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Abstract. We study the problem of allocating switches in electrical
distribution networks to improve their reliability. We present a sample
construction algorithm and a sample local search for this problem. We
compare these approaches with other consruction and local search strate-
gies (and combinations of them). We present and comment experimental
results, showing that sample approaches are inexpensive and find good
quality solutions.

Keywords: local search, sample algorithms, switch allocation.

1 Introduction

According to Teng and Liu [19], most of the faults of an electrical power system
take place in the distribution network. The most common method to improve
the reliability of a distribution network is to add redundant lines with switches.
Thus, in case of failures, the network topology is easily alterated and the affected
areas are reduced. The installation of automatic switches all over the network is
impracticable due to high costs. Because of that, companies must choose carefully
the places where switches shall be installed. This combinatorial optimization
problem is called the switch allocation problem.

The remainder of the paper is organized as follows. Section 2 explains
the service restoration and the switch allocation problems. It also describes
distribution networks using a graph model, and presents a method for network
reliability estimation. Section 3 describes the construction algorithms (random,
sample, greedy and semi-greedy) and the local search strategies (sample search,
first and best improvement). Section 4 shows and discusses computational
results. Concluding remarks are given in Section 5.

2 Description of the problems

Fig. 1 shows an example of an electric power distribution network taken from
Civanlar et al. [6]. Fig. 1a shows the network under normal operation. Due to
electrical constraints, the basic circuit of an operational distribution network
has no cycles. The basic circuit is composed by substations (square nodes),
consumers (round nodes), and feeder lines (black lines). Redundant feeder lines
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b. Sectors affected by a failure.

Fig. 1. Distribution Network Example

with switches (dotted lines) exist to reduce the time of blackouts in areas affected
by failures. In normal conditions, switches of redundant lines are disconnected,
opening the circuit, while switches on the basic circuit are connected, closing
the circuit. Because of this, redundant lines are called normally open and basic
circuit lines are called normally closed.

2.1 Graph model of distribution networks

We model an electric distribution network as an undirected graph G = (N,A),
where the set of nodes N = NS ∪ NC represents the set of substations (NS)
and consumer load points (NC), and the edge set A = Anc ∪ Ano represents
normally closed (Anc) and normally open (Ano) feeder lines. We write V (G) = N
for the node set and E(G) = A for the edge set of a graph or subgraph G. The
presence of a switch on an edge a ∈ A is indicated by a boolean value Ba ∈ {0, 1}.
We represent a solution for the switch allocation problem with the set AB ⊂ A
of lines themselves that are selected to install new switches (AB = {a}, Ba = 1).

The sector S(n) corresponding to a node n ∈ N is defined as the largest
connected subgraph of G which contains n and is connected only with basic
circuit feeder lines that have no switch installed (a ∈ Anc, Ba = 0). For any edge
a = {u, v} we define the corresponding sector S(a) = S(u) ∪ S(v) ∪ ({u, v}, {a})
as the union of the sectors of the nodes that it connects. The frontier of a sector
F(S(n)) is the set of edges a ∈ A which are incident to exactly one node in the
sector. We define the set of sectors SS = {S(n)} that contains all the disjoint
sectors of nodes n ∈ N .

2.2 The service restoration problem

After a power failure is detected, the network topology must be modified to
isolate the failure and to restore the energy supply by alternate feeder lines.
The network reconfiguration is the process of opening and closing some switches
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in the feeder lines to change the topology. Fig. 1b shows an example of this
process. Consider a failure in line {8, 10}. Without switches, the whole tree under
substation 2 would be unattended. When the automatic switches on lines {2, 8}
and {8, 9} are opened, the failure is isolated in sector S(8) (in dark gray).
Then, sector S(9) (in light gray) becames without failure but is still unattended.
When the automatic switch on line {5, 11} is closed, the service is restored
in sector S(9). The service restoration problem consists in choosing which
switches must be opened or closed to minimize the unattended area after the
isolation of a failure.

