
TPO++: An object-oriented message-passing library in C++
�

Tobias Grundmann, Marcus Ritt, Wolfgang Rosenstiel
Wilhelm-Schickard-Institut für Informatik,

University of Tübingen
Department of Computer Engineering

Sand 13, 72076 Tübingen�
grundman,ritt,rosen � @informatik.uni-tuebingen.de

Abstract

Message-passing is a well known approach for parallelizing
programs. The widely used standard MPI (Message passing
interface) also defines C++ bindings. Nevertheless, there is
a lack of integration of object-oriented concepts. In this pa-
per, we describe our design of TPO++1, an object-oriented
message-passing library written in C++ on top of MPI. Its
key features are easy transmission of objects, type-safety,
MPI-conformity and integration of the C++ Standard Tem-
plate Library.

Keywords: Object-orientation, C++, Message-passing, MPI, Sci-
entific computing

1 Introduction

With MPI, a widely accepted standard for parallelizing ap-
plications using message-passing has been established. At
the same time, object-oriented programming concepts gain
increased acceptance in scientific computing (see, for ex-
ample [1]).
In our project physicists are simulating astrophysical sys-
tems, e.g. the behavior of a gaseous disk around a compact
star. The problem reduces basically to the simulation of
complex particle systems with short-range interactions. To
handle the complexity of the software and ease the reuse
of components, like particle containers etc. the simulation
software is developed in C++ and parallelized using MPI.
The message-passing standard MPI defines C++ bindings
for all MPI interface functions. But these bindings provide
merely wrappers around MPI constructs and fit not well into

�
This project is funded by the DFG within SFB 382: Ver-

fahren und Algorithmen zur Simulation physikalischer Prozesse auf
Höchstleistungsrechnern (Methods and algorithms to simulate physical
processes on supercomputers).

1Tübingen Parallel Objects

object-oriented concepts. MPI provides no means for trans-
mitting objects. The STL (Standard Template Library) – an
important part of the current C++ standard [4] – is not con-
sidered. In the design of TPO++, we try to address these
problems.
In Section 2 we state our design goals for an object-oriented
implementation of a message-passing system in C++. Some
exsiting message-passing systems are reviewed and dis-
cussed in Section 3. We explain the implementation details
in Section 4 and introduce our system from a user’s view-
point in Section 5. Section 6 shows a comparison with MPI.

2 Design goals and problems

2.1 Design Goals

In this section we give an overview of the features we con-
sider to be most important in a modern message-passing
system designed for use with C++.

Object-orientation and type-safety A major goal in pro-
viding an object-oriented class library for message-passing
is a tight integration of object-oriented concepts, in partic-
ular the capability of transmitting objects in a simple, ef-
ficient and type-safe manner. The solution must not break
essential features like encapsulation and class inheritance.

C++ integration An implementation in C++ should take
into account all recent C++ features, like the usage of ex-
ceptions for error handling and, even more important, the
integration of the Standard Template Library by supporting
the STL containers as well as adopting the STL interface
conventions.

MPI conformity The design should conform to the MPI
interface, naming conventions and semantics as closely as
possible without violating object-oriented concepts. This

helps migrating from C bindings and eases porting of exist-
ing C or C++ code.

Efficiency The implementation should not differ much
from MPI in terms of communication and memory effi-
ciency. Therefore it should be as lightweight as possible,
allowing the C++ compiler to statically remove nearly all
of the interface overhead. Communication should be done
directly via MPI calls and, if feasible, with no additional
buffers, which saves memory and enables the underlying
MPI implementation to optimize the communication, for
example if the network hardware is able to send and receive
scattered memory blocks automatically.
For performance reasons we consider an implementation
which does not actually transmit type-information in mes-
sages and does also not handle different data-layouts on het-
erogeneous networks of workstations, since our intended
applications will run on homogeneous architectures like
massively parallel computers.

Thread safety Another goal is to guarantee thread-safety
to provide maximum flexibility for application software and
parallel runtime systems based on the library. This topic
will not be further discussed here since thread-safety is op-
tional in the MPI-Standard and depends mostly on the un-
derlying MPI-Implementation.

