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Abstract

This paper considers the three-dimensional loading capacitated vehicle routing problem. It
consists in finding a shortest routing of a fleet of vehicles through a network so as to deliver goods to
customers and loading those goods into the vehicle satisfying three-dimensional loading constraints.
We address the routing problem by means of a tabu search and a first-improvement local search.
The loading is efficiently done by a randomized bottom-left based algorithm that uses a multiple-
views data structure. Through computational experiments we show that our approach is able to
produce quality solutions comparable to or better than the best ones reported in the literature.
KEYWORDS. 3L-CVRP, Vehicle Routing, Container Loading.

Resumo

Consideramos neste artigo o problema de roteamento de veı́culos capacitados com restrições de
empacotamento tridimensionais (3D-Loading Capacitated Vehicle Routing Problem - 3L-CVRP),
que consiste em encontrar um roteamento de menor distância de veı́culos através de uma rede de
rodovias a fim de entregar produtos a clientes e o empacotamento desses produtos nos veı́culos com
restrições tridimensionais. O nosso método utiliza uma busca tabu para o roteamento e um algo-
ritmo randomizado baseado na heurı́stica inferior-esquerda que eficientemente empacota as caixas
com o auxı́lio de uma estrutura de representação com múltiplas vistas. Através de experimentos
computacionais nós mostramos que o nosso algoritmo é capaz de produzir soluções comparáveis
ou melhores que as publicadas na literatura.
PALAVRAS CHAVE. 3L-CVRP, Roteamento de Veı́culos, Empacotamento.



1 Introduction

The capacitated vehicle routing problem with three-dimensional loading constraints (3L-CVRP)
is characterized by the combination of vehicle routing and container loading in 3D-space. The
problem, which was introduced by Gendreau et al. (2006), results from the need to consider loading
of rectangular boxes in a fleet of vehicles while determining routes so that these vehicles are able
to deliver the previously packed goods to a set of customers. The objective is then to minimize the
traveling costs while providing a feasible loading for each vehicle.

The 3L-CVRP generalizes two problems that are by themselves already hard to solve practi-
cally, namely the routing of vehicles and the loading of boxes into a three-dimensional space, and
is therefore a challenging optimization problem. The problem takes into account a diverse number
of constraints taken directly from real-world scenarios which makes it relevant to real cargo trans-
portation. Not only is the optimization problem NP-hard (Gendreau et al., 2006), but so is finding
feasible solutions, since the same holds for deciding whether a set of three-dimensional boxes can
be packed in a container (Martello et al., 2000).

Being a relatively new problem of high complexity, only a few solutions appear in the literature.
Gendreau et al. (2006) proposed a solution where both the routing and loading sub-problems were
solved by independent tabu search based algorithms. de Araújo (2006) achieved better results with
a more sophisticated packing algorithm. Tarantilis et al. (2009) followed with a tabu search with
guided local search coupled with a few fast and simple packing heuristics. The solution quality was
then improved by Fuellerer et al. (2010) with an ant colony optimization approach, again with fast
heuristics for the loading.

Most recently published solutions utilize some form of tabu search. Tao and Wang (2010)
achieve the currently best results with a least waste packing heuristic. Wang et al. (2010) get similar
solutions with fine-tuning of the bottom-left and maximum touching area heuristics for the loading.
Finally, Bortfeldt (2010) gets comparable results with a fraction of the computational effort needed
by the other methods by selectively packing the generated search neighborhood using a tree-search
algorithm. Iori et al. (2007) presented an exact branch-and-cut algorithm for the 2L-CVRP, but, to
our knowledge, there is still no exact solution for the 3L-CVRP.

In this paper we propose a tabu search with a first improvement local search algorithm for the
3L-CVRP. We found the efficiency of the packing sub-routine to be crucial, and for that we rely on
multiple permutations of the bottom-left heuristic adjusted for the 3D-space. Our main contributions
are a new randomized packing algorithm, a new multiple-views dynamic matrix representation and
a first improvement based tabu-search.

The remainder of this paper is organized as follows. The next section properly defines the
problem. Section 3 details our proposed tabu search as well as the packing procedure. The results
of computational experiments are shown in Section 4. Our conclusions are presented in Section 5.

2 Problem Definition

We consider a complete graph G = (V,E). Let V = {v0, v1, . . . , vn} be the set of n + 1
vertices corresponding to the depot v0 and the n customers v1, . . . , vn. Each edge eij ∈ E between
vi and vj has an associated routing cost cij . We are given a fleet of v identical vehicles. Each
vehicle has a total weight limit D and a three-dimensional container with width W , height H and
length L. The vehicle has an opening on the rear of size WH for loading and unloading.

