
Simulated Annealing for the Machine
Reassignment Problem

Gabriel Portal, Marcus Ritt, Luciana S. Buriol,
Leonardo Borba, Alexandre Benavides

Instituto de Informática, Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil

June 8, 2012

We propose an heuristic solution for the Machine reassignment problem using Simulated
Annealing. The method uses two simple neighborhoods. Together with a suitable set of data
structures which allow the core operations to run fast, it is able to perform a high number
of iterations in short time. A simple but efficient approach is adequate given the size of the
instances of the Google/ROADEF challenge and the short time for solving them. We report the
results of experiments performed on the set of available instances and compare them to best
known values and a lower bound.

1 Introduction

Given a feasible assignment of processes to machines, the Machine Reassignment Problem
consists in finding another assignment of the processes to the machines that improves machine
usage. The usage of the machines is measured by load, balance and move costs. Moreover, there
are several hard constraints that should be considered by the assignment. The full description
of the problem is available in [3].

This problem is clearly an NP-hard combinatorial optimization problem, since it includes
several NP-complete problems, e.g. bin packing, as special cases. A common decision for
solving medium and large instances of such a problem is to use heuristics. We have investi-
gated meta-heuristics based on local search methods applied to this problem. After some initial
experiments we decided to use Simulated Annealing (SA) to solve it.

The paper is organized as follows. Section 2 presents the proposed Simulated Annealing.
Section 3 describes the data structures. We present a lower bound for the problem in Section 4.
The computational results are presented in Section 5, and the paper finishes with the conclusions
in Section 6.

2 Simulated Annealing for Machine Reassignment

The proposed Simulated Annealing uses two simple neighborhoods. The first neighborhood
moves a task from a machine to another. The second neighborhood exchanges two tasks on
different machines. For an instance with p processes and m machines the size of these neigh-
borhoods is O(pm) and O(p2), respectively. In our method, we decided to combine both neigh-
borhoods. We first choose one of the two neighborhoods, with probability p and 1-p, respec-

1



tively, and then a neighbor from the chosen neighborhood. We used probability p = 0.7 for our
computational experiments.

Simulated annealing proceeds by repeatedly selecting a random neighbor of the current so-
lution. An important detail is the choice of a feasible neighbor of the current solution. Ideally,
this would be a random choice among the neighbors. Since the neighborhoods can be large,
the feasibility test would incur a large time overhead. We therefore opted for a more efficient
sampling strategy.

For the first neighborhood, a process and a machine k are selected at random. Then, we
consider the machines (k + i)%m for 0 ≤ i ≤ c, where c is a constant (we used c = 100). The
first valid assignment of the selected process to a machine in the given order, if any, is chosen.
Otherwise, the selected process is considered unmovable and the move is rejected. A similar
procedure is used for the second neighborhood: a fixed process is chosen and a sequence of c
other processes is chosen to perform the movement. This strategy guarantees an efficient choice
of the neighbor – constant in the size of the instance.

A cooling cycle of Simulated Annealing starts with an initial temperature t0, holds the tem-
perature constant for n iterations, and then reduces it with a cooling rate r. When the current
best solution value is not updated for 20n iterations and the number of accepted moves is less
than 0.1% we consider the solution of the current cooling cycle “frozen” [1]. In this case, we
reheat by increasing the temperature to t0/100. The objective of this reheating procedure is
to perform more significant perturbations to the current solution, hoping to escape of a local
minimum.

The optimizer executes in two independent threads with different parameters and returns the
best solution found. The discussion about the choice of parameters can be found in Section 5.1.

3 Data Structures

It is important to execute three basic operations fast:

• Verify the feasibility of a move,

• compute the objective cost of a neighboring solution, and

• execute a move.

In order to have fast methods, an increased use of memory was necessary.

For the constraints of resource usage, two matrices machine-resource were necessary for
keeping track of actual usage and transient usage of each resource of each machine. For the
conflict constraint, a matrix service-machine was used to record if a machine is already being
used by a service. The spread constraint needs a matrix service-location, for knowing the num-
ber of processes of a service in a given location. An array for determining the current spread
of a service was also used. For guaranteeing the dependency constraints, a matrix service-
neighborhood keeps track of the number of processes of a given service in each neighborhood.
To make the evaluation of the service move cost constant, two arrays were necessary: one main-
tains the number of moved processes of each service and another the number of services that
have a determined number of moved processes.

