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Abstract

The Internet is divided into Autonomous Systems, which control their intra-domain traffic by
using interior gateway protocols. The most common protocolused today is Open Shortest Path
First (OSPF). OSPF routes traffic on shortest paths defined byinteger link weights. The weight
setting problem is to find weights that optimize the resulting traffic, for example to minimize network
congestion. A recently proposed protocol called Distributed Exponentially-weighted Flow Splitting
(DEFT) sends flow on non-shortest paths, with an exponentialpenalty for longer paths. Since these
problems are hard to solve exactly, several heuristics havebeen proposed. We propose a parallel,
multi-deme version of a memetic algorithm to solve the weight setting problem in DEFT. It consists
of a shared memory parallelization of the (single deme) memetic algorithm, as well as instances of
the memetic algorithm running in parallel, and migrating solutions among populations according to
the island model. Computational results show a reduction ofexecution time, and an improvement of
solution quality compared to the original memetic algorithm.

1 Introduction

The Internet is divided into Autonomous Systems (ASs). EachAS controls its interior routing by an
interior gateway protocol. Common interior gateway protocols, for instance Open Shortest Path First
(OSPF), allow the operator to define the routes by setting integer weights on the network links. For a
given protocol, the problem of finding weights which optimize some objective function, such as total
network congestion, link utilization, or latency, is called theweight setting problem. In this article we
focus on the current standard OSPF and a recently proposed protocol called Distributed Exponentially-
weighted Flow Splitting (DEFT) [21].

Fortz and Thorup showed that the weight setting problem for OSPF is NP-hard and proposed a
heuristic solution using tabu search [7, 8]. Several authors have proposed further heuristics solutions,
including genetic algorithms [6], memetic algorithms [2],and simulated annealing [13]. Some of the
best results for OSPF have been obtained by Tabu search [7] and a memetic algorithm [2].

For DEFT, Xu et al. [21] designed a heuristic two-stage iterative method, based on non-linear, non-
smooth optimization, considering real weights. It is quitedifficult to parallelize this method, since the
solution technique is a modified primal-dual interior pointfilter line search [19]. Recently, Reis et al. pro-
posed a memetic algorithm [15] for DEFT considering integerweights. In the comparison results of that
paper, the authors show that, using identical available resources, int-DEFT produces less network con-
gestion than OSPF routing does. However, int-DEFT producessolutions with longer path lengths, larger
percentage of intermediate nodes, and larger number of paths. These are all undesirable characteristics
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since a link failure will result in a larger expected number of affected O-D demand pairs. In a further pro-
posal, Xu et al. [20] proposed a new link-state protocol called PEFT, which also considers real weights
and splits traffic over multiple paths with an exponential penalty on longer paths, as DEFT does.

In this article, we consider the algorithm proposed in [15] and study to what extent multiple pop-
ulations and parallelization can improve solution qualityand reduce execution time compared to the
sequential approach.

A genetic algorithm (GA), as first proposed by Holland [11], evolves a single population. A variation,
which makes the model more realistic, is a multi-deme GA. Here, we let evolve multiple populations
(demes) almost independently, and migrate individuals between demes to provide a weak interaction.
From an evolutionary point of view, the model corresponds topunctuated equilibria or almost separately
evolving “islands”. For an overview of multi-deme approaches we refer the reader to [1]. The topology,
frequency and rate of the migration has a strong influence on the performance of this approach [4].

There are two widely-used approaches to parallel genetic algorithms [1, 3]. In the single-deme ap-
proach, we can maintain a single global population, and parallelize central operations, such as fitness
evaluation and crossover with local search, to speedup the execution. In genetic algorithms these are
usually light-weight operations, which are executed several times. This leads to a fine-grained paral-
lelism, well-suited for a multi-threaded implementation on shared memory machines. For a speedup on
distributed memory machines, the parallelism has to be sufficiently coarse. This is usually achieved by
a Master-Slave scheme, where a master repeatedly distributes parts of the population to all machines,
which execute some operations in parallel, and the master afterwards collects the results.