This problem has been studied extensively in the literature. Among the
metaheuristics proposed to solve it are simulated annealing [11, 17], tabu search
[24, 25], genetic algorithms [3, 9], ant colony optimization [13, 18], particle swarm
optimization [22, 23], and plant growth simulation algorithm [20, 21].

This paper considers this problem as a subproblem of the switch allocation
problem.

2.3 The switch allocation problem

According to Billinton and Jonnavithula [2], switches play a key role in the
reliability of a power distribution system. The number of unattended consumers
and the amount of non-supplied energy depend directly on the number and
position of the switches in the network [14]. Automatic sectionalizing switches
are able to diagnose a fault and eventually to automatically reschedule the
respective configuration [5]. The installation of automatic switches in distribution
systems allows a better and faster reconfiguration in case of failures, and hence
increases reliability. Electric power distribution networks are large, and installing
automatic switches at every line feeder is not possible due to high costs. Thus,
switch allocation problem consists in selecting a set of feeder lines to install i
new automatic switches in a distribution network. The objective is to maximize
the reliability, and it is subject to the number of available switches for allocation
and to the electrical constraints.

This problem has been studied with different approaches, e.g. simulated
annealing approach [2], divide-and-conquer approach [4], genetic algorithm
[7], tabu search [8], three state particle swarm optimization [15], Ant Colony
Optimization [10].

Many of the mentioned approaches use a simplification to calculate the
unattended areas assuming that, for a given set of switches and a failure,
the affected nodes are known or easy to compute, estimating reliability with
statistical data or assuming that gray sectors can be restored if there exists a loop
line. This disregards the underlying service restoration problem with electrical
constraints. For example, if there exist a loop line that can restore the energy
supply to a gray sector, there still exist the possibility that the substation can
not support it or that the voltage drops out of allowed limits.
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2.4 Network Reliability Estimation

We use expected energy non supplied (EENS) [10] to measure the network
reliability. The EENS is calculated as

EENS =
∑
f∈Anc

λfrf
∑
n∈Nf

Pn (MWh/year), (1)

where Anc is the set of feeder lines that can fail, Nf is the set of affected nodes
by a failure f , rf is the average outage time (in hours), λf is the average failure
rate, and Pn is the energy normally consumed by node n.

Our approach takes into account the service restoration problem as a
subproblem of the switch allocation problem. To estimate the reliability of a set
of switch locations that represent a solution of the switch allocation problem, we
must consider every possible failure, isolate it, maximize the restored area, and
calculate the partial EENS.

We use the algorithm in Fig. 2 to estimate the reliability. This algorithm
processes all the possible failures in lines of a sector S(n) together (lines 2-9),
saving computing time. First, it simulates a failure in each sector from the sector
set SS. The black area is the current sector, so the failure does not need to
be expanded and its frontier is known for isolation. Second, it determines the
non-served load points with a service restoration algorithm. Third, it calculates
the partial EENSf of the consumers n ∈ Nf affected by the failure f , evaluating
it for every feeder line a ∈ E(S(f)) in the black sector at once (line 7).

Note that frontier feeder lines (normally closed with switches) must still be
processed separately (lines 10-17), because they are not within any sector. The
algorithm in Fig. 2 follows a similar process for each line with a failure f . It
determines and isolates the black sector S(f) easily with help of the defined
sectors and frontiers (lines 12 and 13). Finally, the algorithm returns the total
EENS.

We use an algorithm proposed by Benavides et al. [1] to simulate the
service restoration after a failure and to calculate the affected area. This
algorithm expands iteratively the supplied area and checks the feasibility
of electrical constraints. The considered electrical constraints are lines and
substation capacities and acceptable voltage drop. The electrical simulation
is computationally very expensive, but electrical constraints are important to
reflect a real approximation of the attended area.

