
A new memory banking system for energy-efficient
wireless sensor networks

Leonardo Steinfeld∗, Marcus Ritt†, Luigi Carro†, Fernando Silveira∗
∗Instituto de Ingenieria Electrica, Facultad de Ingenieria, Universidad de la Republica, Uruguay. {leo, silveira}@fing.edu.uy

†Instituto de Informatica, Universidade Federal do Rio Grande do Sul, Brasil. {carro, marcus.ritt
@inf.ufrgs.br

Abstract—The ever-increasing complexity of applications cov-
ered by wireless sensor networks (WSNs) demands for increasing
memory size, which in turn increases the power drain. It is
well known that SRAM power consumption can be reduced by
employing a banked structure, where unused banks are switched
into the low leakage retention mode. In this work, we propose
a new strategy for memory banking, taking advantage of the
software properties of WSN, and achieving aggressive power
savings. We present a detailed model for the energy saving for
equally sized banks with two power management schemes: a
best-oracle policy and a simple greedy policy. Thanks to our
modeling, at design time the optimum number of banks can be
estimated, and the design can reach huge energy savings. The
memory content allocation and the power management problem
were solved by an integer linear program formulation for two
real wireless sensor network application (based on TinyOS and
ContikiOS). Experimental results show an energy reduction of
up to 77.4% for a partition overhead of 1%.

I. INTRODUCTION

Wireless sensor networks (WSNs) embed computation and
sensing in the physical world, enabling an unprecedented spec-
trum of applications, ranging from environmental monitoring
to medicine. Nowadays, one of the major issues of WSNs is
reducing the energy consumption without sacrificing the com-
putational power to meet the demands of the ever-increasing
complexity of applications. It is widely accepted that efforts
toward energy reduction should target communication and
processing [10].

In the last years, there has been a lot of research dealing
with processing power optimization resulting in a variety of
ultra-low power processors. These processors pose a primary
energy limitation for SRAM, where the embedded SRAM con-
sumes most of the total processor power [14] [7]. Partitioning a
SRAM memory into multiple banks that can be independently
accessed reduces the dynamic power consumption, and since
only one bank is active per access, the remaining idle banks
can be put into a low-leakage sleep state to also reduce the
static power. However, the power and area overhead due to
the extra wiring and duplication of address and control logic
prohibits an arbitrary fine partitioning into a large number
of small banks. Therefore, the final number of banks should
be carefully chosen at design time, taking into account this
partitioning overhead.

Memory banking has been applied for code and data
using scratch-pad and cache memories in applications with
high performance requirements (e.g. [6],[9]). We follow the
methodology employed in [9], in which a memory access

trace is used to solve an optimization problem for allocating
the application memory divided in blocks to memory banks.
However, to the best of our knowledge, this is the first
time banked memories are considered for WSNs, leading to
meaningful power savings, as it will be shown.

The main contribution of this work is to show that, thanks
to our new problem formulation, one can find the optimum
partitioning of memory banks in very common WSN applica-
tions. We derive expressions for energy savings in the case of
equally sized banks based on a detailed model for two power
management strategies: best-oracle policy and a simple greedy
policy. The maximum achievable energy saving is found, and
the limiting factors are clearly determined. We show that it is
possible to find a near optimum number of banks at design
time, irrespective of the application and the access pattern
to memory, provided that the memory energy parameters are
given, such as energy consumption characteristics and the
partition overhead as a function of the number of banks. We
show that using our approach in a banked memory leads to
aggressive (close to 80%) energy reduction in WSN applica-
tions. Our results suggest that adopting an advanced power
management must be carefully evaluated, since the best-oracle
is only marginally better than greedy.

The remainder of this paper is organized as follows. In
Section II, we present a memory energy model, and in Section
III we derive expressions for the energy savings of a banked
memory. In Section IV we formulate the memory allocation
and power management as an integer linear program (ILP).
The experiments are presented in Section V and in Section VI
we discuss the results. Finally Section VII contains concluding
remarks and research directions.

II. BANKED MEMORY ENERGY MODEL

First, we present a general memory energy model con-
sidering dynamic and static energy consumption. Then, the
dependence of the energy on the memory size is modeled.
These models are the basis for deriving, in Section III, the
energy consumption expressions for the different memory
organizations and the different power management strategies.

