
A hybrid genetic algorithm for road congestion minimization

Luciana S. Buriol1 Michael J. Hirsch2 Panos M. Pardalos3 Tania Querido4

Mauricio G. C. Resende5 Marcus Ritt1

1Instituto de Inforḿatica, Universidade Federal do Rio Grande do Sul
Av. Bento Goņcalves, 9500, Porto Alegre, Brazil.
{buriol,marcus.ritt}@inf.ufrgs.br

2Raytheon, Inc.,
P.O. Box 10128, Largo, FL 33773, USA.

mjh8787@ufl.edu
3Dept. of Industrial and Systems Engineering, University of Florida

303 Weil Hall, Gainesville, FL 32611, USA.
pardalos@ufl.edu

4Linear Options Consulting,
7450 SW 86th Way, Gainesville, FL 32608, USA.

tania@linearoptions.com
5Internet and Network Systems Research Center, AT&T Labs Research

180 Park Avenue, Room C241, Florham Park, NJ 07932, USA.
mgcr@research.att.com

ABSTRACT

One of the main goals in a transportation planning process is to achieve solutions for two classical
problems: the traffic assignment problem, which minimizes the total travel delay among all travelers,
and the toll pricing problem which settles, based on data derived from the first problem, the tolls
that would collectively benefit all travelers and would lead to a user equilibrium solution. Acquiring
precision for this framework is a challenge for large networks. In this article, we propose an approach
to solve the two problems jointly, making use of a Hybrid Genetic Algorithm for the optimization
of transportation network performance by strategically allocating tolls on someof the links. Since
a regular transportation network may have thousands of intersections andhundreds of roads, our
algorithm takes advantage of mechanisms for speeding up shortest path algorithms.

Keywords: Transportation networks. Genetic algorithm. Shortest paths. Applications to
Logistics and Transportation.

RESUMO

Um dos principais objetivos no planejamento de redes de transporteé obter soluç̃oes para dois
problemas cĺassicos: o problema de designação de tŕafego, o qual minimiza o tempo total de atraso
considerando todos os viajantes, e o problema de designar valores aos ped́agios o qual, considerando
os dados do primeiro problema, atribui valores de pedágio que beneficiam todos os viajantes, con-
duzindo a uma solução de equiĺıbrio. Resolver tais problemasé um desafio para redes de grande
dimens̃ao. Neste artigo, propõe-se a resolução desses dois problemas em conjunto, fazendo uso de
um Algoritmo Geńetico H́ıbrido para otimizaç̃ao de redes de transporte, alocando pedágios estrate-
gicamente em alguns links. Visto que redes de transporte, em geral, são redes de grande dimensão,
o algoritmo tem seu desempenho melhorado ao fazer uso de atualização din̂amica de caminhos
mı́nimos.

Palavras-chave: Redes de transporte. Algoritmos genéticos. Caminhos ḿınimos. Aplicações
a Loǵıstica e Transportes.

1 Introduction

Stable transportation systems are one of the main factors contributing to a high quality of life.
Moreover, as reported by Arnott and Small (1994), millions of dollars arespent every day on traffic
issues. Thus, traffic planning is a crucial component of any planning process for investment and
operating policies. Traffic Assignment models have been used to provide the necessary description
of real-world traffic flows with accuracy. These problems are mathematicallymodeled on a graph
structure, with nodes representing locations of interest and arcs representing valid roads on which
traffic can flow. Some pairs of nodes are called commodities, or origin-destination (OD) pairs,
representing traffic flow start and end points. In most instances, each arc of the network has an
associated capacity and cost of use, as a function of the amount of traffic using the arc. In addition,
some arcs might have tolls levied on them, adding to the arc cost. The main goal in the traffic
planning model is to levy tolls on some arcs of the network such that the overallcost of the network
(the sum of the cost of each arc) is minimized.

As an example, one can look at New York City. Each day, many people livingin New Jersey
commute into New York City to work. Suppose we label the city of Newark (in NewJersey) as one
origin node of our traffic network, and the borough of Queens (in NYC)as a destination node. It is
easy to see that there are many possible traffic paths to go from the origin node to the destination
node. Some of the arcs in these paths have tolls levied on them (Holland and Lincoln tunnels, for
example), while others do not. In addition, each arc has an associated cost as a function of the
number of commuters using that arc. Each commuter ideally would want to minimize his/her cost
of getting from their respective origins to their respective destinations.

