Índice
-
- INF 5010: Otimização combinatória
- INF 5016: Algoritmos avançados
- INF 5023: Técnicas de busca heurística.
Atualizado: 13/01/2012
No. | T1 | T2 | T3 | T4 | T5 |
---|---|---|---|---|---|
118489 | - | - | - | - | - |
136830 | P | - | - | - | - |
150821 | P | - | P | - | P |
152985 | P | P | P | P | P |
159847 | P | P | P | R | P |
160636 | P | P | P | - | P |
173362 | P | R | - | - | P |
180190 | - | - | - | - | - |
181026 | - | - | - | - | - |
R = recebido P = avaliado e publicado
Entrega: 19/09/2012
> ./dijkstra 1 2 < NY.gr 803
/** * \file gen.cpp * \author Marcus Ritt <mrpritt@inf.ufrgs.br> * \version $Id: emacs 2872 2009-01-31 01:46:50Z ritt $ * \date Time-stamp: <2011-08-24 15:17:49 ritt> */ #include <iostream> #include <cassert> using namespace std; #include <boost/graph/adjacency_list.hpp> #include <boost/graph/connected_components.hpp> #include <boost/graph/dijkstra_shortest_paths.hpp> using namespace boost; // information stored in vertices struct VertexInformation { unsigned component; }; // information stored in edges struct EdgeInformation { unsigned weight; }; const unsigned maxweight = 1000; // graph is an adjacency list represented by vectors typedef adjacency_list<vecS, vecS, directedS,VertexInformation,EdgeInformation> Graph; typedef graph_traits<Graph>::vertex_descriptor Node; typedef graph_traits <Graph>::edge_descriptor Edge; int main(int argc, char *argv[]) { assert(argc == 3); unsigned n = atoi(argv[1]); double p = atof(argv[2]); srand48(time(0)); // (1) generate random graph Graph g; for(unsigned i=0; i<n; i++) add_vertex(g); for(unsigned i=0; i<n; i++) for(unsigned j=0; j<n; j++) if (i != j && drand48() < p) { Edge e = add_edge(i,j,g).first; g[e].weight = lrand48()%maxweight; } // (2) print example path unsigned src = lrand48()%num_vertices(g); unsigned dst = lrand48()%num_vertices(g); vector<unsigned> dist(n); vector<unsigned> pred(n); dijkstra_shortest_paths(g,src,weight_map(get(&EdgeInformation::weight,g)).distance_map(&dist[0]).predecessor_map(&pred[0])); cerr << "Distance between " << src+1 << " and " << dst+1 << " is " << dist[dst] << endl; // (3) print out in DIMACS challenge format cout << "p sp " << num_vertices(g) << " " << num_edges(g) << endl; graph_traits<Graph>::edge_iterator eb, ee; for ( tie(eb, ee)=edges(g); eb != ee; eb++) cout << "a " << source(*eb,g)+1 << " " << target(*eb, g)+1 << " " << g[*eb].weight << endl; }
Entrega: 10/10/2012
Entrega: 02/11/2012
To use: cc washington.c -o gengraph gengraph function arg1 arg2 arg3 Command line arguments have the following meanings: function: index of desired graph type arg1, arg2, arg3: meanings depend on graph type (briefly listed below: see code comments for more info) Mesh Graph: 1 rows cols maxcapacity Random Level Graph: 2 rows cols maxcapacity Random 2-Level Graph:3 rows cols maxcapacity Matching Graph: 4 vertices degree Square Mesh: 5 side degree maxcapacity Basic Line: 6 rows cols degree Exponential Line: 7 rows cols degree Double Exponential 8 rows cols degree DinicBadCase: 9 vertices (causes n augmentation phases) GoldBadCase 10 vertices Cheryian 11 dim1 dim2 range (last 2 are bad for goldberg's algorithm)
No. | Nome | Parâmetros | Descrição | n | m |
---|---|---|---|---|---|
1 | Mesh | r,c | Grade, 3 viz. 1 direita | rc+2 | 3r(c-1) |
2 | Random level | r,c | Grade, 3 viz. rand. 1 direita | rc+2 | 3r(c-1) |
3 | Random 2-level | r,c | Grade, 3 viz. rand. 2 direita | rc+2 | 3r(c-1) |
4 | Matching | n,d | Bipart. n-n, d viz. rand. | 2n+2 | n(d+2) |
5 | Square Mesh | d,D | Quadr. mesh dxd, grau D | d*d+2 | (d-1)dD+2d |
6 | BasicLine | n,m,D | Linha, grau D | nm+2 | nmD+2m |
7 | ExpLine | n,m,D | Linha, grau D | nm+2 | nmD+2m |