3 Construction and local search algorithms

In this section we explain the construction and local search algorithms proposed
to solve the switch allocation problem. Semi-greedy construction, and first and
best improvement local searches were originally proposed by Benavides et al. [1].
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Reliability Evaluation Algorithm
Input: Distribution Network G = (N,A),

installed switch positions S.
Output: Estimated reliability EENS.
1: EENS← 0
2: for ∀Si ∈ SS do // Sectors
3: Simulate a failure f in Si

4: Assume the black area S(f) = Si

5: Isolate the black area by opening the
frontier switches F(S(f)) = F(Si)

6: Determine affected nodes Nf with
a service restoration algorithm

7: EENSf ←
X

a∈E(S(f))

λara ·
X

n∈Nf

Pn

8: EENS← EENS + EENSf

9: end for

10: for ∀a = {u, v} ∈ Anc, Ba = 1 do // Frontier lines
11: Simulate a failure f in a
12: Assume the black area

S(f) = S(a) = S(u) ∪ S(v) ∪ ({u, v}, a)
13: Isolate the black area by opening the frontier

switches F(S(f)) = (F(S(u)) ∪ F(S(v))) \ {a}
14: Determine affected nodes Nf with

a service restoration algorithm

15: EENSf ← λfrf

X
n∈Nf

Pn

16: EENS← EENS + EENSf

17: end for
18: return EENS

Fig. 2. Network reliability evaluation by sectors

Semi-greedy Construction Algorithm
Input: Distribution network G = (N,A),

number of switches k, α randomness.
Output: Set of lines with installed switches AB .
1: AB ← ∅
2: while |AB | < k do
3: Candidate List← A \AB

4: Estimate reliability gain of all elements in
Candidate List

5: Restricted Candidate List← α portion of best
elements in Candidate List

6: a ← select randomly a switch location from
Restricted Candidate List

7: AB ← AB ∪ {a}
8: end while
9: return AB

a. Semi-greedy.

Sample Construction Algorithm
Input: Distribution network G = (N,A),

number of switches k, β sample percentage.
Output: Set of lines with installed switches AB .
1: AB ← ∅
2: while |AB | < k do
3: Candidate List← A \AB

4: Sample Candidate List ← sample randomly β
percent from Candidate List

5: Estimate reliability gain of all elements in
Sample Candidate List

6: a ← select the best switch location from
Sample Candidate List

7: AB ← AB ∪ {a}
8: end while
9: return AB

b. Sample.

Fig. 3. Costruction algorithms.

First Improvement Local Search Algorithm
Input: Distribution network G = (N,A),

initial solution AB0.
Output: Best found solution ABbest.
1: Estimate reliability of AB0

2: ABbest ← AB0

3: while stop criterion is not satisfied do
4: AB ← ABbest

5: for ∀a ∈ AB do // With switch
6: for ∀b ∈ A \AB do // Without switch
7: ABnew ← (AB \ {a}) ∪ {b} // Move
8: Estimate reliability of ABnew

9: if ABnew < ABbest then
10: ABbest ← ABnew

11: // Missing line in best improvement
exit for to line 3

12: end if
13: end for
14: end for
15: end while
16: return ABbest

a. First improvement.

Sample Local Search Algorithm
Input: Distribution network G = (N,A),

initial solution AB0, β sample percentage.
Output: Best found solution ABbest.
1: Estimate reliability of AB0

2: ABbest ← AB0

3: while stop criterion is not satisfied do
4: AB ← ABbest

5: AS1 ← sample randomly β lines from AB

6: AS2 ← sample randomly β lines from A \AB

7: for ∀a ∈ AS1 do // With switch
8: for ∀b ∈ AS2 do // Without switch
9: ABnew ← (AB \ {a}) ∪ {b} // Move

10: Estimate reliability of ABnew

11: if ABnew < ABbest then
12: ABbest ← ABnew

13: end if
14: end for
15: end for
16: end while
17: return ABbest

b. Sample.

