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1. Introducao

Um problema de busca é uma relagdo bindria P C I x S com instancias

x € I esolugdes y € S. O par (x,y) € P caso y é uma solugéo para
X.

Defini¢ado 1.1

A classe de complexidade FNP contém os problemas de busca com
relagdes P polinomialmente limitadas (ver defini¢do 1.3) tal que (x,y) €
P pode ser decidido em tempo polinomial.

A classe de complexidade FP contém os problemas em FNP para
quais existe um algoritmo polinomial A com

Alx) = y para um y tal que (x,y) € P
| “insolavel” caso nao existe y tal que (x,y) € P

Teorema 1.1
FP=FNP se e somente se P=NP.

Prova. Ver por exemplo C. Papadimitriou (1993, cap. 10.3). |

Definic¢do 1.2
Um problema de otimizagdo TT = (P, @, opt) é uma relagdo binaria P C
I X S com instancias x € I e solugdes y € S, junto com

e uma funcdo de otimizacdo (funcdo de objetivo) ¢ : P — IN (ou

Q).
e um objetivo: Encontrar minimo ou maximo
OPT(x) = opt{e(x,y) | (x,y) € P}
junto com uma solugdo y* tal que f(x,y*) = OPT(x).
O par (x,y) € P caso y é uma solugdo para x.

Uma instancia x de um problema de otimizagdo possui soluc¢des
Sx) ={yl(xy) € PL

Convencado 1.1
Escrevemos um problema de otimizacdo na forma

NoME
Instancia x
Solucdo y

Objetivo Minimiza ou maximiza @(x,y).



1. Introdugdo

Com um dado problema de otimizagdo correspondem trés proble-
mas:

e Construcdo: Dado x, encontra a solugdo 6tima y* e seu valor
OPT(x).

e Avaliagdo: Dado x, encontra valor 6timo OPT(x).

e Decisdo: Dado x e k, decide se OPT(x) > k (maximizagdo) ou
OPT(x) < k (minimizagéao).

Definig¢ao 1.3
Uma relagdo bindria R é polinomialmente limitada se

Jp € poly : V(x,y) € R: [yl < p(lx]).

Definicido 1.4 (Classes de complexidade)

A classe PO consiste dos problemas de otimizacdo tal que existe um
algoritmo polinomial A com @(x, A(x)) = OPT(x) parax € L.

A classe NPO consiste dos problemas de otimizacéo tal que

(i) As instancias x € I sdo reconheciveis em tempo polinomial.
(if) A relagdo P é polinomialmente limitada.

(iif) Para y arbitrario, polinomialmente limitado: (x,y) € P é deci-
divel em tempo polinomial.

(iv) @ é computavel em tempo polinomial.

1.1. Nao tem almoco de graca

“Sire in eight words I will reveal to you all the wisdom
that I have distilled through all these years from all the
writings of all the economists who once practiced their
science in your kingdom. Here is my text: “There ain’t no
such thing as free lunch’ ” (NN 1938)

A frase “there ain’t no such thing as free lunch” (TANSTAFEL) ex-
pressa que uma vantagem (p.ex. o almogo de graca em bares dos
EUA no século 19) tipicamente é pago de outra forma (p.ex. comida
salgada e bebidas caras). Para problemas de busca e de otimiza-
¢do, Wolpert e Macready (1997) provaram teoremas que mostram
que uma busca universal ndo pode ter uma vantagem em todos pro-
blemas de otimizagao.

Para um problema de otimizacdo supde que ¢ : P — @ é restrito
para um conjunto finito ®, e seja F = ®5(*) o espago de todas fun-
¢Oes objetivos para uma instancia do problema. Um algoritmo de oti-
mizagdo avalia pares de solugdes e valores (s,v) € S(x) x @. Seja D =

10



1.2. Representagio de solugdes

Um>0(S(x) x @)™ o conjunto de todas sequencias de pares. Um al-
goritmo de otimizagdo que nao repete avaliagdes pode ser modelado
por uma fungdo a:d € D — {s | s # si,para di = (sy,vi),1 € [|d[I}
que mapeia a sequencia atual para a proxima solugdo a ser avaliada
(observe que o algoritmo toma essa decisdo em fung¢do das solugdes
anteriormente visitadas e os seus valores). A avaliagdo de um al-
goritmo de otimizac¢do é através uma funcdo ¥(d). Ela pode, por
exemplo, atribuir a d o valor minimo encontrado durante a busca.

Teorema 1.2 (Wolpert e Macready (1997))
Para algoritmos a, a’, um ntimero de passos m e uma sequencia de
valoresv € @™

ZP(V | f,m,a) = ZP(V | f,m,a’).

feF feF

O teorema mostra que uma busca genérica ndo vai ser melhor que
uma busca aleatéria em média sobre todas fungdes objetivos. Porém,
uma grande fracdo das fung¢des possiveis ndo ocorrem na pratica
(uma funcdo aleatéria é incompressivel, i.e. podemos especificd-la
somente por tabulagdo, func¢des praticas muitas vezes exibem locali-
dade). Além disso, algoritmos de busca frequentemente aproveitam
a estrutura do problema em questao.

1.2. Representacdo de solucées

A representagdo de solucdes influencia as operacdes aplicaveis e a
sua complexidade. Por isso a escolha de uma representagdo é im-
portante para o desempenho de uma heuristica. A representagdo
também define o tamanho do espaco de busca, e uma representacédo
compacta (e.g. 8 coordenadas versus permutagdes no problema das
8-rainhas) é preferivel. Para problemas com muitas restricdes uma
representagdo implicita que é transformada para uma representacgao
direta por um algoritmo pode ser vantajoso.

Para uma discussdo abstrata usaremos frequentemente duas repre-
sentagdes elementares. Na representagio por conjuntos uma solugdo é
um conjunto S € U de um universo U. Os conjuntos vélidos sdo
dados por uma colecdo V de subconjuntos de U. Na representagio por
varidveis uma instancia é um subconjunto I C U, e uma solugdo é
uma atribuicdo de valores de um universo V aos elementos em 1.

Exemplo 1.1 (Representacao do PCV por conjuntos)

Uma representacéo por conjuntos do PCV sobre um grafo G = (V, A)
é o universo de arestas U = A, com V todos subconjuntos que for-
mam ciclos. O

Exemplo 1.2 (Representacao do PCV por variaveis)

Uma representacdo por varidveis do PCV sobre um grafo G = (V, A)
usa um universo de vértices U. Uma instancia I = V atribui a cada
cidade a préxima cidade no ciclo. Uma representagédo alternativa usa
I = [n] a atribui a cada variavel i € I a i-ésima cidade no ciclo. O

11



1. Introdugdo

Exemplo 1.3 (Representacido da coloragido de grafos por varidveis)

Seja U um universo de vértices e C um universo de cores. Uma
representacdo da uma instancia G = (V, A) do problema da coloragéo
de grafos usa varidveis V C Q e atribui cores de C as variaveis. O

1.2.1. Reducdes de problemas

Nao todos elementos do universo sdo usados em solucdes Gtimas:
frequentemente eles tem que satisfazer certos critérios para parti-
cipar numa solugdo 6tima. Isso permite reduzir o problema para
um niicleo. No problema do PCV, por exemplo, arestas mais longas
tem uma baixa probabilidade de fazer parte de uma solugdo 6tima,
mas arestas bem curtas aparecem com probabilidade alta na solucédo
6tima. No problema da mochila elementos de alta eficiéncia (valor
por unidade de peso) sdo mais usados, e de baixa eficiéncia menos.
Se soubéssemos o arco de menor distdncia ndo usada numa solu-
¢do 6tima, e de maior distdncia usado, poderfamos reduzir o pro-
blema para um ntcleo mais simples. Regras de redugdo para um
ntcleo sdo possiveis em diversos problemas (e.g. o problema da mo-
chila (Kellerer et al. 2004)) e sdo essenciais para problemas trataveis
por parametro fixo (Niedermeier 2002).

Exemplo 1.4 (Nticleo de Buss para cobertura por vértices)

Suponha que estamos interessados numa cobertura pequena de no
maéaximo k vértices num grafo ndo-direcionado G = (V, A). A cober-
tura por vértices permite aplicar duas regras de redugéo:

1. Caso existe um vértice v com 8(v) = 0: ele ndo faz parte da
cobertura, remove o vértice.

2. Caso existe um vértice v com §(v) > k: ele tem que fazer parte
da cobertura, remove o vértice.

Depois de aplicar as regras, temos a seguinte situacdo: caso |A| >
k? ndo existe um cobertura de tamanho no maximo k, porque todo
vértice cobre no maximo k arestas. Caso contrario, |V| < 2k“ porque
cada aresta possui no maximo dois vértices incidentes diferentes, e
logo o problema pode ser resolvido por exaustdo em 0(22k2 ). Junto
com as regras de reducdo temos um algoritmo em tempo O(n +m +

ZZkZ). O

Principio de projeto 1.1 (Reducdo de problemas)

Busca por regras de reducdo do problema. Procura reduzir o pro-
blema para um nicleo. O ntcleo pode ser determinado heuristica-
mente.

1.2.2. TransformacGes entre representacées

Um transformador recebe uma representacido de uma solugio e trans-
forma ela numa representagdo diferente. Um algoritmo construtivo
randomizado (ver capitulo 3) pode ser visto como um algoritmo que

12



1.2. Representagio de solugdes

transforma uma sequencia de ntimeros aleatérios em uma solugéo
explicita. Ambas sdo representac¢ées vélidas da mesma solugao. Essa
ideia é aplicada também em algoritmos genéticos, onde a represen-
tagdo fonte se chama fendtipo e a representagdo destino gendtipo. A
ideia de representar uma solucdo por uma sequéncia de ntmeros
aleatérios é usado diretamente em algoritmos genéticos com chaves
aleatérias (ver 4.5.6).

Uma transformacdo é tipicamente sobrejetiva (“many-to-one”), i.e. exis-
tem varias representagdes fonte para uma representacdo destino. Ide-
almente, existe 0 mesmo ndmero de representa¢des fontes para re-
presentagdes destino, para manter a mesma distribuicdo de solugdes
nos dois espagos.

Exemplo 1.5 (Representando permutagdes por chaves aleatdrias)

Uma permutacgdo de n elementos pode ser representada por n ntime-
ros aleatorios reais em [0, 1]. Para ndmeros aleatérios aj, ..., an, seja
7t uma permutacdo tal que ar(1) < -+ < apym). Logo os ntiimeros

a; representam a permutacéo 7 (ou 7w ). O

Uma transformacao pode ser ttil caso o problema possui muitas res-
tricdes e o espago de busca definido por uma representacdo direta
contém muitas solugdes invalidas. Em particular buscas locais de-
pendem da geracdo facil de solugdes. Por isso postulamos o

Principio de projeto 1.2 (Solu¢des, Hertz e Widmer (2003))
A geragdo de solugdes deve ser facil.

Exemplo 1.6 (Coloracao de vértices)

Uma representacdo direta da coloracdo de vértices pode ser uma atri-
bui¢do de cores a vértices. Para um limite de no maximo n cores,
temos n™ possiveis atribui¢des, mas vérias sdo infactiveis. Uma re-
presentacdo indireta é uma permutacdo de vértices. Para uma dada
permutagdo um algoritmo guloso processa os vértices em ordem e
atribui o menor cor livre ao vértice atual. A corretude dessa aborda-
gem mostra

Lema 1.1

Para uma dada k-coloragdo, sejam C; U --- U Cy as classes de co-
res. Ordenando os vértices por classes de cores, o algoritmo guloso
produz uma coloragdo com no maximo k cores.