In summary, for r resources, s services, n neighborhoods, and l locations the above data
structures use O(mr +ms+ sl+ sn+ p) memory. This usually will be dominated by the ms
term, but the total memory usage is less than 64 MB for all instances according to the problem
definition.

2



The benefit of using more memory is that the number of operations per move is O(r+d+b),
where d is the number of dependencies and b is the number of balance costs. In fact, the
verification of a move and its execution both cost O(r + d) and the computation of the cost
of a neighboring solution costs O(r + b). Since only the dependencies concerning one service
are verified, the cost can be expected to be smaller than these upper bounds. The used data-
structures allow most of the verifications and updates to be computed in constant time.

4 A Lower Bound

To evaluate the quality of the solutions found, we propose a lower bound for the problem. This
was particularly important for the big instances, since our IP formulation for CPLEX did not
fit into main memory, and could therefore not even provide a lower bound. The lower bound is
the sum of a lower bound for the load cost of the machines and a lower bound for the balance
cost. The load cost lower bound is calculated as follows. For each resource, we consider the
sum of capacities of machines and the sum of usages of processes. Basically, the constraint
of assignment of a process to a single machine is relaxed: the resources of a process may
be assigned to many machines and one resource of a process may also be divided in many
machines. Let R(p, r) be the requirement of process p for resource r, SC(m, r) be the safety
capacity of machine m for resource r and weightloadCost(r) be the weight for the load cost of
this resource. Then we have

LB1 =
∑
r∈R

weightloadCost(r) max(0,
∑
p∈P

R(p, r)−
∑
m∈M

SC(m, r)). (1)

For the balance cost, the same strategy is used: we calculate the cost of a single-machine
relaxation. Let C(m, r) be the capacity of machine m for resource r, t(b) be the target factor
of balance b, r1(b) be the first resource of balance b, r2(b) be the second resource of balance b
and weightbalancecost(b) be the weight for this balance cost. Then we have

LB2 =
∑
b∈B

weightbalancecost(b) max(0, t(b)E(r1(b))− E(r2(b))), (2)

where E(r) is the excess of the total capacity for resource r over the total requirements for
this resource, defined as

E(R) =
∑
m∈M

C(m, r)−
∑
p∈P

R(p, r). (3)

It can be easily shown that this is a lower bound on the balance cost by rearranging the
definition of the balance cost, given in [3].

The calculated lower bound might not be very strong because it does not take into account
move costs and does not consider the combined load cost and balance cost. However, it showed
to be very tight for the instances B, since our heuristic found solutions with a relative deviation
of at most 5% over the lower bound, except for instance B-3 with relative deviation 37%.

5 Experimental Results

All results have been obtained on a PC with an Intel Core2 Quad CPU Q8200 running at 2.33
GHz and 4 GB of main memory, over a 64 bits Linux operation system (Ubuntu 10.04). The
method was implemented in C++ and compiled with the gcc compiler, version 4.4.3 with opti-
mization flag -03. The random number generator is the boost implementation of the Mersenne

3



twister [2]. The data set is composed of two sets (named A and B) with 10 instances each,
available by the ROADEF Challenge. Set A was released before the qualification phase, set B
was released after the qualification phase.

5.1 Parameter Setting

We systematically tested several combinations of parameter values applied to a subset of the
instances. The subset of chosen instances was: A1-4, A2-2, A2-3, A2-5, B-1, and B-3, since
we considered these instances to be the most difficult to solve by our method. The values of
parameters we tested were the following: n ∈ {104, 105, 106}, r ∈ {0.91, 0.95, 0.97} and
t0 ∈ {107, 108, 109}. All combinations of these values were tested, and for each parameter
setting and instance, we ran five executions with different seeds. With the values of the average
for each considered instance, we calculated scores (relative distance of the solution) for each
parameter setting. Finally, we ranked the results by the score. The best score was achieved with
parameters: n = 105, r = 0.97 and t0 = 108.

