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Abstract—A pattern database (PDB) is a look-up table that
stores the exact distance of a set of abstract states to some
abstract goal state. PDBs are the most promising approach to
derive admissible heuristic functions in several problem domains.
Sokoban is a hard domain of research in artificial intelligence. The
domain-specific characteristics of the problem and the implicit
definition of the goal states makes standard PDBs an ineffective
heuristic function for Sokoban. We show how to apply standard
PDBs as an effective approach to deadlock detection, increasing
the number of instances solved with optimality guarantees. Using
the proposed approach, we are able to detect five times more
deadlocks than the standard heuristic function of Sokoban,
solving optimally two more instances, while exploring an order
of magnitude less nodes.

Keywords—Sokoban, Pattern databases, Single-agent search,
Heuristic search, A∗.

I. INTRODUCTION

A state space problem can be defined as a quadruple P =
(S,A, t,G), where S is the set of states, t ∈ S is an initial
state, G is the set of goal states, and A is the set of operators
A = {a1, a2, . . . , an}. Each operator ai transforms a state
u ∈ S into another state v ∈ S. The set of goal states can be
defined explicitly by a set of states or implicitly by a set of goal
conditions. Standard single-agent heuristic search algorithms
like A∗ [1] and IDA∗ [2] aim to find the shortest path from
t to some goal state using the evaluation function f(s) =
g(s)+h(s). Function g(s) represents to the distance from state
t to state s and h(s) is a heuristic function that estimates the
distance to reach some goal state from s. A heuristic function
is admissible, if it is a lower bound on the shortest path from a
state s to any goal state. Using an admissible heuristic function
A∗ and IDA∗ always find an optimal solution. An admissible
technique or solver is one that guarantees optimality.

Sokoban is a PSPACE-complete problem [9] and a well
known testbed for artificial intelligence techniques. The prob-
lem is defined on a maze, represented by a grid of squares
with immovable blocks (walls) and free squares. The man is a
movable block which can move between adjacent free squares.
There are k goal squares and k movable blocks (stones). The
man can push a stone to an adjacent free square. The set of
goal states G is defined implicitly as all states in which each
stone is placed on a distinct goal square. An optimal solution
is a shortest sequence of operations (moves) that moves all
stones to the goal squares. Movements of the man are not
accounted. A state in Sokoban is completely defined by the
position of the stones and by the reachable component of the
man. The reachable component of the man corresponds to all

TABLE I: Search space characteristics of some single-agent
search problems [10].

Characteristic 24-Puzzle Rubik’s Cube Sokoban

Branching Factor 2.37 13.35 12
- range 1-4 12-15 0-126
Solution Length 100 16 260
- range 80-112 14-18 97-674
Search Space Size 1025 1019 1098

the free squares accessible to the man for a given a placement
of stones in the maze. Finally, a dead square is a square such
that a stone on it cannot reach any goal square. This is an
example of an obvious deadlock. A state s is in deadlock if
no goal state is reachable from s.

Table I shows some characteristics that makes Sokoban
harder to solve than other common state space problems like
24-Puzzle and Rubik’s Cube. Sokoban has longer solutions, a
greater branching factor and a large state space. Besides these
characteristics the presence of deadlocks makes the problem
even harder. Unlike other testbeds in artificial intelligence,
humans do better than computers in the task of solving
Sokoban since all instances have been solved by humans but no
computer could solve all of then. Sokoban is a simplified model
of general robot motion planning which is a fundamental
problem in robotics and has a large range of applications [11].

In recent years the most effective approach to produce
admissible heuristic functions for several problems are pattern
databases (PDBs), introduced by Culberson and Schaeffer [3].
A PDB computes and stores in a look-up table the exact
distances among sets of abstract states to some abstract goal
state in an abstract state space. An abstract state space is
defined by an abstraction function φ that, in general, maps
the state space S into a small abstract state space S′ and in
which the distance between abstract states u′ and v′ does not
exceed the shortest path in the original state space between
states u and v. Once φ is defined, a PDB is constructed in
a preprocessing phase by a backwards search from the set of
abstract goal states G′, storing in the look-up table the distance
to reach each abstract state s′. During the search each state
is mapped to its respective abstract state and the information
stored in the PDB is used as an admissible heuristic function.
PDBs achieved new state-of-the-art results in several problems
such as Sliding-Tile puzzle [3], Rubik’s Cube [4], domain-
independent planning [5], vertex cover [6], multiple sequence
alignment [7] and model checking [8].
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Fig. 1: Standard heuristic function of Sokoban computed by a
minimum cost perfect matching in a bipartite graph.