Optimizing transportation network performance has been widely discussed inthe literature (Bai,
2004; Bai et al., 2006; Dial, 1999a,b; Florian and Hearn, 1995; Lawphongpanich and Hearn, 2004)
and two fundamental traffic assignment models have been developed:User Equilibrium(UE) and
System Optimal(SO) models.UE is used to describe the behavior of users on a given traffic network.
In aUE solution, each driver will follow his/her shortest path (least cost path) intraveling from their
origin to their destination. In contrast,SOdescribes a traffic network in its best operation. This
means that aSOsolution seeks to spread the flow over all the arcs of the network so that theoverall
network cost is minimized. Hence, aUE solution attempts to do what is best for each individual
driver, without consideration of other users on the network, while aSOsolution considers the overall
performance of the network, without consideration of any one individual user. These two concepts
seem contradictory, and in a way they are. The overall traffic assignment problem can therefore be
viewed as simultaneously solving theUE andSOproblems, i.e. to find a traffic flow that is both
UE andSO. In most instances, tolls are introduced on some of the arcs in the network sothat the
resultingSOandUE solutions coincide.

It is important to note that while the transportation problem can be stated in terms of both system
optimality and user equilibrium, to the best of our knowledge, there has been no effort to solve these
problems jointly. In effect, the problem has always been split into two problems. In the literature,
first theSOproblem is considered (see, for instance Hearn and Ribera (1980)).Convex functions
are used to represent the cost of traveling along each arc, as a function of the flow on the arc. This
problem is solved to optimality, and theSOsolution is then used as input into theUE problem. In
order to induce users to choose theSOpath solution, tolls are levied on certain arcs within the traffic
network. A genetic algorithm which solves the toll location and level problem separately has been
proposed by Shepherd and Sumalee (2004).

The Minimum Toll Booth Problem (MINTB) (Bai et al., 2006) describes an approach that mini-
mizes the number of toll locations for which aUE solution is achieved, maintaining theSOsolution.
MINTBwas formulated as a mixed-integer program (Bai et al., 2006), and is easilyshown to be in the
class ofNP-hardproblems (Bai, 2004). Various heuristics have been designed in an effort to solve
theMINTB. The reader is referred to Bai (2004) for a complete description of this methodology, as
well as background on traffic assignment problems.

2

One problem with the above two-phase approach is that theSOsolution may result in an infea-
sible UE program. Hearn and Ramana (1988) report infeasibility with a toll pricing problem for
a network of416 links, 962 nodes and1623 OD pairs, when an approximate solution to theSO
program, with a relative optimality gap of10−3, is used to construct the constraints defining the
MINTB program. To overcome infeasibility, methods based on penalty terms (Hearn and Ribera,
1980) and relaxation of constraints (Kim and Pardalos, 1999) are employed. However, acquiring
precision for this framework remains a challenge for larger networks. Another issue, related to the
heuristics defined for theMINTB problem, is to select an appropriate neighborhood structure, that
is a set of solutions near a given solution. In Bai (2004); Kim and Pardalos (1999) a binary vector
{ya} is used to indicate whether arca has a toll levied on it. They limit the concept of neighborhood
to adjacent vertexes in the unit hyper-cube (N.B.: each binary vector{ya} can be seen as one vertex
of the unit hyper-cube). Due to this definition of neighborhood, even for small problem instances,
the computation time was reported as large, and/or the quality of the solution was poor.

In this article we propose to use a Hybrid Genetic Algorithm with local improvement, first
presented in Ericsson et al. (2002), for the optimization of traffic flow, leading to a system efficient
pattern and user optimal solution on the network. We compare our approachwith the two-phase
approaches in the literature.

This paper is organized as follows. In Section 2 we present the mathematicalframework for the
traffic assignment problem. Section 3 describes our Hybrid Genetic Algorithmused to determine the
optimal traffic pattern and tolling scheme. Computational results are reported inSection 4. Finally,
conclusions are presented in Section 5.

