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ABSTRACT
The multi-compartment vehicle routing problem (MC-VRP) consists in finding routes

with minimum total length that satisfy the demands of a set of customers for several products
that must be loaded in specific vehicle compartments. Despite its wide practical applicability this
problems has been rarely studied in the literature. In this paper we propose a constructive heuristic
and a Tabu search algorithm for this problem. We evaluate the algorithm on twenty different VRP
instances and four different sets of MC-VRP instances with two compartments and compare with
previous results from the literature.

KEYWORDS. Vehicle routing problem. Multiple compartments. Tabu search.

MH – Metaheuristics

RESUMO
O problema de roteamento de veı́culos com multi-compartimentos (MC-VRP) consiste

em encontrar rotas com distância total mı́nima que satisfazem as demandas por vários produtos
de um conjunto de clientes onde produtos devem ser alocados em compartimentos distintos. Este
problema, apesar de ter uma ampla aplicabilidade em casos reais, é pouco estudado na literatura.
Este artigo apresenta uma heurı́stica construtiva e uma busca tabu para este problema. Os algoritmos
foram testados com vinte diferentes instâncias do VRP que geraram quatro conjuntos diferentes de
instancias MC-VRP com dois compartimentos e comparados com os resultados da literatura.

PALAVRAS CHAVE. Problema de roteamento de veı́culos. Busca Tabu. Múltiplos compar-
timentos.

MH – Metaheurı́sticas



1. Introduction
Vehicle routing problems (VRPs) are concerned with finding shortest routes for a fleet of

vehicles in order to attend the demands of a set of customers. Numerous variants of this problem
have been studied in the literature. They include VRPs with single or multiple depots, with pickup
and delivery or backhauls, with time windows or multiple visits of the customers, different types of
capacities, e.g. with loading constraints, etc. For a good overview we refer the reader to the surveys
of Laporte (2009) and Vidal et al. (2013).

In this paper we are concerned with a single depot vehicle routing problem for multiple
product types given a homogeneous fleet. Each customer may have a different demand for each
product type, and the vehicles have multiple compartments of different sizes for them. As in the
standard vehicle routing problem, the aim is to satisfy the demand of each customer, visiting it
only once, such that the total travel-time of all vehicles is minimized. This problem is called the
multi-compartment vehicle routing problem (MC-VRP) in the literature. The MC-VRP generalizes
the NP-hard capacitated VRP, and thus is also NP-hard. State-of-the-art exact approaches for
basic VRP problems are limited to about 100 customers. Thus larger problems, or problems with
additional constraints are usually solved by heuristic algorithms, which are able to find solutions of
less than 1% above optimality for instances containing about 400 customers in an hour (Vidal et al.
2013).

The MC-VRP has several real-world applications where products must be transported in
different compartments for some specific reason. Dairies often use vehicles with multiple com-
partments to collect milk of different types, e.g., from cows and goats, and different qualities, e.g.,
from different suckling dates (Mendoza et al. 2010). Petroleum companies deliver different types of
fuel to outlet retailers using multi-compartment tankers and multi-compartment vehicles (Cornillier
et al. 2012; Benantar and Ouafi 2012), public utilities use trucks with compartments to perform
selective waste collection (Reed et al. 2014), and food companies distribute in compartmentalized
vehicles groceries that require different levels of refrigeration.

Although there exist several real-world applications of the MC-VRP in industry, the prob-
lem is not widely studied. Avella et al. (2004) have presented a heuristic and an exact approach
to solve a real world fuel delivery problem with a fleet of vehicles with several tanks of different
capacity. Fallahi et al. (2008) studied an MC-VRP applied to the distribution of cattle food to farms,
where the different feeds are kept separate to avoid contamination. They proposed a memetic algo-
rithm and a Tabu search to find good solutions. Reed et al. (2014) present a basic CVRP applied
to the collection of domestic waste, and also a MC-VRP in the case where the vehicle crew must
perform kerbside sorting of the waste in customers’ recycling boxes.

Variants of the MC-VRP have been also considered. Cornillier et al. (2012) studied a MC-
VRP with multiple depots and time windows applied to petrol station replenishment, and Mendoza
et al. (2010) have introduced stochastic demands, i.e. the exact value of demands is not known at
the moment when the routes are planned, to obtain the MC-VRPSD.

The remainder of this paper is structured as follows. In next section we formally define
the problem and present a mathematical formulation. Section 3 presents a savings method and Tabu
search to solve the problem. Section 4 presents computational results and compares them to related
works. Finally, we conclude and discuss future work in Section 5.

