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1 Introduction 
 
The continuous growth in processing and communication capabilities led to 

massive distributed computational environments, e.g. the Internet. These environments 
are often called open environments, being characterized by: massive geographical 
distribution; high dynamics (appearance of new nodes and services); no global control; 
partial failures; lack of security; and high heterogeneity. Building distributed 
applications for such environments is a complex task. Research efforts have been 
directed to manage this complexity through the development of new paradigms, theories 
and technologies for distributed applications. Within this context, code mobility [1] has 
received special attention due to its flexibility and potential use in various application 
fields, e.g. network management [2], electronic commerce [3], distributed information 
retrieval [1], advanced telecommunication services [4], active networks [5], and 
workflow management systems [6].  

One of the objectives of the ForMOS project (Formal Methods for Mobile 
Applications in Open Environments) is to create a framework to support the 
development of mobile applications. The innovative aspect of the framework is the use 
of Object-Based Graph Grammars (OBGG) [7] as the underlying unifying formal 
method for a set of integrated tools [8]. OBGG is a restricted version of Graph 
Grammars [9] that includes object-based concepts as encapsulation and communication 
through message passing. Each one of the tools developed in the ForMOS project 
supports a way of addressing the generation of correct mobile applications. The 
framework encompasses, by now, a formal specification language, a simulation tool and 
a mapping scheme to generate code from OBGG specifications.  

In this report is presented the active network architecture developed as a case 
study during the work presented in [10]. This architecture was modeled with the OBGG 
language, what made it possible to simulate its behavior as well as to generate code for 
it using the tools developed in ForMOS project. The code was generated for a mobility 
support platform allowing the execution of the architecture in a real environment. 

The architecture considers the use of mobile agents to implement some of its 
elements. Mobile agents are mobile codes that are autonomous in the sense that they can 
migrate when it is necessary and to where they need. Because of this characteristic, 
mobile agents can be used to implement elements with execution independence and 
migration autonomy.  

This work is organized as follows: Section 2 presents the concepts involving 
active networks; Section 3 presents the active network architecture; Section 4 describes 
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the formal specification of the architecture; Section 5 discusses the simulation and 
execution results of two testing scenarios; and Section 6 contains the final remarks. 

 

2 Active Networks 
 
The traditional function of a network is to route packets from one node to another. 

Processing within the network occurs to provide routing, congestion control and quality 
of service (QoS) schemes. So, in traditional networks processing occurs in a static way, 
through predefined instructions used in the configuration of network devices. Because 
of this limited processing capacity, these networks can be regarded as passive networks. 
According to [11], some problems that can be identified considering passive networks 
are:  

– the difficulty of integrating new technologies and standards into the shared 
network infrastructure, demanding the substitution of devices or their 
reconfiguration by network administration;  

– poor performance due to redundant operations at several protocol layers;  
– the difficulty to accommodate new services in the existing architectural model.  
 
Recently, some applications that require computations within the network have 

emerged, such as firewalls, web proxies, multicast routers and mobile proxies, 
increasing the need for an architectural support for these computations. 

In order to overcome all the presented problems, the idea of active networks was 
proposed. Active networks [5] represent a new approach for network architectures. 
They are named active because the routers and switches in such networks can perform 
computations on user data flowing through them. Programs can also be dynamically 
inserted into the network nodes to configure them according to the needs of the 
applications in execution. This way, packets have the capacity of carrying not only data 
but also the code to be executed in remote nodes. Therefore, the user has the possibility 
of “programming” the network, providing the programs to be used by the routers and 
switches to execute their computations. In an active network the difference between 
network internal nodes (routers, switches, etc.) and user nodes is tenuous, since both are 
able to perform the same computations. Hence, the user can view the network as a part 
of his application and can adapt the network to obtain the best performance of his/her 
application.  