2.2 Problems

In an object-oriented message-passing system one would
ideally like to have a simple interface providing a single
send and a single receive method to which every object
could be passed in a type-safe manner and without hav-
ing the user to give any information about the objects to
be transmitted.
A first approach may be to use overloading. This works
for built-in types and known library types such as STL
containers. Obviously this cannot work for user-defined
types, since the user would have to overload methods of
our message-passing classes. A solution is to provide an
abstract base class from which the user types could inherit
marshalling methods. Then, overloading the send and re-
ceive methods with this base class and using virtual mar-
shalling methods to get data in and out of the user-defined
types would be possible. This is certainly an approach for
dynamic user-defined data structures. The drawback is the
additional overhead of virtual method calls and the need
for the user to specify serialize and deserialize methods for
each class. Even so, an abstract base class must be provided
to support applications, which rely on redefined methods in
derived classes. A particular method in such an application
will be defined in terms of a base class and may wish to
transmit its parameters. To enable the transmission of the

actual (derived) objects there is no way but to use virtual
methods.
It could be argued that external overloaded operators or
functions can achieve quite a lot of functionality without
the overhead of virtual methods. This clearly excludes the
above mentioned applications. Further, the user still has to
define marshalling methods even if the types to be transmit-
ted are trivial.

3 Existing approaches

This section discusses other message-passing systems writ-
ten in C++. We aim for massively parallel scientific com-
puting, therefore approaches intended for distributed com-
puting like CORBA are neglected. We do not discuss ad-
ditional functionality, besides message-passing, present in
some of these systems. The focus lies on the integration of
object-orientation, i.e. the way objects can be transmitted,
support of type safe programming, the integration of C++
concepts, in particular the support for STL datatypes, the
interface complexity and conformance to MPI semantics.
This is discussed in context of point-to-point communica-
tion.

3.1 MPI C++ bindings

The current MPI-2 standard [7, 8] defines C++ language
bindings for MPI-1 and MPI-2. The MPI library is encap-
sulated in a MPI namespace, which contains all symbolic
constants and some simple wrapper classes, representing
the MPI objects, most notably the communicator classes.
MPI++ [10] was an early implementation of the C++ bind-
ings for MPI.
Unfortunately these bindings are no significant improve-
ment compared to the C bindings. The interface is not type-
safe, makes no attempt to simplify the MPI calls and defines
no way for transmitting objects.

3.2 Mpi++

The mpi++ system [5, 6] proposes an interface to MPI with
messages as central point of view. A message object does
not only contain values to be sent but also specifies how to
send them. Messages are implemented as templates with
two arguments: The type of the actual value to be trans-
mitted and the communication semantics (e.g. blocking or
nonblocking). Thereby mpi++ introduces its own types for
basic C++ types, e.g. there is a type FLOAT to be used as
template parameter when a float is to be transmitted.
User-defined types are supported similar to plain MPI. The
data construction functions of MPI are implemented by
separate classes. For the transmission of user-defined ob-
jects, the template Struct has to be instantiated, which

2

takes the type of the object as a template parameter. To
make this work, the user has to provide the parameters of
MPI Type Struct2 (i.e. offset, length and basic type of
the class data members) as additional static members of the
class to be transmitted.
The concept of defining communication semantics only
once, when defining the type, corresponds to MPI persistent
communication. A possible disadvantage of this approach
is that Mpi++ provides no other way to express communica-
tion. If the communication parameters are not uniform this
creates overhead. Further it reduces code readability, since
semantic information is usually located far away (perhaps
in a header file) from its use.
The implementation of user-defined types does not sub-
stantially simplify the MPI datatypes interface. This ap-
proach also prohibits inheritance of type information, since
the static description types have to be built again for every
derived class.

3.3 OOMPI

The designers of OOMPI [11] concentrated on a “syn-
tactically and semantically consistent interface with MPI”.
OOMPI provides two major abstractions: Ports, which can
be seen as communication endpoints encapsulating MPI
ranks, and Messages, representing data to be transmitted.
Messages can be built explicitly but for basic datatypes and
arrays they are constructed automatically, when given as an
argument to send or receive calls. User-defined datatypes
are supported by inheriting from OOMPI User type and
must define a static OOMPI Datatype object representing
its type signature. This datatype object usually gets defined
in the constructor of the user-defined type.
While OOMPI allows to transmit objects, the approach
taken there has some problems: The requirement to inherit
from a special user-type class complicates the reuse of ex-
isting class-hierarchies, which must be achieved by multiple
inheritance. The code for building the type representation in
the constructor of an user-defined object cannot be inherited
and therefore must be duplicated in all child classes. Rep-
resenting user-defined types by static type descriptors also
makes it impossible to transmit any kind of dynamic data
structure. Thus the transmission of STL container classes is
not supported.