A. Memory energy model

The static power consumed by a memory depends on its
actual state: ready or sleep. During the ready state read or write
cycles can be performed, but not in the sleep state. Since the
memory remains in one of these states for a certain number of
cycles, the static energy consumed can be expressed in terms



TABLE I. CURVE FITTING PARAMETERS.

Eacc Eidl Eact unit
a 7.95× 10−5 3.28× 10−7 1.78× 10−6 nJ/byte
b 0.48 1.09 0.96 -

of energy per cycle (Erdy and Eslp) and the number of cycles
in each state. Each memory access, performed during the ready
state, consumes a certain amount of energy (Eacc). The ready
period during which memory is accessed is usually called the
active period, and the total energy spent corresponds to the
sum of the access and the ready energy (Eact = Eacc+Erdy),
i.e. the dynamic and static energy. On the other hand, the ready
cycles without access are called idle cycles, consuming only
static energy (Eidl = Erdy). Each state transition from sleep
to active (i.e. the wake-up transition) has an associated energy
cost (Ewkp) and a latency, considered later (Section III-C).

Based on the parameters defined above, the total energy
consumption of a memory can be defined as

E = Eactnact + Eidlnidl + Eslpnslp + Ewkpnwkp, (1)

where nact, nidl and nslp are the sum of the cycles in which
the memory is in active, idle and in sleep state respectively,
and nwkp is the number of times the memory switches from
sleep to active state.

B. Energy variation with memory size

In this subsection the energy variation with the memory
size is modeled in order to appropriately evaluate the energy
saving when a banked memory is used. The energy values
in Eq. (1) depend on the size of the memory, and generally
the energy is considered simply proportional to it [6]. We
investigated the dependence of the dynamic and static power
on the memory size using the CACTI tool [13]. We obtained
simulation results for a pure RAM memory, one read/write
port, 65 nm technology and a high performance ITRS transistor
type, varying its size from 512 B to 256 KB. CACTI outputs
the dynamic and leakage energy, corresponding to the access
and idle of our model. The active energy is directly computed
(dynamic plus leakage). The data for the access, idle and active
energy were fitted to a power function E(S) = aSb, where
E(S) is the energy per cycle and S the memory size. The
resulting fitting coefficients are presented in Table I and Figure
1 shows the simulated data and the fitted curve.

The energy dependence on the memory size can be ex-
plained by examining the simulation output and analyzing the
relative contribution of each memory component. The leakage
energy in idle state grows nearly linearly, because the memory-
cell leakage represents about 70% of the total energy and the
number of memory-cells is directly proportional to the memory
size. The dynamic energy varies approximately as the square
root of the size. It could be observed that between 70% and
80% of the dynamic energy come from bit-lines, sense amps,
and other resource shared between memory-cells. The active
energy, dynamic plus leakage, finally ends up varying almost
linearly with size (exponent equal to one), because the leakage
energy becomes more important than the dynamic energy
with increasing size. Hereafter, for sake of simplicity, we will
work based on this approximation, that is, active energy is
proportional to the memory size. However, for small footprints
a exponent less than the unity should be used.

Fig. 1. Energy consumption per cycle as a function of the memory size.

Consider the remaining energy parameters in Eq. (1), sleep
and wake-up energy. The energy consumed per cycle in the
sleep state is a fraction of the idle energy, since we suppose
that a technique based on reducing the supply voltage is used
to exponentially reduce the leakage. We assume a reduction
factor of the leakage in sleep state of 0.1, which is generally
accepted in the literature [12]. Finally, before a memory bank
could be successfully accessed, the memory cells need to
go back from the data retention voltage to the idle voltage,
which involves the loading of internal capacitances. Since
the involved currents in this process are similar to those
in an access cycle, the associated wake-up energy cost is
proportional to the access energy, ranging the proportionality
constant from about 1 [2] to hundreds [8]. We adopt an
intermediate value of 10.

Summarizing, the active, idle and sleep energy per cycle,
and wake-up transition energy are modeled as being propor-
tional to the memory size:

Ek(S) = akS (2)

for k ∈ {act, idl, slp, wkp}, where S is the memory size in
bytes, and ak is the corresponding constant of proportionality.
The parameter ak is determined using the respective values of
Table I, and the factors mentioned before, that is, a factor of
0.1 of the idle energy is consumed in the sleep state and ten
times the access is consumed in a wake-up transition.