As presented in [11], there are three approaches for active networks architectures: 
• Active packets: Packets (here called capsules) flowing in the network carry 

code to be executed in the nodes where they pass through. Nodes have only 
the capacity of performing computations using the received codes. Some 
examples of this approach are Smart Packets [12] and Active IP Option [13]; 

• Active nodes: Packets carry only identifiers or references to predefined 
functions present in the nodes. So, packets carry the identification of what 
kind of function must be executed to process their data. Nodes own the codes 
of functions needed to process the data present in the packets, according to 
the identification provided by them. Examples of this approach are DAN [14] 
and ANTS [15];  

• Active packets and nodes: This approach combines the other two presented 
approaches. Packets carry real and simple codes and nodes own more 
complex codes. This way, packets don’t carry a complex and large code, 
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which resides in the nodes. The simple code carried by the packets can be 
used to determine how their data must be processed or which function 
provided by the node must be used to process the data. Therefore, such 
architectures allow users to choose between the two other approaches 
according to their applications needs, i.e., this approach allows using either 
active packets or active nodes approach. As examples of this approach we can 
mention SwitchWare [16] e NetScript [17] architectures. 

 
Some known applications of active networks are network management [18], 

active congestion control [19], active multicast [20] and active caching [21]. 
 

3 An Active Network Architecture 
 
As said before, in [10] an architecture for active networks involving mobile 

components was created as a case study to test the tools developed in the ForMOS 
project. Such architecture, as designed, demands the intense use of mobility. This 
characteristic made the development of this case study very valuable to prove the 
usefulness and powerfulness of the implemented tools. Furthermore, representing active 
networks in terms of our formalism makes it possible to simulate, analyze and generate 
an implementation for it. Since active networks are a new area, there is a lack of 
simulation and analysis tools. Besides this, the existence of a way of mapping the 
specification to a programming language and to a mobility support platform prevents 
the occurrence of errors when one translates from the formalism to executable code. 
This helps in maintaining the correctness of the code according to the specification.  

The architecture considered is composed by capsules, active nodes, services, code 
bases and naming servers: 

- Active nodes are the nodes of the network and can send and receive capsules 
in unicast and broadcast modes. They provide services to the received 
capsules; 

- Capsules represent the packets transferred over the network. They can carry 
data and code. Each type of capsule is handled by a service;  

- A service is an entity that owns the code to be executed with the data of a 
specific type of capsule. Services execute in active nodes and determine what 
types of capsules can be handled in each active node; 

- A code base is an entity that maintains instances of services available in the 
network. It provides instances of services required to handle specific types of 
capsules to the active nodes; 

- A naming server is an entity that owns a list of all registered entities, 
associating a name to a reference to each entity. This way, a naming server 
provides the mapping of a name to an entity reference. It enables the 
communication between entities with location transparency. The naming 
server also contain the list of local services of an active node. 

 
This architecture follows the active nodes approach, according to the classification 

discussed in Section 2, once the capsules carry only the identification of the service it 
requires to process its data.  

Active nodes are static entities and capsules, services, code bases and naming 
servers are mobile entities. That is, all entities of the architecture, except the active 
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nodes, can change their location. In fact, only capsules and services take profit of 
mobility in the current state of the architecture. 

The basic behavior of the proposed active network architecture will be described 
in the next section, where the formal specification of this architecture is presented. 

 

4 Specification of the Proposed Architecture 
 
The specification of each entity in OBGG involves the definition of a type graph 

and a set of rules. The type graph of an entity presents its internal attributes, the 
messages it can handle and the messages it can send to other entities (messages are 
presented with their parameters).  

The type graph for an active node (AN) is depicted in Fig. 1. The active node is 
presented with its attributes on the left side. Each attribute is presented with its 
respective name and type. On the right side of the AN there are the messages the active 
node can receive from other entities. The parameters of each message are presented on 
the right side of it. On the right side of Fig. 1 are the messages an active node can send. 
The destination of each message is represented by a to arrow. The entities that behave as 
a static entity are represented by two concentric ellipses and mobile entities by a simple 
ellipse.  
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Fig. 1. Type graph for an active node. 

An AN is identified by a host id, which is used to communicate to other nodes. 
Each AN owns a reference to a code base from which it can require instances of 
services. The AN owns also a list of the local services presently available and a 
reference to a local naming server used to register the references to the local instances 
of the services and references to known nodes (nodes which the AN is connected to). 

The type graph for a capsule is presented in Fig. 2. 
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Fig. 2. Type graph for a capsule. 

A capsule has a reference to its origin node and to its destination node as well as 
to its current location. It also owns an attribute used to store the identification of the 
service required to handle this capsule. This way, the active node that receives this 
capsule must provide the defined service to process the data of the capsule. 

Fig. 3 depicts the type graph of a service.  
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Fig. 3. Type graph for a service. 

