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Abstract— Persons with disabilities have severe
problems participating in the job market and their
unemployment rate is usually much higher than the
average of the population. This motivates the research
of new modes of production which allow to include
these persons at a low overhead.

In this paper we study the inclusion of persons
with disabilities into flow shops with the objective
of minimizing the makespan. Since flow shops usually
have only a few machines, we focus on the inclusion
of one and two workers. We define the problem, pro-
pose mathematical models and a heuristic solution,
as well as realistic test instances. In computational
tests we evaluate the performance of the models and
the heuristic, and assess the utility of such a model
of inclusion. We conclude that the problem can be
solved satisfactorily, and that including workers with
disabilities into flow shops is economically feasible.

I. Introduction

In 2004, the World Health Survey and the Global
Burden of Disease project estimated the population of
persons with a disability of 15 years and older around
785 (15.6%) to 975 (19.4%) million. According to the
World Health Organization and the International Labour
Organization, unemployment rates are much higher for
persons with disabilities than for persons without dis-
abilities in both developed and developing countries.
However, almost all tasks can be performed by persons
with disabilities, since they often have the necessary
skills, and most of them can be productive in an appro-
priate environment [1]. Motivated by similar studies that
have demonstrated that such workers can be integrated
successfully in assembly lines (e.g. [2]), we study the
integration of workers with disabilities into flow shops
with the objective of minimizing the makespan. Since
flow shops have relatively few machines, and legislation
usually foresees an integration of about 2% to 5% of
workers with disabilities, we focus on the case of the
integration of one and two workers into a flow shop.

In Section II we motivate two variants of the problem
of the integration of workers with disabilities into flow
shops. In Sections III and IV we formulate mathematical
models and propose heuristic solutions for the problems.
In Section V we propose instances modelling realistic
conditions, and present computational experiments with
the models and the heuristics. We conclude in Section VI.
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A. Literature review

Several researchers have been studying the problem
of integrating persons with disabilities in production
processes. For assembly lines, [2] have proposed the As-
sembly Line Worker Assignment and Balancing Problem
(ALWABP). In this problem the task execution time
depends on the worker, and tasks as well as workers must
be assigned to a fixed number of stations such that the
production rate of the assembly line is maximized. This
problem is NP-hard and research has focused mainly on
heuristic methods for solving it [3]–[6] but effective exact
solution techniques are available [7], [8].

[9] investigated flow shops with heterogeneous work-
ers, where each machine is operated by a different worker.
The specific case of integration of workers with disabil-
ities into flow shops has, to the best of our knowledge,
not been studied in the literature so far.

The flow shop scheduling problem (FSSP) has been ex-
tensively studied in the literature. Most research focuses
on the simpler permutation flow shop problem (PFSSP),
where all the jobs have to be processed in the same order
on all machines, although [10] showed that there are
instances for which the makespan of an optimal solution
for the PFSSP is worse than the optimal solution for the
non-permutation FSSP by more than a factor of

√
m/2.

The PFSSP can be solved in polynomial time for two
machines but is NP-hard for three or more machines [11].
A variant we study here is the hybrid flowshop where jobs
are processed in stages, and each stage can have multiple
parallel machines. For more details on flow shops and
hybrid flow shops we refer the reader to the surveys of
[12] and [13].

II. Workers with disabilities in Flow shops

In a FSSP, we have to schedule jobs J1, . . . , Jn on
machines M1, . . . ,Mm. Each job Ji must be processed on
machine Mr in time pri without preemption. The jobs
cannot be processed in parallel, and the machines can
process only one job at a time. In the PFSSP solutions
are restricted to permutation schedules, where the jobs
have to be processed on all machines in the same order.

The most common objective for the FSSP and the
PFSSP is to minimize the makespan Cmax = maxCi,
i.e. the maximum over all completion times Ci, i ∈ [n]
of the jobs (We use the notation [n] = {1, 2, . . . , n}.).
Examples of other objectives include the total completion
time

∑
Ci, or the total lateness or tardiness. Here we

focus on the minimization of the makespan of the PFSSP.



