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Abstract

We study the problem of allocating switches in electrical distribution networks to improve their reliability.
We presented a sample construction algorithm and a sample local search to this problem. We compare these
approaches with random and semi-greedy constructions and with first and best improvement local searches (and
combinations). We present and comment experimental results, showing that sample approaches are inexpensive
and find good quality solutions.

1 Introduction

According to Teng and Liu (2003), most of the faults take place in the distribution network of electrical power
systems. The most common method to improve the reliability is to add redundant connections with switches,
to easily alter the network topology in case of failures. The costs of implementing automatic switches all over
the network are impracticable due to high costs. Because of that, the places where switches should be installed,
must be carefully chosen. This problem is called the switch allocation problem.

The remainder of the paper is organized as follows. In Section 2 we explain reconfiguration and allocation
problems. In Section 3 we present the network reliability evaluation method. In Section 4 we describe the three
construction algorithms (random, sample and semi-greedy) and the three local search variations (sample search,
first and best improvement) In Section 5 we show some computational results. Concluding remarks are given in
Section 6.

2 The Switch Reconfiguration and Allocation Problems

An example of electrical power distribution networks appears in Figure 1. Distribution networks are config-
ured to work as noncyclic networks under normal operating conditions. They present distribution substations
(black nodes), consumers (white nodes), and line feeders. Redundant switched tie-lines (dotted lines) exist to
restore part of the energy supply in case of failures. Those tie-lines are disconnected in normal conditions.

2.1 The switch reconfiguration problem

After a power failure is detected, the network topology must be modified to isolate failures and to restore
the energy supply by alternate line feeders. The network reconfiguration is the process of opening and closing
some switches in the line feeders to change the topology. Considering a failure in feeder 17 of the example
given in Figure 1. Without switches, the whole subtree under feeder 16 would be unattended. If we install
automatic switches in feeders 16 and 19, we can isolate the failure by opening them. And closing an automatic
switch in the line 35 can restore the service to some consumers. The switch reconfiguration problem consists
in choosing which switches must be opened or closed to minimize the unattended area, and it is a complex
non-linear combinatorial problem (Thakur and Jaswanti, 2006).

This problem has been studied extensively in the literature. Among the metaheuristics proposed to solve it
are simulated annealing (Jeon et al., 2002; Santander et al., 2005), tabu search (Zhang et al., 2005; Zhang, Fu
and Zhang, 2007), genetic algorithms (Delbem et al., 2005; Carreno et al., 2007), ant colony optimization (Su



Figure 1. Distribution Network Example

et al., 2005; Khoa and Binh, 2006), particle swarm optimization (Zhang, Zhang and Gu, 2007; Wu et al., 2007),
and plant growth simulation algorithm (Wang and Cheng, 2008; Wang et al., 2008).

The present paper considers this problem as a subproblem of the switch allocation problem.

2.2 The switch allocation problem

According to Billinton and Jonnavithula (1996), switches play a key role in the reliability of a power distri-
bution system. The service restoration capability is directly related to the number and position of the switches in
the network. The installation of automatic switches in the distribution system allows a better and faster reconfig-
uration, and hence increases reliability. Electrical power distribution networks are big, and installing automatic
switches at every feeder is not possible due to high costs. Thus, the switch allocation problem consists in select-
ing locations to install switches in a distribution network, and it is very important in electrical systems planning.
The objective function is to maximize the reliability, i.e. minimize the unattended area in the case of failures,
and it is subject to the number of available switches for allocation and the electrical constraints.

Note that, differently to the reconfiguration problem, we must consider every possible fault to calculate the
network reliability as we explain in the next section.

This problem has been studied by several authors with different approaches: simulated annealing approach
(Billinton and Jonnavithula, 1996), divide-and-conquer approach (Carvalho et al., 2005), genetic algorithm
(da Silva et al., 2004), tabu search (da Silva et al., 2008) three state particle swarm optimization (Moradi and
Fotuhi-Firuzabad, 2008), Ant Colony Optimization (Falaghi et al., 2009).