2 Problem Formulation

Given a network topology and certain traffic flow demands, we levy tolls on arcs, seeking an
efficient system such that the resulting commodity least-cost paths (UE solution) is optimal for the
overall system. In a mathematical framework, consider a directed graphG = (N, A), with N
representing the set of nodes andA the set of arcs. Each arca ∈ A has an associated capacityca

and costΦa, which is a function of the loadℓa (or flow) on the arc, the timeta to transverse the arc,
powerna, and costΓa. In real-world traffic networks, arc (road) delay are generally described by
nonlinear functions associated with these network congestion parameters.We assume thatΦa is a
strictly increasing, convex function. In addition, defineK ⊆ N × N to be the set of commodities,
or origin-destination (OD) pairs, havingo(k) andd(k) as origin and destination nodes, respectively,
∀ k ∈ K̂ = {1, . . . , |K|}. Each commodityk ∈ K̂ has an associated demand of traffic flowdk

defined, i.e. for eachOD pair {o(k), d(k)}, there is an associated amount of flowdk that emanates
from nodeo(k) and terminates at noded(k). Furthermore, definexk

a to be the the contribution of
commodityk to the flow on arca.

Then, we can write the traffic optimization problem as (1) - (4).

minimize Φ =
∑

a∈A

ℓata
[

1 + Γa(ℓa/ca)
na

]

/
∑

k∈K̂

dk (1)

subject to ℓa =
∑

k∈K̂

xk
a ∀ a ∈ A (2)

∑

i:(j,i)∈A

xk
(j,i) −

∑

i:(i,j)∈A

xk
(i,j) =

−dk if j = d(k)

dk if j = o(k)

0 otherwise

(3)

xk
a ≥ 0, ∀ a ∈ A, ∀ k ∈ K̂. (4)

3

The objective function (1) represents the mean delay time for the system which is based on the
Bureau of Public Roads (BPR) function for travel costs. This function may vary according to a
specific network.Φ uses the volume delay (time) on arca as a function of total flow. Our goal is
to allocate tolls on arcs such that the delay valueΦ is minimized and we have a system efficient
solution. In this function,ℓa/ca describes the utilization of arca. In Section 4 we describe in more
detail the delay function for some real-world problems. Constraint (2) defines the load on each arca
as the sum of flow on arca arising from each commodity. Constraint (3) defines flow conservation
on the network, which is equivalent to the system of equationsBxk = dk, ∀ k ∈ K̂, whereB is the
arc-node incidence matrix for the network andxk = {xk

a}a∈A is the flow vector corresponding to
commodityk ∈ K̂. Constraint (4) specifies that the flow on each arc must be non-negative.

As seen in the next section, we distribute tolls onτ of the arcs of the network, leading to a traffic
balance and congestion minimization.

3 A Hybrid Genetic Algorithm for the Toll Booth Problem

In this section we summarize the description of the hybrid genetic algorithm usedfor solving
the toll booth problem.

A Genetic Algorithm was successfully applied to Open Shortest Path First (OSPF) intra-domain
Internet routing problems (Ericsson et al., 2002), and in Buriol et al. (2005) a Hybrid Genetic Algo-
rithm (HGA) was proposed to solve the same problem with additional local improvements. In the
present work, we take advantage of some similarities between theOSPFrouting problem and the
traffic assignment problem, and apply the HGA proposed in Buriol et al. (2005) adjusted to optimize
the traffic network.

A genetic algorithm is a population-based metaheuristic used to obtain high qualitysolutions
for combinatorial optimization problems. In this context, a population is a set of feasible solutions.
Solutions in a population are combined (through crossover) and perturbed (by mutation) to produce
a new generation of solutions. When solutions are combined, attributes of higher-quality solutions
have a greater probability to be passed down to the next generation. This process is repeated over
many generations as long as the quality of the solutions in the new population improves over time.
We next show how this idea can be explored for the toll booth problem.

