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Abstract

We study the problem of allocating automatic switches in electrical networks in order to improve
their reliability. Our approach combines the solution of the switch allocation problem with the related
subproblem of optimal network reconfiguration. This paper presents a GRASP for solving this joint
problem, as well as a faster method for the evaluation of the electrical constraints. We compare this
method to a tabu search applied on two sets of instances, a set of known instances from the literature
and a set of synthetically generated instances. Our results show that in general GRASP results are
slightly better compared to the tabu search.
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1 Introduction

In order to avoid large scale blackouts, methods for improving the reliability of electrical power
systems have been studied over the years. According to Teng and Liu (2003), most of the faults take
place in the distribution network of electrical power systems.

Electrical power systems are built as interconnected networks. They are arranged to be radial in
normal operating conditions. They are divided in three subsystems: generation, transmission, and
distribution. An example of distribution network is presented in Figure 1. It is composed by distribu-
tion substations (black nodes), consumers (white nodes), and feeders. The dotted lines are switched
tie-lines and are disconnected under normal operation conditions. The radial topology may change by
opening and closing some feeders in order to isolate failures and serve affected consumers by alternate
feeders. This is called network reconfiguration.

Figure 1. Distribution Network Example

Some characteristics of the network are as follows. Each consumer has a power demand and each
substation has a power capacity. Each feeder has a resistance, reactance, and a current flow. Each
one of those feeders may have one switch. The initial topology has open/closed switches generating a
radial configuration. For new topology reconfigurations, electrical limitations must be respected.

There are different approaches to improve the reliability of electrical power systems. The most com-
mon way is to add redundant connections with switches and thus easily alter the network topology in
case of failures. The costs of implementing automatic switches all over the network are impracticable
due to high costs. Because of that, the places where switches should be installed, must be carefully
chosen. This problem is called the switch allocation problem.

In this work, we present a GRASP and an extension to the tabu search algorithm proposed by Costa
et al. (2007) to solve the switch allocation problem. The remainder of the paper is organized as follows.
In Section 2 we explain reconfiguration and allocation problems. In Section 3 we present the network
reliability evaluation methods. In Section 4 we describe a GRASP for the switch allocation problem.
In Section 5 we describe a tabu search algorithm for the switch allocation problem. In Section 6 we
propose an electrical distribution system instance generator used to test our algorithms. In Section 7
we show some computational results. Concluding remarks are given in Section 8.

2 The Switch Reconfiguration and Allocation Problems in Power Distribution Systems

This section presents the two main optimization problems related to switches and the maximization
of the power distribution system reliability.



2.1 The switch reconfiguration problem

In case of a power failure, some switches are opened to isolate the failure. Afterwards, other
switches can be closed to reconnect the areas which do not have neither failure nor power supply. We
can easily understand how switch reconfiguration reduces the unattended area considering the example
given in Figure 1. Consider a failure in feeder 17. If there are no switches in the subtree under feeder
16, the whole branch would be unattended. Now, assume there are automatic switches in feeders 16,
19, and 35. We can isolate the failure by opening the switches 16 and 19. Finally, we can restore the
service of some consumers by closing the switch 35 which is open in normal operating conditions.

In this case, the optimal solution is easy to be found, but in real problems we must consider other
issues, for example there are not installed switches in every feeder and electrical constraints must be
respected (such as feeder and substation capacities and acceptable voltage drop).

The reconfiguration problem aims to serve as many consumers as possible, considering network
restrictions. It is a complex non-linear combinatorial problem (Thakur and Jaswanti, 2006). This
problem could present different forms considering any of the following objectives: maximize the re-
liability of the network, losses reduction to reduce overall system power loss, load balancing to avoid
overloads, independence between the initial and final switches configuration, minimize maintenance
operations, reduce reconfiguration costs, on line reconfiguration subject to variable demand from com-
mercial, residential and/or industrial consumers, etc.

This problem has been studied extensively in the literature. Among the metaheuristics proposed to
solve it are simulated annealing (Jeon et al., 2002; Santander et al., 2005), tabu search (Zhang et al.,
2005; Zhang, Fu and Zhang, 2007), genetic algorithms (Delbem et al., 2005; Carreno et al., 2007),
ant colony optimization (Su et al., 2005; Khoa and Binh, 2006), particle swarm optimization (Zhang,
Zhang and Gu, 2007; Wu et al., 2007), and plant growth simulation algorithm (Wang and Cheng, 2008;
Wang et al., 2008).