Regular With disabilities
Job M1 M2 M3 M4 M1 M2 M3 M4

J1 1 2 2 1 2 4 2 ∞
J2 1 1 2 2 1 1 4 ∞
J3 2 1 1 2 4 2 1 ∞
J4 1 3 2 1 1 4 2 ∞
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Fig. 1. An instance of PFSISP, where a single WWD must operate
one machine in a flow shop. Above: Processing times for regular
worker and WWD. Below: Gantt chart of optimal schedule of
makespan 12 which assign the WWD to machine M3. The optimal
regular schedule has makespan 11.

A. Inserting a single worker into a flow shop

The situation encountered when we need to integrate
workers with disabilities into a regular workforce can
be seen in the upper part of Figure 1. In addition
to the times that regular workers take to perform the
operations, we have times for a worker with disabilities
(WWD), which normally exceed the time of the regular
workers. In the example, the times of the WWD were
chosen randomly in the interval [p, 2p], for a processing
time of p of a regular worker. The WWD may also be
unable to operate some of the machines. In the example,
this is the case for machine M4 represented by processing
times of ∞ on this machine.

The problem of inserting a WWD into a flow shop (flow
shop insertion and scheduling problem, FSISP) is defined
as follows: we have to assign the WWD to a machine she
is able to operate, and find a valid schedule of the jobs,
such that the makespan is minimized. We call the variant
restricted to permutation schedules the permutation flow
shop insertion and scheduling problem (PFSISP).

B. Inserting two workers into a hybrid flow shop

When assigning a single, slow worker to a machine in
a flow shop, she will likely be a bottleneck and increase
the makespan. Therefore we also study a hybrid flow
shop in which two WWDs are assigned to a single stage
with two parallel machines. This allows to integrate more
WWDs into the production line and has the poten-
tial to compensate for their increased execution times.
We call this problem the Hybrid Flow Shop Insertion
and Scheduling Problem (HFSISP), and its permutation
variant the Hybrid Permutation Flow Shop Insertion
and Scheduling Problem (HPFSISP). Using the notation
of [13] the permutation variant is denoted by FHm |
(R2)k, (1)ii∈[m]\{k}, prmu | Cmax.

An instance of these problems consists of the pro-
cessing times for the regular workers, and two sets of
processing times for WWDs. A solution is given by an
assignment of the two workers to some stage, and a
processing order of the jobs. In the permutation version,

Regular WWD 1 WWD 2
Job M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

J1 1 2 2 1 2 4 2 ∞ 2 3 3 ∞
J2 1 1 2 2 1 1 4 ∞ 2 2 3 ∞
J3 2 1 1 2 4 2 1 ∞ 4 1 1 ∞
J4 1 3 2 1 1 4 2 ∞ 2 5 4 ∞
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Fig. 2. An instance of HPFSISP, where two workers with dis-
abilities must operate a dual-machine stage in a flow shop. Above:
Processing times for regular worker and WWDs. Below: Gantt chart
of an optimum solution of makespan 11.

we require the jobs to obey the processing order on each
of the parallel machines.

An example for the insertion of two WWDs is shown
in Figure 2. Note that the parallel stage was able to
compensate for the longer processing times of the WWDs
and the schedule has makespan 11, as in the regular case.

III. Mathematical models

A. PFSISP

The model for the PFSISP is based on the best known
model for the PFSSP. The main principle of the model
is to define the starting times of job Ji, i ∈ [n] at
machine Mr, r ∈ [m], by the sum of its predecessors
on the first machine, plus the sum of its processing
times on machines 1, . . . , r − 1 and the waiting time on
these machines before starting on the next machines.
The comparison of these partial sums yields compact
constraints for expressing the relative starting times for
a given job permutation.