Each solution is represented by two arraysw andb. Arrayw stores the integer arc weights, while
b is a binary array indicating the set of tolls. An arca of the network has weight equal towa in case
ba = true and zero in caseba = false. Each individual weight belongs to the interval[1, wmax].
A solutionw defines a total flowℓa, a ∈ A by means of an equal-cost multipath routing. In OSPF
routing, there is no link weight equal to zero, and the shortest path is the one with the shortest
distance. In our implementation, non tolled links are considered to have weightzero. Moreover, two
paths are considered of equal cost if they have the same total distance and the same number of hops.
In case they have the same total distance, but different hop counts, the shortest path is considered
the one with less hops. Each demand is routed forward to its destination. Traffic at intermediate
nodes is split equally among all outgoing links on shortest paths to the destination. After the flow is
defined, the solution is associated with a fitness value defined by the objective functionΦ.

The initial population is randomly generated, with arc weights selected uniformlyin the interval
[1, wmax/3]. A number ofK links, chosen at random, are set as having tolls, e.g.,bi is set totrue
for K links. The population is partitioned into three setsA, B, andC. The best solutions are kept in
A, while the worst ones are inC. All solutions inA are promoted to the next generation. Solutions
in B are replaced by crossover of one parent fromA with another fromB ∪ C using therandom
keyscrossover scheme of Bean (1994). All solutions inC are replaced by new randomly generated
solutions with arc weights selected in the interval[1, wmax].

In the random-keys scheme, crossover is carried out on a selected pairof parent solutions to
produce an offspring solution. Unlike Bean (1994), we use a biased random-keys scheme, where

4

each selected pair consists of an elite parent and a non-elite parent. The elite parent is selected,
uniformly at random, from solutions in setA, while the non-elite parent is selected, at random,
uniformly from solutions in setB ∪ C. Each weight of thew array in the offspring solution is either
inherited from one of its parents or is reset by mutation. With mutation probabilitypm, the weight
from w is reset to a value selected at random in the interval[1, wmax]. If mutation does not occur,
then the child inherits the weight from its elite parent with a given probabilitypA > 1/2. After the
crossover, arrayb is adjusted:

• bi is true in case the correspondent values in both parents aretrue.

• 50% of the positionsbi, chosen at random, which only one of the parents has the corresponding
position equal to true, are set to true in the child solution;

• all other positions ofbi are set tofalse.

In this fashion, we generate a child with exactly the same number of tolls than as the parents.
Next we describe the solution evaluation.

3.1 Solution Evaluation

Depending on the problem, the main effort of the algorithm can be in the crossover operator or
in the solution evaluation. For the case of the weight setting problem the solutionevaluation takes
longer than the crossover operator. In this section, we describe the procedure used for evaluating a
solution. This procedure is presented in Figure 1.

Let T be the set of destination nodes. We compute|T | single-destination shortest path graphs
gt. Eachgt, with destinationt ∈ T , has an|A|-vector,Lt, associated with the arcs, that stores the
partial loads flowing tot traversing each arca ∈ A. The total load on each arc is represented in
the |A|-vectorl, which stores the total load traversing each arca ∈ A. For each destinationt, the
|N |-vectorsπt andδt are associated with its nodes. The distance from each node tot is stored inπt,
while δt keeps the number of arc multiplicities (links) outgoing from each node ingt.

procedureEvaluateSolution(w, lf , rf)
1 forall a ∈ A do µa = 1;
2 forall t ∈ T do
3 πt ← ReverseDijkstra(w);
4 gt ← ComputeSPG(w, πt);
5 δt ← ComputeDelta(gt);
6 Lt ← ComputePartialLoads(µ, δ, π, gt);
7 end forall
8 l← ComputeTotalLoads(L);
9 S ← UpdateMultiandDelta();
10 if |S| > 0 UpdateSolution();
11 forall a ∈ A if la = 0 then µa = 0;
12 f ←

P

a∈A µa;
13 return (f , µ);
end procedure

Figure 1: Pseudo-code for the solution evaluation procedure.

In order to update the system by means of the new arc loads, we compute the shortest paths to
all destination nodest ∈ T and arrive at a graphGt = (N, At), ∀ t ∈ T . This is achieved using
Dijkstra’s well-known shortest path algorithm (Ahuja et al., 1993) with a simplechange. A small
cost is added to the node distances for each traversed link. With this modification, two paths are
considered of equal cost if they have the same total distance and the same hop counts. Since in our
network we are computing shortest paths to all destination nodes (i.e. sink nodes), we reverse the
direction of all arcs inG and compute the distancesπt

u, ∀ u ∈ N to destination inT (Buriol et al.,

5

2005). Given the shortest paths to each destination, we can calculate the flowsLt for all OD demand
pairs with destinationt and finally the total flowsl. The cost of a solution is computed according
to (1). Next the local search procedure is presented.

