
A memetic algorithm for the weight setting problem in DEFT

Roger Reis∗, Marcus Ritt∗, Luciana S. Buriol∗, Mauricio G.C. Resende†

Abstract

To use interior gateway protocols like OSPF (Open
Shortest Path First, [6]), IS-IS (Intermediate System-
Intermediate System), and DEFT (Distributed
Exponentially-weighted Flow Splitting, [7]) it is
necessary to set the link weights to allow data routing.
The problem of finding suitable weights for these
protocols is known as the weight setting problem. Ex-
amples of objective functions are network congestion,
link utilization, and latency. In the literature we can
find a few papers describing methods to set the link
weights according to some protocol. In this paper
we present a new memetic algorithm which can be
applied to both the OSPF and DEFT protocols, study
its performance, and discuss future directions of this
work.

1 Introduction

The Internet is divided into many Autonomous Systems
(ASes). Each one controls its interior routing by an inte-
rior gateway protocol (IGP). Common interior gateway
protocols like open shortest path first (OSPF) or inter-
mediate system-intermediate system (IS-IS) allow the
operator to tune the routes by setting integer weights
on the network links. The problem of finding weights
which optimize some objective function, for example
total network congestion, link utilization, or latency, is
called theweight setting problem.

To optimize the use of all network capacity, an objec-
tive function and a set of constraints are introduced to
model the network. The problem of weight setting for
OSPF is shown to be NP-Hard in [4]. Among the best
results achieved for OSPF we refer to the tabu search
approach in [4] and the memetic algorithm (MA) in
[1]. In the following, we focus on the protocols OSPF

∗Instituto de Inforḿatica, Universidade Federal do Rio Grande do
Sul{rsreis,mrpritt,buriol}@inf.ufrgs.br

†Internet and Network Systems Research Center, AT&T Labs Re-
search mgcr@research.att.com

0 0.2 0.4 0.6 0.8 1 1.2
Link utilization fu,v/cu,v

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

C
os

t Φ

Figure 1: Link costΦ depending on the link utilization
for cu,v = 1.

and DEFT and show how the advances in computing
weights for OSPF compares to DEFT, both using a MA
approach.

Let G = (V,E) be a directed graph with link capaci-
tiescu,v, andD a demand matrix whereDij denotes the
traffic demand from source nodei to destination nodej,
for 1 ≤ i, j ≤ |V |. We defineT as the subset of nodes
T ⊆ V that comprises all the nodes that are destination
of at least one demand pair, i.e.

T = {v|Duv > 0}.

The routing problem is to find flowsfu,v which satisfy
all demands and minimize the total link utilization

minimize
∑

(u,v)∈E

Φ(fu,v, cu,v) (1)

whereΦ is a link cost function. A typical choice forΦ is
the piece-wise linear function shown in Figure 1 [4, 5].

Let f t
u,v be the flow on link(u, v) destined to nodet.

Then any resulting flow must respect the constraints of
flow conservation at intermediate nodesv 6= t

∑

(u,v)∈E

f t
u,v −

∑

(v,w)∈E

f t
v,w = Dv,t (2)

1

and the individual flow aggregation

fu,v =
∑

t∈T

f t
u,v. (3)

Since the objective function and all constraints are
linear, we can find an optimal solution by solving the
linear program OPT given by Eqs. 1, 2 and 3 together
with

0 ≤ f t
u,v, 0 ≤ fu,v. (4)

OPT has no routing restrictions and is not employed
in practice, but serves as a lower bound for practical
routing protocols.

The paper is organized as follows. In Section 2 we in-
troduce OSPF and DEFT, the two protocols that are of
interest in this paper. Next, in Section 3, we present the
MA proposed for the OSPF. In Section 4 we introduce
the modifications applied in the MA presented in the
previous section to allow it to implement DEFT rules.
The results of the proposed algorithm are summarized
in Section 5. Finally, Section 6 presents the main con-
clusions of this study, as well as future investigations on
it.