In the model we use subscripts r ∈ [m] for machines,
i ∈ [n] for jobs, and j ∈ [n] for sequence positions. We
denote by A the set of machines the WWD can operate,
by pri the processing time of job Ji on machine Mr of a
regular worker, by dri the processing time of job Ji on
machine Mr of the WWD, by Cri the completion time of
job Ji on machine Mr, by Yrj the waiting time of the job
in sequence position j after it finishes on machine Mr,
and by TTrj the processing time of the job in sequence
position j on machine Mr after assigning the WWD. We
further use binary variables Zij to indicate that job Ji is
assigned to sequence position j, and Xr to indicate that
the WWD is assigned to machine Mr.

min.
∑
p∈[n]

TT1p +
∑

q∈[2,m]

TTqn +
∑

q∈[m−1]

Yqn, s.t., (1)

∑
i∈[n]

Zij = 1, ∀i ∈ [m], (2)

∑
j∈[n]

Zij = 1, ∀i ∈ [n], (3)



TT1,j−1 − TTr,j−1 +
∑

q∈[r−1]

TTqj − TTq,j−1

+
∑

q∈[r−1]

Yqj − Yq,j−1 ≥ 0, ∀r ∈ [2,m], j ∈ [2, n], (4)

TTrj =
∑
i∈[n]

pri(1−Xr)Zij + driXrZij , ∀r ∈ [m], j ∈ [n],

(5)∑
r∈A

Xr = 1. (6)

The objective function (1) is the sum of three compo-
nents: the processing time of all jobs on the first machine,
the processing time of the last job on all remaining
machines, and the waiting times of the last job on all
machines, except the last one. Constraints (2) and (3)
model the assignment of jobs to positions: each job is
assigned to only one sequence position and each sequence
position has only one job assigned to it. Constraint (4)
relates the starting times of the jobs at sequence positions
j − 1 and j according to the principle explained above.
Constraint (5) defines the processing times of the jobs
at each sequence position according to the assignment of
the WWD to one of the machines she is able to operate.
Note that these constraints are non-linear, but can be
easily linearized using standard methods, by introduc-
ing n2m auxiliary binary variables and n2m additional
constraints. Constraint (6) requires that the WWD is
assigned to one of the machines she can operate.

B. HPFSISP

The formulation uses indices j and q for jobs, k for
stages, l for machines and w for workers. The model
uses dichotomous constraints for ordering the jobs on
each machine. We denote by A the set of stages that the
WWDs can operate, by pjk the processing time of job Jj
on stage k for a regular worker, by djwk the processing
time of job Jj on stage k by the WWD w, by Tjk the
processing time of job Jj on stage k after assigning the
WWDs to some stage, and by Cjk by completion time
of job Jj on stage k. We further use binary variables
Ujkl to indicate that job Jj is assigned to machine l on
stage k, Pjq to indicate that job Jj precedes job Jq, Xk

to indicate that the WWDs are assigned to stage k, and
Wwl to indicate that WWD w is assigned to machine
l on the parallel stage. The constant Q can be set to∑
j∈[n]

∑
k∈[m] maxw∈[2] djkw.

min. Cmax, s.t. (7)

Cmax ≥ Cjm, ∀j ∈ [n], (8)∑
l∈[2]

Ujkl = 1, ∀j ∈ [n], k ∈ [m], (9)

Ujk2 ≤ Xk, ∀j ∈ [n], k ∈ [m], (10)

Cjk − Tjk ≥ Cj,k−1, ∀j ∈ [n], k ∈ [m], (11)

Q(2− Ujkl − Uqkl + Pjq)

+ Cjk − Tjk ≥ Cqk, ∀j, q ∈ [n], k ∈ [m], l ∈ [2], (12)

Q(3− Ujkl − Uqkl − Pjq)
+ Cqk − Tqk ≥ Cjk, ∀j, q ∈ [n], k ∈ [m], l ∈ [2], (13)

Tjk = pjk(1−Xr)

+
∑
l∈[2]

(djkwXkWwl), ∀j ∈ [n], k ∈ [m], l, w ∈ [2], (14)

∑
k∈A

Xk = 1, (15)∑
l∈[2]

Wwl = 1, ∀w ∈ [2], (16)

∑
w∈[2]

Wwl = 1, ∀l ∈ [2], (17)

