
September 24-28, 2012
Rio de Janeiro, Brazil

A GRASP WITH PATH-RELINKING FOR
THE k-WAY GRAPH PARTITIONING PROBLEM

Bruno Menegola, Marcus Ritt
Instituto de Informática – Universidade Federal do Rio Grande do Sul

Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil
{bmenegola,mrpritt}@inf.ufrgs.br

RESUMO

O problema de particionamento balanceado de grafos consiste em encontrar uma partição
de tamanho k dos vértices de um grafo, minimizando o número de arestas que participam do corte e
sujeito a uma restrição de balanceamento, onde cada parte terá um tamanho máximo predefinido. O
problema possui diversas aplicações, dentre elas o particionamento de circuitos VLSI, a otimização
da comunicação em processamento distribuído e a decomposição de redes de transporte. Neste
artigo propomos uma abordagem para produzir boas soluções utilizando a metaheurística GRASP
com path-relinking para algumas soluções elite e também usando generalizações de operadores
heurísticos utilizados no caso de biparticionamento, como a heurística construtiva Differential
Greedy e a busca local Fiduccia-Mattheyses. Apresentamos resultados experimentais que mostram
que nosso particionador é competitivo com os do estado-da-arte em alguns casos.

PALAVRAS CHAVE. Problema de particionamento de grafos em k-partes, GRASP,
Path-relinking, Heurísticas, Otimização Combinatória, Metaheurísticas.

MH - Metaheurísticas

ABSTRACT

The balanced graph partitioning problem consists in finding a partition of size k for the
vertices of a graph, minimizing the number of edges belonging to the cut and subject to a balance
restriction, in which each part shall have a predefined maximum size. The problem has several
applications, among them the partitioning of VLSI circuits, the optimization of communication in
distributed computing and road network decomposition. In this paper we propose an approach for
generating good solutions using the metaheuristic GRASP along with a path-relinking to some elite
solutions and also using generalizations of heuristic operators proposed for graph bipartitioning,
such as the constructive heuristic Differential Greedy and the Fiduccia-Mattheyses local search.
We present experimental results that show that our partitioner is competitive with state-of-the-art
in some cases.

KEYWORDS. k-way graph partitioning problem, GRASP, Path-relinking, Heuristics,
Combinatorial Optimization, Metaheuristics.

MH - Metaheuristics

2308



September 24-28, 2012
Rio de Janeiro, Brazil

1. Introduction
The balanced graph partitioning problem consists in finding a partition of size k for the

vertices of a graph, subjected to a balance restriction. This restriction limits the maximum cardi-
nality of the size of each part. For such partitioning, the most common objective is to minimize the
sum of the weights of edges that connect vertices in distinct parts. Other objective functions have
been defined, such as total or maximum communication volume (Schloegel et al., 2003), but the
minimum cut is the most researched function. In this paper we focus on the case where the graph is
undirected and vertices and edges have unit weights.

The balanced graph partitioning is an NP-hard combinatorial optimization problem (Bui
and Jones, 1992) and has several applications. Examples include partitioning of VLSI circuits, road
network decomposition, domain decomposition for parallel computing, image segmentation, data
mining, finding ground-state magnetization of spin glasses, matrix decomposition, among others
(Chardaire et al., 2007).

Being a hard problem, exact solutions are found in reasonable time just for small graphs.
Using optimized models of integer programming (Boulle, 2004), for example, experiments show
that a state-of-the-art solver can compute a solution for a graph of 500 vertices and 625 edges in
about 25 minutes. However, the applications of the problem require to partition much larger graphs
and so heuristic solutions are usually indicated. There are some specific heuristics for the prob-
lem, some constructive, such as the Min-Max Greedy algorithm (Battiti and Bertossi, 1999) or the
Differential Greedy heuristic (Battiti and Bertossi, 1997); and some of iterative refinement, such as
the Kernighan-Lin local search (Kernighan and Lin, 1970), the Fiduccia-Mattheyses local search
(Fiduccia and Mattheyses, 1982) or the Lock-Gain local search(Kim and Moon, 2004). Although
they provide good results, the refinement algorithms are usually used as local search procedures for
other methods, like metaheuristics. Several metaheuristic approaches have already been proposed:
Genetic Algorithms (Kim and Moon, 2004), Tabu Search (Rolland et al., 1996), Greedy Random-
ized Adaptive Search Procedure (GRASP) (Laguna et al., 1994), Simulated Annealing (Johnson
et al., 1989), Memetic Algorithms (Galinier et al., 2011) and others.

In the following sections we are going to present a new approach for the partitioning prob-
lem. The partitioner is based on a GRASP that makes use of known heuristics, such as the Dif-
ferential Greedy construction and a Tabu based Fiduccia-Mattheyses local search (Galinier et al.,
2011), along with two newly proposed path-relinking operators. Results show that our approach is
competitive with state-of-the-art heuristic in some cases.

The paper is organized as follows: Section 1.1 presents some notation and a formal def-
inition of the problem. Section 2 presents methods that will be used in our approach, which is
described in Section 3. Experimental results are given in Section 4 along with an analysis of them.
We finally state some conclusions and future research directions in Section 5.