In this paper we introduce the idea of using standard
PDBs in Sokoban for deadlock detection. Because of the
implicitly defined set of goal states and the domain-specific
characteristics of the problem standard PDBs in Sokoban lead
to ineffective heuristic functions. We show that a standard
PDB nevertheless can effectively detect deadlocks, and may
be used together with other heuristic functions to increase the
number of optimally solved instances. We start by reviewing
some related work. Then we show how to construct the PDB,
how to compute the heuristic function, and explain why it
is ineffective. Finally, we present computational experiments
to show the effectiveness of the standard PDB to detect
deadlocks, and how this technique can be used with another
heuristic function to solve instances of Sokoban.

II. RELATED WORK

The Rolling Stone (RS) solver proposed by Junghanns and
Schaeffer [10] is an important milestone in the research on
Sokoban. RS is built on an IDA∗ using domain-independent
and domain-dependent enhancements. The solver was devel-
oped to find some solution for the largest possible number of
instances. Thus, several non-admissible techniques have been
introduced. The non-admissible version of RS is able to solve
57 instances. There is also an admissible version of RS (which
we call RS∗). RS∗ is able to solve 6 instances optimally. RS
introduced two techniques for deadlock detection: deadlock
tables and pattern searches. A deadlock table is an admissible
technique to detect deadlocks in a small window of five by
four squares. All possible configurations of stones, walls and
the man in this small window are enumerated and eventual
deadlocks are recorded. Deadlock tables of this size have more
than 20 million entries and their construction takes several
days. During the search the information of deadlock tables is
used to detect deadlocks in windows of five by four. A pattern
search is a non-admissible technique that aims at finding
deadlocks and calculates penalties during the search by solving
subsets of stones. Both techniques detect a small subset of the
total possible deadlocks that occur in Sokoban.

RS also introduced the enhanced minimal matching
(EMM), the standard heuristic function for Sokoban. EMM
is computed using three components: backout conflicts (BC),
a minimum cost perfect matching, and linear conflicts (LC).
BCs compute distances for pushing a stone from each square
to each other square considering the position of the man when
his movement is restricted in articulation squares by a stone.
A lower bound on the minimal number of pushes needed to
bring the stones to the goal squares is computed by a minimum
weight perfect matching between stones and goal squares,
where the weight of the edge between stone s and goal square

g is the smallest number of pushes needed to bring s to g. The
resulting graph can be seen in the right part of Figure 1. Finally,
LC adds a penalty of two when a pair of adjacent stones is
in the optimal path of each other. This type of conflict can be
seen between the stones in positions D3 and E3 in the left
part of Figure 1. A good heuristic function for Sokoban must
be effective in detecting deadlocks since a state in deadlock
has infinite distance to any goal state. The EMM can detect
non obvious deadlocks, for example, a state where two stones
can be pushed only to a single goal square.

There are other non-admissible solvers in the literature for
Sokoban [12, 13]. However, the best non-admissible solvers are
have been developed by the community interested in Sokoban1.

PDBs were introduced in domain-independent planning
by Edelkamp [5]. In this work a set of easy Sokoban instances
was used in the experiments. The problem was transformed
into a problem with an explicit defined goal state by an
arbitrary assignment of stones to goal squares. The approach
introduced by Haslum et al. [14] obtains the best results
with PDBs in domain-independent planning. In a simple way,
they build a standard PDB trying to select good abstractions
automatically. Their work also uses a set of easy Sokoban
instances for evaluation. A state-of-the-art implementation of
PDBs according to Haslum et al. [14] does not solve any
standard instance of Sokoban.