Each customer i has a demand of mi items. Each item is denoted by Iik, where i = 1, . . . , n
represents the customer to whom the item must be delivered and k = 1, . . . ,mi specifies the item.
The total weight of the set of items mi is di. Each item has width wik, height hik and length lik
(i = 1, . . . , n; k = 1, . . . ,mi).
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Figure 1: A feasible packing plan.

A valid route is a sequence of three or more nodes starting and ending at v0 where no customer
appears more than once. The total cost of the route is the sum of all of its composing edges. A
solution to the 3L-CVRP is a set of at most feasible v routes such that each customer is visited
exactly once and a corresponding valid packing plan is provided for the route. The objective is to
minimize the total traveling cost associated with routing.

A packing plan is feasible if all of the following constraints are satisfied:

i) All items of the corresponding customers that appear in the corresponding route are properly
packed with no overlap and are completely contained by the container.

ii) The orientation of all boxes is fixed with respect to the height and they can only be rotated by
90◦ horizontally. The edges of the boxes must be parallel to the sides of the container.

iii) Each item has an associated fragility flag fik which is set to one if item Iik is fragile and zero
otherwise. Non-fragile items cannot be placed on top of fragile ones.

iv) Each box must have a minimum supporting area in contact with its base. All items that are
not placed directly on the floor must have a percentage of its base in direct contact with other
boxes. This is usually set to 75%.

v) When unloading items of a customer i, it must be possible to do so for all of his items by
only using movements parallel to the length of the vehicle. This means that no item of another
customer which is visited later on the route can be placed on top of or between Iik and the rear
of the vehicle for all k = 1, . . . ,mi. This policy is hereupon referred to as LIFO (last in first
out).

Figure 1 gives an example of a feasible packing plan.

3 Proposed Algorithm

Our solution uses the same two-stage approach proposed by Gendreau et al. (2006), that is, we
consider routing and packing separately, each with its own algorithm, which are then coordinated
to produce a complete solution.



We first describe the data structure used to represent the loading space of vehicles. After that
we detail our packing algorithm. Then, we present our tabu search strategy which iteratively calls
the packing subroutine.

3.1 Container Representation

The packing procedure is called several times throughout a complete execution, therefore it is
essential for it to give good results in reasonable time. Furthermore, we have to make sure that
our representation is powerful enough so that whenever a configuration that has a feasible solution
arises we are able to represent it and not incorrectly discard it.

We achieve this by extending a dynamic matrix proposed by Ngoi et al. (1994) with multiple
views. The main idea behind using a dynamic matrix is to represent the vehicle in only two dimen-
sions and to do so by dividing it into a minimum number of cells. Each box is then completely
described in terms of the cells it occupies. The container starts with only one cell representing all
of its available space. As more items get packed, the cells are subsequently divided as necessary.

The main problem with the dynamic matrix is that it has only partial information with regard to
the third dimension (height). This means that space can be wasted if there is only one active view
“from above” at each time. A lot of feasible packing plans generated by the algorithm are then
overlooked because we are not able to efficiently use empty space below already packed boxes.
This problem only arises, however, when a box is positioned with less than 100% of supporting
area. To solve this, we create a new view at the height of the base each time a box is placed not
completely supported if there is not already a previously created view at that height. This has a
very small impact in performance since both cells and views are very few in number given the usual
dimensions involved.

This representation has an advantage over simpler ones in cases where an insertion of a new
box extends an area of support previously provided by the top side of another adjacent box. For
example, in Figure 1, I1,1 and I2,1 provide a combined surface area upon which a large box may be
placed. This also holds even if there are gaps and other boxes in between.

3.2 Packing Algorithm

For a given route, the packing procedure should position all items of all customers that are
visited throughout the route, while satisfying all constraints described in Section 2. Our algorithm
uses a heuristic similar to one used by Gendreau et al. (2006), which given a sequence of items,
greedily places each one on the free position with minimum z, breaking ties by minimum x and
then minimum y. The item is first placed with one of its sides parallel to the sides of the container,
and then rotated by 90◦ in the x − z plane if the first orientation does not fit. This is called the 3D
bottom-left heuristic.

The algorithm then places all items in a container of widthW , heightH and infinite length. The
goal is to minimize the used length without violating any of the constraints. The resulting packing
plan is considered feasible if it has length lower or equal to L.