1.1. Notation and formal definition

Consider an undirected graph G = (V,E, c, ω), with n = |V | vertices and m = |E| edges,
where c(u) and ω({u, v}) are non-negative weights of a vertex and an edge, respectively. Let B be
a collection of k subsets {B0, . . . , Bk−1} of V ; and define the set F = {{u, v} ∈ E | u ∈ Bi, v ∈
Bj , 0 ≤ i < j ≤ k − 1} of cut edges. The problem of k-way graph partitioning with balance
1 ≤ ε < k can be described by the following model:

2309



September 24-28, 2012
Rio de Janeiro, Brazil

minimize
∑
{u,v}∈F

ω({u, v})

subject to 0 <
∑
u∈Bi

c(u) ≤
⌊
ε

k

∑
v∈V

c(v)

⌋
∀i ∈ [0, k − 1]

⋃
0≤i<k

Bi = V

Bi ∩Bj = ∅ ∀i, j ∈ [0, k − 1] | i 6= j

In this paper, all graphs will be unweighted, i.e., c(u) = 1 and ω({u, v}) = 1. The first
restriction ensures that each part Bi does not exceed the size limit imposed by ε. The second and
third restrictions ensure that B is a partition of V . Commonly k = 2l, for some l ∈ N+ (usually
l ≤ 6), and so a bipartitioner could be defined and applied recursively, although the quality of
the partitions tend to decrease with the increase of partition size (Pellegrini, 2007). If ε = 1 the
restriction for each part size should take into account the possibility of n being not divisible by k,
and some parts may be bigger than others. A greater imbalance does not change the complexity
class of the problem, provided that 1 ≤ ε < k, i.e., the problem remains NP-hard (Bui and Jones,
1992).

2. Related approaches and state-of-the-art
The next sections are going to present known algorithms for the problem that we use as

subprocedures of our approach, such as the constructive method Differential Greedy, the refine-
ment method Fiduccia-Mattheyses and its Tabu variation. We also briefly present the metaheuristic
GRASP and related attempts to build a partitioner.

2.1. Constructive algorithms
It is very easy to generate a feasible solution for the partitioning problem and there are

several methods for such task. The trivial method is to generate a random solution: each vertex
is assigned to a random part that does not violate its size restriction. This does not produce good
solutions because it ignores the fact that real world graphs usually have an inherent structure that
can be taken into account. A good constructive algorithm can generate cuts of expected size about
a quarter of the expected size of a random partition for graphs with some structure (Karypis and
Kumar, 1998; Battiti and Bertossi, 1997).

More robust constructive methods use spectral information of the graph (Karypis and Ku-
mar, 1998) or a greedy function that grows the partition around seed vertices. One good heuristic is
the Differential Greedy heuristic (Battiti and Bertossi, 1997) (Algorithm 1). New vertices are added
to the parts based on the minimum difference between the number of edges that connect them to
another part and the number of connections inside the part that it would be inserted (lines 5 and 6).

Lines 5 and 6 are critical but an efficient implementation of this algorithm uses a bucket
structure to keep the gain values up-to-date (increases on the cut size induced by every unassigned
vertex), as proposed by Fiduccia and Mattheyses (1982). This structure will allow a constant time
access to the vertex that increases cut size the least, as well as eventual updates of neighbors of
recently assigned vertices.

The presented algorithm builds perfectly balanced bipartitions of the input graph but it can
be easily extended to k-way perfectly balanced partitioning. A critical issue arises for imbalanced
partitioning because no assumptions can be made on which part may grow larger first. If one lets the
parts grow to unequal sizes (within the desired imbalance), experience shows that worse solutions
can be generated on average when compared with perfect balanced ones. Our partitioner does not
try to create imbalanced initial partitions and just use the generated k-way perfectly balanced ones.

2310



September 24-28, 2012
Rio de Janeiro, Brazil

Algorithm 1: Differential Greedy constructive heuristic (Battiti and Bertossi, 1997)
Input: Graph G = (V,E)
Output: A bipartition of V

1 u, v ← two random vertices ∈ V | u 6= v;
2 A← {u}; B ← {v}; V ′ ← V \ {u, v};
3 while |V ′| > 0 do
4 let E(v, S) = |{{v, u} ∈ E|u ∈ S}|;
5 m← minv∈V ′ (E(v,B)− E(v,A));
6 C ← {v ∈ V ′ | E(v,B)− E(v,A) = m};
7 b← random vertex ∈ C;
8 A← A ∪ {b};
9 V ′ ← V ′ \ {b};

10 swap sets A and B;
11 return {A,B};

2.2. Refinement heuristics

Suppose for a moment that we are interested in improving a perfectly balanced bipartition
{A,B} of a graph. One possible approach to refine the solution is swapping subsets X ⊂ A and
Y ⊂ B (with |X| = |Y |) to opposite sides so that a reduction in cut size is achieved. However, find-
ing these subsets is intractable just as the partitioning problem itself (Schloegel et al., 2003). With
this in mind, some specific heuristics for the problem were proposed. One of great importance was
the Kernighan-Lin (KL) local search (Kernighan and Lin, 1970) that later was practically replaced
by that of Fiduccia and Mattheyses (1982). Although the latter uses the same heuristic, it is a major
improvement over the former because it reduced time complexity from O(n2) to O(m), by using
a bucket structure, and also permits to generate imbalanced partitions. Fiduccia-Mattheyses (FM)
local search is the refinement algorithm used in this paper, and therefore we will explain it next in
more details.