PDBs have already been introduced as a domain-dependent
technique to Sokoban in the work of Pereira et al. [15].
This approach solves the problem of the implicit definition
of the goal states using an instance decomposition introducing
a explicitly defined intermediate goal state. The intermediate
goal state allows to decompose the original problem into two
subproblems in two zones of the instance, the maze zone
and the goal zone. For the maze zone subproblem they build
an intermediate pattern database (IPDB) and for goal zone
subproblem they use the minimum cost perfect matching with
simple distances. This approach is the currently best admissible
heuristic function for Sokoban, and is able to solve nine
instances whereas RS∗ is able to solve four with the same
limit of five million of explored nodes. IPDB also effectively
detects deadlocks. However, it can only detect deadlocks that
occur completely in the maze zone.

III. PATTERN DATABASES FOR SOKOBAN

In this section we show how to build standard PDBs
efficiently, how to compute the heuristic function and explain
why this heuristic function presents poor results in Sokoban.

A. Pattern Database Construction

In domains like Sliding-Tile puzzle or Rubik’s Cube the
construction of the PDB can take several hours or even days.
This is acceptable, since the PDB can be used to solve several
different instances of the same problem and the construction
cost can be amortized over several executions. However, this
is not the case for Sokoban since each instance is a different
problem with a different state space. Thus, a PDB for Sokoban
must be constructed efficiently for each instance. This limits
the size of the PDB. Furthermore the PDB must be effective

1http://www.sokobano.de/wiki/, accessed in June, 2014.
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Fig. 2: Initial abstract states used for building an MPDB.

enough to amortize the cost of its construction. We start by
describing how to obtain an abstraction for Sokoban, then
explain how to build the PDB efficiently and how a PDB can
be used for deadlock detection, and finally compare it to other
approaches.

An abstraction for a Sokoban instance with k stones can be
defined considering only a subset of k′ stones. In other words,
if we remove from a state s with k stones all but k′ stones we
obtain a subproblem of the original problem. A goal state for
the abstraction is a state where each of the k′ stones is placed
on a different goal square. This abstraction is admissible since
the cost for solving an instance with a subset of stones never
exceeds the cost of solving the same instance with all stones.
A standard PDB is constructed from the set of abstract goal
states G′. The set of abstract goal states for a simple instance
can be seen in Figure 2.

The set of abstract goal states serves as the set of initial
states for the reverse search during the construction of the
PDB. Since these states are abstract goal states they have cost
0. Each reverse move applied to an abstract state increases the
distance to the set of abstract goal states by one. The PDB is
completely constructed when the whole abstract state space has
been explored and each abstract state has its shortest distance
to the set of abstract goal states stored in the look-up table.
We call a PDB which is built from various abstract goal states
a multiple goal state PDB (MPDB). The number of stones in
the abstraction determines the size of the MPDB: an MPDB-k′
is built from an abstraction of k′ stones.

An MPDB-2 can be stored in a three-dimensional array,
using two indices for the position of each stone and one index
for the position of the man. In this representation each different
position of the man or the stones represents a different entry
in the MPDB. This is possible because an MPDB-2 has a
small number of entries. An array enables fast queries since
the index for the positions of the stones and the man can be
computed in constant time. For an MPDB-k′ with k′ > 2
we use a sparse storage based on a hash table. We store an
entry for each unique abstract state, i.e., a unique placement
of k′ stones with a different reachable component for the man.
This reduces the memory used by the MPDB significantly, but
increases the cost of a query, since we have to sort the stones
in a specific order, and we have to determine the reachable
component of the man.
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Fig. 3: Example instance and general graph for compute the
heuristic value from a MPDB.

An MPDB can also be built to detect deadlocks. In this case
we do not store the distances for all abstract states, but only the
reachable abstract states. This further decreases the memory
used by the MPDB. The MPDB-k′ is built exhaustively. There-
fore, each placement of k′ stones with a reachable component
of the man not contained in the MPDB must be a deadlock. An
MPDB detects strictly more deadlocks than an IPDB since the
latter can only detect deadlocks completely contained in the
maze zone of the instance. MPDBs do not have this restriction.
An MPDB-2 detects all deadlocks detected by the EMM.
Actually, MPDBs are able to detect all deadlocks formed by
k′ stones. Furthermore, deadlock tables detect deadlocks only
in a small part of the instance. Again MPDBs do not have this
restriction. A pattern search also depends on implementation
design decisions and can miss non obvious deadlocks.

