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1. Introdução

Um problema de busca é uma relação binária P ⊆ I× S com instâncias
x ∈ I e soluções y ∈ S. O par (x,y) ∈ P caso y é uma solução para
x.

Definição 1.1
A classe de complexidade FNP contém os problemas de busca com
relações P polinomialmente limitadas (ver definição 1.3) tal que (x,y) ∈
P pode ser decidido em tempo polinomial.
A classe de complexidade FP contém os problemas em FNP para
quais existe um algoritmo polinomial A com

A(x) =

{
y para um y tal que (x,y) ∈ P
“insolúvel” caso não existe y tal que (x,y) ∈ P

.

Teorema 1.1
FP=FNP se e somente se P=NP.

Prova. Ver por exemplo Papadimitriou (1993, cáp. 10.3). �

Definição 1.2
Um problema de otimização Π = (P ,ϕ, opt) é uma relação binária P ⊆
I× S com instâncias x ∈ I e soluções y ∈ S, junto com

• uma função de otimização (função de objetivo) ϕ : P →N (ou
Q).

• um objetivo: Encontrar mínimo ou máximo

OPT(x) = opt{ϕ(x,y) | (x,y) ∈ P }

junto com uma solução y∗ tal que f(x,y∗) = OPT(x).

O par (x,y) ∈ P caso y é uma solução para x.

Uma instância x de um problema de otimização possui soluções
S(x) = {y | (x,y) ∈ P }.

Convenção 1.1
Escrevemos um problema de otimização na forma

Nome

Instância x

Solução y

Objetivo Minimiza ou maximiza ϕ(x,y).
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1. Introdução

Com um dado problema de otimização correspondem três proble-
mas:

• Construção: Dado x, encontra a solução ótima y∗ e seu valor
OPT(x).

• Avaliação: Dado x, encontra valor ótimo OPT(x).

• Decisão: Dado x e k, decide se OPT(x) ≥ k (maximização) ou
OPT(x) ≤ k (minimização).

Definição 1.3
Uma relação binária R é polinomialmente limitada se

∃p ∈ poly : ∀(x,y) ∈ R : |y| ≤ p(|x|).

Definição 1.4 (Classes de complexidade)
A classe PO consiste dos problemas de otimização tal que existe um
algoritmo polinomial A com ϕ(x,A(x)) = OPT(x) para x ∈ I.
A classe NPO consiste dos problemas de otimização tal que

(i) As instâncias x ∈ I são reconhecíveis em tempo polinomial.

(ii) A relação P é polinomialmente limitada.

(iii) Para y arbitrário, polinomialmente limitado: (x,y) ∈ P é deci-
dível em tempo polinomial.

(iv) ϕ é computável em tempo polinomial.

1.1. Não tem almoço de graça

“Sire in eight words I will reveal to you all the wisdom
that I have distilled through all these years from all the
writings of all the economists who once practiced their
science in your kingdom. Here is my text: ‘There ain’t no
such thing as free lunch’ ” (NN 1938)

A frase “there ain’t no such thing as free lunch” (TANSTAFEL) ex-
pressa que uma vantagem (p.ex. o almoço de graça em bares dos
EUA no século 19) tipicamente é pago de outra forma (p.ex. comida
salgada e bebidas caras). Para problemas de busca e de otimiza-
ção, Wolpert e Macready (1997) provaram teoremas que mostram
que uma busca universal não pode ter uma vantagem em todos pro-
blemas de otimização.
Para um problema de otimização supõe que ϕ : P → Φ é restrito
para um conjunto finito Φ, e seja F = ΦS(x) o espaço de todas fun-
ções objetivos para uma instância do problema. Um algoritmo de oti-
mização avalia pares de soluções e valores (s, v) ∈ S(x)×Φ. SejaD =
∪m≥0(S(x)×Φ)m o conjunto de todas sequencias de pares. Um al-
goritmo de otimização que não repete avaliações pode ser modelado

10
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por uma função a : d ∈ D → {s | s 6= si, para di = (si, vi), i ∈ [|d|]}
que mapeia a sequencia atual para a próxima solução a ser avaliada
(observe que o algoritmo toma essa decisão em função das soluções
anteriormente visitadas e os seus valores). A avaliação de um al-
goritmo de otimização é através uma função Ψ(d). Ela pode, por
exemplo, atribuir a d o valor mínimo encontrado durante a busca.

Teorema 1.2 (Wolpert e Macready (1997))
Para algoritmos a,a ′, um número de passos m e uma sequencia de
valores v ∈ Φm∑

f∈F
P(v | f,m,a) =

∑
f∈F

P(v | f,m,a ′).

O teorema mostra que uma busca genérica não vai ser melhor que
uma busca aleatória em média sobre todas funções objetivos. Porém,
uma grande fração das funções possíveis não ocorrem na prática
(uma função aleatória é incompressível, i.e. podemos especificá-la
somente por tabulação, funções práticas muitas vezes exibem locali-
dade). Além disso, algoritmos de busca frequentemente aproveitam
a estrutura do problema em questão.

1.2. Representação de soluções

A representação de soluções influencia as operações aplicáveis e a
sua complexidade. Por isso a escolha de uma representação é im-
portante para o desempenho de uma heurística. A representação
também define o tamanho do espaço de busca, e uma representação
compacta (e.g. 8 coordenadas versus permutações no problema das
8-rainhas) é preferível. Para problemas com muitas restrições uma
representação implícita que é transformada para uma representação
direta por um algoritmo pode ser vantajoso.
Para uma discussão abstrata usaremos frequentemente duas repre-
sentações elementares. Na representação por conjuntos uma solução é
um conjunto S ⊆ U de um universo U. Os conjuntos válidos são
dados por uma coleção V de subconjuntos de U. Na representação por
variáveis uma instância é um subconjunto I ⊆ U, e uma solução é
uma atribuição de valores de um universo V aos elementos em I.

Exemplo 1.1 (Representação do PCV por conjuntos)
Uma representação por conjuntos do PCV sobre um grafo G = (V ,A)
é o universo de arestas U = A, com V todos subconjuntos que for-
mam ciclos. ♦

Exemplo 1.2 (Representação do PCV por variáveis)
Uma representação por variáveis do PCV sobre um grafo G = (V ,A)
usa um universo de vértices U. Uma instância I = V atribui a cada
cidade a próxima cidade no ciclo. Uma representação alternativa usa
I = [n] a atribui a cada variável i ∈ I a i-ésima cidade no ciclo. ♦

11



1. Introdução

Exemplo 1.3 (Representação da coloração de grafos por variáveis)
Seja U um universo de vértices e C um universo de cores. Uma
representação da uma instânciaG = (V ,A) do problema da coloração
de grafos usa variáveis V ⊆ Q e atribui cores de C às variáveis. ♦

1.2.1. Reduções de problemas

Não todos elementos do universo são usados em soluções ótimas:
frequentemente eles tem que satisfazer certos critérios para parti-
cipar numa solução ótima. Isso permite reduzir o problema para
um núcleo. No problema do PCV, por exemplo, arestas mais longas
tem uma baixa probabilidade de fazer parte de uma solução ótima,
mas arestas bem curtas aparecem com probabilidade alta na solução
ótima. No problema da mochila elementos de alta eficiência (valor
por unidade de peso) são mais usados, e de baixa eficiência menos.
Se soubéssemos o arco de menor distância não usada numa solu-
ção ótima, e de maior distância usado, poderíamos reduzir o pro-
blema para um núcleo mais simples. Regras de redução para um
núcleo são possíveis em diversos problemas (e.g. o problema da mo-
chila (Kellerer et al. 2004)) e são essenciais para problemas tratáveis
por parâmetro fixo (Niedermeier 2002).

Exemplo 1.4 (Núcleo de Buss para cobertura por vértices)
Suponha que estamos interessados numa cobertura pequena de no
máximo k vértices num grafo não-direcionado G = (V ,A). A cober-
tura por vértices permite aplicar duas regras de redução:

1. Caso existe um vértice v com δ(v) = 0: ele não faz parte da
cobertura, remove o vértice.

2. Caso existe um vértice v com δ(v) > k: ele tem que fazer parte
da cobertura, remove o vértice.

Depois de aplicar as regras, temos a seguinte situação: caso |A| >
k2 não existe um cobertura de tamanho no máximo k, porque todo
vértice cobre no máximo k arestas. Caso contrário, |V | ≤ 2k2 porque
cada aresta possui no máximo dois vértices incidentes diferentes, e
logo o problema pode ser resolvido por exaustão em O(22k

2
). Junto

com as regras de redução temos um algoritmo em tempo O(n+m+

22k
2
). ♦

Princípio de projeto 1.1 (Redução de problemas)
Busca por regras de redução do problema. Procura reduzir o pro-
blema para um núcleo. O núcleo pode ser determinado heuristica-
mente.

1.2.2. Transformações entre representações

Um transformador recebe uma representação de uma solução e trans-
forma ela numa representação diferente. Um algoritmo construtivo
randomizado (ver capítulo 3) pode ser visto como um algoritmo que

12
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transforma uma sequencia de números aleatórios em uma solução
explicita. Ambas são representações válidas da mesma solução. Essa
ideia é aplicada também em algoritmos genéticos, onde a represen-
tação fonte se chama fenótipo e a representação destino genótipo. A
ideia de representar uma solução por uma sequência de números
aleatórios é usado diretamente em algoritmos genéticos com chaves
aleatórias (ver 4.5.6).
Uma transformação é tipicamente sobrejetiva (“many-to-one”), i.e. exis-
tem várias representações fonte para uma representação destino. Ide-
almente, existe o mesmo número de representações fontes para re-
presentações destino, para manter a mesma distribuição de soluções
nos dois espaços.

Exemplo 1.5 (Representando permutações por chaves aleatórias)
Uma permutação de n elementos pode ser representada por n núme-
ros aleatórios reais em [0, 1]. Para números aleatórios a1, . . . ,an, seja
π uma permutação tal que aπ(1) ≤ · · · ≤ aπ(n). Logo os números
ai representam a permutação π (ou π−1). ♦

Uma transformação pode ser útil caso o problema possui muitas res-
trições e o espaço de busca definido por uma representação direta
contém muitas soluções inválidas. Em particular buscas locais de-
pendem da geração fácil de soluções. Por isso postulamos o

Princípio de projeto 1.2 (Soluções, Hertz e Widmer (2003))
A geração de soluções deve ser fácil.

Exemplo 1.6 (Coloração de vértices)
Uma representação direta da coloração de vértices pode ser uma atri-
buição de cores a vértices. Para um limite de no máximo n cores,
temos nn possíveis atribuições, mas várias são infactíveis. Uma re-
presentação indireta é uma permutação de vértices. Para uma dada
permutação um algoritmo guloso processa os vértices em ordem e
atribui o menor cor livre ao vértice atual. A corretude dessa aborda-
gem mostra

Lema 1.1
Para uma dada k-coloração, sejam C1 ∪ · · · ∪ Ck as classes de co-
res. Ordenando os vértices por classes de cores, o algoritmo guloso
produz uma coloração com no máximo k cores.

Prova. Mostraremos por indução que a coloração das primeiras i
classes não precisa mais que i cores. Para a primeira classe isso é
óbvio. Supõe que na coloração da classe i precisamos usar a cor i+ 1.
Logo existe um vizinho com cor i. Mas pela hipótese da indução o
vizinho de um vértice da classe i + 1 não pode ser de uma classe
menor. Logo, temos uma aresta entre dois vértices da mesma classe,
uma contradição. �
Com essa representação, todas soluções são válidas. Observe que o
tamanho do espaço da busca n! ≈

√
2πn(n/e)n (por A.5) é similar

nas duas representações. ♦
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1. Introdução

Por fim, transformações podem ser úteis caso podemos resolver sub-
problemas restritos do problema eficientemente.

Exemplo 1.7 (Sequenciamento em máquinas paralelas)
Uma solução direta do problema de sequenciamento em máquinas
paraleles não relacionadas R ||

∑
wjCj é uma atribuição das tarefas

às máquinas, junto com a ordem das tarefas em cada máquina.

Teorema 1.3
A solução ótima de 1 ||

∑
wjCj é uma sequencia em ordem de tempo

de processamento ponderado não-decrescente p1/w1 ≤ · · · ≤ pnwn.

Prova. Supõe uma sequencia ótima com pi/wi > pi+1/wi+1. A
contribuição das duas tarefas à função objetivo éw = wiCi+wi+1Ci+1.
Trocando as duas tarefas a contribuição das restantes tarefas não
muda, e a contribuição das duas tarefas é

wi+1(Ci+1 − pi) +wi(Ci + pi+1) = w+wipi+1 −wi+1pi.

Logo a função objetivo muda por ∆ = wipi+1 −wi+1pi, mas pela
hipótese ∆ < 0. �
Logo a ordem ótima de uma máquina pode ser computada em tempo
O(n logn), e uma representação reduzida mantém somente a distri-
buição das tarefas à máquinas. ♦

As diferentes representações compactas podem ser combinadas.

Exemplo 1.8 (Simple assembly line balancing)
No “simple assembly line balacing problem” do tipo 2 temos que
atribuir n tarefas, restritas por precedências, à m de estações de tra-
balho. Cada tarefa possui um tempo de execução ti, e o tempo de
estação é o tempo total das tarefas atribuídas a uma estação. O obje-
tivo é minimizar o maior tempo de estação.
Uma representação direta é uma atribuição de tarefas a estações, mas
muitas atribuições são inválidas por não satisfazer as precedências
entre as tarefas. Uma representação mais compacta atribui chaves
aleatórias às tarefas. Com isso, uma ordem global das tarefas é defi-
nida: elas são ordenadas topologicamente, usando as chaves aleató-
rias como critério de desempate, caso duas tarefas concorram para a
próxima posição. Por fim, para uma dada ordem de tarefas, a solu-
ção ótima do problema pode ser obtida via programação dinâmica.
Seja C(i,k) o menor tempo de ciclo para tarefas i, . . . ,n em k máqui-
nas, a solução ótima é C(1,m) e C satisfaz

C(i,k) =


mini≤j≤nmax{

∑
i≤j ′≤j tj ′ ,C(j+ 1,k+ 1)} para i ≤ n, k > 0

0 para i > n∞ para i ≤ n e k = 0

,

e logo a solução ótima pode ser obtida em tempo e espaço O(nm)
(pré-calculando as somas parciais). ♦

Essa observação é o motivo para o
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Princípio de projeto 1.3 (Subproblemas)
Identifica os subproblemas mais difíceis que podem ser resolvidos
em tempo polinomial e considera uma representação que contém
somente a informação necessária para definir os subproblemas.

1.3. Estratégia de busca: Diversificação e
intensificação

Uma heurística tem que balancear duas estratégias antagonistas: a
diversificação da busca e a intensificação de busca. A diversificação da
busca (ingl. diversification or exploration) procura garantir uma boa
cobertura do espaço de busca, evitando que as soluções analisadas
fiquem confinadas a uma pequena região do espaço total. A diversi-
ficação ideal é um algoritmo que repetidamente gera soluções alea-
tórias. Em contraste a intensificação (ingl. intensification or exploitation)
procura melhorar a solução atual o mais possível. Um exemplo de
uma intensificação seria analisar todas soluções dentro uma certa
distância da solução atual.
O tema de intensificação e diversificação se encontra na discussão da
heurísticas individuais na seções 2 a 4; um procedimento genérico
de intensificação e diversificação é apresentado na seção 4.9.

1.4. Notas

Mais informações sobre os teoremas NFL se encontram no artigo
original de Wolpert e Macready (1997) e em Burke e Kendall (2005,
cáp. 11) e Rothlauf (2011, cáp. 3.4.4). Para um crítica ver p.ex. Hut-
ter (2010). Talbi (2009, cáp. 1.4.1) discute outras representações de
soluções.
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2. Busca por modificação de soluções

2.1. Vizinhanças

Uma busca local procura melhorar uma solução de uma instância de
um problema aplicando uma pequena modificação, chamada movi-
mento. O conjunto de soluções que resultam de uma pequena modi-
ficação formam os vizinhos da solução.

Definição 2.1 (Vizinhança)
Uma vizinhança de uma instância x de um problema de otimização
Π é uma função N : S(x)→ 2S(x). Para uma solução s, os elementos
N(s) são os vizinhos de s. Os vizinhos melhores de s são B(s) = {s ′ ∈
N(s) | ϕ(s ′) < ϕ(s)}. Uma vizinhança é simétrica, caso para s ′ ∈ N(s)
temos s ∈ N(s ′).
Para uma dada vizinhança um mínimo local é uma solução s, tal que
ϕ(s) ≤ ϕ(s ′) para s ′ ∈ N(s) e um máximo local caso ϕ(s) ≥ ϕ(s ′)
para s ′ ∈ N(s). Caso uma solução é estritamente menor ou maior
que os seus vizinhos, o ótimo local é estrito. Uma vizinhança é exata,
caso cada ótimo local também é um ótimo global.

Definição 2.2 (Grafo de vizinhança)
O grafo de vizinhançaG = (V ,E) para uma instância x de um problema
de otimização Π com vizinhançaN possui vértices V = {y | (x,y) ∈ P}
e arcos (s, s ′) para s, s ′ ∈ S(x), s ′ ∈ N(s). Para uma vizinhança si-
métrica, o grafo de vizinhança é efetivamente não-direcionado. Uma
solução s ′ é alcançável a partir da solução s, caso existe um caminho
de s para s ′ em G. Caso todo vértice é alcançável a partir de qualquer
outro, G é conectado. Neste caso o diâmetro de G é o comprimento do
maior caminho mais curto entre dois vértices em G. O grafo G é
fracamente otimamente conectada caso a partir de cada solução s uma
solução ótima é alcançável.

Uma vizinhança é suficiente para definir uma busca local genérica.
Ela seleciona um vizinho de acordo com uma distribuição P̂s sobre a
vizinhança fechada N̂(s) = {s} ∪N(s). Para uma distribuição Ps sobre
N(s), a extensão padrão para a vizinhança fechada é definida por

P̂s(s
′) =

{
1−
∑
s ′∈N(s) Ps(s

′), para s ′ = s,
Ps(s

′), caso contrário.

Algoritmo 2.1 (LocalSearch)
Entrada Solução inicial s, vizinhança N, distribuição Ps.

Saída Uma solução com valor no máximo ϕ(s).
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LocalSearch(s)=
s∗ := s
repeat

seleciona s ′ ∈ N̂(s) de acordo com P̂s
s := s ′

if ϕ(s) < ϕ(s∗) then s∗ := s
until critério de parada satisfeito
return s∗

end

A complexidade de uma busca local depende da complexidade da
seleção e do número de iterações. A complexidade da seleção muitas
vezes é proporcional ao tamanho da vizinhança |N(s)|.
Duas estratégias básicas para uma busca local são

Caminhada aleatória (ingl. random walk) ParaN(s) 6= ∅, define Ps(s) =
1/|N(s)|.

Amostragem aleatória (ingl. random picking) Uma caminhada ale-
atória com N(s) = S(x) para todo s ∈ S(x).

Melhor vizinho Para B(s) 6= ∅, define B∗(s) = {s ′ ∈ B(s) | ϕ(s ′) =
mins ′′∈B(s)ϕ(s ′′)} e Ps(s ′) = 1/|B∗(s)| para s ′ ∈ B∗(s). Essa
estratégia tipicamente não consegue sair de mínimos locais e
tem que ser modificado por uma das técnicas discutidas em
2.3, mas supera plateaus.

Exemplo 2.1 (Polítopos e o método Simplex)
O método Simplex define uma vizinhança entre os vértices do po-
lítopo de um programa linear: cada par variável entrante e sainte
admissível define um vizinho. Essa vizinhança é simétrica, conec-
tada, fracamente otimamente conectada e exata. Logo uma busca
local com a estratégia “melhor vizinho” resolve o problema da pro-
gramação linear. ♦

Exemplo 2.2 (k-exchange para o PCV)
Uma vizinhança para o PCV é k-exchange Croes (1958): os vizinhos
de um ciclo são obtidos removendo k arcos, e conectando os k ca-
minhos resultantes de outra forma. Para qualquer k fixo, essa vi-
zinhança é simétrica, conectada, fracamente otimamente conectada,
mas inexata (por quê?). O tamanho da vizinhança é O = (

(
n
k

)
k!2k) =

O(nk) para n cidades e k fixo.

3-ex.

Figura 2.1.: Um movimento na vizi-
nhança 3-exchange para o PCV.

♦

Exemplo 2.3 (k-SAT)
O problema k-SAT é decidir se existe uma atribuição x ∈ {0, 1}n que
satisfaz uma fórmula ϕ(x) da lógica proposicional em forma normal
conjuntiva com k literais por cláusula.
Seja |x− y|1 =

∑
i∈[n][xi 6= yi] a distância Hamming entre dois ve-

tores x,y ∈ {0, 1}n. Uma vizinhança conhecida para SAT é k-flip: os
vizinhos de uma solução são todas soluções de distância Hamming
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k. A vizinhança é simétrica, fracamente otimamente conectada para
k = 1, mas inexata. O tamanho da vizinhança é O(nk).

♦

Observação 2.1 (Cálculo eficiente da função objetivo)
Frequentemente é mais eficiente avaliar a diferença ∆(s, s ′) = ϕ(s ′)−
ϕ(s) para determinar o valor da função objetivo de um vizinho. No
exemplo 2.2 avaliar ϕ(s) custa O(n), mas avaliar ∆(s, s ′) custa O(1).
Logo, determinar o melhor vizinho na vizinhança 2-exchange, por
exemplo, custa O(n3) na abordagem ingênua, mas é possível em
O(n2) avaliando as diferenças.
Em alguns casos a avaliação da diferença das diferenças é ainda mais
eficiente. Um exemplo é a programação quadrática binária com função
objetivo

ϕ(x) = xtQx =
∑
i,j∈[n]

qijxixj

com xi ∈ {0, 1} e coeficientes simétricos (Q = Qt). Avaliar ϕ(s) custa
Θ(n2), avaliar a diferença na vizinhança 1-flip que troca x ′k = 1− xk
para um k fixo, obtemos x ′ = x+ (1− 2xk)ek e logo

∆k(x
′, x) =

∑
i,j∈[n]

qij(x
′
ix
′
j − xixj)

=
∑

i∈[n]\{k}
qikxi(x

′
k − xk) +

∑
j∈[n]\{k}

qkj(x
′
k − xk)xj + qkk(x

′
k
2 − x2k)

= (1− 2xk)
(
qkk + 2

∑
i∈[n]\{k}

qikxi
)

custa somente O(n).
Atualizando um bit l por x ′l = 1− xl obtemos novas diferenças

∆ ′k =

{
−∆k caso l = k
∆k + 2qlk(1− 2xk)(1− 2xl) caso contrário.

(2.1)

Dado os valores ∆k podemos encontrar o melhor vizinho em tempo
O(n). Passando para o melhor vizinho, podemos atualizar todos va-
lores ∆k em tempo O(n) usando (2.1). Logo, o custo de encontrar
o melhor vizinho é Θ(n3) avaliando soluções completas, somente
Θ(n2) calculando as diferenças, e somente O(n) atualizando dife-
renças. ♦

Princípio de projeto 2.1 (Vizinhanças)
Procura o método mais eficiente de avaliar os vizinhos de uma solu-
ção e encontrar um dos melhores vizinhos.

2.1.1. Vizinhanças reduzidas

Uma técnica comum para melhorar o desempenho de buscas locais é
reduzir a vizinhança heuristicamente, excluindo vizinhos com carac-
terísticas que com baixa probabilidade se encontram em soluções de
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boa qualidade. Uma forma comum de reduzir a vizinhança é usar
listas de candidatos (ingl. candidate lists).

Exemplo 2.4 (Vizinhança reduzida para o PCV)
No caso do 2-exchange para o PCV muitas das Θ(n2) vizinhos pro-
duzem rotas inferiores, porque eles introduzem uma arestas longas,
caso as duas arestas originais ficam muito distantes. Logo é possível
reduzir a vizinhança heuristicamente, sem expectativa de perder so-
luções boas. Uma estratégia proposto por Johnson e McGeoch (2003)
é: escolher uma cidade aleatória, um vizinho aleatório dessa cidade
na rota, uma terceira cidade entre os 20 vizinhos mais próximos da
segunda cidade, e a quarta cidade como sucessor da terceira na ori-
entação da rota dado pelas primeiras duas cidades. Com isso uma
rota tem no máximo 40n vizinhos. ♦

Exemplo 2.5 (Bits “don’t look” para o PCV)
Considera a estratégia do exemplo anterior e supõe que para uma
dada seleção da primeira cidade não tem um movimento que me-
lhora a rota. Empiricamente, caso essa cidade continua com os mes-
mos vizinhos, a probabilidade de encontrar um movimente que me-
lhora é baixa. Isso é o motivo para introduzir bits “don’t look” (Ben-
tley 1992). Cidades que não levaram a uma solução melhor recebem
ficam exclusos nas próximas iterações até um vizinho mudar. ♦

A redução de vizinhanças frequentemente é uma estratégia impor-
tante para obter resultados de boa qualidade (Johnson e McGeoch
2003; Toth e Vigo 2003; Glover e Laguna 1997), motivo para

Princípio de projeto 2.2 (Redução de vizinhanças)
Considera eliminar das vizinhanças movimentos com baixa probabi-
lidade de melhorar a solução.

2.2. Buscas locais monótonas

Uma busca local monótona permite somente modificações que me-
lhoram a solução atual, i.e. no algoritmo LocalSearch sempre temos
Ps(s

′) = 0 para s ′ 6∈ B(s). Logo, o algoritmo termina num ótimo
local. Pela monotonia também não é necessário guardar a melhor
solução encontrada. A busca depende da estratégia de seleção da
nova solução s ′, também conhecida como regra de pivoteamento.

Algoritmo 2.2 (LocalDescent)
Entrada Solução inicial s, vizinhança N, distribuição Ps.

Saída Uma solução com valor no máximo ϕ(s).

LocalDescent(s)=
repeat

seleciona s ′ ∈ N̂(s) de acordo com P̂s
s := s ′
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until Ps(s) = 1
return s

end

Descida aleatória (ingl. stochastic hill descent) Para B(s) 6= ∅ de-
fine Ps(s ′) = 1/|B(s)| para s ′ ∈ B(s). Esta estratégia é equiva-
lente com a primeira melhora, mas em ordem aleatória.

Primeira melhora (ingl. first improvement) A primeira melhora su-
põe uma vizinhança ordenada B(s) = {b1, . . . ,bk}. Ela seleci-
ona f = min{i | ϕ(bi) < ϕ(s)}, i.e. Ps(bi) = [i = f]. O método é
conhecido pelos nomes “hill climbing” (no caso de maximiza-
ção) ou “hill descent” (no caso de minimização).

Melhor melhora (ingl. best improvement) Para B(s) 6= ∅, define B∗(s) =
{s ′ ∈ B(s) | ϕ(s ′) = mins ′′∈B(s)ϕ(s ′′)} e Ps(s ′) = 1/|B∗(s)| para
s ′ ∈ B∗(s). O método é conhecido pelos nomes “steepest as-
cent” (no caso de maximização) ou “steepest descent” (no caso
de minimização).

Busca por amostragem (ingl. sample search) Seleciona um subcon-
junto S ⊆ N(x) aleatório de tamanho α|N(x)|, define B∗(s) =
{s ′ ∈ B(s) | ϕ(s ′) = mins ′′∈Sϕ(s ′′) e Ps(s ′) = 1/|B∗(s)| para
s ′ ∈ B∗(s).

As estratégias obviamente podem ser combinadas, por exemplo, apli-
car uma estratégia de “primeira melhora” após uma amostragem.
A qualidade de uma busca local depende da vizinhança: para vi-
zinhanças maiores esperamos encontrar ótimos locais melhores. Po-
rém a complexidade da busca cresce com a vizinhança. A arte, então,
consiste em balancear estes dois objetivos.

Exemplo 2.6 (Método Simplex)
Não conhecemos um regra de pivoteamento para o método Simplex
que garante uma complexidade polinomial. Porém, a programação
linear possui soluções polinomiais (que não usam busca local). Isso
indica que a complexidade de encontrar ótimos locais pode ser me-
nor que a complexidade do método iterativo. ♦

Exemplo 2.7 (Árvore geradora mínima)
Para uma árvore geradora, podemos definir vizinhos como segue:
adicione uma aresta, e remove outra do (único) ciclo formado. Uma
árvore geradora é mínima se e somente se não existe melhor vizi-
nho (prova: exercício). Por isso a busca local resolve o problema
de encontrar a árvore geradora mínima. A vizinhança é simétrica,
fracamente otimamente conectada e exata. Porém, a busca local ge-
ralmente não é eficiente. ♦

Exemplo 2.8 (OneMax)
Para x∗ ∈ {0, 1}n fixo o problema OneMax consiste em encontrar o
mínimo de ϕ(x) = |x− x∗|1, i.e. x∗. O número de bits X corretos de
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uma solução aleatória satisfaz E[X] = n/2 e Pr[X ≤ n/3] ≤ e−n/36 e
Pr[X ≥ 2n/3] ≤ e−n/54 (aplicando limites de Chernoff (A.4)).
Uma descida aleatória precisa tempo O(n) para selecionar um vizi-
nho, avaliando a função objetivo em O(1) e sem repetição, e O(n)
passos, para um tempo total de O(n2). Uma análise mais detalhada
do caso médio é a seguinte: para selecionar um vizinho melhor, po-
demos repetidamente selecionar um vizinho arbitrário, até encontrar
um vizinho melhor. Com i bits diferentes, encontramos um vizinho
melhor com probabilidade i/n. Logo a seleção precisa esperada-
mente n/i passos até encontrar um vizinho melhor (ver lema A.3) e
logo no máximo ∑

1≤i≤n
n/i = nHn ≈ n logn

passos até encontrar x∗.
A primeira melhora precisa no pior caso (todos bits diferentes) tempo
esperado Θ(n/i) para encontrar um vizinho melhor, e a melhor me-
lhora tempo Θ(n). Logo, ambas precisam tempo Θ(n2) para encon-
trar x∗. ♦

Exemplo 2.9 (GSAT)
O algoritmo GSAT (Selman et al. 1992) aplica a estratégia “melhor
vizinho” na vizinhança 1-flip com função objetivo sendo o número
de cláusulas satisfeitas (observe que é importante escolher entre os
melhores uniformemente). Ele periodicamente recomeça a busca a
partir de uma solução aleatória. ♦

Exemplo 2.10 (WalkSAT)
WalkSAT usa uma estratégia de seleção mais sofisticada: em cada
passo uma cláusula não satisfeita é selecionada, e uma variável ale-
atória dessa cláusula é invertida. (O WalkSAT proposto por Selman
et al. (1994) seleciona uma variável que não invalida nenhuma ou-
tra cláusula ou com probabilidade p uma que invalide o menor nú-
mero e com probabilidade 1− p uma aleatória.) Logo a vizinhança é
um subconjunto da vizinhança 1-flip. WalkSAT também recomeça a
busca a partir de uma solução aleatória periodicamente.