An important observation is that the ordering of the items greatly impacts the heuristic. By
changing it we are able to generate different packing plans. With that in mind, a number of different
permutations are tested until a feasible packing is found or the number of iterations reaches a limit
θn2, where n is the number of items in the sequence.

A good starting sequence is found if we sort the items in the reverse order in which their
corresponding customers will be visited, so as to increase the chances of generating solutions
that satisfie the LIFO constraint. Let seq0 = (1, . . . , n) be that sequence. We then perturb it
to create a new one with some positions changed. It is fundamental to note that say seq1 =
(2, 1, 3, 4, . . . , n) will be feasible (will satisfy LIFO) with much greater probability than for ex-



ample seq2 = (n, n− 1, . . . , 1). Taking that into account, we propose the randomized Algorithm 1
for generating box orderings.

Algorithm 1 Packing Routine
Input: a list of boxes to be packed
Output: a packing plan
1: repeat
2: for i← 0 to θn2 do
3: create indexing vector idx where idx[i] points to box i
4: for all idx[i] do
5: idx[i]← random() // random positive integer
6: idx[i]← idx[i]/(random() mod (n− i+ 1))
7: idx[i]← idx[i]/(random() mod (n− i+ 1))
8: end for
9: sort idx in non-decreasing order

10: call 3lbottomleft heuristic with boxes in order determined by its corresponding idx
11: end for
12: until solution is feasible or solution is not improved

When we find a feasible packing for a group of customers we cache the solution so subsequent
calls with the same arguments result in only a cache look-up. If we cannot find a feasible packing
though, we do not store that result immediately. This is due to the fact that by its randomized nature
it is possible for the algorithm to find a better packing in another call with the exact same arguments.
We do, however, give up after τ attempts, so as to not waste time on impossible or very difficult
routes. In this case the solution is marked infeasible and cached to avoid further attempts to pack it.

3.3 Routing

The routing part of the 3L-CVRP is addressed by a tabu search. The initial solution is con-
structed by the savings algorithm by Clarke and Wright (1964) and then improved upon by search-
ing through its neighborhood. The savings algorithm works as follows. First each customer is
placed in a separate route. A list of savings is then constructed, where for each pair of customers
(i, j) we calculate its saving as ci0 + c0j − cij which corresponds to the reduction of the distance
when merging two routes with endpoints i and j. We then greedily pick the pair with the largest
saving of the merged endpoints iteratively and merge their corresponding routes if we can find a
suitable packing plan. If after that we have a routing solution with more routes than v, we again
greedily pick the best pair and merge their corresponding routes even if we cannot find a feasible
loading, and then repeat that process until the number of routes is equal to v. In this case the initial
solution will not be feasible.

After the initial solution is created, we proceed with the optimization part. The following pro-
cedure is repeated until a time limit is reached.

In each iteration, the current solution’s neighborhood is explored in a particular order. We
always need to provide a feasible packing plan for any new routes and for that we need to call the
packing procedure each time we evaluate a neighbor. The objective function used is d+α·eW+β·eL
where d is the total length of all routes, eW is the total excess weight and eL is total excess length.

We always accept any move without penalties that results in a better solution than the current
one. If we cannot find any, we accept the first move that improves the objective function, or the best
move found when none improves over the incumbent. This results in a first improvement policy
most of the time. The chosen move is then applied and added to the tabu list, which always contains
the last moves that were made.



After the first feasible solution is found, no infeasible solutions are accepted anymore (we enter
feasible mode). This has the advantage that it is unnecessary to generate packing plans for solutions
which increase the total distance, since they cannot improve over the feasible incumbent.

The types of moves between two routes R0 and R1 that are considered are:

• Shift move: insert customer i ∈ R0 at a defined position in R1 and remove it from R0

• Swap move: given i ∈ R0 and j ∈ R1 swap i and j.

• Crossover move: after defining a splitting point in both R0 and R1, R0 becomes the original
first half of R0 and the original second half of R1. The same is done to R1.

• Intra-swap move: swap two customers i, j ∈ R0.

After a move is accepted, every individual move of a customer contained in the move is declared
tabu for the following T iterations (tabu tenure). For instance, after a swap, customer i cannot return
to R0 and customer j cannot return to route R1 during tabu tenure. The same idea applies to all
other types of moves, that is, we forbid reversing individual client moves.

We explore the neighborhood in the following order. First, we evaluate all shift moves possible
for all pairs of different routes. Then we evaluate all swap moves and after that all crossover moves,
trying all possible insertion points. For a particular type of move all routes are iterated in random
order. Intra-swap moves are done selectively: we randomly evaluate niswaps moves. If we are in
feasible mode and already have a feasible neighbor at any point, we skip all subsequent moves that
do not lead to a better solution with respect to total length (we do not need to call the packing
algorithm).