2. Problem Definition
The MC-VRP is a variation of the classical VRP where the fleet consists of identical

vehicles with compartments and the customers have demands for multiple different products. We
are given a set of locations V = {V0, V1, . . . , Vn}, where V0 is the depot, and V1, . . . , Vn are
customers. Each pair of locations i, j ∈ V has a travel time dij and each customer may have
additionally a drop time ti, i.e. the time needed to deliver the product. Travel times are assumed to
be symmetric (dij = dji). There are m different types of products, and we have a homogeneous



fleet of vehicles, each with m compartments and a capacity C ∈ Rm. Each client i ∈ [n]1 has a
demand ci ∈ Rm, and we assume ci ≤ C. A valid route of a vehicle starts and ends at the depot
and visits a number of customers. There is no constraint on the number of visited customers per
route. A route is represented by an ordered subset R = {r1 = V0, . . . , rl(R)} of V of length l(R).
The total time of a route is d(R) = drl(R),r1 +

∑
1≤i<l(R) dri,ri+1 +

∑
i∈[l(R)] ti, and its demand is

c(R) =
∑

i∈[l(R)] cri .
We want to find a set of valid routes R = {R1, . . . , Rr} that partition the set of customers,

Ri ∩Rj = {V0} for all i, j ∈ V , and ∪i∈[k]Ri = V , satisfying the capacity constraints c(Ri) ≤ C,
and such that the total time d(R) =

∑
i∈[k] d(Ri) is minimized. The total time travelled by each

vehicle must not exceed a maximum time D. There is no limit on the number of routes. For m = 1
the problem reduces to the standard CVRP.

In our definition of MC-VRP a vehicle is not allowed to visit a customer twice, thus the
demand of a customer must be attended in one visit. This definition of the problem is also used in
Reed et al. (2014). In Fallahi et al. (2008) the authors have tested a similar scenario but the focus
of their algorithm is a variant where the demand of each product type may be satisfied by different
vehicles, i.e. a customer may be visited up to m times. Avella et al. (2004) has applied MC-VRP
in a real case of fuel delivery where compartments must be completely unloaded when attending a
client demand, i.e. compartments travel only full or totally empty.

The MC-VRP can be formulated as follows. Let xijk indicate that vehicle k travels from
i ∈ V to j ∈ V . Then we want to

minimize
∑
i,j∈V

∑
k∈[r]

(dij + tj)xijk, (1)

subject to
∑
i∈V

∑
k∈[r]

xijk = 1, ∀j ∈ V \ {V0}, (2)

∑
i∈V

xijk =
∑
i∈V

xjik, ∀j ∈ V, k ∈ [r], (3)∑
i,j∈S

xijk ≤ |S| − 1, ∀S ⊆ V \ {V0}, |S| ≥ 2, k ∈ [r], (4)

∑
i,j∈V

cjxijk ≤ C, ∀k ∈ [p], (5)

∑
i,j∈V

dijxijk ≤ D, ∀k ∈ [p], (6)

xijk ∈ {0, 1}, ∀i, j ∈ V, k ∈ [r]. (7)

In this formulation we minimize the total travel time (1). By constraint (2) every customer
has to be attended exactly once in some route. Constraint (3) establishes flow conservation, and
constraint (4) eliminates subroutes that do not include the depot. The capacity and total length
constraints are guaranteed by (5) and (6). Note that constraint (6) is vector-valued and will be
expanded into m separate constraints, one for each product type. Solving this model directly is
unpractical due to the exponential number of contraints (4).

3. A Tabu search for the MC-VRP

We propose a Tabu search to solve the MC-VRP. We construct an initial solution by a
modified version of the savings method of Clarke and Wright (1964). The following subsection
presents our constructive heuristic and in Section 3.2 we present the Tabu search in detail.

1We use the notation [n] = {1, 2, . . . , n}.



3.1. A savings method for the MC-VRP
To generate an initial solution we modified the savings heuristic proposed by Clarke and

Wright (1964). This heuristic is widely used in VRP problems because of simplicity, speed and it
often obtains good results (see Cordeau et al. (2002)). Consider a route which visits customer Vi

last, and another route which visits customer Vj first. We can join these routes by going directly
from Vi to Vj . This results in savings of sij = dVi,V0 + dV0,Vj − dVi,Vj . By symmetry of the travel
times, we can also join routes by other endpoints. The heuristic of Clarke and Wright determines
the savings sij for each pair of customer Vi and Vj , and sorts them in non-increasing order. Then,
the algorithm creates one route for each customer, starting at the depot, visiting only this customer,
and then returning to the depot. Finally, it visits the savings list in the sorted order cyclically, and
repeatedly applies feasible joins, until no such join is possible. A join is feasible for a saving sij if
two routes with endpoints Vi and Vj exist.