A service has an identification and stores the information of its current location 
and a reference to a capsule it must handle. 

The code base (CB) stores the list of all available services in the network and a 
reference to a local naming server that contains references to the services instances. 
Besides this, the CB owns the information of its current location. The type graph for a 
code base is presented in Fig. 4. 
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Fig. 4. Type graph for a code base. 

The type graph of the naming server (NS) will not be presented here. It is widely 
discussed in [22], presenting its basic behaviour. In this work it is just considered that 
the naming server is an entity that receives requests from other entities and maps names 
to references. 

As said in the beginning of this section, an OBGG entity is defined by a type 
graph and a set of rules. The set of rules associated to an entity defines its behavior. The 
application of rules successively changes the state of the system, starting from an initial 
state, called initial graph. The initial graph describes the entities involved in the system 
and the initial values of their attributes. An OBGG rule is composed by a left side, a 
right side and a condition. An OBGG rule is graphically represented as shown in Fig. 5. 

 

L RRuleName
[condition]

 
 

Fig. 5. Basic OBGG rule. 

A rule can be applied whenever the left side of the rule is a sub-graph of the 
current system state graph. That is, whenever the graph described in the left side of the 
rule is currently present in the system state graph, the rule is able to be applied. Besides 
this, a rule can demand another condition to be applied. This condition is described as a 
logical expression presented below the transition arrow. Since OBGG is as an object-
based formal language, the left side of a rule always must contain a message as a part of 
the graph. This message represents the message received by the entity that triggers the 
rule application. This defines that a rule in OBGG always handle a message. The 
condition associated to the rule is optional and can only consider values of the internal 
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attributes of the entity the rule belongs to and of the parameters of the message handled 
by the rule.  

If the left side of a rule occurs and the condition is satisfied, the rule is said 
enabled. An enabled rule is a rule that can be selected for application. Many rules may 
be applied in parallel, as long as they do not have write access to the same items of the 
state (even the same rule may be applied in parallel to itself, using different matches). 
Two (or more) enabled rules are in conflict if their matches need write access to 
common items. If rules conflict, the choice of which one of them will be applied is non-
deterministic.  

As commented before, the application of a rule must consume a message (the 
message handled by the rule). A rule, when applied, may also modify internal attributes 
of the entity that received the message and generate new messages to other entities or to 
itself. This way, an application of a rule brings the system to a new state. The right side 
of a rule determines the graph that represents this new state, i.e., the graph that is the 
result of the modifications that occur in the system graph when the rule is applied. The 
modifications that can occur when a rule is applied are:  

• Items in the left side that are not present in the right side of the rule are 
removed;  

• Items in the right side that are not present in the left side are created;  
• Items that are present in both sides of the rule are preserved.  
 
The basic behavior of the proposed architecture can be described by the rules 

associated to the involved entities (the system behavior is composed by the behavior of 
their entities and their interactions). The active nodes are the center of the architecture, 
so they can be used as a starting point to explain how does the architecture work. The 
active node (AN) executes three functions: sending capsules in unicast mode, sending 
capsules in broadcast mode and providing services to received capsules. 

 
4.1 Sending capsules in unicast mode 

 
The first and simpler function of an AN is sending capsules in unicast mode. This 

function is activated when the AN receives a SendMsg message, containing the capsule 
to be sent and the identification of the destination of capsule, as presented in 
SendMessage rule depicted in Fig. 6. 
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Fig. 6. SendMessage rule. 

The AN then sends a request to its local naming server to get a reference to the 
destination node. When the local naming server returns the requested reference 
(GetReference rule in Fig. 7), the AN sends a message to the capsule informing that it 
must go to the indicated node.  
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Fig. 7. GetReference rule. 

The reception of the message sent by the AN, causes the start of the capsule 
moving process (GoToHost rule in Fig. 8), which takes its way to the destination node. 
Whenever a capsule receives a Move Message, it sends a message to its current location 
(AN where it is at) asking to move to the destination node. The AN then sends a 
message to the destination node informing that the capsule wants to be received by it. 
According to some requirements that must be attended to receive the capsule1, the 
destination node sents back a message to the origin node informing whether it can 
receive the capsule or not. If the capsule can be received by the destination node, the 
origin node sends a message to the capsule informing it can move to the destination 
node. As soon as the capsules receives the accept of the destination node, it moves itself 
to its new location and change its internal information of current location, updating it to 
refer to the new node where it is at now. The origin node updates it internal state 
removing any reference to the capsule and the destination node updates its internal state 
adding the new capsule. After all these updates, the capsule continues its execution at 
the new node. The complete moving process specification is described in details in [10].  
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Fig. 8. GoToHost rule. 

