsule (ProvideService rule in Fig. 20). Service and capsule can then interact directly.
The way this interaction occurs is specific of each type of service and it is conceived
together with its associated capsules. Fig. 21 presents a rule scheme to this interaction.

FindService
GetService

toAN

Capsule

capsule

s

services

local_ns

id

service_id
s.isInList(id)

NS

Resolve
to

AN

NS

local_ns

Capsule

capsule

obj_req

s
services

id
obj_name

“RESOLVE”

type_op
2

typean

Fig. 19. FindService rule.

ProvideService
Service

to

AN

Capsule

Reference
to

AN

Capsule

capsule

n
obj_name

“RESOLVE”

type_op

2

type

Service

obj_ref

Service

s
an

Fig. 20. ProvideService rule.

 15

SendToService

Service
toCapsule

Service

s

Data

to

Capsule

Service

capsule

Fig. 21. SendToService rule scheme.

If the service cannot be provided, the AN must request an instance of the required
service from a known code base (CB). The identification of the requested service is
added to the pending list. This situation is illustrated in Fig. 22 in RequestService rule.

RequestService
GetService

toAN

Capsule

capsule

s

services

code_base

CB
id

service_id

p

pending

(not s.isInList(id))
 and
(not p.isInList(id))

ServiceReq

to

AN

Capsule

capsule

s

services

code_base

CB
id

service_id

p.add(id)

pending

host

Fig. 22. Request Service rule.

The AN then verifies whether the required service is in its list of services or not.
The pending attribute is a list of already requested services, i.e., a list of requests for
services awaiting an answer from the CB. If the pending list contains the identification
of the required service, the GetService message is ignored for a while and it will be
handled once the instance of the service is installed. In the situation represented in
RequestService rule (Fig. 22), the identification of the requested service is not in the list
of services and is not in the pending list either. So, the AN forwards a service request to
the known CB. In Fig. 23 we can see the rule applied whenever a CB receives a
ServiceReq message from an AN.

GetService
Reference

ServiceReq
toCB

Capsule

capsule

AN

hostlocal_ns

service_id

id

NS

Resolve
to

CB

Capsule

capsule

AN

an
obj_
name

idNS

local_ns

0
type

obj_req

“RESOLVE”

type_
op

l.isInList(id)

l list_of_
services

l list_of_
services

Fig. 23. GetSeviceReference rule.

 16

To find the required service, the CB sends a message to its local naming server
(NS) asking a reference to that service. The NS returns the reference to the service
through a Reference message as presented in Fig. 24.

ServiceReference
Reference

toCB

“RESOLVE”

Service

type_op

id
obj_name

obj_ref

0
type

Capsule

capsule

AN

an
Duplicate

to

CB

Service

code_base

Capsule

capsule

AN

host

Fig. 24. ServiceReference rule.

When a reference to the service is obtained, the CB asks the service to duplicate
itself. This way, the service copy can be sent to the AN and the original service can be
saved for future requests. The service duplication is done creating a new instance of the
service and copying the internal state of the original service to the copy (see Fig. 25).
So, the copy has the same internal state of the original instance of the service.

CloneService
Duplicate

toService

Capsule

capsule

AN2

host

AN
location

service_
id

id CB

code_base

GetClone

to

Service

Capsule

AN2

host

AN

location

service_
id

id CB

capsule

Service2

service

Init
to

id
service_id

Fig. 25. CloneService rule scheme.

The service copy is returned to the CB through a GetClone message. After
receiving the new service instance, the CB forwards it to the AN. This is illustrated in
Fig. 26.

MoveService
GetClone

toCB

Service

service

Capsule

capsule

AN

host
SendServiceCB

Service

Capsule

capsule

AN

host

to

Fig. 26. MoveService rule.

The service instance then moves itself to the destination AN (Fig. 27).

 17

GoService
SendService

toService

Capsule2

capsule

AN2

host

AN

location

Capsule

capsule

Move
to

Service

Capsule2

AN2

dest

AN

location

Capsule

capsule

comp

Fig. 27. GoService rule.