The generalization to the multi-compartment and time-restricted case is straightforward.
We consider a join only feasible if the combined route still satisfies the time and capacity constraints.
A initial solution of good quality has shown experimentally to be important to get better final results
for the problem.

3.2. Tabu search
The Tabu search meta-heuristic has been proposed by Glover and is a heuristic based on

modification of a solution (see Glover and Laguna (1997)). For a search space S and a neighborhood
function N : S → 2S it starts from some initial solution, repeatedly passes from the current solution
s ∈ S to a neighboring solution s′ ∈ N(s) until some stopping criterion is satisfied. Similar to local
search, Tabu search chooses a neighbor of better objective function value, until no such neighbor
exists. In standard Tabu search, one of the best such neighbors is chosen. Otherwise, the best
neighbor which has not been declared tabu is chosen. The tabu mechanism is a short-term memory
designed to avoid cycling in local minima and to diversify the search. Commonly, some attributes
of recently visited solutions are declared tabu for a number of steps, called the tabu tenure, and a
solution is considered tabu if it has some tabu attribute. Attributes may be elements of solutions,
e.g. an arc visited by some vehicle in a solution of a VRP, or complete solutions. Tabu search also
frequently includes so-called aspiration criteria, i.e. rules that allow neighboring solutions to be
chosen even if they are tabu. After stopping, Tabu search returns the best found solution during the
search.

3.2.1. Neighborhoods and tabu mechanism
We use four different neighborhoods in our Tabu search. They are defined in terms

of moves types, i.e. modifications of the current solution to obtain some neighboring solution.
A shift move removes some customer from his current route, and inserts him into an arbitrary
position in some other route; a swap move selects two customers in different routes, and ex-
changes their positions, i.e. the first customer is inserted into the second route in place of the sec-
ond customer and vice versa. A crossover move selects two customers in two different routes,
and combines the initial and final parts of the routes to obtain two new routes. For routes
R = {r1, r2, . . . , rl(R)} and S = {s1, s2, . . . , sl(S)} selecting customers ri and sj produces new
routes R′ = {r1, . . . , ri−1, sj , . . . , sl(S)} and S′ = {s1, . . . , sj−1, ri, . . . , rl(R)}. Finally a route
swap move selects two customers in a route and swaps their positions.

The Tabu search examines all moves in the presented order (shift,swap,crossover,and
route swap). Within a move category, routes are always visited in a random order, and customers
always in order of the route. We consider only feasible solutions that respect the capacity and length
constraints. The number of examined route swap moves has been limited to min{n2/4, 250}. The
search adopts a first improvement strategy, accepting the first non-tabu neighbor which is better
than the current solution, or the best non-tabu neighbor, if no better one exists. Ties among several
best neighbors are broken in favour of the first best neighbor. The only aspiration criterion is to
accept tabu solutions that improve the incumbent.



To define the tabu rules, we consider a given customer being part of some route as a
solution attribute. For any of the move types, a client that has been moved from some source route
is prohibited to return to that route during the tabu tenure. In some preliminary experiments we
have fixed the tabu tenure at 15 steps.

Figure 1 shows a pseudo code of the proposed Tabu search.

Algorithm 1: Tabu search Pseudocode
Data: current solution s
/* initialize the best solution with current */

1 s∗ = s;
2 while timeout do

/* initialize best neighbor as worst possible
solution */

3 N ′ = worstpossiblesolution;
/* flag to stop neighbor search when a neighbor

better then C is found */
4 improved = false;
5 if !improved then
6 improved = try All ShiftMoves(S′, C,N ′);
7 end
8 if !improved then
9 improved = try All SwapMoves(S′, C,N ′);

10 end
11 if !improved then
12 improved = try All CrossOverMoves(S′, C,N ′);
13 end
14 if !improved then
15 maxMoves = min(n2/4, 250);
16 while !maxMoves & !improved do
17 improved = RouteSwapMove(S′, C,N ′);
18 end
19 end
20 update TabuList with most recent move;
21 if N ′ < S′ then
22 S′ = N ′;
23 end
24 C = N ′;
25 end
26 return S′

4. Computational Results

The Tabu search has been implemented in C++ and tested on a PC with an AMD FX-8150
Eight-Core processor running at 3.4 GHz, and with 32 GB of main memory. For the tests only one
core has been used. The algorithms were tested with classical VRP instances and multiple com-
partments generated from existing VRP instances since we were not able to find publicly available
MC-VRP instances. This section describes how the four sets of instances was generated then it
shows the obtained results and compare against Fallahi et al. (2008) and Reed et al. (2014), which
are, to our knowledge, the only publications which address the same problem.