The present paper considers this problem as a subproblem of the switch allocation problem. The
objective function is to maximize the attended demand after a failure.

2.2 The switch allocation problem

According to Billinton and Jonnavithula (1996), switches play a key role in the reliability of a power
distribution system. The service restoration capability is directly related to the number and position of
the switches in the network. The installation of automatic switches in the distribution system allows
a better and faster reconfiguration, and hence increases reliability. Since automatic switches have a
considerable cost, installing one at every feeder is not possible. Therefore, the adequate selection
of their locations is very important in system planning. The problem of selecting locations to install
switches in a distribution network is called the switch allocation problem.

The problem consists in finding a set of feeders to install i new switches such that the network
reliability is maximized. In this paper we measure the reliability as the average percentage of attended
demands over all single feeder failures for given failure probabilities. Note that, differently to the re-
configuration problem, we must consider every possible fault, reconfigure and evaluate the respective
load that is still possible to attend, and finally calculate the average of the attended demand.

Hence, the optimization objective can be defined as to minimize the non supplied power areas in
the case of network power failures, subject to the available number of switches for allocation and the
electrical constraints of the embedded reconfiguration problem.

This problem has been studied by several authors with different approaches. Billinton and Jon-
navithula (1996) propose a simulated annealing approach. They consider the investment, maintenance
and outage costs in a single global cost function to determine the best number and location of switches.
Similar costs evaluations for the objective function are found in other works with genetic algorithm
and a tabu search by da Silva et al. (2004, 2008) and a three state particle swarm optimization by
Moradi and Fotuhi-Firuzabad (2008). These works assume that, given a fault, it is easy to determine



the operating network after the reconfiguration process and they approximate the overall cost of the
fault.

Carvalho et al. (2005) presented a divide-and-conquer approach. They use an exhaustive evaluation
of the possible failure reconfigurations to compute the reliability. They reduce the problem complexity
by using a polynomial-time partitioning algorithm to divide the set of possible location places into
several independent subsets or subproblems to be solved by a greedy algorithm.

3 Network Reliability Evaluation

In the reconfiguration problem it must be decided which switches to open or close in order to iso-
late the fault and recover as much non-served load as possible. Solutions for the switch allocation
problem based on the reconfiguration problem are interesting because both problems are intrinsically
correlated. If treated separately, an apparently good solution of the switch allocation problem might
be negatively affected when checking the reconfiguration problem for that distribution. Due to the
complexity of both switch problems and the importance of considering them together, Costa et al.
(2007, 2008) proposed a solution to the switch allocation problem based on the reconfiguration prob-
lem. They proposed two approaches to evaluate the network reliability in the case of failures for a
given distribution of switches in the network. These two approaches differ in the failure recovery
algorithm. They consider the network connectivity (referred as reliability upper bound) and an electri-
cal restrictions evaluation (referred as reliability lower bound). In this section we explain briefly both
approaches and a modification to accelerate the electrical restriction evaluation.

The common part of the network reliability evaluation is described in Algorithm 1. The algorithm
calculates a weighted percentage of served demands evaluating every possible single feeder failure.
For each failure it executes three steps. First, it expands the failure (lines 3−6) marking the edges and
nodes with failure. Second, it recovers the served area with one of the recovery algorithms explained
later in this section. This recovery algorithm marks the served consumers as attended. Third, it
calculates the percentage of attended consumers (lines 8 − 14). Finally, it calculates the average
served demand for all closed feeders in normal operating conditions.

Algorithm 1 Network Reliability Evaluation
Input: Distribution Network, Installed switch positions

1: for all feeders closed in normal operation do
2: simulate a failure in the feeder f
3: repeat
4: Expand the failure to nearby feeders without switches
5: Mark the involved nodes with failure
6: until the failure area is isolated by switches
7: Restore non served areas with a recovery algorithm marking consumer nodes as attended
8: for all consumer nodes do
9: if consumer node is attended then

10: Served← Served+ ConsumerDemand
11: end if
12: end for
13: ServedPercentage← Served/TotalNetworkDemand
14: Total← Total + ServedPercentage
15: end for
16: return Total/ Number of feeders closed in normal operation

3.1 Reliability upper bound

An upper bound for the network reliability can be obtained by dropping the electrical constraints
and evaluating the demand that can possibly be served based only on the network connectivity (Costa
et al., 2007). To evaluate the upper bound, we expand the connectivity from the substations, to the



neighbours without failure that had not been attended, through the feeders closed in normal operation
or feeders without switches. This can be achieved by a breadth-first search after the failure isolation.