Prova. Mostraremos por inducdo que a coloragdo das primeiras i
classes ndo precisa mais que i cores. Para a primeira classe isso é
6bvio. Supde que na coloracdo da classe i precisamos usar a cor i+ 1.
Logo existe um vizinho com cor i. Mas pela hipétese da indugéo o
vizinho de um vértice da classe i + 1 ndo pode ser de uma classe
menor. Logo, temos uma aresta entre dois vértices da mesma classe,
uma contradigéo. |
Com essa representacdo, todas solugdes sdo validas. Observe que o
tamanho do espago da busca n! = v2m(n/e)™ (por A.5) é similar
nas duas representagoes. O
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1. Introdugdo

Por fim, transformagdes podem ser tteis caso podemos resolver sub-
problemas restritos do problema eficientemente.

Exemplo 1.7 (Sequenciamento em maquinas paralelas)

Uma solugédo direta do problema de sequenciamento em mdaquinas
paraleles nao relacionadas R || }_ w;C; é uma atribuicdo das tarefas
as maquinas, junto com a ordem das tarefas em cada maquina.

Teorema 1.3
A solugdo 6tima de 1 || }_w;Cj é uma sequencia em ordem de tempo
de processamento ponderado ndo-decrescente p1 /wy < - -+ < prwn.

Prova. Supde uma sequencia 6tima com pi/wi > pir1/Wit1. A
contribui¢do das duas tarefas a fungao objetivo é w = w; C; +wi41Ciy1.
Trocando as duas tarefas a contribui¢do das restantes tarefas nao
muda, e a contribui¢do das duas tarefas é

Wit1(Cip1 —pi) +WilCi +Piv1) =W+ WiPit1 — Wit 1Pi-

Logo a fungdo objetivo muda por A = wipi1 —Wi41pi, mas pela
hipétese A < 0. |
Logo a ordem 6tima de uma maquina pode ser computada em tempo
O(nlogn), e uma representacdo reduzida mantém somente a distri-
buicdo das tarefas a maquinas. O

As diferentes representagdes compactas podem ser combinadas.

Exemplo 1.8 (Simple assembly line balancing)

No “simple assembly line balacing problem” do tipo 2 temos que
atribuir n tarefas, restritas por precedéncias, a m de esta¢des de tra-
balho. Cada tarefa possui um tempo de execucdo ti, e o tempo de
estagiio é o tempo total das tarefas atribuidas a uma estacdo. O obje-
tivo é minimizar o maior tempo de estacao.

Uma representacgdo direta é uma atribuicdo de tarefas a estagdes, mas
muitas atribui¢des sdo invalidas por ndo satisfazer as precedéncias
entre as tarefas. Uma representacdo mais compacta atribui chaves
aleatodrias as tarefas. Com isso, uma ordem global das tarefas é defi-
nida: elas sdo ordenadas topologicamente, usando as chaves aleato-
rias como critério de desempate, caso duas tarefas concorram para a
proxima posigdo. Por fim, para uma dada ordem de tarefas, a solu-
¢do 6tima do problema pode ser obtida via programacdo dinamica.
Seja C(i, k) o menor tempo de ciclo para tarefas i,...,n em k maqui-
nas, a solugéo 6tima é C(1, m) e C satisfaz

minj<j<n max{zigj/gj tjr, Cli+1,k+1)} parai<n, k>0
Ci,k)=<¢0 parai>n ,
00 parai<nek=0

e logo a solugdo 6tima pode ser obtida em tempo e espago O(nm)
(pré-calculando as somas parciais).

Essa observagdo é o motivo para o
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1.3. Estratégia de busca: Diversificagdo e intensificacdo

Principio de projeto 1.3 (Subproblemas)

Identifica os subproblemas mais dificeis que podem ser resolvidos
em tempo polinomial e considera uma representacdo que contém
somente a informacao necessdria para definir os subproblemas.

1.3. Estratégia de busca: Diversificacao e
intensificacao

Uma heuristica tem que balancear duas estratégias antagonistas: a
diversificagdo da busca e a intensificacio de busca. A diversificagdo da
busca (ingl. diversification or exploration) procura garantir uma boa
cobertura do espago de busca, evitando que as solugdes analisadas
fiquem confinadas a uma pequena regido do espaco total. A diversi-
ficacdo ideal é um algoritmo que repetidamente gera solugdes alea-
torias. Em contraste a intensificagio (ingl. intensification or exploitation)
procura melhorar a solucdo atual o mais possivel. Um exemplo de
uma intensificacdo seria analisar todas solugdes dentro uma certa
distancia da solugéo atual.

O tema de intensificacdo e diversificacdo se encontra na discussdo da
heuristicas individuais na sec¢des 2 a 4; um procedimento genérico
de intensificagdo e diversificacdo é apresentado na sec¢do 4.9.

1.4. Notas

Mais informagdes sobre os teoremas NFL se encontram no artigo
original de Wolpert e Macready (1997) e em Burke e Kendall (2005,
cap. 11) e Rothlauf (2011, cap. 3.4.4). Para um critica ver p.ex. Hut-
ter (2010). Talbi (2009, cdp. 1.4.1) discute outras representacdes de
solugoes.
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2. Busca por modificacao de solucoes

2.1. Vizinhancas

Uma busca local procura melhorar uma solugdo de uma instancia de
um problema aplicando uma pequena modificagdo, chamada movi-
mento. O conjunto de solugdes que resultam de uma pequena modi-
ficagdo formam os vizinhos da solugéo.

Definicao 2.1 (Vizinhanca)

Uma vizinhanga de uma instancia x de um problema de otimizacédo
IT é uma funcio N : S(x) — 25(%), Para uma solucio s, os elementos
N(s) sdo os vizinhos de s. Os vizinhos melhores de s sdo B(s) = {s’ €
N(s) | @(s") < @(s)}. Uma vizinhanga é simétrica, caso para s’ € N(s)
temos s € N(s').

Para uma dada vizinhan¢a um minimo local é uma solugéo s, tal que
@(s) < @(s’) para s’ € N(s) e um midximo local caso @(s) > @(s’)
para s’ € N(s). Caso uma solugdo é estritamente menor ou maior
que os seus vizinhos, o 6timo local é estrito. Uma vizinhanga é exata,
caso cada 6timo local também é um 6timo global.

Definicdo 2.2 (Grafo de vizinhanga)

O grafo de vizinhanga G = (V, E) para uma instancia x de um problema
de otimizagdo T com vizinhanga N possui vértices V = {y | (x,y) € P}
e arcos (s,s’) para s, s’ € S(x), s’ € N(s). Para uma vizinhanga si-
métrica, o grafo de vizinhanga é efetivamente ndo-direcionado. Uma
solugdo s’ é alcangével a partir da solucdo s, caso existe um caminho
de s para s’ em G. Caso todo vértice é alcangédvel a partir de qualquer
outro, G é conectado. Neste caso o didmetro de G é o comprimento do
maior caminho mais curto entre dois vértices em G. O grafo G é
fracamente otimamente conectada caso a partir de cada solucdo s uma
solucdo 6tima é alcancgavel.

Uma vizinhanga é suficiente para definir uma busca local genérica.
Ela seleciona um vizinho de acordo com uma distribui¢do P sobre a
vizinhanga fechada N(s) = {s}UN(s). Para uma distribuicdo P sobre
N(s), a extensdo padrdo para a vizinhanga fechada é definida por

Ps(s’), caso contréario.

P(s’) = {] — 2 sieN(s) Ps(s’), paras’=s,

Algoritmo 2.1 (LocalSearch)
Entrada Solucéo inicial s, vizinhanga N, distribuigéo Ps.

Saida Uma solugdo com valor no méaximo @(s).
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2. Busca por modificagdo de solugdes

LocalSearch(s)=
s¥i=s
repeat
seleciona s’ € N(s) de acordo com P
s:=s'
if @(s) < @(s*) then s*:=s
until critério de parada satisfeito
return s*
end

A complexidade de uma busca local depende da complexidade da
selecdo e do namero de iteragdes. A complexidade da sele¢do muitas
vezes é proporcional ao tamanho da vizinhanga |N(s)].

Duas estratégias basicas para uma busca local sdo

Caminhada aleatéria (ingl. random walk) Para N(s) # @, define Ps(s) =
T1/IN(s)l.

Amostragem aleatéria (ingl. random picking) Uma caminhada ale-
atoria com N(s) = S(x) para todo s € S(x).

Melhor vizinho Para B(s) # @, define B*(s) = {s’ € B(s) | ¢(s’) =
mingrep(s) @(s”)} e Ps(s’) = 1/[B*(s)| para s’ € B*(s). Essa
estratégia tipicamente ndo consegue sair de minimos locais e
tem que ser modificado por uma das técnicas discutidas em
2.3, mas supera plateaus.

Exemplo 2.1 (Politopos e o método Simplex)

O método Simplex define uma vizinhanca entre os vértices do po-
litopo de um programa linear: cada par varidvel entrante e sainte
admissivel define um vizinho. Essa vizinhanca é simétrica, conec-
tada, fracamente otimamente conectada e exata. Logo uma busca
local com a estratégia “melhor vizinho” resolve o problema da pro-
gramagdo linear. O

Exemplo 2.2 (k-exchange para o PCV)

Uma vizinhanga para o PCV é k-exchange Croes (1958): os vizinhos
de um ciclo sdo obtidos removendo k arcos, e conectando os k ca-
minhos resultantes de outra forma. Para qualquer k fixo, essa vi-
zinhanga é simétrica, conectada, fracamente otimamente conectada,
mas inexata (por qué?). O tamanho da vizinhanca ¢ O = ((})k!2¥) =
O(nk) para n cidades e k fixo.

l 3-ex.

¢

Exemplo 2.3 (k-SAT)
O problema k-SAT é decidir se existe uma atribuigdo x € {0, 1}"* que
satisfaz uma férmula ¢(x) da légica proposicional em forma normal
conjuntiva com k literais por cldusula.
Figura 2.1.. Um movimento na vizi- Seja [x —yl1 = }_ic[nyxi # yil a distdncia Hamming entre dois ve-
nhanga 3-exchange para o PCV. n .. . . .
tores x,y € {0, 1}™. Uma vizinhanca conhecida para SAT é k-flip: os
vizinhos de uma solugdo sdo todas solugdes de distincia Hamming
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2.1. Vizinhangas

k. A vizinhanga é simétrica, fracamente otimamente conectada para
k = 1, mas inexata. O tamanho da vizinhanca é O(n*).

O

Observacgao 2.1 (Calculo eficiente da funcao objetivo)
Frequentemente é mais eficiente avaliar a diferenca A(s,s’) = @(s') —
@(s) para determinar o valor da fungdo objetivo de um vizinho. No
exemplo 2.2 avaliar ¢(s) custa O(n), mas avaliar A(s,s’) custa O(1).
Logo, determinar o melhor vizinho na vizinhanca 2-exchange, por
exemplo, custa O(n3) na abordagem ingénua, mas é possivel em
O(n?) avaliando as diferencas.