Table 1: Characteristics of the VRP instances used in the computational experiments.

Name n D drop time C
vrpnc1 50 ∞ 0 160
vrpnc2 75 ∞ 0 140
vrpnc3 100 ∞ 0 200
vrpnc4 150 ∞ 0 200
vrpnc5 199 ∞ 0 200
vrpnc6 50 200 10 160
vrpnc7 75 160 10 140
vrpnc8 100 230 10 200
vrpnc9 150 200 10 200
vrpnc10 199 200 10 200
vrpnc11 120 ∞ 0 200
vrpnc12 100 ∞ 0 200
vrpnc13 120 720 50 200
vrpnc14 100 1040 90 200
E072-04f 71 - - 30000
E076-07u 75 - - 220
E076-08s 75 - - 180
E135-07f 134 - - 2210
E241-22k 240 - - 200
E484-19k 483 - - 1000

4.1. Sets of instances
We have used a set of 20 well-known VRP instances in our test. The first 14 (vrpnc1–

vrpnc14) come from Christofides and the last six from Eilon. Details about the instances can be
found in Table 1. The table shows the number of customers (column “n”), the time limit for a route
(“column D”), the drop time (column “drop time”) and the capacity of the vehicles (column “C”).
From these instances we generated four test sets for the MC-VRP (S1, S2, S3, and S4) as follows.

The set of instances S1 are the original instances from Christofides and Eilon with only
one compartment. They are used to validate the performance of our algorithm with the best known
solutions of a standard scenario. The set of instances S2 and S3 are generated as described in Reed
et al. (2014). The set S2 is obtained by splitting the vehicle capacity into two compartments using
a 3:1 ratio. The customer demands are obtained by a similar splitting: all demands are split using
a 3:1 ratio, except the demands on a limited subregion (0 < x, y < 35), which are split using a
2:1 ratio. The set S3 is obtained in the same way, but splitting vehicle compartments and customer
demands using a 4:1 ratio, except for region mentioned above, which maintains a 2:1 ratio.

The set of instances S4 was generated to be able to compare our approach to that of Fallahi
et al. (2008), which use two different sets of instances. The first is obtained by dividing the capacity
of each vehicle and the demands into two equal parts and the second by dividing randomly each
customer demand in two parts. The first does not apply to our case because the compartments will
be occupied in the same proportion and we will fall back to the single-compartment case.

Thus we focus on the second set of instances proposed by Fallahi et al. (2008). They
are generated as follows. For each customer i ∈ V \ {V0}, the demand for the first product is
ci1 = ci/k, where k is a random integer in {3, 4, 5} and ci is the demand of the corresponding VRP.
The demand for the second product is ci2 = ci− ci1. To define the capacity of the compartments of
the vehicles, let C1 be the average demand for the first product, and C2 the average demand for the
second product. Then the capacity of the compartments is set to

C1 =
CC1

C1 + C2

; C2 =
CC2

C1 + C2

.



4.2. Analysis of the results
The results obtained in our tests are reported in Tables 2 and 3. Table 2 shows the results

obtained on instances sets S1, S2, and S3. Each instance of the set was executed ten times with the
same parameters and a different random seed. We present for each instance the best known value
of the VRP case (column “BKV”) and the solution obtained by the constructive method of Clarke
and Wright (column “C/W”). For the Tabu search we report the average relative deviation from the
best known value (column “TS”), the average time in seconds to find the best solution (column “T
(s)”) and the relative deviation of the best solution in all ten replications from the best known value
(column “Best”). The results have been obtained with a time limit of n2/100 seconds, where n is
the number of customers of the instance.

Table 2: Results of the constructive heuristic and the Tabu search on instance sets S1, S2, and S3 compared
to best known values of the VRP.