 
4.2 Sending capsules in broadcast mode 

 
The second function of an AN is sending capsules in broadcast mode, i.e., sending 

copies of the same capsule to all known nodes. This function is activated when the AN 

                                                 
1 These requirements are specified for each type of capsule and they may include processing 

power, storage capacity, etc. that are needed to support the capsule execution. If we consider the use of 

identifications due to security needs, the identification of the capsule should be considered appropriate 

and secure to the destination node. 
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receives a SendBCast message, containing the capsule that must be sent. Because of 
some restrictions imposed in this specifications, an AN can only send capsule in 
broadcast at a time. The attribute inBroadCast is used to control if the AN is currently 
executing a broadcast or not (see SendBroadCast rule in Fig. 9).    
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Fig. 9. SendBroadCast rule. 

If the AN is not executing a broadcast when it receives a request to do it so, it asks 
the local naming server for a list of all known nodes. The list is returned by the naming 
server and is stored in the names attribute of the AN (see StartBroadCast rule in Fig. 
10). The AN then sends itself a message (StartBCast) to start the broadcast.  

 

StartBroadCast

AllRef
toAN

Capsule

capsule

n

names

v

names

StartBCast
toAN

Capsule

capsule

n

names

not n.isEmpty()

 
Fig. 10. StartBroadCast rule. 

This message causes the activation of the ResolveNextName rule (Fig. 11). The 
AN removes the first identification of the list of known nodes and send it to the naming 
server requesting a reference to this node.  
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Fig. 11. ResolveNextName rule. 

When the reference is received (CloneCapsule rule in Fig. 12), the AN send a 
message to the capsule that must be sent in broadcast, asking it to clone itself, and 
another message to itself to get the next identification of the list.   
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Fig. 12. CloneCapsule rule. 

The duplication of the capsule is necessary to generate copies of it to be sent to 
each node in the list. The duplication of a capsule occurs according to the CreateClone 
rule scheme (Fig. 13). A rule scheme is like a template of a rule, presenting the basic 
components of the rule. This means that each specific application can add other 
components if necessary. That is, considering the case of CreateClone rule, the Init 
message used to initialize a capsule could have other parameters besides the service_id 
that would be useful to a given application.  
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Fig. 13. CreateClone rule scheme. 

Once the copy of the capsule is created, it is initialized with the Init message (Fig. 
14) and a message containing a reference to the newly created capsule is sent to the AN 
that has requested the duplication.   
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Fig. 14. Initialize rule. 

As soon as the NewCapsule message is received by the AN, it sends a message to 
the capsule sending it to the destination node (SendToNext rule in Fig. 15). After this, 
the capsule moves to the destination as already commented in Section 4.1. 
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Fig. 15. SendToNext rule. 

While the list is not empty, the AN repeat the described process to send copies of 
the capsule (GetNext rule in Fig. 16). When the list is empty, the broadcast is finished 
(EndBCast rule in Fig. 17). 
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Fig. 16. GetNext rule. 
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Fig. 17. EndBCast rule. 

 
4.3 Providing service to a received capsule 

 
After the sending of a capsule in unicast or broadcast mode, the basic behavior of 

the proposed architecture involves the reception of a capsule by an AN. When a capsule 
arrives at an AN, it requests the service necessary to handle it, as presented in 
AskForService rule in Fig. 18. 
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Fig. 18. AskForService rule. 

In this situation, two things could happen: i) the AN currently owns an instance of 
the service needed to handle the received capsule; ii) the AN does not owns an instance 
of the required service and the capsule cannot be handled. In the first case, the AN 
simply provide the necessary service to the capsule obtaining a reference to the local 
instance of the service (FindService rule in Fig. 19) and forwarding this reference to the 
capsule (ProvideService rule in Fig. 20). Service and capsule can then interact directly. 
The way this interaction occurs is specific of each type of service and it is conceived 
together with its associated capsules. Fig. 21 presents a rule scheme to this interaction.  
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Fig. 19. FindService rule. 
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Fig. 20. ProvideService rule. 
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Fig. 21. SendToService rule scheme. 