3.2 Reliability lower bound

We can find a lower bound for the network reliability by considering the electrical feasibility test
proposed by Costa et al. (2008) and calculating an underestimate of the restored area. Algorithm 2
presents a modification (lines 2 − 4) to the lower bound recovery algorithm proposed by them. We
expand optimistically the test sector considering as frontier only normally open switches, i.e. switches
closed in normal operation are treated as connected in the initial test sector. If that test sector is not
feasible, the recovery algorithm restarts as proposed by them, with the smallest test sector considering
any switch as frontier (lines 5− 6). If the test sector is still feasible, the involved nodes are marked as
attended and the frontier feeders in L are processed. The test sector is expanded by closing a frontier
feeder, and the feasibility is reevaluated. Again, if feasible, the involved nodes are marked as attended
and L is updated. This improvement saves up to 50% of the runtime as we can see in Section 7.

Algorithm 2 Lower Bound Recovery Algorithm
Input: Distribution Network with expanded failure marked area, Installed switch positions

1: for all substations in the network do
2: Create interconnected TestSector starting from substation limited only by normally open switches.
3: L← frontier feeders (adjacent open switches in normal operation)
4: if TestSector is not feasible then
5: Create interconnected TestSector starting from substation limited by any kind of switches.
6: L← frontier feeders (all adjacent switches)
7: end if
8: if TestSector is feasible then
9: mark consumer nodes in the TestSector as attended

10: while L 6= ∅ do
11: feeder← L.pop()
12: Close the switch in feeder
13: Expand the TestSector limited by switches
14: if TestSector is feasible then
15: mark consumer nodes in the TestSector as attended
16: Add new frontier feeders in list L
17: end if
18: end while
19: end if
20: end for
21: return Distribution Network with recovered consumer nodes marked as attended

4 A GRASP for the switch allocation problem

According to Resende and Ribeiro (2003), greedy randomized adaptive search procedure (GRASP)
is an iterative process, where each GRASP iteration consists of a semi-greedy construction phase
and a local search phase. The construction phase builds a feasible solution, whose neighbourhood
is explored in the local search phase. The best solution over all GRASP iterations is returned as the
result. Input for GRASP include the stop criterion, which might be a fixed time or a maximum number
of iterations.

4.1 Construction phase

The construction phase builds a feasible solution one element at a time, as illustrated in Algorithm 3.
A greedy algorithm selects the best element each time, whereas a semi-greedy algorithm selects one
element at a time from a restricted candidate list. This restricted candidate list keeps a set of the best
elements and one of them is picked randomly. In this case, the candidate list is built by ordering all



possible switch locations according to the reliability improvement of installing each switch. Then a
portion of α switches with the highest reliability are kept. A value of α = 0 is equivalent to a greedy
algorithm and selects always the best element, and α = 1 is equivalent to a random construction.
Finally the selected switch is added to the solution.

Algorithm 3 Semi-greedy Constructive Algorithm
Input: SwitchNumber, α randomness

1: Solution← ∅
2: while SwitchNumber is not attained do
3: CandidateList← feasible switch locations
4: RestrictedCandidateList← best α switch locations
5: s← select a switch from RestrictedCandidateList
6: Solution← Solution ∪ s
7: end while
8: return Solution

4.2 Local search phase

The solutions generated by a GRASP construction phase are not guaranteed to be locally optimal.
Hence, GRASP improves each built solution with a local search. The local search explores the neigh-
bourhood proposed by Costa et al. (2007). This neighbourhood is defined by the reallocation of one
switch position in the current solution to a new feeder.

The local search was implemented in two ways: best improvement and first improvement. Algo-
rithm 4 depicts a pseudocode of the first improvement local search from our implementation. Those
algorithms receive as parameters the initial solution created by the semi-greedy constructive algorithm
and a stop criterion. If it finds a better solution, it becomes the current solution. It stops when there
are no better solutions in the neighbourhood. The best improvement searches through all the neigh-
bourhood to select the best new solution, while the first improvement stops when it finds any better
solution (line 10). Finally the best found solution is returned.