3.2 Local Improvement Procedure

In this section, we describe the local improvement procedure proposed inBuriol et al. (2005) and
adapted for this problem. Starting from a given solution, the local improvement procedure analyzes
solutions in the neighborhood of a current solutionw searching for a solution having a smaller cost.
If such a solution exists, then it replaces the current solution. Otherwise,the current solution is
returned as a local minimum.

The local improvement procedure is incorporated in the genetic algorithm to enhance its ability
to find better-quality solutions with less computational effort. Local improvement is applied to
each solution generated by the crossover operator. Besides being computationally demanding, the
use of large neighborhoods in a hybrid genetic algorithm can lead to loss ofpopulation diversity,
and consequently premature convergence to low-quality local minima. We next describe the local
improvement procedure using a reduced neighborhood.

As before, letla denote the total load on arca ∈ A in the solution defined by the current weight
settingsw. We recall thatΦa(la) denotes the routing cost on this arc. The local improvement
procedure examines the effect of increasing the weights of a subset ofthe arcs. These candidate
arcs are selected among those with the highest routing costs and whose weight is smaller thanwmax.
To reduce the routing cost of a candidate arc, the procedure attempts to increase its weight, in case
there is a toll installed on the arc, in order to induce a reduction of its load. If the selected arc has no
toll installed, a toll is installed on it with initial weight one, and the procedure attemps to increase
its weight, and a toll is removed from some other link. To select the link to have its toll removed, a
subset of ten tolled arcs are tested in circular order to avoid testing an arc twice without having tested
all tolled arcs. Initially, tolled arcs are tested in order of increasing routing cost, but once a change
is performed, the new tolled arc is placed in the position occupied by the previous tolled arc, and the
the order can be not respected anymore, since the vector is not resorted. In case the solution did not
improve, the solution returns to the previous state. If this leads to a reduction inthe overall routing
cost, the change is accepted and the procedure is restarted. The procedure stops at a local minimum
when no improvement results from changing the weights of the candidate arcs. The pseudo-code in
Figure 2 describes the local improvement procedure in detail.

The procedureLocalImprovement takes as input parameters the current solution defined by
the weightsw, the vectorb that indicates which are the tolled arcs, and a parameterq which specifies
the maximum number of candidate arcs to be examined at each local improvementiteration.

The counter of candidate arcs is initialized in line 2. The loop in lines 2 to 25 investigates at most
q selected candidate arcs for weight increase in the current solution. Thearc indexes are renumbered
in line 3 such that the arcs are considered in non-increasing order of routing cost.

Arc a′ is selected in line 8. If arca′ has no toll installed on it, we install a toll of weight one on
it (lines 6 and 7), and mark aflag that this operation was performed.

The loop in lines 10 to 16 examines all possible weight changes for arca′ in the range[wa′ +
1, wa′ + ⌈(wmax − wa′)/4⌉]. A neighbor solutionw′, keeping all arc weights unchanged except for
arca′, is built in lines 11 and 12. If the new solutionw′ has a smaller routing cost than the current
solution (test in line 13), then the current solution is updated in line 14, arca′ is unmarked in line 15,
and the arc counteri is reset in line 16.R

The loop in lines 17 to 23 are executed only if the current arc being analisedwas previously not
tolled. In line 18, each arc belonging to the setR of tolled arcs, are tested one by one, always testing
arcs with lower testing costs first. In line 20 we test if the solution is better than thecurrent solution
in the beginning of loop in line 2. In case the new solution is better, it is taken as the current solution,
and the for loop stops. If there is no better solution, then the current solution is reset to the solution

6

procedureLocalImprovement(q, w, b)
1 i← 1;
2 while i ≤ q do
3 Renumber the arc indexes such that