A version of the FM algorithm for k-way partitioning works as follows (Osipov and
Sanders, 2010). A candidate vertex is selected to change its part when it is expected to reduce
the size of the cut. The candidates are ordered according to the gain that they induce when moved
to a specific part. The gain function gi(v) quantifies the gain of moving a vertex v ∈ Bj to a part
Bi (with i 6= j):

gi(v) =
∣∣{{v, u} ∈ E | u ∈ Bi}∣∣− ∣∣{{v, u} ∈ E | u ∈ Bj}∣∣.

In order to keep gains ordered, each part Bi has a heap that holds the vertices that can be moved to
it. Among the possible moves to all parts, an iteration of the local search uses the vertex of largest
gain whose move still satisfies all restrictions. It is not allowed to move any vertex more than once.
The local search finishes when no vertex is eligible for moving (because of some restriction or since
no more vertices are available) or when a stopping criterion is reached. This algorithm allows, at
some point, movements that lead to worse cuts, but the best cut found is always restored at the end.
An iterative improvement version of FM restarts the local search until no more improvements are
made.

The stopping criterion is based on a random walk model (Osipov and Sanders, 2010) and
interrupts the search when there is a low probability of returning to a state of improvement. If the
move gains have expectation µ and variance σ2, as observed on the last p steps (moves) until the
last improvement, and, with this, it is unlikely that the local search will get to a new best solution if
pµ2 > ασ2 + β, for some adjust parameters α and β,

FM local search does not allow to move any vertex more than once (we call a vertex that
has been moved once locked). Galinier et al. (2011) proposes a different approach, based on Tabu
Search. The variation basically locks the vertices for some iterations by adding them to a Tabu list

2311



September 24-28, 2012
Rio de Janeiro, Brazil

but allow them to be moved several times before some stopping criterion is reached. The search
stops when a maximum number of iterations is reached or there are no more vertices allowed for
moving. The number of iterations that a vertex should be locked is specified by a tenure function as
follows: the function τ : N+ → N+ gives the tenure, based on a iteration i, and equals to τ(i); the
function depends on a parameter maxT that limits the maximum number of iterations a vertex will
be tabu; it is a step function and, hence, it can be defined by, ∀i ∈ {xj , . . . , xj+1−1} : τ(i) = aj ; it
is also periodic and it defines 15 intervals (greater intervals are based on these, e.g., the 16th interval
is equal the first one); the values are defined by aj = maxT×bj , x1 = 1, xj+1 = xj+4×maxT×bj
and (bj)j∈{1,...,15} = 1

8(1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1). For example, if maxT = 40, we have
x = (1, 20, 60, 80, 160, . . . ) and a = (5, 10, 5, 20, 5, . . . ), and a vertex that enters the tabu list at
iteration i = 25 will be locked for τ(25) = 10 iterations. Galinier et al. (2011) have demonstrated
the usefulness of this tenure function, and we will use it in our approach.

2.3. Graph partitioners

Several metaheuristics have been proposed for this problem. One of the first methods,
proposed by Johnson et al. (1989) was a simulated annealing algorithm that used Kernighan-Lin
heuristic for local optimization.

The Greedy Randomized Adaptive Search Procedure (GRASP) methodology was devel-
oped in late 1980s by Feo and Resende (1989) and is a multi-start heuristic that in each iteration
constructs an initial solution and refines it through a local search. The initial solution must have
some random element such that the space of possible solutions can be explored properly. The con-
structive algorithm must be greedy, i.e., it chooses the best item for insertion in the solution, and
adaptive, because this choice is made based on the previously inserted items. This methodology
was later applied to perfectly balanced bipartitioning problem by Laguna et al. (1994). It also used
the Kernighan-Lin algorithm for local search, but introduced the idea of constructive algorithms
based on greedy functions.

The usage of a good constructive algorithm combined with metaheuristics were further
analyzed in Battiti and Bertossi (1999) with a definition of a new constructive heuristic, the Min-
Max Greedy, which is the base of Differential Greedy construction explained in Section 2.1.

Chardaire et al. (2007) present a new metaheuristic called PROBE for the graph partitioning
problem, which has some similarities with GRASP. As part of the procedure, the authors introduced
a method to use the information of two good partitions for an escape attempt of local minima. This
method inspired our path-relinking (PR) approach. PR is an enhancement for GRASP that can lead
to significant improvements in solution time and quality (Resende and Ribeiro, 2003). It explores
trajectories connecting solutions to find better ones. Often one of them is chosen from a set of elite
solutions found during the search. The idea for connecting two solutions is to find a path through
their neighborhood by making small modifications on the first solution until an equivalent solution
to the second one is reached. Only those modifications which make the first solution more similar to
the second are allowed. If a solution better than both is found on this path, it substitutes the current
solution. The methods of PR for the graph partitioning problem will be defined in the next section.

3. A GRASP for the k-way graph partitioning problem
In this section we propose a GRASP for the k-way graph partitioning problem. The GRASP

requires two basic operators: constructive and refinement algorithms. We adapted the Differential
Greedy algorithm (Section 2.1) for the k-way partitioning since it has the necessary elements to
be an initial solution generator for this metaheuristic and provides good results compared to other
generators as demonstrated in Battiti and Bertossi (1997). It is also the base of one of the path-
relinking operators that it will be explained in Section 3.2. The refinement algorithm is the k-way

2312



September 24-28, 2012
Rio de Janeiro, Brazil

and tabu based adaptation of the Fiduccia-Mattheyses (FM) heuristic explained in Section 2.2. It
appears in two forms: an iterative and a non-iterative procedure. The former uses the latter to refine
a solution until no improvement is made.