8 | DExpLine | n,m,D | Linha, grau D | nm+2 | nmD+2m |
9 | DinicBad | n | Linha | n | 2n-3 |
10 | GoldBad | n | 3n+3 | 4n+1 |
/** * \file maxflow.cpp * \author Marcus Ritt <mrpritt@inf.ufrgs.br> * \version $Id: emacs 2872 2009-01-31 01:46:50Z ritt $ * \date Time-stamp: <2012-12-06 17:10:05 ritt> * * Read a maximum flow problem in DIMACS format and output the maximum flow. * */ #include <iostream> #include <cstring> using namespace std; #include <boost/graph/adjacency_list.hpp> #include <boost/graph/read_dimacs.hpp> #include <boost/graph/edmonds_karp_max_flow.hpp> #include <boost/graph/push_relabel_max_flow.hpp> using namespace boost; // graph element descriptors typedef adjacency_list_traits<vecS,vecS,directedS>::vertex_descriptor DiNode; typedef adjacency_list_traits<vecS,vecS,directedS>::edge_descriptor Edge; // a directed graph with reverse edges struct VertexInformation {}; typedef unsigned Capacity; struct EdgeInformation { Capacity edge_capacity; Capacity edge_residual_capacity; Edge reverse_edge; }; typedef adjacency_list<vecS,vecS,directedS,VertexInformation,EdgeInformation> DiGraph; int main(int argc, char *argv[]) { // (0) read graph DiGraph g; DiNode s,t; read_dimacs_max_flow(g, get(&EdgeInformation::edge_capacity,g), get(&EdgeInformation::reverse_edge,g), s, t); // (1) determine maximum flow cout << push_relabel_max_flow(g, s, t, capacity_map(get(&EdgeInformation::edge_capacity,g)). residual_capacity_map(get(&EdgeInformation::edge_residual_capacity,g)). reverse_edge_map(get(&EdgeInformation::reverse_edge,g))) << endl; }
Entrega: 16/11/2009
#include <iostream> #include <cassert> using namespace std; #include <boost/graph/adjacency_list.hpp> #include <boost/graph/max_cardinality_matching.hpp> using namespace boost; // graph element descriptors typedef adjacency_list_traits<vecS,vecS,undirectedS>::vertex_descriptor Node; typedef adjacency_list_traits<vecS,vecS,undirectedS>::edge_descriptor Edge; // information stored in vertices struct VertexInformation { Node mate; // partner or graph_traits<Graph>::null_vertex() }; // information stored in edges struct EdgeInformation {}; // graph is an adjacency list represented by vectors typedef adjacency_list<vecS,vecS,undirectedS,VertexInformation,EdgeInformation> Graph; int main(int argc, char *argv[]) { assert(argc == 3); unsigned n = atoi(argv[1]); double p = atof(argv[2]); srand48(time(0)); // (1) generate random bi-partite graph Graph g; for(unsigned i=0; i<2*n; i++) add_vertex(g); for(unsigned i=0; i<n; i++) for(unsigned j=n; j<2*n; j++) if (drand48() < p) { Edge e = add_edge(i,j,g).first; } // (2) get maximum matching edmonds_maximum_cardinality_matching(g, get(&VertexInformation::mate,g)); unsigned card = 0; graph_traits<Graph>::vertex_iterator vb, ve; for ( tie(vb, ve)=vertices(g); vb != ve; vb++) if (g[*vb].mate != graph_traits<Graph>::null_vertex()) card++; //cout << "The cardinality of a maximum matching is " << card/2 << "." << endl; // (3) print out in DIMACS format cout << "c Bi-partite graph" << endl << endl; cout << "p edge " << num_vertices(g) << " " << num_edges(g) << endl; graph_traits<Graph>::edge_iterator eb, ee; for ( tie(eb, ee)=edges(g); eb != ee; eb++) cout << "e " << source(*eb,g)+1 << " " << target(*eb, g)+1 << endl; }
Entrega: 12/12/2012
n m
o número de inserções n e o número de consultas m, seguido por n linhas que contém um número inteiro que representa uma chave a inserir e m linhas que contém um número inteiro que representa uma consulta. O algoritmo deve imprimir na saida padrão (stdout) m linhas que contém o resultado dos m lookups: 0 para uma chave que não pertence a tabela hash, e 1 caso contrário.