S1 S2 S3
Name BKV CW TS T (s) Best C/W TS T (s) Best C/W TS T (s) Best
vrpnc1 524.6 11.4 2.1 10.0 0.6 18.8 5.6 9.7 5.0 17.8 6.2 13.3 4.8
vrpnc2 835.3 8.6 6.8 24.4 5.4 10.2 7.6 27.7 5.7 13.2 8.8 25.8 8.0
vrpnc3 826.1 7.6 4.0 68.6 2.0 10.8 8.8 58.5 6.9 13.0 7.1 71.4 6.6
vrpnc4 1028.4 10.9 6.1 144.9 4.8 17.4 12.9 169.5 10.9 18.6 13.5 182.9 11.6
vrpnc5 1291.4 8.1 6.8 265.8 6.2 13.2 12.4 300.1 12.1 16.2 14.0 325.9 13.6
vrpnc6 555.4 11.3 1.3 14.6 0.6 10.9 5.5 14.6 4.0 10.9 4.1 10.5 1.2
vrpnc7 909.7 7.2 4.4 35.1 3.4 7.0 4.8 33.2 3.0 7.4 5.7 21.8 4.5
vrpnc8 865.9 12.5 5.2 75.8 3.6 15.0 8.8 70.1 6.0 15.0 8.0 70.6 5.2
vrpnc9 1162.5 10.8 7.0 191.0 5.6 14.0 10.9 121.7 9.3 12.7 8.9 167.1 6.6
vrpnc10 1395.8 10.2 7.8 266.4 6.7 13.9 10.6 280.4 9.0 13.9 11.3 318.2 10.5
vrpnc11 1042.1 2.5 2.5 0.0 2.5 7.0 6.4 72.8 6.0 23.0 20.3 108.3 16.0
vrpnc12 819.6 1.7 0.9 2.2 0.9 12.2 8.4 70.2 6.7 19.7 17.2 62.7 16.6
vrpnc13 1541.1 3.3 1.5 75.7 1.0 3.3 1.4 84.6 1.1 3.3 1.5 68.6 1.4
vrpnc14 866.4 1.1 0.9 10.7 0.8 6.4 4.7 30.7 4.5 16.6 12.8 52.2 12.4
E072-04f 241.9 5.9 4.2 15.6 2.2 11.5 9.4 40.4 8.5 9.6 9.6 2.6 9.2
E076-07u 690.8 6.9 2.9 20.4 2.2 6.3 4.0 34.3 2.9 11.0 5.7 36.5 4.6
E076-08s 742.6 7.0 2.9 28.6 1.8 9.6 7.1 20.9 5.5 12.3 8.4 36.6 5.6
E135-07f 1162.9 4.8 2.7 101.6 2.5 6.0 5.0 82.9 5.0 14.7 13.8 100.3 13.8
E241-22k 666.8 14.8 13.4 421.0 12.9 23.1 22.0 449.7 21.5 26.7 24.4 485.8 23.7
E484-19k 1137.2 11.8 8.9 2056.6 8.6 17.6 16.1 2117.0 15.9 17.4 13.8 2023.4 13.3
Average 915.3 7.9 4.6 191.5 3.7 11.7 8.6 204.5 7.5 14.7 10.8 209.2 9.5

In the results of set S1 we can see that our algorithm is not far from the classical VRP
solutions with results 4.6% worse in average, although it has not been designed for this problem.
The results obtained for set S2 show that splitting the vehicle capacity and the customers demands in
different ratios makes different routes necessary to attend all customers. This happens since one of
the compartments can get full and forces the vehicle go back to depot even when other compartment
still has a residual capacity. The solution of set S2 are in average 8.6% above the best-known values
for the VRP. (Note that the optimal values in this case are probably higher than the best known
values for the VRP.)

Looking at the results of instance set S3 we can see that splitting the compartments in a
more unbalanced way cause the total time of the routes tends to increase, which results in solutions
with more routes. In this instance set the solutions are on average 10.7% worse than the best-known
values for the VRP. We can also notice a slight increase in the average time to find the best value
from 204.45 to 209.23 seconds.



Reed et al. (2014) present results only for the instance vrpnc1 with vehicle capacity and
customers demands split in the same way as instance sets S2 and S3. They have obtained a total
route length of 560.74 and 564.04 for splitting methods S2 and S3, respectively. For this instance
were able to improve their results. We obtain a total length of 553.76 in average for splitting method
S2, and a total length of 556.91 in average for splitting method S3. The best found solutions were
with total length of 550.62 for splitting method S2 and 549.51 for splitting method S3.