In order to improve GRASP using path-relinking, it is required that we maintain some good
solutions, the so-called elite, which serve as target solutions in path-relinking. In the next section
we present how our elite pool handles new solutions and how they are classified as elite ones.

3.1. Elite solutions
In our approach, a solution is considered an elite when it is the best known solution or

when it is different enough from the other solutions in the pool. The difference between solutions
is quantified by a similarity measure.

The similarity corresponds to the number of vertices that do not need to change parts to
achieve an equivalent partition. Given two partitions A and B and some bijection mapping the
parts of A to the parts of B σ : {0, . . . , k − 1} → {0, . . . , k − 1}, let S(σ) = {v ∈ V | v ∈
Ai, v ∈ Bj , σ(i) = j}, be the set of vertices that makes the two partitions similar based on the
correspondence of parts imposed by σ. Two partitions are said to be equivalent when |S(σ)| = n.
The critical issue in this case is defining σ when two partitions differ. We are in fact interested in the
mapping σ∗ that maximizes the similarity, i.e., |S(σ∗)| = maxσ(|S(σ)|). The difference between
two partitions is then defined as ∆(A,B) = |S(σ∗)|/n, while the similarity is 1−∆.

In order to define the mapping σ∗, a greedy algorithm that does not guarantee optimality
is introduced in Galinier et al. (2011). We define σ∗ optimally through a maximal matching in a
bipartite graph defined as follows: each part Ai can be related to each part Bj ; the weight ω({i, j})
of this edge corresponds to the number of similar vertices, i.e., ω({i, j}) = |{v ∈ V | v ∈ Ai, v ∈
Bj}|. The maximal matching is obtained via the Kuhn-Munkres (Hungarian) algorithm (Munkres,
1957) and the solution corresponds to the mapping σ∗. The complexity of this algorithm is O(k3).

As mentioned before, when a solution is not the best, only partitions different enough from
the others are allowed to enter elite pool. When a new non best partition is found, we com-
pute its difference to all elite solutions. If the minimum difference is greater than a parameter
EliteMinDiff and its cut size is less or equal to that of the worst elite solution, we allow the
current solution to enter elite pool. If the elite pool exceeds its maximum size, defined by a parame-
ter EliteMaxSize, some solution is required to be dropped. The strategy is remove the solution
with the minimum difference to the recently inserted one (or the second one, because we never drop
the best solution). Since we have a constraint that allows a solution to be an elite only if it has a
better cut than the worst one, it is not interesting to keep similar partitions.

Another rule defines which partitions should be used for the path-relinking. The se-
lected solutions that will be part of it are chosen randomly between one of the best partitions in
elite pool. The list size of the solutions that can be chosen is specified by another parameter:
EliteRandLimit. We introduce this limit such that only the best solutions are relinked but at
the same time the pool is big enough so we can do a regeneration.

The operation of pool regeneration is done every EliteRegeneration iterations. Dur-
ing regeneration (Algorithm 2), several path-relinking operations are made with some of the best
solutions to all the others in the same elite pool trying to reach new best results. This operation also
introduces variability into the pool; otherwise the pool can converge to a set of solutions that do not
help to improve new partitions and do not allow new solutions to enter on it.

3.2. Path-relinking
With the basic GRASP, based on a Differential Greedy heuristic construction, the local

search of Fiduccia-Mattheyses, and the introduction of an elite pool, we have the required frame-

2313



September 24-28, 2012
Rio de Janeiro, Brazil

Algorithm 2: Elite regeneration
Input: Elite pool E = {E0, E1, . . . } sorted by non-decreasing cut size; parameters EliteMinDiff
Output: A new elite pool E′

1 E′ ← {E0};
2 foreach P ∈ {Ei ∈ E | i < EliteRandLimit} do
3 foreach Q ∈ E do
4 R←path_relink_fm(P,Q);
5 R←iterated_local_search(R);
6 if R is the best solution or ∆(R,S) ≥ EliteMinDiff, ∀S ∈ E′ then E′ ← E′ ∪ {R};
7 if |E′| > EliteMaxSize then drop the most similar solution with R from E′;
8 return E′;

work for applying the path-relinking. We propose two path-relinking operators with specific pur-
poses. The first one, path_relink_dg , is designed to be used in the constructive phase of
GRASP. The second one, path_relink_fm , is used to discover new local minima based on
two previously found solutions. For both of them to work, we must first lock vertices on equivalent
parts.

The comparison of partitions uses the mapping σ∗ previously discussed on Section 3.1. As
explained above, this function maps the parts of two partitions such that the total number of vertices
common to the mapped parts is maximized. This mapping is used to lock these common vertices so
they are forbidden to change parts during PR. The remaining vertices are moved according to each
operator.