3.4 Para++

Para++ [2] focuses on providing a common interface for
different message-passing libraries (namely PVM [3] and
MPI). Its key features are I/O-facilities based on stream ob-
jects similar to standard C++ streams cin and cout. For

2A MPI type-constructor

parallel tasks, these streams provide nearly unified com-
munication mechanisms for point-to-point communication,
multicasting and broadcasting. There is no direct support
for user-defined objects, instead a user has to implement the
stream operators for new types.
Para++ misses the integration of STL datatypes. If collec-
tions of objects are to be transmitted, there is no way to
avoid iterating over each element in the collection, even if
it is just a simple array, which could be packed and sent
at once. Besides, while compatible to C++ standard I/O,
the interface is considerable different from MPI conventions
and semantics.

4 Implementation of TPO++

Our library was initially developed on a network of work-
stations running Solaris 2.7 and MPICH 1.1.2. The same
environment is used for development and testing of our ap-
plications. For production runs, the library has been tested
on a Cray T3E (512 nodes at 450 MHz) using the native
MPI implementation. It compiles with all recent versions
of GNU CC as well as KAI C++.
To solve the problems mentioned in Section 2.2 in a generic
way, we have to distinguish at least four different charac-
teristics of types, which are not mutual exclusive: User-
defined types versus built-in or predefined (library) types
and static versus dynamic sized types. Here we can treat
static sized types, which are scattered around in memory,
like dynamic ones, since both have no trivial copy construc-
tor and must be handled by marshalling functions. It is
worth noting that all these characteristics are in a particu-
lar way generic. They are not characteristics of single types
but characteristics of whole classes of types. One would like
to handle each of these classes with only minimal user as-
sistance. C++ unfortunately does not provide mechanisms
to analyze types in a programmed way at compile time, but
by using traits, this problem can be circumvented in a quite
elegant way.
The process of marshalling objects is shown in Figure 1
(simplified). Traits are used to determine the nature of the
objects to be serialized at compiletime. This way simple
objects are serializable without actually calling any extra
functions. This applies recursively to members of objects.

4.1 Distinguishing type characteristics with traits

The traits technique (first developed by Myers [9]), allows
to write generalized code, in which one does not generalize
over a type as in plain templates, but over particular char-
acteristics of types. Depending on such characteristics the
compiler may generate specialized code. The trick is to give
information about such characteristics not as another tem-
plate parameter, which may be annoying to the user who

3

object.serialize();

MPI_Send(...);

serializer.insert();

insert members

send(object);

Figure 1. Serialization in TPO++

is normally not interested in implementation details, but in-
stead by another template. This other template – the traits
template – can be used internally to gather specific infor-
mation about the actual template parameter. An example
may illustrate this. Suppose you wish to know if a type
supplied as a template argument is a container type. If you
have specialized traits templates for containers, you can get
this information and act accordingly in a type-safe manner
as shown in Figure 2. Note that the extra function calls
(do it()) can be easily removed by the compiler. This
applies also to the additional (empty) arguments to these
functions.
TPO++ is based on exactly one trait for a type-safe mapping
of arbitrary C++ types to MPI basic types. In contrast to
the simple yes/no differentiation in the example above this
trait maps all possible classes of types to appropriate mar-
shalling functions. For user-defined types these are either
user-provided or functions which use the trivial copy con-
structor mechanism, depending on the trait specialization.
All basic C++ types are marshalled with the trivial copy
constructor mechanism also. For STL containers our library
provides already the necessary specializations. Developers
can implement their own STL-compatible container types
by specializing the tpo traits construct. In this way,
containers can be transmitted, if their elements can be trans-
mitted, without additional code. The transmission of trivial
containers automatically gets optimized, e.g. for sending a
vector<double>we do not have to iterate over the com-
plete container.
Utilizing these trait, any type given to the top-level commu-
nication methods can be unambiguously broken down to a
sequence of basic types. Note that most of the reduction is
static, i.e. can be done at compile-time; therefore we can be
sure to preserve the efficiency of the underlying MPI imple-
mentation. This information is sufficient to pack the data
into a communication buffer or to create a MPI datatype for
transmission. For performance reasons, our current imple-

struct true_type {};
struct false_type {};