Algorithm 4 First Improvement Local Search Algorithm
Input: StopCriteria, InitialSolution

1: Evaluate InitialSolution
2: BestSolution← CurrentSolution← InitialSolution
3: while StopCriteria is not satisfied do
4: for all feeders fa without switch do
5: for all feeders fb with switch do
6: if can reallocate a switch from fb to fa then
7: NewSolution←Move the switch in CurrentSolution
8: Evaluate the NewSolution
9: if NewSolution > BestSolution then

10: BestSolution← NewSolution
11: exit for
12: end if
13: Restore CurrentSolution
14: end if
15: end for
16: end for
17: CurrentSolution← BestSolution
18: end while
19: return BestSolution

5 A tabu search algorithm for the switch allocation problem

tabu search is a metaheuristic proposed by Glover (1989, 1990). In Costa et al. (2007), they tested
a tabu search and a greedy construction algorithm. The tabu search used a best improvement neigh-



bourhood search. We extended their implementation with a first improvement neighbourhood search
and the semi-greedy constructive algorithm we used for GRASP.

Algorithm 5 shows our implementation of a first improvement tabu search for this problem. The
algorithm starts with the semi-greedy constructive phase, and then the solution is improved by a local
search. The stop criterion might be a fixed number of iterations or a number of iterations without
improvement. The neighbourhood search is the same of GRASP, moving one switch between two
feeders. The algorithm keeps track of the best neighbourhood solution found in the current iteration
to use it as start in the next one (line 10). The neighbourhood search stops if the improvement is better
than the current solution (lines 11− 13). If no better solution is found among the neighbours that are
not in the tabu list (restricted neighbourhood), the best solution among the restricted neighbours be-
comes the new current solution. The algorithm continues to search for better solutions in the restricted
neighbourhood of the new current solution. After the neighbourhood search, the best and the current
solutions are updated. Everytime the method moves to another solution, we mark the moved switch as
tabu for a given number of iterations. Finally, the best overall solution is returned by the tabu search.

Algorithm 5 First Improvement Tabu Search Algorithm
Input: StopCriteria

1: Create and evaluate InitialSolution
2: BestSolution← CurrentSolution← InitialSolution
3: while StopCriteria is not satisfied do
4: Clear BestNeighbourSolution for neighbours search
5: for all feeders fa without switch do
6: for all feeders fb with switch do
7: if they are not in tabu list and can reallocate a switch from fb to fa then
8: Move the switch in CurrentSolution to form a New Solution
9: Evaluate the NewSolution

10: if NewSolution > BestNeighbourSolution then
11: BestNeighbourSolution← NewSolution
12: if BestNeighbourSolution > CurrentSolution then
13: exit for
14: end if
15: end if
16: Restore CurrentSolution
17: end if
18: end for
19: end for
20: if BestNeighbourSolution > BestSolution then
21: BestSolution← BestNeighbourSolution
22: end if
23: CurrentSolution← BestNeighbourSolution
24: Put the old switch location in the tabu list.
25: end while
26: return BestSolution

6 Generator of synthetic electrical distribution networks

A problem faced by researchers who work with electrical systems is the small amount of test cases
available. In most cases researchers have to create an artificial electrical network and show it to a
specialist that validates the instance. Despite this approach is reliable, since an experienced specialist
can design real world instances, it has also drawbacks. First, it needs the work of a specialist, who
may not be always available. Second, it is laborious, since the specialist has to build each electrical
network manually. Because of this, it is hard to create many instances, which is undesirable since it is
important to test reliability algorithms with a considerable amount of instances. These reasons lead us
to design a simple electrical distribution systems generator.

Our aim is to design output instances similar to real world electrical distribution systems. In other



words, we want a generator that creates good abstraction models of real electrical distribution net-
works.

The designed generator expects as input a network topology representing a primary distribution
system. Analogous to Figure 1, each vertex in this graph represents a secondary distribution network
(consumer white nodes) or a substation (black nodes) and each edge corresponds to a feeder. Each
instance has only one substation. The generator will choose the same vertex described in the graph as
the substation. The substation is the node that feeds the electrical network. Since electrical distribution
systems are radial (with some redundant open feeders in order to increase reliability), the generator
will also open and close the edges (feeders) using a breath-first search, which leads to a tree rooted at
the substation.

6.1 Vertex and edges properties

Tension of operation is an important issue when dealing with electrical primary distribution sys-
tems. According to Table 1.1 of Pransini (2005), primary distribution systems have voltages between
2400 V and 34500 V. Because of that, we randomly select an integer number between 2400 and 34500
to set the tension of operation of the generated electrical network.