Em alguns casos a avaliagdo da diferenca das diferencas é ainda mais
eficiente. Um exemplo é a programacio quadrdtica bindria com funcao
objetivo

e() =x'Qx= )  qixix;
i,jen]

com x; € {0, 1} e coeficientes simétricos (Q = Q). Avaliar ¢(s) custa
©(n?), avaliar a diferenca na vizinhanca 1-flip que troca x;, = 1 —xj
para um k fixo, obtemos x" = x + (1 — 2xy )ex e logo

A(x,x) = ) qij(x{x] —xix;)

i1,jen]

= Z qikxi(X{( —XK) + Z qxj (x{< —x1)%5 + qkk(x]’{é—xﬁ)
ieml\{kx} jem\{k}

= (1—2x) (qk +2 Z qikxi)

ie[n]\{k}

custa somente O(n).
Atualizando um bit | por x{ = 1 —x; obtemos novas diferencas

(2.1)

;o {Ak caso l =k
L=

Ay +2que(1—2x ) (1 —2x;)  caso contrério.

Dado os valores Ay podemos encontrar o melhor vizinho em tempo
O(n). Passando para o melhor vizinho, podemos atualizar todos va-
lores Ay em tempo O(n) usando (2.1). Logo, o custo de encontrar
o melhor vizinho é ©(n3) avaliando solucdes completas, somente
©(n?) calculando as diferencas, e somente O(n) atualizando dife-
rengas. O

Principio de projeto 2.1 (Vizinhangas)
Procura o método mais eficiente de avaliar os vizinhos de uma solu-
¢do e encontrar um dos melhores vizinhos.

2.1.1. Vizinhancas reduzidas

Uma técnica comum para melhorar o desempenho de buscas locais é
reduzir a vizinhanga heuristicamente, excluindo vizinhos com carac-
teristicas que com baixa probabilidade se encontram em solugdes de
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2. Busca por modificagdo de solugdes

boa qualidade. Uma forma comum de reduzir a vizinhanga é usar
listas de candidatos (ingl. candidate lists).

Exemplo 2.4 (Vizinhanca reduzida para o PCV)

No caso do 2-exchange para o PCV muitas das ®(n?) vizinhos pro-
duzem rotas inferiores, porque eles introduzem uma arestas longas,
caso as duas arestas originais ficam muito distantes. Logo é possivel
reduzir a vizinhanga heuristicamente, sem expectativa de perder so-
lugdes boas. Uma estratégia proposto por D. S. Johnson e McGeoch
(2003) é: escolher uma cidade aleatéria, um vizinho aleatério dessa
cidade na rota, uma terceira cidade entre os 20 vizinhos mais proxi-
mos da segunda cidade, e a quarta cidade como sucessor da terceira
na orientagdo da rota dado pelas primeiras duas cidades. Com isso
uma rota tem no maximo 40n vizinhos. O

Exemplo 2.5 (Bits “don’t look” para o PCV)

Considera a estratégia do exemplo anterior e supde que para uma
dada selecdo da primeira cidade ndo tem um movimento que me-
lhora a rota. Empiricamente, caso essa cidade continua com os mes-
mos vizinhos, a probabilidade de encontrar um movimente que me-
lhora é baixa. Isso é o motivo para introduzir bits “don’t look” (Ben-
tley 1992). Cidades que ndo levaram a uma solugdo melhor recebem
ficam exclusos nas préximas iteragdes até um vizinho mudar. O

A redugdo de vizinhangas frequentemente é uma estratégia impor-
tante para obter resultados de boa qualidade (D. S. Johnson e McGe-
och 2003; Toth e Vigo 2003; Glover e Laguna 1997), motivo para

Principio de projeto 2.2 (Reducdo de vizinhangas)
Considera eliminar das vizinhancas movimentos com baixa probabi-
lidade de melhorar a solugao.

2.2. Buscas locais monétonas

Uma busca local monétona permite somente modificagdes que me-
lhoram a solugdo atual, i.e. no algoritmo LocalSearch sempre temos
Ps(s’) = 0 para s’ ¢ B(s). Logo, o algoritmo termina num 6timo
local. Pela monotonia também ndo é necessario guardar a melhor
solucdo encontrada. A busca depende da estratégia de selecdo da
nova solugdo s’, também conhecida como regra de pivoteamento.

Algoritmo 2.2 (LocalDescent)
Entrada Solucao inicial s, vizinhanca N, distribuigdo Ps.

Saida Uma solu¢do com valor no maximo @(s).

LocalDescent (s)=
repeat
seleciona s’ € N(s) de acordo com P
s:=s’
until Pg(s) =1
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2.2. Buscas locais monétonas

return s
end

Descida aleatéria (ingl. stochastic hill descent) Para B(s) # @ de-
fine Ps(s’) = 1/IB(s)| para s’ € B(s). Esta estratégia é equiva-
lente com a primeira melhora, mas em ordem aleatéria.

Primeira melhora (ingl. first improvement) A primeira melhora su-
pOe uma vizinhanga ordenada B(s) = {by,...,by}. Ela seleci-
ona f =min{i| @(b;) < @(s)}, i.e. Ps(bi) = [i = f]. O método é
conhecido pelos nomes “hill climbing” (no caso de maximiza-
¢ao) ou “hill descent” (no caso de minimizacao).

Melhor melhora (ingl. best improvement) Para B(s) # @, define B*(s) =
{s" €B(s) | @(s") = mingnep(s) @(s”)} e Ps(s") = 1/[B*(s)| para
s’ € B*(s). O método é conhecido pelos nomes “steepest as-
cent” (no caso de maximizagdo) ou “steepest descent” (no caso
de minimizac&o).

Busca por amostragem (ingl. sample search) Seleciona um subcon-
junto S C N(x) aleatério de tamanho «|N(x)|, define B*(s) =
{s" € B(s) | ¢(s’) = mingncs @(s”) e Ps(s’) = 1/|B*(s)| para
s’ € B*(s).

As estratégias obviamente podem ser combinadas, por exemplo, apli-
car uma estratégia de “primeira melhora” ap6s uma amostragem.

A qualidade de uma busca local depende da vizinhanca: para vi-
zinhangas maiores esperamos encontrar 6timos locais melhores. Po-
rém a complexidade da busca cresce com a vizinhanga. A arte, entdo,
consiste em balancear estes dois objetivos.

Exemplo 2.6 (Método Simplex)

Nao conhecemos um regra de pivoteamento para o método Simplex
que garante uma complexidade polinomial. Porém, a programacao
linear possui solugdes polinomiais (que ndo usam busca local). Isso
indica que a complexidade de encontrar étimos locais pode ser me-
nor que a complexidade do método iterativo. O

Exemplo 2.7 (Arvore geradora minima)

Para uma 4rvore geradora, podemos definir vizinhos como segue:
adicione uma aresta, e remove outra do (tinico) ciclo formado. Uma
drvore geradora é minima se e somente se ndo existe melhor vizi-
nho (prova: exercicio). Por isso a busca local resolve o problema
de encontrar a drvore geradora minima. A vizinhanga é simétrica,
fracamente otimamente conectada e exata. Porém, a busca local ge-
ralmente ndo é eficiente. O

Exemplo 2.8 (OneMax)
Para x* € {0,1}™ fixo o problema OneMax consiste em encontrar o
minimo de @(x) = [x — x*|7, i.e. x*. O namero de bits X corretos de
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2. Busca por modificagdo de solugdes

uma solugdo aleatéria satisfaz E[X] =n/2e P(X <n/3) < e /36 ¢
P(X > 2n/3) < e ™/>4 (aplicando limites de Chernoff (A.4)).

Uma descida aleatdria precisa tempo O(n) para selecionar um vizi-
nho, avaliando a fungdo objetivo em O(1) e sem repeticdo, e O(n)
passos, para um tempo total de O(n?). Uma anélise mais detalhada
do caso médio é a seguinte: para selecionar um vizinho melhor, po-
demos repetidamente selecionar um vizinho arbitrario, até encontrar
um vizinho melhor. Com 1 bits diferentes, encontramos um vizinho
melhor com probabilidade i/n. Logo a selecdo precisa esperada-
mente n/1i passos até encontrar um vizinho melhor (ver lema A.3) e
logo no méximo

Z n/i=nH, ~nlogn

1<i<n

passos até encontrar x*.

A primeira melhora precisa no pior caso (todos bits diferentes) tempo
esperado ®(n /1) para encontrar um vizinho melhor, e a melhor me-
lhora tempo ©(n). Logo, ambas precisam tempo ©(n?) para encon-
trar x*. O

Exemplo 2.9 (GSAT)

O algoritmo GSAT (Selman, Levesque et al. 1992) aplica a estratégia
“melhor vizinho” na vizinhanga 1-flip com fungdo objetivo sendo o
numero de cldusulas satisfeitas (observe que é importante escolher
entre os melhores uniformemente). Ele periodicamente recomeca a
busca a partir de uma solugéo aleatéria. O

Exemplo 2.10 (WalkSAT)

WalkSAT usa uma estratégia de selecdo mais sofisticada: em cada
passo uma cldusula ndo satisfeita é selecionada, e uma variavel ale-
atéria dessa clausula é invertida. (O WalkSAT proposto por Selman,
Kautz et al. (1994) seleciona uma varidvel que ndo invalida nenhuma
outra cldusula ou com probabilidade p uma que invalide o menor
nimero e com probabilidade 1 —p uma aleatdria.) Logo a vizinhanga
é um subconjunto da vizinhanga 1-flip. WalkSAT também recomega
a busca a partir de uma solugéo aleatéria periodicamente.

Lema 2.1 (Schoning (1999))
Seja @ uma férmula em k-CNF satisfativel com n varidveis. O algo-

ritmo WalkSAT com perfodo 3n precisa esperadamente O(n3/2(2(k—
1)/k)™) passos até encontrar uma atribuicdo que satisfaz ¢.

Prova. Seja a uma atribui¢do que satisfaz @. Vamos determinar
a probabilidade q que um periodo de WalkSAT encontra a. Com
pj = (})27™ a probabilidade de iniciar com distancia Hamming j de
a, e g; a probabilidade de encontrar a a partir da distancia j, temos

a= >  pjqj *)

0<j<n
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2.2. Buscas locais monétonas

A distancia Hamming para a diminui com probabilidade pelo me-
nos 1/k e aumenta com probabilidade no méximo 1—1/k. Podemos
modelar o WalkSAT como caminhada aleatdria entre classes de solu-
¢des com distancia Hamming j, com uma probabilidade de transicédo
de j para j— 1 (“para baixo”) de 1/k e de j para j+ 1 (“para acima”)
de 1—1/k. Com isso q; € pelo menos a probabilidade de chegar na
classe 0 a partir da classe j em no méximo 3n passos. Para conseguir
isso podemos fazer j passos para baixo, ou j + 1 para baixo e um
para acima, e no geral j + | para baixo e | para acima. Logo

o max 21\ (k=T1\' 1
4 = 0<1<(3n—j)/2 \ 1 k k :

Para l = oj com o € (0,1) temos

o= (SR )

Aplicando o lema A.4 é podemos estimar!