//default assumes parame-
ter is not a container
template <class T>
struct container_traits {

typedef false_type container_type;
};

//specialization for vec-
tor which is a container
template <class T1,class T2>
struct container_traits <vector<T1,T2> > {

typedef true_type container_type;
};

//specializations for other containers
//...

class X {
public:

template <class T>
void do_it (T& x) {

_do_it(x,
container_traits<T>::

container_type());
}

private:
template <class T>
void _do_it (T& x,true_type) {
//code to handle container
}

template <class T>
void _do_it (T& x,false_type) {
//code to handle all other types
}

};

Figure 2. Discrimination between a container
type and other types

4

mentation addresses only homogeneous architectures. Fur-
ther, no type information is actually transmitted. The mem-
ory blocks obtained by the reduction mechanism are trans-
mitted directly.
The type information gained from the reduction could be
used to build a MPI-datatype on the fly. If the optimiza-
tions for trivial copy constructors were omitted, this would
also generalize the implementation to heterogeneous archi-
tectures.

5 Interface and examples

The basic structure given in the C++ bindings of MPI is
similar to our approach. All common MPI objects, i.e.
communicators, groups, status, are implemented as separate
classes. The improvements can be found in the communica-
tion interface, the handling of user-defined classes and error
handling.
Startup is implemented by the initialization function
TPO::init(), which processes the command-line argu-
ments and starts the message-passing environment. Af-
ter initialization, the user can use the global Communica-
tor CommWorld. CommWorld is a predefined object of
typeTPO::Communicator and includes all participating
hosts. The shutdown is done automatically on destruction
of CommWorld, that is, after the application terminates.
For explicit shutdown, the function TPO::finalize()
is provided.

int main(int argc, char *argv[]) {
TPO::init(&argc, &argv);
// main code here
// implicit MPI_Finalize

}

Transmitting of predefined C++ types Predefined C++
types are library and basic types. In the case of sending a
C++ basic type, the send call reduces to:

double d;
CommWorld.send(d, dest_rank);

STL containers can be sent using the same overloaded com-
municator method. The STL conventions require two itera-
tors specifying begin and end of a range, which also allows
to send subranges of containers:

vector<double> vd;
CommWorld.send(vd.begin(),

vd.end(),
destination_rank);

The sender can provide a message tag as an additional ar-
gument to the send methods. If omitted, as in the example
above, it defaults to 0.

The application can also use the blocking, synchronous and
ready send modes defined in MPI by calling the communi-
cator methods bsend, ssend and rsend, respectively.
On the receiver side, the library is equally easy to use. For
basic datatypes a receive-call is done as follows:

Status status;
status=CommWorld.recv(d);

Note that the status object, different from MPI, is a return
parameter, because error handling is done via exceptions.
This simplifies the receiver code, if no error checking is
necessary and makes send and receive calls more symmet-
ric. The receive methods take two optional arguments, the
senders rank and a message tag for selecting particular mes-
sages. If omitted, they default to any sender and any tag,
respectively.
For receiving a container, a single argument, specifying the
insertion point is sufficient. Conforming to the STL inter-
face, the data can be received into a full container, where
the previous data will be overwritten. Receiving into an
empty container or at the end of a full container can be done
by means of an inserter, which allocates space for the new
data automatically, just like STL inserters. The next exam-
ple shows both approaches:

vector<double> vd1(x);
vector<double> vd2;

// vd1 must provide enough space
CommWorld.recv(vd1.begin());

CommWorld.recv(
tpo_back_insert_iterator(vd2));

Persistent and asynchronous communication For asyn-
chronous communication, the communicator class provides
asynchronous send methods isend, ibsend, issend
and irsend for all communication modes and an asyn-
chronous receive method irecv. They all return an ob-
ject of class Request. The application can wait or test for
the completion of the asynchronous communication using
its methods wait() and bool test(). The status of a
completed receive call can be obtained by calling status.
MPI also defines persistent communication calls, which
encapsulate the communication parameters and allows the
communication to be started multiple times using the same
arguments. This allows an implementation to optimize
communication locally. Persistent communication in MPI
is, by default, asynchronous.
In TPO++, persistent send and receive calls are imple-
mented in classes Persistent send and Persis-
tent recv. They are constructed by providing normal
send or receive parameters. Unlike in MPI, objects of these

5

classes can be given as a parameter to all send methods in
class Communicator, allowing blocking as well as asyn-
chronous persistent communication.