Cjk ≥ 0 ∀j ∈ [n], k ∈ [m]. (18)

The objective function (7) is defined as the latest
completion time in constraint (8). Constraint (9) re-
quires that all jobs are assigned to only one of the
machines at each stage. Constraint (10) guarantees that
only the stage to which the workers with disabilities
have been assigned can use a second, parallel machine.
Constraint (11) ensures that each job can only start
on a stage after it has finished on the previous one.
Constraints (12) and (13) prevent any two jobs to be
executed on the same machine simultaneously. The pro-
cessing time of a job depends on the stage the workers
with disabilities were assigned to, and is defined in con-
straint (14). Constraint (15) requires that the WWDs are
assigned to one of the stages they can operate. Finally,
constraints (16) and (17) require that each worker is
assigned to exactly one of the parallel machines and
each machine has only one worker assigned to it. Again,
the model is not linear due to the term XkWwl in
constraint (14), but can be linearized by introducing 4m
auxiliary binary variables and 4m additional constraints.

IV. Heuristics for PFSISP and HPFSISP

To solve a worker insertion problem we must find the
best stage for the WWDs and an optimal schedule of
the operations. For a single worker, a simple solution is
to solve a standard PFSSP for each possible insertion in
one of the m stages. This makes it possible to use existing
methods to solve each subproblem, but ignores that some
stages may be better for inserting the worker than others,
and thus should receive more search time. We propose
a pooled strategy to solve this problem. The same ap-
proaches work when inserting a pair of workers, but we
additionally have to solve the subproblem of scheduling
the jobs on the stage with two parallel machines.

We have chosen to base our heuristic on an iterated
greedy algorithm, a special form of an iterated local
search [14]. Both methods were successful in finding
good schedules for the permutation flow shop and related
problems. For most of these problems they are, or are
part of, the current best heuristics (see e.g. [15], [16]).

An iterated local search starts from an initial solution
and applies a local search to find a local optimum. The
local optimum is perturbed and the local search is applied
again. The new local optimum often must satisfy an
acceptance criterion to avoid perturbations that lead to
much worse solutions. These steps are repeated until



Algorithm 1 Iterated greedy algorithm.

Input: A permutation schedule π.
Output: An improved permutation schedule π′.
1: function iga(π)
2: π := shift-localsearch(π)
3: repeat
4: remove d random jobs j1, . . . , jd from π to get π′

5: for i ∈ [d] do
6: insert ji into π′ at the pos. of minimal Cmax(π′)
7: end for
8: π′ := shift-localsearch(π′)
9: if accept(π, π′) then

10: π := π′

11: end if
12: until some stopping criterion is satisfied
13: return the best solution π∗ found during the search
14: end function

some stopping criterion is satisfied. An iterated greedy
algorithm (IGA) perturbs the solution using a greedy
algorithm. A solution is destroyed, by removing randomly
some of its elements, and the partial solution is then re-
constructed to another solution by inserting the removed
elements greedily. Besides the neighborhood, the amount
of perturbation is the most important parameter of an
iterated local search. If it is too small, the solution will
stay at the current local optimum; if it is too large we
obtain a randomized multi-start local search.

In a PFSSP, a solution is a permutation π of the
jobs. A good initial solution can be found by the greedy
constructive heuristic NEH or some of its more recent
variants [17], which are the currently best known con-
structive heuristics for the PFSSP. NEH starts from an
empty job sequence, processes the jobs in order or non-
increasing total processing time Pj =

∑
i∈[m] pij , and

inserts each job at the position which minimizes the
makespan of the resulting partial sequence. Variants of
NEH differ mainly in the way ties are broken among
multiple positions [16].