3 Network Reliability Evaluation
We selected the expected energy non supplied or EENS (Falaghi et al., 2009) to evaluate the network relia-

bility. The EENS units are MWh/year. The EENS for a given failure f is calculated as

EENS =
∑
i∈L

ri · λi ·
∑
j∈Ni

Pj

where L is the set of lines that can fail, ri and λi are the respective average outage time and average failure rate
of i, Ni is the set of consumer nodes affected by the failure i, and Pj is the power load of node j.

To calculate the network reliability, we must consider every possible failure, isolate it, maximize the restored
area, and calculate the EENS. Finally we return the total EENS.

We use the algorithm proposed by Benavides et al. (2009) to calculate the unattended area. This algorithm
expands iteratively the supplied area and checks the electrical constraints feasibility. The considered electri-
cal constraints are feeder and substation capacities and acceptable voltage drop. The electrical simulation is
computationally very expensive, but it is important to reflect a real approximation of the power recovered area.

4 Construction and local search algorithms
In this section we explain the construction and local search algorithms. The sample construction and the

sample local search are proposed in this paper. The semi-greedy construction and the first improvement and



best improvement local searches were proposed by Benavides et al. (2009).

4.1 Construction algorithms

We used three construction algorithms: random construction, sample construction and semi-greedy construc-
tion. Random construction selects n switches randomly and evaluates the resulting solution.

The sample construction (Algorithm 1) and the semi-greedy construction (Algorithm 2) build a feasible
solution one element at a time. Both create a small list of candidates and select one element to be added to the
current solution. The difference lies in the way they creates that small list.

Algorithm 1 Sample Constructive Algorithm
Input: SwitchNumber, β sample percentage

1: Solution← ∅
2: while SwitchNumber is not attained do
3: CandidateList← feasible switch locations
4: SampleCandidateList← select randomly β percent switch locations
5: evaluate all elements in SampleCandidateList
6: s← select the best from SampleCandidateList
7: Solution← Solution ∪ s
8: end while
9: return Solution

Algorithm 2 Semi-greedy Constructive Algorithm
Input: SwitchNumber, α randomness

1: Solution← ∅
2: while SwitchNumber is not attained do
3: CandidateList← feasible switch locations
4: evaluate all elements in CandidateList
5: RestrictedCandidateList← best α switch locations
6: s← select randomly a switch from RestrictedCandidateList
7: Solution← Solution ∪ s
8: end while
9: return Solution

The semi-greedy construction first evaluates every possible element. Then, a portion of α switches with the
highest reliability are kept. and finally pics one element randomly from the restricted candidate list. A value
of α = 0 is equivalent to a greedy algorithm and selects always the best element, and α = 1 is equivalent to a
random construction.

The sample construction first selects randomly a portion of β switches. Then, evaluates this sample candidate
list and pics the best one to join the solution.

4.2 Local search algorithms

We used three local search variations: sample local search and first and best improvement local search. Those
algorithms receive as parameters the initial solution created by a constructive algorithm and a stop criterion.
They search in a neighbourhood defined by the relocation of one switch.

Algorithm 3 depicts the first improvement local search. If it finds a better solution, it becomes the current
solution. It stops when there are no better solutions in the neighbourhood. The best improvement searches
through all the neighbourhood to select the best new solution, while the first improvement stops when it finds
any better solution (line 10). Finally the best found solution is returned.

Algorithm 4 depicts the sample local search. It does not explore the whole neighbourhood, it selects a
β portion of switches and a β portion of places to explore and find a better solution. This method is not
exhaustive, so it does not guarantee to find the best local neighbour. In exchange, this method explores quickly
the neighbourhood and improves quickly the solution in the beginning of the search as we show in the results
section.

5 Experimental Results
For our tests we used a common instance, RBTS Bus 4, introduced by Billinton and Jonnavithula (1996).