Fig. 4. Local search algorithms.
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3.1 Construction algorithms

We use four construction algorithms: random, sample, greedy and semi-greedy.
Random construction selects n switches randomly and evaluates the resulting
solution. Greedy construction builds a feasible solution element by element,
evaluating all the elements to select the best each time. Semi-greedy and sample
constructions (depicted in Fig. 3) also build a feasible solution one element at
a time. Both use a reduced list of candidate elements to select one and add
it to the solution. The difference lies in the way they create that small list.
Semi-greedy construction (in Fig 3a) first evaluates every possible element.
Then, a portion of α switches with the highest reliability is kept. And finally,
one element is randomly picked from the restricted candidate list. (α = 0
selects always the best element, and α = 1 selects randomly between all the
elements). Sample construction (in Fig. 3b) first selects randomly a portion
of β switches. Then, it evaluates the sample candidate list to choose the best.
(β = 0% corresponds to a random construction, and β = 100% corresponds to a
greedy construction).

3.2 Local search algorithms

A local search algorithm iteratively replaces the current solution with a better
neighbour. It starts from an initial solution created by a construction algorithm.
And in this case, it searches in a neighbourhood defined by the relocation of one
switch. We used three local search strategies: by sample, first improvement and
best improvement.

First improvement local search is depicted in Fig 4a. It searches in
the neighbourhood for an improvement of the current solution. When a better
solution is found, it becomes the current solution for the next iteration. The
search stops when there are no better solutions in the neighbourhood. Finally,
the last found solution is returned. Best improvement searches through all
the neighbourhood to select the best neighbour for the next iteration, while
first improvement breaks the search out to the next iteration when it finds any
better solution without evaluating the all neighbourhood. This difference lies in
the exit for after the improvement test (line 11).

Sample local search is depicted in Fig 4b. It does not explore the whole
neighbourhood, but a sample of β percent of lines with switches (line 5) and a
β percent of places to move a switch (line 6). If the algorithm finds a better
solution in the sample, it is taken for the next iteration. Finally, it returns
the last solution. This neighbourhood exploration is not exhaustive and does
not guarantee to find the local minimum. Thus, the stop criterion may be a
maximum number of iterations or a number of iterations without improvement.
To guarantee that the local minimum is reached, we can execute another local
search strategy after the sample local search, or intersperse an exhaustive
neighbourhood search after a number of iterations.
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4 Experiments

For our tests we used two instances. The small instance is known as RBTS Bus 4,
introduced by Billinton and Jonnavithula [2]. The large instance is the sixth from
the REpository of Distribution Systems (REDS) maintained by Kavasseri and
Ababei [12]. Table 1 shows details for these instances.

To complete the necessary information, we followed the adaptation of part
of the RBTS bus 6 by Falaghi et al. [10]. We assume an outage time r = 2 h,
a resistance r = 0.257 Ω/km, a reactance x = 0.087 Ω/km, a failure rate
λ = 0.065 f/yr/km, and a capacity IMAX = 500 A for every line. The failure
rate for REDS is calculated as λ = 0.0696 ∗ r.

Table 1. Instances for the experiments.

RBTS Bus 4 REDS 6th

Network instances B4 R6
Substations 3 3
Consumers 38 201
feeder lines 67 201
loop lines 5 15
Operation voltage (V ) 11000 33600
Total power demand (kW ) 24580 32437
Consumer power factor ∗ 0.9 0.85
Consumer demand ∗ (kW ) [415, 1500] [0, 1211]
Line resistance (Ω) [0.1542, 0.2056] [0.000, 0.187]
Line reactance (Ω) [0.0522, 0.0696] [0.000, 0.254]
Line failure rates [0.039, 0.052] [0.000, 0.013]
∗ per load point.

We combined construction and local search methods as shown in Table 2.
Sample construction and sample local search use β = 10% and semi-greedy
construction has α = 0.5. Stop criterion for sample local search is ten iterations
without improvement. The SplBI combinations execute a best improvement local
search after the sample local search, to guarantee a local minimum. We run tests
to allocate 15 and 20 switches. We repeat each experiment 1000 times for B4,
and 100 times for R6, except Gr-BI which is one time.