Typical neighborhoods for local searches on job per-
mutations are defined by shifting a job from its current
position to another position, or by swapping the positions
of two jobs. We use a shift neighborhood, which is the
most common choice for the permutation flow shop,
since the complexity of O(n2m) for finding the best
insertion position of a job can be reduced to O(nm)
using an algorithm of [18]. The same optimization can
be used to speed up the construction of an initial solu-
tion via NEH, and the perturbation step of the IGA,
since both repeatedly insert jobs. If π is the current
local minimum, a new local minimum π′ is accepted if
it satisfies a Metropolis criterion, i.e. with probability
P [accept(π, π′)] = min{e−∆(π, π′)/T , 1} for an increase
of the objective function by ∆(π, π′) = Cmax(π′) −
Cmax(π) and a temperature T = αp/10 where p =∑
j∈[n]

∑
i∈[m] pij/nm is the average processing time of

an operation, and a parameter α. The IGA for the PFSSP
is shown in Algorithm 1.

Algorithm 2 A pooled IGA for PFSISP and HPFSISP.

Output: A solution (π, k) for the PFSISP or HPFSISP
1: P := {(NEH(k), k) | k ∈ [m]} . create the solution pool
2: while |P | > 1 do
3: for all (π, k) ∈ P do
4: (π, k) := (IGA(π, t), k)
5: end for
6: (π0, k0) := argmax(π,k)∈P Cmax(π)
7: P := P \ {(π0, k0)}
8: end while
9: return the single solution (π, k) in the pool

A pooled IGA for inserting WWDs into flow shops

To find the best stage to insert the WWDs, we propose
Algorithm 2, a pooled variant of an IGA. It initially cre-
ates a pool with m candidate solutions. Each candidate
solution assigns the WWDs to one of the m stages, and
applies the NEH heuristic to obtain an initial solution.
The method then proceeds in m phases. In each phase, it
applies the IGA to improve each candidate solution for a
fixed time t and then discards the solution of the worst
makespan in the pool. The total running time is therefore(
m
2

)
t, and the kth best solution receives (m+ 1− k)t of

it. This ensures that solutions with a shorter makespan
receive more time than those that get stuck early. This
approach is preferable to more complex methods like
[9], when only a few WWDs have to be inserted. In
Algorithm 2, function NEH(k) returns an initial solution
using the NEH algorithm, when assigning the WWDs
to the kth stage, and function IGA(π, t) improves the
current schedule π by applying the IGA for time t.

Solving the two-machine subproblem

A solution of the HPFSISP assigns two workers to a
stage with two parallel machines, and must additionally
solve the subproblem of finding an optimal schedule for
this stage. This subproblem can be formulated as a head-
body-tail problem on two unrelated machines. For a
permutation π of the jobs, and an assignment of the
WWDs to stage k, define heads rj = rk−1,j , and tails
qj = qj,k+1, where rij is the earliest completion time of
job j on stage i, defined by rij = 0, if i = 0 or j = 0, and

rij = max{ri,π(π−1(j)−1), ri−1,j}+ pij

otherwise, and qij is the shortest time from the start of
job j on stage i to the completion of the last operation,
defined by qij = 0 if i = m+ 1 or j = n+ 1, and

qij = max{qi,π(π−1(j)+1), qi+1,j}+ pij ,

otherwise. Then we have to find starting times Sj for
the jobs j ∈ [n] on the two machines, such that Si ≥ rj ,
minimizing Cmax = maxj Sj + qj . Since we impose the
order of the permutation flowshop π on all machines the
problem reduces to finding an optimal assignment of the
jobs to the parallel machines. This problem is NP-hard,
since it generalizes P2 || Cmax [19], but can be solved by

dynamic programming in time O(nC
2
) for some upper



TABLE I

Sizes of the test instances.

Inst. n m Inst. n m Group n m

car1 11 5 car6 8 9 ta03 20 20
car2 13 4 car7 7 7 ta04 50 5
car3 12 5 car8 8 8 ta05 50 10
car4 14 4 ta01 20 5 ta06 50 20
car5 10 6 ta02 20 10

bound C on the makespan. Let C(j, t1, t2) be the minimal
completion time when scheduling jobs j, . . . , n on the two
parallel machines, starting not earlier than t1 on the first,
and not earlier than t2 on the second machine. Then the
optimal solution is given by C(1, 0, 0), where

C(j, t1, t2) =

min{max{C1(t1, j) + qj , C(j + 1, C1(t1, j), t2)},
max{C2(t2, j) + qj , C(j + 1, t1, C2(t2, j))}}

and Cl(t, j) = max{t, rj} + pjl is the completion time
of job Jj when starting not earlier than t on parallel
machine l, with a base case of C(n + 1, t1, t2) = 0. We
further have tested a heuristic, which processes the jobs
in order, and greedily assigns each job to the parallel
machine that results in the earliest completion time.