In Table 3 we report the results for instance set S4 and compare them with the results of
Fallahi et al. (2008). For each instance the table reports the best known value obtained by Fallahi
et al. (2008), and the relative deviations from this best known values in percent (columns “Cost”)
and the time to find them (columns “Time”) for their Memetic Algorithm (MA) as well as their Tabu
search Algorithm (TS). These are the only known results for this set of MC-VRP instances. The last
two columns give the same results obtained by running our Tabu search algorithm ten times for each
VRP instance with demands and capacities randomly generated as described above for instance set
S4. The times reported are total execution times. In our case the execution time has been limited
to n2/300 seconds, for an instance with n customers. This time has been chosen to provide a fair
comparison, considering that the results of Fallahi et al. (2008) have been obtained on a Pentium
4 processor running at 2.4GHz. This processor is about a factor two slower than the processor of
our machine. The comparison is further complicated by the fact that Fallahi et al. (2008) report the
result of only a single random instance. In our experiments we have found a considerable variation
of the results for different demand splittings of the same instance.

Table 3: Results of Tabu search on instances S4 compared to Fallahi et al. (2008).

Fallahi et al. (2008) This paper
MA TS

Name BKV Cost Time(s) Cost Time(s) Cost Time(s)
vrpnc1 556.1 0.5 17.4 0.0 15.3 -1.8 8.3
vrpnc2 863.6 2.9 25.5 0.0 13.9 0.9 18.5
vrpnc3 837.6 4.9 21.8 0.0 39.8 1.4 33.0
vrpnc4 1070.7 1.7 93.9 0.0 109.7 2.0 74.3
vrpnc5 1361.4 3.5 115.9 0.0 208.4 2.3 130.7
vrpnc6 563.4 1.1 16.5 0.0 10.2 -0.8 8.3
vrpnc7 949.0 0.6 39.2 0.0 22.0 -0.5 18.5
vrpnc8 916.2 4.7 18.7 0.0 18.3 -1.6 33.0
vrpnc9 1262.7 0.0 98.7 2.2 8.6 -4.2 74.3
vrpnc10 1490.2 1.3 140.2 0.0 190.3 0.2 130.8
vrpnc11 1122.9 0.0 47.8 7.0 27.9 1.8 47.5
vrpnc12 926.5 0.0 18.2 0.8 15.8 -4.4 33.0
vrpnc13 1542.4 0.0 76.4 2.6 21.9 1.1 47.5
vrpnc14 966.5 0.0 23.3 18.1 35.7 -3.5 33.0
E072-04f 262.3 0.5 11.7 0.0 5.6 -1.2 17.0
E076-07u 697.8 0.6 15.1 0.0 16.5 0.0 19.1
E076-08s 772.2 2.8 15.4 0.0 13.9 1.6 19.1
E135-07f 1233.2 0.0 47.3 0.2 51.9 1.6 59.1
E241-22k 787.8 1.1 504.5 0.0 202.9 -1.5 190.2
E484-19k 1177.3 5.4 1643.6 0.0 2122.5 5.6 770.6
Average 968.0 1.6 149.6 1.5 157.6 -0.05 88.3



On average, our tabu search is able to find results that are about 1.5% better than those of
Fallahi et al. (2008) in a comparable time. The actual differences in solution quality may vary for
the instances used in the experiments of Fallahi et al. (2008), but we observe that in 10 of the 20
instances our method consistently obtains equal or better solution values, so we expect this result
to be robust. Our results show that a much simpler Tabu search can obtain comparable results, but
also show that there is still a potential for an improvement. Another interesting observation is that
the overall gain of about 1.5% is of the same order of the improvement that Fallahi et al. (2008)
obtain by allowing the splitting of routes, i.e. the demand of a customer for different product types
can be satisfied by multiple vehicles.

5. Conclusions
The MC-VRP has important real-world applications but is rarely studied in the literature.

We have proposed a constructive heuristic based on the savings method of Clarke and Wright (1964)
and a Tabu search to solve this problem. We have presented results for twenty different VRP
instances on four different sets of MC-VRP with instances of two compartments . Our algorithm has
generated good results compared to existing algorithms, but still has potential for improvement in
performance and neighborhood exploration. It would be interesting, in particular, to find a heuristic
which combines the advantages of our approach and that of Fallahi et al. (2008) and to study the
potential gain of our method by allowing the satisfaction of customer demand for different product
types in separate routes.
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