If the service cannot be provided, the AN must request an instance of the required 
service from a known code base (CB). The identification of the requested service is 
added to the pending list. This situation is illustrated in Fig. 22 in RequestService rule. 
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Fig. 22. Request Service rule. 

The AN then verifies whether the required service is in its list of services or not. 
The pending attribute is a list of already requested services, i.e., a list of requests for 
services awaiting an answer from the CB. If the pending list contains the identification 
of the required service, the GetService message is ignored for a while and it will be 
handled once the instance of the service is installed. In the situation represented in 
RequestService rule (Fig. 22), the identification of the requested service is not in the list 
of services and is not in the pending list either. So, the AN forwards a service request to 
the known CB. In Fig. 23 we can see the rule applied whenever a CB receives a 
ServiceReq message from an AN.  

GetService
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service_id

id

NS

Resolve
to
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Capsule
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name

idNS

local_ns

0
type

obj_req

“RESOLVE”

type_
op

l.isInList(id)

l list_of_
services

l list_of_
services

Fig. 23. GetSeviceReference rule. 
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To find the required service, the CB sends a message to its local naming server 
(NS) asking a reference to that service. The NS returns the reference to the service 
through a Reference message as presented in Fig. 24. 

ServiceReference
Reference

toCB

“RESOLVE”

Service

type_op

id
obj_name

obj_ref

0
type

Capsule

capsule

AN

an
Duplicate

to

CB

Service

code_base

Capsule

capsule

AN

host

 
Fig. 24. ServiceReference rule. 

When a reference to the service is obtained, the CB asks the service to duplicate 
itself. This way, the service copy can be sent to the AN and the original service can be 
saved for future requests. The service duplication is done creating a new instance of the 
service and copying the internal state of the original service to the copy (see Fig. 25). 
So, the copy has the same internal state of the original instance of the service. 

 

CloneService
Duplicate

toService

Capsule

capsule

AN2

host

AN
location

service_
id

id CB

code_base

GetClone

to

Service

Capsule

AN2

host

AN

location

service_
id

id CB

capsule

Service2

service

Init
to

id
service_id

 
Fig. 25. CloneService rule scheme. 

The service copy is returned to the CB through a GetClone message. After 
receiving the new service instance, the CB forwards it to the AN. This is illustrated in 
Fig. 26. 

MoveService
GetClone

toCB

Service

service

Capsule

capsule

AN

host
SendServiceCB

Service

Capsule

capsule

AN

host

to

 
Fig. 26. MoveService rule. 

The service instance then moves itself to the destination AN (Fig. 27).  
 



 17

GoService
SendService

toService

Capsule2

capsule

AN2

host

AN

location

Capsule

capsule

Move
to

Service

Capsule2

AN2

dest

AN

location

Capsule

capsule

comp

 
Fig. 27. GoService rule. 

As soon as the service arrives at the AN, it requests its installation (Fig 28).  
 

RequestInstallation
Continue

toService

id
service_id

AN

location
Install

to

Service

id
service_id

AN

location

Capsule

capsule

Capsule

capsule

capsule

id
service_id

service_agent

 
Fig. 28. RequestInstallation rule. 

A service installation involves the addition of its the service identification to the 
list of services, meaning the AN can now provide this service, and the registration of the 
service in the local naming server, binding its service identification to the service 
instance (Fig. 29). The service identification is removed from the pending list and a 
reference to the service is sent to the capsule.  

ServiceInstallation
p.isInList(id)Install

toAN

Capsule

capsule

s

services

local_ns

id

service_id

p

pending

NS Service

service_agent Bindto

AN

Capsule

s

s.add(id)

services

local_ns

id
obj_name

p.rem(id)

pending

NS

Serviceobj_ref

“BIND”

type_op

Service
to

 
Fig. 29. ServiceInstallation rule. 

From now on the capsule interacts with the service according to the specific 
application following the SendToService rule scheme already presented in Fig. 21. 