V. Computational Experiments

In this section we report the results of computational
tests. We first analyze the performance of the models,
an exact algorithm and the heuristics on small instances,
that can be solved to optimality. In a second experiment
we evaluate the heuristics on instances of practical sizes.

A. Test instances and experimental methodology

For the computational experiments we used nine small
instances from [20] and 60 large instances from [21] with
up to 50 jobs and 20 machines. Table I shows the number
of jobs (n) and machines (m) of the instances. For each
size there is a group of 10 Taillard instances.

We created instances for the worker inclusion problems
based on these instances as follows. We assume that the
processing times pri of a flow shop instance are those
of a regular worker. To model a WWD, we modify the
processing times in two ways. First, a fixed percentage
of incompatibilities is introduced. An incompatibility
models a worker who is unable to operate some machine
(e.g. the WWD in Figure 1 cannot operate M4). Second,
the processing times are increased to reflect that a WWD
usually needs more time to execute an operation. Based
on experience with workers in SWDs, we generated in-
stances with 0%, 10%, and 20% of incompatibilities per
worker, and processing times chosen uniformly at random
in [p, 2p] or [p, 5p], for a regular processing time p. With
3 levels of incompatibilities and 2 levels of operation time
variation, we obtain a total of 408 test instances.

TABLE II

Results for Carlier instances when inserting one worker.

CPLEX LOMPEN Heuristics

Var. Inc. t Rd. t Rd. S P PL

2 0 26.7 7.4 0.1 7.4 7.4 7.4 7.4
2 10 17.8 7.9 0.1 7.9 7.9 7.9 7.9
2 20 14.5 9.2 0.1 9.2 9.2 9.3 9.3
5 0 55.7 75.8 0.0 75.8 75.8 75.8 75.8
5 10 46.7 75.8 0.0 75.8 75.8 75.8 75.8
5 20 11.3 77.7 0.0 77.7 77.7 77.7 77.7

Avg. 28.8 42.3 0.0 42.3 42.3 42.3 42.3

The mathematical models were solved using the com-
mercial solver CPLEX 12.5 running with a single thread
and a time limit of 1 h. Our heuristics were imple-
mented in C++, and compiled with GNU C++ 4.7.3
with maximum optimization. The IGA sets d = 4 and
α = 0.4, identified as the best by [14], and stops after
3nmms. All tests were done on a PC with an Intel Core
i7 processor running at 2.8 GHz and 12 GB of main
memory. We report the solution quality as the relative
deviation (Cmax − C∗max)/C∗max from the best known
makespan C∗max of the corresponding flow shop instance,
to be able to evaluate the impact of inserting WWDs. For
experiments with the heuristics the relative deviations
are averages over 5 replications with different seeds. All
times are reported in seconds.

B. Experiments with the Carlier instances

On the Carlier instances, we conducted four experi-
ments. We solved the mathematical models for PFSISP
and HPFSISP, and for the PFSISP we also solved the
problems exactly with the branch-and-bound algorithm
LOMPEN [22], by solving an FSSP problem for each
stage separately with a time limit of 2 h. We further
evaluated the simple (S) and pooled (P) IGA heuristics.
The pooled heuristic has been run with our a time limit
of 3nmms and a longer time limit of 3nm2 ms (PL). For
the HPFSISP we also solved the scheduling problem on
the parallel stage by dynamic programming (PD).

Table II reports the relative deviations when inserting
one worker, and Table III when inserting two workers.
For CPLEX and LOMPEN, we also report the solu-
tion time (t). All instances inserting one worker could
be solved to optimality. When inserting two workers,
CPLEX was able to solve only about 80% of the instances
in 1 h, and we further report the optimality gap (Gap).