Lema 2.1 (Schöning (1999))
Seja ϕ uma fórmula em k-CNF satisfatível com n variáveis. O algo-
ritmo WalkSAT com período 3n precisa esperadamenteO(n3/2(2(k−
1)/k)n) passos até encontrar uma atribuição que satisfaz ϕ.

Prova. Seja a uma atribuição que satisfaz ϕ. Vamos determinar
a probabilidade q que um período de WalkSAT encontra a. Com
pj =

(
n
j

)
2−n a probabilidade de iniciar com distância Hamming j de

a, e qj a probabilidade de encontrar a a partir da distância j, temos

q =
∑
0≤j≤n

pjqj. (*)
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A distância Hamming para a diminui com probabilidade pelo me-
nos 1/k e aumenta com probabilidade no máximo 1− 1/k. Podemos
modelar o WalkSAT como caminhada aleatória entre classes de solu-
ções com distância Hamming j, com uma probabilidade de transição
de j para j− 1 (“para baixo”) de 1/k e de j para j+ 1 (“para acima”)
de 1− 1/k. Com isso qj é pelo menos a probabilidade de chegar na
classe 0 a partir da classe j em no máximo 3n passos. Para conseguir
isso podemos fazer j passos para baixo, ou j + 1 para baixo e um
para acima, e no geral j+ l para baixo e l para acima. Logo

qj ≥ max
0≤l≤(3n−j)/2

(
j+ 2l

l

)(
k− 1

k

)l ( 1
k

)j+l
.

Para l = αj com α ∈ (0, 1) temos

qj ≥
(
(1+ 2α)j

αj

)((
k− 1

k

)α ( 1
k

)(1+α)
)j

.

Aplicando o lema A.4 é podemos estimar1

(
(1+ 2α)j

αj

)
≥ (8j)−1/2

((
1+ 2α

α

)α (1+ 2α
1+α

)1+α)j
e logo

qj ≥ (8j)−1/2

((
1+ 2α

α

)α (1+ 2α
1+α

)1+α (k− 1
k

)α ( 1
k

)(1+α)
)j

.

Escolhendo α = 1/(k− 2) e simplificando obtemos

qj ≥ (8j)−1/2
(

1

k− 1

)j
.

Finalmente, substituindo em (*)

q ≥ 2−n +
∑
j∈[n]

(
n

j

)
2−n(8j)−1/2

(
1

k− 1

)j

≥ 2−n(8n)−1/2
∑
j∈[n]

(
n

j

)(
1

k− 1

)j
1n−j

= 2−n(8n)−1/2
(
1+

1

k− 1

)n
=

1√
8n

(
k

2(k− 1)

)n
.

Logo, o número esperado de períodos é

1/q =
√
8n

(
2(k− 1)

k

)n
1Substituindo diretamente é descartando o fator

√
(1+ 2α)/(α(1+α)) ≥ 1.
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e como cada período precisa tempo O(n) o resultado segue. �
Para uma fórmula satisfatível com k = 3, por exemplo, o algoritmo
precisa O(n3/2(4/3)n) passos.
É possível transformar este algoritmo num algoritmo randomizado
que decide se uma fórmula é satisfatível com alta probabilidade. ♦

Princípio de projeto 2.3 (Reinícios)
Considera reinícios frequentes. Eles podem ficar mais efetivos caso a
probabilidade de atingir a qualidade desejada é baixo.

Exemplo 2.11 (2-opt para o PCV)
A estratégia 2-opt para o PCV é uma descida aleatória na vizinhança
2-exchange. Similarmente, obtemos k-opt na vizinhança k-exchange.

Teorema 2.1 (Chandra et al. (1999))
Para k ≥ 2, n ≥ 2k+ 8 e para α > 1/n existe uma instância x do
PCV com n cidades, tal que

k-opt(x)
OPT(x)

> α.

Prova. Para um k par, define distâncias

d12 = 1,
di,i+1 = dn,1 = 1/nα i ∈ [2,n),
dk+3,2k+4 = 1/nα,
dj,2k+4−j = 1/nα, j ∈ [k],

di,j = kn, caso contrário.

Um ciclo Hamiltoniano ótimo é dado por arestas (i, próximo(i)) com

próximo(i) =



2k+ 4− i, para i impar e i < k,
i+ 1, para i par e i < k,
i+ 1, para i ∈ [k, k+ 2],
2k+ 4, para i = k+ 3,
i− 1, para i impar e i ∈ [k+ 3, 2k+ 4),
2k+ 4− i, para i par e i ∈ [k+ 3, 2k+ 4),
i+ 1, para i ∈ [2k+ 4,n],
1, para i = n.

A otimalidade segue do fato que todas arestas possuem o peso mí-
nimo 1/nα. Este ciclo é o único ciclo ótimo (Exercício!). Por outro
lado, o ciclo (1, 2, . . . ,n) possui peso total 1+ (n− 1)/nα, mas tem
k+ 1 arestas diferentes. Logo este ciclo é um mínimo local para k-
exchange e para a instância acima temos

k-opt(x)
OPT(x)

≥ α+ 1− 1/n > α.

Para provar o caso para um k impar, podemos observar que um
mínimo local para o k + 1-exchange, também é um mínimo local
para k-exchange. �

Figura 2.2.: Caminhos construídos na
prova do teorema 2.1. Acima: n = 22,
k = 8. Meio: n = 12, k = 2. Abaixo:
n = 40, k = 16. A figura somente mos-
tra arestas de distância 1/nα.
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2.2. Buscas locais monótonas

Teorema 2.2 (Chandra et al. (1999))
No caso métrico 2-opt(x)/OPT(x) ≤ 4

√
n.

Para k ∈ [n] define Dk = 2OPT(x)/
√
k. Como primeiro passo pro-

varemos

Lema 2.2 (Mínimos locais tem menos que k arestas k-longas)
Seja (c1, c2, . . . , cn, cn+1 = c1) um mínimo local de 2-opt e Ek =
{(ci, ci+1) | di,i+1 > Dk}. Então |Ek| < k.

Prova. Supõe que existe um k tal que |Ek| ≥ k.
A densidade de términos de arcos (ci, ci+1) ∈ Ek

2 não pode ser
demais: Supõe que numa bola com centro c e diâmetro Dk temos
términos t1, . . . , tl com l ≥

√
k. Sejam i1, . . . , il os inícios correspon-

dentes. Nenhum início esta na bola, por ser mais que Dk distante
do término. Os términos, por estarem na bola, possuem distância
no máximo Dk entre si. Logo, os inícios também possuem uma dis-
tância mais que Dk entre si: caso contrário, para um par de inícios
ia, ib com distância atéDk a solução que aplica um 2-exchange subs-
tituindo duas arestas mais longas que Dk (ia, ta) e (ib, tb) por duas
arestas mais com distância no máximo Dk (ia, ib) e (ta, tb) séria
melhor, uma contradição com a minimalidade local.
Logo existem pelo menos

√
k inícios com distância mutual de pelo

menos Dk. Mas uma rota mínima entre eles possui distância pelo
menos

√
kDk = 2OPT(x), uma contradição. Isso mostra que numa

bola de raio Dk temos menos que
√
k términos.

Dk = 2OPT(x)/
√
k

c

i1

t1

i2

t2

i3

tl

Figura 2.3.: Ilustração para o teo-
rema 2.2.

Por consequência, em Ek existem pelo menos
√
k términos com dis-

tância mais que Dk entre si: começando com o conjunto de todos
términos de arcos em Ek vamos escolher cada vez um, e removê-
lo junto com os términos com distância no máximo Dk/2 dele, até
nenhum término sobrar. Como em cada passo removeremos no má-
ximo

√
k términos, o conjunto resultante possui pelo menos

√
k tér-

minos. Mas então uma rota que visita todos possui distância mais
que
√
kDk/2 = OPT(x), uma contradição. Logo |Ek| < k. �

Com isso podemos provar o teorema 2.2.
Prova. Pelo lema, a distância da i-ésima aresta em ordem não-
crescente e no máximo 2OPT(x)/

√
i. Logo temos para a distância

da rota ∑
a∈C

da ≤ 2OPT(x)
∑
i∈[n]

1/
√
i ≤ 4OPT(x)

√
n

(porque
∑
i∈[n] 1/

√
i ≤
∫n
0 i

−1/2di = 2n1/2). �

Observação 2.2
Os teoremas não quantificam a complexidade para encontrar o mí-
nimo local. Chandra et al. (1999) ainda provaram que o número es-
perado de iterações sobre instâncias Euclidianas aleatórias em [0, 1]2

2O término de (u, v) é v, o início u.
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2. Busca por modificação de soluções

é O(n10 logn). Para [0, 1]3 isso se reduz para O(n6 logn). Eles tam-
bém provaram que no caso métrico existem instâncias com mínimos
locais cujo valor desvia pelo menos um fator 1/4

√
n da otimalidade,

i.e., o teorema assintoticamente é o melhor possível. ♦

Por final observamos que o PCV em geral não é resolúvel por busca
local (em contraste com a programação linear e o método Simplex).

Teorema 2.3 (Papadimitriou e Steiglitz (1977))
Caso P 6= NP, não existe um algoritmo de busca local com complexi-
dade polinomial por iteração que é exato para o PCV.

Considere primeiramente o problema

Ciclo Hamiltoniano restrito

Entrada Um grafo não-direcionado G = (V ,A) e um caminho
Hamiltoniano p em G.

Decisão Existe um ciclo Hamiltoniano em G?

Lema 2.3
Ciclo Hamiltoniano restrito é NP-completo.

Prova. Por redução do problema “Ciclo Hamiltoniano”. Considere o
grafo “diamante” da Fig. 2.4 com quatro “entradas” norte (N), oeste
(W), sul (S) e este (E). Entrando em N, W, S, E ele só pode ser
atravessado por um ciclo Hamiltoniano em dois modos, um modo
EW e outro modo NS, como mostrado do lado.

N

W E

S

u v

x y

N

W E

S

u v

x y

N

W E

S

u v

x y

Figura 2.4.: Grafo “diamente” e as duas
formas de o atravessar.

Para uma instância G = (V ,A) do problema do ciclo Hamiltoniano,
podemos construir um grafo G ′ que possui um caminho Hamiltoni-
ano como segue. Introduz um “diamante” dv para cada vértice em
v ∈ V e chama os quatro entradas Nv,Wv,Sv, e Ev. Conecta os dia-
mantes de oeste ao este linearmente, i.e. (E1,W2), (E2,W3), . . . , (En−1,Wn).
Isso garante a existência de um caminho Hamiltoniano começando
no oeste do primeiro vértice W1 e terminado no este do último vér-
tice En como a Fig. 2.5 mostra. Para representar a estrutura do
grafo G, introduz para cada aresta (u, v) ∈ A duas arestas (Nu,Sv) e
(Nv,Su) conectando os diamantes correspondentes a u e v de norte
a sul. Caso G possui um ciclo Hamiltoniano, G ′ também, atraves-
sando os diamantes sempre de modoNS de acordo com o ciclo. Caso
G ′ possui um ciclo Hamiltoniano, ele usa os diamantes somente de
modo NS. Caso contrário, o ciclo tem que seguir em alguma direção
no modo WE até terminar num dos dois vértices W1 e En. Logo G
também possui um ciclo Hamiltoniano. �

W1 E6

Figura 2.5.: Estrutura básica do grafo G ′.
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2.2. Buscas locais monótonas

Prova.(do teorema 2.3) Por contradição. Caso existe tal busca local,
podemos decidir em tempo polinomial se uma dada solução s é sub-
ótima: é suficiente iterar uma vez. Mas o problema de decidir se
uma solução s é sub-ótima é NP-completo, por redução do problema
Ciclo Hamiltoniano restrito. O problema pertence a NP, porque uma
solução ótima é um certificado curto da sub-otimalidade. Dado um
grafo não-direcionado G = (V ,A) define uma instância do PCV com
cidades V , e distâncias da = 1 caso a ∈ A, e da = 2 caso contrário.
O ciclo Hamiltoniano c obtido por fechar o caminho Hamiltoniano p
possui distância total (n− 1) + 2. Agora G possui um ciclo Hamilto-
niano sse o PCV possui uma solução de valor n sse c é sub-ótimo. �

♦

As analises de mínimos locais podem trazer informações relevantes
sobre a qualidade da solução e sugerem caminhos para melhor mí-
nimos locais. Isso é motivo do

Princípio de projeto 2.4 (Vizinhanças)
Encontra exemplos de mínimos locais e os compara com soluções
ótimas. Investiga que tipo de modificação poderia melhorar um mí-
nimo local.

2.2.1. Segue os vencedores

Segue os vencedores (ingl. go with the winners) (Aldous e Vazirani
1994) é uma estratégia que trabalha com múltiplas soluções. Cada
solução percorre uma trajetória de uma busca local monótona. Caso
uma das trajetórias termina num mínimo local, ela continua no ponto
atual de uma das outras trajetórias que ainda não chegaram num
mínimo local. A busca termina, caso todas trajetórias terminaram
num mínimo local.

Algoritmo 2.3 (Segue os vencedores (SOV))
Entrada Solução inicial s, vizinhança N, distribuição Ps, o nú-

mero de soluções k.

Saída Uma solução com valor no máximo ϕ(s).

SV(s)=
si := s para i ∈ [k]
s∗ = s
repeat

seja L := {i ∈ [k] | B(s) = ∅} e L := [k] \ L
atribui às soluções em L

uniformemente a soluções em L

seleciona s ′i ∈ N̂(si) de acordo com P̂si
si := s

′
i

s∗ = argmin{ϕ(s∗),ϕ(s1), . . . ,ϕ(sk)}
until L = [k]
return s∗
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2. Busca por modificação de soluções

end

Na atribuição das soluções em L cada solução é usada no máximo⌈
|L|/|L|

⌉
vezes.

A motivação para SOV pode ser explicada no exemplo da árvore
na figura 2.6. Seja d a variável aleatória da profundidade alcançada
por uma partícula numa caminhada aleatória partindo da raiz em
direção as folhas. Temos P(d > h) = 2−h (a profundidade da raiz é
h = 0). Com k partículas independentes, seja d∗ = max{d1, . . . ,dk}.
Logo

P(d∗ > h) = 1− P(d∗ ≤ h) = 1−
∏
i∈[k]

P(di ≤ h)

= 1−
∏
i∈[k]

1− P(di > h) = 1−
∏
i∈[k]

1− 2−h = 1− (1− 2−h)n.

Aplicando o lema A.2 obtemos

E[d∗] =
∑
h≥0

P(d∗ > k) =
∑
h≥0

1− (1− 2−k)n ≤
∑
h≥0

1− (1− 2−kn) = 2k

(a última estimativa segue pela desigualdade de Bernoulli A.1).
Seja agora dS a variável aleatória do SOV com k partículas. Temos
P(dS > h) = (1− 2−k)h e logo

E[dS] =
∑
h≥0

P(dS > h) =
∑
h≥0

(1− 2−k)h = 2k.

Logo a profundidade esperada do SOV é exponencialmente maior
que a profundidade de um número equivalente de explorações com
uma partícula neste exemplo. De fato, temos:

Teorema 2.4 (Aldous e Vazirani (1994))
Para uma árvore com profundidade D, sejam Vi os vértices na pro-
fundidade i e seja p(v) a probabilidade de visitar vértice v numa
caminhada aleatória da raiz na direção das folhas para uma dada
distribuição de probabilidade p(u | v) entre os filhos u de cada vér-
tice interno v. Define κ = max0≤i<j≤D κi,j com

κi,j = P(d ≥ i)/ P(d ≥ j)2
∑
v∈Vi

p(v)P(d ≥ j | v)2.

Então, SOV com B = κDO(1) partículas falha de chegar na profun-
didade D com probabilidade no máximo 1/4.

O valor κ meda a dificuldade de superar os D níveis. No exemplo
da figura 2.6 temos κ = 2 (para uma profundidade máxima fixa D).

· · ·

Figura 2.6.: Exemplo de uma árvore em
que segue os vencedores é exponencial-
mente mais eficiente que uma estratégia
de múltiplos inícios.
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2.2. Buscas locais monótonas

2.2.2. Complexidade

A solução ótima de um problema de otimização também é um mí-
nimo local para qualquer vizinhança. Para problemas em PO pode-
mos encontrar um mínimo global (e local) em tempo polinomial. Po-
rém o exemplo do método Simplex mostra que mesmo em casos em
que podemos encontrar um mínimo local em tempo polinomial, isso
não precisa ser por uma busca local monótona. Logo, temos o pro-
blema de analisar a complexidade de uma busca local, o problema
de encontrar um mínimo local de qualquer forma, e o problema de
encontrar o mínimo local que a busca local encontraria.
Para calcular um mínimo local por uma busca local monótona, cla-
ramente pelo menos a vizinhança tem que ser analisável em tempo
polinomial. A classe de complexidade PLS captura essa ideia.

Definição 2.3 (Johnson et al. (1988))
O problema de busca local é encontrar um mínimo local de um pro-
blema otimização Π com P polinomialmente limitada, dado uma
vizinhança N (escrito Π/N).
Um problema de busca local pertence à classe de complexidade PLS
caso existem algoritmos polinomiais I, V , N tal que

i) I(x) decide se x é uma instância válida e caso sim produz uma
solução (inicial);

ii) V(x, s) decide se é uma solução válida da instância x, e caso
sim, calcula ϕ(x, s);

iii) N(x, s) verifica se s é um mínimo local, e caso contrário produz
uma solução vizinha s ′ ∈ N(s) estritamente melhor, i.e. ϕ(s ′) <
ϕ(s).

A busca local padrão repetidamente aplica a vizinhança N(x, s) até
chegar num mínimo local. Com isso podemos definir três problemas
concretos.

Problema de busca local padrão

Entrada Um problema em PLS.

Problema Qual a complexidade pessimista da busca local pa-
drão em número de passos sobre todas soluções iniciais
em função do tamanho do problema?

Problema de busca local

Entrada Um problema em PLS.

Problema Encontra um mínimo local.

Observações O mínimo local pode ser encontrado com qual-
quer algoritmo, não necessariamente por busca local. Nota
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2. Busca por modificação de soluções

também que a questão é independente da função I(x).

Problema de encontrar o mínimo local padrão

Entrada Um problema em PLS, uma solução inicial so.

Problema Encontra o mínimo local que a busca local padrão a
partir da solução s0 encontraria.

Teorema 2.5
FP ⊆ PLS ⊆ FNP.

Prova. Supõe que temos um problema em FP com algoritmo A.
Então existe Π/N tal que os mínimos local correspondem com as
soluções de uma instância: podemos escolher S(x) = {y | (x,y) ∈ P },
ϕ(x, s) = 0 eN(x, s) = {s}. O algoritmo I é o algoritmo A, o algoritmo
V decide (x,y) ∈ P em tempo polinomial e o algoritmo N sempre
retorna “falso”.
Caso temos um problema Π/N ∈ PLS, então o problema de en-
contrar um mínimo local pertence a FNP: as soluções são limitadas
polinomialmente, e podemos usar o algoritmo N para reconhecer
soluções. �
Logo, a questão PLS ⊆ FP é “podemos encontrar mínimos locais em
tempo polinomial?”.
Para relacionar problemas de busca local serve a seguinte noção de
redução.

Definição 2.4 (Redução PLS)
Uma problema de busca local Π1/N1 é PLS-redutível a um problema
de busca local Π2/N2 caso existem algoritmo polinomiais S, T tal
que:

• Podemos transformar instâncias de Π1/N1 para Π2/N2: Para
x1 ∈ I1, S(x1) ∈ I2.

• Podemos transformar soluções de Π2/N2 para soluções de Π1/N1:
Para s2 ∈ S(x2), T(s2, x1) ∈ S(x1).

• Os mínimos locais correspondem: Para um mínimo local s2 ∈
S(x2) de Π2/N2, T(s2, x1) é um mínimo local de Π1/N1.

Com isso obtemos a noção normal de completude. Em particular as
reduções são transitivas (ver exercício 2.2).

Definição 2.5 (PLS-completo)
Um problema Π/N em PLS é PLS-completo caso todo problema em
PLS é PLS-redutível a Π/N.

Considera o problema Circuit/1-flip: Dado um circuito booleano (so-
bre ∧,∨,¬, por exemplo) com n entradas e m saídas encontra um
mínimo local partindo da entrada 1n para a função objetivo que trata
as saídas como número binário de m bits.
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2.3. Buscas locais não-monótonas

Teorema 2.6 (Completude de Circuit/1-flip)
Circuit/1-flip é PLS-completo.

Prova. Ver por exemplo Yannakakis (2003).
�

Teorema 2.7
PCV/k-opt é PLS-completo para alguma constante k.

Fato 2.1
Os problemas MaxCut/Flip e Graph-partitioning/Swap são PLS-completos.
Para os problemas PCV/k-opt, MaxCut/Flip e Graph-partitioning/Swap
a busca local padrão precisa no caso pessimista um número expo-
nencial de passos para encontrar um mínimo local. Para os mesmos
problemas, o problema de encontrar um mínimo local específico é
PSPACE-complete.

2.2.3. Notas

Uma boa introdução à busca local encontra-se em Kleinberg e Tardos
(2005, cáp. 12) ou Papadimitriou e Steiglitz (1982, cáp. 10). A última
referência tem mais material sobre a conexão entre busca local e a
busca na vizinhança definida por um politopo. Michiels et al. (2007)
apresentam aspectos teoricos da busca local. Em particular o cáp. 5
dessa referência apresenta mais detalhes sobre o PCV métrico e Eu-
clidiano. Neumann e Wegener (2006) analisam mais profundamente
o desempenho de uma busca local randomizada no problema da ár-
vore geradora mínima. Um exemplo em que a busca local é melhor
que outras abordagens é o problema métrico das k-medianas (ver
por exemplo Korte e Vygen (2008, cáp. 22). Dimitriou e Impagliazzo
(1996) propõem uma variante do algoritmo SOV que distribui as so-
luções de acordo com o número de vizinhos melhores. Yannakakis
(2009) mostra conexões entre busca local e jogos, Knust (1997) entre
busca local e problemas de escalonamento.

2.3. Buscas locais não-monótonas

Uma busca local não-monótona permite piorar a solução atual.

Algoritmo 2.4 (S-LocalSearch)
Entrada Solução inicial s, distribuição Ps

Saída Uma solução com valor no máximo ϕ(s).

S-LocalSearch(s)=
s∗ := s
repeat

seleciona s ′ ∈ N̂(s) de acordo com P̂s
if aceitável(s, s ′) then s := s ′

if ϕ(s) < ϕ(s∗) then s∗ := s
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until critério de parada satisfeito
return s∗

end

No que segue usaremos ∆(s, s ′) = ϕ(s ′) −ϕ(s). A tabela 2.1 mostra
um resumo de estratégias de seleção e aceitação dos métodos discu-
tidos abaixa.

2.3.1. Critérios de parada

Em buscas locais não-monótonas temos que definir um critério de
parada (ingl. stopping criterion). Exemplos incluem um número má-
ximo de iterações ou um tempo máximo. Ambos são usados fre-
quentemente, por serem simples, e por permitirem comparações da
qualidade obtida com os mesmos recursos por métodos diferentes.
Porém, eles potencialmente gastem tempo demais em instâncias em
que uma boa solução foi encontrada cedo na busca, e provavelmente
gastem tempo de menos em instâncias maiores que foram conside-
radas na definição dos critérios: um bom método precisa ajustar a
tempo investido em função do tamanho do problema.
Critérios de parada dinâmicos resolvem estes problemas. Exemplos
são: (i) A solução encontrada possui um desvio relativo fixo de al-
gum limite inferior do problema. Este método fornece inclusive uma
garantia da qualidade da solução. (ii) Podemos determinar empiri-
camente, que a probabilidade de melhorar a solução incumbente é
baixa. O critério mais simples desse tipo é parar caso o método não
faz progresso por um número de iterações ou um tempo fixo. Em
função do método critérios mais rigorosos são possíveis (por exem-
plo por métodos estatísticos em métodos de múltiplos inícios, ver
cap. 3.2).

Exemplo 2.12 (Desvio relativo limitado)
O limitante de Held-Karp (ingl. Held-Karp bound) HK para o PCV é o
valor do programa linear

minimiza
∑
e∈E

cexe

sujeito a x(δ(S)) ≥ 2 para ∅ 6= S 6= V
x(δ(v)) = 2 para v ∈ V
0 ≤ xe ≤ 1 para e ∈ E.

e pode ser obtido eficientemente na prática. (Aqui δ é o conjunto de
arestas na fronteira do conjunto S e x o valor total deles.) No caso
métrico o valor de HK não é menos que 2/3 do valor ótimo (Wolsey
1980). Logo, parando com um valor menos que αHK, para um α >
3/2 temos uma α-aproximação da solução ótima. ♦
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Tabela 2.1.: Estratégias de busca local. A função W(t) representa diferentes limites de aceitação (seção 2.3.2).

Nome Estratégia de seleção Estratégia de aceitação

Aceitação por limite Cam. aleatória ∆(s, s ′) < W(t)
Grande dilúvio Cam. aleatória ϕ(s ′) < W(t)
Recorde para recorde Cam. aleatória ∆(s∗, s ′) < W(t)
Algoritmo demônio Cam. aleatória ∆(s, s ′) < W(t)
Aceitação atrasada Cam. aleatória ∆(s, s ′) < 0∨∆(s ′, s−k) < 0
BLMR De acordo com (2.2) Com prob. 1.
Têmpera simulada Cam. aleatória Com prob. min{e−∆(s,s ′)/T(t), 1}
Busca Tabu Unif. em N(s) \ L(t) Com prob. 1.

2.3.2. Aceitação por limite e variantes

Entre os métodos não-monótonos mais simples estão estratégias de
aceitação por limite. Eles aceitam uma solução pior, dado que o
valor da solução não ultrapassa um certo limite. Eles foram intro-
duzidos como variantes determinísticos da têmpera simulada. A
definição concreta do limite difere entre as estratégias de aceitação
por limite (ingl. threshold accepting) (Dueck e Scheuer 1990), o grande
dilúvio (ingl. great deluge) (Dueck 1993), viagem de recorde para re-
corde (ing. record-to-record-travel), aceitação atrasada (ingl. late accep-
tance) Burke e Bykov 2012, e algoritmo demônio (ingl. demon algo-
rithm (Creutz 1983).
A tabela 2.1 mostra as estratégias de forma resumida. Na tabela,
∆(s, s ′) = ϕ(s ′) −ϕ(s) e W(t) é um limite que varia com o tempo
como segue:

Aceitação por limite W(t+ 1) = W(t) − δ caso o algoritmo não faz
progresso.

Grande dilúvio W(t+ 1) =W(t) − δ em cada aceitação de um movi-
mento. Dueck (1993) sugere que δ seja “um pouco menos que
1% do valor médio de ∆(s,W(t))”.

Recorde para recorde W(t) =W = const.

Algoritmo demônio Nesse tipo de algoritmo, o demônio é um ban-
queiro: W(t+ 1) = W(t) −∆(s, s ′). Variantes incluem demônios
limitados (W(t+ 1) = min{W(t) − ∆(s, s ′),Wmax}), com inflação
(a “conta” do demônio diminiu com o tempo), ou com valor
aleatória (W(t) representa a média de uma variável com distri-
buição Gaussiana e desvio padrão fixo).

Outras formas da variação do limite são possíveis, e de fato, a seleção
dos W(t) é um problema em aberto (Aarts e Lenstra 2003).

2.3.3. Buscas locais estocásticas

Em buscas estocásticas o critério de aceitação é probabilístico e geral-
mente tal que soluções de melhor valor possuam uma probabilidade

33



2. Busca por modificação de soluções

maior de serem aceitos.

Busca local monótona randomizada (BLMR)

Uma das buscas locais estocásticas mais simples, a busca local monó-
tona randomizada (ingl. randomised iterative improvement) seleciona
com probabilidade p um vizinho arbitrário, e com 1− p um vizinho
melhor, i.e.

Ps(s
′) =

{
p/|N(s)|+ (1− p)/|B(s)| caso s ′ ∈ B(s)
p/|N(s)| caso s ′ ∈ N(s) \B(s)

. (2.2)

A probabilidade de encontrar a solução ótima para uma vizinhança
conectada com uma busca local monótona randomizada converge
para 1 com um número de passos crescente (Hoos e Stützle 2004,
p. 155).

Observação 2.3
A BLMR é PAC (probabilistically approximately complete).
Para uma busca, seja P(t) a probabilidade de encontrar uma solução
ótima com t passos. A busca é chamada PAC, caso limt→∞ P(t) = 1.
Um critério suficiente para uma busca ser PAC é

Lema 2.4
Caso existe um ε > 0 tal que a distância (número mínimo de passos)
para alguma solução ótima fixa s∗ diminui com probabilidade pelo
menos ε então a busca é PAC.

Prova. Caso a distância de s∗ é l, a probabilidade de chegar em s∗

é pelo menos εl. Para um espaço de busca com diâmetro ∆ temos
l ≤ ∆ e logo uma probabilidade pε∆ > 0 de chegar em s∗ a partir de
qualquer solução. Agora considera uma trajetória de comprimento
t > ∆. Em cada segmento de comprimento ∆ temos uma probabili-
dade p > 0 de chegar em s∗. Então a probabilidade não chegar em
s∗ é no máximo (1− ε∆)bt/∆c → 0 para t→∞. � ♦

Algoritmo de Metropolis

O critério de aceitação de Metropolis (Metropolis et al. 1953) é

P(aceitar s ′ | s) =

{
1, caso ∆(s, s ′) < 0,
e−∆(s,s ′)/kT , caso contrário.

(2.3)

(O critério foi introduzido para a simulação da evolução de um só-
lido para o equilíbrio térmico, e por isso inclui a constante de Boltz-
mann k. No contexto de otimização ela tipicamente é ignorada,
i.e. k = 1.) Uma busca local estocástica com temperatura fixa é co-
nhecida como algoritmo de Metropolis. Para um T →∞ o algoritmo se
aproxima a uma caminhada aleatória, para T → 0 a uma busca local
monótona.
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Têmpera simulada

A têmpera simulada (ingl. Simulated Annealing) foi proposto por Cerny
(1985) e Kirkpatrick et al. (1983). Ela varia a temperatura do algo-
ritmo de Metropolis de acordo com uma programação de resfria-
mento (ingl. cooling schedule). O motivo é que a temperatura ideal
depende da escala da função objetivo e geralmente também da ins-
tância.
Um aspecto teoricamente interessante da têmpera simulada é que ela
converge para a solução ótima para certos programações de resfria-
mento. Define a profundidade d(s) de um mínimo local s como menor
valor tal que uma solução de valor menor que ϕ(s) é alcançável a
partir de s via soluções de valor no máximo ϕ(s) + d(s). Com isso
temos

Teorema 2.8 (Hajek (1988))
Para uma constante Γ e T(t) = Γ/ log(t + 2) a têmpera simulada
converge assintoticamente para uma solução ótima sse a vizinhança
é conectada, simétrica, e Γ ≥ D, sendo D a profundidade máxima de
um mínimo local.