The multi-deme variant of a genetic algorithm already has a coarse-grained structure with several
populations, and limited interactions between them. Therefore, it has less communication demands and
is better suited for a parallelization, especially on distributed memory machines (some authors call this a
“distributed” genetic algorithm).

In this paper we study the single-deme and multi-deme variants of a memetic algorithm for the
weight setting problem, both in a sequential and a parallel implementation. The execution has been
parallelized on two levels. A shared memory parallelization speeds up the evolution of a single deme,
and a distributed memory parallelization allows multiple demes to evolve in parallel.

The remainder of this paper is organized as follows. In Section 2 we introduce the protocols OSPF
and DEFT. Next, in Section 3, we briefly present the MA proposed for solving the weight setting problem
in OSPF and DEFT. In Section 4, we detail the parallelizationof these two algorithms. The computational
results of the parallel, multi-deme version are summarizedin Section 5. Finally, Section 6 presents some
conclusions, as well as possible future investigations.

2 The OSPF and DEFT protocols

LetG = (V,E) be a directed graph with link capacitiescu,v, andD a demand matrix whereDij denotes
the traffic demand from source nodei to destination nodej, for 1 ≤ i, j ≤ |V |. Let T = {v |Duv > 0}
be the subset of nodes that are the destination of at least onedemand pair.

The multi-commodity routing problem is to find flowsfu,v which satisfy all demands and minimize
the total link utilization

minimize
∑

(u,v)∈E

Φ(fu,v, cu,v) (1)

whereΦ is a link cost function. A typical choice forΦ is the piece-wise linear function shown in
Figure 1 [7, 8].

Let f t
u,v be the flow on link(u, v) destined to nodet. Then any resulting flow must respect the

constraints of flow conservation at intermediate nodesv 6= t

∑

(u,v)∈E

f t
u,v −

∑

(v,w)∈E

f t
v,w = Dv,t (2)
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Figure 1: Link costΦ depending on the link utilization forcu,v = 1.

and the individual flow aggregation

fu,v =
∑

t∈T

f t
u,v. (3)

Since the objective function and all constraints are linear, we can find an optimal solution by solving
the linear program OPT given by Eqs. (1), (2), and (3) together with the trivial constraints

0 ≤ f t
u,v, 0 ≤ fu,v. (4)

The solution of OPT is called fractional multi-commodity flow routing. This kind of routing is not
employed in practice, since it is difficult to implement and can lead to long paths and small link loads.
Since OPT has no routing constraints, its solution serves asa lower bound for practical routing protocols.

In OSPF the flow is determined using integer weightswu,v ∈ [0, 216 − 1] on each link. The routers
exchange information about the links, including their weights. Each router uses these weights to compute
the shortest paths to all destinations. It then distributesoutgoing traffic destined to a nodet equally among
all outgoing links on shortest paths havingt as destination.

DEFT relaxes this constraint. It allows real weightswu,v ∈ R and distributes the flow amongst all
outgoing links whose next node is closer to the destination.Links which are not part of a shortest path
receive a flow which decreases with exponential penalties for longer path lengths. Formally, letdti be the
distance from nodei to destinationt, and lethtu,v = dtv +wu,v − dtu be the distance gap of using the link
(u, v) compared to the shortest path. Then, the non-normalized traffic fractionΓ for link (u, v), directed
to t, is calculated as

Γ(htu,v) =

{

e−ht
u,v if dtu > dtv

0 otherwise
(5)

and the fraction of the total flowΓ(htu,v)/
∑

v:(u,v)∈E Γ(htu,v) is calculated for each outgoing link
(u, v) of u. According to [21], in terms of total link cost and maximum utilization, there always exists a
weight setting such that DEFT is better than OSPF.

Finding such weights, on the other hand, i.e. solving the weight setting problem optimally for these
protocols is difficult. For example, finding the weights minimizing link utilization in OSPF is NP-
hard [7].
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3 A memetic algorithm for the weight setting problem

In this section we describe briefly the memetic algorithm previously proposed in the literature to solve
the weight setting problem for OSPF and DEFT. More details can be found in [2, 15].