2 OSPF and DEFT Protocols

In OSPF the flow is determined using integer weights
wu,v ∈ [0, 216 − 1] on each link. The routers exchange
information about the links, including their weights.
Each routeru uses these weights to compute the short-
est paths to all destinations. It then distributes incoming
traffic destined to a nodet equally amongst all outgoing
links on shortest paths havingt as destination.

DEFT relaxes this constraint. It allows real weights
wu,v ∈ R and distributes the flow amongst all outgo-
ing links whose next node is closer to the destination.
Links which are not part of a shortest path receive a flow
which decreases with exponential penalties for longer
paths lengths. Formally, letdt

i be the distance from
nodei to destinationt, and letht

u,v = dt
v +wu,v−dt

u be
the distance gap of using the link(u, v) compared to the
shortest path. Then, the non-normalized traffic fraction
Γ for link (u, v), directed tot, is calculated as

Γ(ht
u,v) =

{

e−ht
u,v if dt

u > dt
v

0 otherwise
(5)

and the fraction of the total flow
Γ(ht

u,v)/
∑

v:(u,v)∈E Γ(ht
u,v) is calculated for each

outgoing link(u, v) of u. According to [7], in terms of
total link cost and maximum utilization, there always
exists a weight setting such that DEFT is better than
OSPF.

Finding such weights, on the other hand, i.e. solving
the weight setting problem optimally for these protocols
is difficult. For example, finding the weights minimiz-
ing link utilization in OSPF is NP-hard [4]. Therefore,
for OSPF, several authors have proposed heuristics so-
lutions, including genetic algorithms [3], memetic algo-
rithms [1], and tabu search [4, 5]. For DEFT, [7] pro-
posed a two-stage iterative method, based on non-linear,
non-smooth optimization.

3 A memetic algorithm for OSPF

In this section we describe the memetic algorithm pre-
viously proposed in the literature to solve the weight
setting problem for OSPF. More details can be found in
[1].

A memetic algorithm, also known as hybrid genetic
algorithm, is a genetic algorithm augmented with a lo-
cal search procedure to speed up the search by improv-
ing candidate solutions locally. In this context, a solu-
tion is called anindividual, each element of the solution
is agene, a set of individuals is called apopulation, and
each iteration of the algorithm is called ageneration.
It is a populational method in which, during each it-
eration, individuals are combined through a crossover
procedure for generating new individuals that will form
the next generation. The algorithm runs for a number of
generations, aiming to improve the quality of solutions
from one generation to the next. Each solution is evalu-
ated by an objective function that, in this problem, is to
minimize the network congestion.

In [3], a genetic algorithm is presented with struc-
tured population for OSPF routing. In this structure,
individuals are classified in three classes, according to
their fitness. ClassA is composed of the best25% of
the individuals, classC is composed by the 5% less
profitable solutions, and the remaining of the popula-
tion composes classB. The solutions from class A pass
directly to the next generation. The solutions from class
C are replaced by new ones randomly generated. The
remaining solutions are replaced by solutions generated
by the crossover procedure between a parent solution
from classA and another from setB ∪ C.

The crossover operator is a random key scheme that
prioritizes (given 70% of chances) genes originated

2

from parents in classA. A local search approach is
applied on each solution generated by a crossover op-
erator. The local improvement procedure examines the
effect of increasing the weights of a subset of the arcs.
These candidate arcs are selected among those with the
highest routing costs and whose weight is smaller than
the maximum allowed. To reduce the routing cost of
a candidate arc, the procedure attempts to increase its
weight to induce a reduction on its load. If this leads to
a reduction in the overall routing cost, the change is ac-
cepted, and the procedure is restarted. This procedure
executes consecutive solution evaluations, that are ex-
pensive computational operations in this problem. To
speed up this process, given a weight change, the short-
est path graphs, as well as the flow allocation, are only
updated, instead of recomputed from scratch.

The solution evaluation is the most expensive oper-
ation in terms of computational time. Given a set of
integer weights, a shortest path graphGt is computed,
as well as the routing (flow allocation), for each desti-
nation nodet ∈ T .

Next we discuss the modifications needed to consider
the DEFT protocol.

4 A memetic algorithm applying
DEFT rules

In this section we present the above mentioned memetic
algorithm modified for applying DEFT rules.