Uma heurística concreta usando têmpera simulada precisa definir
uma temperatura inicial, o número de iterações com temperatura cons-
tante ingl. temperature length, uma programação de resfriamento, e
um critério de parada.
A temperatura inicial e o número de iterações por temperatura de-
pendem fortemente da instância e por isso devem ser calibrados di-
namicamente. Para a temperatura inicial, uma técnica é gerar uma
série de soluções aleatórias e definir a temperatura inicial tal que
T = ∆(smin, smax) em que smin e smax são as soluções de menor e
maior valor encontradas. Uma outra técnica é incrementar uma tem-
peratura baixa inicial, até uma percentagem desejada de movimentos
(tipicamente > 90%) é aceito.
O número de iterações por temperatura tipicamente deve ser propor-
cional ao tamanho da vizinhança para obter bons resultados (John-
son et al. 1989). Uma outra abordagem para garantir um progresso
por temperatura, e manter ela constante até um número mínimo de
movimentos foi aceito, mas não mais que um limite superior de ite-
rações, para evitar um custo alto para temperaturas baixas.
A programação de resfriamento mais comum é geométrica, em que
T(t) = T0αt com α ∈ (0, 1). Um valor típico é α ∈ [0.8, 0.99]. John-
son et al. (1989) concluem experimentalmente que não há razão para
usar outras programações de resfriamento (como p.ex. linear, ou lo-
garítmico).
Como critério de terminação podemos usar uma temperatura final,
por exemplo. Um critério adaptativo, que detecta o “domínio” da
busca local é ainda melhor. Johnson et al. (1989) propõem, por
exemplo, usar uma percentagem mínima de movimentos que pio-
ram: caso menos movimentos são aceitos em mais que um número
fixo de níveis de temperatura, sem melhorar a melhor solução encon-
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trada, o método termina. Como o método é estocástico, é indicado
aplicar uma busca local depois.

Observação 2.4 (Johnson et al. (1989))
Experimentalmente, parece que

• A têmpera simulada precisa um tempo longo para obter resul-
tados de boa qualidade.

• Tempo gasto no início e no final (domínio de caminhada alea-
tório e busca local) tipicamente é pouco efetivo.

• Uma execução mais longa da têmpera simulada tende a pro-
duzir melhores resultados que diversas repetições mais curtas.
Isso provavelmente se aplica também para o “reheating”.

♦

2.3.4. Otimização extremal

Otimização extremal (ingl. extremal optimization) (Boettcher e Per-
cus 2003) supõe que uma solução s é representada por variáveis
(x1, . . . , xn) (ver seção 1.2) e que cada variável contribui linearmente
à função objetivo com um valor λi(s), i.e. ϕ(s) =

∑
i∈[n] λi(s). A

vizinhança na busca local é restrita para vizinhos que alteram o va-
lor uma determinada variável, a variável extrema. A probabilidade de
uma variável ser a variável extrema é proporcional à sua contribuição
λi(xi) na função objetivo.

Algoritmo 2.5 (EO)
Entrada Solução inicial s.

Saída Uma solução com valor no máximo ϕ(s).

EO(s)=
s∗ := s
repeat

seja s = (x1, . . . , xn) com λ1(s) ≥ · · · ≥ λn(s)
seleciona i ∈ [n] com probabilidade ∝ i−τ

seleciona s ′ ∈ N(s) tal que xi muda o valor
s := s ′

atualiza s∗

until critério de parada satisfeito
return s∗

Boettcher e Percus (2003) propõem τ = 1+Θ(1/ lnn).

2.3.5. Busca local guiada

A busca local guidada (ingl. guided local search) penaliza elementos
indesejáveis na solução, similar a otimização extremal, mas por mo-
dificar a função objetivo. Supõe uma representação por conjuntos e
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uma função λu(s) que define o custo do elemento u ∈ U. (Diferente
da otimização extremal este custo não precisa entrar diretamente na
função objetivo.) Além disso, para cada elemento u ∈ U, pu é o nú-
mero de vezes o elemento foi penalizado. A busca local guiada usa
a função objetivo

ϕ ′(s) = ϕ(s) +
∑
u∈s

pu.

Em cada mínimo local o método penaliza os elementos com uma
utilidade de penalização

P(s,u) =

{
λu(s)/(1+ pu) caso u ∈ s
0 caso contrário

máxima (i.e. aumenta o pu correspondente por 1) e continua com a
busca. Note que a busca local guiada define somente uma estratégia
de penalizar soluções, e pode ser aplicado com qualquer forma de
busca local.

2.3.6. Busca tabu

A ideia central da busca tabu é usar memoria adaptativa para guiar
uma busca local. Na forma proposta inicialmente por Glover (1986)
ela aplica a estratégia “melhor melhora” enquanto B(s) 6= ∅, e per-
mite soluções piores caso contrário. Uma memoria de curta duração
(ingl. short-term memory, ou recency-based memory) serve para ex-
cluir soluções candidatas (declará-las “tabu”) da vizinhança com o
objetivo de evitar ciclagem. A busca tabu demonstrou a sua utili-
dade em várias aplicações, porém existe pouca fundamentação teó-
rica: não existe prova de convergência para a otimalidade, por exem-
plo.
Uma busca tabu probabilística relaxa a estratégia “melhor melhora”
para uma busca por amostragem. Isso pode ser indicado em vizi-
nhanças grandes e reduz a probabilidade de ciclagem. Além disso,
existem resultados teóricos que mostram a convergência nesse caso
(e.g. Faigle e Schrader (1992)).
O algoritmo 2.6 mostra uma busca local estocástica com memoria
genérica.

Algoritmo 2.6 (S-LocalSearchMemory)
Entrada Solução inicial s0, distribuição Ps

Saída Uma solução com valor no máximo ϕ(s).

S-LocalSearch(s)=
inicializa a memoria M
s∗ := s
repeat
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seleciona s ′ ∈ N̂(s) de acordo com P̂s,M

if aceitável(s ′,M) then s := s ′

atualiza a memoria M
if ϕ(s) < ϕ(s∗) then s∗ := s

until critério de parada satisfeito
return s∗

end

A busca tabu básica define Ps,M(s ′) = 1/|B∗(s)| para s ′ ∈ B∗(s) com
B∗(s) = {s ′ ∈ N(s) \ L(s,M) | ϕ(s ′) = mins ′′∈N(s)\L(s,M)ϕ(s

′′)} e
sempre aceita a nova solução s ′. Neste caso a lista de soluções tabu
L(s,M) resulta (da parte da memoria de curta duração) de M.
A memoria de curta duração mais usada guarda atributos removidos
ou inseridos em soluções e trata uma solução que inclui um atributo
removido ou exclui um atributo inserido recentemente como “tabu”.
Na representação por conjuntos (ver cap. 1.2) sejam iu e ru o último
tempo em que o elemento u ∈ U foi inserido e removido da solução.
Para uma duração tabu (ingl. tabu tenure) fixa d, a regra tabu define
um vizinho s ′ de s tabu no tempo t caso

t ≤ max{ru + d | u ∈ s ′ \ s} (2.4)

t ≤ max{iu + d | u ∈ s \ s ′}. (2.5)

Aqui a primeira restrição proíbe introduzir elementos removidos em
menos tempo que d, e a segunda remover elementos introduzidos em
menos tempo que d. Uma boa duração tabu depende do tamanho
da instância e um intervalo adequado [dmin(n),dmax(n)] e tem que
ser determinado experimentalmente (Glover e Laguna 1997). Valores
mais baixos tendem intensificar a busca, mas resultam em ciclagem
no limite, e valores altos tendem a diversificar a busca, mas resultam
numa qualidade reduzida no limite.

Observação 2.5 (Implementar uma memoria de curta duração)
Uma implementação de r e u com vetores na estratégia acima acima
permite um teste tabu em tempo linear no tamanho da modifica-
ção s⊕ s ′, que frequentemente é O(1). Caso |U| é grande demais, é
melhor usar tabelas hash. ♦

A regra tabu básica permite diversas variações. Entre os mais co-
muns são

• Considerar um vizinho como tabu somente se ambas condições
(2.4) e (2.5) são satisfeitas.

• Considerar somente atributos alterados: com au o tempo da
última alteração (inserção ou remoção), o critério tabu é sim-
plificado para

t ≤ max{au + d | u ∈ s ′ ⊕ s}.
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• Usar uma duração tabu diferente em (2.4) e (2.5): quanto mais
a proibição de um atributo restringe a solução, quanto menor
deve ser a duração tabu (Glover e Laguna 1997).

• Usar uma duração tabu dinâmica, por exemplo um valor ale-
atório em [dmin(n),dmax(n)] ou uma sequencia fixa (e.g. um
múltiplo adequado do prefixo do ruler function (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, . . .,
(A001511)); Galinier et al. (2011) é um exemplo de uma aborda-
gem estado de arte que aplica isso.)

• Declarar diferentes aspectos de um problema tabu, ou usar
mais que uma lista tabu.

• Tratar um tabu como penalidade: um atributo tabu u não é
proibido, mas penalizado por t− (au + d).

Exemplo 2.13 (PCV)
Na representação do PCV por conjuntos usando 2-exchange arestas
removidas ou inseridas se tornam tabu. Considerando critério (2.4)
e (2.5) proíbe desfazer o 2-exchange por d iterações. Um exemplo
de um aspecto diferente é declarar todas arestas incidentes com as
cidades do último 2-exchange tabu. ♦

Uma consequência de uma memoria de curta duração é um critério
de aspiração (ingl. aspiration criterion). A exclusão de atributos exclui
não somente solução já visitadas, mas também pode excluir soluções
ainda não visitadas, inclusive soluções com melhores características
ou valores da função objetivo. Para contornar este problema, um
critério de aspiração define exceções da regra tabu. Na forma mais
simples ele permite aceitar um vizinho que melhora a solução in-
cumbente. Um critério de aspiração pode também permitir escolher
o vizinho “menos tabu” caso não existe vizinho não-tabu (“aspira-
tion by default”). Esta condição pode servir alternativamente como
critério de parada, além dos critérios genéricos (cap. 2.3.1).

Intensificação e diversificação Para melhorar a solução pode ser
útil intensificar a busca perto de soluções de boa qualidade. Isso
pode ser alcançado reduzindo o tamanho da lista tabu, fixando par-
tes dos atributos para um determinado tempo, ou aplicando outras
formas de buscas (e.g. um solver exato).
Em outras fases é necessário diversificar a busca, i.e. conduzi-la para
novas soluções.

Memoria de longa duração Uma memoria de longa duração pode
ser usada para guiar a busca mais efetivamente, e para intensicá-
ou diversificá-la. A memoria pode guardar soluções de boa qua-
lidade ou informações estatísticas. Mais comum para as últimas
são frequências de pertinência em soluções (recentemente ou global-
mente) e frequências de alteração de status de atributos. Por exem-
plo, para intensificar a busca podemos fixar elementos que recente-
mente pertenceram a soluções com alta frequência e aplicar um dos
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métodos acima (“restarting”). Para diversificar podemos incentivar
incluir elementos que globalmente foram usados com baixa frequên-
cia, por exemplo incluindo um termo γfu na função objetivo para um
movimento que inclui elemento u, que já foi incluído com frequência
fu, onde γ é um parâmetro que depende do domínio função objetivo.
As observações sobre intensificação e diversificação e os diferentes
tipos de memoria motivam

Princípio de projeto 2.5
Identifica os elementos de intensificação e diversificação da heurís-
tica. Procure encontrar um equilíbrio entre os dois princípios. Em
particular, considere formas de memoria de longa duração para me-
lhorar o desempenho da heurística.

2.4. Buscas locais avançadas

2.4.1. Busca local iterada

A busca local iterada (ingl. iterated local search) pode ser vista como
uma busca local no espaço de mínimos locais de um problema (ver
figura 2.7).

s

ϕ(s)

Figura 2.7.: Espaço de soluções (azul) e
de mínimos locais (vermelho).

Definição 2.6
O basin de atração B(s∗) associado a um mínimo local s∗ e o conjunto
de soluções s tal que uma dada busca local iniciada em s termina em
s∗.

Logo, para passar de um mínimo local para outro, temos que al-
terar a solução atual suficientemente para obter uma solução nova
que pertence a um basin de atração vizinho. Para isso, a busca local
iterada perturba a solução atual e aplica a busca local na solução per-
turbada, para obter um outro mínimo local. A forma específica da
perturbação define a vizinhança entre os mínimos locais e a probabi-
lidade de transição. O critério de aceitação pode ser um dos critérios
usados em uma busca não-monótona (e.g. o critério de aceitação de
Metropolis).
Para perturbar o mínimo local atual podemos, por exemplo, cami-
nhar aleatoriamente para um número de iterações, ou escolher um
movimento aleatório numa vizinhança grande. Idealmente a per-
turbação é na ordem de grandeza do diâmetro do basin da solu-
ção atual: perturbações menores levam ao mesmo mínimo local, en-
quanto perturbações maiores se aproximam a uma caminhada alea-
tória no espaço de mínimos locais.

2.4.2. Busca local com vizinhança variável

Os métodos usando k vizinhanças N1, . . . ,Nk sempre voltam a usar
a primeira vizinhança, caso um movimento melhora a solução atual.
Caso contrário eles passam para próxima vizinhança. Isso é o movi-
mento básico:
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Algoritmo 2.7 (Movimento)
Entrada Solução atual s, nova solução s ′, vizinhança atual k.

Saída Uma nova solução s e uma nova vizinhança k.

Movimento(s,s ′,k)=
if ϕ(s ′) < ϕ(s) then
s := s ′

k := 1
else
k := k+ 1

end if
return (s,k)

Com isso podemos definir uma estratégia simples, chamada Variable
Neighborhood Descent (VND).

Algoritmo 2.8 (VND)
Entrada Solução inicial s, conjunto de vizinhanças Ni, i ∈ [m].

Saída Uma solução com valor no máximo ϕ(s).

VND(s,{Ni})=
k := 1
// até chegar num mínimo local
// para todas vizinhanças
while k ≤ m

encontra o melhor vizinho s ′ em Nk(s)
(s,k) := Movimento(s, s ′,k)

end while
return s

Uma versão randomizada é o reduced variable neighborhood search.

Algoritmo 2.9 (rVNS)
Entrada Solução inicial s, conjunto de vizinhanças Ni, i ∈ [m].

Saída Uma solução com valor no máximo ϕ(s).

rVNS(s,{Ni})=
until critério de parada satisfeito
k := 1
while k ≤ m do

{ shake }
seleciona vizinho aleatório s ′ em Nk(s)
(s,k) := Movimento(s, s ′,k)

end while
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end until
return s

Uma combinação do rVNS com uma busca local é o Variable Neigh-
borhood Search (VNS) básico.

Algoritmo 2.10 (VNS)
Entrada Solução inicial s, um conjunto de vizinhanças Ni, i ∈

[m].

Saída Uma solução com valor no máximo ϕ(s).

VNS(s,{Ni})=
until critério de parada satisfeito
k := 1
while k ≤ m do

{ shake }
seleciona vizinho aleatório s ′ em Nk(s)
s ′′ := BuscaLocal(s ′)
(s,k) := Movimento(s, s ′′,k)

end until
return s

Observação 2.6
A busca local em VNS pode usar uma vizinhança diferente das vizi-
nhanças que perturbam a solução atual. Também é possível usar o
VND no lugar da busca local. ♦

2.4.3. Busca local em vizinhanças grandes

Uma vizinhança é considerada massiva (ingl. very large scale) caso
o número de vizinhos cresce exponencialmente com o tamanho da
instância (Pisinger e Ropke 2010). Uma vizinhança massiva tem uma
vantagem caso o custo maior de selecionar um vizinho é compen-
sado pela qualidade das soluções. Em particular, isso é possível caso
a vizinhança pode ser analisada em tempo polinomial apesar do seu
tamanho exponencial, e.g. por resolver um problema de caminhos
mais curtos, fluxo máximo ou emparelhamento.

Algoritmo 2.11 (LNS)
Entrada Um problema na representação por variáveis. Uma so-

lução inicial s.

Saída A melhor solução encontrada.

LNS(s)=
repeat

seleciona I ′ ⊆ U
fixa I \ I ′
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s ′ := search(s, I ′)
if aceitável(s ′) then s := s ′

until critério de parada satisfeito
return s∗

end

A busca no subespaço definido pelas variáveis I ′ frequentemente
é realizada por destruição e reconstrução (ver Seção 3.3.1 e Shaw
(1998)). Carchrae e Beck (2009) recomendam selecionar I ′ tal que
contém as variáveis que contribuem mais para a função objetivo, e
aumentar a cardinalidade de I ′ ao longo da busca.

2.4.4. Detecção de estagnação genérica

Watson et al. (2006) propõem um mecanismo explicito e genérico
para detecção de estagnação. Supõe que temos uma heurística H
arbitrária, e seja NH(s) a próxima solução visitada por H dado a
solução atual s. O CMF (Core methaheuristics framework) adiciona
a essa heurística uma detecção explicita de estagnação.

Algoritmo 2.12 (CMF)
Entrada Uma instância de um problema, uma solução inicial

s, uma distância mínima dmin, distâncias L0 e ∆L e um
número de iterações ttest.

Saída A melhor solução encontrada.

CMF(s)=
st := s
cada ttest iterações:

if d(s, st) < dmin then
if escaping then
L := L+∆L

else
L := L0

st := s
s := randomWalk(s,L)
escaping := true

else
st := s
escaping := false

end if
s := NH(s)

end
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2.4.5. Notas

O livro de Hoos e Stützle (2004) é uma excelente referência para área
de busca local estocástica. Os artigos Dueck e Scheuer (1990) e Dueck
(1993) que propõem aceitação por limite, o grande dilúvio e viagem
de recorde para recorde são bem acessíveis. Talbi (2009) apresenta
um bom resumo desses métodos que inclui o algoritmo demônio. A
referência definitiva para a busca tabu ainda é o livro de Glover e
Laguna (1997), uma boa introdução é Hertz et al. (2003).

2.5. Exercícios

Exercício 2.1
A vizinhança 2-flip para o k-SAT é simétrico? Fracamente otima-
mente conectada? Exata? E a vizinhança k-flip para k > 2?

Exercício 2.2
Mostra que reduções PLS são transitivas.
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3.1. Construção simples

3.1.1. Algoritmos gulosos

Definição 3.1 (Sistemas de conjuntos)
Um sistema de conjuntos é um par (U,V) de um universo U de ele-
mentos e uma coleção V de subconjuntos deU. Caso para cada S ∈ V
existe um u ∈ U tal que S \ {u} ∈ V o sistema de conjuntos é acessível.
Caso V é fechado sobre inclusão (i.e. caso S ′ ⊆ S para um S ∈ V
então S ′ ∈ V) o sistema é independente e o seus elementos se chamam
conjuntos independentes.

Definição 3.2 (Matroides e greedoides)
Um sistema de conjuntos satisfaz a propriedade de troca, caso para
todos S, T ∈ V com |S| > |T | existe um u ∈ S \ T tal que T ∪ {u} ∈
V . Um greedoide é um sistema de conjuntos acessível que satisfaz
a propriedade de troca. Um matroide é um sistema de conjuntos
independente que satisfaz a propriedade de troca.

Definição 3.3 (Problema de otimização de um sistema de conjuntos)
Para um sistema de conjuntos (U,V) com pesos wu ∈ R+ para
u ∈ U, o problema correspondente de otimização é encontrar um sub-
conjunto independente de maior peso total.

Observação 3.1
Na prática o conjunto V é especificado por um algoritmo que decide,
para cada S ⊆ U se S ∈ V . ♦

Exemplo 3.1
Muitos problemas de otimização podem ser formulados como siste-
mas de conjuntos, por exemplo o PCV (com arestas U, e V subcon-
juntos de complementos circuitos Hamiltonianos), o problema do
conjunto máximo independente (com vértices U e V os conjuntos in-
dependentes do grafo), o problema do caminho s-t mais curto (com
arestas U e V subconjuntos de complementos de caminhos s-t), ou o
problema da mochila (com itens U, e V os subconjuntos de itens que
cabem na mochila). ♦

Um algoritmo guloso constrói iterativamente uma solução válida de
um sistema de conjuntos acessível.

Algoritmo 3.1 (Algoritmo guloso)
Entrada Um sistema de conjuntos (U,V).

Saída Uma solução S ∈ V .
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3. Busca por construção de soluções

Guluso ()=
S := ∅
while U 6= ∅ do

seleciona u ∈ U com wu maximal
U := U \ {u}
if S∪ {u} ∈ V then
S := S∪ {u}

end if
end while
return S

end

Exemplo 3.2 (List scheduling)
Considere o problema P || Cmax. Uma estratégia gulosa simples é
processar as tarefas em uma dada ordem, e alocar a tarefa atual
sempre à máquina de menor tempo de término atual. Isso é uma
2-aproximação. ♦

Teorema 3.1 (Edmonds-Rado)
O algoritmo guloso resolve o problema correspondente do sistema
de conjuntos independente S = (U,V) se e somente se S é um ma-
troide.

Prova. Supõe S é um matroide. Pela propriedade de troca, todos
conjuntos independentes maximais possuem a mesma cardinalidade.
Supõe que o algoritmo guloso produz uma solução S = {s1, . . . , sn},
mas a solução ótima S∗ = {s ′1, . . . , s ′n} satisfaz w(S) < w(S∗). Sem
perda de generalidade wsi ≥ wsi+1 e ws ′i ≥ ws ′i+1 para 1 ≤ i < n.
Provaremos por indução que (*) wsi ≥ ws ′i

, uma contradição com
w(S) < w(S∗). Para i = 1 (*) é correto pela escolha do algoritmo
guloso. Para um i > 1 supõe wsi < ws ′i

. Pela propriedade de
troca existe um elemento de u ∈ {s ′1, . . . , s ′i} \ {s1, . . . , si−1} tal que
{s1, . . . , si−1,u} ∈ V . Mas wsi < ws ′i ≤ wu, uma contradição com a
escolha do algoritmo guloso.
De modo oposto, supõe o algoritmo guloso resolve o problema cor-
respondente de otimização (para pesos arbitrários), mas a proprie-
dade de troca é inválida. Logo existem conjuntos S, T ∈ V , tal que
|S| = |T |+ 1 mas para nenhum u ∈ S \ T temos T ∪ {u} ∈ V . Define

wu =


|T |+ 2 para u ∈ T
|T |+ 1 para u ∈ S \ T
0 caso contrário

.

Para essa instância o algoritmo guloso começa escolher todos ele-
mentos de T . Depois ele não consegue melhorar o peso total, por-
que um elemento em S \ T não pode ser adicionado, e os restan-
tes elementos possuem peso 0. Logo o valor da solução gulosa é
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3.1. Construção simples

w(T) = |T |(|T |+ 2) < (|T |+ 1)2 ≤ w(S), em contradição com o fato
que o algoritmo guloso resolve o problema otimamente. �
Obtemos uma generalização similar com a busca local selecionando o
próximo elemento de acordo com uma distribuição de probabilidade
P sobre o universo U. Essa distribuição pode ser adaptativa, i.e. ela
depende dos elementos selecionados anteriormente.

Algoritmo 3.2 (Algoritmo guloso generalizado)
Entrada Um sistema de conjuntos (U,V).

Saída Uma solução S ∈ V .

Guluso -Generalizado ()=
S := ∅
while U 6= ∅ do

seleciona u ∈ U de acordo com P
U := U \ {u}
if S∪ {u} ∈ V then
S := S∪ {u}

end if
end while
return S

end

Seja u∗ = argmaxu{w(u)|u ∈ U} e B(U) = {u ∈ U | wu = wu∗ }. A es-
tratégia gulosa corresponde com P(u) = 1/|B(U)| para u ∈ B(u). Um
algoritmo semi-guloso relaxa este critério. Duas estratégias comuns
são:

Guloso-k Seja U = {u1, . . . ,un} com wi ≥ wi+1. Seleciona S =
{u1, . . . ,umin{k,n}} e define P(u) = 1/|S| para u ∈ S. Essa estratégia
seleciona um dos k melhores elementos.

Guloso-α Seja U = {u1, . . . ,un} com wi ≥ wi+1. Para um 0 < α ≤
1, seleciona S = {ui | wi ≥ αwn + (1− α)w1} e define P(u) = 1/|S|
para u ∈ S. Essa estratégia seleciona um entre os α% melhores
elementos.
Entre distribuições de probabilidade alternativas para o guloso-α te-
mos abordagens que usam o posto r do elemento para definir um
peso wr, e selecionam o elemento com rank r com probabilidade
wr/

∑
wr. Exemplos são

• pesos polinomiais wr = r−τ (ver 2.3.4 para uma aplicação na
otimização extremal);

• pesos lineares we = 1/r ou we = n− r;

• pesos logarítmicos we = 1/ log r+ 1; ou

• pesos exponenciais we = e−r (Bresina 1996).
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Exemplo 3.3 (Construção gulosa para o PCV)
Exemplos de construções gulosas para o PCV são

• vizinho mais próximo: escolhe uma cidade inicial aleatória, e vi-
sita sempre a cidade mais próxima não visitada ainda, até fe-
char o ciclo;

• algoritmo guloso: no matroide com U todos arcos e V subcon-
juntos de arcos de ciclos Hamiltonianos, como acima;

• o algoritmo de Clarke-Wright: define uma cidade aleatória como
centro e forma “pseudo-rotas” (2-ciclos) do centro para todos
outras cidades. Ranqueia todos pares de cidades diferente do
centro pela redução de custos (“savings”) obtido passando di-
retamente de uma cidade para outra, não visitando o centro.
Processa os pares nessa ordem, aplicando cada redução que
mantém uma coleção de pseudo-rotas, até a coleção é reduzida
para um único ciclo.

• o algoritmo de Cristofides para instâncias métricas: junta uma
árvore geradora mínima das cidades com um emparelhamento
perfeito de custo mínimo entre os vértices de grau impar da
árvore, encontre um caminho Euleriano nesse grafo, e torná-lo
um ciclo pulando cidades repetidas.

♦

3.1.2. Algoritmos de prioridade

Supõe uma representação de uma solução por variáveis. Uma so-
lução parcial é um atribuição com variáveis livres, i.e. variáveis que
ainda não receberam valores. Algoritmos de prioridade processam as
variáveis em I em alguma ordem definida por uma função de orde-
namento o que retorna um sequencia das variáveis livres. A variável
atual recebe um valor em V de acordo com uma função de mapeamento
f. Caso o depende somente da instância obtemos um algoritmo de pri-
oridade fixa; caso a ordem depende também da atual solução parcial
obtemos um algoritmo de prioridade adaptativa.

Algoritmo 3.3 (Algoritmo de prioridade)
Entrada Uma instância I ⊆ U, uma função de ordenamento o e

uma função de mapeamento f.

Saída Uma solução S, i.e. um atribuição de valores em V aos
elementos em I.

Prioridade ()=
S := ∅
while I 6= ∅ do

seja o(I,S) = (x1, . . . , xk)
S := S∪ {x1 7→ f(S, x1)}
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I := I \ {x1}
end while
return S

Observação 3.2
Um algoritmo de prioridade pode ser relaxado, da mesma forma que
algoritmos gulosos, por selecionar a nova variável a ser fixada entre
as α% ou as k variáveis de maior prioridade. ♦

Exemplo 3.4 (Coloração de grafos)
Com a representação do exemplo 1.3 obtemos um algoritmo de pri-
oridade fixa ordenando os vértices por grau não-crescente e usando
uma função de mapeamento que atribui a menor cor livre ao vértice
atual. Obtemos uma variante adaptativa ordenando os vértices ainda
não coloridos por grau não-crescente com respeito a outros vértices
não coloridos, com a mesma função de mapeamento. ♦

Exemplo 3.5 (Empacotamento bidimensional)
No problema de empacotamento bidimensional (ingl. 2D strip packing)
temos n caixas de dimensões li × ci. O objetivo é empacotar as cai-
xas numa faixa de largura L sem sobreposição, paralelo com os eixos,
e sem rotacioná-los, tal que o comprimento total ocupado é minimi-
zado. Um algoritmo de prioridade ordena as caixas por altura, lar-
gura, circunferência, ou área não-crescente, e aloca a caixa atual na
posição mais para baixo e mais para esquerda possível (“bottom left
heuristic”). ♦

3.1.3. Busca por raio

A busca por raio (ingl. beam search) mantém k soluções parciais (k é
chamada a largura do raio (ingl. beam width)). Em cada passo uma
solução parcial é estendida para k ′ soluções parciais diferentes, e
entre as kk ′ soluções novas, uma função de ranqueamento seleciona
as k melhores. A função tipicamente fornece um limite inferior para
as soluções completas que podem ser obtidas a partir da solução
parcial atual.
Uma busca por raio pode ser entendida como uma busca por lar-
gura truncada ou ainda como versão construtiva do algoritmo SOV
na busca. O modelo mais simples para definir a busca por raio é
numa árvore de soluções parciais, com a solução vazia na raiz. Cada
solução s possui uma série F(s) de extensões possíveis (filhos na ár-
vore), que são escolhidos com distribuição de probabilidade Ps. Seja
p(s) o pai de s na árvore.

Algoritmo 3.4 (Busca por raio)
Entrada Uma instância de um problema.

Saída Uma solução s, caso for encontrada.
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3. Busca por construção de soluções

BeamSearch(k,k ′)=
B := {∅}

while B 6= ∅ do
repete |B|k ′ vezes

seja F := ∪s∈BF(s)
B := ∅
seleciona f ∈ F com prob. Pp(s)(f)/

∑
f∈F Pp(f)(f)

se f é sol. completa: atualiza o incumbente s∗

se f é sol. parcial: B := B∪ {f}
{ alguns autores: F := F \ {f} }

end
seleciona as melhores soluções em B

(no máximo k)
end while
return s∗ { eventualmente não encontrado }

Observação 3.3
Uma busca por raio BeamSearch(1,1) é equivalente ao algoritmo gu-
loso generalizado. ♦

3.1.4. Método piloto

O método piloto(ingl. pilot method) (Duin e Voß 1999) seleciona o
próximo elemento numa heurística construtiva por gerar uma solu-
ção completa por uma sub-heurística para cada alternativa e seleci-
onar a alternativa melhor. Usando uma representação por conjuntos
temos

Algoritmo 3.5 (Método piloto)
Entrada Uma sub-heurística H.