B. Heuristic Value Computation

Given an MPDB we have to compute the heuristic value.
Since each entry in the MPDB stores the cost of solving a
subset of stones, we can sum the cost of solving disjoint
subsets of stones, and still obtain an admissible heuristic
function. Such a PDB is called additive. Since the interaction
of stones changes during the search, we chose to use dynamic-
additive PDBs, where for each state in the search we compute
a different partition of stones into disjoint subsets. For an
MPDB-2, a maximum weight matching in a general graph
yields the highest heuristic value in polynomial time. For an
MPDB-k′ with k > 2 the corresponding matching problem
becomes NP-complete, and thus heuristic approaches must be
employed, as described below.

To compute the heuristic value for an MPDB-2 we build
a graph with a vertex for each stone. Each pair of vertices
is connected by an edge with a weight equal to the distance
stored in the MPDB-2 for the corresponding pair of stones.
This distance is defined as the shortest path from the pair of
stone positions to the closest pair of goal squares. If the number
of stones is odd, an extra vertex is added to the graph and it is
connected by an edge to all other vertices in the graph. Each
of these edges has a weight equal to the number of moves on
the shortest path from the current position of the stone to some
goal square. This graph and the respective instance can be seen
in the Figure 3. After the graph is constructed we compute a
maximum weight matching to find the highest heuristic value.

If the abstraction is composed of more than two stones
the problem of computing the highest heuristic value be-
comes equivalent to the maximum weight exact cover, an NP-
complete problem. Since we have to solve this problem for



each state in the search we use a fast and simple greedy
randomized constructive heuristic. We start by querying the
distance of every subset of k′ stones in the MPDB and sort
these distances in order of non-increasing increments, where
the increment is the difference of the value stored in the MPDB
and the sum of the distances for each stone to reach the closest
goal square. Each of the k stones in the state is allowed to be
part of only one selected subset of k′ stones. Thus, selecting a
subset will disable other subsets which include the same stone.
We heuristically generate k + 1 partitions of the k stones as
follows. The first partition is obtained by greedily choosing
the subset of highest increment, until all stones are covered.
The remaining k partitions are obtained by greedy randomized
strategy. This strategy chooses some random subsets from the
first m subsets, and then completes it greedily. We repeat this
strategy k times with m = i

(
k
k′

)
/k in iteration i = 1, . . . , k.

Thus, in the last iteration we choose randomly among all
subsets. The highest heuristic value obtained in all k + 1
partitions is used as the heuristic value. Observe that the
heuristic obtained in this way is still admissible, since every
partition of the stones yields a lower bound in the shortest
distance to bring the stones to the goals.

The heuristic function based on MPDB is ineffective com-
pared to other heuristic functions like EMM or IPDB, since
the MPDB is built from a set of abstract goal states. Each
subset of stones will be assigned to some closest subset of
goal squares. This ignores that each stone must be placed
on an unique goal square. It also looses information when
goal squares are occupied by stones. In this case the heuristic
function may assign other stones to the goal squares that are
already occupied. In Figure 3 every subset is assigned to the
same abstract goal state Figure 2b. The highest heuristic value
obtainable by an MPDB-2 for the state in Figure 3 has value
12, while the heuristic value obtained by EMM is 16.

IV. EXPERIMENTAL RESULTS

In this section we present experimental results performed
with the proposed approach. We first compare i) EMM, the
standard heuristic function of Sokoban; ii) IPDB, the state-
of-the-art heuristic function [15], and iii) MPDB. Next we
compare the MPDB to the EMM, measuring the effectiveness
in detecting deadlocks. Finally, we run several experiments
to evaluate the ability of each technique in finding optimal
solutions for Sokoban. All experiments have been performed
on a PC with an AMD Opteron processor running at 2.34 GHz
with 32 GB of main memory. In all experiments no MPDB
uses more than 2 GB of memory. All methods use the standard
set of 90 instances2.