We maintained the whole memetic algorithm struc-
ture and operators described in the previous section,
only changing the evaluation procedure.

Recall that, following OSPF rules, the flow on each
node is evenly split among all shortest path links outgo-
ing this node with destination int. In DEFT, the load in
a nodeu is split amongall outgoing links(u, v) (and not
only the shortest path links) and that approachest, i.e.,
dt

u > dt
v. Moreover, the load split is not equal among

all links as it is in OSPF. DEFT applies an exponential
penalty to longer paths between origin-destination pairs
nodes such that more load is routed through links that
lead to shorter paths.

Figure 2 describes in pseudocode how DEFT rules
are implemented. As in OSPF, for each destination
nodet ∈ T we compute the reverse shortest path graph
Gt (lines 2-3). In lines 4-23 we detail the procedure
ComputePartialLoads that implements the DEFT
rules that allows flow be routed on non-shortest paths.

procedure CostEvalDEFT (w = w1, w2, . . . , w|V |)
1 for ∀ t ∈ T ;
2 d =ReverseDijkstra(t,w)
3 Gt = ComputeShortestPathGraph(w,d)
4 [ComputePartialLoads(d, Gt, D)]
5 H = sorted nodes in decreasing order of distances
6 for eachu ∈ H
7 Γtotal = 0
8 for eachv ∈ OUT (u)
9 if dt

u > dt
v then

10 ht
u,v = dt

v + wu,v − dt
u

11 Γtotal += e
−ht

u,v

12 endif
13 endfor
14 f = (Du,v +

P

(u,v)∈Gt ft
(u,v)) / Γtotal

15 for eacha ∈ OUT (u)
16 if dt

u > dt
v then

17 ht
u,v = dt

v + wu,v − dt
u

18 γ = e
−ht

u,v

19 ft
u,v = f ∗ γ

20 endif
21 endfor
22 endfor
23 [end of ComputePartialLoads]
24 for each(u, v) ∈ A fu,v+ = ft

u,v

25 endfor
26 Φ =

P

(u,v)∈E
φ(u, v)

end CostEvalDEFT.

Figure 2: Pseudocode describing solution evaluation for
DEFT

In line 5 we sort the nodes in decreasing order of their
distances tot. Nodes are analyzed one by one, from
the more distant to the closest. The loop in lines 8-13
calculates the sum (Γtotal) of the exponential function
(Equation 5) for each outgoing link of the current node.
We denote byOUT (u) = {v|(u, v) ∈ E} the set of
outgoing links of nodeu that are forwarding to the des-
tination node. In line 14, we calculate the fractionf of
demand (traversing and leaving the current node) byΓ.
So, in line 19, we can calculate the proportion of load
of each forward outgoing link, according to its value of
Γ.

In the loop in lines 15-21, for each outgoing link of
nodeu, the flow traversing the link is calculated accord-
ing to its proportion ofΓ. In line 24, the total load of
each arc is updated with the partial loads calculated for
destinations nodest ∈ T . Finally, in line 26, the fitness
value of the solution is computed.

The local search approach was also adapted. The dy-
namic shortest path graphs algorithm was used again,
while the routing was recomputed from scratch each
time there is a weight change in the graph. Time sav-
ings can be achieved with a dynamic version of the rout-
ing computation. Since under DEFT the traffic is split

3

Table 1: Instances used in computational experiments. The
two-level hierarchical are based on models of [2, 9]. The ran-
dom graphs have been generated using a fixed arc probability.

Instance Nodes Links Capacities
2-level hierarchy 50 148 200 and 1000
2-level hierarchy 50 212 200 and 1000
Random topology 50 228 all 1000
Random topology 50 245 all 1000

among all forwarding links, a larger part of the graph
is affected in comparison with OSPF. Thus, we believe
the gains in terms of time are smaller when using dy-
namic routing in DEFT than in OSPF. The local search
technique for OSPF described above has not been mod-
ified, i.e. the algorithm tries to reduce link congestion
increasing weights in integer steps. Observe that this is
not tuned for DEFT, which allows real weights, so the
local search can miss an optimum increase. In particu-
lar, integer differences in path lengths rapidly lead to a
negligible flow on that link. To counter this, we scale
the path lengths before computing the flows according
to the algorithm above.