 

5 Simulation and Execution of the Proposed Architecture 
 
The simulator PLATUS [23] was developed using the Java language and it 

supports the simulation of models described in OBGG. This simulator works with 
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entities, which are the system components corresponding to the OBGG entities, and 
messages, that are the means of communication between entities. A special module 
called kernel is responsible for message delivery and for the global time control. The 
mapping from OBGG entities specifications to simulation entities is straightforward. 
Graphic tools are under development to allow the graphical creation of simulation 
models and their automatic conversion to the corresponding simulation code.  

An entity is basically modeled by an active object (a Java object with an internal 
thread) where: attributes of the entity are mapped to attributes of the object; a message 
buffer of this object is used to store the messages delivered by the kernel; and rules are 
mapped to associated classes with functionality to: (i) test if a rule is enabled for an 
entity, and (ii) apply the transformations stated by the rule on the entity. The internal 
thread selects the rules enabled by messages in the input buffer and triggers their 
application, respecting conflict situations and the non-deterministic behavior given by 
Graph Grammars. The main advantage of using simulation is the possibility of testing 
the system behavior and finding errors in the conception of the system before the 
implementation. 

In [10] a code generation scheme for applications specified in OBGG was 
proposed. The code is generated to execute over a mobility support platform, allowing 
the execution of the application in a real environment. 

These tools developed in ForMOS project were used to test and execute the 
proposed architecture. Two testing scenarios were specified, simulated and executed. 
These testing scenarios are below presented. 

 
5.1 Testing Scenario 1 – Providing service for a capsule 

 
The first testing scenario considered a simple active network as presented in Fig. 

30. 
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Fig. 30. Scenario for testing the active network architecture. 

This scenario is presented as a simplified initial graph, showing 4 instances of 
AN, each one with its local naming server. In node AN4, there are the global naming 
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server, which stores information about the network (identifications of all AN and the 
references to available services), and the code base. The scenario also includes a capsule 
that passes through all the AN of the network and asks for the S1 service. The S1 service 
is initially not available in any AN. This way, when the capsule arrives at each AN it 
has to request the S1 service from the code base, install it and provide it to the capsule. 
The simulation was useful to identify some errors in the specification of the architecture 
and correct them.  

Once the simulation demonstrated that the behaviour was correct (the architecture 
behaves as desired), it was possible to generate code for this scenario using the scheme 
proposed in [10] and execute it over Voyager platform [24]. The tests were done using 4 
different real nodes (machines), each one hosting an AN and a naming server. The 
capsule starts at AN1 and follows its way through the other nodes until it got to AN4. 
The execution of the scenario showed that the proposed architecture works quite well, 
taking profit of the mobility of its components.  

This scenario was small and simple, conceived only to test the architecture and 
analyze its behaviour. 

 
5.2 Testing Scenario 2 – Routing in the active network 

 
The second testing scenario was much more complex than the first one. This 

scenario involved the specification, simulation and execution of the Dynamic Source 
Routing (DSR) Algorithm over the active network architecture. The DSR [25] was 
developed to route packets between nodes of an ad hoc network. An ad hoc network 
[26] is a type of mobile network (nodes do not have physical connection with each 
other), where nodes are able to change information directly. Therefore, nodes are not 
connected with a base station, which controls the communication between them, 
differently of what occurs in the case of cellular phones. In an ad hoc network any node 
can work as a router, forwarding packets received from other nodes to their destination 
nodes. 

The DSR is, as the name indicates, a source routing algorithm, i.e., the path 
through the network that a packet must follow from the origin to the destination node is 
determined before the packet is sent in the origin. In contrast to other routing 
algorithms, DSR does not generate periodical messages to update routing information. 
This means less traffic in the network and saving of battery energy of mobile devices. 
Although, this algorithm is recommended only to be used in small networks, containing 
from 5 to 10 nodes.   

 
5.2.1 DSR Mechanisms 

 
The algorithm is composed by 2 mechanisms: the Route Discovery and the Route 

Maintenance. 
 

5.2.1.1 Route Discovery 
 
Route Discovery is the mechanism used by a node to dynamically discover a route 

to a destination node. It is used whenever a node does not know any route to the 
destination node of a packet. Discovered routes are stored in a route cache (RC). Many 
routes to the same destination node can be cached. 

According to the mechanism of Route Discovery, when a source node S wants to 
send a packet to a destination node D, it verifies the existence of route to D in its RC. If 
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there exists a cached route to D, the packet is sent following this path. Otherwise, node 
S starts the route discovery process broadcasting a route request (RReq) packet. This 
packet contains the identification of the source node, the identification of the target node 
(node to which a route is requested) and a list of visited nodes (initially, containing only 
the source node).  