III. ENERGY SAVING EXPRESSIONS

The energy savings depend on the memory organization,
which may be limited to equally-sized banks, or allow any
bank size. It further depends on the strategy for the bank states
management that may range from a greedy policy to the use
of more sophisticated prediction algorithms [3].

In this section we derive expressions for the energy sav-
ings of a memory of equally sized banks with two different
management schemes: greedy and oracle. In the greedy policy
as soon as a memory bank is not being accessed it is put
into sleep state. Therefore, each memory bank is in one of the



following states: active or sleep. On the contrary, in the best-
oracle policy a bank may remain in the idle state even if it is
not beeing accessed.

A. Energy saving with a greedy policy

Using Eq. (2) the energy consumption of a bank of size s
in a banked memory of total size S can be modeled as

Ek(s) = Ek
s

S
, (3)

where Ek = akS is the corresponding energy consumption
per cycle of the whole memory.

Now, considering a banked memory of N equally sized
banks Eq. (3) becomes

Ek
(
S

N

)
=
Ek
N
. (4)

The total energy consumption per cycle of the whole
memory after n cycles is

ĒN =
1

N

N∑
i=1

Eact
nacti
n

+ Eslp
nslpi
n

+ Ewkp
nwkpi
n

, (5)

where the first two terms of the sum represent the active and
sleep energy as a function of the fraction of active and sleep
cycles performed by each bank i. The last term of the sum
represents the wake-up energy as a function of the average
wake-up rate of each memory bank, that is, the average number
of cycles elapsed between two consecutive bank transitions
from sleep to active (for example, one transition in 1000
cycles).

Since in greedy policy each bank is in active or sleep state,
the total number of cycles is n = nacti +nslpi , then we obtain

ĒN = Eslp +
1

N

N∑
i=1

(Eact − Eslp)
nacti
n

+Ewkp
nwkpi
n

. (6)

We define the energy savings of a banked memory as the
relative deviation of the energy consumption of a single bank
memory which is always active (E1 = Eact)

δE =
E1 − ĒN

E1
. (7)

The energy saving of a banked memory of N uniform banks
is

δEgreedyN = 1− Eslp
Eact

− 1

N

N∑
i=1

(
1− Eslp

Eact

)
nacti
n

+

+
Ewkp
Eact

nwkpi
n

. (8)

Since there is only one bank active per cycle

N∑
i=1

nacti = n (9)

and Eq. (8) simplifies to

δEgreedyN =
N − 1

N

(
1− Eslp

Eact

)
− 1

N

Ewkp
Eact

N∑
i=1

nwkpi
n

. (10)

The first term is related to active consumption reduction,
coming from having N-1 banks in sleep state and only one
bank in active state. The last term, which is related to the cost
of wake-ups, depends on the accumulated wake-up rate and
is directly proportional to the wake-up to active energy ratio,
and inversely proportional to the number of banks.

In order to maximize the energy saving in a memory having
N uniform banks, the optimization algorithm must minimize
the accumulated wake-up rate. Note that the energy saving
does not depend on the access profile among the banks, since
the access to every bank costs the same as all banks have
the same size. Still, the allocation of blocks to banks must
consider the constraints of the banks size. Finally, the energy
saving can be improved by increasing N and at the same time
keeping the accumulated wake-up rate low. The maximum
achievable saving corresponds to the sleep to active rate, which
is equivalent to have the whole memory in sleep state. Even so,
the partition overhead limits the maximum number of banks.

B. Energy saving with oracle policy

Consider a memory with a power management, different
from greedy, by means of which a bank may remain in idle
state, even if it will not be immediately accessed. In this case
the total number of cycles is n = nacti + nidli + nslpi for all
banks. In a similar way to the greedy policy, the expression
for the energy savings can be determined as:

δEoracleN =
N − 1

N

(
1− Eslp

Eact

)
−

− 1

N

(
Eidl − Eslp

Eact

) N∑
i=1

nidli
n
−

− 1

N

Ewkp
Eact

N∑
i=1

nwkpi
n

. (11)

Compared to Eq. (10), Eq. (11) has an additional term, which
is related to the energy increase caused by the idle cycles.
This does not mean that the energy saving is reduced, since
the accumulated wake-up ratio may decrease. This expression
is general and includes also the greedy strategy, by setting nidl
equal to zero for all banks.