Saída Uma solução s, caso for encontrada.

Guluso ()=
S := ∅
while U 6= ∅ do

seleciona u ∈ U com ϕ(H(S∪ {u})) é mínimo
U := U \ {u}
if S∪ {u} ∈ V then
S := S∪ {u}

end if
end while
return S

end
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3.2. Construção repetida independente

3.2. Construção repetida independente

A estratégia de múltiplos inícios (ingl. multi-start) procura encontrar
soluções melhores por construção repetida. No caso mais simples,
cada repetição é independente da outra e o algoritmo retorna a me-
lhor solução encontrada. Essa estratégia pode ser usada com qual-
quer construção aleatória, por exemplo com os algoritmos Guloso-k
e Guloso-α da seção anterior. Usando o algoritmo Guloso-α com
α = 1 obtemos uma construção totalmente aleatória. Múltiplos iní-
cios também é uma estratégia simples de diversificação para outras
heurísticas.

3.2.1. GRASP

A forma mais simples de melhorar uma construção repetida inde-
pendente é aplicar uma busca local monótona às soluções construí-
das. Este método foi proposto com o nome GRASP (Greedy rando-
mized adaptive search procedure) por Feo e Resende (1989) e Feo e
Resende (1995).
Variantes básicas do GRASP incluem métodos que escolham α ∈
{α1, . . . ,αk} de acordo com alguma distribuição de probabilidade (a
distribuição uniforme frequentemente é uma primeira escolha razoá-
vel), e GRASP reativo (ingl. reactive GRASP) que começa com uma
distribuição uniforme e periodicamente adapta as prioridades de
acordo com

P(αi) = qi/
∑
j∈[k]

qj

com qi = ϕ(s∗)/ϕ̄i para incumbente s∗ e com ϕ̄i o valor médio
encontrado usando αi (para um problema de minimização).
O GRASP evolucionário (ingl. evolutionary GRASP), uma variante que
usa uma outra forma memória de longa duração é discutida na seção
4.4.

3.2.2. Bubble search randomizada

Bubble search (Lesh e Mitzenmacher 2006) generaliza algoritmos de
prioridade. Considera primeiramente um algoritmo de prioridade
fixa. Para melhorá-lo, podemos consideras todas permutações das
variáveis I na alocação. O Bubble search faz isso em ordem de dis-
tância Kendall-tau crescente da permutação base o(S). A distância
Kendall-tau mede o número de inversões entre duas permutações π
e ρ de [n], i.e.

d(π, ρ) =
∑

1≤i<j≤n
[π(i) < π(j) e ρ(i) > ρ(j)] + [π(i) > π(j) e ρ(i) < ρ(j)].

(A distância Kendall-tau é também conhecida por distância de Bubble
sort.)
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3. Busca por construção de soluções

Bubble search randomizada gera uma permutação de distância d
com probabilidade proporcional com (1 − p)d para um parâmetro
p ∈ (0, 1).

Observação 3.4 (Geração de permutações no Bubble search)
Uma permutação de acordo com a probabilidade acima pode ser
selecionado considerando os elementos ciclicamente na ordem o(I).
Inicia com uma lista em ordem o(I). Começando com o primeiro
elemento, visite os elementos da lista ciclicamente. Seleciona o item
atual com probabilidade p, caso contrário continua. Ao selecionar
um item, remove-o da lista e repete o processo na lista reduzida,
até ela é vazia. A ordem da seleção dos itens define a permutação
gerada. ♦

O processo da observação acima pode ser aplicado também em al-
goritmos de prioridade adaptativa considerando os elementos cicli-
camente na ordem o(I,S). (Observe que nesse caso não existe uma
relação simples da ordem resultante com a distância Kendall-tau.)

3.3. Construção repetida dependente

Uma construção repetida dependente usa informações das iterações
anteriores para melhorar a construção em iterações subsequentes.
Um exemplo simples é o Bubble search com reposição (ingl. Bubble se-
arch with replacement): a ordem base é sempre a ordem em que o
incumbente foi construído.

3.3.1. Iterated greedy algorithm

Algoritmos gulosos iterados foram introduzidos por Ruiz e Stützle (2006).
Depois da primeira construção, o algoritmo repetidamente destrói
parte da solução atual, e reconstrói-a gulosamente. A forma mais
simples da destruição é remover d elementos na representação por
conjuntos, ou resetar d variáveis na representação por variáveis e
aplicar um algoritmo guloso, respectivamente um algoritmo prio-
ridade a partir da solução parcial resultante para obter uma nova
solução completa.
Um algoritmo guloso iterado é o análogo de uma busca local ite-
rada. Aplicando uma busca local em cada iteração, um algoritmo
guloso iterado vira uma busca local iterada, na qual a perturbação é
realizada por destruição e reconstrução via um algoritmo guloso.
A estratégia de destruir e reconstruir uma solução também está apli-
cada em buscas em vizinhanças grandes (ver Seção 2.4.3), e também
foi chamada nome “ruinar e recriar” (ingl. ruin and recreate) (Sch-
rimpf et al. 2000).

3.3.2. Squeaky wheel optimization

A otimização da roda que chia (ingl. squeaky wheel optimization),
introduzida por Joslin e Clements (1999), prioriza na construção ele-
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mentos que aumentam a função objetivo (“the squeaky wheel gets
the grease”). O modelo mais simples para explicar isso é como
modificação de um algoritmo de prioridade cuja função de orde-
namento usa pesos wi para i ∈ I e produz o(I,S) = (x1, . . . , xk) caso
w1 ≥ · · · ≥ wk. Supõe que as variáveis que aumentaram a fun-
ção objetivo na última construção recebem ainda “penalidades” pi
para i ∈ I. A função de ordenamento o(I,S) = (x1, . . . , xk) tal que
w1 + p1 ≥ · · · ≥ wk + pk considera além da ordem base as penali-
dades. A otimização da roda que chia corresponde com a otimização
extremal e a busca local guidada que forçam alterar ou penalizam
elementos que aumentam a função objetivo.

Exemplo 3.6
(Continua o exemplo 3.4.) Na coloração de grafos podemos penalizar
vértices que usam cores ≥ n, caso o incumbente tem n cores. ♦

3.3.3. Otimização por colônias de formigas

Algumas espécies de formigas conseguem encontrar caminhos cur-
tos para objetos interessantes comunicando por feromônio deixado
nas trilhas. O feromônio é uma forma de memoria de longa duração
guiando as formigas. Otimização por colônias de formigas (ingl. ant
colony optimization, ACO) (Dorigo et al. 1996) aplica essa ideia na
otimização.
De forma mais abstrata, ACO realiza uma construção repetida de-
pendente, com probabilidades de transição dinâmicas, que depen-
dem das iterações anteriores. Concretamente, na representação de
variáveis, ACO associa dois valores τiv e ηiv com uma variável i ∈ I
que recebe um valor v ∈ V . O valor τiv representa a componente
dinâmica (o feromônio), e o valor ηiv a componente estática da pre-
ferência de atribuir o valor v à variável i. Uma fase do ACO constrói
soluções S1, . . . ,Sm de forma independente. Uma construção repeti-
damente atribui um valor à próxima variável x1 numa ordem fixa ou
dinâmica o(I,S) = (x1, . . . , xk), igual a um algoritmo de prioridade,
com probabilidade

P(x1 = v | S) ∝ ταivη
β
iv, (3.1)

sendo α e β parâmetros que balanceiam o efeito entre preferência
dinâmica e estática. (Logo, para α = 0 obtemos um algoritmo guloso
randomizado.) ACO atualiza no fim de cada fase os feromônios por

τiv = (1− ρ)τiv +
∑

S∈U|{i 7→v}∈Sg(S).
O primeiro termo diminui o feromônio com o tempo (“evaporação”),
o segundo termo aumenta o feromônio de acordo com uma função
de avaliação g(S) das soluções S que atribuem v a i. As soluções S fa-
zem parte de um conjunto U de soluções candidatas. Os candidatos
tipicamente incluem S1, . . . ,Sm e soluções elites (p.ex. o incumbente
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S∗). A função g(S) cresce com a qualidade da solução. Concreta-
mente, no exemplo do PCV:

• Sistema de formigas (ingl. ant system): U = {S1, . . . ,Sm}, ηiv =
1/div, g(S) = 1/d(S).

• Sistema de formigas elitista: U = {S1, . . . ,Sm,S∗}, ηiv = 1/div,

g(S) =

{
1/d(S) caso S ∈ {S1, . . . ,Sm}

e/d(S) caso S = S∗

com e ∈N.

• Sistema de formigas com ranqueamento: um sistema de formi-
gas elitista com U = {S1, . . . ,Sk,S∗}, sendo S1, . . . ,Sk os k ≤ m
melhores soluções da última fase.

• Sistema de formigas com limites (ingl. min/max ant system):
U = {S∗} ou U = {S1} com S1 a melhor solução da última fase
(“elitismo forte”) com limites τmin ≤ τiv ≤ τmax, e τiv = τmax
inicialmente.

• Sistema de colônia de formigas (ingl. ant colony system): eli-
tismo forte com seleção “pseudo randômica proporcional”: com
probabilidade q seleciona a variável com P(x1 = v|S) máximo,
senão de acordo com (3.1). O sistema também diversifica a
construção reduzindo a quantidade de feromônio em atribui-
ções selecionadas na fase atual.

3.4. Notas

Algoritmos de prioridade formam propostas por Borodin et al. (2003).

3.5. Exercícios

Exercício 3.1
Quais sistemas de conjuntos do Exemplo 3.1 são acessíveis? Inde-
pendentes? Quais satisfazem a propriedade de troca?

Exercício 3.2
Dá um exemplo de um algoritmo guloso que não pode ser modelado
pelo Algoritmo 3.1.
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A recombinação de soluções procura misturar componentes da duas
ou mais soluções para produzir uma ou mais novas soluções com-
binadas. Para algumas recombinações é conveniente ter uma noção
de distância entre soluções. Para as nossas representações padrão
de conjuntos e variáveis, usaremos as distâncias d(s, s ′) = |s⊕ s ′| e
d(s, s ′) =

∑
i∈I[si 6= s ′i], respectivamente. Em função do problema

e sua representação outras distâncias podem ser adequadas. Tipica-
mente a representação de variáveis é mais conveniente para formular
a recombinação de soluções.
Exemplos de recombinações simples na representação por variáveis
(com n = |I| variáveis) de soluções k soluções s1, . . . , sk para uma
nova solução c = C(s1, . . . , sk) são:

Recombinação randomizada Escolhe cj = sij com probabilidade pi,
i ∈ [k] para variável j ∈ I. Para pi = 1/k obtemos uma recombi-
nação uniforme. Uma recombinação não-uniforme comum é es-
colher pi ∝ ϕ(si). No contexto de algoritmos genéticos o caso
k = 2, V = {0, 1}, p = 1/2 é chamada crossover uniforme (Ackley
1987). Outro exemplo é definir pi ∝ |{sij | j ∈ [n]}| na seleção
da componente j. Caso a função objetivo é linear nas variá-
veis, i.e. ϕ(si) =

∑
j∈Iϕ(sij), um critério melhor pode ser uma

seleção com probabilidade pij ∝ ϕ(sij) para cada componente.

Recombinação por mediano Supondo que V possui uma ordem, es-
colhe cj = 〈s1j · · · snj〉 com mediano 〈·〉. Para n impar e
V = {0, 1} isso é uma recombinação maioritária.

Recombinação linear Supondo que V = R, seleciona c =
∑
i∈[k] λisi

com
∑
k∈[n] λk = 1. Para λk ≥ 0 obtemos uma recombinação

convexa.

Recombinação particionada Uma recombinação randomizada apli-
cada numa partição S de [n]. Para cada parte seleciona uma
solução si com probabilidade pi e atribui os valores de toda
parte à solução combinada. Um subcaso importante são par-
tições contínuas (i.e. cada parte p ∈ S satisfaz p = [a,b] para
a < b, a,b ∈ [n].) Para uma partição contínua aleatória com
|S | = 2 obtemos o recombinação em um ponto (ingl. one-point
crossover), caso |S | = k uma recombinação em k pontos.

Recombinação para permutações A recombinação tem que satisfa-
zer as restrições do problema. Um caso frequente e por isso impor-
tante são permutações, com I = V = [n]. Exemplos de estratégias
para recombinar permutações são:
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Recombinação irrestrita na tabela de inversões Aplica uma das re-
combinações acima na tabela de inversões.

Recombinação PMX Para permutações π = π1π2 . . . πn e ρ = ρ1ρ2 . . . ρn
define σ = PMX(π, ρ) como segue (Goldberg e Lingle 1985):

1) Seleciona um intervalo aleatório I = [a,b] ⊆ [n]. Para uma
permutação π, seja πI = {πi | i ∈ I}.

2) Define um mapeamento m : πI → ρI : πi 7→ ρi.

3) Define um mapeamento m∗ : πI → ρI : m
k(πi), com k o

menor expoente tal que mk(πi) 6∈ πI. O mapeamento m∗

itera m até o elemento não pertence a πI.

4) Finalmente define

σi =


πi i ∈ I
ρi ρi 6∈ πI
m∗(ρi) ρi ∈ πI

.

Exemplo 4.1 (Recombinação PMX)
Seja π = 123456789a e ρ = 49a8173526 e I = [3, 6]. Logo πI =
{3, 4, 5, 6} e ρI = {a, 8, 1, 7}, e temos os mapeamentos

πi 3 4 5 6

m(πi) a 8 1 7
m∗(πi) a 8 1 7

,

i.e., o mapeamento iterado m∗ é igual a m. Obtemos

Índice i 1 2 3 4 5 6 7 8 9 10

Elem. m∗(4) ρ2 π3 π4 π5 π6 m∗(3) m∗(5) ρ9 m∗(6)
σi 8 9 3 4 5 6 a 1 2 7

♦

Exemplo 4.2 (Recombinação PMX)
Seja π = 123456789a e ρ = 361a849725 e I = [3, 6]. Logo πI =
{3, 4, 5, 6} e ρI = {a, 8, 1, 7}, e temos os mapeamentos

πi 3 4 5 6

m(πi) 1 a 8 4
m∗(πi) 1 a 8 a

.

Obtemos

Índice i 1 2 3 4 5 6 7 8 9 10

Elem. m∗(3) m∗(6) π3 π4 π5 π6 ρ7 ρ8 ρ9 m∗(5)
σi 1 a 3 4 5 6 9 7 2 8

♦
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4.1. Religamento de caminhos

Exemplo 4.3 (Recombinação OX)
A recombinação ordenada (ingl. ordered crossover, OX) σ = C(π, ρ)
de permutações π e ρ seleciona um intervalo I ⊆ [n] de π e completa
σ com os elementos na ordem de ρ. ♦

A seleção de um ou mais operadores de recombinação é um parte
importante do projeto de uma heurística por recombinação. Além
das recombinações genéricas, uma recombinação que aproveita a es-
trutura do problema deve ser considerada.

Exemplo 4.4 (Recombinação EAX para o PCV)
O edge assembly crossover (EAX) (Nagata e Kobayashi 1997) trabalha
na representação de rotas por conjuntos de arestas. Para rotas A
e B ele forma A ∪ B e extrai um conjunto completo de ciclos AB-
alternantes (i.e. ciclos com arestas alternadamente e A e B; isso sem-
pre é possível). Seleciona um subconjunto S dos ciclos AB extraídos e
gera uma coleção de ciclos A⊕ S. Repetidamente reconecta o menor
ciclo com um outro ciclo até obter uma rota simples.
Para conectar ciclos C e D (representados por conjuntos de arestas),
gulosamente seleciona o par de arestas uu ′ ∈ C e vv ′ ∈ D tal que
(C∪D)⊕ {uu ′, vv ′,uv,u ′v} tem custo mínimo.

♦

4.1. Religamento de caminhos

O religamento de caminhos (ingl. path relinking), proposto por Glover
(1996) no contexto da busca tabu, explora trajetórias entre uma solu-
ção inicial s e uma solução guia s ′. Isso é realizado com uma busca lo-
cal na vizinhança reduzida (“vizinhança direcionada”) D(s) = {s ′′ ∈
N(s) | d(s ′′, s ′) < d(s, s ′)}. Logo em no máximo d(s, s ′) passos a
busca transforma s em s ′. Qualquer distribuição de probabilidade
discutida no cap. 2 pode ser usada para explorar D; tipicamente é
usada a estratégia “melhor vizinho”. O resultado do religamento de
caminhos é a melhor solução s∗ encontrada na trajetória explorada.
Como a melhor solução da trajetória s∗ não necessariamente é um
mínimo local de N, é comum aplicar uma busca local em N.

Algoritmo 4.1 (Religamento de caminhos)
Entrada Uma solução inicial s, uma solução guia s ′.

Saída Uma solução s∗ com ϕ(s∗) ≤ min{ϕ(s),ϕ(s ′)}.

PathRelinking(s,s ′)=
s∗ = argmin{ϕ(s),ϕ(s ′)}
while D(s) 6= ∅ ∧ s 6= s ′ do

seleciona s ′′ ∈ D(s) com probabilidade Ps(s
′′)

s := s ′′

atualiza o incumbente s∗

end
return s∗
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Observação 4.1 (Conectividade da vizinhança direcionada)
Caso é garantido que na vizinhança D existe um caminho de s para
s ′ podemos simplificar a condição D(s) 6= ∅ ∧ s 6= s ′ para s 6= s ′.
Um exemplo em que isso não é satisfeito: para o problema do exem-
plo 1.8 pode ser conveniente restringir a vizinhança N que desloca
uma tarefa para outra estação às estações críticas, i.e. as estações
com tempo de estação igual ao tempo de ciclo. Logo o religamento
de caminhos termina, caso as tarefas alocadas às estações críticas na
solução atual e guia são as mesmas. ♦

Variantes comuns são: religamento de caminhos

para frente (ingl. forward path relinking, “uphill”) Para soluções s1
e s2 com ϕ(s1) ≤ ϕ(s2) explore a trajetória de s1 para s2.

para trás (ingl. backward path relinking, “downhill”) Para soluções s1
e s2 com ϕ(s1) ≤ ϕ(s2) explore a trajetória de s2 para s1.

para trás e frente (ingl. back-and-forward path relinking) Para solu-
ções s1 e s2 com ϕ(s1) ≤ ϕ(s2) explore a trajetória de s2 para
s1, seguido da trajetória de s1 para s2.

misto (ingl. mixed path relinking) Altera ambas soluções até eles se
encontram.

truncado (ingl. truncated path relinking) Explora a trajetória somente
no início ou no final. Esse estratégia é justificada por experi-
mentos que mostram que as melhores soluções tendem a ser
encontradas no início ou no final da trajetória.

Observação 4.2
O religamento de caminhos explora a vizinhança da solução inicial
melhor. Logo, caso somente uma trajetória é explorada, é melhor
usar um religamento para frente, que começa da melhor das solu-
ções (Resende e Ribeiro 2005). ♦

Observação 4.3 (Seleção do vizinho)
Qualquer estratégia de busca local pode ser aplicada na da próxima
solução. Aplicando a estratégia “guloso-α”, por exemplo, obtemos
um religamento de caminhos guloso adaptativo (ingl. greedy randomized
adaptive path-relinking, GRAPR) (Binato et al. 2001). ♦

4.2. Probe

O population-reinforced optimization-based exploration (PROBE) trabalha
com uma população de soluções S1, . . . ,Sn. Sendo C(·, ·) algum ope-
rador que recombina duas soluções, Probe produz em cada iteração
uma nova população C(S1,S2),C(S2,S3), . . . ,C(Sn,S1).
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Teorema 4.1 (Convergência de Probe)
Caso ϕ(C(S, T)) ≤ min{ϕ(S),ϕ(T)} o valor médio da população di-
minui até todas soluções possuem o mesmo valor.

Prova. Supõe que um par de soluções adjacentes Sj,Sj+1 não possui
o mesmo valor. Logo ϕ(C(Sj,Sj+1) < ϕ(Sj) ou ϕ(C(Sj,Sj+1) <
ϕ(Sj+1) e como as restantes soluções satisfazem ϕ(C(Si,Si+1) ≤
ϕ(Si) resp. ϕ(C(Si,Si+1) ≤ ϕ(Si+1) o valor médio diminui. �

Observação 4.4 (Convergência trivial)
Para C(S, T) = argmin{ϕ(S),ϕ(T)} a população converge para a me-
lhor das n soluções inicias. ♦

4.3. Scatter search

A busca dispersa (ingl. Scatter search) é um esquema algorítmico que
explora o espaço de busca sistematicamente usando um conjunto de
soluções de referência (ingl. reference set). A enfase da busca dispersa
é na exploração determinística e sistemática, similar com a busca
tabu, ao contrário de métodos que focam em randomização. Repeti-
damente a busca dispersa combina um subconjunto das soluções de
referência para gerar novas soluções e atualiza as soluções de refe-
rência. O método procura incluir elementos de diversificação e inten-
sificação estrategicamente. As soluções de referência R, por exemplo,
tipicamente contém soluções de boa qualidade e soluções diversas. O
conjunto de soluções de referência inicial é selecionado entre um nú-
mero grande de soluções diversas. Depois da recombinação o novo
conjunto de soluções de referência é selecionado entre as soluções de
referência atuais e as soluções obtidas por recombinação.
Seja d(p,S) = min{d(p, s) | s ∈ S} e distância mínima da solução p
para qualquer solução do conjunto S. Um exemplo de uma cons-
trução do conjunto de referência que seleciona b1 soluções de boa
qualidade e b2 soluções diversas é

refset(P)= { seleciona soluções de referência de P }
seja P = {p1, . . . ,pn} com ϕ(p1) ≤ · · · ≤ ϕ(pn)
S := {p1, . . . ,pb1 }
P := P \ S
while P 6= ∅ ∧ |S| ≤ b1 + b2 do
p := argmaxp{d(p,S) | p ∈ P}
S := S∪ {p}
P := P \ {p}

end
Com isso obtemos

Algoritmo 4.2 (Scatter search)
Entrada Uma instância de um problema.

Saída Uma solução s, caso for encontrada.
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4. Busca por recombinação de soluções

ScatterSearch ()=

cria um conjunto de soluções diversas C
R := refset(C)
do

seja S uma família de subconjuntos de R
C := ∅
for S ∈ S do
T := recombine(S)
C := C∪ improve(T)

end for
R := refset(R∪C) { alternativa: refset(C) }

while R changed

Tabela 4.1 mostra valores de referência para os parâmetros da busca
dispersa.

Tabela 4.1.: Valores de referência para
os parâmetros da busca dispersa.

Soluções de referência |R| ≈ 20
Soluções iniciais |C| ≥ 10|R|
Soluções elite b1 ≈ |R|/2
Soluções diversas b2 ≈ |R|/2

Observação 4.5 (Atualização do conjunto de referência)
Existem diversas estratégias de atualização do conjunto de soluções
de referência. Por exemplo, podemos adicionar uma nova solução
ao conjunto de referência R caso (i) |R| < b, ou (ii) ela é melhor que
o incumbente, ou (iii) ela é melhor que a pior solução de R, dado
que ela possui uma distância mínima d das soluções restantes. Em
ambos casos a solução de menor distância com a nova solução sai do
conjunto de referência. Para implementar isso, podemos modificar o
algoritmo 4.2 para

for each c ∈ C: refset(R,c)
usando o procedimento

refset(R,s)= { atualiza o conjunto R com s }
seja R = {r1, . . . , rn} com ϕ(r1) ≤ · · · ≤ ϕ(rn)
if |R| < b then
R := R∪ {s}

else if ϕ(s) < ϕ(r1)∨ (ϕ(s) < ϕ(rn)∧ mini d(s, ri) > d then
seja k = argmini d(s, ri)
R := R \ {rk}∪ {s}

end if
end

♦

Observação 4.6 (Seleção da família S)
A abordagem mais comum é selecionar todos pares de soluções de
referência. Variantes propostas na literatura incluem escolher triplas
formadas por todos pares mais a solução de referência melhor que
não faz parte do par, ou escolher quadruplas formadas por todas
triplas mais a solução de referência melhor que não faz parte da
tripla. Essas abordagens são raras, por precisarem uma combinação
efetiva entre mais que duas soluções. ♦
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4.4. GRASP com religamento de caminhos

GRASP com religamento de caminhos mantém um conjunto de solu-
ções de referência. Este conjunto é alimentado pelas soluções obtidas
em cada iteração. Uma proposta típica da atualização é a regra da
observação 4.5. Em cada iteração, GRASP+PR aplica religamento
de caminhos entre o mínimo local obtido s e uma solução de refe-
rência r. A solução de referência é selecionada, por exemplo, com
probabilidade ∝ d(s, r), para religar soluções distantes com maior
probabilidade.
O GRASP evolucionário (ingl. evolutionary GRASP) reconstrói o con-
junto de soluções de referência periodicamente. Os candidatos para
formar o novo conjunto de soluções são as soluções obtidas por reli-
gamento de caminhos entre todos pares de soluções de conjunto de
referência do período anterior.

4.5. Algoritmos genéticos e meméticos

Observação 4.7 (Função objetivo e aptidão)
Como algoritmo genéticos e variantes normalmente são formulados
para maximizar uma função objetivo – chamada aptidão (ingl. fitness)
– vamos seguir essa convenção nesta seção. ♦

Algoritmos genéticos (ingl. genetic algorithms) foram propostas por
Holland (1975) em analogia com processos evolutivos. Um algoritmo
genético mantém uma população S1, . . . ,Sn de indivíduos e repeti-
damente seleciona dois indivíduos pais, gera novos indivíduos por
recombinação dos pais, eventualmente aplica uma mutação em indi-
víduos selecionados, e atualiza a população. Um algoritmo genético
difere da busca dispersa principalmente pelos elementos randomi-
zados: a seleção dos pais é aleatória (mas tipicamente proporcional
com a qualidade da solução) bem como a mutação. Obtemos um
algoritmo memético (ingl. memetic algorithm) caso um indivíduo é
melhorado por uma busca local, e um algoritmo genético Lamarckiano
caso essa melhora é herdável (i.e. a transformação inversa do fenó-
tipo para genótipo existe, ver cáp. 1.2.2). A terminologia biológica
é frequentemente usada em algoritmos genéticos. Numa represen-
tação de variáveis, por exemplo, uma variável é chamada gene e os
valores que ela pode assumir os alelos.
O algoritmo 4.3 define um esquema genérico de um algoritmo ge-
nético. Ele é definido por (i) uma população inicial, (ii) por uma
estratégia de seleção de indivíduos, (iii) operadores de recombina-
ção e mutação, e (iv) uma estratégia de seleção da nova população.

Algoritmo 4.3 (Algoritmo genético)
Entrada Uma instância de um problema.

Saída Uma solução s, caso for encontrada.
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GeneticAlgorithm ()=

cria um conjunto de soluções iniciais P
until critério de parada satisfeito
C := ∅
{ recombinação }
seja P um conjunto de pais selecionados de P
for p = (p1,p2) ∈ P do
T := recombine(p1,p2)
C := C∪ improve(T)

end for
{ mutação }
seja M⊆ P ∪C de soluções que sofrem mutação
for s ∈ M do
T := mutate(s)
C := C∪ improve(T) \ {s}

end for
P := update(P,C) { com update (µ+ λ), (µ, λ) }

end

Exemplo 4.5 (Algoritmo genético básico)
Uma instância básica do algoritmo 4.3 usa

• uma representação por variáveis com V = {0, 1};

• uma população inicial com µ indivíduos aleatórios;

• uma seleção de |P | = µ pares de pais, cada solução s com
probabilidade ∝ ϕ(s);

• uma recombinação em um ponto (p. 55) que gera duas novas
soluções;

• nenhum procedimento de melhora (improve(C) = C);

• uma mutação que inverte cada variável com probabilidade p
(frequentemente p = 1/|I|) nas novas soluções;

• uma atualização (µ, λ) da população (seleciona os µ melhores
entre os novos indivíduos).

♦

4.5.1. População inicial

A população é criada por alguma heurística construtiva, frequente-
mente com indivíduos aleatórios. Reeves (1993) propõe um tamanho
mínimo que garante que todas soluções podem ser obtidas por re-
combinação da população inicial, i.e. todo alelo está presente em
todo gene. Para uma inicialização aleatória uniforme na representa-
ção por variáveis, temos |V |n possíveis combinações de alelos num
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determinado gene, para uma população de tamanho n. Dessas com-
binações |V |!

{
n
|V |

}
possuem todos alelos, logo a probabilidade que

todos alelos são presentes em todos k genes é(
|V |!

{
n

|V |

}
|V |−n

)k
.

Em particular para |V | = 2 obtemos a probabilidade (1−21−n)k. Isso
permite selecionar um n tal que a probabilidade de que todos alelos
estejam presentes é alta.

4.5.2. Seleção de indivíduos

Um indivíduo S é selecionado como pai com probabilidade ∝ ϕ(s)
ou conforme alguma regra de seleção baseado no rank na população
(ver pág. 48). Outro exemplo é uma seleção por torneio que seleciona
o melhor entre k indivíduos aleatórios, similar da busca por amos-
tragem.

Observação 4.8 (Seleção por torneio)
Um 1-torneio é equivalente com uma seleção aleatória. Num 2-
torneio a probabilidade de selecionar o elemento com posto i é (n−
i)/
(
n
2

)
, logo obtemos uma seleção linear por posto. Em geral a pro-

babilidade de selecionar o elemento com posto i num k-torneio é(
n− i

k− 1

)
/
(
n

k

)
∝
(
n− i

k− 1

)
= Θ((n− i)k−1).

Demonstração: Torneios.
♦

Exemplo 4.6 (Fitness uniform selection scheme (FUSS))
Hutter e Legg (2006) propõem um esquema de seleção uniforme base-
ada em aptidão (ingl. fitness uniform selection scheme): escolhe um valor
uniforme f no intervalo [mini∈P ϕ(i), maxi∈P ϕ(i)] e seleciona o in-
divíduo com valor da função objetivo mais próximo de f. O objetivo
da seleção é manter a população de valores diversa: indivíduos em
regiões com menor densidade da distribuição dos valores da função
objetivo possuem uma probabilidade maior de ser selecionado. ♦

Exemplo 4.7 (Seleção estocástica universal)
Baker (1987) propõe uma seleção estocástica universal (ingl. stochastic
uniform selection): Seja pi, a probabilidade de selecionar indivíduo
i ∈ [µ], e Pi = [

∑
k∈[i−1] pi,

∑
k∈[i] pi) o intervalo correspondente,

seleciona, para um r ∈ [0, 1/µ) aleatório, os indivíduos i1, . . . , iµ tal
que r+ k/µ ∈ Pik para k ∈ [µ]. (A explicação mais simples dessa
seleção é por uma roleta com µ seletores de distância 1/µ). ♦

4.5.3. Recombinação e mutação

Para recombinação de indivíduos serve qualquer das recombinações
discutidas acima, inclusive o religamento de caminhos. Uma mu-
tação é uma pequena perturbação de uma solução. Logo ela pode
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4. Busca por recombinação de soluções

ser realizada por um passo de uma busca local estocástica 2.1. Re-
combinação ou mutação podem ser aplicados com probabilidades
diferentes, eventualmente dinâmicas.