5 Results

We have studied the performance our local search
memetic algorithm on four different synthetic networks,
each with seven different total demands. These are the
same instances used in [5, 7] to keep our results compa-
rable. Table 1 summarizes their characteristics.

We have run our memetic algorithm once with each
instance and total demand, using the following parame-
ters:

• Population size100.

• Weights interval[1, 20].

• 30 minutes of execution time.

• Probability of inheriting gene from elite parent
during crossover:0.7.

• Path scale factor0.55.

All experiments have been conducted on a Pentium
4 2.54 GHz with 512 MB RAM running Linux. The
results are shown in Figures 3 to 6. Each figure gives
two metrics of the solution quality, the optimality gap
in percent compared to the solution of OPT, described

2000 2500 3000 3500 4000 4500 5000
Sum of demands

0

5

10

15

20

25

30

35

O
pt

im
al

ity
 g

ap
 (

%
)

OSPF
DEFT (MA)
DEFT (NLP)

2000 2500 3000 3500 4000 4500 5000
Sum of demands

0.4

0.6

0.8

1

1.2

1.4

Li
nk

 u
til

iz
at

io
n

OSPF MAX
DEFT MAX (MA)
DEFT MAX (NLP)

Figure 3: Comparison of optimality gap and maxi-
mum link utilization for the two-level hierarchy with
50 nodes and148 links.

Table 2:Average running time per iteration of the non-linear
solver and the MA for DEFT.

Instance Nodes Links Time per iteration [s]
NLP MA

2-level hierarchy 50 148 0.7–3.5 1.4–2.4

2-level hierarchy 50 212 1.0–4.8 2.3–2.8

Random topology 50 228 3.3–5.0 2.1–2.9

Random topology 50 245 6.0–12.3 2.7–3.8

in Section 1 and the maximum link utilization. The fig-
ures compare the results of the OSPF local search and
the DEFT NLP solver, according to [7] and the results
of our MA. Tables 2 and 3 show the average execution
times per iteration and total number of iterations of the
DEFT NLP solver and the MA.

The figures show the near optimality of weights
found by the non-linear approach proposed in [7]. The
MA improves substantially over OSPF and obtains
good results in less time. In practice, the figures show
the advantage of splitting the flow among shortest and
non-shortest paths from origin to destination nodes. In
Figure 3 we see the high cost OSPF results for a two-
level hierarchical network. In the same network the
MA finds near-optimal results within7% of those found
by the NLP DEFT approach, and far better than OSPF.
Looking at the other instances we observe similarly that
the MA using DEFT can improve over the results of
OSPF, but not reaches the quality of the DEFT NLP
solver.

Considering the maximum link utilization, all algo-
rithms show comparable results. In general, DEFT can
improve over OSPF, with the maximum utilization of

4

1500 2000 2500 3000 3500
Sum of demands

0

50

100

150

200

250

O
pt

im
al

ity
 g

ap
 (

%
)

OSPF
DEFT (MA)
DEFT (NLP)

1500 2000 2500 3000 3500
Sum of demands

0.4

0.6

0.8

1

1.2

1.4

Li
nk

 u
til

iz
at

io
n

OSPF MAX
DEFT MAX (MA)
DEFT MAX (NLP)

Figure 4: Comparison of optimality gap and maxi-
mum link utilization for the two-level hierarchy with
50 nodes and212 links.

Table 3: Total number of iterations of the non-linear solver
and the MA for DEFT.