C. Effective energy saving

As mentioned previously, the wake-up transition from sleep
to active state of a bank memory has an associated latency.
This latency forces the microprocessor to stall until the bank
is ready. The microprocessor may remain idle for a few cycles
each time a new bank is waken up, incrementing the energy
drain. This extra microprocessor energy can be included in the
bank wake-up energy and for simplicity we will not consider
it explicitly. If the wake-up rate is small and the active power
of the microprocessor is much higher than idle power, this
overhead can be neglected. Additionally, the extra time due



to the wake-up transition is not an issue in low duty-cycle
applications, since simply slightly increases the duty-cycle.

On the other hand, the partitioning overhead must be
considered to determine the effective energy saving. A previous
work had characterized the partitioning overhead as a function
of the number of banks for a partitioned memory of arbitrary
sizes [8]. In that case the hardware overhead is due to an
additional decoder (to translate addresses and control signals
into the multiple control and address signals), and the wiring
to connect the decoder to the banks [1]. As the number of
memory banks increases, the complexity of the decoder is
roughly constant, but the wiring overhead increases [8]. The
partition overhead is proportional to the active energy of an
equivalent monolithic memory and roughly linear with the
number of banks, as can be clearly seen by inspecting the
data of the aforementioned work (3.5%, 5.6%, 7.3% and 9%
for a 2-, 3-, 4-, and 5-bank partitions, resulting in an overhead
factor of approximately 1.8% per bank).

Consequently, the relative overhead energy can be modeled
as:

δEovhdN = kovhdN. (12)

In this paper, the memory is partitioned into equally-sized
banks. As a result the overhead is expected to decrease leading
to a lower value for the overhead factor.

D. Energy savings limits

The energy savings in the limit, as the wake-up and idle
contributions tend to zero, is

δEmaxN =
N − 1

N

(
1− Eslp

Eact

)
, (13)

valid for the oracle and greedy.

Now, considering the partition overhead, Eq. (12), the
maximum effective energy saving is

δEmaxN,eff =
N − 1

N

(
1− Eslp

Eact

)
− kovhdN, (14)

is maximized for

Nopt =

√
1

kovhd

(
1− Eslp

Eact

)
. (15)

The optimum number of memory banks can be estimated
at design time, provided that the energy memory parameters
are given, such as energy consumption characteristics and the
partition overhead as a function of the number of banks.

IV. PROBLEM FORMULATION

In this section we define an integer linear program that
minimizes the energy consumption of a banked memory with
power management by optimally distributing the application
code divided in blocks to memory banks.

The memory has N memory banks B = {1, ..., N}, of
equal size sb, b ∈ B. The application code is divided in M
memory blocks D = {1, ...,M} of size sd, d ∈ D. We are
further given an access pattern to these blocks over time by

adt. A value of adt = 1 indicates that block d is accessed at
time t. We want to determine an allocation of blocks to banks
that respects the size constraints, and an activation schedule of
the banks that minimizes total energy consumption, and such
that banks that are accessed at time t are ready at time t. Let
ldb ∈ {0, 1} indicate that block d is allocated to bank b, and
obt ∈ {0, 1} that bank b is ready at time t. We define auxiliary
indicator variables abt ∈ {0, 1} representing the access of bank
b at time t, o+bt ∈ {0, 1} representing the wake-up transition
of bank b at time t. Let further T = {1, ..., t} be set of access
times. We assume that time 0 represents the initial state where
all banks are in sleep state. For a given number of banks, the
partition overhead is fixed, hence the problem formulation does
not need to include this term.

Now we can model the problem of finding the allocation
and power management strategy by the following integer
program:

minimize
∑
t∈T
b∈B

Eaccabt + (Erdy − Eslp)obt + Ewkpo
+
bt (16)

subject to
o+bt ≥ obt − ob,t−1 ∀b ∈ B, t ∈ T (17)
obt ≥ abt ∀b ∈ B, t ∈ T (18)

abt =
∑
d∈D

lbdadt ∀b ∈ B, t ∈ T (19)∑
b∈B

ldb = 1 ∀d ∈ D (20)∑
d∈D

ldbsd ≤ sb ∀b ∈ B (21)

ob0 = 0 ∀b ∈ B (22)
ldb ∈ {0, 1} d ∈ D, b ∈ B (23)
obt ∈ {0, 1} b ∈ B, t ∈ T ∪ {0} (24)
o+bt, abt ∈ {0, 1} b ∈ B, t ∈ T . (25)

Eq. (17) define wake-up transitions: if some bank is ready
at time t, but has not been ready at time t − 1, a wakeup
transition occurred. Eq. (18) and (19) define the access pattern
for a given allocation1. Restriction (20) guarantees that every
block has been allocated to exactly one memory bank, and
restriction (21) limits the total size of the allocated blocks to
the size of the bank.