The operator path_relink_dg moves unlocked vertices based on the Differential
Greedy (DG) algorithm explained before. The DG requires one seed vertex on each part (cho-
sen randomly according to the basic algorithm). This PR operator starts the DG algorithm with the
locked vertices as the part’s seeds and continues growing the solution as defined by DG. If a part
has no locked vertices, we choose an unlocked vertex randomly to be its seed. Since DG is unable
to generate imbalanced solutions, we always grow the smaller parts first until all have the same size.

The other operator, path_relink_fm , starts with the first partition and locks the ver-
tices common to parts of the second. The unlocked vertices are only allowed to be moved to their
equivalent part. For example, if a vertex u ∈ A1 and u ∈ B3, but σ∗(2) = 3, the only allowed
move for u is from part A1 to A2 because A2 is equivalent to B3, as defined by σ∗. With this con-
straint, after all unlocked vertices are moved to their destinations, the first partition will have been
transformed to the second. The order of movements are guided by Fiduccia-Mattheyses heuris-
tic explained before and all allowed movements are performed. After a vertex is moved it gets
locked. If a solution better than the two initial partitions is found, we update the best solution for
this GRASP iteration.

3.3. Full partitioner

We finally present our complete algorithm for the graph partitioning problem. Algorithm 3
is the proposed GRASP with path-relinking and a pool of elite solutions. The first phase of a
GRASP iteration corresponds to lines 4 to 9. It is an iterative constructive and refinement of a
solution for the current iteration. Instead of generating only a single solution with DG, this loop
builds one every iteration (line 5) and merges the information of it and the best of the phase (line 7)
to improve results of the DG construction. The local search on line 6 is intended to refine the
solution from DG. PR turned out to be more useful this way, probably because DG results are still
too random to be compared with the best solution of the phase. Line 8 is the iterative refinement
detailed before. Lines 10 to 15 deal with the PR phase. The iterative loop continues only when P ′

improved, i.e., a new local minimum is found between P and Q. Lines 16 to 18 manage the elite
pool as detailed in Section 3.1.

2314



September 24-28, 2012
Rio de Janeiro, Brazil

Algorithm 3: GRASP for k-way graph partitioning problem
Input: Graph G = (V,E); imbalance limit ε; partition size k; parameters from Section 3.1
Output: A k-way partition of V

1 E ← ∅;
2 while no stop criterion is satisfied do
3 P ← initial solution by diff_greedy;
4 repeat
5 Q← initial solution by diff_greedy;
6 Q← local_search(Q);
7 P ← path_relink_dg(P , Q);
8 P ← iterative_improvement_local_search(P);
9 until P not improved;

10 if elite set E has some solution then
11 repeat
12 Q← randomly choose a solution from the first EliteRandLimit in E;
13 P ′ ← path_relink_fm(P , Q);
14 if P ′ is better than P and Q then P ← iterative_improvement_local_search(P ′);
15 until P did not improve;
16 if R is the best solution or ∆(R,S) ≥ EliteMinDiff, ∀S ∈ E′ then E′ ← E′ ∪ {R};
17 if |E′| > EliteMaxSize then drop the most similar solution with R from E′;
18 if current iteration multiple of EliteRegeneration then E ← regenerate(E);
19 return best solution in E;

Table 1. Graphs from the graph partitioning archive (Walshaw, 2000).
Instance n m

add20 2395 7462
data 2851 15093
3elt 4720 13722
uk 4824 6837
add32 4960 9462
bcsstk33 8738 291583
whitaker3 9800 28989
crack 10240 30380
wing_nodal 10937 75488

Instance n m

fe_4elt2 11143 32818
vibrobox 12328 165250
bcsstk29 13992 302748
4elt 15606 45878
fe_sphere 16386 49152
cti 16840 48232
memplus 17758 54196
cs4 22499 43858
bcsstk30 28924 1007284

Instance n m

bcsstk31 35588 572914
fe_pwt 36519 144794
bcsstk32 44609 985046
fe_body 45087 163734
t60k 60005 89440
wing 62032 121544
brack2 62631 366559
finan512 74752 261120
fe_tooth 78136 452591

Instance n m

fe_rotor 99617 662431
598a 110971 741934
fe_ocean 143437 409593
144 144649 1074393
wave 156317 1059331
m14b 214765 1679018
auto 448695 3314611

4. Experimental results
We conducted a series of experiments in order to evaluate the quality of the solutions gen-

erated by our GRASP. We used graphs from a well-known graph partitioning archive (Walshaw,
2000). Along with the instances, it provides the best known values for each of them. Character-
istics of the graphs are shown in Table 1. For result analysis, we divided the instances in three
classes: small instances, from add20 to cs4; medium instances, from bcsstk30 to finan512;
and large instances, from fe_tooth to auto.

Our experiments were run on a PC with Intel Core i7 930 processor running at 2.8 GHz
with 12 GiB DDR3 of RAM. We imposed a time limit of two hours for each instance. These times
are acceptable since state-of-the-art approaches impose limits from one to five hours (Osipov and
Sanders, 2010; Sanders and Schulz, 2010; Benlic and Hao, 2011). In order to find good parameter
settings, we conducted some preliminary tests. The resulting parameters and respective values are:
α = 100, β = log2 n, maxT = k

√
m, local search movements limit = 10n, EliteMinDiff =

5%, EliteMaxSize = 5, EliteRandLimit = 5, EliteRegeneration = 32. Tests
were repeated three times for each combination of k ∈ {4, 8} and ε ∈ {1.03, 1.05}. The best and
average cut size found for each instance in all repetitions is shown in Tables 2 and 3, for the cases
ε = 1.03 and ε = 1.05 respectively.