This instance has 38 consumer load points, 3 substations, 67 line feeders, 5 tie-lines, a voltage operation of



Algorithm 3 First Improvement Local Search Algorithm
Input: StopCriteria, InitialSolution

1: Evaluate InitialSolution
2: BestSolution← CurrentSolution← InitialSolution
3: while StopCriteria is not satisfied do
4: for all feeders fa without switch do
5: for all feeders fb with switch do
6: if can reallocate a switch from fb to fa then
7: NewSolution←Move the switch in CurrentSolution
8: Evaluate the NewSolution
9: if NewSolution > BestSolution then

10: BestSolution← NewSolution
11: exit for
12: end if
13: Restore CurrentSolution
14: end if
15: end for
16: end for
17: CurrentSolution← BestSolution
18: end while
19: return BestSolution

11000V , a current capacity of 500A, and an outage time of 3 hours. Some of those values were completed by
Falaghi et al. (2009).

We executed 8 tests, mixing the constructions and local search methods explained in Section 4. They are
semi-greedy construction – sample local search (SGr-Spl), semi-greedy construction – first improvement local
search (SGr-FI), random construction – first improvement local search (Rnd-FI), random construction – sample
local search (Rnd-Spl), random construction – best improvement local search (Rnd-BI), sample construction
– sample local search (Spl-Spl), sample construction – first improvement local search (Spl-FI) and sample
construction – best improvement local search (Spl-BI). Every semi-greedy construction has α = 0.5 and every
sample has β = 20%. Each test were executed 1000 times.

Results are presented in Figure 2 and Table 1. Instead of time, we present the number of solution appraises.
There is a correlation of 300 appraises per seconds approx. Figure 2 presents the average EENS achieved
trough the number of appraises. Table 1 presents the average EENS and number of executed appraises to obtain
the initial solution, the average EENS and the average number of executed appraises in the final solution, the
number of solutions that are equal and better than the greedy built solution.

As we can see, semi-greedy construction is very expensive compared with sample construction and has
a poor improvement (10%) over random solution. Sample construction has a good initial solution with an
small number of appraises. Random construction generates more diverse start solutions, and leads to better
final solutions. Sample and semi-greedy constructions lead almost always to solutions worse or equal than
the greedy solution. In general, first improvement has better results than sample local search but it is more
expensive. Best improvement searches are the most expensive, Rnd-BI finds the greatest number of solutions
under the greedy solution, but is the most expensive. Sample local searches does not guarantees to find the best
in the neighbourhood, thus it stops before achieving local minima, in exchange it is inexpensive and finds good
and more diverse final results. Spl-Spl and Rnd-Spl are the most inexpensive and Rnd-Spl finds slightly better
results than Spl-Spl.

6 Concluding Remarks

In this paper we presented the switch allocation problem, with the switch reconfiguration problem as a
subproblem. The objective is to improve network reliability by decreasing the unattended demand in case
of feeder failures. We presented and compared the combination of three construction algorithms and three
local searches variations. Experimental results show that sample construction and sample local search are very
inexpensive and create good and diverse solutions. It show that semi-greedy construction is expensive and does
not generate great improvements in start solutions. We think that a more directed local search combined with
sample construction might give better results.



Algorithm 4 Sample Local Search Algorithm
Input: StopCriteria, InitialSolution, β sample percentage

1: Evaluate InitialSolution
2: BestSolution← CurrentSolution← InitialSolution
3: while StopCriteria is not satisfied do
4: SampleSwitches← pick randomly β feeders with switches
5: SampleP laces← pick randomly β feeders without switches
6: for all feeders fa ∈ SampleSwitches do
7: for all feeders fb ∈ SampleP laces do
8: swap switch between fa and fb

9: Evaluate the NewSolution
10: if NewSolution > BestSolution then
11: BestSolution← NewSolution
12: end if
13: swap switch between fa and fb

14: end for
15: end for
16: CurrentSolution← BestSolution
17: end while
18: return BestSolution

Figure 2. EENS vs Appraises ( left: 15 switches, right:20 switches)
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