Table 2. Combinations of construction and local search algorithms for tests.

Construction algorithm
Greedy Semi-greedy Random Sample

L
o
c
a
l

se
a
rc

h First improvement SGr-FI Rnd-FI Spl-FI
Best improvement Gr-BI SGr-BI Rnd-BI Spl-BI

Sample SGr-Spl Rnd-Spl Spl-Spl
Sample + Best improvement SGr-SplBI Rnd-SplBI Spl-SplBI

We present the results for instance B4 in Table 3 and Figure 5, and for the
instance R6 in Table 4 and Figure 6. The tables show the average EENS and the
number of reliability estimations used to generate the initial solutions with the
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Table 3. Comparison of construction and local search algorithms, instance B4.

Algorithm Construction Local search final solution
combination EENS N.Est. EENS Min. N.Est. Time =Gr<Gr

1
5

sw
it

ch
e
s

Gr-BI 12830 975 12830 1830 1.7 1 0
SGr-FI 18151±1027 975 12782±107 12565 14542±3638 18.9± 4.9 247 432
SGr-BI 18124±1032 975 12789± 91 12565 10523±1290 12.5± 1.7 631 269
SGr-Spl 18042±1058 975 13452±681 12599 1208± 77 0.6± 0.1 1 14

SGr-SplBI 18159±1056 975 12811± 74 12565 6256±1353 7.5± 1.8 700 165
Rnd-FI 19899±1005 1 12770±117 12565 21053±4340 27.2± 5.1 123 518
Rnd-BI 19908± 981 1 12793± 97 12565 11331±1286 13.5± 1.5 466 305
Rnd-Spl 19867±1017 1 13482±689 12618 257± 75 0.3± 0.1 0 13

Rnd-SplBI 19923±1011 1 12819± 73 12565 5186±1290 7.0± 1.8 644 139
Spl-FI 15537±1166 91 12840± 70 12565 9843±3167 13.4± 4.2 408 111
Spl-BI 15556±1164 91 12841± 50 12565 7360±1255 9.7± 1.7 638 43
Spl-Spl 15585±1176 91 13418±637 12624 262± 71 0.3± 0.1 1 11

Spl-SplBI 15534±1177 91 12835± 52 12565 5201±1300 7.0± 1.8 703 54

2
0

sw
it

ch
e
s

Gr-BI 11707 1250 11707 2290 3.5 1 0
SGr-FI 16835±1186 1250 11509±175 11262 19264±5073 42.5±11.4 401 599
SGr-BI 16872±1211 1250 11505±189 11262 14075±1726 28.5± 4.1 442 558
SGr-Spl 16822±1226 1250 11923±446 11262 1710± 133 1.6± 0.4 7 268

SGr-SplBI 16796±1235 1250 11551±183 11262 7112±1477 14.5± 3.5 556 444
Rnd-FI 19009±1126 1 11524±158 11262 28804±6030 63.3±13.2 373 627
Rnd-BI 19000±1176 1 11535±179 11262 16444±1948 33.1± 3.7 488 512
Rnd-Spl 19060±1108 1 11947±419 11262 526± 128 1.0± 0.3 9 228

Rnd-SplBI 19042±1109 1 11568±177 11262 5902±1432 13.9± 3.4 598 402
Spl-FI 14080±1180 116 11642±134 11262 12354±4064 28.4± 8.8 797 203
Spl-BI 14027±1137 116 11641±141 11262 9431±1617 20.9± 3.4 811 189
Spl-Spl 14056±1129 116 12031±441 11308 479± 133 0.8± 0.3 6 96

Spl-SplBI 13991±1154 116 11651±131 11262 5936±1398 13.4± 3.2 834 166

Table 4. Comparison of construction and local search algorithms, instance R6.