(”““)j) > (8)) /2 <]+20¢>a<1+20c>1+°‘ ’

o] = o T+«

. —1/2 14+ 2x & 142 T+x (k_])fx<1>(1+o¢) j
a; > (3)) <( . ) (Ha) 1y |

Escolhendo « = 1/(k —2) e simplificando obtemos

1 j
s (g 1/2 '
q; > (8j) <k1>

Finalmente, substituindo em (*)

¢>2" 1 Y (Tj‘)z—“(sj)—”z (k1_1)]

jeln]

g (5) ()

jeln]

“ze 2 (1) = U ()

Logo, o nimero esperado de periodos é

1/q=m(2(kk—”)“

1Substituindo diretamente é descartando o fator /(1 + 2«)/(x(1 + «)) > 1.

e logo
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Figura 2.2.: Caminhos construidos na
prova do teorema 2.1. Acima: n = 22,
k = 8. Meio: n = 12, k = 2. Abaixo:
n =40, k = 16. A figura somente mos-
tra arestas de distancia 1/na.

2. Busca por modificagdo de solugdes

e como cada periodo precisa tempo O(n) o resultado segue. u
Para uma férmula satisfativel com k = 3, por exemplo, o algoritmo
precisa om3/2(4/3)™) passos.

E possivel transformar este algoritmo num algoritmo randomizado
que decide se uma férmula é satisfativel com alta probabilidade. ¢

Principio de projeto 2.3 (Reinicios)
Considera reinicios frequentes. Eles podem ficar mais efetivos caso a
probabilidade de atingir a qualidade desejada é baixo.

Exemplo 2.11 (2-opt para o PCV)
A estratégia 2-opt para o PCV é uma descida aleatéria na vizinhanga
2-exchange. Similarmente, obtemos k-opt na vizinhanga k-exchange.

Teorema 2.1 (Chandra et al. (1999))
Para k > 2, n > 2k +8 e para o > 1/n existe uma instancia x do
PCV com n cidades, tal que

k-opt(x)
OPT(x)
Prova. Para um k par, define distancias
diz =1,
diit1 =dn1 =1/nx ie2,n),
di+3,2k+4 = 1/n0,
dj 2xia—j = 1/n«q, j ek,
dij = kn, caso contrario.

Um ciclo Hamiltoniano 6timo é dado por arestas (i, proximo(i)) com

2k+4—1i, paraiimparei<k,
i+1, paraiparei<k,
i+1, paraie€ [k, k+2],
. . 2k +4, parai=k+3,

proximo(i) = < | . )
i—1, para iimparei € [k+3,2k+4),
2k+4—1i, paraipareie [k+3,2k+4),
i+1, paraie€ [2k+4,n],
1, parai=n.

A otimalidade segue do fato que todas arestas possuem o peso mi-
nimo 1/n«. Este ciclo é o tnico ciclo 6timo (Exercicio!). Por outro
lado, o ciclo (1,2,...,n) possui peso total 1+ (n —1)/nw«, mas tem
k + 1 arestas diferentes. Logo este ciclo ¢ um minimo local para k-
exchange e para a instancia acima temos

k-opt(x)

—— >+ 1-1/n>a

OPT(x) — /
Para provar o caso para um k impar, podemos observar que um
minimo local para o k + T-exchange, também é um minimo local
para k-exchange. |
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2.2. Buscas locais monétonas

Teorema 2.2 (Chandra et al. (1999))
No caso métrico 2-opt(x)/OPT(x) < 4\/n.

Para k € [n] define Dy = 20PT(x)/vk. Como primeiro passo pro-
varemos

Lema 2.2 (Minimos locais tem menos que k arestas k-longas)
Seja (c1,€2,.-+,Cn,Cnt1 = ¢1) um minimo local de 2-opt e Ey =
{(ci,ci41) | dijig1 > Dyl Entdo [Ex| < k.

Prova. Supde que existe um k tal que [Ex| > k.

A densidade de términos de arcos (ci,cis1) € Ex? ndo pode ser
demais: Supde que numa bola com centro c e didmetro Dy temos
términos ty,...,t; com 1 > Vk. Sejam i1, ..., 1 os inicios correspon-
dentes. Nenhum inicio esta na bola, por ser mais que Dy distante
do término. Os términos, por estarem na bola, possuem distancia
no méaximo Dy entre si. Logo, os inicios também possuem uma dis-
tancia mais que Dy entre si: caso contrario, para um par de inicios
iq,1p com distancia até Dy a solucdo que aplica um 2-exchange subs-
tituindo duas arestas mais longas que Dy (iq,ta) e (ip, tp) por duas
arestas mais com distdncia no maximo Dy (iq,1p) € (tq,tp) séria
melhor, uma contradigdo com a minimalidade local.

Logo existem pelo menos v/k inicios com distincia mutual de pelo
menos Dy. Mas uma rota minima entre eles possui distancia pelo
menos vk Dy = 20PT(x), uma contradicdo. Isso mostra que numa
bola de raio Dy temos menos que Vk términos.

Por consequéncia, em Ey existem pelo menos v/k términos com dis-
tancia mais que Dy entre si: comegando com o conjunto de todos
términos de arcos em Ej vamos escolher cada vez um, e remové-
lo junto com os términos com distancia no maximo Dy /2 dele, até
nenhum término sobrar. Como em cada passo removeremos no méa-
ximo vk términos, o conjunto resultante possui pelo menos v/k tér-
minos. Mas entdo uma rota que visita todos possui distancia mais
que VkDy /2 = OPT(x), uma contradi¢do. Logo |Ey| < k. [ |
Com isso podemos provar o teorema 2.2.

Prova. Pelo lema, a distdncia da i-ésima aresta em ordem nio-
crescente e no maximo 20PT(x)/v/i. Logo temos para a distancia
da rota

Y da <20PT(x) ) 1/Vi<40PT(x)vn

aeC ie[n]

(porque Y ;. 1/Vi< [gi~1/2di=2n1/2). |

Observacgdo 2.2

Os teoremas ndo quantificam a complexidade para encontrar o mi-
nimo local. Chandra et al. (1999) ainda provaram que o niimero es-
perado de iteragdes sobre instancias Euclidianas aleatérias em [0, 112

20 término de (u,v) é v, o inicio u.
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Dy = 20PT(x)/Vk

Figura 2.3.:
rema 2.2.

Mustragdo para o teo-
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é 0O(n'0° logn). Para [0, 113 isso se reduz para O(n® logn). Eles tam-
bém provaram que no caso métrico existem instancias com minimos
locais cujo valor desvia pelo menos um fator 1/4,/n da otimalidade,
i.e., o teorema assintoticamente é o melhor possivel. O

Por final observamos que o PCV em geral ndo é resolivel por busca
local (em contraste com a programagdo linear e o método Simplex).

Teorema 2.3 (C. H. Papadimitriou e Steiglitz (1977))
Caso P # NP, ndo existe um algoritmo de busca local com complexi-
dade polinomial por iteragdo que é exato para o PCV.

Considere primeiramente o problema

CicLo HAMILTONIANO RESTRITO

N Entrada Um grafo ndo-direcionado G = (V, A) e um caminho
/. Hamiltoniano p em G.
u v
W/ / N\ - Decisdo Existe um ciclo Hamiltoniano em G?
AN /
x Y Lema 2.3
N S 4 Ciclo Hamiltoniano restrito é NP-completo.
N Prova. Por redugdo do problema “Ciclo Hamiltoniano”. Considere o
u/ N v grafo “diamante” da Fig. 2.4 com quatro “entradas” norte (N), oeste
/ \ (W), sul (S) e este (E). Entrando em N, W, §, E ele s6 pode ser
w / E atravessado por um ciclo Hamiltoniano em dois modos, um modo
N X y 4 EW e outro modo NS, como mostrado do lado.
N /7 Para uma instancia G = (V, A) do problema do ciclo Hamiltoniano,
S podemos construir um grafo G’ que possui um caminho Hamiltoni-
N ano como segue. Introduz um “diamante” d, para cada vértice em
u/ \V v € V e chama os quatro entradas N, W,, S, e E,.. Conecta os dia-
/ N mantes de oeste ao este linearmente, i.e. (E1, W>), (E2, W3),..., (En_1, Wn).
w / E Isso garante a existéncia de um caminho Hamiltoniano comecando
N\ N y 4 no oeste do primeiro vértice W7 e terminado no este do tltimo vér-
\ / tice E, como a Fig. 2.5 mostra. Para representar a estrutura do
N

grafo G, introduz para cada aresta (u,v) € A duas arestas (N, Sy) e
Figura 24 Grafo “diamente” e as duas (Ny, Si.) conectando 0s diamantes co.rrespondentles au ,e v de norte
formas de o atravessar. a sul. Caso G possui um ciclo Hamiltoniano, G’ também, atraves-
sando os diamantes sempre de modo NS de acordo com o ciclo. Caso
G’ possui um ciclo Hamiltoniano, ele usa os diamantes somente de
modo NS. Caso contrério, o ciclo tem que seguir em alguma direcdo
no modo WE até terminar num dos dois vértices W7 e E. Logo G

também possui um ciclo Hamiltoniano. |
//\\ //\\ //\\ //\\ //\\ //\\
Wi =) Ee
\N/ \N/ \N/ \N/ \/ \N/

Figura 2.5.: Estrutura bésica do grafo G'.
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2.2. Buscas locais monétonas

Prova.(do teorema 2.3) Por contradi¢do. Caso existe tal busca local,
podemos decidir em tempo polinomial se uma dada solucédo s é sub-
6tima: é suficiente iterar uma vez. Mas o problema de decidir se
uma solugdo s é sub-6tima é NP-completo, por redugdo do problema
Ciclo Hamiltoniano restrito. O problema pertence a NP, porque uma
solucdo 6tima é um certificado curto da sub-otimalidade. Dado um
grafo ndo-direcionado G = (V, A) define uma instancia do PCV com
cidades V, e distdncias dq = 1 caso a € A, e dq = 2 caso contrario.
O ciclo Hamiltoniano c obtido por fechar o caminho Hamiltoniano p
possui disténcia total (n — 1) + 2. Agora G possui um ciclo Hamilto-
niano sse o PCV possui uma solugao de valor n sse ¢ é sub-6timo. W

O

As analises de minimos locais podem trazer informacdes relevantes
sobre a qualidade da solugdo e sugerem caminhos para melhor mi-
nimos locais. Isso é motivo do

Principio de projeto 2.4 (Vizinhangas)

Encontra exemplos de minimos locais e os compara com solugdes
6timas. Investiga que tipo de modificagdo poderia melhorar um mi-
nimo local.

2.2.1. Segue os vencedores

Segue os vencedores (ingl. go with the winners) (Aldous e Vazirani
1994) é uma estratégia que trabalha com multiplas solugdes. Cada
solugdo percorre uma trajetéria de uma busca local monétona. Caso
uma das trajetérias termina num minimo local, ela continua no ponto
atual de uma das outras trajetérias que ainda ndo chegaram num
minimo local. A busca termina, caso todas trajetérias terminaram
num minimo local.

Algoritmo 2.3 (Segue os vencedores (SOV))
Entrada Solucédo inicial s, vizinhanga N, distribuicdo Pg, o na-
mero de solugoes k.

Saida Uma solug¢do com valor no méaximo @(s).

SV (s)=
si:=s para i€ [K]
s*=s
repeat
seja L:={i€k]|B(s)=@} e L:=[kI\L
atribui as solugdes em L
uniformemente a solugdes em L
seleciona s{GN(si) de acordo com ﬁsi
si =5/
s* = argmin{@(s«), @(s1),..., @(sk)}
until L[ = [k]
return s*
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Figura 2.6.: Exemplo de uma drvore em
que segue os vencedores é exponencial-
mente mais eficiente que uma estratégia
de maltiplos inicios.