4.5.4. Seleção da nova população

A população pode ser atualizada depois de criar um número sufi-
ciente de novas soluções, selecionando uma nova população entre
estes indivíduos, eventualmente incluindo a população antiga. Uma
alternativa é atualizar a população constantemente. (Observe que
isso corresponde exatamente com as estratégias de seleção da busca
dispersa.) As primeiras duas estratégias de seleção levam a um algo-
ritmo genético geracional e a última a um algoritmo genético em estado de
equilíbrio (ingl. steady state genetic algorithm). Para uma população
de tamanho µ e λ novos indivíduos eles também são conhecidos por
seleção (µ, λ) (seleciona os µ melhores dos λ novos indivíduos) ou se-
leção (µ+ λ) (seleciona os µ melhores entre a população antiga e os λ
novos indivíduos). Caso uma seleção permite soluções da população
antiga entre na nova população, e seleciona algumas das melhores
soluções, o algoritmo é elitista.

Exemplo 4.8 (Estratégias de evolução)
Estratégias de evolução (ingl. evolution strategies) são algoritmos
genéticos sem recombinação. Eles recebem o nome da atualização
correspondente: (µ, λ) ou (µ + λ). Observe que uma estratégia de
evolução (1+ 1) é uma busca local monótona estocástica. ♦

Uma outra estratégia comum é a deleção randomizada de indivíduos
do conjunto de candidatos até µ indivíduos sobram. A variante mais
simples delete indivíduos com probabilidade uniforme; uma vari-
ante delete com probabilidade ∝ ϕ(smax) +ϕ(smin) −ϕ(s) com smax
a melhor e smin a pior solução.

Exemplo 4.9 (Fitness uniform deletion scheme (FUDS))
Hutter e Legg (2006) propõem um esquema de deleção uniforme baseado
em aptidão (ingl. fitness uniform deletion scheme): similar ao FUSS, es-
colhe um valor uniforme f no intervalo [mini∈P ϕ(i), maxi∈P ϕ(i)] e
deleta o indivíduo com valor da função objetivo mais próximo de f.
FUDS favorece uma exploração em regiões de menor densidade da
distribuição dos valores da função objetivo. ♦

Observação 4.9 (Resultados experimentais (Levine 1997))
Experimentalmente, parece que

• manter a população em estado de equilíbrio é preferível sobre
abordagens geracionais;

• uma recombinação uniforme ou em dois pontos é preferível
sobre uma em um único ponto;

• uma seleção proporcional com ϕ raramente é bom;
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• uma taxa de mutação dinâmica é preferível;

• manter a diversidade da população é importante.

• operadores de recombinação e mutação específicos para o pro-
blema são mais úteis;

♦

Observação 4.10 (Resultados teóricos)
Pela teoria sabemos que

• o desempenho depende fortemente do problema: existem fun-
ções unimodais em que uma determinada estratégia de evolu-
ção (1+ 1) precisa tempo exponencial mas também classes de
funções que podem ser resolvidos em tempo polinomial (Droste
et al. 2002; Jansen e Wegener 2000); e existem instâncias de
problemas NP-completos em que uma estratégia de evolução
(1+ 1) não possui garantia de aproximação (e.g. cobertura por
vértices (Friedrich et al. 2010)), mas também problemas NP-
completos em que a estratégia garante uma aproximação (e.g. uma
4/3-aproximação em tempo esperado O(n2) para o problema
de partição1 (Witt 2005)).

• o tamanho ideal da população depende fortemente do pro-
blema: existe uma função em que uma dada estratégia de evo-
lução (µ, 1)2 precisa tempo exponencial para µ pequeno, mas
tempo polinomial para µ grande e vice versa (Witt 2008);

• o desempenho depende fortemente da função objetivo: uma
estratégia de evolução (1+ 1) consegue ordenar n números em
tempo Θ(n2 logn), mas existem funções objetivos para medir o
grau da ordenação que levam a um tempo exponencial (Schar-
now et al. 2002);

♦

A última observação experimental, que não é restrito a algoritmos
genéticos, em conjunto com os resultados teóricos, é o motivo para
conjeturar que (i) para cada solução “genérica” de um problema,
existe um algoritmo heurístico específico melhor. (ii) para cada heu-
rística que funciona bem na prática (i.e. resolve o problema em tempo
esperado polinomial com garantia de qualidade) deve existir um sub-
problema do problema em questão em P.

Princípio de projeto 4.1 (Estrutura do problema)
Procure aproveitar a estrutura do problema. Caso a heurística funci-
ona bem: procure identificar quais características das instâncias são
responsáveis por isso.

1Particionar um conjunto de números x1, . . . , xk tal que a diferença das somas dos
partes é mínima.

2A estratégia padrão com atualização por deleção aleatória.
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Exemplo 4.10 (Algoritmo genético para o PCV)
Em Johnson e McGeoch (2003) o algoritmo genético melhor é de-
generado para uma busca local iterada: a “população” consiste de
uma única solução, e o algoritmo aplica repetidamente uma busca
local Kernighan-Lin e uma mutação na vizinhança 4-exchange res-
trito para dois pontes (Fig. 4.1), i.e. a estratégia de atualização é (1, 1).

♦

Figura 4.1.: Um movimento 4-opt com
dois pontes.

Exemplo 4.11 (Algoritmo genético para o PCV)
O algoritmo genético para o PCV de Nagata e Kobayashi (2012)
exemplifica o princípio 4.1. Ele usa

• Uma população inicial de tamanho 300 com rotas aleatórias
otimizadas por 2-opt.

• Uma recombinação entre πi e πi+1 para uma permutação ale-
atória da população.

• A recombinação entre p,q aplica uma variante “localizada” de
EAX (i.e. produz soluções mais similares com p) e gera diversas
novas soluções f1, . . . , fk (k ≈ 30).

• Uma seleção que substitui o p atual pela melhor solução entre
f1, . . . , fk,p.

• Uma função objetivo modificada que procura manter a diver-
sidade da população. Para Pi = (pij)j a distribuição de pro-
babilidade dos arcos (i, j) na população, define a entropia da
população por

H =
∑
i∈[n]

Hi; Hi = −
∑
j∈[n]

pij logpij

e seleciona a solução s de maior valor

ϕ(s) =


−∆L(s)/ε caso ∆L(s) < 0, ∆H(s) ≥ 0
∆L(s)/∆H(s) caso ∆L(s) < 0, ∆H(s) < 0
−∆L(s) caso ∆L(s) ≥ 0

com ∆L(s) o aumento da distância total média da população
caso s substitui p, e ∆H(s) o aumento correspondente da entro-
pia.

♦

4.5.5. O algoritmo genético CHC

O “Cross-generational elitist selection, Heterogeneous recombina-
tion, and Cataclysmic mutation” (CHC) é um exemplo de uma vari-
ante de um algoritmo genético com um foco em intensificação (Eshel-
man 1990). Ele recombina sistematicamente todos pares da popula-
ção atual, e procura manter a diversidade por recombinar somente
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soluções suficientemente diferente com uma recombinação HUX. A
recombinação HUX é uniforme, mas troca exatamente a metade das
variáveis diferentes entre os pais e gera dois novos filhos. Caso a
população convergiu ele é recriada aplicando uma mutação para a
melhor solução.

Algoritmo 4.4 (Algoritmo genético CHC)
Entrada Uma instância de um problema, uma taxa de mutação

pm (típico: pm = 1/2).

Saída Uma solução s, caso for encontrada.

CHC ()=
cria um conjunto de soluções iniciais P
d := pm(1− pm)|I|

until critério de parada satisfeito
C := ∅
for n/2 iterações do

seleciona pais p1,p2 ∈ P aleatoriamente
if d(p1,p2) > 2d then
T := HUX(p1,p2)
C := C∪ T ; P := P \ {p1,p2}

end
end
if C = ∅ then
d := d− 1

else
P := (µ+ λ)(P ∪C)

end if
if d < 0 then

{ re -criação cataclísmica }
reduz P para a melhor solução p em P
until |P| = µ do

aplica uma mutação em p com prob. 0.35
insere o indivíduo obtido em P

end
d := pm(1− pm)|I|

end if
end

end

4.5.6. Algoritmos genéticos com chaves aleatórias

Um “biased random-key genetic algorithm” (BRKGA) é uma exten-
são do algoritmo genético com chaves aleatórias de Bean (1994). Am-
bos usam uma representação por chaves aleatórias (seção 1.2.2) e
uma população com três “castas” (ver Fig. 4.2). A nova população
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Piores soluções

Elite

Novas soluções

Elite
Copiar

Randomizado

⊗
Recombinação

ϕ

Figura 4.2.: Algoritmo genético com chaves aleatórias.

consiste da elite da população antiga, soluções randômicas que subs-
tituem as piores soluções e soluções que foram obtidas por recom-
binação uniforme. No caso do BRKGA a recombinação uniforme é
substituída por uma recombinação que passa de cada gene indepen-
dentemente o alelo do pai melhor com probabilidade p ≥ 0.5 para
o filho. Tamanhos típicos para a elite são 10− 20% da população, e
1− 5% de soluções randômicas.

4.6. Otimização com enxames de partículas

A otimização com enxames de partículas (ingl. particle swarm op-
timization, PSO) (Eberhart e Kennedy 1995) foi proposta para oti-
mização contínua e mantém uma população de soluções x1, . . . , xn
em Rk. Cada solução também possui uma velocidade vi, i ∈ [n] e
em cada passo a posição é atualizada para x ′i = xi + εvi para um
parâmetro ε ∈ (0, 1]. A velocidade vi é atualizada em direção da
melhor solução na trajetória da solução atual x∗i , da melhor solução
x∗I = maxi∈I x∗i encontrada por soluções informantes I ⊆ [n] e da
melhor solução global x∗[n] por

v ′i = αvi +β(x
∗
i − xi) + γ(x

∗
I − xi) + δ(x

∗
[n] − xi). (4.1)

Com isso obtemos o esquema genérico

Algoritmo 4.5 (Otimização com enxames de partículas)
Entrada Uma instância de um problema, parâmetros α,β,γ, δ, ε.

Saída A melhor solução encontrada.

PSO ()=
cria soluções iniciais x1, . . . , xn

com velocidades v1, . . . , vn
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until critério de parada satisfeito
for cada solução i ∈ [n] do

seleciona um conjunto de informantes I
atualiza vi de acordo com (4.1)
xi := xi + εvi

end
return x∗[n]

end

Na forma mais comum:

• Aproximadamente 50 soluções e velocidades inicias são esco-
lhidas aleatoriamente.

• O conjunto de informantes é um subconjunto aleatório de [n].

Variantes incluem:

• Selecionar em cada aplicação de (4.1) valores aleatórias em
[0,β], [0,γ] e [0, δ] para os pesos.

Aplicação para otimização discreta A forma mais simples de apli-
car a otimização com enxames de partículas em problemas discretos
é trabalhar no espaço real e transformar a solução para uma solução
discreta (seção 1.2.2). Uma alternativa é definir uma estratégia de
atualização discreta.

Exemplo 4.12 (Variante binária de PSO)
Kennedy e Eberhart (1997) propõem para soluções em {0, 1}k mapear
as velocidades em Rk para [0, 1]k por uma transformação logística
S(x) = (1 + e−x)−1 aplicada a cada elemento do vetor, e interpre-
tar os componentes das velocidades como probabilidades. Em cada
passo xij recebe o valor 1 com probabilidade S(vij). ♦

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6
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1

x

S
(x
)

Figura 4.3.: Transformação logística.

4.7. Sistemas imunológicos artificiais

Sistemas imunológicos artificiais (ingl. artificial immunological sys-
tems) são algoritmos de otimização usando princípios de sistemas
imunológicos. Daremos somente um exemplo de um algoritmos co-
mum dessa classe. O princípio natural do algoritmo é a observação
que o sistema imunológico se adapta para novas antigenes por clo-
nagem e amadurecimento.

Algoritmo 4.6 (SIA/Clonalg)
Entrada Uma instância de um problema, parâmetros α, β.

Saída A melhor solução encontrada.

69



4. Busca por recombinação de soluções

Clonalg ()=

seja P = {p1, . . . ,pn} aleatória
(supondo ϕ(p1) ≤ · · · ≤ ϕ(pn))

until critério de parada satisfeito
seleciona as α% melhores soluções p1, . . . ,pk
for i ∈ [k] do

{ clonagem }
cria um conjunto Ci de ∝ 1/i cópias de pi
{ amadurecimento por hípermutação }
aplica uma mutação a c ∈ Ci com prob. ∝ ϕ(s)

end
selecione a nova população entre P e ∪iCi
substitui as β% piores soluções

por soluções aleatórias
end

end

4.8. Algoritmos de estimação de distribuição

Um algoritmo de estimação de distribuição (ingl. estimation of distri-
bution algorithm) aprende um modelo da distribuição das soluções
de boa qualidade no espaço de busca. A distribuição guia a amos-
tragem de novas soluções e os valores da novas soluções são usadas
para atualizar a distribuição. O procedimento básico é:

Algoritmo 4.7 (AED)
Entrada Uma instância de um problema.

Saída A melhor solução encontrada.

cria um conjunto de soluções inicias P
until critério de parada satisfeito

seja S ⊆ P um conjunto de soluções promissoras
cria um modelo probabilístico M

da distribuição de S
amostra M para obter

novas soluções candidatas C
P := update(P,C)

end

Na versão mais simples as soluções iniciais são aleatórias, a seleção
S consiste das α% melhores soluções, o tamanho dos candidatos
|C| = |P|, e a função update substitui P por C.
Em resumo, um AED é definido por

• uma classe de modelos que podem ser representados,
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• um algoritmo de construir modelos a partir de amostras de
soluções de boa qualidade, e

• um algoritmo para amostrar um modelo construído eficiente-
mente.

4.8.1. Modelos univariados

O modelo probabilístico mais simples assume que todas variáveis
são independentes e cria um modelo de acordo com a frequência da
ocorrência nas amostras S. Na representação por conjuntos temos
probabilidades pu = |{u ∈ s | s ∈ S}|/|S| e na representação por
variáveis probabilidades piv = |{s(i) = v | s ∈ S}|/|V | para toda
variável i ∈ I.
Na representação por variáveis com I = {X1, . . . ,Xk} o modelo é

P̂(X = x) = P(X1 = x1)P(X2 = x2) · · ·P(Xk = xk)

com um vetor de variáveis aleatórias X = (X1, . . . ,XK)t, e um vetor
de realizações dessas variáveis x = (x1, . . . , xk)t, xi ∈ V sendo V o
conjunto de possíveis valores da variáveis.

Exemplo 4.13 (UMDA)
Suponha uma representação de uma solução por k bits (i.e. temos
domínio das variáveis é V = {0, 1}). Nesta caso um modelo é re-
presentado por um vetor p ∈ [0, 1]k com pi a probabilidade de ob-
servar um bit 1 na posição i ∈ [k] em soluções boas. A algoritmo
padrão com α = 50% é o Univariate marginal distribution algorithm
(UMDA) (Mühlenbein et al. 1996). Demonstração: Estimação de

distribuição.♦

Exemplo 4.14 (PBIL)
Com a mesma representação do exemplo anterior, o Population-
based incremental learning (PBIL) (Baluja 1994) atualiza as proba-
bilidades da seguinte forma:

1. Seleciona a melhor solução s∗ ∈ P,

2. atualiza p := (1− λ)p+ λs∗, para uma taxa de aprendizagem
λ ∈ (0, 1), e

3. aplica uma mutação p := (1 − µ)p + µ eU{0, 1} com probabi-
lidade de mutação pm ∈ [0, 1], para uma taxa de mutação
µ ∈ (0, 1), e e = (1 1 · · · 1)t.

♦

Exemplo 4.15 (cGA)
Ainda com a mesma representação o Compact GA (cGA) (Harik et
al. 1997) atualiza as probabilidades como segue:

1. Tira duas soluções amostras s1 e s2. Seja ϕ(s1) ≥ ϕ(s2).
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2. Atualiza p := p+ (s1 ⊕ s2) ◦ (2s1 − 1)/k.

O algoritmo termina caso o p converge para um vetor integral {0, 1}k.
♦

Nota que PBIL e cGA trabalham somente com amostragem, i.e. não é
necessário armazenar a população. Esse tipo de algoritmo se chama
compacto.

Exemplo 4.16 (Instância difícil para modelos univariados)
Considera a função objetivo sobre {0, 1}5, onde H(x) é o peso Ham-
ming, i.e. o número de bits diferente de 0:

H(s) ϕ(s)
0 4
1 3
2 2
3 1
4 0
5 5

Ela é chamada uma armadilha porque para soluções com 5k bits, onde
cada grupo de 5 bits é avaliado pelo função acima, temos 5k mínimos
locais s com H(s) = 0, onde todos grupos possuem 1 bits diferente
de 0, mas somente um mínimo global 111 · · · 11 com H(s) = 5k. ♦

O exemplo mostra que EDAs precisam identificar correlações entre
variáveis para melhorar.

4.8.2. Modelos em árvores

O mutual-information-maximizing input clustering (MIMIC) (Bonet
et al. 1996) permite modelos

P̂(X) = P(X1 | X2)P(X2 | X3) · · ·P(Xk−1 | Xk)

para qualquer permutação das variáveis, e escolha a permutação que
minimiza a informação mútua

I(P, P̂) = −
∑
x

P(x) log P̂(x)/ P(x)

= −H(P) −
∑
x

P(x) log P̂(x)

= −H(P) −
∑
x

P(x) log P(X1 = x1 | X2 = x2) − · · ·−
∑
x

P(x) log P(Xk = xk)

= −H(P) +H(X1 | X2) + · · ·+H(Xk−1|Xk) +H(Xk).

MIMIC aplica um algoritmo guloso simples para obter uma ordem
de variáveis que minimiza as entropias em I(P, P̂):

1. Seleciona XK tal que H(XK) é mínimo.

2. Para i = k− 1,k− 2, . . . , 1 seleciona Xi−1 tal que H(Xi−1|Xi) é
mínimo.
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4.9. Intensificação e diversificação revisitada

Uma população de soluções de alta qualidade junto com a recombi-
nação de soluções também serve para realizar uma intensificação e
diversificação genérica (Watson et al. 2006). O IDMF (Intensificati-
on/Diversification metaheuristics framework) supõe que temos uma
heurística de busca H(x0, i) base arbitrária, que podemos rodar para
um número de iterações i numa instância inicial x0.

Algoritmo 4.8 (IDMF)
Entrada Uma instância de um problema, probabilidade de in-

tensificação pi, uma heurística H, iterações i0 > i1 para
intensificação.

Saída A melhor solução encontrada.

H∗(x0, io, i1)= { heurística H iterada }
x := H(x0, i0)
while ϕ(x) < ϕ(x0)
x0 := x
x := H(x0, i1)

end
return x0

end

IDMF() :=
gera uma população E de ótimos locais
aplica H∗(e) em cada e ∈ E
repeat

com probabilidade pi: { intensificação }
seleciona e ∈ E
g := e

com probabilidade 1− pi: { diversificação }
seleciona e, f ∈ E
gera um elemento g no meio entre e e f

por religamento de caminhos
e ′ := H∗(g)
if ϕ(e ′) < ϕ(e)
e := e ′

end
end

4.10. Notas

Mais sobre a busca dispersa se encontra em Gendreau e Potvin (2010,
cáp. 4), Glover e Kochenberger (2002, cáp. 1) e Talbi (2009, cáp. 3.4).
Uma boa introdução em algoritmos de estimação de distribuição é
Hauschild e Pelikan (2011).
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4.10.1. Até mais, e obrigado pelos peixes!

Para quem não é satisfeito com os métodos discutidos: usa alguma
outra besta de carga como

fireflies, monkeys, cuckoos, viruses, bats, bees, frogs, fish
schools, glowworms, african wild dogs, african buffalos,
migrating birds, shuffled leaping frogs ou competitive
imperialists, comunidades de cientistas, bacterial foraging,
hunting search, sheep flock heredity, penguins, ageist spi-
der monkeys, leaders and followers, binary cockroaches,

ou deixa a física resolver o problema com

gravitational search, intelligent waterdrops, ou harmony
search.

Porém, é importante lembrar que o objetivo da pesquisa em heurís-
ticas não é produzir novos vocabulários para descrever as mesmas
estratégias, mas entender quais métodos servem melhor para resol-
ver problemas. Weyland (2010), por exemplo, mostra que a busca de
harmonias (ingl. harmony search) é uma forma de uma estratégia de
evolução. Para uma crítica geral ver também Sörensen (2013).
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5.1. Hibridização de heurísticas

A combinação de técnicas de diversas meta-heurísticas ou de uma
meta-heurística com técnicas das áreas relacionadas de pesquisa ope-
racional ou inteligência artificial define heurísticas híbridas. Um exem-
plo é a combinação de técnicas usando populações para identificar
regiões promissoras no espaço de busca com técnicas de busca local
para intensificar a busca. Um outro exemplo é o uso de programação
matemática ou constraint programming para resolver subproblemas
ou explorar vizinhanças grandes. Isso é um exemplo de matheuristics,
a combinação de heurísticas com técnicas de programação matemá-
tica, também conhecida por heurísticas baseados em modelos matemáticos
(ingl. model-based heuristics).

5.1.1. Matheuristics

Hibridizações básicas entre heurísticas e programação matemática
aplicam as heurísticas para obter limitantes superiores em algorit-
mos de branch-and-bound ou usam programação matemática para
resolver subproblemas em heurísticas. Exemplos de outras hibridi-
zações são relaxações lineares de programas inteiros para gerar so-
luções inicias ou guiar buscas, e a aplicação de técnicas heurísticas
para guiar a exploração de buscas em algoritmos exatos.

Exemplo 5.1 (Diving)
Algoritmos branch-and-bound frequentemente expandem o nodo com
o menor limite inferior. Diving é uma estratégia que estrategicamente
aplica uma busca por profundidade para gerar melhores soluções. ♦

Exemplo 5.2 (Ramificação local)
Ramificação local (ingl. local branching) guia a exploração das soluções
de programas inteiras 0− 1 de um resolvedor genérico para analisar
primeiramente soluções de distância Hamming ≤ k. A distância
Hamming das soluções x = (x1, . . . , xn) ∈ Bn e x = (x1, . . . , xn) ∈
Bn é

∆(x, x) =
∑

i∈[n]|xi=0
xi +

∑
i∈[n]|xi=1

1− xi.

Com isso para uma dada solução x0 uma estratégia global de ramifi-
cação resolve primeiramente o programa inteiro Ax ≤ b∧∆(x, x0) ≤
k e só depois Ax ≤ b∧∆(x, x0) ≥ k+ 1. Essa ramificação continua
no primeiro subproblema, caso o resolvedor encontra uma melhor
solução. Fischetti e Lodi (2003) sugerem k ∈ [10, 20]. ♦
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Exemplo 5.3 (RINS e religamento de caminhos)
O relaxation induced neighorhood search (RINS) é uma estratégia para
intensificar a busca para melhores soluções viáveis. Para um dado nó
na árvore de branch-and-bound da solução de um programa inteiro,
ela fixa as variáveis que possuem o mesmo valor no incumbente e
na relaxação linear atual, e resolve o subproblema nas restantes va-
riáveis restrito para um valor máximo da função objetivo e com um
tempo limite. Danna et al. (2005) propõem aplicar RINS cada f � 1
nós com um limite de nós explorados, e.g. f ≈ 100, com limite de
≈ 1000 nós.
Uma forma similar de explorar o espaço entre duas soluções é uma
extensão do religamento de caminhos: fixa todas variáveis em co-
mum, e resolve o problema no subespaço resultante de forma exata.

♦

Exemplo 5.4 (Geração heurística de colunas)
Na geração de colunas (usado também em algoritmos de branch-
and-price) o subproblema de pricing precisa encontrar uma coluna
com custo reduzido negativo. Para melhorar os limitantes inferio-
res da decomposição de Dantzig-Wolfe, o subproblema de pricing
deve ser o mais difícil possível, que pode ser resolvido em tempo
aceitável. Uma estratégia diferente resolve o subproblema de pri-
cing heuristicamente. O método continue ser correto caso no final o
subproblema de pricing é resolvido pelo menos uma vez exatamente
para demonstrar que não existem mais colunas com custo reduzido
negativo.
Por exemplo o problema de colorar um grafo não-direcionado G =
(V ,E) com o menor número de cores

minimiza
∑
i∈[n]

ci,

sujeito a
∑
i∈[n]

xvi ≥ 1, ∀v ∈ V ,

xui + xvi ≤ 1, ∀{u, v} ∈ E, i ∈ [n],

ci ≥
∑
v∈V

xvi/n, ∀i ∈ [n],

xvi, ci ∈ B, ∀v ∈ V , i ∈ [n],

pode ser decomposto em um problema mestre de cobertura por con-
juntos independentes maximais I de G

minimiza
∑
i∈I

xi (5.1)

sujeito a
∑

i∈I|v∈I
xi ≥ 1 ∀v ∈ V (5.2)

xi ∈ B ∀i ∈ I. (5.3)

Para custos reduzidos λv, v ∈ V o subproblema problema de pricing
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é encontrar um conjunto independente máximo de maior peso

maximiza
∑
v∈V

λvzv

sujeito a zu + zv ≤ 1 ∀{u, v} ∈ E
zv ∈ B v ∈ V .

Filho e Lorena (2000) propõem um algoritmo genético para resolver
o subproblema de pricing.

♦

Exemplo 5.5 (Construir, unir, resolver e ajustar)
Blum et al. (2016) propõem a matheuristic CMSA (do ingl. cons-
truct, merge, solve and adapt) que identifica elementos promissores
de uma solução e depois resolvem o subproblema limitado a estes
elementos de forma exata. O algoritmo 5.1 supõe uma representação
por conjuntos com universo U.

Algoritmo 5.1 (CSMA)
Entrada O número de soluções construídas por iteração na e a

idade máxima de elementos ā.

Saída A melhor solução encontrada s∗.

au := 0, ∀u ∈ U
C := ∅ { elementos promissores }
until critério de parada satisfeito

repeat na vezes
s := criaSoluçãoAleatória(U)
for u ∈ s | u /∈ C
au := 0
C := C∪ {u}

end
end
s ′ := exactSolver(C)
atualiza(C,s ′,ā)

end
return s∗

atualiza(C,s,ā) :=
au := au + 1, ∀u ∈ C { aumenta idade }
au := 0, ∀u ∈ s { reseta idade }
C := C \ {u | au = ā} { remove antigos }

♦

5.1.2. Dynasearch

Dynasearch determina a melhor combinação de vários movimentos
numa vizinhança por programação dinâmica (Congram et al. 2002).
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Ela pode ser vista como uma busca local com estratégia “melhor
melhora” intensificada. A aplicação é limitada para movimentos in-
dependentes: cada movimento precisa ser aplicável independente dos
outros, e contribui linearmente para a função objetivo. Numa repre-
sentação por variáveis (x1, . . . , xn) seja δij a redução da função obje-
tivo aplicando um movimento nas variáveis xi, . . . , xj. Logo a maior
redução da função objetivo ∆j por uma combinação de movimentos
independentes aplicado a x1, . . . , xj é dado pela recorrência

∆j = max{∆j−1, max
1≤i≤j

∆i−1 + δij}

e a melhor combinação de movimentos reduz a função objetivo por
∆n.

Exemplo 5.6 (Dynasearch para o PCV)
Para aplicar dynasearch no PCV supõe uma representação por va-
riáveis com I = {πi | i ∈ [n]} e valores em [n] que representa uma
permutação das cidades. Um movimento 2-exchange entre arestas
(πi,πi+1) e (πj,πj+1) com i < j é válido caso i+ 1 < j, i.e. precisa
pelo menos quatro vértices. (Todos índices são modulo n.) Dois mo-
vimentos (i, j) e (i ′, j ′) com i < i ′ são independentes caso j < i.
A redução da função objetivo para um movimento (i, j) é δij =
−dij − di+1,j+1 + di,i+1 + dj,j+1. Logo obtemos a recorrência

∆j =

{
0 caso j < 4
max{∆j−1, max1≤i≤j−3 ∆i−1 + δij} caso contrário.

♦

5.2. Híper-heurísticas

Híper-heurísticas usam ou combinam heurísticas com o objetivo de
produzir uma heurística melhor e mais geral (Denzinger et al. 1997;
Cowling et al. 2000). A heurísticas podem ser geradas antes da sua
aplicação (“offline”), por uma busca no espaço das heurísticas. Uma
híper-heurística desse tipo pode ser projetada usando alguma meta-
heurística. Importante no projeto é uma representação adequada de
uma heurística generalizada para o problema e diversas heurísticas
ou heurísticas parametrizadas que instanciam a heurística generali-
zada. As operações correspondentes modificam, constroem ou re-
combinam heurísticas. Uma alternativa é aplicar diferentes heurísti-
cas durante a otimização (“online”). Para isso uma híper-heurística
precisa decidir qual sub-heurística aplicar quando.