This parameter setting performed well in the tested instances, but it could be very slow for
some instances, spending too many iterations per temperature combined with a slow decrease
of temperature. This could be seen specially for instance B-5 (which was not considered in
the subset of tested instances), for which some lighter parameter settings performed better. To
balance this condition, the parameter setting of the second thread was chosen to be faster than
the first one: n = 70000, r = 0.95 and t0 = 108.

5.2 Computational Results

Table 1 presents the results of the proposed method for instances A. For each instance, we
report the value of the initial assignment (Initial Value), the best value obtained by the com-
peting teams in the qualification phase (Qualification), the value obtained in 300 seconds by
one execution of the optimizer with seed 9999 (SA), and the scores (Score) of the single ex-
ecution according to the problem specification computed using the qualification results as the
best known solutions. This table helps to compare the results of the presented method with the
scores obtained by the teams during the qualification phase.

Table 1: Results of the proposed Simulated Annealing on instances A.

Instance Initial Value Qualification SA Score
A1-1 49528750 44306501 44306935 0.0000
A1-2 1061649570 777532896 777533311 0.0000
A1-3 583662270 583005717 583009439 0.0000
A1-4 632499600 252728589 260693258 0.0126
A1-5 782189690 727578309 727578311 0.0000
A2-1 391189190 198 222 0.0000
A2-2 1876768120 816523983 877905951 0.0327
A2-3 2272487840 1306868761 1380612398 0.0325
A2-4 3223516130 1681353943 1680587608 -0.0002
A2-5 787355300 336170182 310243809 -0.0329

Table 2 presents the results of the method for instances B. In this table the column “Qual-
ification” has been replaced by the column “Lower bound”, which gives the lower bound as
presented in Section 4. Here, the column “Score” was calculated using the lower bound as the

4



best known value. Additionally, we provide the relative deviation over the lower bound (column
“Dev.”).

Table 2: Results of the proposed Simulated Annealing on instances B.

Instance Initial Value Lower Bound SA Score Dev. [%]
B-1 7644173180 3290754940 3455971935 0.0216 5.02
B-2 5181493830 1015153860 1015763028 0.0001 0.06
B-3 6336834660 156631070 215060097 0.0092 37.30
B-4 9209576380 4677767120 4677985338 0.0000 0.00
B-5 12426813010 922858550 923299310 0.0000 0.05
B-6 12749861240 9525841820 9525861951 0.0000 0.00
B-7 37946901700 14833996360 14836763304 0.0001 0.02
B-8 14068207250 1214153440 1214563084 0.0000 0.03
B-9 23234641520 15885369400 15886083835 0.0000 0.00

B-10 42220868760 18048006980 18049089128 0.0000 0.01

The method seems to be very competitive, being an improvement of our former method,
which already proved to produce good quality results in the qualification phase of the challenge.
It produces good results for instances A, finding some new best known values – negative scores.
Finally, the method appears to behave robustly in very large instances, as the results on instances
B show, since the scores are consistently low. Only two instances with values being 5% and
37% above the lower bound resulted in slightly higher scores.

6 Conclusions

We have proposed an heuristic method based on Simulated Annealing for the Machine Reas-
signment Problem and a lower bound for it. The Simulated Annealing uses two simple neigh-
borhoods. The results show that the method was able to find near optimal solutions. We believe
that the good quality of the results is due to an optimized implementation of the Simulated An-
nealing, using data structures that allow the most important operations to execute fast and then
a larger amount of the solution space can be explored.

References

[1] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by Simulated
Annealing. Part I, Graph Partitioning. Operations Research, 37:865–892, 1989.

[2] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACMTMCS: ACM Transactions on Model-
ing and Computer Simulation, 8:3–30, 1998. http://www.math.keio.ac.jp/

˜matumoto/emt.html.

[3] Google ROADEF/EURO challenge 2011–2012: Machine Reassignment. http:
//challenge.roadef.org/2012/files/problem_definition_v1.pdf,
2011. Version 1.

5