We also have to choose the loads of each secondary distribution system. The load is the amount
of power a consumer vertex requires from the substation vertex. Since information about typical
brazilian consumer loads were not available, we used information from India. According to Pabla
(2004), a domestic consumer in India has a load of 0.85 KW and a commercial consumer has a load of
1.34 KW. Small industries have a load of 11.16 KW. Secondary distribution systems consist of a small
group of consumers, e.g. Souza et al. (2006) use a real example of domestic secondary distribution
system with 62 consumers. Because of that, in our generator, we attribute loads between 50 and 250
KW to each secondary distribution system and consequently to each vertex in our generated primary
distribution system.

It is important to notice that substations have a capacity instead of a load. In order to guarantee
that enough energy will be available, in our generator of electrical networks, the capacity assigned to
substation is the sum of all loads multiplied by a constant value bigger than 1. We used a constant
equal to 1.3 in the generated datasets. Thus the substation is capable of support all the consumer loads
and it will also have 30% of extra energy.

Another property of our vertices is the power factor. Power factor is the ratio between the true
power and the apparent power. It is a number between 0 and 1. Inductance is the element in the
circuit which is pulling the power factor below 1. Most electrical equipments contain inductance and
capacitance in some degree, thus it is common to have small values below 1. More explanation about
power factor can be found in Pransini (2005). In Pabla (2004) are listed some common power factors
for various kinds of electrical equipments. The values range from 0.3 to 0.9. Since we suppose that
industries will use capacitors, which help to increase low power factors, we attribute values between
0.6 and 1.0 in the nodes of the generated electrical network.

In order to obtain a network similar to a real one, we have to choose some properties for the feeders
too. For example, each cable has a capacity. Our generator use always the same type of cable, with
capacity of 4000 ampere. This value was chosen because it is enough for most of the cases.

6.2 Generated Instances

To evaluate the usefulness of the generator, we used twelve graphs as input. We obtained the elec-
trical distribution systems summarized in Table 1. These topologies are originally proposed by Fortz
and Thorup (2004) and are from telecommunication problems. They are divided in three classes. The
first four networks named “hier” are 2-level hierarchical communication networks generated using
the generator discussed in Zegura (2005). The four networks named “rand” are random networks. In
random networks the probability of having an arc between two nodes is given by a parameter that



controls the density of the network. Finally, the least four networks are Waxman graphs. In this class
of graphs, the probability of having and edge between two nodes is proportional to their euclidean
distance. Hence, nodes close to each other have more probability of having an edge connecting them
than nodes far away from each other (Waxman, 1988). We added a prefix ”e ” to remark that these are
electrical instances. These instances are available under request.

Table 1. Synthetic Instances

Nodes Edges
Capacity Load (KW) Fpot. Tension
(MVA) Min. Max. Avrg. Min. Max. Avrg. (V)

e hier100 100 141 23.91 50 248 148.14 0.61 0.987 0.81 6964
e hier100a 100 181 25.03 157 249 154.14 0.60 0.999 0.81 22802
e hier50 50 75 11.31 50 248 142.22 0.60 0.999 0.81 15062
e hier50a 50 107 13.19 52 249 161.86 0.61 0.998 0.82 27595
e rand100 100 394 25.19 50 249 150.40 0.61 0.998 0.79 31039

e rand100b 100 485 25.47 52 249 156.17 0.60 0.996 0.81 30335
e rand50 50 219 11.87 57 247 148.12 0.61 0.999 0.81 6045
e rand50a 50 235 12.26 55 244 148.94 0.60 0.994 0.78 20133
e wax100 100 381 23.52 54 249 141.63 0.60 0.986 0.79 5966
e wax100a 100 463 25.78 55 247 155.34 0.60 0.999 0.79 3646
e wax50 50 163 11.95 60 247 146.71 0.60 0.999 0.81 24805
e wax50a 50 221 11.18 50 247 137.78 0.61 0.988 0.79 21505

7 Experimental Results

For our tests we used two groups of problem instances. The first group is composed of four instances
used by Costa et al. (2007, 2008). Table 2 gives details of those instances, such as the amount of nodes,
lines, and the demand type. The demand type can be uniform if every consumer has the same demand
or random if each consumer has different demand. The second group is a set of 12 instances, made
with the generator proposed in Section 6.