Exemplo 5.7 (Híper-heurística online construtiva)
Considera o empacotamento unidimensional que permite diversas
estratégias gulosas para selecionar o próximo item a ser empacotado
(na ordem dada ou em ordem não-crescente, no contêiner atual ou no
primeiro ou melhor contêiner). Uma híper-heurística pode selecionar
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a estratégia de acordo com a solução parcial. Um exemplo é Ross
et al. (2002): uma solução parcial é representada pelo número de
itens, e as percentagens de itens pequenas, médias, grandes e muito
grandes e um classificador é treinado para decidir qual de quatro
regras candidatas é aplicada. ♦

Exemplo 5.8 (Híper-heurística online por modificação)
Uma híper-heurística pode usar conceitos da busca tabu para a sele-
ção de heurísticas de modificação H1, . . . ,Hk. Associa um valor vi
com cada heurística Hi. Aplica em cada passo a heurística Hi de
maior valor (uma ou mais vezes). Caso ela melhora a solução atual,
aumenta vi, senão diminui vi e declara Hi tabu. ♦

Exemplo 5.9 (Híper-heurística offline)
Fukunaga (2008) apresenta uma abordagem para gerar heurísticas
que selecionam uma variável a ser invertida em uma busca local para
o problema SAT. A regra de seleção é representada por uma expres-
são, que inclui seleções típicas de algoritmos conhecidos como a res-
trição para cláusulas falsas, a seleção pelo aumento da função obje-
tivo, uma seleção pelo tempo da última modificação ou uma seleção
randômica. Essas restrições podem ser combinadas por condições.
A regra de seleção do WalkSAT, por exemplo, é representada por

# BC0: cláusula falsa aleatória (CFA)
(IF-VAR-COND = +NEG-GAIN+ 0 # v1, caso tem perda 0, senão v2

(GET-VAR +BC0 +NEG-GAIN+) # v1: var. de menor perda numa CFA
(IF-RAND-LTE 0.5 # v2: com 0.5 de probabilidade,

(GET-VAR +BC0+ +NEG-GAIN+) # var. de menor perda numa CFA
(VAR-RANDOM +BC0+) # ou uma var. aleatória de uma CFA

)
)

Um algoritmo genético em estado de equilíbrio evolui as regras de
seleção. A população inicial consiste de expressões aleatórias restri-
tas por uma gramática que garante que eles selecionam uma variá-
vel. O algoritmo seleciona dois pais com uma probabilidade linear
no posto na população, e gera 10 filhos. A estratégia de seleção é
(µ + λ). A recombinação de pais p1 e p2 é “if (condição) then p1
else p2” com 10 condições diferentes, p.ex. i) uma seleção randômica
com probabilidade 0.1, 0.25, 0.5, 0.75, 0.9, ii) a variável mais “antiga”
entre p1 e p2, ou iii) a variável de p1 caso ela não invalida nenhuma
cláusula, senão p2. Como a recombinação aumenta a profundidade
das expressões, uma regra substitui sub-arvóres de altura dois que
ultrapassam um limite de profundidade por uma expressão de me-
nor altura. Isso serve também como mutação das expressões. Cada
regra é avaliada em até 200 instâncias com 50 variáveis e caso pelo
menos 130 execuções tiveram sucesso em mais 400 instâncias com
100 variáveis e recebe uma valor s50 + 5s100 + 1/f com si o número
de sucessos em instâncias com i variáveis e f o número médio de ite-
rações em instâncias com sucesso. As heurísticas evoluídas em uma
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população de 1000 indivíduos, limitado por 5500 avaliações, com li-
mite de profundidade entre 2 e 6 são competitivas com heurísticas
criadas manualmente. ♦

5.3. Heurísticas paralelas

Heurísticas podem ser aceleradas por paralelização. A granularidade
do paralelismo (a relação entre o tempo de computação e comuni-
cação) é importante para obter uma boa aceleração e tipicamente
define ou limita a escolha da arquitetura paralela. A paralelização
mais básica executa diversas heurísticas (ou a mesma heurística ran-
domizada) em paralelo e retorna a melhor solução encontrada. Essa
estratégia corresponde com repetições independentes, possui uma
granularidade alta, tem a vantagem de ser simples de realizar, e gera
uma aceleração razoável. Uma variante é uma decomposição do es-
paço de busca em subespaços.

Exemplo 5.10 (Aceleração de heurísticas de busca)
Supõe um problema de busca com uma função de probabilidade ex-
ponencial λe−λt de encontrar uma solução no intervalo [t, t+ dt]. A
distribuição do mínimo de p variáveis distribuídas exponencialmente
com λ1, . . . , λk é distribuído exponencial com parâmetro λ =

∑
i λi.

Logo, para p repetições paralelas independentes, obtemos uma nova
distribuição exponencial do tempo de sucesso com parâmetro pλ. O
valor esperado de uma distribuição exponencial é λ−1, e assim obte-
mos uma aceleração esperada de λ−1/(pλ)−1 = p. ♦

As três técnicas heurísticas principais permitem algoritmos paralelos
de granularidade fina ou média:

• Buscas por modificação: a exploração de uma única trajetória
é inerentemente sequencial. Uma paralelização de granulari-
dade fina pode avaliar toda vizinhança em paralelo (ou alguns
movimentos, e.g. na tempera simulada). A granularidade pode
ser aumentada por vizinhanças grandes.

• Busca por construção: similarmente a construção por elemen-
tos é sequencial, mas os candidatos podem ser avaliados em
paralelo.

• Busca por recombinação: permite uma granularidade média
paralelizando os passos de seleção, recombinação e melhora
de subconjuntos de soluções sobre subconjuntos de soluções
independentes.

Uma busca por modificação ou construção pode ser paralelizado me-
lhor avaliando diversas trajetórias ou construções em paralelo. Esse
tipo de paralelização se aplica diretamente em métodos como segue
os vencedores e colônias de formigas.
Uma paralelização com granularidade fina ou média é mais ade-
quada para arquiteturas com memoria compartilhada. Eles podem
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ser realizadas de forma conveniente com múltiplos threads (explici-
tamente ou com abordagens semiautomáticos usando diretivas como
OpenMP).

Exemplo 5.11 (GSAT paralelo em C++ com OpenMP)
Uma versão simplificada de uma busca “melhor melhora” para o
problema SAT (ver exercícios) pode ser paralelizada em OpenMP
por

#pragma omp parallel shared(bestvalue,bestj)
private(t_bestvalue,t_bestj)

{
#pragma omp for private(value)

for(unsigned j=1; j<=I.n; j++) {
int value = S.flipvalue(j);
if (value>t_bestvalue) {

t_bestvalue = value;
t_bestj = j;

}
}

#pragma omp critical
{

if (t_bestvalue > bestvalue) {
bestvalue = t_bestvalue;
bestj = t_bestj;

}
}

}

♦

Modelos cooperativos Uma estratégia de granularidade média são
modelos cooperativos: a mesma ou diferentes heurísticas (“agentes”)
que executam em paralelo trocam tempo a tempo informações sobre
os resultados da busca. O projeto de uma estratégia inclui a definição

• de uma topologia de comunicação, que define quais agentes
trocam informações. Exemplos de topologias são grades (de
diferentes dimensões, abertas ou fechadas), estrelas, ou grafos
completos.

• da informação trocada. Exemplos incluem incumbentes, me-
morias de frequência, ou sub-populações.

• de uma estratégia de incluir a informação no recipiente, por
exemplo substituindo um parte da população ou combinar me-
morias de frequência.

• da frequência com qual a informação é trocada.

Um exemplo simples de modelos cooperativos é um conjunto elite
compartilhado, que pode ser implementado de forma mais simples
por um esquema de mestre-escravo.
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Exemplo 5.12 (Colaboração indireta: times assíncronos)
Uma extensão da ideia do conjunto elite compartilhado são times as-
síncronos: uma coleção de diferentes algoritmos (de construção, me-
lhoras, ou recombinação) (chamados de agentes) conectadas por me-
morias. Cada agente trabalha de forma autônoma e insere, no caso
de heurísticas construtivas, ou extrai, modifica e retorna, no caso de
heurísticas de melhora ou recombinação, soluções das memorias.
Souza e Talukdar (1993) apresentam um time assíncrono para o PCV
com nove agentes: inserção arbitrária (IA) completa uma rota par-
cial por inserção de uma cidade aleatória não-visitada no melhor
ponto; shift (SH) testa todos deslocamentos de até três cidades con-
secutivas; Lin-Kernighan (LK) aplica o algoritmo do mesmo nome;
Lin-Kernigham simples (LS) aplica Lin-Kernighan mas termina na pri-
meira melhora encontrada; misturador (MI) tenta criar uma nova rota
com as arestas de duas rotas (eventualmente completada por demais
arestas); Held-Karp aplica o algoritmo do mesmo nome para obter um
limite inferior e 1-árvores (uma árvore mais um vértice conectado a
ela via duas arestas); misturador de árvores (MA) mistura uma rota e
uma 1-árvore para gerar uma nova rota; destruidor (DE) quebra ro-
tas em segmentos, dados pela interseção de duas rotas; limitador (L)
remove rotas piores ou aleatórias (com uma seleção linear de acordo
co a distância, tal que a rota melhor nuca é removida) para limi-
tar o número de rotas. Os agentes são conectados de acordo com a
figura 5.1.
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Rotas
parciais

Rotas
grossas

Rotas
melhoradas 1-árvores

IA

SH
MI

L

LK LS

HK

DE MA

Figura 5.1.: Exemplo de times assín-
cronos para o PCV (Souza e Talukdar
1993).

♦

Exemplo 5.13 (Algoritmos genéticos no modelo de ilhas)
A metáfora evolutiva naturalmente sugere uma abordagem distri-
buída em algoritmos genéticos: populações panmíticas em quais todos
pares de indivíduos da mesma espécie são candidatos para serem
recombinados são raras. O modelo de ilhas propõe populações com
uma evolução independente e uma troca infrequente de indivíduos
entre as ilhas.
Luque e Alba (2011) discutem um algoritmo genético distribuído
para MAXSAT com 800/p indivíduos em cada um dos p processa-
dores, recombinação em um ponto com probabilidade 0.7 e mutação
1-flip com probabilidade 0.2. Os processadores formam um anel di-
recionado e cada 20 iterações uma população manda um individuo
aleatória para o seu vizinho que incorpora-o caso o valor da fun-
ção objetivo está maior que a pior indivíduo da população. Numa
instância com 100 variáveis e 430 cláusulas eles observam uma ace-
leração de 1.93, 3.66, 7.41, e 14.7 para p = 2, 4, 8, 16 em média sobre
100 replicações. ♦

5.4. Heurísticas para problemas multi-objetivos

Um problema multi-objetivo possui mais que uma função objetivo.
O valor de uma solução ϕ(s) = (ϕ1(s), . . . ,ϕk(s))t ∈ Rk domina um
outro valor ϕ(s ′) caso ϕ(s) < ϕ(s ′) (com < tal que existe pelo me-
nos uma componente estritamente menor). Uma solução s cujo valor
não é dominado pelo de valor de uma outra solução é eficiente (ou
Pareto-ótima). Diferente da otimização mono-objetivo podem exis-
tir valores incomparáveis (e.g. (1, 2) e (2, 1)). Tais soluções formam
a fronteira Pareto (ver fig. 5.2), e um algoritmo multi-objetivo geral-
mente mantém uma população de soluções não-dominadas. Limites
para soluções não-dominadas são o ponto ideal

ι = (min
s
ϕ1(s), . . . , min

s
ϕn(s))

dos mínimos em cada dimensão, e o nadir

ν = ( max
s|s eficiente

ϕ1(s), . . . , max
s|s eficiente

ϕn(s))

dos máximos das soluções eficientes em cada dimensão. Um valor
υ ≤ ι que domina o valor ideal é utópico.

ϕ1

ϕ2

w1 = w2

Fronteira Pareto

Soluções não-suportadas

Figura 5.2.: Soluções de um problema
com duas funções objetivo. Fronteira
eficiente em vermelho. A solução ótima
ponderada com pesos w1 = w2 em
azul. Duas soluções eficientes não-
suportadas marcadas em verde.

Em problemas difíceis as funções objetivos tendem a ser antagonísti-
cas, i.e., a redução do valor de uma função geralmente aumenta o va-
lor de uma ou mais das outras. Frequentemente um problema multi-
objetivo é resolvido por escalarização, usando uma função mono-objetivo
ponderada ω(s) = wϕ(s) =

∑
iwiϕi(s). Isso geralmente produz

somente um subconjunto das soluções eficientes (ver fig. 5.2). Além
disso, o conjunto de soluções suportadas que podem ser obtidas por
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otimizarω(s) para algum conjunto de pesosw, não inclui todas solu-
ções, i.e. existem soluções não-suportadas que para nenhuma escolha
de w são mínimos de ω(s).

Exemplo 5.14 (Problema da mochila bi-objetivo)
O problema da mochila bi-objetivo (leia: a versão de decisão corres-
pondente)

maximiza cx,
maximiza dx,

sujeito a wx ≤W,
x ∈ Bn,

é NP-completo por generalizar o problema da mochila. ♦

Claramente uma variante multi-objetivo de um problema é mais di-
fícil que a versão mono-objetiva.

Exemplo 5.15 (Caminhos mais curtos)
Determinar o caminho mais curto entre dois vértices num grafo di-
recionado conhecidamente permite um algoritmo polinomial (e.g. al-
goritmo de Dijkstra). A versão (de decisão) bi-objetiva é NP-completo (Se-
rafini 1986): para um problema de mochila max{cx | wx ≤ W, x ∈
Bn} considera um grafo com vértices [0,n] e arestas (ci, 0) e (0,wi)
entre i− 1 e i. Seja Csum =

∑
i∈[n] ci. O problema da mochila pos-

sui uma solução com cx ≥ C e wx ≤ W sse Csum − cx ≤ Csum −C
e wx ≤ W sse existe um caminho de 0 para n com distâncias no
máximo Csum −C e W (ver Figura 5.3).

0

1

2

...

n

(c1, 0)

(c2, 0)

(0,w1)

(0,w2)

Exclui Inclui

Figura 5.3.: Redução do problema da
mochila para o caminho mais curto bi-
objetivo.

♦

Avaliação de algoritmos multi-objetivos A comparação de algorit-
mos multi-objetivos precisa comparar aproximações Ê da fronteira
eficiente real E. Caso E é conhecido, uma medida simples é a fração
de soluções eficientes encontradas |Ê ∩ E|/|E|. Porém, isso não conta
soluções que são razoavelmente pertas de soluções eficientes. Uma
segunda medida aproveita que todas soluções eficientes são soluções
suportadas, ou caiem num subespaço “triangular” (ver figura 5.2)
de soluções suportadas e mede a fração das soluções em Ê que per-
tencem a esse espaço. Outros exemplos de medidas de qualidade
incluem a distância mínima média para uma solução eficiente

d(Ê,E) =
∑
s∈E

min
ŝ∈Ê

d(s, ŝ)/|E|

e a distância mínima máxima

dmax(Ê,E) = max
s∈E

min
ŝ∈Ê

d(s, ŝ)

ou medidas baseados no volume coberto. Caso E é desconhecido,
uma avaliação aproximada pode ser obtida usando o conjunto de so-
luções suportadas nas medidas acima. No momento não há consenso
sobre a comparação ideal de dois algoritmos multi-objetivos.
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5.4.1. Busca por modificação de soluções

Tempera simulada Para aplicar a tempera simulada no caso multi-
objetivo, o critério de Metropolis (2.3) precisa ser modificado para
comparar valores vetoriais. Uma forma comum é a escalarização local:
para pesos w a qualidade da nova solução é avaliada pela diferença
ponderada das funções objetivos ou das probabilidades (Ulungu et
al. 1999). Por exemplo, com ∆w(s, s ′) = ω(s ′) −ω(s) obtemos o
critério de Metropolis modificado

P(aceitar) =

{
1 caso ∆w(s, s ′) ≤ 0
e−∆w(s,s ′)/kT caso contrário

. (5.4)

O algoritmo mantem um conjunto de soluções eficientes durante a
busca. Ele aceita uma nova solução caso nenhuma outra solução
eficiente dominá-la e aplica critério (5.4) nos outros casos. A tempera
simulada é repetida com vários pesos w aleatórios.
Um outro exemplo de um critério de aceitação, proposto por Suppa-
pitnarm et al. (2000), usa um vetor de temperaturas T ∈ Rn. Com
∆T (s, s ′) =

∑
i∈[n](s

′
i − s

′
i)/Ti uma solução é aceita com probabili-

dade {
1 caso ∆T (s, s ′) ≤ 0
e−∆T (s,s ′) caso contrário

Isso é uma variante do critério (5.4) com pesos wi = kTT−1i variáveis.

Exemplo 5.16 (MOSA para o problema da mochila bi-objetivo)
O algoritmo descrito acima aplicando o critério (5.4) é conhecido por
MOSA (multi-objective simulated annealing). Ulungu et al. (1999)
aplicam MOSA no problema da mochila bi-objetivo em compara-
ção com uma solução exata. As instâncias são geradas aleatoria-
mente com pesos e valores de n itens em [1, 1000] e uma capacidade
W =

∑
i∈[n]wi/r com r ∈ (0, 1). O algoritmo usa uma probabi-

lidade de aceitação inicial de P0 = 0.5, um fator de resfriamento
α = 1− 1/40, L = {5, 15, 25} conjuntos de pesos, e 100, 300, 500 passos
por temperatura. A vizinhança remove aleatoriamente itens até to-
dos itens não selecionados cabem na mochila e depois adiciona itens
aleatórias até nenhum item cabe mais. ♦

Busca tabu Uma busca tabu multi-objetivo tem que definir a “me-
lhor” solução vizinha. O algoritmo MOTS de Gandibleux et al. (1997)
usa a escalarização de Steuer (1986)

S(s ′) =
∥∥λ ◦ (υ−ϕ(s ′))∥∥∞ + ρ

∥∥λ ◦ (υ−ϕ(s ′))∥∥
1

mostrada na Figura 5.4 para selecionar o vizinho não tabu de menor
valor S. O valor de um vizinho s ′ depende um ponto utópico local
υ (i.e. um ponto que domina o ponto ideal da vizinhança N(s)), um
conjunto de pesos λ que define a direção da busca (com

∑
i∈[n] λi =

1) e um parâmetro ρ� 1.

ϕ1

ϕ2

υ λ

Figura 5.4.: Vizinhança com escalariza-
ção de Steuer (1986).
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Exemplo 5.17 (MOTS para o problema da mochila bi-objetivo)
O algoritmo determina inicialmente limites [l,u] para o número de
itens. Na forma mais simples ele busca soluções eficientes com um
número de itens n = u,u− 1, . . . , l, numa vizinhança que troca um
item selecionado xi por um item não selecionado xj. A reinserção do
item i fica tabu para 7 iterações e a deleção do item j para 3 iterações.
Em cada iteração o algoritmo determina todos vizinhos viáveis não
tabu V , que dominam um ponto de satisfação σ e não são dominados
por uma solução na fronteira eficiente atual Ê, e atualiza Ê com estes
pontos. O ponto de satisfação σ é 0 para n = u e se aproxima ao
nadir η do conjunto eficiente Ê do n anterior de acordo com σn−1 =
σn+(ηn−σn)/δ com um tamanho de passo δ ≥ 2. Depois a solução
vizinha s ′ de maior S(s ′) é selecionada. Caso não existe solução
viável em V , algoritmo seleciona o vizinho não-tabu que excede a
capacidade da mochila menos possível. Um critério de aspiração
permite selecionar uma solução tabu que domina todas soluções V
ou que domina um número grande de soluções em Ê.
A solução inicial é aleatória (com n = u itens selecionados) e cada
direção de busca continua com a solução final anterior. Diminuindo
n, o item com o menor valor mínimo dos sobre as dimensões da
mochila é removido.
A implementação testa 25 conjuntos de pesos (λ, 1−λ), com λ = i/24
para i = 0, . . . , 24, aplica no máximo 500 iterações por busca tabu
(para cada conjunto de pesos e cada n), e usa δ = 2 na mesmas
instâncias do exemplo anterior. A busca para com n = l ou caso na
vizinhança não tem solução que domina o ponto de satisfação. ♦

5.4.2. Busca por recombinação de soluções

A maioria das propostas de heurísticas multi-objetivos recombinando
soluções são algoritmos genéticos e evolutivos. Num algoritmo ge-
nético somente a seleção de indivíduos para recombinação depende
da função objetivo. Portanto, uma das modificações que torna um
algoritmo genético multi-objetivo, é uma seleção proporcional com
ω(s), com um vetor de pesos w selecionado aleatoriamente em cada
iteração (Murata et al. 1996). Essa abordagem é simples na imple-
mentação, mas tem a desvantagem que ela foca em soluções supor-
tadas. Um dos algoritmos pioneiros trabalho com k subpopulações, e
seleciona indivíduos em cada subpopulação de acordo com a i-ésima
função objetivo (ver algoritmo 5.2).

Algoritmo 5.2 (Seleção VEGA (Vector-evaluated GA))
Entrada A população atual P.

Saída Uma nova população P.

para i ∈ [k]
seleciona |P|/k indivíduos proporcional com ϕi

aplica recombinação e mutação
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na união S dos indivíduos selecionados

retorne a nova população

Algoritmos recentes determinam o valor de uma solução de acordo
com a proximidade com a fronteira eficiente e a densidade na fron-
teira eficiente, para uma exploração melhor em direção de soluções
eficientes e em regiões esparsas. Para um conjunto de soluções S seja
Ê(S) = Ê1(S) a fronteira eficiente (local) e define recursivamente a
k+ 1-ésima fronteira eficiente por

Êk+1(S) = Ê
(
S \

⋃
i∈[k]

Êk(S)
)
. (5.5)

(ver o exemplo da Fig. 5.5).

ϕ1

ϕ2

E1
E2

E3
E4

E5

E6 E7
E8

E9
E10
E11

E12
E13

Figura 5.5.: Decomposição de um con-
junto de soluções em fronteiras eficien-
tes de acordo com (5.5).

Seja ainda B(x,S) = {s ∈ S | s > x} o conjunto de soluções em S
que dominam x e W(x,S) = {s ∈ S | x > s} o conjunto de soluções
dominadas por x em S. Entre as propostas temos algoritmos que
ordenam soluções s ∈ P da população atual P

• pelo nível k da sua fronteira eficiente s ∈ Êk(P) correspondente
(non-dominated sorting GA, NSGA, NSGA-II);

• pelo número 1+ |B(s,P)| de soluções que dominam s na popu-
lação atual P (MOGA);

• pela fração total da cobertura por soluções de um conjunto E
eficiente atual 1+

∑
t∈B(s,E) |W(t,P)|/(|P|+ 1) que dominam s

(strength Pareto EA, SPEA);

• pelo soma dos postos das soluções que dominam s, r(s) = 1+∑
t∈B(s,P) r(t).

Técnicas para priorizar a exploração de regiões esparsas incluem

• a redução da função objetivo por um fator |Bσ(s) ∩ ϕ̂(P)|−1
(com Br(s) um esfera de raio r e centro ϕ̂(s) e ϕ̂(s) a função
objetivo normalizada para o intervalo [0, 1] em cada dimensão)
(MOGA);

• a soma das distâncias normalizadas para os predecessores e
sucessores na fronteira atual em cada dimensão (“crowding
distance”) (NSGA-II). Para cada dimensão i ∈ [k] supõe que
as soluções x1, . . . , xn de uma fronteira são ordenadas pela i-
ésima coordenada (i.e. x1i ≤ x2i ≤ · · · ≤ xni ). Então o crowding
distance normalizada da solução xs na dimensão i é

ci(x
s) = (ϕi(x

s−1) −ϕi(x
s+1))/(ϕmax

i −ϕmin
i )

para s ∈ [2,n− 1], ci(x1) = ci(x
n) = ∞ e a crowding distance

da solução é c(xs) =
∑
i∈[k] ci(x

s).

Formas de elitismo incluem manter uma ou mais fronteiras eficiente
Êk(P) ou Êk(P ∪C) com filhos C.
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Exemplo 5.18 (NSGA-II)
O algoritmo NSGA-II segue o algoritmo genético 4.3 com uma sele-
ção por um torneio binário de P : entre duas soluções aleatórias a
solução de menor nível k ou, no caso de empate, de menor “crow-
ding distance” é selecionada. Ele sempre aplica mutação (M = C).
A função update que atualiza a população é realizada por

R := P ∪C
seja P := Ê1(R)∪ · · · ∪ Êk(R) com k maximal t.q. |P| ≤ n
if |P| < n

complete P com as n− |P| soluções de Êk+1(R)
de menor ‘‘crowding distance ’’

end if
♦

5.5. Heurísticas para problemas contínuos

Uma forma geral de um problema de otimização contínuo é

minimiza f(x),
sujeito a gi(x) ≤ 0, ∀i ∈ [m],

hj(x) = 0, ∀j ∈ [l],
x ∈ Rn,

com uma função objetivo f : Rn → R, e restrições gi : Rn → R

e hj : Rn → R. Casos particulares importantes incluem funções
lineares e convexas e o caso irrestrito (m = l = 0). As definições 2.1
continuam ser válidas com uma vizinhança

Nε(x) = {x ′ ∈ Rn | ||x− x ′|| ≤ ε} (5.6)

e com a condição adicional que para um mínimo ou máximo local
deve existir um ε > 0 que satisfaz a definição.
Casos simples de um problema de otimização contínua podem ser
resolvidos por métodos indiretos. Um método indireto encontra pri-
meiramente todos candidatos para soluções ótimas por critérios ne-
cessários para otimalidade local, depois verifica a otimalidade local
por critérios suficientes, e finalmente encontra a solução ótima global
por comparação das soluções localmente ótimas. Na otimização ir-
restrita em uma dimensão, por exemplo, temos a condição suficiente
f ′ = 0 para otimalidade local, e a condição suficiente f ′′ > 0 para um
mínimo local e f ′′ < 0 para um máximo local (dado que as derivadas
existem).
Caso resolver f ′ = 0 não é possível técnicas de busca em linha (ingl. line
search) podem ser usadas. Para um domínio restrito x ∈ [a,b] um
método simples é a busca regular: escolhe o melhor entre os pon-
tos x = a+ i∆x, para i = 0, . . . , b(b− a)/∆xc, para um tamanho de
passo ∆x. Um outro exemplo é uma busca em linha com backtracking.
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Algoritmo 5.3 (Busca em linha com backtracking)
Entrada Um ponto x, uma direção de descida ∆x, α ∈ (0, 0.5),

β ∈ (0, 1).

Saída Uma nova solução x.

t := 1
while f(x+ t∆x) > f(x) +αtf ′(x)∆x do t := βt
return x+ t∆x

O algoritmo precisa uma direção de descida ∆x, tal que f ′(x)∆x < 0,
por exemplo ∆x = −f ′(x). O parâmetro α define uma perda em
qualidade aceitável, o parâmetro β a precisão da busca. A busca
termina, porque para um t suficientemente pequeno a condição é
satisfeita localmente.
Os dois métodos podem ser generalizadas para o caso irrestrito no
Rn. A busca regular limitada para S = {x ∈ Rn | l ≤ x ≤ u} para
um limitante inferior l ∈ Rn e superior u ∈ Rn avalia todos pontos
x = l+ i ◦∆x ∈ S, com i ∈ Z+ para um tamanho de passo ∆x ∈ Rn.
A busca em linha com backtracking substitui a derivada f ′(x) pelo
gradiente ∇f(x); uma direção de busca então é ∆x = −∇f(x).
Métodos de busca em linha são elementos de métodos univariados
de otimização, que otimizam uma variável por vez, ou mais geral,
uma direção de busca por vez. A busca por relaxação de Southwell por
exemplo repetidamente seleciona a variável xi que corresponde com
o maior valor absoluto do gradiente |∂f/∂xi|(x). Um dos métodos
mais comuns é a descida do gradiente (ingl. gradient descent).

Algoritmo 5.4 (Descida do gradiente)
Entrada Um ponto inicial x ∈ Rn.

Saída Uma nova solução x ∈ Rn.

repeat
∆x := −∇f(x)
aplica uma busca em linha na direção ∆x

para obter um tamanho de passo t
x := x+ t∆x

until critério de parada satisfeito
return x

Um critério de parada comum é ||∇f(x)||2 ≤ ε, para um ε > 0 pe-
queno.

Exemplo 5.19 (Redes neurais artificias)
Uma grande classe de redes neurais artificias são redes sem realimentação
(ingl. feed forward networks). Eles recebem informação numa camada de
entrada, que passa por múltiplas camada internas até chegar na camada
de saída. A saída x de um elemento de uma camada é uma função da
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n1 n2

· · ·

nk−1 nk

W1 W2 Wk−1

ξ = x1 xk

Figura 5.7.: Rede neural artificial.

soma ponderada dos elementos x ′1, . . . , x ′n da camada anterior:

x = g
(∑
i∈[n]

wix
′
i

)
. (5.7)

A função g é a função de ativação. (O modelo simples de um neurônio

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

Figura 5.6.: Função sigmoide (5.8).

de McCulloch e Pitts (1943) usa g(x) = [x > 0].) Ela tipicamente é
sigmoide (possui forma de “s”), por exemplo

g(x) =
1

1+ exp(−2βx)
(5.8)

com derivada g ′ = 2βg(1 − g) (ver Fig 5.6). Em geral supõe que
temos uma rede com k camadas e a camada i possui ni elementos.
Sejam W1, . . . ,Wk−1 as matrizes de pesos entre as camadas, com
Wi ∈ Rni+1×ni . Logo uma entrada x1 ∈ Rn1 na primeira camada é
propagada para frente por

hi+1 =Wixi; xi+1 = g(hi) (5.9)

para i ∈ [k− 1]. O valor hi é a entrada da camada i, o valor xi ∈ Rni

a sua saída. (A função g é aplicada em cada componente.) O objetivo
de uma rede neural artificial é treiná-la para produzir saídas deseja-
das (e espera-se que a rede generaliza e produz resultados desejáveis
para entradas desconhecidas). Na aprendizagem supervisionada a rede
repetidamente recebe uma entrada x1 = ξ e a saída xk é comparada
com uma saída desejada σ. O erro é definido por

E(W1, . . . ,Wk) = 1/2
∑
i∈[nk]

(σi − x
k
i )
2.

O treinamento consiste em ajustar o pesos W1, . . . ,Wk tal que E é
minimizado. Isso é um problema de otimização contínua, e nos po-
demos aplicar a descida de gradiente para obter pesos melhores. No
caso de uma rede com somente uma camada interna (k = 3) temos

E(W1,W2) = 1/2
∑
k∈[n3]

(
σk − g

( ∑
j∈[n2]

W2kjg
( ∑
i∈[n1]

W1jix
1
i

)))2
.
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e o gradiente para os pesos entre a segunda e a terceira camada é

∂E

∂W2kj
= −(σk − x

3
k)g

′(h3k)x
2
j

= −δ2kx
2
j

com δ2k = g ′(h3k)(σk − x
3
k). Similarmente o gradiente para os pesos

entre a primeira e a segunda camada é

∂E

∂W1ji
= −

∑
k∈[n3]

(σk − x
3
k)g

′(h3k)W
2
kjg
′(h2j )x

1
i

= −
∑
k∈[n3]

δ2kW
2
kjg
′(h2j )x

1
i

= −δ1j x
1
i .

com δ1j = g ′(h2j )
∑
k∈[n3] δ

2
kW

2
kj.

Aplicando a descida do gradiente com um tamanho de passo η ob-
temos a regra simples

∆Wikj = −η
∂E

∂Wikj
= ηδikx

i
j (5.10)

com

δ2 = g ′(h3) ◦ (σ− x3)
δ1 = g ′(h2) ◦ δ2W2.