User-defined types To enable a class for network
transmission, the user has to specialize the template
tpo traits provided by our library. This template spec-
ifies its marshalling category. As a notational convenience
our library provides also short macros to perform the spe-
cialization.
For objects having a trivial copy constructor3, the mar-
shalling category can be set appropriately:

namespace TPO {
struct net_traits<User_type> {

typedef
has_trivial_copy_constructor

net_category;
};
}

Using a macro, this reduces to TPO TRIVIAL(User -
type). On transmission, the memory block occupied by
such an object will be copied directly to the net.
For transmitting complex objects (i.e. without a trivial copy
constructor), the user has to define the marshalling meth-
ods serialize and deserialize, as part of the class
definition. The presence of these methods must be signaled
by a marshalling category of type has serializer, or
in macro notation: TPO MARSHALL(User type). The
only argument of the marshalling methods is a Mes-
sage data object, provided by the library, used to mar-
shal the objects member data. The Message data class
provides insert and extract methods, whose arguments are
all kinds of transmittable types. In a serialize method, in-
sert() is called repeatedly for every member to prepare
the object for transmission. If a member is not inserted it
will not be transmitted just like transient variables in Java.
The Message data object does not copy the data, but
records its memory layout for later transmission. Similarly,
a received message can be unpacked to user-provided mem-
ory locations by calling extract in the deserialize method.
The code in Figure 3 and 4 implements two user-defined
classes, a class with a trivial copy constructor and a little
more complex one with marshalling methods. The Circle
class could also use a completly different kind of center - i.e.
one which has serialize and deserialize methods
itself - without changing its own marshalling methods. Note
that in this case both do not have to inherit from any special
“message” class. Also note, that the marshalling code given
in the serialize and deserialize methods can be
reused in derived classes without modifications. A subclass

3A trivial copy constructor implies a linear memory layout and allows
to copy the object with memcpy.

simply calls the marshalling methods of its base and adds
marshalling code for its own members.
For applications relying on virtual methods and generic in-
terfaces an abstract base class Message is also provided.
This means a user-defined class can also use the benefits of
a “real” object-oriented design, paying the usual prize of a
loss in performance.

class Point {
public:
Point() : x(0), y(0) {}

private:
int x, y;

};
TPO_TRIVIAL(Point);

Figure 3. User-defined object with trivial copy
constructor

class Circle {
public:
Circle() : radius(0.0) {

center = new Point(0.0);
}
˜Circle() { delete center;}
void
serialize(Message_data& m) const {

m.insert(*center);
m.insert(radius);

}
void
deserialize(Message_data& m) {

m.extract(*center);
m.extract(radius);

}
private:
Point* center;
double radius;

};
TPO_MARSHALL(Circle);

Figure 4. Dynamic user-defined object

Error handling In TPO++, error handling is completely
based on C++ exceptions, conforming to the MPI C++ bind-
ings. In particular, exceptions carry error information, for
example the error code and the faulting communicator. To
avoid excessive try-catch-blocks, the user can also define
global exception handlers. In contrast to the MPI C++ bind-
ings, where global error functions are used, TPO++ uses its
own class ErrorHandler, which can be specialized by

6

the application. In case of an error, the handle method
of the current error handler object is called with an excep-
tion. This approach makes the C++ exception mechanism
and global error handlers more similar.

6 Measurements

We compared the efficiency of our library on these plat-
forms using a simple ping test and measured the achieved
latencies and bandwidths of MPI and TPO. The difference
shows the loss in performance due to the abstraction.
Figure 5 shows our measurements on a 100 MBit LAN and
a Cray T3E. The measurement on the upper left shows,
that communication using TPO on a Cray T3E achieves the
same bandwidth as MPI for messages larger than approxi-
mately 16 KB. The loss in bandwidth below this size is a
constant factor of 2 and mainly due to the increased latency
shown on the right upper side. Latencies of MPI and TPO
converge as messages are getting larger. For small messages
up to approximately 16 KB, TPO shows a constant latency
overhead of �����	� compared to
���	� using MPI. The mea-
surements on the lower half show, that using a 100 MBit
LAN, the overhead introduced by TPO can be neglected.
Bandwidth and latencies are identical to MPI.