The above formulation corresponds to the best-oracle strat-
egy, since does not limit the activation schedules. For a greedy
power management the constraint (18) can be modified, so that
a bank is ready only when it is accessed.

obt = abt ∀b ∈ B, t ∈ T. (26)

V. EXPERIMENTS

In this section we present experiments comparing the
predicted energy savings by our model to the optimal energy
savings obtained by solving the ILP.

The criteria for selecting the case study application were:
public availability of source files, realistic and ready-to-use

1Since the variables involved in the inequalities are binary, a ≥ b
corresponds to the logical implication, a⇒ b.



TABLE II. APPLICATION PARAMETERS (SIZE IN BYTES).

OS Application text bss data
TOS MultihopOscilloscope 32058 122 3534
COS rpl-collect (udp-sender) 47552 232 9250

application. We chose two data-collection application from the
standard distribution of TinyOS (version 2.1.0)2 and ContikiOS
(release 2.5)3. Both applications are similar, each node of
the network periodically samples a sensor and the readings
are transmitted to a sink node using a network collection
protocol. MultihopOscilloscope (TinyOS) use CTP (Collection
Tree Protocol)[5] and rpl-collect (ContikiOS) use RPL (IPv6
Routing Protocol for Low power and Lossy Networks)[15].
The applications was compiled for a telosb node [11] based on
a MSP430 microcontroller4. Table II summarizes the section
sizes of the selected applications (TOS and COS stand for
TinyOS and ContikiOS respectively). It can be observed that
in both cases the code memory is between five and nine
times larger than the data memory. This relationship, which is
typical in current WSNs applications, motivates using a banked
memory with power management for code memory rather than
for data memory.

Since current sensor nodes do not support real-time ex-
ecution trace generation, we simulated the network using
COOJA[4]. The telosb node-level simulation relies on MSP-
sim, an instruction-level emulator for the MSP430 micro-
controller, that also simulates hardware peripherals such as
sensors, radio modules or LEDs. MSPSim is designed to be
used as a COOJA plug-in, allowing to access to the MSPSim
command-line client from COOJA. We modified MSPSim’s
code to add a new command for setting the debug mode on
and off, so that it is possible to obtain any node execution
trace from COOJA. For the experiments we set up an unique
scenario based on a configuration consisting of a network
composed of 25 nodes. The memory access trace was trimmed
to consider 5000 cycles.

The size of the application blocks, sd, could be chosen
to be regular (equally sized) or irregular, ranging from the
minimum basic blocks to arbitrary size. For the sake of
simplicity, the block set was selected as those defined by
the program functions and the compiler generated global
symbols (user and library functions, plus those created by
the compiler). The size of the blocks ranges from tens to
hundreds of bytes, in accordance with the general guideline
of writing short functions, considering the run-to-completion
characteristic of TinyOS, ContikiOS and any non-preemptive
event-driven software architecture.

The problem of allocating the code to equally sized banks
was solved for up six banks, for both power management
strategies. The total memory size was considered 10% larger
than the application size, to ensure the feasibility of the
solution. For each experiment the bank memory access patterns
abt have been determined using the trace adt and the allocation
map lbd (how block are allocated to banks), given by the
corresponding solution. For the best-oracle power management

2www.tinyos.net
3www.contiki-os.org
4www.ti.com/msp430

Fig. 2. Energy savings as a function of the number of banks for best-oracle
and greedy policy (denoted gr and or) in TinyOS and ContikiOS applications
(denoted TOS and COS) and the theoretical limit (dashed line).

the solution also outputs obt, the bank states for each cycle
(i.e. ready or sleep). Finally, the average energy consumption is
calculated using the memory energy parameters and the energy
saving is determined comparing with a single bank memory
with no power management.

VI. RESULTS AND DISCUSSION

Fig. 2 shows the energy savings as a function of the
number of banks, for best-oracle and greedy policy in both
applications (TinyOS and ContikiOS). As the number of banks
increases, the energy savings approach to the corresponding
value of having all banks in sleep state. In this figure we
have intentionally discarded the partition overhead. The figure
shows that the oracle policy outperforms the greedy policy
for both applications, as expected, and both are within 2%
and 5% of the theoretical limit for the energy savings. In all
cases, except for six banks, ContikiOS outperforms TinyOS
by a narrow margin.