Isso pode ser generalizado para um número arbitrário de camadas
por

δk = g ′(hk) ◦ (σ− xk)
δi = g ′(hi+1) ◦ δi+1Wi+1, i ∈ [k− 2]. (5.11)

Logo enquanto os valores são propagadas para frente, de acordo
com (5.9), os erros são propagadas para atrás por (5.11) e o método
é chamada propagação para atrás (ingl. backpropagation).
Para treinar uma rede serve um conjunto de entradas ξ1, . . . , ξm com
saídas desejadas σ1, . . . ,σm. Repetidamente para entrada ξi a saída
é calculada por propagação para frente, os erros δ são calculados por
propagação para atrás e os pesos são ajustados pela regra (5.10).

♦

5.5.1. Meta-heurísticas para otimização contínua

A otimização com enxames de partículas da seção 4.6 é um exemplo
de uma meta-heurística que pode ser aplicado diretamente na otimi-
zação contínua. De fato a maioria das heurísticas por modificação ou
recombinação podem ser aplicadas para problemas contínuas com
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uma definição adequada de uma vizinhança e de uma recombina-
ção. Exemplos de vizinhanças contínuas são a vizinhança uniforme
Nε(x) (5.6) e a vizinhança Gaussiana N(x) = N(x,σ). Recombina-
ções da seção 4 que podem ser aplicadas no caso contínuo são as
recombinações randomizadas, lineares e particionadas.
Um exemplo que inclui uma estratégia construtiva para otimização
contínua é o GRASP contínuo (C-GRASP).

Algoritmo 5.5 (C-GRASP)
Entrada Conjunto de soluções viáveis S = {x ∈ Rn | l ≤ x ≤ u},

parâmetros h0, hf, ρ e α.

Saída Uma solução x ∈ S.

repeat
x := U[l,u]
h := h0
repeat
x := construct(x,α,h)
x := localsearch(x, ρ,h)
if x não melhorou
h := h/2

end if
until h < hf

until critério de parada satisfeito
return x

A construção gulosa é univariada, selecionando entre uma das me-
lhores direções de otimização

construct(x,α,h)=
S := [n]
while S 6= ∅ do

for i ∈ S: zi := buscaregular(xi, li,ui,h)
C := {i ∈ S | f(zi) ≤ (1−α)mini zi +αmaxi zi}
seleciona j ∈ C aleatório
xj := zj
S := S \ {j}

end while
end

x1

x2

l

u

x x ′

x ′′

Figura 5.8.: Construção no C-GRASP.

A vizinhança da busca local projeta todos pontos da grade regular
R(x) = {x | x = l+ i ◦ ∆x ∈ S, i ∈ Z+} numa esfera de raio h com
centro x

Bh(x) = {x ′′ ∈ S | x ′′ = x+ h(x ′ − x)/||x ′ − x||2, x ′ ∈ R(x) \ {x}}

e repetidamente busca numa direção aleatória em Bh(x).

x1

x2

l

u

x
x ′x ′′

Figura 5.9.: Busca local com h = 1 no
C-GRASP.

localsearch(x,ρ,h)=
repeat

seleciona x ′ ∈ Bh(x) aleatoriamente
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if f(x ′) < f(x): x := x ′

until ρ|R(x)| pontos examinados sem melhora
return x

end

5.6. Notas

O livro do Talbi (2009, ch. 4) dá uma boa introdução à otimização
multi-objetivo. Konak et al. (2006) apresentam estratégias para algo-
ritmos genéticos multi-objetivos. Jaszkiewicz e Da̧browski (2005) é
uma biblioteca (já um pouco antiga) com implementações de diver-
sas meta-heurísticas multi-objetivos. Boyd e Vanderberghe (2004) é
uma introdução excelente à otimização convexa.
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6. Metodologia para o projeto de
heurísticas

Over the last decade and a half, tabu search algorithms
for machine scheduling have gained a near-mythical re-
putation by consistently equaling or establishing state-of-
the-art performance levels on a range of academic and
real-world problems. Yet, despite these successes, remar-
kably little research has been devoted to developing an
understanding of why tabu search is so effective on this
problem class.

(Watson et al. 2006)

Despite widespread success, very little is known about
why local search metaheuristics work so well and under
what conditions. This situation is largely due to the fact
that researchers typically focus on demonstrating, and
not analyzing, algorithm performance. Most local search
metaheuristics are developed in an ad hoc manner. A
researcher devises a new search strategy or a modifica-
tion to an existing strategy, typically arrived at via in-
tuition. The algorithm is implemented, and the resulting
performance is compared with that of existing algorithms
on sets of widely available benchmark problems. If the
new algorithm outperforms existing algorithms, the re-
sults are published, advancing the state of the art. Unfor-
tunately, most researchers [...] fail to actually prove that
the proposed enhancements actually led to the observed
performance increase (as typically, multiple new features
are introduced simultaneously) or whether the increase
was due to fine tuning of the algorithm or associated pa-
rameters, implementation tricks, flaws in the comparative
methodology, or some other factors.

Gendreau e Potvin (2010)

The field of optimization is perhaps unique in that natu-
ral or man-made processes completely unrelated to opti-
mization can be used as inspiration, but other than that,
what has caused the research field to shoot itself in the
foot by allowing the wheel to be invented over and over
again? Why is the field of metaheuristics so vulnerable to
this pull in an unscientific direction? The field has shif-
ted from a situation in which metaheuristics are used as
inspiration to one in which they are used as justification,
a shift that has far-reaching negative consequences on its
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credibility as a research area.
[. . .]
The field’s fetish with novelty is certainly a likely cause.
[. . .]
A second reason for this research to pass is the fact that
the research literature in metaheuristics is positively ob-
sessed with playing the up-the-wall game (Burke et al.,
2009). There are no rules in this game, just a goal, which
is to get higher up the wall (which translates to “obtain
better results”) than your opponents. Science, however, is
not a game. Although some competition between resear-
chers or research groups can certainly stimulate innova-
tion, the ultimate goal of science is to understand. True
innovation in metaheuristics research therefore does not
come from yet another method that performs better than
its competitors, certainly if [it] is not well understood why
exactly this method performs well.

Sörensen (2013)

As citações acima caracterizam o estado metodológico do projeto de
heurísticas. Por isso, é necessário enfatizar que o projeto de heu-
rísticas é uma disciplina experimental, e tem que seguir o método
científico. Em particular, o projeto

i) inicia com uma questão científica específica, bem definida e clara;
(“Qual o melhor método para resolver o PCV?”)

ii) gera um ou mais hipóteses para responder essa questão;
(“Dado o mesmo tempo, Lin-Kernighan iterado sempre é me-
lhor que tempera simulada.”)1

iii) projeta testes experimentais para verificar (estatisticamente) ou
rejeitar as predições das hipóteses;

iv) analisa os resultados dos experimentos e conclui; isso pode re-
sultar em novas hipóteses.

6.1. Projeto de heurísticas

O objetivo típico do projeto de uma heurística é obter soluções de
boa qualidade em tempo adequado. Os critérios são correlaciona-
dos, i.e. mais tempo geralmente produz melhores soluções. O tempo
disponível depende da aplicação e tipicamente influencia a técnica
heurística (pensa: 100 metros rasos vs. maratona). Além disso, pode
ser o objetivo do projeto obter uma heurística

• simples, i.e. fácil de implementar, entender e explicar;

1Observe que isso é uma ilustração: essa hipótese é quase irrefutável, e precisa ser
muito mais específica na prática.
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• robusta, i.e. simples de calibrar e pouco sensível aos parâmetros;

• generalizável, i.e. aplicável a um grande número de problemas
similares

(Barr et al. 1995; Cordeau et al. 2002).
De acordo com a nossa classificação, heurísticas usam três operações
principais: construção, por adição de elementos, modificação, por
alteração de elementos, e recombinação, por selecionar e unir ele-
mentos de mais que uma solução. Essas operações são específicas ao
problema, junto com a representação e a função objetivo. A litera-
tura sugere que uma meta-heurística efetiva depende dos seguintes
componentes, em ordem da sua importância (Watson et al. 2006; Hertz
et al. 2003):

1. as técnicas específicas ao problema;

2. a meta-heurística; uma meta-heurística básica precisa técnicas
para evitar estagnação (mínimos locais);

3. a intensificação e diversificação estratégica usando memoria
que beneficia geralmente cada heurística;

4. os parâmetros dos componentes;

5. a implementação eficiente.

Na prática inversões são possíveis, e todos os pontos tem que ser
tratados sistematicamente para obter resultados de estado de arte.
Por isso sugerimos uma metodologia construtiva por componentes para
o projeto de heurísticas.

1. Estuda diferentes representações do problema. Projeta uma es-
trutura de dados adequada com apoia eficiente para as princi-
pais operações (adição, deleção, alteração de elementos e ava-
liação incremental). Determine a complexidade dessas opera-
ções. Considera os princípios 1.1 e 1.3.

2. Propõe diferentes operações de construção, modificação e re-
combinação. Avalia estatisticamente cada uma das operações e
o seus parâmetros separadamente. Para modificação considera
os princípios 2.2 e 2.4.

3. Considere uma análise da paisagem de otimização (cáp. 6.2).

4. Combina sistematicamente operações básicas para uma meta-
heurística básica que evita mínimos locais ou uma meta-heurística
construtiva. Especificamente projeta e testa se as técnicas para
evitar mínimos locais são efetivas. Avalia a contribuição e a
interação dos componentes e o seus parâmetros. Procede das
técnicas mais simples para as mais complexas (e.g. busca local,
tempera simulada, busca tabu; resp. construção gulosa, bubble
search, colônia de formigas).
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5. Adiciona uma estratégia de intensificação e diversificação usando
uma forma de memoria de longa duração. Procede das técnicas
mais simples para as mais complexas (e.g. Probe, GRASP-PR,
algoritmo genético/busca dispersa).

Complementarmente o método científico sugere:

1. Compare durante o projeto com o estado de arte em algoritmos
exatos, aproximativos, e heurísticos em tempo e qualidade.

2. Procure não simplesmente produzir “melhores” resultados mas
explicações do funcionamento do método.

3. Os experimentos tem que ser reproduzíveis por outros pesqui-
sadores. Consequentemente as instâncias, as saídas, as solu-
ções completas obtidas e o código tem que ser publicado (even-
tualmente em forma “ilegível” mas compilável, caso investi-
mento em desenvolvimento ou propriedade intelectual tem que
ser protegido) (Barr et al. 1995).

Complementarmente a literatura sobre solução de problemas sugere
(e.g. Polya (1945))

1. Tenta entender o problema profundamente. Resolve algumas
instâncias manualmente, testa heurísticas construtivas, de mo-
dificação ou recombinação em alguns exemplos pequenos ma-
nualmente. Para heurísticas de modificação estuda exemplos
de mínimos locais: porque eles são mínimos locais? Com quais
operações daria para escapar desses mínimos (princípio 2.4)?

2. Tenta resolver o problema de melhor forma algoritmicamente,
mesmo ele sendo NP-completo. Estuda algoritmos aproxima-
tivos e exatos para o problema. Usa as técnicas das melhores
algoritmos para construir as operações básicas da heurística.

3. Caso problema é NP-completo: estuda a prova da dificuldade
cuidadosamente: quais características do problema torna-o di-
fícil? Eles são comuns em instâncias práticas? Caso contrário,
a prova pode ser simplificada? Ou é possível que o problema
não é NP-difícil em instâncias práticas? É possível isolar carac-
terísticas que simplificam instâncias?

4. Procure identificar o subproblema mais simples que pode ser
resolvido. Procure identificar problemas semelhantes e estudar
as suas soluções. Procure generalizar o problema. Dá para
transformar o problema para um outro problema similar?

Escolha de uma meta-heurística Dado o metodologia acima, uma
guia básica para escolha de uma meta-heurística é

• A meta-heurística é menos importante que as operações bási-
cas. Escolhe a meta-heurística mais tarde possível, e somente
depois de estudar as operações básicas.
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• Seleciona uma meta-heurística que conhecidamente funciona
bem em problemas similares.

• Tendencialmente técnicas construtivas são mais adequadas para
problemas mais restritos.

• Tendencialmente intensificação é preferível para uma escala
de tempo curta; algoritmos estocásticos (e.g. tempera simu-
lada, construção iterada independente) tendem a precisar mais
tempo.

• Tendencialmente métodos mais sistemáticos são preferíveis para
problemas maiores. Por exemplo, a probabilidade de encon-
trar soluções de boa qualidade por construção iterada indepen-
dente tipicamente diminui com o tamanho da instância (Gen-
dreau e Potvin 2010, cap. 20) (“central limit catastrophe”).

6.2. Analise de paisagens de otimização

Para estimar a dificuldade de resolver um problema para uma dada
vizinhança temos que responder (empiricamente) perguntas como

• Qual a probabilidade de encontrar uma solução ótima a priori?

• O quanto a função objetivo varia entre soluções vizinhas?

• Qual a distância média entre dois mínimos locais?

• O quanto a função objetivo guia uma busca local para soluções
ótimas?

Essa perguntas geralmente são difíceis para responder, porque eles
supõem que já conhecemos as soluções ótimas do problema. Na
prática podemos obter estimativas dessa medidas por amostragem.

Distribuição de tipos de soluções Para uma dada vizinhança po-
demos classificar a soluções como segue. Seja E(s) = {s ∈ N(s) |

ϕ(s ′) = ϕ(s)} o conjunto de vizinhos com o mesmo valor da função
objetivo, e W(s) = N(s) \ B(s) \ E(s) o conjunto de vizinhos piores
que s. Com isso obtemos a classificação

|B(s)| |E(s)| |W(s)| Tipo de solução

0 0 0 Solução isolada
> 0 0 0 Máximo local estrito

0 > 0 0 Plateau
> 0 > 0 0 Máximo local

0 0 > 0 Mínimo local estrito
> 0 0 > 0 Declive

0 > 0 > 0 Mínimo local
> 0 > 0 > 0 Patamar

99



6. Metodologia para o projeto de heurísticas

Exemplo 6.1 (Permutation flow shop problem)
Obtemos para as 10! = 3.628.800 soluções da instância “carlier5” do
PFSSP na vizinhança N1 que insere uma tarefa em qualquer outra
posição nova: Existem três mínimos globais com valor 7720. Todos

Tipo de solução # (%) Tipo de solução # (%)

Solução isolada 0 (0) Mínimo local estrito 5 (0.00014)
Máximo local estrito 0 (0) Declive 134784 (3.71)
Plateau 0 (0) Mínimo local 1743 (0.048)
Máximo local 6 (0.00017) Patamar 3492262 (96.24)

três são não-estritos. Logo a probabilidade a priori de um mínimo
local ser um mínimo global é 0.0017. A distribuição dos 86 valores
dos mínimos locais é (mínimo/quartil inferior/mediana/quartil su-
perior/máximo): 7720, 8039, 8047, 8335, 8591. Um busca local na
vizinhança N1 então é no máximo 11.3% acima do valor ótimo. ♦

Variação entre soluções vizinhas Intuitivamente, uma paisagem de
otimização “menos contínua” e “mais curvada” é mais difícil para
um algoritmo de busca local. Isso pode ser formalizado pela função
de correlação da paisagem (ingl. landscape correlation function)

ρ(i) =
cov(ϕ(s)ϕ(s ′))d(s,s ′)=i

σ(ϕ)2
=
〈ϕ(s)ϕ(s ′)〉d(s,s ′)=i − 〈ϕ(s)〉2

〈ϕ2(s)〉− 〈ϕ(s)〉2 .

(6.1)

Temos ρ(i) ∈ [−1, 1]: para valores perto de 1 o valor de soluções
vizinhas é perto da valor da solução atual; para um valor perto de
0, o valor de uma solução vizinha não é relacionado com o valor da
solução atual.Demonstração: Análise de pai-

sagens de otimização. Exemplo 6.2 (Permutation flow shop problem)
No caso do PFSSP obtemos ρ(1) ≈ 0.79. Logo existe uma alta corre-
lação entre o valor de uma solução e o valor das soluções vizinhas:
podemos esperar que uma busca local funciona razoavelmente bem.

♦

A distância média entre dois mínimos locais pode ser estimado pela
distância de correlação (ingl. correlation length) l =

∑
i≥0 ρ(i). Com B(r)

o número de soluções numa distância no máximo r de uma solução
esperamos que

P(s é ótimo local) ≈ 1/B(l).

Essa relação é conhecida como conjetura da distância de correlação.
A função de correlação ρ(i) pode ser determinada empiricamente
pela auto-correlação de uma caminhada aleatória. Para uma cami-
nhada aleatória s1, s2, . . . , sm com m� i obtemos o estimador

ρ(i) = ρ(ϕ(s1:m−i),ϕ(si+1:m)),
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onde sa:b = (sa, . . . , sb) e ϕ(s) = (ϕ(s1), . . . ,ϕ(sm)). Essa estima-
tiva é somente correta, caso uma caminhada aleatória é representa-
tiva para toda paisagem de otimização. Tais paisagens são chamadas
isotrópicas. Frequentemente a correlação diminui exponencialmente
com a distância de forma ρ(i) = ρ(1)i e ρ(1) = e−1/l. Neste caso,
podemos determinar l por

l = (− ln(|ρ(1)|))−1.

Exemplo 6.3 (Permutation flow shop problem)
Com ρ(1) = 0.79 obtemos l ≈ 4.24 e com B(4) = 337210 obtemos
uma probabilidade de 0.000003. ♦

Para usar ρ(1) estimado por um caminho aleatório na conjetura da
distância de correlação, ainda temos que corrigir a distância: caso
uma caminhada aleatória de i passos resulta numa solução de dis-
tância média d(i), a probabilidade de uma solução ser um ótimo
local é ≈ 1/B(d(l)).

Correlação entre qualidade e distância A função objetivo guia uma
busca local para soluções melhores caso a distância d∗(s) para a so-
lução ótima mais próxima de uma solução s e correlacionada com a
valor da função objetivo. A correlação qualidade-distância (ingl. fit-
ness distance correlation)

ρ(ϕ,d∗) =
cov(ϕ,d∗)
σ(ϕ)σ(d∗)

=
〈ϕ(s)d∗(s)〉− 〈ϕ(s)〉〈d∗(s)〉√

〈ϕ2(s)〉− 〈ϕ(s)〉2
√
〈d∗2(s)〉− 〈d∗(s)〉2

(6.2)

mede isso. Temos ρ(ϕ,d∗) ∈ [−1, 1]: para valores positivos temos
uma estrutura “big valley” com o um extremo de uma correlação
linear ideal para um valor de 1; para valores negativos a função obje-
tivo de fato não guia a busca. No primeiro caso intensificação maior,
no segundo uma diversificação maior é indicado. A correlação tam-
bém serve para comparar vizinhanças: muitas vezes a vizinhança
que possui uma maior correlação produz resultados melhores. Demonstração: Correlação en-

tre qualidade e distância.

Exemplo 6.4 (Permutation flow shop problem)
Para a vizinhança “shift” que desloca uma elemento da permuta-
ção para qualquer outra posição, obtemos a seguinte distribuição de
distância e desvio de uma solução da solução ótima mais perta.
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Um ρ ≈ 1.7 · 10−5 que a correlação entre distância e qualidade é
negligível. ♦

6.3. Avaliação de heurísticas

Uma heurística, como qualquer algoritmo, transforma determinadas
entradas (as instâncias do problema) em saídas ou respostas (as so-
luções viáveis). Essa transformação é influenciada por fatores expe-
rimentais e pode ser analisado (como qualquer outro processo) com
métodos estatísticos adequadas. Os componentes do processo e o
seus parâmetros são fatores controláveis; além disso o processo sofre
fatores incontroláveis (e.g. randomização e as instâncias).
Na avaliação queremos responder perguntas como

• Como os diferentes níveis dos fatores controláveis influem a res-
posta do processo? Quais são os fatores principais? O quanto
os fatores influem a resposta? Existe uma interação entre dife-
rentes fatores? Qual escolha de níveis produz resultados bons
para uma grande variação dos fatores incontroláveis (i.e. uma
heurística robusta)?

• Qual o tempo (empírico) para encontrar uma solução viável, de
boa qualidade, ou ótima em função do tamanho da instância?

Observação 6.1
Medidas de tempo devem ser acompanhadas por informações de-
talhadas sobre o ambiente de teste (tipo de processador, memoria,
etc.). Uma alternativa é informar o custo computacional em número
de operações elementares. ♦
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Complexidade empírica de algoritmos A complexidade de tempo
de um algoritmo prático com alta probabilidade possui a forma

T(n) ∼ abnnc logd n

(ver p.ex. Sedgewick e Wayne (2011, cáp. 1.4) e Sedgewick (2010)).
Frequentemente podemos focar em dois casos simples. Para uma
série de medidas (n, T) podemos avaliar

uma hipótese exponencial Com T(n) ∼ abn, obtemos log T ∼ loga+
n logb. Logo podemos determinar um modelo por regressão
linear entre log T e n;

uma hipótese polinomial Com T(n) ∼ anb obtemos log T ∼ loga+
b logn. Logo podemos determinar um modelo por regressão
linear entre log T e logn.

Exemplo 6.5 (Complexidade empírica em GNU R)
Para um arquivo com tamanho da instância n e tempo T da forma

n T
100 233.0000
250 689.7667
500 1655.8667

podemos determinar a complexidade empírica em GNU R usando Demonstração: Regressão li-
near.d<-read.table("x.dat",header=T)

lm(log(T)~log(n),data=d)
lm(log(T)~n,data=d)

♦

Observação 6.2 (Soma de quadrados na regressão linear)
Supõe que temos valores x ∈ Rn e m observações yi ∈ Rm para
cada i ∈ [n]. A regressão linear determina uma função ŷ = ax̂+ b.
Para a soma de quadrados das distâncias dos pontos aproximados ŷ
e as observações obtemos

SST =
∑
i,j

(yij − ȳ)
2 =
∑
i,j

(
(ȳi − ȳ) + (yij − ȳi)

)2
=
∑
i,j

(ȳi − ȳ)
2 + 2(ȳi − ȳ)(yij − ȳi) + (yij − ȳi)

2

= m
∑
i

(ȳi − ȳ)
2 + 2

∑
i

(ȳi − ȳ)
∑
j

(yij − ȳi)︸ ︷︷ ︸
mȳi−mȳi=0!

+
∑
i,j

(yij − ȳi)
2

= m
∑
i

(ȳi − ȳ)
2 +
∑
i,j

(yij − ȳi)
2

= SSX + SSE.

Isso mostra que podemos decompor a soma de quadrados total SST
em duas componentes: a soma de quadrados obtida pela variação
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das médias em cada ponto x da média geral SSx. Este parte da
variação é explicado pela hipótese linear: ele vem da variação da
função linear. O segundo termo representa a soma de quadrados
obtida pela variação das medidas individuais das médias em cada
ponto x. Este parte pode ser atribuído ao erro experimental. Logo a
quantidade

R2 =
SSX
SST

∈ [0, 1]

representa a “fração explicada” da variação dos dados, e serve como
medida da qualidade da aproximação linear. Observe que isso é
somente possível aplicando a regressão linear em todos os dados,
não nas médias das observações em cada ponto. ♦

Exemplo 6.6 (R2 em GNU R)
Aplicando a regressão linear nos dados de Rad et al. (2009) obtemos

d<-read.table("rad -cpu.dat",header=T)
lm(log(neht)~log(tasks)+log(machines),data=d)Demonstração: Regressão li-

near. A resultado é uma complexidade empírica do algoritmo NEHT de
T(n) = 289ns n1.6m0.6 com R2 = 0.9657. ♦

Aplicado à avaliação de uma heurística isso supõe um critério de
parada diferente de tempo (e.g. encontrar uma solução em proble-
mas de decisão ou convergência em problemas de otimização). Es-
sas técnicas podem ser generalizadas para mais que uma variável.
Por exemplo, em problemas de grafos com n vértices e m ares-
tas a hipótese T(n,m) ∼ anbmc gera um modelo linear log T ∼

loga+ b logn+ c logm e pode ser obtido por regressão linear no-
vamente.

Distribuição de tempo e qualidade Geralmente a heurística é ran-
domizada e logo o tempo de execução T e a valor V são variáveis ale-
atórias. Caso a heurística resolve um problema de decisão, e.g. SAT,
só consideramos a variável T . Para um problema de decisão obte-
mos a probabilidade de sucesso pela função de distribuição acumulada
F(t) = P(T ≤ t). O algoritmo encontra um solução em tempo no
máximo t com probabilidade F(t).
Para um problema de otimização o tempo depende da qualidade.
Logo obtemos a uma probabilidade de sucesso em duas variáveis
pela função de distribuição acumulada (ingl. cumulative distribution
function)

F(t, v) = P(T ≤ t∧ V ≤ v).

Para um valor fixo v ′ obtemos a distribuição restrita de sucesso
F(t) = F(t, v ′). A função F(t) também é chamada o grafo time-to-
target. Para um tempo fixo t ′ obtemos a distribuição de qualidade
de solução F(v) = F(t ′, v).
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Figura 6.1.: Função de distribuição de tempo de um GRASP para o
problema SAT na instância flat75-1 e diferentes valores.

Exemplo 6.7 (Função de distribuição acumulada para SAT)
A Figura 6.1 mostra a probabilidade de sucesso de um GRASP com
α = 0.8 na instância flat75-1 e 100 replicações.

♦

Exemplo 6.8 (Distribuição de tempo e qualidade em GNU R)
Dado um arquivo de tempos de execução

time
695
2888
...

podemos visualizar a distribuição dos tempos e a distribuição acu-
mulada usando Demonstração: Função de dis-

tribuição acumulada empírica.
d<-read.table("x.dat",header=T)
hist(d$time)
plot(ecdf(d$time),verticals=T,do.points=F)

♦

6.3.1. Testes estatísticos

O método básico para comparar a influência de fatores experimentais
é o teste estatístico. Como podemos tratar o algoritmo usado como
um fator experimental, ele também serve para comparar diferentes
heurísticas. Para aplicar um teste temos que
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• formular uma hipótese nula e uma hipótese alternativa;

• escolher um teste estatístico adequado;

• definir um nível de significância;

• aplicar o teste e rejeitar ou aceitar a hipótese nula de acordo.

Exemplo 6.9 (Teste binomial)
Queremos descobrir se numa dada população nascem mais homens
que mulheres. Seja X a variável aleatória tal que X = 1 caso nasce um
homem. Logo a hipótese nula é P(X) = 0.5 e a hipótese alternativa é
P(X) > 0.5.
Para decidir essa hipótese, podemos tirar uma amostra X1, . . . ,X10
da população base (de nascimentos). Supondo que as amostras são
independentes, X =

∑
i∈[n] Xi é distribuído binomialmente.

B(k;n,p) =
(
n

k

)
pk(1− p)n−k

a distribuição do X ∼ B(k; 10, 0.5) caso a hipótese nula é satisfeito.
No exemplo obtemos

k 0/10 1/9 2/8 3/7 4/6 5

P(X = k) 0.001 0.010 0.044 0.117 0.205 0.246
P(X ≥ k) 1.000 0.999 0.989 0.945 0.828 0.623
k 6 7 8 9 10
P(X ≥ k) 0.377 0.172 0.055 0.011 0.001

Para aplicar o teste estatístico, temos que definir um nível de signifi-
cância. Por exemplo, para um nível de significância p = 0.05 temos
P(X ≥ 9) ≤ p. Logo podemos rejeitar a hipótese nula, com p = 0.05
caso na amostra tem 9 ou 10 nascimentos de homens. Para testar em
R:

binom.test(9,10, alternative="g")
♦

No exemplo acima formulas a hipótese alternativa P(X) > 0.5. Esse
hipótese é unilateral (ou monocaudal), porque ela testa em determi-
nada direção do desvio. Similarmente a hipótese alternativa P(X) <
0.5 é unilateral. Uma hipótese bilateral (ou bicaudal) é P(X) 6= 0.5.
Neste caso temos que considerar desvios para as duas direções.
O exemplo mostra que o teste estatístico adequado depende das hi-
póteses sobre a distribuição da quantidade que queremos testar (no
exemplo uma distribuição binomial). Um teste estatístico pode falhar
em dois casos: num erro de tipo 1 ele rejeita a hipótese nula, mesmo
ela sendo correta; num erro de tipo 2 ele não rejeita a hipótese nula,
mesmo ela sendo falso. Isso pode ser resumido por

H0 mantido H0 rejeitado
H0 verdadeiro Correto Erro tipo 1
H1 verdadeiro Erro tipo 2 Correto
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O nível de significância do teste é a probabilidade da fazer um erro
de tipo 1 P[H0 rejeitado | H0 verdadeiro]. A probabilidade condicio-
nal de não fazer um erro de tipo 2

1− P(H0 mantido | H1 verdadeiro) = P(H0 rejeitado | H1 verdadeiro)

é chamada a potência do teste.

Exemplo 6.10 (Teste binomial)
A potência de um teste depende da magnitude do efeito que quere-
mos detectar. Supõe, por exemplo, que estamos interessados em de-
tectar (pelo menos) o efeito caso na hipótese alternativa P(X) > 0.6.
A distribuição B(l; 10, 0.6) é

k 0 1 2 3 4 5

P(X = k) 0.0001 0.002 0.011 0.042 0.111 0.201
P(X ≥ k) 1.000 0.9999 0.998 0.988 0.945 0.834

k 6 7 8 9 10
P(X = k) 0.251 0.215 0.121 0.040 0.006
P(X ≥ k) 0.633 0.382 0.167 0.046 0.006

Logo a potência do teste é com 0.046 relativamente fraco. Para
P(X) > 0.8 a potência aumenta para 0.376. ♦

O exemplo mostra que o planejamento do experimento influencia a
potência. Para aumentar a potência em geral, podemos

• aumentar o nível de significância: Isso aumenta também o pro-
babilidade de erros do tipo 1.

• aumentar a magnitude de efeito: tipicamente não temos con-
trole direto da magnitude, mas podemos planejar o experi-
mento de acordo com a magnitude do efeito que queremos
detectar (e.g. a redução do desvio relativo por 1%).

• diminuir a variança do efeito: tipicamente não temos controle
direta da variança.

• aumentar o número de amostras (que diminui a variança): por
exemplo para n = 50 amostras, com o mesmo nível de signi-
ficância p = 0.05 o teste acima precisa X ≥ 31 para rejeitar a
hipótese nula e a potência do teste acima para detectar o efeito
P(X) > 0.6 aumenta para 0.336, a para o efeito P(X) > 0.8 para
0.997. Uma amostra suficientemente grande que garante uma
potência de 0.8 é considerada aceitável.