A memetic algorithm, or hybrid genetic algorithm, is a genetic algorithm augmented with a local
search procedure to speedup the search by improving candidate solutions locally. In this context, a
solution is called anindividual, each element of the solution is agene, a set of individuals is called a
population, and each iteration of the algorithm is called ageneration. It is a populational method in
which, during each iteration, individuals are combined through a crossover procedure for generating new
individuals that will form the next generation. The algorithm runs for a number of generations, aiming to
improve the quality of solutions. Each solution is evaluated by an objective function that, in this problem,
is to minimize the network congestion.

In our approach, each individual is represented by a vector of arc weights. The population is struc-
tured into three classes, according to their fitness, as firstproposed by Ericsson et al. [6] in a genetic
algorithm for OSPF routing. ClassA contains the best25% of the individuals, classC is composed
by the5% less profitable solutions, and the remaining population pertains to classB. The solutions
from classA pass directly to the next generation. The solutions from classC are replaced by new ones
randomly generated. The remaining solutions are replaced by solutions generated by the crossover pro-
cedure between a random parent from classA and another from setB ∪ C.

The crossover operator is a random key scheme that prioritizes (given70% of chances) genes from
parents in classA. With a small probability of1%, the child inherits a completely random allele at some
given gene. We apply a local search on each solution generated by a crossover operator. This procedure
is the computationally most expensive operation of the proposed MA. It examines the effect of increasing
the weights of a subset of arcs. These candidate arcs are selected among those with the highest routing
costs according toΦ function, and whose weight do not exceed the maximum allowed. To reduce the
routing cost of a candidate arc, the local search attempts toincrease its weight to induce a reduction on
its load. If this leads to a reduction in the overall routing cost, the change is accepted, and the procedure
is restarted. This procedure executes consecutive solution evaluations, that are expensive computational
operations in this problem. To speedup this process, given aweight change, the shortest path graphs, as
well as the flow allocation, are only updated, instead of recomputed from scratch. Updating, instead of
recomputing from scratch, makes this procedure about 15 times faster.

The solution evaluation is the second most expensive operation of the proposed MA in terms of
computational time. Given a set of integer weights, a shortest path graphGt is computed, as well as the
routing (flow allocation), for each destination nodet ∈ T .

We apply the same memetic algorithm for the DEFT protocol, changing the evaluation procedure
according to Equation 5. While OSPF splits the flow of each node u evenly among all outgoing links
on shortest paths with destinationt, DEFT splits the same load amongall outgoing links(u, v) that
approacht, i.e., dtu > dtv . Moreover, the load split is not equal among all links as it isin OSPF. As a
consequence, changing the weight of an arc has a larger impact in DEFT, which increases considerably
the computational effort in the dynamic flow calculation.

4 A parallel multi-deme variant of the memetic algorithm

In this section we describe a parallel, multi-deme variant of our memetic algorithm for the weight set-
ting problem. The motivation for the multi-deme variant is to study whether it improves the solution
quality, compared to the single-deme variant. The goal of the parallelization is to speedup execution
or, equivalently, obtain better results in the same amount of time. Another minor goal was to keep the
parallelization portable to a wide range of architectures to avoid the tedious task of adjusting the paral-
lelization strategy for the hardware on which it is executed.

In a multi-deme GA, the migration operator is defined by a migration interval, a migration rate, a
selection and replacement policy, and the migration topology [3, 18]. The migration interval defines
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when migration happens, and is usually a fixed number of generations. The migration rate determines
the number of migrants. Most commonly, this is a fixed percentage or number of individuals. According
to the selection and replacement policy, the migrants are chosen from the source deme and integrated into
the destination deme. Typical policies are random or fitness-based, e.g. migrating the best individuals
and substituting the worst at the destination. A further option is to clone the migrants, or actually move
them (termed immigration - resp. emigration by some authors). The possible destinations can be modeled
by a directed graph, whose vertices represent the demes. An edge (u,v) of this graph connects demeu
to v, if migration fromu to v is possible. Frequently, migration topologies are low-dimensional grids
(including cycles) and complete graphs [1]. From the possible destinations, we can choose one or more
at random or employ some other scheme, for example a round-robin distribution.