Ψa(la) ≥ Ψa+1(la+1), ∀a = 1, . . . , |A| − 1;
4 a′ ← 1; flag ← F ;
5 if ba′ = F
6 ba′ ← T
7 wa′ ← 1
8 flag ← V
9 end if
10 for ŵ = wa′ + 1, . . . , wa′ + ⌈(wmax − wa′)/4⌉ do
11 w′

a ← wa, ∀a ∈ A, a 6= a′;
12 w′

a′ ← ŵ;
13 if Ψw′,b′ < Ψw,b then
14 w ← w′;
15 end if
16 end for
17 if flag then
18 for tena′′ ∈ R do
19 ba′′ ← F ;
20 if Ψw′,b′′ < Ψw,b then break
21 end for
22 end if
23 if notImproved(w, w’’) then restoreOriginalSol(a’, a’’, w’’)
24 i← i + 1;
25 end while
endLocalImprovement.

Figure 2: Pseudo-code of procedureLocalImprovement.

considered in the beginning of loop of line 2 to 25.
The routing costΦ(w′) associated with the neighbor solutionw′ must be evaluated in lines 13,

20, and 23. Instead of computing it from scratch, we use fast update procedures for recomputing the
shortest path graphs as well as the arc loads. These procedures areconsidered in the next section of
the paper. Once the new arc loads are known, the total routing cost is computed as the sum of the
individual arc routing costs.

3.3 Dynamic Updates

We denote byGt = (N, At) the shortest paths graph associated with each destination node
t ∈ T . When the weight of a single arca′ is changed, the graphGt does not have to be recomputed
from scratch. Instead, we update the part of it which is affected by the weight change.

In Buriol et al. (2005), dynamic shortest path algorithms were presentedfor the case of positive
arc weights. In this paper we deal with non-negative weights, i.e. arcs withzero or positive weights.

When a toll is installed in an arc, or a toll is removed from an arc, or the weightof a tolled arc
changes, we used the dynamic shortest paths described in Buriol et al. (2005) to update the shortest
path graph, instead of recomputing it from scratch.

The possibility of having weights with cost zero cost allows for cycles of cost zero. To avoid
that, we add the value1/|E| to the distance for each arc traversed. So, for alternative shortest
paths with cost zero, it is possible to know which has fewer hops comparingthe real values of their
distances. Since a direct path is always shorter in number of hops than a path with cycles, the cycles
are eliminated. Using this rule, all alternative shortest paths of cost zero,but longer in number of
hops, are also eliminated. Thus, if a node has multiple shortest path of cost zero, just one with the
fewest hops will remain.

The loads are also updated, instead of being calculated from scratch. The approach used for
updating the affect part of the graph is presented in Buriol et al. (2005), and we use the same

7

algorithm. Only the part of the graph whose loads were affected by the arcweight increase is
explored.

4 Computational Results

4.1 The Nine Node Example

To provide an example on how our HGA works, in comparison to the MINTB approach, we
discuss the nine node problem generated in Hearn and Ramana (1988). The objective function used
for this problem is based on the BPR data and is the same used to describe cost delay for larger
instances. The associated network has18 links, and four O-D pairs, namely (1,3), (1,4), (2,3) and
(2,4). Figure 3 displays the optimality gap obtained for this example when running HGA for different
number of tolls.

 45

 50

 55

 60

 65

 70

 75

 0 2 4 6 8 10 12 14 16 18

o
p
ti

m
al

it
y
 g

ap
 [

%
]

number of tolls

Figure 3: Number of tolls installed vs. optimality gap for the nine node example.

The objective function value of the optimal solution for this instance is22.59314 (Hearn and
Ramana, 1988). It is important to note that our HGA does not produce the optimal configuration.
The solution found by the HGA was about the same found by the GA. This is due to the fact, that
in small networks, a system optimal solution can significantly deviate from an equal-cost multi-path
routing.

4.2 Realistic Problems

Some realistic problems where attributes are known in the transportation science literature have
a particular objective function. We consider for example,Sioux Falls, North Dakota (LeBlanc
et al., 1975). In this case, the delay function on each arc is known asΦa =

∑

a∈A ℓata[1 +
βa(ℓa/ca)

4]. Other instances, such asStockholm, Winnipeg, andBarcelona are also studied
in this paper, and have a similar delay function for their links. Their attributes (number of nodes,
number of links, number of O-D pairs) are displayed in Table. 1.