2. Busca por modificagdo de solugdes

end

Na atribuicdo das solugdes em L cada solugdo é usada no maximo
[ILI/IL[] vezes.

A motivagdo para SOV pode ser explicada no exemplo da arvore
na figura 2.6. Seja d a variavel aleatéria da profundidade alcangada
por uma particula numa caminhada aleatdria partindo da raiz em
diregdo as folhas. Temos P(d > h) = 2~ (a profundidade da raiz é
h = 0). Com k particulas independentes, seja d* = max{dy,..., dx}.
Logo

P(d*>h)=1—-P(d*<h)=1— H P(d; <h)
ie[k]

=1-J]1-P d>h_1—H1—2h —(1=2"Mm

ie[k]

Aplicando o lema A.2 obtemos

=) Pd>k=) 1-(1-279"< Y 1-(1-2"*n) =2k

h>0 h>0 h>0

(a dltima estimativa segue pela desigualdade de Bernoulli A.1).

Seja agora d° a variavel aleatéria do SOV com k particulas. Temos
P(dS >h)=(1—-2"Khe logo

=Y P@>h)=) (1-27%h=2"

h>0 h>0

Logo a profundidade esperada do SOV é exponencialmente maior
que a profundidade de um ntimero equivalente de exploragdes com
uma particula neste exemplo. De fato, temos:

Teorema 2.4 (Aldous e Vazirani (1994))

Para uma &rvore com profundidade D, sejam V; os vértices na pro-
fundidade i e seja p(v) a probabilidade de visitar vértice v numa
caminhada aleatéria da raiz na dire¢do das folhas para uma dada
distribuicdo de probabilidade p(u | v) entre os filhos u de cada vér-
tice interno v. Define k = maxp<i<j<p Ki,; com

Kij =P(d>1)/P(d>j)* > pv)P(d>]|v)
vev;

Entdo, SOV com B = kD! particulas falha de chegar na profun-
didade D com probabilidade no méximo 1/4.

O valor k mede a dificuldade de superar os D niveis. No exemplo
da figura 2.6 temos k = 2 (para uma profundidade méxima fixa D).



2.2. Buscas locais monétonas

2.2.2. Complexidade

A solugdo 6tima de um problema de otimiza¢do também é um mi-
nimo local para qualquer vizinhanga. Para problemas em PO pode-
mos encontrar um minimo global (e local) em tempo polinomial. Po-
rém o exemplo do método Simplex mostra que mesmo em casos em
que podemos encontrar um minimo local em tempo polinomial, isso
ndo precisa ser por uma busca local monétona. Logo, temos o pro-
blema de analisar a complexidade de uma busca local, o problema
de encontrar um minimo local de qualquer forma, e o problema de
encontrar o minimo local que a busca local encontraria.

Para calcular um minimo local por uma busca local monétona, cla-
ramente pelo menos a vizinhanga tem que ser analisdvel em tempo
polinomial. A classe de complexidade PLS captura essa ideia.

Defini¢io 2.3 (D. D. Johnson et al. (1988))

O problema de busca local é encontrar um minimo local de um pro-
blema otimizagdo IT com P polinomialmente limitada, dado uma
vizinhanga N (escrito TT/N).

Um problema de busca local pertence a classe de complexidade PLS
caso existem algoritmos polinomiais I, V, N tal que

i) I(x) decide se x é uma instancia valida e caso sim produz uma
solucéo (inicial);

ii) V(x,s) decide se é uma solugédo valida da instancia x, e caso
sim, calcula @(x,s);

iii) N(x, s) verifica se s ¢ um minimo local, e caso contrério produz
uma solugdo vizinha s’ € N(s) estritamente melhor, i.e. ¢(s’) <
@(s).

A busca local padrio repetidamente aplica a vizinhanca N(x,s) até
chegar num minimo local. Com isso podemos definir trés problemas
concretos.

PROBLEMA DE BUSCA LOCAL PADRAO
Entrada Um problema em PLS.

Problema Qual a complexidade pessimista da busca local pa-
drdo em numero de passos sobre todas solugdes iniciais
em funcdo do tamanho do problema?

PROBLEMA DE BUSCA LOCAL
Entrada Um problema em PLS.
Problema Encontra um minimo local.

Observacées O minimo local pode ser encontrado com qual-
quer algoritmo, ndo necessariamente por busca local. Nota
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2. Busca por modificagdo de solugdes

também que a questdo é independente da fungédo I(x).

PROBLEMA DE ENCONTRAR O MINIMO LOCAL PADRAO
Entrada Um problema em PLS, uma solugdo inicial s,.

Problema Encontra o minimo local que a busca local padréo a
partir da solugdo sy encontraria.

Teorema 2.5
FP C PLS C FNP.

Prova. Supde que temos um problema em FP com algoritmo A.
Entdo existe TT/N tal que os minimos local correspondem com as
solucdes de uma instancia: podemos escolher S(x) ={y | (x,y) € P},
@(x,s) =0eN(x,s) ={s}. Oalgoritmo I é o algoritmo A, o algoritmo
V decide (x,y) € P em tempo polinomial e o algoritmo N sempre
retorna “falso”.

Caso temos um problema TT/N € PLS, entdo o problema de en-
contrar um minimo local pertence a FNP: as solug¢des sdo limitadas
polinomialmente, e podemos usar o algoritmo N para reconhecer
solugdes. |
Logo, a questdo PLS C FP é “podemos encontrar minimos locais em
tempo polinomial?”.

Para relacionar problemas de busca local serve a seguinte nogdo de
redugéo.

Definicao 2.4 (Reducgado PLS)

Uma problema de busca local ITy /N7 é PLS-redutivel a um problema
de busca local TT; /N, caso existem algoritmo polinomiais S, T tal
que:

e Podemos transformar instancias de 1Ty /Ny para T, /N;: Para
x7 € 14, S(X]) e 1.

e Podemos transformar solugdes de T1, /N, para solucdes de TT; /Ny:
Para s € S(x2), T(s2,x1) € S(x1).

e Os minimos locais correspondem: Para um minimo local s; €
S(x2) de Ty /Ny, T(s2,%x7) é um minimo local de TT; /Nj.

Com isso obtemos a nogdo normal de completude. Em particular as
redugdes sdo transitivas (ver exercicio 2.2).

Defini¢io 2.5 (PLS-completo)
Um problema IT/N em PLS é PLS-completo caso todo problema em
PLS é PLS-redutivel a TT/N.

Considera o problema Circuit/ 1-flip: Dado um circuito booleano (so-
bre A, V,—, por exemplo) com n entradas e m saidas encontra um
minimo local partindo da entrada 1™ para a fungéo objetivo que trata
as saidas como ndmero bindrio de m bits.
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2.3. Buscas locais nio-monétonas

Teorema 2.6 (Completude de Circuit/1-flip)
Circuit/1-flip é PLS-completo.

Prova. Ver por exemplo Yannakakis (2003).

Teorema 2.7
PCV /k-opt é PLS-completo para alguma constante k.

Fato 2.1

Os problemas MaxCut/Flip e Graph-partitioning /Swap sdo PLS-completos.
Para os problemas PCV /k-opt, MaxCut/Flip e Graph-partitioning /Swap

a busca local padrao precisa no caso pessimista um ntimero expo-
nencial de passos para encontrar um minimo local. Para os mesmos
problemas, o problema de encontrar um minimo local especifico é
PSPACE-complete.

2.2.3. Notas

Uma boa introdugéo & busca local encontra-se em Kleinberg e Tardos
(2005, cap. 12) ou C. H. Papadimitriou e Steiglitz (1982, cap. 10). A
ultima referéncia tem mais material sobre a conexdo entre busca lo-
cal e a busca na vizinhanga definida por um politopo. Michiels et al.
(2007) apresentam aspectos teoricos da busca local. Em particular o
cdp. 5 dessa referéncia apresenta mais detalhes sobre o PCV métrico
e Euclidiano. Neumann e Wegener (2006) analisam mais profunda-
mente o desempenho de uma busca local randomizada no problema
da drvore geradora minima. Um exemplo em que a busca local é
melhor que outras abordagens é o problema métrico das k-medianas
(ver por exemplo Korte e Vygen (2008, cap. 22). Dimitriou e Impagli-
azzo (1996) propdem uma variante do algoritmo SOV que distribui
as solugdes de acordo com o ntmero de vizinhos melhores. Yanna-
kakis (2009) mostra conexdes entre busca local e jogos, Knust (1997)
entre busca local e problemas de escalonamento.

2.3. Buscas locais nao-monoétonas

Uma busca local ndo-mondétona permite piorar a solugdo atual.

Algoritmo 2.4 (S-LocalSearch)
Entrada Solucéo inicial s, distribui¢do P

Saida Uma solug¢do com valor no méaximo @(s).

S-LocalSearch(s)=
s¥i=s
repeat
seleciona s’ € N(s) de acordo com P
if aceitavel(s,s’) then s:=s’
if @(s) < @(s*) then s*:=s
until critério de parada satisfeito
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2. Busca por modificagdo de solugdes

return s*
end

No que segue usaremos A(s,s’) = @(s’) — ¢(s). A tabela 2.1 mostra
um resumo de estratégias de selegdo e aceitagdo dos métodos discu-
tidos abaixa.

2.3.1. Critérios de parada

Em buscas locais ndo-monétonas temos que definir um critério de
parada (ingl. stopping criterion). Exemplos incluem um ntimero ma-
ximo de itera¢gdes ou um tempo maximo. Ambos sdo usados fre-
quentemente, por serem simples, e por permitirem comparacoes da
qualidade obtida com os mesmos recursos por métodos diferentes.
Porém, eles potencialmente gastem tempo demais em instancias em
que uma boa solugdo foi encontrada cedo na busca, e provavelmente
gastem tempo de menos em instancias maiores que foram conside-
radas na defini¢do dos critérios: um bom método precisa ajustar a
tempo investido em fun¢do do tamanho do problema.

Critérios de parada dindmicos resolvem estes problemas. Exemplos
sdo: (i) A solugdo encontrada possui um desvio relativo fixo de al-
gum limite inferior do problema. Este método fornece inclusive uma
garantia da qualidade da solugdo. (ii) Podemos determinar empiri-
camente, que a probabilidade de melhorar a solugdo incumbente é
baixa. O critério mais simples desse tipo é parar caso o método ndo
faz progresso por um numero de iteragdes ou um tempo fixo. Em
fungdo do método critérios mais rigorosos sdao possiveis (por exem-
plo por métodos estatisticos em métodos de mdiltiplos inicios, ver
cap. 3.2).

Exemplo 2.12 (Desvio relativo limitado)
O limitante de Held-Karp (ingl. Held-Karp bound) HK para o PCV é o
valor do programa linear

minimiza E CeXe

ecE

sujeitoa  x(5(S)) > 2 para®@ #S #V
x(6(v)) =2 paraveV
0<xe<1 para e € E.

e pode ser obtido eficientemente na prética. (Aqui 6 é o conjunto de
arestas na fronteira do conjunto S e x o valor total deles.) No caso
métrico o valor de HK ndo é menos que 2/3 do valor 6timo (Wolsey
1980). Logo, parando com um valor menos que o«HK, para um « >
3/2 temos uma o-aproximagdo da solucédo 6tima. O

2.3.2. Aceitacdo por limite e variantes

Entre os métodos ndo-mondtonos mais simples estdo estratégias de
aceitagdo por limite. Eles aceitam uma solugdo pior, dado que o
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2.3. Buscas locais nio-monétonas

Tabela 2.1.: Estratégias de busca local. A fungédo W(t) representa diferentes limites de aceitagdo (segdo 2.3.2).