An overall view of the results shows us that the GRASP is more effective for the cases
where k = 4 in both tested imbalances. Compared to best known values, our algorithm achieves
an average relative deviation of 3.9%. The deviation is 1.6% for the small instances, 9.7% for the
medium instances and 2.1% for the large instances. We were able to improve the results of eleven

2315



September 24-28, 2012
Rio de Janeiro, Brazil

cases and achieved the best known value in 40 of them.

The large relative deviations are mostly due to some graphs that the procedure has difficul-
ties to deal with, such as uk, memplus, cs4, fe_body, t60k, wing and auto. The problem
with the last one is due to the fact that only few iterations were able to be performed in the given
time limit. This also supports our first finding, based on analysis of the partitionings, that the path-
relinking is responsible for most of the improvements on cut size. The large instances that had
a low number of performed iterations were not able to take full advantage of the newly proposed
operators. For the instances fe_body, t60k and wing, our constructive algorithm turned out to
be a lot less effective than expected when compared to the remaining instances in the dataset. With
these results we observe that good initial partitions play an important role on the whole procedure
and we shall search for better methods.

The improvements show that our approach is promising because it is competitive even with
the recent extra attention that the graph partitioning gained as one of the target problems of the
10th DIMACS Implementation Challenge1. Almost all best known values at this time have been
obtained by the algorithm KaFFPaE proposed by Sanders and Schulz (2011) during this challenge.
KaFFPaE is a distributed, evolutionary and multilevel partitioner and the best values were obtained,
for each test, within a time limit of two hours on 16 processor units. In particular, the fact that we
were able to improve some of the smallest instances indicates, in our opinion, that our approach can
make a qualitative contribution compared to existing methods, since these are the easiest instances
and these values have not been found in tests of more than 35 proposed heuristics.

Another finding with our approach is related to the performance of the tabu based local
search versus the simple version of Fiduccia-Mattheyses. Inside the GRASP, the tabu version re-
duces by 10% the cut sizes on average, even requiring some adjustments.

5. Conclusions
In this paper we proposed a new approach to the k-way graph partitioning problem based on

GRASP, path-relinking, extensions of heuristics proposed for the graph bipartitioning problem such
as the constructive algorithm Differential Greedy and the refinement algorithm Fiduccia-Mattheyses
along with some state-of-the-art enhancements for the latter one. The proposed GRASP was very
effective in some instances, achieving new best values. One interesting finding is related to the path-
relinking, which has proven to be very effective. Nevertheless, the procedure generates cuts that
are in average still 3.9% above the best known values, which is mainly due to a few hard instances.
We plan to investigate the causes and attempt to improve partition quality by better calibrating the
involved parameters and finding a better and simpler tenure function for the tabu based Fiduccia-
Mattheyses.

References
Battiti, R. and Bertossi, A. (1997). Differential greedy for the 0-1 equicut problem. In in Proceed-

ings of the DIMACS Workshop on Network Design: Connectivity and Facilities Location, pages
3–21. American Mathematical Society.

Battiti, R. and Bertossi, A. A. (1999). Greedy, prohibition, and reactive heuristics for graph
partitioning. IEEE Transactions on Computers, 48:361–385.

Benlic, U. and Hao, J. (2011). A multilevel memetic approach for improving graph k-partitions.
IEEE Transactions on Evolutionary Computation. to appear.

Boulle, M. (2004). Compact mathematical formulation for graph partitioning. Optimization and
Engineering, 5:315–333.
1http://www.cc.gatech.edu/dimacs10

2316

http://www.cc.gatech.edu/dimacs10


September 24-28, 2012
Rio de Janeiro, Brazil

Bui, T. N. and Jones, C. (1992). Finding good approximate vertex and edge partitions is NP-hard.
Information Processing Letters, 42:153–159.

Chardaire, P., Barake, M., and McKeown, G. P. (2007). A probe-based heuristic for graph
partitioning. IEEE Transactions on Computers, 56:1707–1720.

Feo, T. A. and Resende, M. G. (1989). A probabilistic heuristic for a computationally difficult set
covering problem. Operations Research Letters, 8(2):67–71.

Fiduccia, C. M. and Mattheyses, R. M. (1982). A linear-time heuristic for improving network
partitions. In Proceedings of the 19th Design Automation Conference, DAC ’82, pages 175–181,
Piscataway, NJ, USA. IEEE Press.

Galinier, P., Boujbel, Z., and Fernandes, M. C. (2011). An efficient memetic algorithm for the
graph partitioning problem. Annals of Operations Research, 191:1–22.

Johnson, D. S., Aragon, C. R., McGeoch, L. A., and Schevon, C. (1989). Optimization by
simulated annealing: an experimental evaluation. part i, graph partitioning. Oper. Res., 37:865–
892.

Karypis, G. and Kumar, V. (1998). A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput., 20:359–392.

Kernighan, B. W. and Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. The
Bell System Technical Journal, 49(2):291–307.

Kim, Y. and Moon, B. (2004). Lock-gain based graph partitioning. Journal of Heuristics, 10:37–
57.

Laguna, M., Feo, T. A., and Elrod, H. C. (1994). A greedy randomized adaptive search procedure
for the two-partition problem. Operations Research, 42(4):677–687.