4.3 Optimal solutions

The traffic optimization problem (1)–(4) has a convex objective function and linear constraints.
Therefore it can, in principle, be solved by standard methods of convexoptimization. We imple-
mented a solver for the traffic optimization problem based oncvxopt (Dahl and Vandenberghe,
2005), a freely available solver for convex programs.

8

Table 1: Attributes of realistic problem instances.

Instance Vertices Arcs OD pairs Destinations
Sioux Falls 24 76 528 24
Stockholm 416 962 1623 45
Barcelona 1020 2522 7922 108
Winnipeg 1052 2836 4345 138

Table 2: Optimal solutions.
Instance Optimal value Solution time [s]
Nine node problem 22.539181 < 1
Sioux Falls 19.950794 22
Stockholm - > 86400

Our implementation uses a more compact, but equivalent formulation of (1)–(4), which repre-
sents the flows of all O-D pairs with the same destination as a single commodity. Thisreduces the
number of variables from|A| |K| to |A|D, whereD = |{d | (o, d) ∈ K}| is the number of different
destinations. Table 1 shows that this number is a factor between22 to 73 lesser than the number of
O-D pairs.

The solver has been able to produce optimal values only for the two smallest instances shown
in Table 2. On the next larger instance, Stockholm, the solver did not terminatewithin three days
of CPU time. Thus, the results of the GA and HGA for the nine node problem and the Sioux Falls
instance in Fig. 3 and 4 show the optimality gap (in percent above the optimal solution), while the
results for the remaining instances are absolute values. Figure 4 shows that for a sufficient number
of installed tolls, the heuristic solution lies within10% of the SO solution.

4.4 Quality of the HGA solutions

We compared the best solution values and the optimality gap (where possible) obtained by the
HGA and by the GA (HGA without local search). For each instance, we used different numbers
of tolled arcs, varying from a few tolled arcs up to tolls on all arcs. For each number of tolled
arcs, we ran the GA and the HGA three times with different random seeds for 5000 generations,
but at most up to a time limit of one hour. The results represent the average of these runs. For the
experiments, we used a Intel Pentium Core2 Duo, running at2.4 GHz, with 3 GB of RAM. Each
run of instanceSioux Falls spent in average about2 minutes of CPU time, while the runs of
instanceStockholm spent about18 minutes. Runs for instancesWinnipeg andBarcelona
stopped always by the time limit of60 minutes. The HGA spent between50 to 70 percent of its time
in the local search.

Figures 4 to 7 show computational results for instancesSioux Falls, Stockholm, and
Winnipeg, respectively. On thex-axis are presented the number of tolls installed, while they-
axis presents the solution value. For each instance, we present results found by the GA and HGA
algorithms.

By the experimental results we can observe that the solution obtained by the HGA and GA
algorithms are competitive. For instancesSioux Falls andStockholm the HGA presented
better results, while for instancesWinnipeg andBarcelona the GA presented better solutions.

For most of the instances, the quality of the results improves with larger toll sets. The solution
value almost decreases monotonically with an increasing number of tolls, with exception of instance
Winnipeg (instanceBarcelona presented this behavior only for the HGA algorithm).

Given that in almost all cases the solution is better for a larger number of tolledlinks, one can
choose the optimal trade-off between the number of tolled links and the quality of the solution.

9

 0

 50

 100

 150

 200

 250

 10 20 30 40 50 60 70 80

O
pt

im
al

ity
 g

ap
 [%

]

Number of tolls

HGA
GA

Figure 4: Number of tolls installed vs. quality of results, for the GA and HGA algorithms, for
instanceSioux Falls. The number of installed tolls tested varies from 10 up to 75, increasing
five by five.

5 Conclusions

In the present work, we have adapted the evolutionary algorithm from Buriol et al. (2005) to a
transportation problem. We tested both the genetic algorithm and the hybrid genetic algorithm. By
means of computing a solution that minimizes the mean delay of the system, we deal withbothSO
andUE problems simultaneously. As we have applied a heuristic to solve this problem, there is no
guarantee that the system optimal solution is achieved. Instead, an efficient solution for the overall
transportation system is obtained. We show the genetic algorithm as well as thehybrid genetic
algorithm obtain solutions of good quality. For theSioux Falls we were able to confirm an
optimality gap of less than10%. Solutions for other three large instances were presented, showing
the ability of the GA and HGA algorithms to deal with large instances.