Nome Estratégia de selecdo  Estratégia de aceitagdo
Aceitacéo por limite Cam. aleatéria A(s,s") < W(t)

Grande dilavio Cam. aleatéria e(s’) < W(t)

Recorde para recorde  Cam. aleatéria A(s*,s') < W(t)

Algoritmo demonio Cam. aleatéria A(s,s") < W(t)

Aceitagdo atrasada Cam. aleatéria A(s,s") <OV A(s!,s_) <0
BLMR De acordo com (2.2)  Com prob. 1.

Témpera simulada Cam. aleatéria Com prob. min{e~A(s:s)/T(t) 1}
Busca Tabu Unif. em N(s)\L(t) Com prob. 1.

valor da solugdo ndo ultrapassa um certo limite. Eles foram intro-
duzidos como variantes deterministicos da témpera simulada. A
definicdo concreta do limite difere entre as estratégias de aceitacio
por limite (ingl. threshold accepting) (Dueck e Scheuer 1990), o grande
diliivio (ingl. great deluge) (Dueck 1993), viagem de recorde para re-
corde (ing. record-to-record-travel), aceitagdo atrasada (ingl. late accep-
tance) Burke e Bykov 2012, e algoritmo demonio (ingl. demon algo-
rithm (Creutz 1983).

A tabela 2.1 mostra as estratégias de forma resumida. Na tabela,
Afs,s") = @(s') — @(s) e W(t) é um limite que varia com o tempo
como segue:

Aceitacdo por limite W(t+1) = W(t) — 6 caso o algoritmo ndo faz
progresso.

Grande dilivio W(t+ 1) = W(t) — 6 em cada aceitagdo de um movi-
mento. Dueck (1993) sugere que 8 seja “um pouco menos que
1% do valor médio de A(s, W(t))”.

Recorde para recorde W(t) = W = const.

Algoritmo deménio Nesse tipo de algoritmo, o demonio é um ban-
queiro: W(t+1) = W(t) — A(s,s’). Variantes incluem demonios
limitados (W(t+ 1) = min{W(t) — A(s, s”), Wmax}), com inflagio
(a “conta” do demoénio diminiu com o tempo), ou com valor
aleatoria (W(t) representa a média de uma varidvel com distri-
buicdo Gaussiana e desvio padréao fixo).

Outras formas da variacdo do limite sdo possiveis, e de fato, a sele¢do
dos W(t) é um problema em aberto (Aarts e Lenstra 2003).
2.3.3. Buscas locais estocasticas

Em buscas estocasticas o critério de aceitacdo é probabilistico e geral-
mente tal que solugdes de melhor valor possuam uma probabilidade
maior de serem aceitos.
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Busca local monétona randomizada (BLMR)

Uma das buscas locais estocasticas mais simples, a busca local moné-
tona randomizada (ingl. randomised iterative improvement) seleciona
com probabilidade p um vizinho arbitrario, e com 1 —p um vizinho
melhor, i.e.

p(s)) — {p/m(s) +(1-p)/[Bls)| casos’ € B(s) 22)

p/IN(s)] caso s’ € N(s)\ B(s)

A probabilidade de encontrar a solugdo 6tima para uma vizinhanga
conectada com uma busca local monétona randomizada converge
para 1 com um nimero de passos crescente (Hoos e Stiitzle 2004,
p. 155).

Observacgio 2.3

A BLMR é PAC (probabilistically approximately complete).

Para uma busca, seja P(t) a probabilidade de encontrar uma solugéo
6tima com t passos. A busca é chamada PAC, caso lim¢—, P(t) = 1.
Um critério suficiente para uma busca ser PAC é

Lema 2.4

Caso existe um e > 0 tal que a distdncia (ndmero minimo de passos)
para alguma solugdo 6tima fixa s* diminui com probabilidade pelo
menos € entdo a busca é PAC.

Prova. Caso a distancia de s* é 1, a probabilidade de chegar em s*
é pelo menos €'. Para um espaco de busca com didmetro A temos
1 < A e logo uma probabilidade pe® > 0 de chegar em s* a partir de
qualquer solucdo. Agora considera uma trajetéria de comprimento
t > A. Em cada segmento de comprimento A temos uma probabili-
dade p > 0 de chegar em s*. Entdo a probabilidade ndo chegar em
s* é no maximo (1 —e?)Y/A] — 0 para t — oo. [ | O

Algoritmo de Metropolis

O critério de aceitagio de Metropolis (Metropolis et al. 1953) é

1, caso A(s,s’) <0,

efA(s,s/)/kT’ (2.3)

P(aceitar s’ | s) = .
caso contrario.

(O critério foi introduzido para a simulagdo da evolugdo de um sé-
lido para o equilibrio térmico, e por isso inclui a constante de Boltz-
mann k. No contexto de otimizagdo ela tipicamente é ignorada,
ie. k = 1.) Uma busca local estocdstica com temperatura fixa é co-
nhecida como algoritmo de Metropolis. Para um T — oo o algoritmo se
aproxima a uma caminhada aleatéria, para T — 0 a uma busca local
monotona.
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Témpera simulada

A témpera simulada (ingl. Simulated Annealing) foi proposto por Cerny
(1985) e Kirkpatrick et al. (1983). Ela varia a temperatura do algo-
ritmo de Metropolis de acordo com uma programacgdo de resfria-
mento (ingl. cooling schedule). O motivo é que a temperatura ideal
depende da escala da fungdo objetivo e geralmente também da ins-
tancia.

Um aspecto teoricamente interessante da témpera simulada é que ela
converge para a solugdo 6tima para certos programagoes de resfria-
mento. Define a profundidade d(s) de um minimo local s como menor
valor tal que uma solugdo de valor menor que @(s) é alcangavel a
partir de s via solugdes de valor no maximo ¢(s) + d(s). Com isso
temos

Teorema 2.8 (Hajek (1988))

Para uma constante I' e T(t) = I'/log(t + 2) a témpera simulada
converge assintoticamente para uma solugdo 6tima sse a vizinhanca
é conectada, simétrica, e I' > D, sendo D a profundidade méxima de
um minimo local.

Uma heuristica concreta usando témpera simulada precisa definir
uma temperatura inicial, o nimero de iteracdes com temperatura cons-
tante ingl. temperature length, uma programacdo de resfriamento, e
um critério de parada.

A temperatura inicial e o ntimero de iteragdes por temperatura de-
pendem fortemente da instancia e por isso devem ser calibrados di-
namicamente. Para a temperatura inicial, uma técnica é gerar uma
série de solugdes aleatérias e definir a temperatura inicial tal que
T = A(Smin, Smax) €M qUe Spin € Smax 540 as solugdes de menor e
maior valor encontradas. Uma outra técnica é incrementar uma tem-
peratura baixa inicial, até uma percentagem desejada de movimentos
(tipicamente > 90%) é aceito.

O ntmero de itera¢des por temperatura tipicamente deve ser propor-
cional ao tamanho da vizinhanga para obter bons resultados (D. S.
Johnson, Aragon et al. 1989). Uma outra abordagem para garantir
um progresso por temperatura, e manter ela constante até um nu-
mero minimo de movimentos foi aceito, mas ndo mais que um limite
superior de iteragdes, para evitar um custo alto para temperaturas
baixas.

A programagdo de resfriamento mais comum ¢é geométrica, em que
T(t) = Toxt com o« € (0,1). Um valor tipico é « € [0.8,0.99].
D. S. Johnson, Aragon et al. (1989) concluem experimentalmente que
ndo ha razdo para usar outras programagoes de resfriamento (como
p-ex. linear, ou logaritmico).

Como critério de terminagdo podemos usar uma temperatura final,
por exemplo. Um critério adaptativo, que detecta o “dominio” da
busca local é ainda melhor. D. S. Johnson, Aragon et al. (1989) pro-
pdem, por exemplo, usar uma percentagem minima de movimentos
que pioram: caso menos movimentos sdo aceitos em mais que um
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numero fixo de niveis de temperatura, sem melhorar a melhor solu-
¢do encontrada, o método termina. Como o método é estocastico, é
indicado aplicar uma busca local depois.

Observacgdo 2.4 (D. S. Johnson, Aragon et al. (1989))
Experimentalmente, parece que

o A témpera simulada precisa um tempo longo para obter resul-
tados de boa qualidade.

e Tempo gasto no inicio e no final (dominio de caminhada alea-
tério e busca local) tipicamente é pouco efetivo.

e Uma execugdo mais longa da témpera simulada tende a pro-
duzir melhores resultados que diversas repeti¢des mais curtas.
Isso provavelmente se aplica também para o “reheating”.

O

2.3.4. Otimizacao extremal

Otimizagdo extremal (ingl. extremal optimization) (Boettcher e Per-
cus 2003) supde que uma solugdo s é representada por varidveis
(X1,.+.,%Xn) (ver segdo 1.2) e que cada varidvel contribui linearmente
a funcéo objetivo com um valor Ai(s), i.e. @(s) = 3 icqAils). A
vizinhanga na busca local é restrita para vizinhos que alteram o va-
lor uma determinada variavel, a varidvel extrema. A probabilidade de
uma varidvel ser a varidvel extrema é proporcional a sua contribuicdo
Ai(xi) na fungdo objetivo.

Algoritmo 2.5 (EO)
Entrada Solucéo inicial s.

Saida Uma solucdo com valor no méximo @(s).

E0(s)=

s¥i=s

repeat
seja s=(x1,...,xn) com Ai(s)>--- > An(s)
seleciona 1€ [n] com probabilidade o i~
seleciona s’ € N(s) tal que x{ muda o valor
s:=s’
atualiza s*

until critério de parada satisfeito

return s*

T

Boettcher e Percus (2003) propdem T =1+ 0(1/Inn).

2.3.5. Busca local guiada

A busca local guidada (ingl. guided local search) penaliza elementos
indesejaveis na solugdo, similar a otimiza¢do extremal, mas por mo-
dificar a fung¢do objetivo. Supde uma representacdo por conjuntos e
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2.3. Buscas locais nio-monétonas

uma fungdo A (s) que define o custo do elemento u € U. (Diferente
da otimizagdo extremal este custo ndo precisa entrar diretamente na
funcao objetivo.) Além disso, para cada elemento u € U, p,, é o nd-
mero de vezes o elemento foi penalizado. A busca local guiada usa
a fungdo objetivo

©'(s) = @(s)+ ) pu.

ues

Em cada minimo local o método penaliza os elementos com uma
utilidade de penalizagio

P(s, 1) = Au(s)/(T4+pyu) casou€s
' 0 caso contrario

méxima (i.e. aumenta o p,, correspondente por 1) e continua com a
busca. Note que a busca local guiada define somente uma estratégia
de penalizar solugdes, e pode ser aplicado com qualquer forma de
busca local.

2.3.6. Busca tabu

A ideia central da busca tabu é usar memoria adaptativa para guiar
uma busca local. Na forma proposta inicialmente por Glover (1986)
ela aplica a estratégia “melhor melhora” enquanto B(s) # @, e per-
mite solugdes piores caso contrario. Uma memoria de curta duragio
(ingl. short-term memory, ou recency-based memory) serve para ex-
cluir solugdes candidatas (declara-las “tabu”) da vizinhanga com o
objetivo de evitar ciclagem. A busca tabu demonstrou a sua utili-
dade em varias aplicagdes, porém existe pouca fundamentagdo ted-
rica: ndo existe prova de convergéncia para a otimalidade, por exem-
plo.