As soon as the service arrives at the AN, it requests its installation (Fig 28).

RequestInstallation
Continue

toService

id
service_id

AN

location
Install

to

Service

id
service_id

AN

location

Capsule

capsule

Capsule

capsule

capsule

id
service_id

service_agent

Fig. 28. RequestInstallation rule.

A service installation involves the addition of its the service identification to the
list of services, meaning the AN can now provide this service, and the registration of the
service in the local naming server, binding its service identification to the service
instance (Fig. 29). The service identification is removed from the pending list and a
reference to the service is sent to the capsule.

ServiceInstallation
p.isInList(id)Install

toAN

Capsule

capsule

s

services

local_ns

id

service_id

p

pending

NS Service

service_agent Bindto

AN

Capsule

s

s.add(id)

services

local_ns

id
obj_name

p.rem(id)

pending

NS

Serviceobj_ref

“BIND”

type_op

Service
to

Fig. 29. ServiceInstallation rule.

From now on the capsule interacts with the service according to the specific
application following the SendToService rule scheme already presented in Fig. 21.

5 Simulation and Execution of the Proposed Architecture

The simulator PLATUS [23] was developed using the Java language and it

supports the simulation of models described in OBGG. This simulator works with

 18

entities, which are the system components corresponding to the OBGG entities, and
messages, that are the means of communication between entities. A special module
called kernel is responsible for message delivery and for the global time control. The
mapping from OBGG entities specifications to simulation entities is straightforward.
Graphic tools are under development to allow the graphical creation of simulation
models and their automatic conversion to the corresponding simulation code.

An entity is basically modeled by an active object (a Java object with an internal
thread) where: attributes of the entity are mapped to attributes of the object; a message
buffer of this object is used to store the messages delivered by the kernel; and rules are
mapped to associated classes with functionality to: (i) test if a rule is enabled for an
entity, and (ii) apply the transformations stated by the rule on the entity. The internal
thread selects the rules enabled by messages in the input buffer and triggers their
application, respecting conflict situations and the non-deterministic behavior given by
Graph Grammars. The main advantage of using simulation is the possibility of testing
the system behavior and finding errors in the conception of the system before the
implementation.

In [10] a code generation scheme for applications specified in OBGG was
proposed. The code is generated to execute over a mobility support platform, allowing
the execution of the application in a real environment.

These tools developed in ForMOS project were used to test and execute the
proposed architecture. Two testing scenarios were specified, simulated and executed.
These testing scenarios are below presented.

5.1 Testing Scenario 1 – Providing service for a capsule

The first testing scenario considered a simple active network as presented in Fig.

30.

AN1(2) AN2(3) AN3(4)

AN4(5)

NS1 NS2 NS3

NS4

NS(1)

CB

1

1
“an2”“an1” “an3”

“an4”

s

s

s s

p

p

p

p

n n n

n

host_id
host_id host_id

host_id

names

names

names names

services services

services

services

pending

pending

pending

pending

local_ns local_ns local_ns

local_ns

ns

nsns

ns

2 3 4

5

locationlocation

location

location

Capsule

“s1”2

2
dest

orig

req_
servicelocation

Continue

to

code_
base

code_
base

code_
base

code_
base

5location

Fig. 30. Scenario for testing the active network architecture.

This scenario is presented as a simplified initial graph, showing 4 instances of
AN, each one with its local naming server. In node AN4, there are the global naming

 19

server, which stores information about the network (identifications of all AN and the
references to available services), and the code base. The scenario also includes a capsule
that passes through all the AN of the network and asks for the S1 service. The S1 service
is initially not available in any AN. This way, when the capsule arrives at each AN it
has to request the S1 service from the code base, install it and provide it to the capsule.
The simulation was useful to identify some errors in the specification of the architecture
and correct them.