Algorithm
Construction Local search final solution
EENS N.Est. EENS Min. N.Est. Time <Gr

1
5

sw
it

ch
e
s

Gr-BI 2508 3135 2489 15195 38.9 1
SGr-FI 5293±586 3135 2320± 86 2236 119571±30943 377.0± 97.5 96
SGr-BI 5380±621 3135 2315± 78 2236 51891± 6817 157.8± 25.6 97
SGr-Spl 5329±585 3135 2717±217 2354 4164± 338 6.5± 1.4 19

SGr-SplBI 5371±620 3135 2335± 99 2236 31948± 7034 97.1± 24.3 93
Rnd-FI 6367±550 1 2322± 84 2236 174435±46355 568.3±159.3 95
Rnd-BI 6466±538 1 2346± 94 2236 51319± 6150 157.9± 25.2 95
Rnd-Spl 6394±568 1 2677±213 2327 1157± 343 3.8± 1.3 25

Rnd-SplBI 6448±495 1 2328± 78 2236 28087± 7176 91.0± 26.2 98
Spl-FI 3157±281 307 2369±100 2236 44586±19044 137.0± 62.6 89
Spl-BI 3102±271 307 2345± 69 2236 34319± 6415 103.6± 24.4 99
Spl-Spl 3177±289 307 2672±198 2306 981± 292 2.5± 1.0 21

Spl-SplBI 3198±296 307 2343± 86 2236 27273± 6359 81.8± 22.7 96

2
0

sw
it

ch
e
s

Gr-BI 1925 4130 1794 31570 163.5 1
SGr-FI 4602±741 4130 1827± 55 1793 202289±50048 1159.1±313.8 90
SGr-BI 4735±635 4130 1853± 86 1793 81435±10229 431.8± 71.8 79
SGr-Spl 4668±593 4130 2011±143 1822 6580± 671 20.6± 4.9 32

SGr-SplBI 4641±563 4130 1840± 68 1793 40287±10479 213.8± 60.8 82
Rnd-FI 5921±578 1 1848± 82 1793 306406±72093 1810.3±479.1 84
Rnd-BI 5814±585 1 1868± 88 1793 86244±11295 460.5± 75.6 73
Rnd-Spl 5975±607 1 1997±143 1814 2704± 755 15.6± 4.9 38

Rnd-SplBI 5882±575 1 1853± 82 1793 38744±10708 224.4± 61.6 77
Spl-FI 2550±214 404 1836± 69 1793 88137±33966 512.8±201.8 84
Spl-BI 2572±234 404 1843± 68 1793 56855±10334 320.8± 61.1 85
Spl-Spl 2541±215 404 1998±150 1800 2173± 721 10.9± 4.2 38

Spl-SplBI 2533±206 404 1834± 68 1793 39151±11822 220.9± 66.7 87
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Fig. 5. Average performance for instance B4.
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Fig. 6. Average performance for instance R6.
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construction algorithms. For the final solutions obtained after local searches, the
tables present the average EENS, the average number of reliability estimations,
the average running time and the best solution found by each combination
within all the repetitions (Min. column). The last columns compare the number
of final solutions that reach (=GR column) or overcome (<GR column) the
corresponding greedy solution. The figures compare the average EENS achieved
with the required number of reliability estimations. Four points show the average
result of the construction algorithms (random, semi-greedy, sample and greedy).
Three lines start from each point (except greedy), they outline the average
performance of first improvement (FI), best improvement (BI) and sample local
searches. The three local searches show the same behavior for all the test cases,
independently of the constructive algorithms.