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal of the
Society for Industrial and Applied Mathematics, 5(1):32–38.

Osipov, V. and Sanders, P. (2010). n-level graph partitioning. In Proceedings of the 18th an-
nual European conference on Algorithms: Part I, ESA’10, pages 278–289, Berlin, Heidelberg.
Springer-Verlag.

Pellegrini, F. (2007). A parallelisable multi-level banded diffusion scheme for computing balanced
partitions with smooth boundaries. In Kermarrec, A., Bougé, L., and Priol, T., editors, Euro-Par
2007 Parallel Processing, volume 4641 of Lecture Notes in Computer Science, pages 195–204.
Springer Berlin / Heidelberg.

Resende, M. G. C. and Ribeiro, C. C. (2003). GRASP and path-relinking: Recent advances and
applications. In Ibaraki, T. and Yoshitomi, Y., editors, Proceedings of the Fifth Metaheuristics
International Conference (MIC2003).

Rolland, E., Pirkul, H., and Glover, F. (1996). Tabu search for graph partitioning. Annals of
Operations Research, 63:209–232.

Sanders, P. and Schulz, C. (2010). Engineering multilevel graph partitioning algorithms. CoRR,
abs/1012.0006.

Sanders, P. and Schulz, C. (2011). Distributed evolutionary graph partitioning. CoRR,
abs/1110.0477.

Schloegel, K., Karypis, G., and Kumar, V. (2003). Graph partitioning for high-performance
scientific simulations. In Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L.,
and White, A., editors, Sourcebook of parallel computing, pages 491–541. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Walshaw, C. (2000). The graph partitioning archive. http://staffweb.cms.gre.ac.uk/
~c.walshaw/partition.

2317

http://staffweb.cms.gre.ac.uk/~c.walshaw/partition
http://staffweb.cms.gre.ac.uk/~c.walshaw/partition


September 24-28, 2012
Rio de Janeiro, Brazil

Table 2. Best and average results found by our GRASP among all repetitions compared
with the best known values (BKV) when ε = 1.03. Bold values mark (new) best known
values. Relative deviation is presented as a percentage of our cuts relative to BKV. We also
provide some statistics such as the number of results that were improved, matched BKV or
had worst cuts, the average and standard deviation of relative deviation and the average of
standard deviation counting only worst results.

k = 4 k = 8

Relative Deviation Relative Deviation

Instance BKV Best Avg of best of avg BKV Best Avg of best of avg

add20 1158 1135 1142.7 -2.0 -1.3 1689 1693 1701.7 0.2 0.7
data 369 369 369.0 0.0 0.0 638 638 638.3 0.0 0.1
3elt 198 198 198.0 0.0 0.0 334 335 335.7 0.3 0.5
uk 39 42 42.3 7.7 8.5 78 85 90.0 9.0 15.4
add32 33 33 33.0 0.0 0.0 66 66 66.3 0.0 0.5
bcsstk33 20854 20762 20763.3 -0.4 -0.4 34078 34065 34067.3 0.0 0.0
whitaker3 378 378 378.0 0.0 0.0 650 653 653.3 0.5 0.5
crack 360 360 360.0 0.0 0.0 671 673 673.7 0.3 0.4
wing_nodal 3538 3538 3539.3 0.0 0.0 5361 5366 5367.0 0.1 0.1
fe_4elt2 342 342 342.7 0.0 0.2 595 597 598.7 0.3 0.6
vibrobox 18736 18742 18742.3 0.0 0.0 24170 24227 24231.3 0.2 0.3
bcsstk29 7971 7993 8026.7 0.3 0.7 13717 13791 13794.7 0.5 0.6
4elt 319 319 319.0 0.0 0.0 522 523 523.0 0.2 0.2
fe_sphere 764 764 764.0 0.0 0.0 1152 1152 1152.0 0.0 0.0
cti 916 916 916.0 0.0 0.0 1714 1714 1716.0 0.0 0.1
memplus 9362 10473 10577.3 11.9 13.0 11624 12928 13113.3 11.2 12.8
cs4 917 988 1005.3 7.7 9.6 1424 1546 1558.7 8.6 9.5

bcsstk30 16399 16371 16392.3 -0.2 0.0 34137 34179 34232.0 0.1 0.3
bcsstk31 7150 7171 7191.3 0.3 0.6 12985 13201 13234.3 1.7 1.9
fe_pwt 700 700 700.0 0.0 0.0 1410 1415 1415.0 0.4 0.4
bcsstk32 8725 8880 9449.0 1.8 8.3 19956 20827 21202.0 4.4 6.2
fe_body 598 661 674.7 10.5 12.8 1016 1147 1226.7 12.9 20.7
t60k 203 252 268.3 24.1 32.2 449 856 930.7 90.6 107.3
wing 1593 1803 1822.7 13.2 14.4 2451 3088 3462.7 26.0 41.3
brack2 2834 2834 2834.0 0.0 0.0 6800 6835 6860.3 0.5 0.9
finan512 324 324 324.0 0.0 0.0 648 648 648.0 0.0 0.0

fe_tooth 6764 6777 6784.3 0.2 0.3 11274 11464 11481.3 1.7 1.8
fe_rotor 7118 7103 7138.0 -0.2 0.3 12445 12886 12928.7 3.5 3.9
598a 7816 7858 7869.0 0.5 0.7 15613 15875 15900.3 1.7 1.8
fe_ocean 1693 1693 1693.0 0.0 0.0 3920 3949 3962.3 0.7 1.1
144 15078 15151 15196.7 0.5 0.8 25092 26515 26687.3 5.7 6.4
wave 16665 16728 16736.0 0.4 0.4 28495 28966 29007.0 1.7 1.8
m14b 12948 13281 13332.3 2.6 3.0 25390 26564 26613.0 4.6 4.8
auto 25789 26621 26904.3 3.2 4.3 44785 49207 49909.3 9.9 11.4