Our multi-deme MA uses a (logical) unidirectional ring topology. We found little evidence on the
influence of the migration topology on the solution quality and chose this topology, since the few studies
available seem to indicate that the migration topology has less importance than other parameters [5]. The
selection policy is to choose the fittest individuals. The replacement policy, the migration interval, and
the migration rate have been determined experimentally (see next section).

To decrease execution time, we use a hybrid parallelization, which combines a shared memory and a
distributed memory parallelization [12, 16]. The shared memory parallelization speeds up the evolution
of a single deme, by executing the main steps of the genetic algorithm with multiple threads. This has
been applied to solution evaluation, mutation, crossover and local search, the latter being the most time-
consuming operation of the algorithm. All these operationscan be done efficiently in a data-parallel
fashion without synchronization between the threads. Thispart has been implemented with OpenMP, a
high-level API for multi-threaded programming. [14]. The number of threads created by OpenMP can
be easily tuned to the processor architecture to achieve an optimal performance.

The distributed memory parallelization applies to the multi-deme variant of the genetic algorithm.
Each population is assigned to one computing node, which mayconsist of multiple processors, and
uses the shared memory parallelization to evolve the local population. Migration uses message-passing
between the nodes to send and receive the individuals. The parallelization has been implemented using
Transmittable Parallel Objects (TPO++) [9, 10], an object-oriented communication library on top of the
Message Passing Interface (MPI). TPO++ simplifies parallelprogramming on distributed machines in
C++.

The overall communication structure is shown in Figure 2, for the example of four populations.

Figure 2: Structure of the hybrid parallelization with fourpopulations. The dashed lines indicate the
thread-level parallelism, the black arrows indicate the ring-shift communication based on TPO++.
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5 Computational Results

We conducted a number of experiments to measure the effects of the hybrid parallelization on execution
time and solution quality. From the instances available in the literature [8, 21], we have chosen four
for our tests, as described in Table 1. Each instance defines all demand pairs in the network. Since the
difficulty of solving the weight setting problem increases with the total demand, we have scaled the basic
demands of each instance by factors of6, 9 and12.

Table 1: Instances used in the computational experiments.

Name Instance Nodes Links Capacities
hier50a 2-level hierarchy 50 148 200,1000
hier50b 2-level hierarchy 50 212 200,1000
rand50 Random topology 50 228 all 1000
rand50a Random topology 50 245 all 1000

We conducted three sets of experiments for analyzing the results. The first set had the purpose of
defining the parameters to be used in the following experiments. The other two experiments analyzed the
speedup of the shared memory parallelization on a four-processor, and the speedup of the multi-deme
parallel implementation. The experiments are reported in the next sections.

5.1 Parameter setting

In a preliminary experiment, we chose instancehier50a with a scale factor of12 to determine the
migration rate, the migration interval, and the replacement policy. In this experiment we have used4
populations of100 individuals and report the optimality gap after50 generations (for this instance the
algorithm achieves convergence with 50 generations). We tested migration intervals of1, 2, 5 and10
iterations, and migration rates of1, 5 and10 percent of the population. We also compared three different
replacement policies: immigration, replacing worst elitesolutions, immigration, replacing worst global
solutions and emigration, replacing worst elite solutions. The result of these experiments are shown in
Figures 3 to 5. The immigration replacement strategies turnout to perform better than emigration. When
using immigration, replacing elite solutions gives betterresults than replacing globally worst ones. For
both cases of immigration, we found that migrating10% of individuals with a small number of iterations
yielded the best results. We therefore chose to migrate10% of the individuals every second iteration in
the remaining experiments.
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Figure 3: Optimality gap as a function of migration rate and migration interval and immigration replacing
worst elite solutions.
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Figure 4: Optimality gap as a function of migration rate and migration interval and immigration replacing
worst global solutions.
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Figure 5: Optimality gap as a function of migration rate and migration interval and emigration replacing
worst elite solutions.