Once the simulation demonstrated that the behaviour was correct (the architecture
behaves as desired), it was possible to generate code for this scenario using the scheme
proposed in [10] and execute it over Voyager platform [24]. The tests were done using 4
different real nodes (machines), each one hosting an AN and a naming server. The
capsule starts at AN1 and follows its way through the other nodes until it got to AN4.
The execution of the scenario showed that the proposed architecture works quite well,
taking profit of the mobility of its components.

This scenario was small and simple, conceived only to test the architecture and
analyze its behaviour.

5.2 Testing Scenario 2 – Routing in the active network

The second testing scenario was much more complex than the first one. This

scenario involved the specification, simulation and execution of the Dynamic Source
Routing (DSR) Algorithm over the active network architecture. The DSR [25] was
developed to route packets between nodes of an ad hoc network. An ad hoc network
[26] is a type of mobile network (nodes do not have physical connection with each
other), where nodes are able to change information directly. Therefore, nodes are not
connected with a base station, which controls the communication between them,
differently of what occurs in the case of cellular phones. In an ad hoc network any node
can work as a router, forwarding packets received from other nodes to their destination
nodes.

The DSR is, as the name indicates, a source routing algorithm, i.e., the path
through the network that a packet must follow from the origin to the destination node is
determined before the packet is sent in the origin. In contrast to other routing
algorithms, DSR does not generate periodical messages to update routing information.
This means less traffic in the network and saving of battery energy of mobile devices.
Although, this algorithm is recommended only to be used in small networks, containing
from 5 to 10 nodes.

5.2.1 DSR Mechanisms

The algorithm is composed by 2 mechanisms: the Route Discovery and the Route

Maintenance.

5.2.1.1 Route Discovery

Route Discovery is the mechanism used by a node to dynamically discover a route

to a destination node. It is used whenever a node does not know any route to the
destination node of a packet. Discovered routes are stored in a route cache (RC). Many
routes to the same destination node can be cached.

According to the mechanism of Route Discovery, when a source node S wants to
send a packet to a destination node D, it verifies the existence of route to D in its RC. If

 20

there exists a cached route to D, the packet is sent following this path. Otherwise, node
S starts the route discovery process broadcasting a route request (RReq) packet. This
packet contains the identification of the source node, the identification of the target node
(node to which a route is requested) and a list of visited nodes (initially, containing only
the source node).

When a node receives an RReq, it follows the steps below presented:
1. If this node is the target of the request then: it generates a route reply (RRep)

packet containing the list of nodes visited by the RReq, what composes the
complete route from the source to the target node. The RRep is forwarded to
the node that has originated the RReq. The RRep can be forwarded by three
ways: through a route to the source node stored in the CR of the target node;
through a route discovered by the target node performing a new route
discovery process; or sending the response through the reverse path, according
to the list of visited nodes present in the RReq;

2. If the nodes is not the target node then
2.1 if the node identification is already in the list of visited nodes of the

received RReq, the node ignores the request once it has already been
received before;

2.2. if the node identification is not in the list of visited nodes of the received
RReq, the node verifies if it has a route to the target node in its CR
2.2.1. if it has a route to the target node in its CR, it generates a RRep to

the source node, adding the route found in the CR to the list of
visited nodes of the received RReq, and sends the response to the
source route;

2.2.2. if it does not have a route to the target node in its CR, the node
adds its identification to the list of visited nodes of the received
RReq and broadcasts it to the next known nodes.

Each node also maintains a recent requests list (RRL) containing the identification

of all requests recently received. This way, every time a request is received, the node
verifies if it that request has already been received. If the request is in the RRL, the node
does not forward it. This action prevents a flooding of repeated requests in the network.

When a node receives an RRep, it acts according to the following steps:
1. If the node is the destination of the response then it adds the route present in

the RResp to its CR and sends its packets to the target node through this route;
2. If the node is not the destination of the response, it adds the route to be

followed by the RRep from this node to the source node to its CR and uses it
to forward the response to the next node in the route.

When a node receives a data packet and verifies it is the destination of the packet,

it forwards the packet to the respective application. In the case that the node is not the
destination one, it forwards the packet to the next node in the route of the data packet.