The PFSISP is easy too solve on Carlier’s instances.
LOMPEN finds the optimum very quickly, and the
heuristics also find the optimal solutions in at most 2 s.
The HPFSISP is harder to solve, and CPLEX’s average
solution time increases by a factor of almost 40. The
heuristics find good solutions with a makespan that is at
most 0.4% longer in 1/500th of the time. We can also see
that there are very small differences between the different
heuristic strategies and time limits.



TABLE III

Results for Carlier instances when inserting two workers.

CPLEX Heuristics

Var. Inc. Gap t Rd. S P PL PD

2 0 6.9 1499.5 -4.2 -4.1 -4.0 -4.0 -3.6
2 10 6.4 1151.0 -2.2 -2.1 -2.1 -2.1 -2.1
2 20 5.1 1524.7 -0.6 -0.5 -0.5 -0.5 -0.4
5 0 4.1 875.8 3.6 4.6 4.3 4.3 4.6
5 10 3.7 899.0 5.0 5.8 5.5 5.6 5.5
5 20 3.7 788.2 5.4 6.1 5.9 5.8 5.7

Avg. 5.0 1123.0 1.2 1.6 1.5 1.5 1.6

TABLE IV

Results for Taillard instances with time variation [p, 2p].

LOMPEN One worker Two workers

G I t Rd. S P PL S P PL

1

0

0.4 14.7 14.7 14.7 14.7 -3.4 -3.6 -3.7
2 3141.9 2.5 3.6 3.7 3.6 -0.3 -0.9 -1.3
3 54258.4 1.2 1.4 1.4 1.3 -0.0 -0.4 -0.9
4 6.9 27.4 27.4 27.4 27.4 -0.8 -1.3 -1.3
5 127.0 19.2 19.4 19.4 19.4 3.0 0.7 -0.4
6 21934.4 5.2 5.1 5.0 4.2 4.1 3.0 0.8

Avg. 13244.9 11.7 11.9 11.9 11.8 0.4 -0.4 -1.1

1

10

0.4 17.0 17.0 17.0 17.0 -3.5 -3.6 -3.7
2 3795.5 3.5 3.7 3.7 3.7 -0.3 -0.7 -1.2
3 48653.9 1.3 1.5 1.5 1.4 -0.1 -0.2 -0.9
4 6.2 28.4 28.4 28.4 28.4 -0.3 -0.9 -1.0
5 80.4 20.2 20.2 20.2 20.2 3.2 0.9 -0.3
6 19483.3 5.5 5.3 5.3 4.7 4.1 3.1 0.8

Avg. 12003.3 12.6 12.7 12.7 12.6 0.5 -0.2 -1.0

1

20

0.4 18.3 18.3 18.3 18.3 -1.7 -1.9 -2.0
2 1872.0 5.2 5.3 5.5 5.3 -0.1 -0.6 -0.9
3 44304.2 1.3 1.4 1.5 1.4 0.0 -0.2 -0.8
4 4.7 28.7 28.7 28.7 28.7 -0.0 -0.7 -0.7
5 76.4 20.5 20.5 20.6 20.6 3.2 1.3 0.2
6 16410.8 5.8 5.8 5.6 5.0 4.1 3.1 0.8

Avg. 10444.8 13.3 13.3 13.4 13.2 0.9 0.2 -0.6

We can observe that inserting a single worker intro-
duces, as expected, a large overhead, in particular for
a high time variation, whereas the makespan does not
increase more than 1.6% when inserting two workers.

C. Experiments with the Taillard instances

We have repeated the experiments on Taillard’s in-
stances. We do not report results for CPLEX, which was
unable to solve the larger instances, but report results
for LOMPEN when inserting a single worker, which
was able to solve all instances up to 10 machines, and
about 70% of the instances with 20 machines in 2 h.
We also do not report results for the heuristic variant
computing an exact schedule on the parallel stage by
dynamic programming, since it turned out to be too slow
and thus found solutions of inferior quality.