If after all the moves are evaluated the best solution is still infeasible but it is better with respect
to total length than that of the current incumbent, we intensify the search for a packing plan, calling
the loading procedure again for all routes that currently have penalties.

4 Computational Results

Our algorithm was implemented in ANSI C++ and compiled using GCC with optimization flag -
O3. All tests were done using a single core of an Intel i7 930 with 2.8GHz and 12GB of RAM. The
set of instances used is available at http://www.or.deis.unibo.it/research.html
and was introduced by Gendreau et al. (2006). Tests for each instance ran until the corresponding
time limit was reached. Table 1 shows the settings of all parameters of the algorithm used in the
computation experiments.

Table 1: Parameters used in the computational experiments.

parameter description value
τ tries before giving up on packing 10
θ packing permutations constant 30
niswaps number of randomized intra-swaps min(n2/4, 250)
T tabu tenure min(15, n/2)
α excess weight penalty 20δ/D, where δ = average(cij)
β excess length penalty 20δ/W
time limit max time given to the tabu search 900s if n < 35,

1800s if 35 ≤ n < 50,
3600s otherwise

Table 3 presents the results obtained when running our algorithm with all loading constraints
imposed. Every solution is feasible. Each instance is identified by its index I together with the
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Figure 2: Routing (a) and packing (b) examples for instance 26.

number of customers n and the total number of boxes M it contains. All results from the litera-
ture are given as the average total traveled distance after ten executions of the same method. For
all methods we present the average (ttdavg) and the best (ttdmin) results found after ten runs with
different random seeds, with the exception of Tao and Wang (2010), for which only the average
result is published. Best known values for each instance are in bold wherever they appear. The
running times are given in seconds and correspond to the average time taken by the algorithms to
reach the best solutions, with the exception of Bortfeldt (2010) where it represents the average total
running time of the algorithm. Additionally, we provide the average for all columns. For compari-
son, we show the gap between our results and the results from the literature, which corresponds to
the average percentage difference of all instances. A positive gap indicates our results are better, on
average. The processor used by each method is, in the same order they appear in Table 2: Pentium
IV 3.2GHz, Intel Xeon E5430 2.66 GHz, Pentium IV 2.39GHz, Core 2 Duo E8500 3.17GHz and
Core i7 930 2.8GHz. Figure 2 gives an example of a routing and a packing produced by our method
for instance 26.

The results show that our method is capable of producing solutions of good quality. On average,
our algorithm produced better results than all others, ranging from a 0.4% to 1.87% average im-
provement of the total traveled length. For space reasons, we omitted the results of Gendreau et al.
(2006) and Tarantilis et al. (2009). We do note that the average gap in relation to their solutions is
8.16% and 4.79%, respectively. Table 2 compares the number of times each method obtained the
best minimum value and the best average value. We can see that with respect to solution quality
our method is superior to all others, with the exception of Bortfeldt (2010), which is able to find
one more minimum solution. On the other hand, we outperform it on average, as it obtains only
six average best solutions, and the average gap is still 1.29% compared to our method. We further
observe that our algorithm is particularly good in large instances with 50 or more clients, for which
we obtain 6 new best values out of 9 instances. With respect to computational effort, our algorithm
is comparable to all the other methods except that of Bortfeldt (2010), which takes significantly less
time in a similar setup.

Table 2: Comparison of the number of best solutions obtained by methods from the literature.

Fuellerer et al. Wang et al. Tao and Wang Bortfeldt Our method
(2009) (2010) (2010) (2010)

Best minimum 2 9 - 13 12
Best average 2 4 8 6 12
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5 Conclusions

The 3L-CVRP is an interesting and challenging problem due both to its theoretical complex-
ity and its direct relation to real-world applications. In this paper we presented a solution based a
tabu search algorithm for the routing and a novel packing heuristic. We found the packing to be
extremely important for obtaining good final results, and the proposed randomized packing algo-
rithm and the representation of the 3D loading space are largely responsible for the quality of our
solutions. Besides the packing, the first-improvement evaluation of the routing’s neighborhood also
strongly contributed to the results.

Through computational experiments we were able to show that our method obtains equal or
better results than those from the literature. We have been able to improve the best known value of
six instances. Our method is robust in the sense that on average it dominates all other methods and
obtains the best results for large instances.
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