Table 2. First Group Problem Instances

Instance
Number of nodes Number of lines

Demand Type
substations consumers radial redundant

1U 1 33 33 7 uniform
1R 1 33 33 7 random
2U 5 88 92 17 uniform
2R 5 88 92 17 random

First we tested the optimistic modification of lower bound algorithm proposed by Costa et al.
(2008). As explained in Section 3.2 the optimistic approach expands a feasible area that we assume is
working in a regular operation state. This saves many unnecessary electrical feasibility tests. We ob-
tained the same results, but it saved about 40%− 50% of the runtime as it can be observed in Table 3.
We used the optimistic evaluation for the remaining tests.

Table 3. Tabu search execution time comparison (in seconds)

Instance Switches Costa et al. (2008) With Optimistic Recovery Speedup Factor
1R 10 16.52 8.43 51.0
1U 10 18.05 8.82 48.8
2R 10 563.70 229.07 40.6
2U 10 576.61 231.29 40.1



We run GRASP and tabu search algorithms using best and first improvement local search. For these
four combinations, we tested five randomness α values: 0.0 (totally greedy), 0.25, 0.50, 0.75 and 1.0
(totally random). For our tests we used the following parameters: The GRASP stop criterion is 10
iterations. The GRASP local search runs until no better solution is found in the neighbourhood. The
tabu tenure corresponds to 10 iterations. The tabu stop criteria is a fixed number of 100 iterations.
In both algorithms the objective function is our lower bound reliability evaluation (with electrical
restrictions). We use the upper bound reliability (only connectivity) found with a best improvement
tabu search to compare the quality of solutions.

Table 4. Experiment Results for instances from Costa et al. (2007)

Problem Switches α value
Conn. GRASP Tabu search
Upper Best-Improvement First-Improvement Best-Improvement First-Improvement
Bound Best Time(s) Best Time(s) Best Time(s) Best Time(s)

1R

5 0.50 65.851 54.725 1.95 54.725 1.81 54.725 2.32 54.725 1.79
0.25 65.851 54.725 1.86 54.725 1.83 54.725 2.42 54.725 2.00

10 0.50 78.425 70.892 8.53 70.639 6.26 71.043 8.60 70.672 5.62
0.25 78.425 70.790 6.93 71.043 6.33 71.043 8.46 71.043 5.39

15 0.50 82.226 77.728 19.76 77.728 12.79 77.728 15.21 76.891 12.54
0.25 82.226 77.728 16.99 77.728 9.26 77.728 15.44 77.728 10.53

20 0.50 83.849 79.420 29.11 79.420 17.61 79.420 19.97 79.420 14.22
0.25 83.849 79.420 23.19 79.420 14.72 79.420 19.64 79.420 13.29

1U

5 0.50 64.205 51.042 1.63 49.148 1.04 51.042 2.31 51.042 1.77
0.25 64.205 51.042 1.47 49.148 1.21 51.042 2.39 51.042 1.65

10 0.50 77.746 68.277 7.95 68.277 5.75 66.572 8.17 68.182 5.60
0.25 77.746 67.992 6.86 66.572 4.23 66.572 8.36 68.277 6.47

15 0.50 81.629 74.716 16.06 74.716 12.88 74.716 18.19 74.716 12.22
0.25 81.629 74.716 16.17 74.716 12.85 74.432 18.99 74.716 12.65

20 0.50 83.144 77.746 30.84 77.652 22.95 77.746 21.50 77.652 15.67
0.25 83.144 77.746 27.20 77.652 18.40 77.746 22.77 77.746 13.68

2R

5 0.50 84.979 80.934 62.64 80.396 82.32 80.396 109.88 80.396 79.12
0.25 84.979 80.934 62.30 80.396 75.27 80.396 113.99 80.396 88.00

10 0.50 87.429 81.562 211.84 81.562 190.77 83.596 278.87 81.562 141.67
0.25 87.429 80.943 208.42 80.943 163.23 80.943 224.13 80.939 142.89

15 0.50 88.971 81.769 491.82 84.779 329.33 81.656 371.54 81.769 196.33
0.25 88.971 84.186 407.99 84.186 234.00 81.656 373.85 84.186 302.93

20 0.50 89.838 85.099 829.50 84.473 519.22 84.473 701.39 81.733 335.36
0.25 89.838 84.473 785.71 84.473 371.01 84.473 701.15 82.402 322.84

2U

5 0.50 84.835 80.948 64.74 81.868 65.07 80.179 110.21 80.179 85.36
0.25 84.835 81.868 57.85 81.868 57.18 80.179 115.45 80.151 83.62