First, we analyze construction algorithms. Solutions created by a semi-greedy
algorithm are better than random solutions in average by 2000 KWh/year (for
B4, 1100 for R6), but the required number of reliability estimations increases
significantly. A random solution requires only one reliability estimation, while
the semi-greedy and the greedy algorithms require more than 900 estimations (for
B4, 3000 for R6). Greedy construction generates always the best initial solution
at the same cost than semi-greedy, but this solution is usually close to (or is
itself) a local minimum, that is undesirable for a multi-start procedure. Solutions
created by the sample algorithm are better than random solutions in average by
4600 KWh/year (for B4, 3300 for R6), and they require less than 120 estimations
(for B4, 410 for R6). Thus, sample construction creates better solutions than
semi-greedy algorithm and in less than ten percent of the corresponding time.
The good cost/benefit of the sample construction algorithm can be seen in the
graphs by its proximity to the origin, i.e. low EENS and low number of reliability
estimations. Contrarily, semi-greedy construction generates the worst solutions
considering its high number of reliability estimations.

Now, we analyze the local search algorithms. The average final solutions of
FI and BI are very close, and they yield the best result with all construction
algorithms. The biggest difference between FI and BI is 26 MWh/year (semi-
greedy for R6 with 20 switches), and it is half of the smallest standard deviation.
The difference between FI and BI is in their performance over time. The figures
show that FI progresses quickly in the beginning, but BI becomes better after
some iterations. BI has an stable number of reliability estimations in each
iteration along the whole search. FI takes any solution better than current
and the number of estimations varies with the iterations. This is an advantage
in early iterations because FI finds easily better solutions, but becomes a
disvantage in the late iterations because FI restarts the local search with any
small improvement when the number of reliability estimations is almost the same
than BI. Thus, FI spends more time than BI in average.

The average final solutions of sample local search are worse than FI and BI.
The difference with FI and BI is less than 700 KWh/year (for B4, 400 for B6).
Moreover, sample local search was able to find the best solution for instance B4
with 20 switches. The time that it spent is very small, about half the time of the
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greedy or semi-greedy construction alone. The number of reliability estimations
of sample local search is constant in each iteration like BI, but is 100 times smaller
because the neighbourhood is restricted randomly to ten percent of switches and
ten percent of free lines.

Sample local search is not an exhaustive search in the neighbourhood, i.e. it
does not guarantee to find the local minimum, but it finds good results in small
time. When a BI is applied after sample local search, it reaches the average
results than BI or FI alone, but saving at least a quarter of the running time.
For instance B4, about half of the final solutions stuck in the greedy solution
after FI or BI local search, in particular after sample construction.

Finally, we analyze the combinations of construction and local search. If we
consider each row of Tables 3 and 4 as one multi-start iterated local search, with
1000 iterations (for B4, 100 for R6), and each row with semi-greedy construction
as a greedy randomized adaptive search procedure (GRASP) [16], we observe
that iterated search processes with FI and BI are effective to reach the best
known upper bound for the test cases. But the number of iterations to obtain
this results is very high, and the accumulated running time is 1000 times the
shown average (for B4, 100 for R6).

A GRASP is as effective as an iterated local search with random initial
solutions, but needs less time. Rnd-BI is the combination that finds the biggest
number of solutions that overcome the greedy solution. The most expensive
combination is Rnd-FI.

The cheapest method for an iterated local search would be the Spl-Spl
combination, its execution time is at least two times faster than a greedy or
semi-greedy construction algorithm alone. The best method for an iterated
local search would be the Spl-SplBI combination, because it is the cheapest
combination in terms of execution time that is able to find the best solution.
This verifies that a restricted neighbourhood speeds up the construction and the
search processes.

5 Concluding Remarks

In this paper, we presented construction and local search methods for the switch
allocation problem, with the service restoration problem as a subproblem. The
objective is to improve network reliability by decreasing the unattended demand
in case of line failures. We presented and compared the combination of four
construction algorithms and three local searches strategies. Experimental results
show that sample construction and sample local search are very inexpensive and
create good and diverse solutions. They also show that semi-greedy construction
is expensive and does not generate significative improvements in start solutions.

The present work indicates that a more directed local search combined with
sample construction might give better results. In future work, we intend to
propose an iterated search that uses a path relinking between solutions created
by sample construction.
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