Packets awaiting a route to be sent through are stored in a buffer in the source
node. Once a route is discovered, the packets destinated to the target node of this route
are removed from the buffer and sent to their destination.

Timers control the CR and the RRL entries. The timers are used to determine the
validity of an entry. This way, after some time, an entry is set invalid. In the case of a
CR entry, it means that the route stored in the entry must be rediscovered. A timer also
controls the validity of the packets waiting to be sent. This prevents the packets from
waiting forever for a route.

 21

5.2.1.2 Route Maintenance

Route Maintenance is the mechanism used to detect changes in the network

topology. Changes in the network topology mean that some known routes become
invalid or new routes are available.

All packets forwarded from a node to another must have its reception confirmed
by the destination node. This confirmation is done sending an acknowledgment packet.
Each data packet that must be sent or forward to another node is copied to a
retransmission buffer in the source node. If no confirmation is received after a given
interval of time, the source node retransmits the packet using the data present in the
retransmission buffer. The packet retransmission is repeated a given number of times if
no confirmation is received. Once the determined number of retransmission retries is
achieved, the node considers that the link to the destination node is inactive. If this
happens, the node generates a route error packet (RErr). The RErr is sent through the
reverse route to inform the already visited nodes that this route is down. Each node that
receives the RErr removes all routes in its CR that include the inactive link. When the
source node receives the RErr, it can try an alternative known route to the same
destination node or start a Route Discovery process to find another route.

As could be seen in the explanation of the DSR mechanisms, they are just used on

demand, i.e., they are only initiated whenever it is necessary. Therefore, the network
traffic caused by routing information is reduced.

5.2.2 Results

The DSR algorithm was specified using OBGG formalism. The specified entities

were the route request packet, the route reply packet, the route error packet, the data
packet and the DSR service. The packets were mapped to capsules of the active network
and the DSR service was mapped to an active network service. This way, the packets
are transferred through the nodes of the network and each node provides the DSR
service to handle this DSR packets. This specification was then mapped to simulation
code.

The tests with the DSR algorithm working over the active network architecture
were done using the logical topology presented in Fig. 31.

N 1

N 2

N 3

N 4

N 5

N 6

N 7

N 8

N 9 N 10

Fig. 31. Topology used to test the DSR algorithm.

 22

The 10 nodes involved in the topology were active nodes. Besides these 10 nodes,
a node N0 was created to host the network code base. The node N0 did not send or
receive any DSR packets, so it was totally dedicated to the reception of requests to the
code base. The node N0 also hosted the global naming server. This naming server
owned the list of all services available in the network. As we were considering the
execution of the DSR algorithm, the only available service was the DSR service. An
instance of this service was created in node N0 when the application was started. No
other node initially owned this service, so when a node received a DSR packet, it should
ask the code base for an instance of DSR service.

The tests were done using a data packets (capsules) that must be routed through
the network from each node to other three nodes. The logical topology created allowed
to test the main situations handled by the DSR algorithm, such as reception of repeated
requests, reception of multiple routes to the same destination, treatment of route replies,
forwarding of packets, among others. Another type of test involved the initialization of
the CR of some nodes with some known routes. Hence, it was possible to test if the
node would really forward a known route from its CR if it receives a request for this
route. This reduced the time spent by a node to obtain a route to some destinations, once
it was not necessary to wait the request to arrive at the destination node e return to the
source node; the answer to the request was provided by a intermediate node.

The discussed tests were initially done using the simulator, allowing the
improvement of the DSR algorithm specification through the correction of some errors
encountered during simulation. After this phase, the specification was mapped to
execution code through the mapping proposed in [10] and the real execution of the
scenario occurred. It firstly involved the execution of all nodes in the same machine.
Considering that the behavior of the execution was coherent to the specification and to
the simulation, next tests were done executing the nodes distributed in 4 different
machines and having multiple capsules to be routed. All capsules were successfully
routed to their destinations and the nodes behaved as expected.