As características principais para a escolha de um teste adequado são

• o tipo de parâmetro que queremos analisar (e.g. mínimos, mé-
dias, medianas);

• testes paramétricos ou não-paramétricos: um teste paramétrico
(tipicamente) supõe que a variável estudada é distribuída nor-
malmente;
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• o número de fatores e o número de níveis dos fatores;

• testes pareados ou não-pareados: em testes pareados, as amos-
tras são dependentes. Um teste de dois algoritmos numa cole-
ção de instâncias é um exemplo de um teste pareado. Caso as
instâncias são geradas aleatoriamente, e cada algoritmo é ava-
liado em uma séria de instâncias geradas independentemente,
o teste é não-pareado. (Testes de diferentes algoritmos com
as mesmas sementes randômicos não podem ser considerados
pareados, porque não podemos esperar que o semente tem um
efeito semelhante nos dois algoritmos.) Em geral para mais que
dois níveis de fatores temos um teste (randomizado) em blocos.

Testes comuns para comparação de algoritmos Para comparação
de dois níveis temos como testes mais relevantes no caso não-paramétrico
o teste do sinal (ingl. sign test) e de Wilcoxon de postos com sinais
(ingl. Wilcoxon signed-rank test) para dados pareados, e o Wilco-
xon da soma dos postos (ingl. Wilcoxon rank-sum test, equivalente
com o teste U de Mann-Whitney) para dados não pareados. No caso
paramétrico o teste t (pareado ou não pareado) pode ser aplicado.

Teste estatístico 6.1 (Teste do sinal)
Pré-condições Duas amostras pareadas x1, . . . , xn e y1, . . . ,yn.

Os valores xi − yi são independentes e distribuídos com
mediana comum m.

Hipótese nula H0: m = 0;

Hipótese alternativa H1: m > 0, m < 0, m 6= 0.

Estatística de teste B =
∑
i∈[n][xi > yi].

Observações Valores zi = 0 são descartadas (ou atribuídos pela
metade para o grupo com xi > yi).

Exemplo 6.11 (Teste do sinal)
O teste do sinal de fato é equivalente com um teste binomial. Para
estatística de teste B é n amostras

binom.test(B,n,alternative="greater")
binom.test(B,n,alternative="less")
binom.test(B,n,alternative="two -sided")
testa a hipótese em GNU R (com nível de significância padrão 0.05.).
Por exemplo, para comparar os tempos do GSAT com os do WalkSAT
(ver exercícios) com hipótese alternative que WalkSAT precisa mais
tempo que o GSATDemonstração: Teste do sinal.

d=read.table("gsat -walksat.dat",h=T)
head(d)
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GSAT WalkSAT
1 9178.66667 120000.00
2 44.13333 17502.87
3 974.60000 120000.00
4 189.80000 107423.87

with(d,binom.test(sum(WalkSAT >GSAT),4,alternative="greater"))

Exact binomial test

data: sum(WalkSAT > GSAT) and 4
number of successes = 4, number of trials = 4, p-value = 0.0625
alternative hypothesis: true probability of success is greater than 0.5
95 percent confidence interval:
0.4728708 1.0000000

sample estimates:
probability of success

1

Mesmo o GSAT precisando em todos quatro casos menos tempo que
o WalkSAT não podemos rejeitar a hipótese nula com nível de signi-
ficância p = 0.05, pelo número baixo de amostras. ♦

Exemplo 6.12 (Teste do sinal para comparação de modelos matemáticos)
Tseng et al. (2004) usam o teste de sinal para testar se pares de mode-
los matemáticas para o problema do permutation flow shop precisam
tempo significadamente diferente.

♦

Teste estatístico 6.2 (Teste de Wilcoxon de postos com sinais)
Pré-condições Duas amostras pareadas x1, . . . , xn e y1, . . . ,yn.

Os valores zi = xi − yi são independentes é distribuídos
simétricos relativo a um mediana comum m.

Hipótese nula H0: m = 0.

Hipótese alternativa H1: m > 0, m < 0, m 6= 0.

Estatística de teste T+ =
∑
i∈[n] ri[xi > yi] com ri o ranque

do valor zi em ordem crescente de |zi|.

Observações Valores zi = 0 são descartadas. Em caso de empa-
tes na ordem de |zi| cada elemento de um grupo recebe o
ranque médio.

Em GNU R wilcox.test(...,paired=T).

Exemplo 6.13 (Teste de Wilcoxon de postos com sinais)
(Continuando o exemplo anterior.)
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with(d,wilcox.test(WalkSAT ,GSAT ,alternative="greater",paired=T))

Wilcoxon signed rank test

data: WalkSAT and GSAT
V = 10, p-value = 0.0625
alternative hypothesis: true location shift is greater than 0

♦

Exemplo 6.14 (Gino versus Optisolve)
Coffin e Saltzmann (2000) apresentam uma análise de um exemplo
de Golden et al. (1986)2.Demonstração: Gino versus

Optisolve.
d<-read.table("golden -etal.dat",header=T)
d<-subset(d,optG==T&optO==T&!is.na(timeO ))
plot(d$timeG ,d$timeO)
abline (0,1)
binom.test(sum(d$timeO >d$timeG),nrow(e))
wilcox.test(sum(d$timeO >d$timeG),nrow(e),paired=T)

♦

Teste estatístico 6.3 (Teste de Wilcoxon da soma dos postos)
Pré-condições Duas amostras não-pareadas x1, . . . , xn e y1, . . . ,ym.

Os xi são independentes e distribuídos igualmente, os yi
são independentes e distribuídos igualmente, e os xi e yi
são independentes.

Hipótese nula Fx(t) = Fy(t) para todo t, para distribuições acu-
muladas Fx e Fy desconhecidas. No modelo mais simples
supondo a mesma distribuição Fx(t) = Fy(t), a hipótese
alternativa é um deslocamento, i.e.Fx(t) = Fy(t − ∆). A
hipótese nula nessa caso é ∆ = 0.

Hipótese alternativa H1: ∆ < 0, ∆ = 0, ∆ > 0.

Estatística de teste S =
∑
i∈[m] ri com ri o ranque de yi na

ordem crescente de todos valores xi e yi.

Em GNU R wilcox.test(...,paired=F).

Exemplo 6.15 (Teste de Wilcoxon da soma dos postos)
Continuando o exemplo anterior.

wilcox.test(e$WalkSAT ,e$GSAT ,alternative="greater",paired=F)

Wilcoxon rank sum test with continuity correction

2A análise na publicação está errada: ela compara o tempo da primeira instância de
Gino com o tempos do Optisolve.
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data: e$WalkSAT and e$GSAT
W = 16, p-value = 0.0147
alternative hypothesis: true location shift is greater than 0

Warning message:
In wilcox.test.default(e$WalkSAT, e$GSAT, alternative = "greater", :

cannot compute exact p-value with ties

♦

Teste estatístico 6.4 (Teste t de Student)
Pré-condições Duas amostras pareadas x1, . . . , xn, e y1, . . . yn.

Os valores zi = xi − yi são distribuídos normalmente ∼

N(µ,σ2). (A normalidade não é necessária para amostras
suficientemente grandes, e.g. n,m < 30).

Hipótese nula H0: µ = 0.

Hipótese alternativa H1: µ < 0, µ > 0, µ 6= 0.

Estatística de teste t = z/S
√
n com S2 =

∑
i(zi − z)/(n− 1)

uma estimativa da variança da população inteira. A esta-
tística é distribuída t com n− 1 graus de liberdade.

Em GNU R t.test.

Teste estatístico 6.5 (Teste t de Student)
Pré-condições Duas amostras não-pareadas x1, . . . , xn, e y1, . . . ym.

Os xi são distribuídos normalmente ∼ N(µx,σ2), os yi nor-
malmente ∼ N(µy,σ2). (A normalidade não é necessária
para amostras suficientemente grandes, e.g. n,m < 30).

Hipótese nula H0: µx = µy.

Hipótese alternativa H1: µx < µy, µx > µy, µx 6= µy.

Estatística de teste t = (x− y)/(S
√
1/n+ 1/m) com

S =

√
(n− 1)S2x + (m− 1)S2y

n+m− 2

uma estimativa do desvio padrão da população inteira. A
estatística é distribuída t com n+m−2 graus de liberdade.

Em GNU R t.test(x,y,var.equal=T,paired=F); para varian-
ças diferentes: t.test(x,y,var.equal=F,paired=F).
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Exemplo 6.16 (MINOS versus OB1)
Coffin e Saltzmann (2000) apresentam uma análise de um exemplo
de Lustig et al. (1991). O teste do coeficiente β1 da regressão linear
do exemplo é um teste t. Neste caso a estatística de teste t = (β̂1 −
β1)/se(β̂1) com

se(β̂1) =

√
(
∑
i e
2
i )/(n− 2)∑
i(xi − x)

2

e resíduos ei é distribuída t com n− 2 graus de liberdade.Demonstração: MINOS versus
OB1.

## one -sided test for regression coefficient b (‘‘lower than ’’)
testcoef = function(x,l,b) {

n=length(resid(l))-2
t=(b-coef(l)[2])/sqrt(sum(resid(l)^2)/n/sum((x-mean(x))^2))
pt(t,n,lower.tail=F)

}
d<-read.table("lustig -etal.dat",header=T)
attach(d)
plot(minos.time ,ob1.time)
plot(log(minos.time),log(ob1.time))
lm<-lm(log(ob1.time)~log(minos.time))
summary(lm)
# t-test
testcoef(log(minos.time),lm ,1)

♦

6.3.2. Escolha de parâmetros

Princípio de projeto 6.1 (Parâmetros (Hertz et al. 2003, p. 127))
O projeto do método em si (vizinhança, função objetivo, etc.) é mais
importante que a escolha de parâmetros. Um bom método deve ser
robusto: a qualidade das soluções é menos sensível à escolha de
parâmetros. Porém, a calibração de parâmetros não compensa um
método fraco.

O ponto de partido frequentemente é um conjunto de parâmetros
inciais obtidos durante o projeto por testes ad hoc. Para heurísti-
cas robustas e parâmetros simples um tal conjunto frequentemente
é uma escolha razoável. Porém robustez tem que ser demonstrada e
não podemos esperar robustez sobre a modificação de componentes
da heurística (e.g. vizinhanças, operadores de recombinação).
A busca para um conjunto ideal de parâmetros é uma problema de
otimização separado, que a princípio pode ser resolvido pelas técni-
cas discutidas. Porém para obter o valor função objetivo temos que
avaliar agora uma heurística (em diversas instâncias e com replica-
ções no caso de algoritmos randomizados).
A estratégia mais simples é analisar um parâmetro por vez (ingl. one
factor at a time, OFAT): determine a variação do desempenho da
heurística para cada parâmetro independentemente, com os outros
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parâmetros fixos. Depois seleciona uma combinação de parâmetros
que melhora o desempenho e eventualmente repete. Para compa-
ração de diferentes níveis de uma parâmetro pode-se aplicar testes
estatísticos. Esse método serve também para analisar o impacto de
diversos parâmetros e selecionar um subconjunto para ser calibrado
(“screening”). As desvantagens do OFAT são: i) ignorar interações
de parâmetros, ii) aumentar os erros de tipo 1 no caso de aplica-
ções de testes estatísticos, e iii) um custo maior que outras formas de
experimentos (Montgomery 2009).

Um projeto fatorial testa lk células, i.e., combinações dos l níveis de k
fatores. Para algoritmos randomizados cada célula precisa algumas
replicações do experimento. Projetos fatoriais comuns são o projeto
fatorial completo 2k (muitas vezes usado para “screening”) e o projeto
fatorial completo com um fator em l níveis. Um projeto fatorial ge-
ralmente supõe um modelo linear dos efeitos dos fatores. No caso
de uma aplicação em instâncias fixas obtemos um projeto em blocos
que generaliza um projeto pareado. (A aplicação para instâncias ge-
radas aleatoriamente poderia ser tratado como projeto completamente
randomizado; porém o efeito da instância muitas vezes é significativo,
e não pode ser modelado como um erro simples.) A disciplina de
projeto de experimentos (ingl. design of experiments) oferece mais pos-
sibilidades, inclusive projetos fatoriais fracionários que testam menos
combinações de parâmetros, mas em contrapartida não conseguem
identificar todas interações univocamente.

Projetos fatoriais podem ser avaliados por analise de variação (ingl. analy-
sis of variation, ANOVA) no caso paramétrico, e no caso não-paramétrico
por um teste Kruskal-Wallis (sem blocos) ou um teste de Friedman
(com blocos).

Um exemplo de uma ANOVA com um fator experimental:
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Teste estatístico 6.6 (ANOVA)
Pré-condições Um projeto k tratamentos e n replicações por tra-

tamento. O problema é modelado linearmente por

xij = µ+ τi + εij.

para a resposta ao tratamento i ∈ [k] na replicação j ∈
[n]. O valor τi é o efeito do tratamento i ∈ [k]. Os erros
εij são independentes e distribuídos normalmente como
N(0;σ2). (Em particular a variança é constante, i.e. os erros
são homoscedasticos).

Hipótese nula H0: τ1 = · · · = τk = 0.

Hipótese alternativa H1: existe um i com τi 6= 0.

Estatística de teste A soma de quadrados total SST pode ser
decomposta por SST = SSA + SSE (similar com a observa-
ção 6.2) em uma soma de quadrados dos tratamentos SSA
e dos erros SSE. Os tratamentos possuem k− 1 graus de
liberdade, os erros kn− k. As médias das somas de qua-
drados MSA = SSA/(k − 1) e MSE = SSE/(kn − k) são
distribuídos χ e a estatística de teste F0 = MSA/MSE é
distribuída F. Caso não existe um efeito dos tratamentos,
esperamos F0 = 1, caso contrário F0 > 1.

Em GNU R aov.

Demonstração: ANOVA.
Exemplo 6.17 (ANOVA)

d=read.table("mont -etch.dat",header=T,
colClasses=c("factor","numeric"))

a=aov(rate~power ,data=d)
summary(a)
plot(a)
plot(TukeyHSD(a,ordered=T))

♦

Caso a hipótese nula é rejeitada um teste post-hoc pode ser usado
para identificar os grupos significativamente diferentes. Uma abor-
dagem simples é comparar todos grupos par a par com um teste
simples (e.g. um teste t). Porém a probabilidade de um erro do tipo
1 aumenta com o número de testes. Uma solução para este problema
é aplicar uma correção Bonferroni: para um nível de significância de-
sejada α e n testes em total, cada teste é aplicado com um nível de
significância α/n. Um exemplo de um teste menos conservativo é
Tukey’s honest significant differences, uma generalização do teste t para
múltiplas médias.
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Teste estatístico 6.7 (Teste de Friedman)
Pré-condições Um projeto em blocos (randomizado) com k tra-

tamentos e n blocos. As variáveis aleatórias xij seguem
distribuições desconhecidas Fij relacionadas por Fij(u) =
F(u−βi− τj), com βi o efeito do bloco i ∈ [n] e τj o efeito
do tratamento j ∈ [k].

Hipótese nula H0: τ1 = · · · = τk.

Hipótese alternativa H1: não todos τj são iguais.

Estatística de teste Com Rij o posto do tratamento j no bloco i
e Rj =

∑
i Rij

T =
(k− 1)

∑
j∈[k]

(
Rj −n(k+ 1)/2

)2∑
i∈[n],j∈[k] R

2
ij −nk(k+ 1)

2/4
.

Observações Para amostras suficientemente grandes T ∼ χ2 com
k− 1 graus de liberdade. Caso H0 é rejeitado, testes post-
hoc podem ser usados para identificar o melhor tratamento.

Em GNU R friedman.test(m) com matriz m.

Exemplo 6.18 (Teste Friedman)

e=data.frame(n=gl(3,3),h=rep(c(1,2,3)),v=runif (9))
with(e,friedman.test(v~h*n))

♦

Uma aplicação do teste de Friedman: corridas Testar todas com-
binações de parâmetros em todas instâncias investe um tempo igual
em todas combinações. Uma corrida (ingl. race) aplica as combi-
nações instância por instância e elimina combinações inefetivas da
corrida logo, investindo mais tempo de teste em combinações me-
lhores. Uma exemplo de uma estratégia de corrida é F-RACE, um
algoritmo que aplica o teste de Friedman para eliminar combinações
de parâmetros.
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Algoritmo 6.1 (F-RACE)
Entrada Um conjunto de combinações de parâmetrosΘ = {Θ1, . . . ,Θk}.

Saída Um subconjunto Θ ′ ⊆ Θ de combinações de parâmetros
efetivos.

F-RACE(Θ)=
repeat for i = 1, . . .

gera a i-ésima instância I
aplica todas combinações de parâmetros em Θ em I
aplica o teste de Friedman

(na matriz i× |Θ|)
if H0 rejeitada then

seleciona o Θj de menor posto combinado Rj
remove todos tratamentos significadamente

pior que Θj (via testes post -hoc) de Θ
end if

until |Θ| = 1 ou limite de tempo
return Θ

Para gerar a conjunto Θ inicial podemos usar um projeto fatorial
completo (F-RACE(FFD)) ou simplesmente gerar amostras aleatórias
dos parâmetros (F-RACE(RSD)).

6.3.3. Comparar com que?

• Quietly employ assembly code and other low-level
language constructs.

• When direct run time comparison are required, com-
pare with an old code on an obsolete system.

“Twelve Ways
to Fool the Masses When Giving Performance Results on
Parallel Computers”, Bailey (1991)

Uma heurística tem que ser comparado com outros algoritmos exis-
tentes; em casos de problemas novos podemos comparar com algorit-
mos existentes para casos particulares e generalizações do problema,
ou com algoritmos mais simples (e.g. uma construção ou busca ran-
domizada simples, ou versões simplificadas do algoritmo proposto)
ou genéricos (e.g. CPLEX, localsolver). Isso inclui algoritmos exatos
e aproximativos, e evita situações como essa:

A recent paper (Davidović et al. 2012) presented a bee
colony metaheuristic for scheduling independent tasks to
identical processors, evaluating its performance on a ben-
chmark set of instances from the literature. We examine
two exact algorithms from the literature, the former pu-
blished in 1995, the latter in 2008 (and not cited by the
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authors). We show that both such algorithms solve to
proven optimality all the considered instances in a com-
puting time that is several orders of magnitude smaller
than the time taken by the new algorithm to produce an
approximate solution.

Dell’Amico et al. (2012)

6.4. Notas

Barr et al. (1995) e Silberholz e Golden (2010) explicam de forma geral
o tem que ser considerado na avaliação de heurísticas. Luke (2011,
cáp. 11.) é uma boa introdução na ideias gerais de comparação de
algoritmos e Coffin e Saltzmann (2000) é uma excelente introdução
com diversos exemplos práticos. Uma referência excelente para pro-
jeto de experimentos e avaliação estatística com um foco em métodos
paramétricos é Montgomery (2009). O livro de Bartz-Beielstein et al.
(2010) apresenta em grande detalhe a aplicação de métodos estatísti-
cos na avaliação de heurísticas. Hollander et al. (2014) é uma referên-
cia detalhada para métodos estatísticos não-paramétricos. LeVeque
(2013) é um ensaio recomendado sobre a publicação de código.
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A. Conceitos matemáticos

Definição A.1
Uma função f é convexa se ela satisfaz a desigualdade de Jensen

f
(
Θx+ (1−Θ)y

)
≤ Θf(x) + (1−Θ)f(y). (A.1)

Similarmente uma função f é concava caso −f é convexo, i.e., ela
satisfaz

f(Θx+ (1−Θ)y) ≥ Θf(x) + (1−Θ)f(y). (A.2)

Exemplo A.1
Exemplos de funções convexas são x2k, 1/x. Exemplos de funções
concavas são log x,

√
x. ♦

Proposição A.1
Para

∑
i∈[n]Θi = 1 e pontos xi, i ∈ [n] uma função convexa satisfaz

f
(∑
i∈[n]

Θixi
)
≤
∑
i∈[n]

Θif(xi) (A.3)

e uma função concava

f
(∑
i∈[n]

Θixi
)
≥
∑
i∈[n]

Θif(xi) (A.4)

Prova. Provaremos somente o caso convexo por indução, o caso con-
cavo sendo similar. Para n = 1 a desigualdade é trivial, para n = 2
ela é válida por definição. Para n > 2 define Θ̄ =

∑
i∈[2,n]Θi tal que

Θ+ Θ̄ = 1. Com isso temos

f
(∑
i∈[n]

Θixi
)
= f
(
Θ1x1 +

∑
i∈[2,n]

Θixi
)
= f(Θ1x1 + Θ̄y)

onde y =
∑
j∈[2,n](Θj/Θ̄)xj, logo

f
(∑
i∈[n]

Θixi
)
≤ Θ1f(x1) + Θ̄f(y)

= Θ1f(x1) + Θ̄f
( ∑
j∈[2,n]

(Θj/Θ̄)xj
)

≤ Θ1f(x1) + Θ̄
∑
j∈[2,n]

(Θj/Θ̄)f(xj) =
∑
i∈[n]

Θixi

�
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Definição A.2
O fatorial é a função

n! : N→N : n 7→ ∏
1≤i≤n

i.

Temos a seguinte aproximação do fatorial (fórmula de Stirling)

n! =
√
2πn

(n
e

)n
(1+O(1/n)) (A.5)

Uma estimativa menos precisa pode ser obtida por

en =
∑
i≥0

ni

i!
>
nn

n!

que implica

(n/e)n ≤ n! ≤ nn.

Lema A.1 (Desigualdade de Bernoulli)
Para x ≥ −1 e n ∈N temos (1+ x)n ≥ 1+ xn.

Prova. Por indução sobre n.

(1+ x)n+1 = (1+ x)(1+ x)n ≥ (1+ x)(1+ xn)

= 1+ xn+ x+ x2n = 1+ x(n+ 1) + x2n ≥ 1+ x(n+ 1).

onde a primeira desigualdade é válida porque (1+ x) ≥ 0. �

A.1. Probabilidade discreta

Probabilidade: Noções básicas

• Espaço amostral finito Ω de eventos elementares e ∈ Ω.

• Distribuição de probabilidade P[e] tal que

P[e] ≥ 0;
∑
e∈Ω

P[e] = 1

• Eventos (compostos) E ⊆ Ω com probabilidade

P[E] =
∑
e∈E

P[e]

Exemplo A.2
Para um dado sem bias temos Ω = {1, 2, 3, 4, 5, 6} e P[i] = 1/6. O
evento Par = {2, 4, 6} tem probabilidade P[Par] =

∑
e∈Par P[e] = 1/2.

♦
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Probabilidade: Noções básicas

• Variável aleatória
X : Ω→N

• Escrevemos P[X = i] para P[X−1(i)].

• Variáveis aleatórias independentes

P[X = x e Y = y] = P[X = x]P[Y = y]

• Valor esperado

E[X] =
∑
e∈Ω

P[e]X(e) =
∑
i≥0

iP[X = i]

• Linearidade do valor esperado: Para variáveis aleatórias X, Y

E[X+ Y] = E[X] + E[Y]

Prova. (Das formulas equivalentes para o valor esperado.)∑
0≤i

P[X = i]i =
∑
0≤i

P[X−1(i)]i

=
∑
0≤i

∑
e∈X−1(i)

P[e]X(e) =
∑
e∈Ω

P[e]X(e)

�
Prova. (Da linearidade.)

E[X+ Y] =
∑
e∈Ω

P[e](X(e) + Y(e))

=
∑
e∈Ω

P[e]X(e)
∑
e∈Ω

P[e]Y(e)) = E[X] + E[Y]

�

Exemplo A.3
(Continuando exemplo A.2.)
Seja X a variável aleatório que denota o número sorteado, e Y a variá-
vel aleatório tal que Y = [a face em cima do dado tem um ponto no meio].

E[X] =
∑
i≥0

P[X = i]i = 1/6
∑
1≤i≤6

i = 21/6 = 7/2

E[Y] =
∑
i≥0

P[Y = i]i = P[Y = 1] = 1/2E[X+ Y] = E[X] + E[Y] = 4

♦
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Lema A.2 (Forma alternativa da expectativa)
Para uma variável aleatória X que assume somente valores não-negativos
inteiros E[X] =

∑
k≥1 P[X ≥ k] =

∑
k≥0 P[X > k].

Prova.

E[X] =
∑
k≥1

kP[X = k] =
∑
k≥1

∑
j∈[k]

P[X = k] =
∑
j≥1

∑
j≤k

P[X = k] =
∑
j≥1

P[X ≥ j].

�

Lema A.3
Para tentativas repetidas com probabilidade de sucesso p, o número
esperado de passos para o primeiro sucesso é 1/p.

Prova. Seja X o número de passos até o primeiro sucesso. Temos
P[X > k] = (1− p)k e logo pelo lema A.2

E[X] =
∑
k≥0

(1− p)k = 1/p.

�

Proposição A.2
Para ϕ convexo ϕ(E[X]) ≤ E[ϕ(X)] e para ϕ concavo ϕ(E[X]) ≥
E[ϕ(X)].

Prova. Pela proposição A.1. �

Proposição A.3 (Desigualdade de Markov)
Seja X uma variável aleatória com valores não-negativas. Então, para
todo a > 0

Pr[X ≥ a] ≤ E[X]/a.

Prova. Seja I = [X ≥ a]. Como X ≥ 0 temos I ≤ X/a. O valor
esperado de I é E[I] = P[I = 1] = P[X ≥ a], logo

P[X ≥ a] = E[I] ≤ E[X/a] = E[X]/a.

�

Proposição A.4 (Limites de Chernoff (ingl. Chernoff bounds))
Sejam X1, . . . ,Xn indicadores independentes com P[Xi] = pi. Para
X =
∑
i Xi temos para todo δ > 0

P[X ≥ (1+ δ)µ] ≤
(

eδ

(1+ δ)(1+δ)

)µ
para todo δ ∈ (0, 1)

P[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ
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para todo δ ∈ (0, 1]

P[X ≥ (1+ δ)µ] ≤ e−µδ2/3

e para todo δ ∈ (0, 1)

P[X ≤ (1− δ)µ] ≤ e−µδ2/2.

Exemplo A.4
Sejam X1, . . . ,Xk indicadores com P[Xi = 1] = α e X =

∑
i Xi. Temos

µ = E[X] =
∑
i E[Xi] = αk. Qual a probabilidade de ter menos que a

metade dos Xi = 1?

P[X ≤ bk/2c] ≤ P[X ≤ k/2] = P[X ≤ µ/2α] =

P[X ≤ µ(1− (1− 1/2α))] ≤ e−µδ2/2 = e−k/2α(α−1/2)2 .

♦

Medidas básicas A covariância de duas variáveis aleatórias X e Y é

cov(X, Y) = E[(X− E[X])E[Y − E[Y]] = E[XY] − E[X]E[Y].

A variança de uma variável aleatória X é a covariança com si mesmo

σ(X) = cov(X,X) = E[X2] − E[X]2 (A.6)

e o seu desvio padrão é σ(X) =
√

cov(X). A correlação entre duas
variáveis aleatórias é a covariança normalizada

ρ(X, Y) = cov(X, Y)/(σ(X)σ(Y)). (A.7)

A figura A.1 mostra exemplos de dados com correlações diferentes.

A.2. Noções elementares da teoria da informação
Para outras bases obtemos en-
tropias similares, e.g. para base
3 em trits, para base exp em
nats.

Definição A.3 (Entropia binária)
A entropia binária para α ∈ (0, 1) éH(α) = −α log2 α−(1−α) log2 1−
α (medida em bits). Para uma variável aleatória X

H(X) =
∑
e∈Ω

H(P(X = e)) =
∑
e∈Ω

−P(X = e) log2 P(X = e) = E[log2 P(X)]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

H
(p
)

Figura A.2.: Entropia binária.

Exemplo A.5 (Entropia)
Para uma moeda com probabilidade p = 3/4 da cair “cara” temos
H(3/4) ≈ 0.81, para p = 4/5 temos H(4/5) ≈ 0.72. ♦
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Figura A.1.: Três conjuntos de dados com correlação alta, quase zero,
e negativa.

Lema A.4 (Ash (1967))
Para α ∈ (0, 1)

(8nα(1−α))−1/2 2H(α)n ≤
(
n

αn

)
≤ (2πnα(1−α))−1/22H(α)n

Lema A.5
Para α ∈ (0, 1/2]

(8nα(1−α))−1/2 2H(α)n ≤
∑

1≤i≤nα

(
n

i

)
≤ 2H(α)n.

Prova. A primeira desigualdade é uma consequência do lema A.4.
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Para a segunda desigualdade temos

1 = (α+ (1−α))n =
∑
1≤i≤n

(
n

i

)
αi(1−α)n−i

≥
∑

1≤i≤nα

(
n

i

)(
α

1−α

)i
(1−α)n

≥
∑

1≤i≤nα

(
n

i

)(
α

1−α

)nα
(1−α)n

= αnα(1−α)(1−α)n
∑

1≤i≤nα

(
n

i

)

= 2−nH(α)
∑

1≤i≤nα

(
n

i

)
.

O terceiro passo é valido porque para α ∈ (0, 1/2] temos α/(1−α) ≤
1 e i ≤ nα. �

Definição A.4 (Entropias cruzadas e relativas)
Para distribuições de probabilidade P e Q e entropia cruzada é

H(P,Q) = EP[−logQ] = −
∑
e∈Ω

P(e) logQ(e)

e a divergência de Kullback-Leibler (ou entropia relativa)

DKL(P || Q) = H(P,Q) −H(P) = −
∑
e∈Ω

P(e) logQ(e)/P(e).

Observação A.1
O valor de H(P,Q) pode ser interpretado como informação neces-
sária para codificar uma mensagem de uma fonte distribuída por
P usando um código perfeito para uma fonte de informação distri-
buído como Q. Logo a distância de Kullback-Leibler é a informação
adicional necessário usando Q ao invés do código perfeito para P. ♦

Definição A.5 (Informação mutuá)
Para duas variáveis aleatórias X, Y com distribuição conjunta P(X,Y)
e distribuições marginas PX e PY a informação mútua é

I(X, Y) = DKL(P(X,Y) || PX ⊗ PY)

Exemplo A.6
Para a distribuição

Y1 Y2 PX
X1 1/9 4/9 5/9
X2 2/9 2/9 4/9
PY 1/3 2/3
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temos I(X, Y) = 0.05. ♦

Exemplo A.7
Para a distribuição

Y1 Y2 PX
X1 1/9 2/9 1/3
X2 2/9 4/9 2/3
PY 1/3 2/3

temos I(X, Y) = 0. A distribuição conjunta é idêntica com o produto
das distribuições marginais. ♦
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Nomenclatura

◦ multiplicação ponto a ponto de duas matrizes (produto de
Hadamard), página 69

e vetor de 1s e = (1 1 · · · 1)t, página 69

⊕ diferença simétrica de conjuntos, S ⊕ T = (S \ T) ∪ (T \ S),
página 36

⊕ ou-exclusivo de dois vetores binários, página 69
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