The results presented hereafter are similar for both appli-
cations, and only the corresponding to TinyOS are analyzed
more deeply.

Contrary to what one could expect, the extra benefit of
oracle over greedy policy is scarce. Fig. 3 shows the fraction
of cycles and the energy breakdown for a memory having five
banks of equal size, where each contribution (i.e. access, ready,
sleep, wake-up) is averaged among the different banks. The
upper part clearly shows that the fraction of access cycles are
equal in both cases and represent 20% of the total number
of cycles, since five banks are considered (only one bank
of N is active, in this case five). For the greedy policy the
number of ready cycles is equal to the access cycles, since
both correspond to the active compound state. While, for the
oracle policy part of the ready cycles correspond to active
cycles, and the rest to idle cycles, in which the banks are ready
but not accessed. Moreover, for the greedy policy 80% of the
cycles are sleep cycles (N − 1 banks are in sleep state) while
for the oracle policy this percentage is slightly larger, used to
reduce the wake-up cycles from 0.5% to 0.12 % (not visible in



Fig. 3. Fraction of cycles and energy breakdown where each contribution is
averaged among the different banks.

TABLE III. OPTIMUM NUMBER OF BANKS AS A FUNCTION OF
PARTITION OVERHEAD.

kovhd(%) 0 1 2 3 5
Nopt ∞ 10 7 6 4

δEmax
N,eff (%) 97.1 77.4 69.2 62.9 52.8

Fig. 3). The energy breakdown, Fig. 3 (lower part), shows that
the difference between oracle and greedy comes mainly from
the wake-up transitions. In this case study, due to its even-
driven nature, the code memory access patterns are triggered
by events, leading to a chain of function calls starting with
the interrupt subroutine. This chain may include the execution
of subsequent functions calls starting with a queued handler
function called by a basic scheduler. The allocation of highly
correlated functions to the same bank leads to a bank access
pattern with a high temporal locality. Hence, the total wake-up
fraction across the banks is very low. This explain the modest
gain of applying the best-oracle policy.

The optimum number of banks estimated using Eq. (15)
(after rounding) as a function of kovhd (1%, 2%, 3% and
5%) is shown in Table III. The energy savings is limited
by the partition overhead, reaching a maximum of 77.4%
for an overhead of 1%. The energy saving limit, as the
partition overhead tends to zero and N to infinity, is 97.1%
(1− Eslp/Eact).

Table IV compares the energy saving results as a function
of the number of banks and the partition overhead. In the
upper part, the table gives the maximum achievable savings
calculated using Eq. (14). It can be observed that with a
partition overhead of 3% the optimum number of banks is six,
whereas with 5% is four, both highlighted in gray background.

In the middle part of the table it can be observed that
the maximum energy saving for greedy strategy with 3% and
5% of partition overhead is achieved for six and five banks
respectively, different from what arises in the previous limit
case. This means that the saving lost due to wake-up transitions
shifts the optimum number of banks. Finally, similar results are
obtained for the best-oracle strategy, but with higher energy

TABLE IV. ENERGY SAVING COMPARISON: MAXIMUM, GREEDY AND
ORACLE.

maximum number of banks
2 3 4 5 6

kovhd(%) 1 47.55 63.06 70.32 74.27 76.58
2 45.55 60.06 66.32 69.27 70.58
3 43.55 57.06 62.32 64.27 64.58
5 39.55 51.06 54.32 54.27 52.58

greedy number of banks
2 3 4 5 6

kovhd(%) 1 43.82 58.33 65.18 69.36 71.99
2 41.82 55.33 61.18 64.36 65.99
3 39.82 52.33 57.18 59.36 59.99
5 35.82 46.33 49.18 49.36 47.99

oracle number of banks
2 3 4 5 6

kovhd(%) 1 46.40 61.88 69.12 73.07 75.41
2 44.40 58.88 65.12 68.07 69.41
3 42.40 55.88 61.12 63.07 63.41
5 38.40 49.88 53.12 53.07 51.41

savings.

VII. CONCLUSIONS

We have found that aggressive energy savings can be
obtained using a banked memory, up to 77.4% for a partition
overhead of 1% with a memory of ten banks. The energy
savings increase as a function of the number of banks. The
maximum saving is limited by the partition overhead. Thanks
to our modeling, at design time the optimum number of banks
can be estimated, provided that the energy memory parameters
are given, such as energy consumption characteristics and the
partition overhead as a function of the number of banks.