A. Heuristic Value on Initial States

One way to compare the effectiveness of a proposed
heuristic function is to evaluate the heuristic value on the initial
states of the standard set of instances. The work of Pereira
et al. [15] provides these results for an IPDB built from
an abstraction with two stones. Therefore we compare our
MPDB with their results and the standard heuristic function of
Sokoban. Table II provides these results. Column “#” gives the
number of the instance, columns “E”, “I” and “M” report the

2http://www.cs.cornell.edu/andru/xsokoban.html, accessed in June, 2014.

TABLE II: Heuristic value on the initial states of the standard
set of 90 instances.

# E I M U

1 95 95 91 97
2 129 131 117 131
3 132 134 116 134
4 355 355 311 355
5 139 141 121 143
6 106 106 94 110
7 80 80 68 88
8 220 220 192 230
9 229 231 206 237

10 510 510 349 512
11 207 207 174 241
12 206 206 174 212
13 220 220 165 238
14 231 231 206 239
15 96 96 86 122
16 162 166 118 186
17 201 201 197 213
18 106 106 87 124
19 286 286 254 302
20 446 446 360 462
21 129 129 89 147
22 308 308 250 324
23 426 430 383 448
24 518 518 414 544
25 368 370 261 386
26 165 167 138 195
27 353 355 295 363
28 286 290 208 308
29 122 128 107 164
30 359 385 320 465
31 232 232 176 250
32 113 115 94 139
33 152 152 119 174
34 154 154 128 168
35 364 364 316 378
36 507 507 447 521
37 242 242 187 284
38 73 73 60 81
39 652 652 535 672
40 310 312 275 324
41 221 223 166 237
42 208 208 139 218
43 132 134 116 146
44 167 169 158 179
45 284 286 224 300

# E I M U

46 223 223 191 247
47 199 199 163 209
48 200 200 150 200
49 104 104 72 124
50 100 102 83 370
51 118 118 84 118
52 367 369 319 421
53 186 186 164 186
54 177 181 160 187
55 120 120 102 120
56 193 193 170 203
57 217 217 183 225
58 197 197 178 199
59 218 218 194 230
60 148 148 127 152
61 245 249 197 263
62 237 239 196 245
63 427 429 383 431
64 367 373 341 385
65 203 203 170 211
66 187 187 158 325
67 377 385 323 401
68 321 325 283 341
69 219 219 183 433
70 329 329 281 333
71 294 294 261 308
72 288 288 196 296
73 437 441 408 441
74 176 178 164 212
75 263 263 216 295
76 194 194 156 204
77 360 360 255 368
78 136 136 124 136
79 166 168 144 174
80 231 231 213 231
81 167 167 145 173
82 135 135 117 143
83 194 194 182 194
84 149 151 135 155
85 305 305 238 329
86 122 122 97 134
87 221 221 201 233
88 336 336 246 390
89 353 353 274 379
90 442 442 244 460

AVG 241 242 200 262

heuristic value for the EMM, IPDB, and MPDB, respectively,
and the last column “U” reports the best known upper bounds
on the solution length for each instance.

Clearly the IPDB dominates both the MPDB and EMM.
The average heuristic value is one unit higher than that of
EMM, and for some instances considerably more (e.g. for
#30 the value is 26 better). It is also clear that the MPDB
yields poor heuristic values, which are always dominated by
the EMM and the IPDB. This is expected since this heuristic
function loses much information by the construction of the set
of abstract goal states. This also indicates that MPDB is not
an effective heuristic function for Sokoban.

B. Deadlock Detection

Sokoban instances are built such that most of the possible
movements generate deadlocks, sometimes non obvious ones.
A Sokoban solver can spend a great effort trying to solve sub-
sets of states in deadlock. Therefore, the capacity of deadlock
detection is crucial for an effective Sokoban solver.



This section evaluates the capability for detecting dead-
locks. To this end we generate 10, 000 random states for each
of the 90 instances of the standard set. Each state is generated
starting with an empty instance. Then we repeatedly place a
stone on a random non-dead square, until the number of stones
is equal to the number of goal squares. This avoids the creation
of obvious deadlocks. Finally we place the man on a random
free square. This experiment aims to show how the heuristic
function is effective during the search in detecting deadlocks
and in heuristic values. The work Pereira et al. [15] does not
report this experiment. Thus we only compare our MPDB with
two different sizes of abstractions with the EMM.