10 0.50 87.390 82.376 232.64 80.852 162.58 80.591 235.23 83.462 180.89
0.25 87.390 83.462 218.16 83.462 142.49 80.591 235.14 83.462 178.74

15 0.50 88.915 83.214 461.79 83.929 270.41 81.278 369.81 85.014 248.02
0.25 88.915 83.929 418.46 83.929 259.70 81.278 373.51 84.299 319.05

20 0.50 89.753 85.508 841.35 84.670 371.49 84.684 741.98 81.484 374.97
0.25 89.753 84.670 660.67 85.508 413.42 82.349 583.99 84.684 374.82

Table 4 show results with α = 0.25 and α = 0.5 for the first group of instances. Table 5 shows
results for some synthetic instances. The best found solutions have good quality as shown by the
difference with an upper bound of less than 5% for 2R and 2U and less than 12% for 1R and 1U
problems. The larger difference in problems 1R and 1U can be explained by a more concentrated
demand in less consumers. The best results of both heuristics are always found for an α value of 0.25
or 0.5, even when the results difference to other α values is not greater than 3%. This indicates that
the best α is between 0.25-0.5. The runtime of GRASP with α = 0.25 is in average about 10% less
than α = 0.5. The runtimes of GRASP with an α = 1 are the highest because the start solution is
random and the local search takes more time. In our experiments, the tabu search with a semi-greedy
initial solution finds slightly better final solutions on average, when comparing with completely greedy
or random initial solutions. Even while the initial solution improves with higher greedyness, a totally
greedy initial solution does not lead to a better solution compared with semi-greedy. This indicates that
semi-greedy multistart heuristics have more chances of finding better solutions. The first improvement



and the best improvement variants of both metaheuristics find similar results, the larger difference with
the best found solution is 6% and the average is 1.1%, but first improvement uses less runtime since
the explored neighbourhood is smaller. GRASP generally finds equal or slightly better results than
tabu search, i.e. with α = 0.25 and α = 0.5, GRASP has an average difference of 0.55% with the
best found solution and tabu search has 0.96%.

Table 5. Experiment Results for the Synthetic Instances

Problem Switches α value
Conn. GRASP Tabu search
Upper Best-Improvement First-Improvement Best-Improvement First-Improvement
Bound Best Time(s) Best Time(s) Best Time(s) Best Time(s)

e hier50a

5 0.25 82.335 82.335 15.50 82.335 9.94 82.335 25.70 82.335 21.05
10 0.25 87.713 87.713 51.13 87.713 37.15 87.713 68.72 87.642 54.68
15 0.25 90.414 90.414 97.80 90.414 67.04 90.414 118.20 90.405 87.54
20 0.25 91.615 91.615 170.76 91.615 73.20 91.548 169.69 91.548 106.38

e rand50a

5 0.25 88.357 88.157 42.44 88.157 24.45 88.357 75.93 88.357 70.18
10 0.25 90.294 90.069 139.20 89.637 66.49 90.294 184.27 90.241 144.44
15 0.25 91.718 91.097 263.37 90.626 121.62 91.718 318.97 91.451 222.91
20 0.25 92.726 91.251 384.03 91.335 187.57 92.726 505.96 92.353 348.61

e wax50a

5 0.25 87.415 87.354 40.59 87.415 25.98 87.415 68.00 87.415 62.12
10 0.25 90.746 90.200 103.33 90.541 58.16 90.392 169.84 90.163 139.74
15 0.25 92.373 91.962 250.94 91.888 131.39 91.887 258.38 91.826 214.71
20 0.25 93.172 92.902 412.72 92.699 249.98 92.859 406.98 93.084 288.42

8 Concluding Remarks
In this paper we studied the switch allocation problem, with the switch reconfiguration problem as

a subproblem. The objective is to improve network reliability by decreasing the unattended demand
in case of feeder failures. We presented a GRASP metaheuristic for the switch allocation problem and
compared it with a tabu search. We also presented an improved evaluation of the electrical constraints
with an optimistic heuristic. We further introduced a new set of synthetic instances of problems. A
comparison of both metaheuristics on these synthetic instances and other instances from the litera-
ture Costa et al. (2007, 2008) shows that the GRASP finds slightly better results than tabu search. In
both metaheuristics, the first improvement strategy is able to find results of good quality in less time.
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