6 Final Remarks

This case study contributed to attest the validity of the tools developed in

ForMOS project. The realization of this application using the support provided by the
formal specification language, the simulator and the code generation mapping proved
their usefulness.

The OBGG formalism has, as any other formal method, some deficiencies and
restrictions that sometimes difficult its use. A characteristic that could be inserted in the
formalism is a way to create an hierarchy of entities, i.e., to make it possible to use a
previous specification of an entity and extend it with a new particular behavior,
generating a new entity that extends the behavior of its predecessor. This way, it would
be simpler to specify a DSR packet, for example, representing it as an extension to a
capsule. At the formalism current state, this can only be represented rewritting the
already specified behavior for a capsule to describe the behavior of a DSR packet,
adding the other specific rules. In despite of this problem and others encountered during
this case study, the formalism demonstrated to be intuitive, mainly because its graphical
representation. Some patterns to this graphical representation have been followed to
make it clearer, such as the definition of elements positions. An OBGG graphical editor
is being developed to facilitate the use of this formalism.

 23

The simulator demonstrated to be a very valuable tool. It contributed to certify the
correctness of the specification. Some errors could be identified and corrected during
the simulation phase. Such errors would not be easily found when executing the case
study in a real environment. The simulator also provides a simulation time control that
can be used to test the performance of a scenario. So, the latency of network links can
be represented, for instance, allowing obtaining some kind of measurements.

The code generation is very useful once it is not easy to map a formal
specification to code. The mapping provided in ForMOS is important not only because
it facilitates the code generation for a specification in OBGG, but also because it has
indicated to be coherent to the formalism. The coherency to the formalism means that
the generated code assumes the same behaviour specified in OBGG. Efforts have been
invested to create an automatic code generator. This code generator would be
incorporated to the OBGG editor already commented and it would allow generating the
code for a specification created using the editor.

Besides the contribution to the evaluation of the ForMOS tools, the case study
also contributed to test the utilization of mobile components to compose an active
network architecture and to implement a routing algorithm. The use of mobility gave the
architecture the flexibility and the dynamics demanded by active networks. The
architecture as conceived allows the easy incorporation of new services. This
characteristic could be seen in the inclusion of the DSR service, since no modification
was necessary to incorporate the capsules and the service needed to the execution of
such routing algorithm. Multiple routing algorithms could execute simultaneously over
the same architecture without the necessity of altering the architecture structure.

7 References

[1] FUGGETA, A., PICCO, G., VIGNA, G. Understanding Code Mobility,
Transactions On Software Engineering, IEEE, vol. 24, 1998, pp. 342-361.
Disponível em na Internet em http://swarm.cs.wustl.edu/~picco/listpub.html

[2] YEMINI, Y., SILVA, S. Towards Programmable Networks. In Proc. IFIP/IEEE

International Workshop on Distributed Systems, Operations and
Management, L’Aquila, Italy, 1996.

[3] WHITE, J. E. Telescript Technology: The Foundation For The Electronic

Marketplace. Technical Report General Magic, Inc., White Paper, 1994.

[4] MAGEDANZ, T., ECKARDT, T. Mobile Software Agents: A New Paradigm

for Telecommunications Management. In Proceedings of the IEEE/IFIP
Network Operations and Management Symposium (NOMS), Kyoto, Japan,
1996.

[5] SMITH, J. M. et al. Activating Networks: A Progress Report. IEEE, 1999.

[6] CAI, T., GLOOR, P., NOG, S. Dataflow: A Workflow Management System On

The Web Using Transportable Agents. Technical Report TR96-283, Dept. of
Computer Science, Dartmouth College, Hanover, NH, 1996.

 24

[7] DOTTI, F. L., RIBEIRO, L. Specification of Mobile Code Systems Using Graph
Grammars. Formal Methods for Open Object-Based Distributed Systems IV,
Kluwer Academic Publishers, Stanford, USA, 2000. p. 45-63.

[8] DOTTI, F. L., DUARTE, L. M., SILVA, F. M. A., ANDRADE, A. M. S. A

Framework for Supporting the Development of Correct Mobile Applications
Based on Graph Grammars. Submitted to the IDPT 2002.