Table III shows the mean heuristic value of the 10, 000
randomly generated states of EMM and MPDB in columns
“HV”, and the number of detected deadlocks in columns
“DL”. Column “#” gives the number of the instance. We
can expect that MPDB-2 detects more deadlocks than EMM,
since MPDB-2 can detect all deadlocks formed by two stones.
We can also expect that MPDB-4 dominates MPDB-2, since
MPDB-4 detects all deadlocks formed by four stones.

EMM obtains a mean heuristic value of 165 and detects
1, 318 states in deadlock. MPDB-2 has a mean heuristic value
of 137. As expected this value is lower than the one provided
by EMM, but the MPDB-2 detects 8, 168 deadlocks and the
MPDB-4 detects 8, 981 deadlocks. This shows that EMM
in average fails to detect about 77% of the deadlocks, and
spends a larger amount of the computational effort in states
that will never lead to any goal state. This also suggests
that we can build a more effective solver if we combine
an effective heuristic function like EMM with an effective
deadlock detection technique like MPDB.

C. Solving Instances

In this final experiment we compare different approaches
to obtain optimal solutions to Sokoban. To this end we
implemented an efficient A∗ algorithm. It is not fair to compare
our results directly with the ones from the RS∗ since it uses
an IDA∗ algorithm and A∗ has the advantage of being able to
perfectly detect duplicates. We use the same set of tie-breaking
rules from RS. Thus our base implementation of A∗ using
the EMM as a heuristic function would be equivalent to the
RS∗ if it used an A∗ algorithm. The results for this version of
the solver are shown in column “EMM” in Table IV. These
results are better than the ones reported in [15] without using
a domain-specific tie-breaking rule. Column “MPDB” shows
the results for the solver using the MPDB as the heuristic
function for an abstraction with two and four stones. Column
“EMM+MPDB’ shows the results when using the EMM as the
heuristic function and the MPDB only for deadlock detection.
Again two sizes of abstractions have been tested. All tests have
been performed with a limit of one hour of computation time
and 5 million explored nodes. We also limit the size of the
abstraction to four, since for some instances is not possible to
build the MPDB with an abstraction of five stones in an hour.
The reported time always includes the time used to build the
MPDB and to solve the instance. The number of nodes does
not include the nodes explored to build the MPDB, since in
these nodes it is not necessary to compute a heuristic value
and they are therefore processed much faster.

Instances which could not be solved within the above
limits are marked with the symbol “>”. The table shows only
instances that could be solved by some of the approaches.
MPDB-4 could solve only three instances and MPDB-2 only
two. EMM could solve ten instances, which is more than
the six instances that RS∗ was able to solve. This is ex-
pected, since RS∗ was designed to consume less memory, and
uses IDA∗, which we have replaced by A∗. EMM+MPDB-
2 solves eleven instances and EMM+MPDB-4 twelve in-
stances. EMM+MPDB-4 explores fewer nodes than the other
approaches. Ten of the eleven instances that EMM+MPDB-2
solves, it solves faster than the other approaches. These results
show that the proposed approach to use MPDB for deadlock
detection is effective even considering the higher preprocessing
costs.

V. CONCLUSIONS AND FUTURE WORK

We have proposed an effective approach for optimally
solving Sokoban, by combining the use of a good heuristic
function such as the EMM with an effective deadlock detection
technique. We have shown that MPDB can serve the role of
an efficient deadlock detector. We solve three more instances
exploring an order of magnitude less nodes compared to the
standard heuristic function of Sokoban. A way to improve
MPDBs could be to find better heuristics for finding good
partitions in the case of abstractions with more than two stones.
The existence of an alternative method to apply MPDBs as an
efficient heuristic remains another open research question.
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37 163 39 127 8,252 139 9,186
38 49 0 42 7,942 46 8,775
39 420 3,625 344 9,498 364 9,896
40 206 9 180 9,185 187 9,543
41 147 0 111 8,826 123 9,740
42 135 2,465 96 9,066 106 9,638
43 96 0 83 6,874 89 8,030
44 108 3,030 101 7,595 105 8,414
45 186 0 145 8,167 153 9,044
46 138 2,063 116 7,754 120 8,752
47 139 0 115 8,365 121 9,119
48 192 0 140 9,808 145 9,964
49 77 3,848 59 9,079 66 9,707
50 138 8,268 123 9,616 132 9,768
51 80 0 57 6,792 64 8,296
52 269 62 234 9,479 239 9,765
53 144 1 127 7,485 131 8,278
54 121 0 106 8,147 112 8,900
55 98 8,072 84 9,087 91 9,520
56 130 7,922 108 9,626 116 9,819
57 139 0 112 5,643 118 6,845
58 129 2,853 114 8,070 119 8,683
59 158 1,979 139 7,758 144 8,890
60 100 5,180 85 8,274 90 8,917

# EMM MPDB-2 MPDB-4

HV DL HV DL HV DL

61 169 4,218 134 9,044 142 9,591
62 165 8,721 135 9,763 141 9,877
63 279 13 243 5,820 250 7,152
64 241 1,671 218 8,327 222 8,861
65 158 0 135 6,479 141 8,311
66 136 2,003 115 7,170 124 8,400
67 263 2,554 221 8,168 226 9,219
68 234 35 206 6,986 213 8,736
69 165 29 142 7,435 153 8,700
70 229 2,271 195 9,006 200 9,585
71 191 2,370 171 8,706 182 9,601
72 173 1,100 123 8,326 136 9,405
73 268 2,958 243 7,376 250 8,313
74 125 2,116 110 8,341 118 9,441
75 175 28 143 8,324 150 9,487
76 148 1,906 121 9,059 128 9,651
77 232 1,701 175 9,147 204 9,810
78 79 195 72 5,134 74 5,863
79 100 153 84 4,005 89 4,935
80 129 1,939 118 5,656 120 6,080
81 105 130 89 6,402 93 7,320
82 99 17 87 7,016 90 7,854
83 129 426 122 6,227 124 6,828
84 105 1 94 5,597 96 6,122
85 191 5,701 150 9,040 159 9,749
86 80 68 66 7,315 72 8,338
87 149 3 135 8,223 141 8,907
88 231 0 173 9,413 187 9,775
89 257 2,453 206 9,529 221 9,876
90 269 959 174 9,665 190 9,952

165 1,318 137 8,168 144 8,981

TABLE IV: Number of explored nodes and computational times in seconds for different Sokoban solvers.

# MPDB EMM EMM + MPDB

2 4 2 4

Nodes Seconds Nodes Seconds Nodes Seconds Nodes Seconds Nodes Seconds

1 319,196 14.41 186,366 42.13 160 0.16 160 0.20 153 2.89
2 >5,000,000 674.52 >729,842 3,600.00 161,834 21.29 86,840 10.96 68,927 222.46
3 >5,000,000 625.91 >701,471 3,600.00 1,187,486 103.74 950,950 97.54 22,268 41.89
6 >5,000,000 594.04 >839,620 3,600.00 1,354,432 152.41 366,955 35.52 1,641 6.80
7 >5,000,000 567.89 >725,610 3,600.00 >5,000,000 427.99 223,956 19.62 127,840 275.92

17 1,744,788 85.73 1,108,090 334.11 1,471,533 77.38 19,633 1.23 775 7.01
38 >5,000,000 347.22 1,863,317 1,257.23 93,423 27.01 24,196 1.76 8,919 6.20
49 >5,000,000 569.64 >518,835 3,600.00 1,596,896 173.13 1,381,596 147.03 >900,425 3,600.00
51 >5,000,000 880.18 >142,144 3,600.00 >5,000,000 905.20 >5,000,000 929.33 223,106 3,067.88
78 >5,000,000 477.79 >1,485,294 3,600.00 8,544 1.88 8,387 1.46 7,646 39.14
80 >5,000,000 412.42 >225,445 3,600.00 27,708 38.26 10,594 1.89 480 109.12
81 >5,000,000 734.27 >177,378 3,600.00 >5,000,000 1,055.31 >5,000,000 1,195.76 198,935 2,365.23
83 >5,000,000 316.25 >1,249,048 3,600.00 559 20.70 362 0.61 305 38.54
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