When a node receives an RReq, it follows the steps below presented: 
1. If this node is the target of the request then: it generates a route reply (RRep) 

packet containing the list of nodes visited by the RReq, what composes the 
complete route from the source to the target node. The RRep is forwarded to 
the node that has originated the RReq. The RRep can be forwarded by three 
ways: through a route to the source node stored in the CR of the target node; 
through a route discovered by the target node performing a new route 
discovery process; or sending the response through the reverse path, according 
to the list of visited nodes present in the RReq; 

2. If the nodes is not the target node then 
2.1 if the node identification is already in the list of visited nodes of the 

received RReq, the node ignores the request once it has already been 
received before; 

2.2. if the node identification is not in the list of visited nodes of the received 
RReq, the node verifies if it has a route to the target node in its CR 
2.2.1. if it has a route to the target node in its CR, it generates a RRep to 

the source node, adding the route found in the CR to the list of 
visited nodes of the received RReq, and sends the response to the 
source route; 

2.2.2. if it does not have a route to the target node in its CR, the node 
adds its identification to the list of visited nodes of the received 
RReq and broadcasts it to the next known nodes. 

 
Each node also maintains a recent requests list (RRL) containing the identification 

of all requests recently received. This way, every time a request is received, the node 
verifies if it that request has already been received. If the request is in the RRL, the node 
does not forward it. This action prevents a flooding of repeated requests in the network. 

When a node receives an RRep, it acts according to the following steps: 
1. If the node is the destination of the response then it adds the route present in 

the RResp to its CR and sends its packets to the target node through this route; 
2. If the node is not the destination of the response, it adds the route to be 

followed by the RRep from this node to the source node to its CR and uses it 
to forward the response to the next node in the route. 

  
When a node receives a data packet and verifies it is the destination of the packet, 

it forwards the packet to the respective application. In the case that the node is not the 
destination one, it forwards the packet to the next node in the route of the data packet. 

Packets awaiting a route to be sent through are stored in a buffer in the source 
node. Once a route is discovered, the packets destinated to the target node of this route 
are removed from the buffer and sent to their destination. 

Timers control the CR and the RRL entries. The timers are used to determine the 
validity of an entry. This way, after some time, an entry is set invalid. In the case of a 
CR entry, it means that the route stored in the entry must be rediscovered. A timer also 
controls the validity of the packets waiting to be sent. This prevents the packets from 
waiting forever for a route. 
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5.2.1.2 Route Maintenance 

 
Route Maintenance is the mechanism used to detect changes in the network 

topology. Changes in the network topology mean that some known routes become 
invalid or new routes are available.  

All packets forwarded from a node to another must have its reception confirmed 
by the destination node. This confirmation is done sending an acknowledgment packet. 
Each data packet that must be sent or forward to another node is copied to a 
retransmission buffer in the source node. If no confirmation is received after a given 
interval of time, the source node retransmits the packet using the data present in the 
retransmission buffer. The packet retransmission is repeated a given number of times if 
no confirmation is received. Once the determined number of retransmission retries is 
achieved, the node considers that the link to the destination node is inactive. If this 
happens, the node generates a route error packet (RErr). The RErr is sent through the 
reverse route to inform the already visited nodes that this route is down. Each node that 
receives the RErr removes all routes in its CR that include the inactive link. When the 
source node receives the RErr, it can try an alternative known route to the same 
destination node or start a Route Discovery process to find another route. 

 
As could be seen in the explanation of the DSR mechanisms, they are just used on 

demand, i.e., they are only initiated whenever it is necessary. Therefore, the network 
traffic caused by routing information is reduced. 

 
5.2.2 Results 

 
The DSR algorithm was specified using OBGG formalism. The specified entities 

were the route request packet, the route reply packet, the route error packet, the data 
packet and the DSR service. The packets were mapped to capsules of the active network 
and the DSR service was mapped to an active network service. This way, the packets 
are transferred through the nodes of the network and each node provides the DSR 
service to handle this DSR packets. This specification was then mapped to simulation 
code. 