5.2 Shared memory parallelization

In our first main experiment we measured the speedup of the shared memory parallelization on a four-
processor AMD Opteron 275, with4 GB main memory running at2.2 GHz. We compared three different
OpenMP loop scheduling strategies for the parallelizationof the crossover and subsequent local search,
which is the most time-consuming operation. Using static scheduling the loop iterations are distributed
block-wise and evenly among all threads. The dynamic distributions repeatedly assign smaller blocks of
1 and3 contiguous iterations to each idle thread, until all iterations have been completed.

Figure 6 shows the speedup for the three different scheduling strategies. All data points are the
average over three executions. Clearly, all three scheduling strategies achieve good speedups of about
three with six processors. The dynamic scheduling with smaller block-size reaches this speedup first,
with only four processors, and shows less variation than theother strategies. Since the execution time of
each local search can be different, a fine-grained load balancing seems to be the best strategy. Increasing
the number of threads above six does not improve the results,which indicates that the speedup is not
limited by some of the threads idling, but a not parallelizedpart of about10% of the executed code.

5.3 Distributed-memory parallelization

Our last set of experiments is designed to quantify the utility of a multi-deme parallel GA compared to
the single-deme - sequential GA, given the same amount of (wall clock) execution time. We measured
the improvement of the solution quality as a function of the number of populations. Each population has
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Figure 6: Speedup of the multi-threaded memetic algorithm on a four-processor SMP machine.

100 individuals, so the total population size is increasing with the number of populations.

The experiments have been conducted on the bwGRiD [17], a parallel computing grid consisting of a
total of498 nodes, each with two Intel Xeon E5540 processors running at2.83 GHz, and equipped with
16 GB of main memory. The machine can communicate over Gigabit Ethernet and InfiniBand. In our
tests we used the faster InfiniBand network.

We varied the number of populations from1 to 256. To speedup the execution, each population
evolves locally in parallel using6 threads, but to quantify only the effect of the number of populations,
we held the number of generations constant at200.

Figures 7-8 show the best solution found over all populations as a function of the number populations,
for instanceshier50a,hier50b,rand50 andrand50a, respectively. The solution values are given
as the optimality gap in percent above the theoretical optimum, as determined by the linear program OPT
described in Section 1.

In all four instances and three demand levels, the solution quality improves with an increasing number
of populations. The improvements are more significant for instances with a higher total demand, and
range from a small absolute improvement of0.7% for instancehier50a/06 up to100% for instance
rand50a/12. Since the instances with a smaller total demand are simpler to optimize the absolute
improvement with a larger number of populations is less articulate. In almost all instances, the solution
quality did not improve significantly with more than128 populations.
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6 Conclusions and future work

We have studied two improvements of a memetic algorithm for the weight setting problem in OSPF
and DEFT: a multi-deme variant of the algorithm as well as a shared-memory and distributed-memory
parallelization.

We have shown that a good per-population speedup can be achieved with a shared memory paral-
lelization using OpenMP. Parallelization of the principalloops of the memetic algorithm can speedup the
evolution of a single population by a factor of up to10.

The multi-deme, distributed memory parallelization basedon MPI has improved the result quality
for all tested networks. Our parallelization allows the memetic algorithm to increase the number of par-
ticipating populations up to the number of available machines. The memetic algorithm could improve
the solution quality consistently with the number of populations, although, in the tested instances, the
improvement above128 populations is only marginal. In a hybrid execution mode, combining shared-
memory and distributed-memory we can optimally use a large class of parallel machines, reducing exe-
cution time and improving result quality.

As future work, we intend to test some other communication topologies with the aim of obtaining
more benefit of the exchanged solutions among populations. We expect not just to increase solution
quality, but also to reduce the time that the algorithm needsto converge. Furthermore, we intend to
perform more detailed parameter studies to examine the behavior of the algorithm with more generations,
different population sizes, and more complex network graphs.
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