Tables IV and V present the results for the Taillard
instances with a time variation in [p, 2p] and [p, 5p],
respectively. They report the average relative deviations
for each group of Taillard’s instances of the same size

TABLE V

Results for Taillard instances with time variation [p, 5p]

LOMPEN One worker Two workers

G I t Rd. S P PL S P PL

1

0

0.2 106.5 106.5 106.5 106.5 6.7 5.8 5.3
2 3.7 58.0 58.0 58.0 58.0 5.5 4.1 3.7
3 390.8 24.6 24.6 24.7 24.7 3.7 2.8 2.2
4 6.8 149.2 149.2 149.2 149.2 5.6 2.8 2.3
5 30.8 125.5 125.5 125.5 125.5 9.3 5.7 4.0
6 491.5 77.0 77.0 77.0 77.0 7.8 6.2 3.5

Avg. 154.0 90.1 90.1 90.2 90.2 6.4 4.6 3.5

1

10

0.2 108.3 108.3 108.4 108.4 6.6 5.8 5.4
2 3.6 58.0 58.0 58.0 58.0 5.5 4.4 3.6
3 389.5 26.6 26.6 26.6 26.6 3.6 2.7 2.1
4 5.8 154.7 154.7 154.7 154.7 5.2 3.0 2.4
5 27.5 125.5 125.5 125.6 125.5 9.6 6.6 4.3
6 476.9 77.8 77.8 77.8 77.8 8.0 6.4 3.4

Avg. 150.6 91.8 91.8 91.8 91.8 6.4 4.8 3.6

1

20

0.1 119.1 119.1 119.1 119.1 6.6 5.8 5.4
2 3.4 68.2 68.2 68.2 68.2 5.4 4.3 3.7
3 383.6 27.6 27.6 27.6 27.6 3.9 3.4 2.6
4 4.4 154.7 154.7 154.7 154.7 10.9 7.9 7.0
5 24.1 126.0 126.0 126.0 126.0 9.4 6.6 4.8
6 462.1 78.5 78.5 78.5 78.5 7.9 6.4 3.5

Avg. 146.3 95.7 95.7 95.7 95.7 7.3 5.7 4.5

(G), and each percentage of incompatibilities (I) and
additionally, when inserting one worker, the solution time
of LOMPEN (t).

We first look at the performance of the methods.
Comparing the results of LOMPEN and the single worker
case, we find that the heuristics again find very good
solutions in a short time. The exact solver now has more
difficulties, in particular for a time variation of [p, 2p] and
runs about 3 h whereas the heuristics run for at most
1 min. For a single worker the different strategies have
only a small impact on solution quality. When inserting
two workers, the choice of the heuristic strategy makes
a difference: using a solution pool as well as a longer
time limit improves the solution quality significantly. We
also can observe that a large time variation makes the
instances easier to solve, since the bottleneck machine
dominates the solution.

We now turn to the practical value of the solutions. As
before, inserting a single worker has a visible overhead
of about 12% for a small time variation. A large time
variation with a single worker is unpractical, since it leads
to about 90% overhead. In contrast, the disabilities of
two workers can be hidden completely for a small time
variation and never exceed 5% for large time variations.
In summary, the insertions of WWDs is feasible for
moderate time variations, independent of the percentage
of incompatibilities.

VI. Concluding remarks

We have studied two scheduling problems that aim to
insert workers with disabilities into flow shops, and have



proposed mathematical models, heuristic solutions and a
set of realistic test instances.

Our results show that our methods find close to opti-
mal schedules for the inclusion of WWD into flow shops.
From a practical point of view, when the processing time
of the WWDs is about 50% slower in average, they can be
included into a flow shop with a small overhead. When we
assign two workers to a parallel stage with two machines
we can even achieve a reduction in the makespan.

This suggests that companies can contribute to inte-
grate persons with disabilities in their production sys-
tems with no or only moderate losses in productivity. We
hope this can lower the prejudice and help to increase the
participation of persons with disabilities in the market
and in society.
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