The tests with the DSR algorithm working over the active network architecture 
were done using the logical topology presented in Fig. 31. 
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N 7

N 8

N 9 N 10

 
 

Fig. 31. Topology used to test the DSR algorithm. 
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The 10 nodes involved in the topology were active nodes. Besides these 10 nodes, 
a node N0 was created to host the network code base. The node N0 did not send or 
receive any DSR packets, so it was totally dedicated to the reception of requests to the 
code base. The node N0 also hosted the global naming server. This naming server 
owned the list of all services available in the network. As we were considering the 
execution of the DSR algorithm, the only available service was the DSR service. An 
instance of this service was created in node N0 when the application was started. No 
other node initially owned this service, so when a node received a DSR packet, it should 
ask the code base for an instance of DSR service. 

The tests were done using a data packets (capsules) that must be routed through 
the network from each node to other three nodes. The logical topology created allowed 
to test the main situations handled by the DSR algorithm, such as reception of repeated 
requests, reception of multiple routes to the same destination, treatment of route replies, 
forwarding of packets, among others. Another type of test involved the initialization of 
the CR of some nodes with some known routes. Hence, it was possible to test if the 
node would really forward a known route from its CR if it receives a request for this 
route. This reduced the time spent by a node to obtain a route to some destinations, once 
it was not necessary to wait the request to arrive at the destination node e return to the 
source node; the answer to the request was provided by a intermediate node.   

The discussed tests were initially done using the simulator, allowing the 
improvement of the DSR algorithm specification through the correction of some errors 
encountered during simulation. After this phase, the specification was mapped to 
execution code through the mapping proposed in [10] and the real execution of the 
scenario occurred. It firstly involved the execution of all nodes in the same machine. 
Considering that the behavior of the execution was coherent to the specification and to 
the simulation, next tests were done executing the nodes distributed in 4 different 
machines and having multiple capsules to be routed. All capsules were successfully 
routed to their destinations and the nodes behaved as expected. 

 

6 Final Remarks 
 
This case study contributed to attest the validity of the tools developed in 

ForMOS project. The realization of this application using the support provided by the 
formal specification language, the simulator and the code generation mapping proved 
their usefulness.  

The OBGG formalism has, as any other formal method, some deficiencies and 
restrictions that sometimes difficult its use. A characteristic that could be inserted in the 
formalism is a way to create an hierarchy of entities, i.e., to make it possible to use a 
previous specification of an entity and extend it with a new particular behavior, 
generating a new entity that extends the behavior of its predecessor. This way, it would 
be simpler to specify a DSR packet, for example, representing it as an extension to a 
capsule. At the formalism current state, this can only be represented rewritting the 
already specified behavior for a capsule to describe the behavior of a DSR packet, 
adding the other specific rules. In despite of this problem and others encountered during 
this case study, the formalism demonstrated to be intuitive, mainly because its graphical 
representation. Some patterns to this graphical representation have been followed to 
make it clearer, such as the definition of elements positions. An OBGG graphical editor 
is being developed to facilitate the use of this formalism. 
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The simulator demonstrated to be a very valuable tool. It contributed to certify the 
correctness of the specification. Some errors could be identified and corrected during 
the simulation phase. Such errors would not be easily found when executing the case 
study in a real environment. The simulator also provides a simulation time control that 
can be used to test the performance of a scenario. So, the latency of network links can 
be represented, for instance, allowing obtaining some kind of measurements.  

The code generation is very useful once it is not easy to map a formal 
specification to code. The mapping provided in ForMOS is important not only because 
it facilitates the code generation for a specification in OBGG, but also because it has 
indicated to be coherent to the formalism. The coherency to the formalism means that 
the generated code assumes the same behaviour specified in OBGG. Efforts have been 
invested to create an automatic code generator. This code generator would be 
incorporated to the OBGG editor already commented and it would allow generating the 
code for a specification created using the editor. 

Besides the contribution to the evaluation of the ForMOS tools, the case study 
also contributed to test the utilization of mobile components to compose an active 
network architecture and to implement a routing algorithm. The use of mobility gave the 
architecture the flexibility and the dynamics demanded by active networks. The 
architecture as conceived allows the easy incorporation of new services. This 
characteristic could be seen in the inclusion of the DSR service, since no modification 
was necessary to incorporate the capsules and the service needed to the execution of 
such routing algorithm. Multiple routing algorithms could execute simultaneously over 
the same architecture without the necessity of altering the architecture structure. 
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