Instance Nodes Links # iterations
NLP MA

2-level hierarchy 50 148 271–825 760–1279
2-level hierarchy 50 212 308–1020 639–800
Random topology 50 228 400–1400 631–861
Random topology 50 245 620–1400 483–672

the DEFT NLP solver slightly better than that of the
MA. All graphs of the maximum utilization show a
knee when the demand approaches90% link utilization.
Given the properties of the objective function depicted
in Figure 1, there results a huge increment in the cost
when the demand surpasses a certain threshold. In prac-
tice, that threshold in congestion varies according the
topology, the demand and the weights set, but is clearly
observable in the objective function as the utilization
approaches the manageable congestion. That objec-
tive function’s main property is to describe the grow-
ing probability of congestion by the increase in traffic.
With more demand leading to a link utilization above
the90% threshold, we see the expected near optimality
of DEFT followed by MA with a large gap to OSPF.

6 Conclusions and future work

Based on the preliminary results presented in the previ-
ous section, we can conclude that the MA obtains better
results under DEFT than under OSPF. The MA using
DEFT can always improve over OSPF, in some cases

20000 25000 30000 35000 40000 45000
Sum of demands

0

5

10

15

20

25

30

35

40

45

O
pt

im
al

ity
 g

ap
 (

%
)

OSPF
DEFT (MA)
DEFT (NLP)

20000 25000 30000 35000 40000 45000
Sum of demands

0.4

0.6

0.8

1

1.2

1.4

Li
nk

 u
til

iz
at

io
n

OSPF MAX
DEFT MAX (MA)
DEFT MAX (NLP)

Figure 5: Comparison of optimality gap and maximum
link utilization for a random topology with50 nodes
and228 links.

up to a factor of six. However, the two-stage approach
proposed in [7] obtains better results when compared
with the adapted MA proposed in this paper, spending
comparable running times.

Observe that the results are preliminary, from a
method adapted from OSPF to DEFT. We think that
there is a lot of potential for improving the quality, as
well as the running times of the current MA. Specifi-
cally, the algorithm is not dynamic, and makes no use
of real weights. Running time could be improved sub-
stantially if using dynamic procedures for flow compu-
tation.

Recently, [8] have proposed a path-based protocol
improving over DEFT. We also intend to investigate this
new approach.

Another interesting line of research where local
search based methods can be useful is survivable net-
work design, where optimization solvers cannot be ap-
plied directly.

References

[1] L. Buriol, M. Resende, C. Ribeiro, and M. Tho-
rup. A hybrid genetic algorithm for the weight
setting problem in OSPF/IS-IS routing.Networks,
46(1):36–56, 2005.

[2] K. Calvert, M. Doar, and E. W. Zegura. Model-
ing internet topology.IEEE Communications mag-
azine, 35(6):160–163, 1997.

5

20000 30000 40000 50000 60000
Sum of demands

0

50

100

150

200

250

300

O
pt

im
al

ity
 g

ap
 (

%
)

OSPF
DEFT (MA)
DEFT (NLP)

20000 30000 40000 50000 60000
Sum of demands

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Li
nk

 u
til

iz
at

io
n

OSPF MAX
DEFT MAX (MA)
DEFT MAX (NLP)

Figure 6: Comparison of optimality gap and maximum
link utilization for a random topology with50 nodes
and245 links.

[3] M. Ericsson, M. Resende, and P. Pardalos. A ge-
netic algorithm for the weight setting problem in
OSPF routing. J. of Combinatorial Optimization,
6:299–333, 2002.

[4] B. Fortz and M. Thorup. Internet traffic engineering
by optimizing OSPF weights. InINFOCOM 2000,
pages 519–528, 2000.

[5] B. Fortz and M. Thorup. Increasing internet capac-
ity using local search.Computational Optimization
and Applications, 29(1):13–48, 2004.

[6] John T. Moy.OSPF: Anatomy of an Internet Rout-
ing Protocol. Addison-Wesley, 1998.

[7] Dahai Xu, Mung Chiang, and Jennifer Rexford.
DEFT: Distributed exponentially-weighted flow
splitting. In INFOCOM 2007, pages 71–79, May
2007.

[8] Dahai Xu, Mung Chiang, and Jennifer Rexford.
Link-state routing with hop-by-hop forwarding can
achieve optimal traffic engineering. InSubmitted to
INFOCOM 2008, 2008.

[9] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee.
How to model an internetwork. InProc. 15th IEEE
Conf. on Computer Communications (INFOCOM),
pages 594–602, 1996.

6