7 Summary

We have discussed our implementation of an object-
oriented message-passing system. Our system exploits
object-oriented and generic programming concepts, allows
the easy transmission of objects and makes use of advanced
C++ techniques and features as well as supporting these fea-
tures, most notably it supports STL datatypes. The system
introduces object-oriented techniques to message-passing
while preserving MPI semantics and naming conventions
as far as possible. This simplifies the transition from exist-
ing code. While providing a convenient user interface its
design is still type-safe and efficient. By abstracting over
type classes instead of concrete types it enables automatic
optimization. In contrast to other implementations the code
to marshall an object can be reused in derived classes. Also,
our library is able to handle arbitrary complex and dynamic
datatypes.
The library is designed as a base for parallelizing scien-
tific applications in an object-oriented environment. We
are working on extending the library interface for collective
communication.

References

[1] F. Bassetti, K. Davis, and B. Mohr, editors. Proceed-
ings of the Workshop on Parallel/High-Performance

100 102 104 106

Message size [B]

10−1

100

101

102

M
P

I B
an

dw
id

th
 [M

b/
s]

Bandwidth
CRAY T3E

100 102 104 106

Message size [B]

10−1

100

101

102

TP
O

 B
andw

idth [M
B

/s]

100 102 104 106

Message size [B]

10−4

10−3

M
P

I L
at

en
cy

 [s
]

Latency
CRAY T3E

100 102 104 106

Message size [B]

10−4

10−3

TP
O

 Latency [s]

100 102 104 106

Message size [B]

10−2

10−1

100

101

M
P

I B
an

dw
id

th
 [M

b/
s]

Bandwidth
100 MBit LAN

100 102 104 106

Message size [B]

10−2

10−1

100

101

TP
O

 B
andw

idth [M
B

/s]

100 102 104 106

Message size [B]

10−4

10−3

10−2

10−1

M
P

I L
at

en
cy

 [s
]

Latency
100 MBit LAN

100 102 104 106

Message size [B]

10−4

10−3

10−2

10−1

TP
O

 Latency [s]

Figure 5. Comparison of MPI (solid curves)
and TPO (dashed curves).

7

Object-Oriented Scientific Computing (POOSC’99),
European Conference on Object-Oriented Program-
ming (ECOOP’99), Technical Report FZJ-ZAM-
IB-9906. Forschungszentrum Jülich, Germany, June
1999.

[2] O. Coulaud and E. Dillon. Para++: C++ bindings for
message-passing libraries. Users guide. Technical re-
port, INRIA, 1995.

[3] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Mancheck, and V. Sunderam. PVM 3 User’s Guide
and Reference Manual. Oak Ridge National Labora-
tory, Tennessee, September 1994.

[4] International Standards Organization. Programming
languages – C++. ISO/IEC publication 14882:1998,
1998.

[5] D. Kafure and L. Huang. mpi++: A C++ language
binding for MPI. In Proceedings MPI developers con-
ference, Notre Dame, IN, June 1995.

[6] D. Kafure and L. Huang. Collective communication
and communicators in mpi++. Technical report, De-
partment of Computer Science Virginia Tech, 1996.

[7] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard. Technical Report CS-
94-230, Computer Science Department, University of
Tennessee, Knoxville, TN, May 1994.

[8] Message Passing Interface Forum. MPI-2: Extensions
to the Message-Passing Interface, July 1997.

[9] N. C. Myers. Traits: a new and useful template tech-
nique. C++ Report, June 1995.

[10] A. Skjellum, Z. Lu, P. V. Bangalore, and N. Doss.
Mpi++. In G. V. Wilson and P. Lu, editors, Parallel
Programming using C++, chapter 12, pages 465–506.
The MIT Press, Cambridge, 1996.

[11] J. M. Squyres, B. C. McCandless, and A. Lumsdaine.
Object Oriented MPI: A Class Library for the Mes-
sage Passing Interface. In Proceedings of the POOMA
conference, 1996.

8