Uma busca tabu probabilistica relaxa a estratégia “melhor melhora”
para uma busca por amostragem. Isso pode ser indicado em vizi-
nhancas grandes e reduz a probabilidade de ciclagem. Além disso,
existem resultados tedricos que mostram a convergéncia nesse caso
(e.g. Faigle e Schrader (1992)).

O algoritmo 2.6 mostra uma busca local estocastica com memoria
genérica.

Algoritmo 2.6 (S-LocalSearchMemory)
Entrada Solucéo inicial sg, distribui¢do Py

Saida Uma solu¢do com valor no maximo ¢(s).

S-LocalSearch(s)=
inicializa a memoria M
s*i=3s
repeat

seleciona s’ € N(s) de acordo com ﬁ&Nl

37



2. Busca por modificagdo de solugdes

if aceitavel(s’,M) then s:=s’
atualiza a memoria M
if @(s) < @(s*) then s*:=s
until critério de parada satisfeito
return s*
end

A busca tabu basica define P ap(s’) = 1/|B*(s)| para s’ € B*(s) com
B*(s) = {s' € N(s)\ L(s, M) | @(s/) = mingren (s )i (s,m) @(s")} e
sempre aceita a nova solugdo s’. Neste caso a lista de solugdes tabu
L(s, M) resulta (da parte da memoria de curta duragdo) de M.

A memoria de curta duragdo mais usada guarda atributos removidos
ou inseridos em solugdes e trata uma solugdo que inclui um atributo
removido ou exclui um atributo inserido recentemente como “tabu”.
Na representacdo por conjuntos (ver cap. 1.2) sejam i, e 1, o0 dltimo
tempo em que o elemento u € U foi inserido e removido da solugéo.
Para uma duragdo tabu (ingl. tabu tenure) fixa d, a regra tabu define
um vizinho s’ de s tabu no tempo t caso

t<max{ry+d|ues’\s} (2.4)
t <max{iy +dluecs\s'h (2.5)

Aqui a primeira restri¢do proibe introduzir elementos removidos em
menos tempo que d, e a segunda remover elementos introduzidos em
menos tempo que d. Uma boa duragdo tabu depende do tamanho
da instancia e um intervalo adequado [dpmin(1n), dmax(1)] € tem que
ser determinado experimentalmente (Glover e Laguna 1997). Valores
mais baixos tendem intensificar a busca, mas resultam em ciclagem
no limite, e valores altos tendem a diversificar a busca, mas resultam
numa qualidade reduzida no limite.

Observacgdo 2.5 (Implementar uma memoria de curta durac¢io)

Uma implementacdo de r e u com vetores na estratégia acima acima
permite um teste tabu em tempo linear no tamanho da modifica-
¢do s @ s’, que frequentemente é O(1). Caso [U] é grande demais, é
melhor usar tabelas hash. O

A regra tabu bésica permite diversas variagdes. Entre os mais co-
muns sao

e Considerar um vizinho como tabu somente se ambas condi¢des
(2.4) e (2.5) sao satisfeitas.

o Considerar somente atributos alterados: com a, o tempo da
altima alteracdo (insercdo ou remogdo), o critério tabu é sim-
plificado para

t<max{ay+d|lues @s)
e Usar uma duracdo tabu diferente em (2.4) e (2.5): quanto mais

a proibicdo de um atributo restringe a solugdo, quanto menor
deve ser a duragdo tabu (Glover e Laguna 1997).
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2.3. Buscas locais nio-monétonas

e Usar uma duracédo tabu dinamica, por exemplo um valor ale-
atério em [dmin (1), dmax(n)] ou uma sequencia fixa (e.g. um

multiplo adequado do prefixo do ruler function (1,2,1,3,1,2,1,4,1,2,..

(Sloane s.d.)); Galinier et al. (2011) é um exemplo de uma abor-
dagem estado de arte que aplica isso.)

e Declarar diferentes aspectos de um problema tabu, ou usar
mais que uma lista tabu.

e Tratar um tabu como penalidade: um atributo tabu u ndo é
proibido, mas penalizado por t — (a, + d).

Exemplo 2.13 (PCV)

Na representagido do PCV por conjuntos usando 2-exchange arestas
removidas ou inseridas se tornam tabu. Considerando critério (2.4)
e (2.5) proibe desfazer o 2-exchange por d iteragdes. Um exemplo
de um aspecto diferente é declarar todas arestas incidentes com as
cidades do ultimo 2-exchange tabu. O

Uma consequéncia de uma memoria de curta duracdo é um critério
de aspiragio (ingl. aspiration criterion). A exclusdo de atributos exclui
ndo somente solugdo j visitadas, mas também pode excluir solu¢des
ainda ndo visitadas, inclusive solu¢des com melhores caracteristicas
ou valores da fungdo objetivo. Para contornar este problema, um
critério de aspiracdo define exce¢des da regra tabu. Na forma mais
simples ele permite aceitar um vizinho que melhora a solugdo in-
cumbente. Um critério de aspiragdo pode também permitir escolher
o vizinho “menos tabu” caso ndo existe vizinho ndo-tabu (“aspira-
tion by default”). Esta condicdo pode servir alternativamente como
critério de parada, além dos critérios genéricos (cap. 2.3.1).

Intensificacdo e diversificacdo Para melhorar a solugdo pode ser
atil intensificar a busca perto de solugdes de boa qualidade. Isso
pode ser alcangado reduzindo o tamanho da lista tabu, fixando par-
tes dos atributos para um determinado tempo, ou aplicando outras
formas de buscas (e.g. um solver exato).

Em outras fases é necessario diversificar a busca, i.e. conduzi-la para
novas solugdes.

Memoria de longa duracdo Uma memoria de longa duracdo pode
ser usada para guiar a busca mais efetivamente, e para intensica-
ou diversificd-la. A memoria pode guardar solu¢des de boa qua-
lidade ou informacgdes estatisticas. Mais comum para as ultimas
sdo frequéncias de pertinéncia em solugdes (recentemente ou global-
mente) e frequéncias de alteragdo de status de atributos. Por exem-
plo, para intensificar a busca podemos fixar elementos que recente-
mente pertenceram a solugdes com alta frequéncia e aplicar um dos
métodos acima (“restarting”). Para diversificar podemos incentivar
incluir elementos que globalmente foram usados com baixa frequén-
cia, por exemplo incluindo um termo yf,, na fung¢ao objetivo para um
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Figura 2.7.: Espago de solugdes (azul) e
de minimos locais (vermelho).

2. Busca por modificagdo de solugdes

movimento que inclui elemento u, que ja foi incluido com frequéncia
fu, onde y é um parametro que depende do dominio funcéo objetivo.
As observacOes sobre intensificagdo e diversificagdo e os diferentes
tipos de memoria motivam

Principio de projeto 2.5

Identifica os elementos de intensificacdo e diversificacdo da heuris-
tica. Procure encontrar um equilibrio entre os dois princifpios. Em
particular, considere formas de memoria de longa duragdo para me-
lhorar o desempenho da heuristica.

2.4. Buscas locais avancadas

2.4.1. Busca local iterada

A busca local iterada (ingl. iterated local search) pode ser vista como
uma busca local no espago de minimos locais de um problema (ver
figura 2.7).

Definic¢io 2.6

O basin de atragio B(s*) associado a um minimo local s* e o conjunto
de solugdes s tal que uma dada busca local iniciada em s termina em
s*.

Logo, para passar de um minimo local para outro, temos que al-
terar a solugdo atual suficientemente para obter uma solugdo nova
que pertence a um basin de atragdo vizinho. Para isso, a busca local
iterada perturba a solucdo atual e aplica a busca local na solugédo per-
turbada, para obter um outro minimo local. A forma especifica da
perturbacdo define a vizinhanga entre os minimos locais e a probabi-
lidade de transi¢do. O critério de aceitagdo pode ser um dos critérios
usados em uma busca ndo-monétona (e.g. o critério de aceitacdo de
Metropolis).

Para perturbar o minimo local atual podemos, por exemplo, cami-
nhar aleatoriamente para um ntdmero de iteragdes, ou escolher um
movimento aleatério numa vizinhanga grande. Idealmente a per-
turbacdo é na ordem de grandeza do didmetro do basin da solu-
¢do atual: perturba¢des menores levam ao mesmo minimo local, en-
quanto perturbac¢des maiores se aproximam a uma caminhada alea-
téria no espago de minimos locais.

2.4.2. Busca local com vizinhanca variavel

Os métodos usando k vizinhangas N7, ..., Ny sempre voltam a usar
a primeira vizinhanca, caso um movimento melhora a solugdo atual.
Caso contrario eles passam para préxima vizinhanca. Isso é o movi-
mento bésico:

Algoritmo 2.7 (Movimento)
Entrada Solucdo atual s, nova solucédo s’, vizinhanca atual k.
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Saida Uma nova solug¢do s e uma nova vizinhanga k.

Movimento (s,s’,k)=
if @(s’) < @(s) then

s:=s’

k=1
else

ki=k+1
end if

return (s, k)

Com isso podemos definir uma estratégia simples, chamada Variable
Neighborhood Descent (VND).

Algoritmo 2.8 (VND)
Entrada Solugdo inicial s, conjunto de vizinhangas N, i € [m].

Saida Uma solu¢do com valor no maximo ¢(s).

VND (s,{Ni}D=
k=1

while k<m
encontra o melhor vizinho s’ em Njy(s)
(s,k) := Movimento(s,s’, k)

end while

return S

Uma versdo randomizada é o reduced variable neighborhood search.

Algoritmo 2.9 (rVNS)
Entrada Solugéo inicial s, conjunto de vizinhangas N, i € [m].

Saida Uma solug¢do com valor no méaximo @(s).

rVNS (s,{N;]D=
until critério de parada satisfeito
k:=1
while k<m do
{ shake }
seleciona vizinho aleatdério s’ em Niy(s)
(s, k) := Movimento(s, s’, k)
end while
end until
return s

Uma combinagdo do rVNS com uma busca local é o Variable Neigh-
borhood Search (VNS) bésico.
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Algoritmo 2.10 (VNS)
Entrada Solugéo inicial s, um conjunto de vizinhangas NV;, i €
[ml.

Saida Uma solu¢do com valor no maximo @(s).

VNS (s,{NiD=

until critério de parada satisfeito

k=1

while k< m do
{ shake }
seleciona vizinho aleatério s’ em Ni(s)
s’ := BuscalLocal (s')

(s, k) := Movimento(s, s”, k)
end until
return S

Observacgio 2.6

A busca local em VNS pode usar uma vizinhanga diferente das vizi-
nhancas que perturbam a solucdo atual. Também é possivel usar o
VND no lugar da busca local. O

2.4.3. Busca local em vizinhancas grandes

Uma vizinhanga é considerada massiva (ingl. very large scale) caso
o ntimero de vizinhos cresce exponencialmente com o tamanho da
instancia (Pisinger e Ropke 2010). Uma vizinhanga massiva tem uma
vantagem caso o custo maior de selecionar um vizinho é compen-
sado pela qualidade das solu¢des. Em particular, isso é possivel caso
a vizinhanga pode ser analisada em tempo polinomial apesar do seu
tamanho exponencial, e.g. por resolver um problema de caminhos
mais curtos, fluxo méximo ou emparelhamento.