We evaluated the benefits of using a partitioned memory in
WSNs by simulation of two real WSN applications, one based
on TinyOS and the other on ContikiOS. The energy saving
is maximized by properly allocating the program memory to
the banks in order to minimize the accumulated wake-up rate
and the idle cycles. The optimum number of banks may differ
from the estimated value, due to the saving lost due to wake-up
transitions. However the estimated value can be used to quickly
find the optimum, by restricting the search to its vicinity.

The energy saving obtained by simulations were compared
with the limits given by the derived expressions, showing
a good correspondence. The oracle policy outperforms the
greedy policy as expected, but contrary to what is expected, the
extra benefit of the oracle over the greedy policy is scarce. The
additional benefit of using an advanced algorithm to predict
future access to banks must justify the increasing complexity
and compensate the extra energy and area cost.

Future research includes extending our model to support
arbitrary sized banks, and the evaluation of the effective
savings when the access pattern is different from the one
used for the off-line optimization. Preliminary results suggest
a small degradation.

REFERENCES

[1] L. Benini, L. Macchiarulo, A. Macii, and M. Poncino. Layout-driven
memory synthesis for embedded systems-on-chip. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 10(2):96–105, Apr.
2002.



[2] A. Calimera, L. Benini, A. Macii, E. Macii, and M. Poncino. Design of
a Flexible Reactivation Cell for Safe Power-Mode Transition in Power-
Gated Circuits. IEEE Transactions on Circuits and Systems I: Regular
Papers, 56(9):1979–1993, Sept. 2009.

[3] A. Calimera, A. Macii, E. Macii, and M. Poncino. Design Techniques
and Architectures for Low-Leakage SRAMs. Circuits and Systems I:
Regular Papers, IEEE Transactions on, 59(9):1992–2007, 2012.

[4] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt,
R. Sauter, and P. J. Marrón. COOJA/MSPSim: interoperability testing
for wireless sensor networks. In Proceedings of the 2nd International
Conference on Simulation Tools and Techniques, Simutools ’09, pages
1–7, ICST, Brussels, Belgium, 2009. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

[5] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection
tree protocol. In Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’09, pages 1–14, New York, NY,
USA, 2009. ACM.

[6] O. Golubeva, M. Loghi, M. Poncino, and E. Macii. Architectural
leakage-aware management of partitioned scratchpad memories. In
DATE ’07: Proceedings of the conference on Design, automation and
test in Europe, pages 1665–1670, San Jose, CA, USA, 2007. EDA
Consortium.

[7] J. Kwong and A. P. Chandrakasan. An Energy-Efficient Biomedical
Signal Processing Platform. Solid-State Circuits, IEEE Journal of,
46(7):1742–1753, July 2011.

[8] M. Loghi, O. Golubeva, E. Macii, and M. Poncino. Architectural
Leakage Power Minimization of Scratchpad Memories by Application-
Driven Sub-Banking. IEEE Transactions on Computers, 2010.

[9] O. Ozturk and M. Kandemir. ILP-Based energy minimization tech-
niques for banked memories. ACM Trans. Des. Autom. Electron. Syst.,
13(3):1–40, July 2008.

[10] M. A. Pasha, S. Derrien, and O. Sentieys. A complete design-flow
for the generation of ultra low-power WSN node architectures based
on micro-tasking. In Design Automation Conference (DAC), 2010 47th
ACM/IEEE, pages 693–698. IEEE, June 2010.

[11] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power
wireless research. In Information Processing in Sensor Networks, 2005.
IPSN 2005. Fourth International Symposium on, pages 364–369. IEEE,
Apr. 2005.

[12] J. Rabaey. Low power design essentials. Springer Verlag, 2009.
[13] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P.

Jouppi. A Comprehensive Memory Modeling Tool and Its Applica-
tion to the Design and Analysis of Future Memory Hierarchies. In
2008 International Symposium on Computer Architecture, pages 51–
62, Washington, DC, USA, June 2008. IEEE.

[14] N. Verma. Analysis Towards Minimization of Total SRAM Energy
Over Active and Idle Operating Modes. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 19(9):1695–1703, 2011.

[15] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander. RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks. RFC 6550 (Proposed Standard),
Mar. 2012.