Improved: 4 3 1 1
Matched: 14 12 5 2
Worst: 16 19 28 31
Average (%): 2.42 3.19 5.81 7.48
Std (%): 5.38 6.74 15.94 19.46
Average of worsts (%): 5.31 5.80 7.05 8.20

2318



September 24-28, 2012
Rio de Janeiro, Brazil

Table 3. Best and average results found by our GRASP among all repetitions compared
with the best known values (BKV) when ε = 1.05.

k = 4 k = 8

Relative Deviation Relative Deviation

Instance BKV Best Avg of best of avg BKV Best Avg of best of avg

add20 1149 1128 1128.0 -1.8 -1.8 1675 1682 1684.3 0.4 0.6
data 363 363 363.0 0.0 0.0 628 628 628.0 0.0 0.0
3elt 197 197 197.0 0.0 0.0 329 329 329.7 0.0 0.2
uk 39 40 41.7 2.6 6.8 75 84 88.3 12.0 17.8
add32 33 33 33.0 0.0 0.0 63 63 63.3 0.0 0.5
bcsstk33 20167 20167 20167.0 0.0 0.0 33919 33916 33916.0 0.0 0.0
whitaker3 377 376 376.3 -0.3 -0.2 644 648 649.0 0.6 0.8
crack 360 360 360.0 0.0 0.0 666 666 667.0 0.0 0.2
wing_nodal 3521 3522 3522.7 0.0 0.0 5341 5345 5346.3 0.1 0.1
fe_4elt2 335 337 337.0 0.6 0.6 578 583 583.7 0.9 1.0
vibrobox 18690 18690 18693.3 0.0 0.0 23924 23944 23957.3 0.1 0.1
bcsstk29 7925 7986 7992.0 0.8 0.8 13540 13556 13615.0 0.1 0.6
4elt 315 315 315.3 0.0 0.1 515 516 516.0 0.2 0.2
fe_sphere 762 762 762.0 0.0 0.0 1152 1152 1152.0 0.0 0.0
cti 889 889 889.0 0.0 0.0 1684 1684 1684.0 0.0 0.0
memplus 9292 10387 10468.0 11.8 12.7 11543 12796 12882.3 10.9 11.6
cs4 909 977 995.7 7.5 9.5 1420 1521 1543.7 7.1 8.7

bcsstk30 16186 16169 16180.0 -0.1 0.0 34071 34121 34149.0 0.1 0.2
bcsstk31 7086 7079 7096.7 -0.1 0.2 12853 13129 13161.3 2.1 2.4
fe_pwt 700 700 700.0 0.0 0.0 1405 1405 1405.3 0.0 0.0
bcsstk32 8441 8468 9071.7 0.3 7.5 19411 20290 20386.7 4.5 5.0
fe_body 588 675 707.0 14.8 20.2 1013 1129 1200.7 11.5 18.5
t60k 195 231 238.0 18.5 22.1 443 786 854.3 77.4 92.9
wing 1590 1716 1767.0 7.9 11.1 2440 3058 3182.0 25.3 30.4
brack2 2731 2731 2731.7 0.0 0.0 6592 6609 6615.3 0.3 0.4
finan512 324 324 324.0 0.0 0.0 648 648 648.0 0.0 0.0

fe_tooth 6688 6704 6705.7 0.2 0.3 11154 11297 11338.7 1.3 1.7
fe_rotor 6899 6804 6824.0 -1.4 -1.1 12309 12775 12808.3 3.8 4.1
598a 7728 7762 7764.7 0.4 0.5 15414 15676 15712.0 1.7 1.9
fe_ocean 1686 1686 1686.3 0.0 0.0 3893 3961 3963.7 1.7 1.8
144 14982 15102 15122.7 0.8 0.9 24767 25899 26066.7 4.6 5.2
wave 16533 16633 16636.7 0.6 0.6 28489 28733 28835.3 0.9 1.2
m14b 12945 13062 13187.7 0.9 1.9 25143 26236 26527.7 4.3 5.5
auto 25271 25867 26031.3 2.4 3.0 44206 47488 49172.7 7.4 11.2

Improved: 5 4 1 1
Matched: 13 9 8 4
Worst: 16 21 25 29
Average (%): 1.95 2.82 5.27 6.61
Std (%): 4.63 5.83 13.79 16.68
Average of worsts (%): 4.38 4.71 7.17 7.75

2319


	Introduction
	Notation and formal definition

	Related approaches and state-of-the-art
	Constructive algorithms
	Refinement heuristics
	Graph partitioners

	A GRASP for the k-way graph partitioning problem
	Elite solutions
	Path-relinking
	Full partitioner

	Experimental results
	Conclusions