Algoritmo 2.11 (LNS)
Entrada Um problema na representacdo por varidveis. Uma so-
lucgéo inicial s.

Saida A melhor solugédo encontrada.

LNS (s)=
repeat
seleciona I'C U
fixa I\I'
s’ := search(s,I’)
if aceitavel(s’) then s:=s’
until critério de parada satisfeito
return s*
end

A busca no subespaco definido pelas varidveis 1’ frequentemente
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é realizada por destruigdo e reconstrugdo (ver Secdo 3.3.1 e Shaw
(1998)). Carchrae e Beck (2009) recomendam selecionar I’ tal que
contém as varidveis que contribuem mais para a funcdo objetivo, e
aumentar a cardinalidade de 1’ ao longo da busca.

2.4.4. Deteccdo de estagnacao genérica

Watson et al. (2006) propdem um mecanismo explicito e genérico
para deteccdo de estagnacdo. Supde que temos uma heuristica H
arbitraria, e seja Ny(s) a proxima solugdo visitada por H dado a
solucdo atual s. O CMF (Core methaheuristics framework) adiciona
a essa heuristica uma detecgdo explicita de estagnacéo.

Algoritmo 2.12 (CMF)

Entrada Uma instdncia de um problema, uma solucdo inicial
s, uma distdncia minima d,;,, distdncias Ly e A; e um
numero de iteragoes tiest.

Saida A melhor solugdo encontrada.

CMF (s) =
St:=S§
cada tigest iteragdes:
if d(S,St) < dpin then
if escaping then
L:=L+Ar
else
L:= LO
St .= S
s := randomWalk(s,L)
escaping := true
else
St:=S§
escaping := false
end if
s := Np(s)
end

2.4.5. Notas

O livro de Hoos e Stiitzle (2004) é uma excelente referéncia para area
de busca local estocastica. Os artigos Dueck e Scheuer (1990) e Dueck
(1993) que propdem aceitacdo por limite, o grande diltivio e viagem
de recorde para recorde sdo bem acessiveis. Talbi (2009) apresenta
um bom resumo desses métodos que inclui o algoritmo demonio. A
referéncia definitiva para a busca tabu ainda é o livro de Glover e
Laguna (1997), uma boa introdugdo é Hertz, Taillard et al. (2003).
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2.5. Exercicios

Exercicio 2.1
A vizinhanga 2-flip para o k-SAT é simétrico? Fracamente otima-
mente conectada? Exata? E a vizinhanga k-flip para k > 2?

Exercicio 2.2
Mostra que redugdes PLS sdo transitivas.
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3.1. Construcao simples

3.1.1. Algoritmos gulosos

Defini¢ado 3.1 (Sistemas de conjuntos)

Um sistema de conjuntos é um par (U, V) de um universo U de ele-
mentos e uma cole¢do V' de subconjuntos de U. Caso paracada § € V
existe um u € U tal que S\ {u} € V o sistema de conjuntos é acessivel.
Caso V é fechado sobre inclusdo (i.e. caso S’ C S paraum S € V
entdo S’ € V) o sistema é independente e o seus elementos se chamam
conjuntos independentes.

Definicao 3.2 (Matroides e greedoides)

Um sistema de conjuntos satisfaz a propriedade de troca, caso para
todos S,T € V com [S| > |T| existe um u € S\ T tal que TU{u} €
V. Um greedoide é um sistema de conjuntos acessivel que satisfaz
a propriedade de troca. Um matroide é um sistema de conjuntos
independente que satisfaz a propriedade de troca.

Definic¢ao 3.3 (Problema de otimizacdao de um sistema de conjuntos)
Para um sistema de conjuntos (U, V) com pesos w, € Ry para
u € U, o problema correspondente de otimizagdo é encontrar um sub-
conjunto independente de maior peso total.

Observacgao 3.1
Na prética o conjunto V é especificado por um algoritmo que decide,
paracadaS C UseS € V. O

Exemplo 3.1

Muitos problemas de otimizagdo podem ser formulados como siste-
mas de conjuntos, por exemplo o PCV (com arestas U, e }V subcon-
juntos de complementos circuitos Hamiltonianos), o problema do
conjunto méaximo independente (com vértices U e V os conjuntos in-
dependentes do grafo), o problema do caminho s-t mais curto (com
arestas U e V subconjuntos de complementos de caminhos s-t), ou o
problema da mochila (com itens U, e V os subconjuntos de itens que
cabem na mochila). O

Um algoritmo guloso constroéi iterativamente uma solucao vélida de
um sistema de conjuntos acessivel.

Algoritmo 3.1 (Algoritmo guloso)
Entrada Um sistema de conjuntos (U, V).

Saida Uma solugdo S € V.
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Guluso ()=
S=0
while U#® do
seleciona u€e U com wy, maximal
U:=Uu\{u}
if SU{u} €V then
S:=Su{u}
end if
end while
return S
end

Exemplo 3.2 (List scheduling)

Considere o problema P || Cpnax. Uma estratégia gulosa simples é
processar as tarefas em uma dada ordem, e alocar a tarefa atual
sempre a maquina de menor tempo de término atual. Isso é uma
2-aproximacao. O

Teorema 3.1 (Edmonds-Rado)

O algoritmo guloso resolve o problema correspondente do sistema
de conjuntos independente S = (U, V) se e somente se S é um ma-
troide.

Prova. Supde S é um matroide. Pela propriedade de troca, todos
conjuntos independentes maximais possuem a mesma cardinalidade.
Supoe que o algoritmo guloso produz uma solugdo S = {sy,...,sn},
mas a solugdo 6tima S* = {s{,..., s} satisfaz w(S) < w(S*). Sem
perda de generalidade wg;, > ws, ; e Wer 2> wsr | para 1<i<n.
Provaremos por inducdo que (*) wg, > Wy, uma contradi¢do com
w(S) < w(S§*). Para i = 1 (*) é correto pela escolha do algoritmo
guloso. Para um i > 1 supde ws, < Wyt Pela propriedade de

troca existe um elemento de u € {s},...,s{}\{s1,...,si_1} tal que
{s1,...,si—1,u} € V. Mas wg, < wyr < wy, uma contradi¢do com a
escolha do algoritmo guloso.

De modo oposto, supde o algoritmo guloso resolve o problema cor-
respondente de otimizacdo (para pesos arbitrdrios), mas a proprie-
dade de troca é invalida. Logo existem conjuntos S,T € V), tal que
IS| = T[4+ 1 mas para nenhum u € S\ T temos T U{u} € V. Define

TI+2 paraueT
wy =< [T[+1 paraue S\T.
0 caso contrario

Para essa instancia o algoritmo guloso comeca escolher todos ele-
mentos de T. Depois ele ndo consegue melhorar o peso total, por-
que um elemento em S\ T ndo pode ser adicionado, e os restan-
tes elementos possuem peso 0. Logo o valor da solugdo gulosa é
w(T) = [TI(TI+2) < (IT|+1)? < w(S), em contradicio com o fato
que o algoritmo guloso resolve o problema otimamente. |
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Obtemos uma generaliza¢do similar com a busca local selecionando o
préximo elemento de acordo com uma distribui¢do de probabilidade
P sobre o universo U. Essa distribuicdo pode ser adaptativa, i.e. ela
depende dos elementos selecionados anteriormente.

Algoritmo 3.2 (Algoritmo guloso generalizado)
Entrada Um sistema de conjuntos (LI, V).

Saida Uma solugdo S € V.

Guluso-Generalizado ()=
S =0
while U#Q do
seleciona u€ U de acordo com P
U:=U\{u}
if SU{u} €V then
S:=Su{u}
end if
end while
return S
end

Seja u* = argmax {w(u)ju € U} e B(U) ={u € U [wy, =wy:}. Aes-
tratégia gulosa corresponde com P(u) = 1/|B(U)| parau € B(u). Um
algoritmo semi-guloso relaxa este critério. Duas estratégias comuns
sdo:

Guloso-k Seja U = {uy,...,un} com wy > wji 1. Seleciona S =
{w1, ..., Unin{k,n}} € define P(u) = 1/[S| para u € S. Essa estratégia
seleciona um dos k melhores elementos.

Guloso-o«  Seja U ={uy,...,un} com wi > wji; 1. Paraum 0 < o <
1, seleciona S = {u; | wi > oown + (1 — ax)wq} e define P(u) = 1/|S|
para u € S. Essa estratégia seleciona um entre os % melhores
elementos.

Entre distribui¢des de probabilidade alternativas para o guloso-« te-
mos abordagens que usam o posto T do elemento para definir um
peso wy, e selecionam o elemento com rank r com probabilidade
wr/ 3 wr. Exemplos sdo

® pesos polinomiais Wy = v (ver 2.3.4 para uma aplicagdo na
otimizacao extremal);

® pesos lineares we = 1/Touwe =n—71;
e pesos logaritmicos we = 1/logT+ 1; ou

® pesos exponenciais we = e~ " (Bresina 1996).

Exemplo 3.3 (Construcao gulosa para o PCV)
Exemplos de construgdes gulosas para o PCV sdo
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o vizinho mais proximo: escolhe uma cidade inicial aleatéria, e vi-

sita sempre a cidade mais préxima ndo visitada ainda, até fe-
char o ciclo;

algoritmo guloso: no matroide com U todos arcos e V subcon-
juntos de arcos de ciclos Hamiltonianos, como acima;

o algoritmo de Clarke-Wright: define uma cidade aleatéria como
centro e forma “pseudo-rotas” (2-ciclos) do centro para todos
outras cidades. Ranqueia todos pares de cidades diferente do
centro pela reducédo de custos (“savings”) obtido passando di-
retamente de uma cidade para outra, ndo visitando o centro.
Processa os pares nessa ordem, aplicando cada redugdo que
mantém uma colegdo de pseudo-rotas, até a cole¢do é reduzida
para um tnico ciclo.

o algoritmo de Cristofides para instancias métricas: junta uma
arvore geradora minima das cidades com um emparelhamento
perfeito de custo minimo entre os vértices de grau impar da
arvore, encontre um caminho Euleriano nesse grafo, e torna-lo
um ciclo pulando cidades repetidas.

¢

3.1.2. Algoritmos de prioridade

Supde uma representacdo de uma solugdo por varidveis. Uma so-
lugdo parcial é um atribuicdo com wvaridveis livres, i.e. varidveis que
ainda ndo receberam valores. Algoritmos de prioridade processam as
varidveis em I em alguma ordem definida por uma fungio de orde-
namento o que retorna um sequencia das varidveis livres. A varidvel
atual recebe um valor em V de acordo com uma fungio de mapeamento
f. Caso o depende somente da instadncia obtemos um algoritmo de pri-
oridade fixa; caso a ordem depende também da atual solugdo parcial
obtemos um algoritmo de prioridade adaptativa.
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Algoritmo 3.3 (Algoritmo de prioridade)
Entrada Uma instancia [ C U, uma fun¢do de ordenamento o e
uma func¢do de mapeamento f.

Saida Uma solugdo S, i.e. um atribui¢do de valores em V aos
elementos em 1.

Prioridade ()=
S=0
while [#® do
seja o(L,S)=(x1,...,xx)
S:=SU{xy — f(S,x1)}
[i=T\{x1}



3.1. