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Abstract—The open and job shop scheduling problems are
widely studied in the literature. In this paper we study the
partial job shop scheduling problem proposed by Nasiri and
Kianfar [14]. In this problem, the operations of a job are partially
ordered. An open shop and a job shop are therefore special
cases of a partial shop, with no order or a linear order of the
operations, respectively. We propose an iterated greedy heuristic
based on an extension of the well-known shifting bottleneck
heuristic for the job shop to partial shops. In computational
experiments we evaluate the performance of these heuristics and
compare it to results from the literature.

Keywords. Partial Shop scheduling, Heuristics, Shifting Bot-
tleneck, Iterated Greedy Algorithm

I. INTRODUCTION

Job shops and open shops are well-known models for
production processes. In the job shop scheduling problem
(JSSP) and open shop scheduling problem (OSSP) we have
to find an optimal schedule for a set of jobs J = [n]
on a set of machines M = [m]1. The set of operations
O = {oij | (i, j) ∈ M × J} contains one operation for each
machine-job pair. Each operation oij ∈ O has a processing
time of pij . Each machine can process only one job at a time,
and each job can be processed only on one machine at any
instant. Once an operation is scheduled it must be processed
to completion, so no preemption is allowed. We consider no
explicit setup times, since without preemption, we can assume
that the setup time is included in the processing time. We can
model processes that have jobs which do not use a particular
machine by setting the time of its operations to zero.

What differentiates JSSP and OSSP is the precedence order
of the operations of each job. In the JSSP each job visits the
machines in a particular total order, while in the OSSP we can
execute the operations of a job in any order.

The literature contains studies focusing on different objec-
tive functions, e.g. total flow time, or total lateness. In this
paper we focus on the most common objective: to minimize
the makespan Cmax, i.e. the time needed to complete all jobs.

In this work we study an extension of the JSSP where
the order of the operations of the jobs is partial instead of
linear, the so called Partial Shop Scheduling Problem (PSSP),
proposed by Nasiri and Kianfar [14]. The OSSP is an special
case of PSSP where the partial order is empty, while the JSSP

1We use the notation [n] = {1, . . . , n}.

is a special case of PSSP where the partial order is total.
The order strength of a partial order is the fraction of actual
precedence relations t of all possible precedence relations,
defined as OS = t/

(
n
2

)
. Instances of the JSSP have order

strength 1, and instances of the OSSP order strength 0. Since
both OSSP and JSSP are NP-hard [17] the PSSP also is.

A. Literature Review

The JSSP is well known to be a hard combinatorial opti-
mization problem. The notorious instance with ten machines
and jobs proposed by Fisher and Thompson [9] was solved
only twenty years later by a branch-and-bound algorithm by
Carlier and Pinson [7]. Other noteworthy exact solvers are
Applegate and Cook [2] and Brucker et al. [5], which are
branch-and-bound algorithms as well.

To the best of our knowledge no exact solver is able to
consistently solve instances with twenty machines and jobs
or more in a timely manner, and a growing effort has been
put into efficient heuristic solvers. Nowicki and Smutnicki
proposed two Tabu search algorithms [15, 16]. Watson et al.
[23] highlighted the importance of the neighbourhood in the
efficiency of the Tabu search.

Adams et al. [1] created the Shifting Bottleneck Procedure,
which is a fast constructive heuristic. Balas and Vazacopoulos
[3] and Pezzella and Merelli [18] utilized the algorithm within
a guided local search and a Tabu search, respectively.

Most of the early works on the OSSP are studies on
complexity results and polynomial solutions or approximations
for special cases. Gonzalez and Sahni [10] proposed a linear
time exact solver for the special case with two machines, and
proved NP-hardness of the case with more than two machines.
Chen and Strusevich [8] present approximation algorithms for
the case with three machines.

From more recent works we cite the branch and bound by
Brucker et al. [4] and the genetic algorithm by Prins [19].
Ramudhin and Marier [20] extended the Shifting Bottleneck
Procedure for general shops.

The Mixed shop scheduling problem was proposed by
Masuda et al. [12]. The jobs in a mixed shop have either the
structure of an OSSP or of a JSSP. The jobs are divided into
sets Jo and Jj (Jj ∪ Jo = J) which is the set of OSSP type
jobs and JSSP type jobs respectively.

The Stage shop scheduling problem proposed by Nasiri and
Kianfar [13] is an extension of the mixed shop. The jobs have



stages and the stages contain operations. The instance defines a
total order between the stages while the operations in a stage
are independent. An operation may only be executed if all
operations of all previous stages were finished. Operations of
the same stage may be executed in any order.

Nasiri and Kianfar [14] formalized the PSSP, proposed
a mixed integer formulation, implemented a hybrid genetic
algorithm, and proposed a of set instances for the problem
based on the instances of the JSSP by Taillard [22]. We use the
instances proposed by this paper to evaluate the performance
of our algorithms and compare to their results.

The remainder of this paper is organized as follows. In
Section II we define PSSP formally, in Section III we explain
the Shifting Bottleneck procedure proposed by Adams et al.
[1], and present an extension to the PSSP in Section IV, and
an iterated greedy algorithm in Section V. In Section VI we
present the results of computational tests with these methods.
We conclude in Section VII.

II. PROBLEM DEFINITION

A. Digraph Representation

We can represent an instance of a shop scheduling problem
and its solution in the form of a disjunctive graph G =
(V,C,D) with three components:
• A set of nodes V . Each operation of the instance is

represented by a node in the graph. Each node has an
associated cost pij which is the processing time of job j
on machine i. In addition we have two special nodes, the
source and the sink, which have no cost and are associated
with no machine.

• a set of directed conjunctive arcs C. Any precedence be-
tween operations is represented by these arcs. In addition
we insert a conjunctive arc going from the source to each
operation without any predecessor, and symmetrically one
from each operation without any successor to the sink.

• a set of undirected disjunctive arcs D. For every pair of
nodes which are not connected directly or transitively we
add a disjunctive arc connecting both.

The scheduling is reduced to an orientation of all disjunctive
arcs. The fact that two nodes are not connected by the elements
of C (and the transitive closure them) means that no order
between the operations is defined by the instance. Therefore
we can select their order arbitrarily. A complete valid schedule
in the graph model is a complete selection. A complete
selection is an orientation of D such that each element of
D is oriented and the graph is acyclic.

Given a disjunctive graph and an acyclic selection we can
derive a valid schedule by starting the operations at the time
given by the longest path from source to the corresponding
node in V . The makespan of such a schedule is the longest
path between source and sink. A critical path is a longest path
from the sink to the node.

The JSSP, the OSSP, and the PSSP differ only in the set of
conjunctive and disjunctive arcs. In the JSSP, C contains all
the precedences associated with the total order of each job,

Algorithm 1 Shifting bottleneck procedure
M0 = ∅
while M0 6= M do

Identify the bottleneck machine mb ∈M \M0

Schedule mb optimally
M0 = M0 ∪ {mb}
while 3 times, or until no improvement is made do

for each machine m ∈M0 do
Re-optimize m

end for
end while

end while
while Improvement is made do

for each machine m do
Re-optimize m

end for
end while

and D contains all the machine cliques. An acyclic selection
of a machine clique is equivalent to selecting a processing
order for the operations of that machine. Therefore a complete
selection corresponds to a processing order for each individual
machine. In the OSSP C is empty, and D contains all the arcs
corresponding to the machine and job cliques. A complete
selection is equivalent to an ordering of all the operations in
each job and machine. Finally, in the PSSP, C corresponds
to the partial order relation of each job, while D contains
the machine cliques and the arcs between operations with
undefined order in each job. A complete selection is equivalent
to an ordering of the operations in each machine and choosing
a complete ordering for each job that satisfies the partial
ordering defined by the instance.

III. THE SHIFTING BOTTLENECK PROCEDURE

The Shifting Bottleneck Procedure (SBP) proposed by
Adams et al. [1] is a constructive heuristic for the JSSP.

Algorithm 1 shows the pseudocode for the SBP. The algo-
rithm has two main steps:

1) Identify and schedule the bottleneck machine.
2) Locally re-optimize already scheduled machines.
The set M0 contains all machines which were already

scheduled. The first step selects a new bottleneck machine,
adds it to M0 and finds the optimal acyclic selection of
the corresponding one-machine problem. The re-optimization
step revisits the machines already in M0 scheduling each one
optimally again.

Both steps utilize the one-machine problem with release
and delivery times associated with each single machine. Given
a partial orientation of D in G we can schedule a single
machine i ∈ M , i.e., select an orientation of the arcs in
D of the machine clique corresponding to i. The length of
the longest path from the source to an operation is called
is head. Similarly, the length of the longest path from an
operation to the sink is its tail. An operation of the one-
machine problem under consideration cannot start before its



head, and consumes a extra time corresponding to its tail
after completion. Therefore the corresponding one-machine
problem defines, for an operation o, a release time ro equal to
its head, and a delivery time qo equal to its tail.

The bottleneck machine mb is the machine with the highest
makespan for the associated one-machine problem. The SBP
utilizes the branch-and-bound solver for the one-machine
problem proposed by Carlier [6] to find an optimal schedule.
Notice that it is possible to have an acyclic selection for a
machine which yields a cycle in the overall graph. When
G contains a cycle the schedule is undefined. To solve this
problem after optimizing a machine we identify cycles, and,
if needed, we perform the branch-and-bound procedure again
enforcing inverse precedences of the ones causing the cycles.

IV. A SHIFTING BOTTLENECK PROCEDURE FOR THE PSSP

In the JSSP we need to establish an ordering for the
operations on each machine. For the PSSP we need to do
so for both the machines and the jobs. Thus either machines
or jobs can be bottlenecks, and are subject to an optimization
of the order of its operations.

We create a one-machine problem for each job of the
instance the same way we do for the machines, therefore we
define the release and delivery times as the heads and tails in
the current schedule. Different from machine bottlenecks, we
must force the branch-and-bound algorithm to consider only
solutions that satisfy the partial order of the operations defined
by the instance.

A. Implementation Details

We can compute the maximum distance from the source and
to the sink for any operation of the instance in linear time in
the number of operations the instance contains. This happens
because the transitive arcs of G can be ignored: a longest
path never uses them. Thus we can compute the maximum
distance by updating it in topological order. Notice that we
need to perform the update for each operation in the instance
at each step.

When we solve the one-machine problem and select an
order for the operations of a job or a machine it is possible
that a cycle in G is created. Assume we are optimizing a
machine or job e and the branch-and-bound determines that
in the optimal schedule for e operation o1 precedes (directly
or indirectly) operation o2. Let Ge be equal to G without
the disjunctive arcs associated with e. If there is a path from
o2 to o1 in Ge then scheduling o1 before o2 will form a
cycle and the branch-and-bound algorithm will generate an
invalid schedule. Because forming cycles is rare we do not
test for possible cycles during optimization. After the branch-
and-bound algorithm terminates, when we compute the new
heads and tails of the instance, we can detect the existence of
a cycle. Only in the cases where we find one or more cycles
we compute the set of precedences P from e which are part
of a cycle. We solve the branch-and-bound again for e but
subject to the inverse precedences of the elements of P .

Algorithm 2 Schrage Schedule
U is the set operations to be scheduled.
t = mino∈U ro
while U 6= ∅ do

R = {o | o ∈ U ∧ ro ≤ t}
os = argmaxo∈R(qo)
Remove os from U and schedule it at t
t = max(t+ po,mino∈U ro)

end while

During all stages of the algorithm we keep G acyclic, so
when we define the order of the operations for a job or machine
e, for each pair of operations o1 and o2 of e there is always a
possible order that does not create a cycle, otherwise o1 would
have a path to o2 and o2 to o1 in Ge which means G would
have a cycle before we schedule e.

During the computation of the heads and tails we only
need to know the immediate predecessors and successors of
an operation G. Yet to detect and fix cycles and to enforce
the partial orders we need the transitive precedences as well,
so we keep a data structure for the transitive closure of
the precedence orders as proposed by Italiano [11], so the
verification of a precedence is done in constant time.

Our implementation of Carlier’s one-machine branch-and-
bound algorithm must be able to enforce the precedences in
a partial order relation, either to avoid cycles or to obey the
partial order associated with a job. The algorithm is based on
Schrage’s schedule described in Algorithm 2, which at a given
time schedules the released operation with the longest delivery
time.

To enforce the precedences we adjust the release dates and
delivery times of the one-machine problem. For each operation
o1 that precedes an operation o2 we set the release dates and
delivery times as follows:

rβ = max(rβ , rα + dα) (1a)
qα = max(qα + qβ + dβ), (1b)

Equation 1a guarantees that o2 will only be ready once o1 is,
and Equation 1b will give o1 priority in the Schrage schedule,
such that it will be scheduled before o2. Since o1 is always
scheduled before o2 there is no possibility that the increased
delivery time of o1 will change the makespan of the schedule.
We adjust the release dates and delivery time in this fashion
for each precedence in the partial order. We adjust the heads
of each operation only according to its direct successor and
predecessor in the topological order, such that the transitive
relations will be enforced naturally.

V. AN ITERATED GREEDY ALGORITHM FOR THE PSSP

An iterated greedy algorithm is a constructive meta-
heuristic introduced by Ruiz and Stützle [21]. A general
iterated greedy algorithm is described in Algorithm 3. It
first builds an initial solution and then repeatedly perturbs
the current solution and applies a local search to the newly
generated solution. Different from an iterated local search, the



Algorithm 3 Iterated Greedy Algorithm
Generate a initial solution
while time is not up do

Destroy part of the solution
Rebuild solution
Apply local search
Test acceptance of the new solution

end while

perturbation is realized by destruction and construction. In the
destruction step, some random elements are removed from the
solution. These elements are inserted greedily into the solution
in the construction step, to obtain a new complete solution.

A. Initial Solution

To produce a good initial solution we utilize SBP adapted
for the PSSP as explained in the previous section.

B. Perturbation

After each step the current solution is always a local
minimum as left by the local search (explained next section).
In order to escape local minima we partially destroy the
current solution and perform a greedy reconstruction. This
perturbation depends on a parameter R, which indicates how
many jobs or machines will be removed from and reinserted
greedily into the current solution. We randomly select R
elements to be removed, which can be any combination of
jobs and machines, and remove the disjunctive arcs associated
with them. We then reinsert these elements in a random order.
For each reinsertion we compute the heads and tails associated
with the element and solve the one-machine problem optimally
with Carlier’s algorithm as described above.

C. Local Search

To improve the quality of the new solutions generated by the
perturbation we perform a first improvement local search. We
can generate a new solution for a JSSP instance by swapping
the order of two operations on the same machine. This is
equivalent to inverting the orientation of the disjunctive arcs
between the two operations in G. To be able to improve
the makespan we have to swap two operations on some
critical path. Given a critical path, sequences of three or more
operations on the same machine are called blocks. We call
the first and last operations of a block the edges. Nowicki and
Smutnicki [16] proposed a neighbourhood where each element
is generated by swapping a block edge with the adjacent
operation in the same block. We adapted this neighbourhood
for PSSP by extending the notion of blocks to machine
blocks and job blocks, which are sequences of three or more
operations from the same machine or job, respectively.

We define the neighbourhood of a solution in our local
search as all solutions generated by swapping one operation
at the edge of a block with an adjacent element in the same
block. In case of a job block we check if the swap is allowed
by the partial order of the job and discard the neighbour if the
swap is invalid.

Table I
RESULTS OF THE PARAMETER SETTING: AVERAGE RPD OVER 50

INSTANCES FOR EACH COMBINATION OF THE PARAMETERS R AND α.

ARPD α

R 0.40 0.50 60

1 22.53 22.76 22.39
2 5.46 5.25 5.72
3 5.01 5.60 5.73
4 5.24 5.91 6.70

D. Acceptance Criterion

To improve the diversity of the search we allow it to
decrease the quality of the current solution. To do so we utilize
a Metropolis acceptance criterion. If the new solution is better
than the current one it is always accepted. If its makespan is
∆ units worse we accept it with probability

e−∆/T (2)

where T is a parameter, the so-called temperature. We define
the temperature of an instance by

T = α
pmean

10
(3)

for a parameter α and an average processing time of

pmean =

∑
j∈J

∑
m∈M pij

nm
. (4)

VI. COMPUTATIONAL EXPERIMENTS

In this section we evaluate the effectiveness of our iterated
greedy algorithm for the PSSP and compare it to the results
of the hybrid scatter search proposed by Nasiri and Kianfar
[14]. The test instances have been generated in the same as
those of Nasiri and Kianfar [14]. They are based on the first
50 of the 80 instances for the JSSP proposed by Taillard [22].
For each job shop instance, a partial shop instance is created
by removing all precedences. Then, for each job j we insert
ηj ∈ (0,m) random precedences, without forming cycles. For
each job shop instance 10 random instances are created this
way, such that the total test suite contains 500 instances.

We implemented our iterated greedy algorithm for the PSSP
in C++ and executed the experiments on a PC with an AMD
FX 8150 processor with eight cores running at 2.80 GHz and
12 GB of main memory. Each test used only one core.

A. Parameter Adjustment

To calibrate the parameters α and R we executed our
algorithm one of the ten instances based on the 50 job shop
instances. We executed the algorithm for each combination of
α ∈ {0.4, 0.5, 0.6} and R ∈ {1, 2, 3, 4}. Nasiri and Kianfar
[14] execute each instance for a variable amount of time. We
executed the algorithm for each instance with the same time
limit to adjust the two parameters.

We measure the quality of a solution by its relative percent-
age deviation (RPD) from a lower bound L

RPD = 100
Cmax − L

L
%, (5)



and use the machine lower bound

L = max
i∈M

(min
j∈J

(hij) +
∑
j∈J

pij + min
j∈J

(tij)), (6)

where hij is the head of operation oij and tij its tail.
In Table I we report the average RPD over all 50 instances

for all parameters settings. The algorithm seems to be robust
for different parameter settings, except for the case R = 1
which produces substantially worse results. In the remaining
experiments we utilize the parameter setting R = 3 and α =
0.4 since it yields the best results.

B. Results for the iterated greedy algorithm

In this section we compare the results of our iterated greedy
algorithm to those of the hybrid scatter search of Nasiri
and Kianfar [14]. Nasiri and Kianfar [14] used an PC with
an Intel Core Duo T2400 processor running at 1.83 GHz,
which is about a factor 2.4 slower than our machine. Their
algorithm runs until a termination criterion is satisfied. For a
fair comparison we run our algorithm with a time limit equal
to the median time of each set of ten instances based on the
same job shop instance, corrected by the above factor.

The results of the computational experiments are shown in
Table II. For each instance we report the number of jobs
(column “n”) and the number of machines (column “m”),
and the average RPD for each group of ten instances and the
total execution time in seconds for the hybrid scatter search
(columns “HSS”) and our method (columns “IGA”).

The iterated greedy algorithm obtains a better average RPD
than the hybrid scatter search in 33 of the 50 instance groups.
In particular for the 30 instance groups with up to 20 jobs, it
is better in 23 cases. For the 20 larger instance groups, both
algorithms have a similar performance, with both methods
having a better RPD in ten of cases. The average RPD of the
IGA over all instances is 6.50%, compared to an average RPD
of 10.15% for the HSS. Both algorithms have more difficulties
to solve instances where the number of jobs is small compared
to the number of machines, with an average RPD of 13.2% for
IGA, and 19.9% for HSS. For the other instances the solutions
are with an RPD of 2.0% and 3.6% close to optimal.

VII. CONCLUSIONS

We have presented an extension of the shifting bottleneck
procedure to the partial job shop scheduling problem and
shown how it can be applied with an iterated greedy algorithm
to obtain a simple but effective heuristic. In comparison with
the hybrid scatter search of Nasiri and Kianfar [14] in obtains
mostly better results in a comparable time, which an average
RPD of about 4% lower.
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