6 Acknowledgements

Luciana S. Buriol and Marcus Ritt have received support from the Brazilian government (CNPq)
under project no. 481256/2008-3.

References

Ahuja, R. K., Magnanti, T. L. and Orlin., J. B. (1993).Network Flows – theory, algorithms, and applications,
Prentice Hall.

Arnott, R. and Small, K. (1994). The economics of traffic congestion,American Scientist82: 446–455.

Bai, L. (2004).Computational methods for toll pricing models, PhD thesis, University of Florida, Gainesville,
Florida.

Bai, L., Hearn, D. W. and Lawphongpanich, S. (2006). Relaxedtoll sets for congestion pricing problems,in
S. L. D.W. Hearn and M. Smith (eds),Mathematical and Computational Models for Congestion Charging,
Springer.

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and optimization,ORSA J. on Comp.
6: 154–160.

10

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800 900 1000

S
ol

ut
io

n
va

lu
e

Number of tolls

HGA
GA

Figure 5: Number of tolls installed vs. quality of results, for the GA and HGA algorithms, for
instanceStockholm. The number of installed tolls tested were 10, 100, 300, 500, 700, and 900.

Buriol, L. S., Resende, M. G. C., Ribiero, C. C. and Thorup, M.(2005). A hybrid genetic algorithm for the
weight setting problem in OSPF/IS-IS routing,Networks46: 36–56.

Dahl and Vandenberghe (2005). CVXOPT.
URL: http://abel.ee.ucla.edu/cvxopt

Dial, R. B. (1999a). Minimal-revenue congestion pricing part I: A fast algorithm for the single origin case,
Transportation Research Part B33: 189–202.

Dial, R. B. (1999b). Minimal-revenue congestion pricing part II: An efficient algorithm for the general case,
Transportation Research Part B34: 645–665.

Ericsson, M., Resende, M. G. C. and Pardalos, P. M. (2002). A genetic algorithm for the weight setting
problem in OSPF routing,Journal of Combinatorial Optimization6: 299–2002.

Florian, M. and Hearn, D. (1995). Network equilibrium models and algorithms,in M. O. Ball et al. (eds),
Network Routing, Elsevier Science, pp. 485–550.

Hearn, D. W. and Ramana, M. (1988).Solving congestion toll pricing models, Equilibrium and Advances in
Transportation Modeling, North-Holland, New York.

Hearn, D. W. and Ribera, J. (1980). Bounded flow equilibrium by penalty methods,Proceedings of the IEEE
International Conference on Circuits and Computers1: 162–164.

Kim, D. and Pardalos, P. (1999). A solution approach to the fixed charge network flow problem using a
dynamic slope scaling procedure,Operations Research Letters24: 195–203.

Lawphongpanich, S. and Hearn, D. W. (2004). An MPEC approachto second-best toll pricing,Mathematical
Programming, Series Bpp. 33–55.

LeBlanc, L. J., Morlok, E. K., and Pierskalla, W. P. (1975). An efficient approach to solving the road network
equilibrium traffic assignment problem,Transportation Research9: 309–318.

Shepherd, S. and Sumalee, S. (2004). A genetic algorithm based approach to optimal toll level and location
problems,Networks and Spatial Economics4(2): 161–179.

11

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000 2500 3000

S
ol

ut
io

n
va

lu
e

Number of tolls

HGA
GA

Figure 6: Number of tolls installed vs. quality of results, for the GA and HGA algorithms, for
instanceWinnipeg. The number of installed tolls tested were 10, 500, 1000, 1500, 2000, 2500,
and 2800.

 12

 14

 16

 18

 20

 22

 24

 0 200 400 600 800 1000 1200 1400 1600

S
ol

ut
io

n
va

lu
e

Number of tolls

HGA
GA

Figure 7: Number of tolls installed vs. quality of results, for the GA and HGA algorithms, for
instanceBarcelona. The number of installed tolls tested were 10, 500, 1000, 1500, 2000, and
2500.

12