[9] EHRIG, H. Introduction to the Algebraic Theory of Graph Grammars. In 1st

Graph Grammar Workshop, Lecture Notes in Computer Science 73 (V.Claus,
H. Ehrig and G. Rozenberg eds.), Springer Verlag, 1979, p. 1-69.

[10] DUARTE, L. M. Desenvolvimento de Sistemas Distribuídos com Código Móvel

a partir de Especificação Formal. M.Sc. Thesis, Programa de Pós-Graduação
em Ciência da Computação, Faculdade de Informática, PUCRS, Brasil, 2002,
146 f.

[11] PSOUNIS, K. Active Networks: Applications, Security, Safety and Architectures.

IEEE Communications Surveys, 1999.

[12] SCHWARTZ, B., ZHOU, W., JACKSON, A. W. Smart Packets For Active

Networks. BBN Technologies, 1998.

[13] WETHERALL, D. J., TENNENHOUSE, D. L. The ACTIVE_IP Option. In the

7th ACM SIGOPS European Workshop, Connemara, Ireland, 1996.

[14] DECASPER, D., PLATTNER, B. DAN: Distributed Code Cashing For Active

Networks. In Proceedings of the IEEE INFOCOM’98, San Francisco, USA,
1998.

[15] WETHERALL, D. J., GUTTAG, J. V., TENNENHOUSE, D. L. ANTS: A

Toolkit For Building and Dynamically Deploying Network Protocol. In
Proc. IEEE OPENARCH’98, 1998.

[16] GUNTER, C. A., NETTLES, S. M., SMITH, J. M. The SwitchWare Active

Network Architecture. IEEE Network, Special Issue on Active and
Programmable Networks, v. 12, n. 3, 1998.

[17] YEMINI, Y., SILVA, S. Towards Programmable Networks. In Proc. IFIP/IEEE

International Workshop on Distributed Systems, Operations and
Management, L’Aquila, Italy, 1996.

[18] YEMINI, Y., GOLDSZMIDT, YEMINI, S. Network Management by

Delegation, Integrated Network Management II. I. Krishnan and W. Zimmer,
Eds., North-Holland, 1991, p. 95-107.

[19] BHATTARCHARJEE, S., CALVERT, K. L., ZEGURA, E. W. On Active

Networking and Congestion. Technical Report GIT-CC-96/02, 1996.

 25

[20] LEHMAN, L. H., GARLAND, S. J., TENNENHOUSE, D. L. Active Reliable
Multicast. In Proc. IEEE INFOCOM’98, San Francisco, CA, 1998.

[21] BHATTARCHARJEE, S., CALVERT, K. L., ZEGURA, E. W. Self-Organizing

Wide-Area Network Caches, In Proc. IEEE INFOCOM’98, San Francisco,
CA, 1998.

[22] RÖDEL, E. T. Especificação Formal de Aplicações Móveis: Estudo Comparativo

e Métodos de Aplicação no Projeto ForMOS. Trabalho Individual I,
Programa de Pós-Graduação em Ciência da Computação – Mestrado,
PUCRS, 2001. 58 f.

[23] COPSTEIN, B., MÓRA, M. C., RIBEIRO, L. An Environment for Formal

Modelling and Simulation of Control Systems. In Proceedings of 33rd
Annual Simulation Symposium, SCS, 2000. p.74-82.

[24] OBJECTSPACE. Voyager ORB 4.0 Developer Guide. ObjectSpace, Inc. 2000.

[25] JOHSON, D. B., MALTZ, D. A., HU, Y., et al. The Dynamic Source Routing

Protocol for Mobile Ad Hoc Networks (Internet Draft), MANET Working
Group, IETF, 2001, 60 p.

[26] CÂMARA, D., LOUREIRO, A. A. F. Roteamento em Redes Móveis Ad Hoc. In

I Workshop de Comunicação Sem Fio, Minicurso 4, Belo Horizonte, Brasil,
1999, p. 14-15.

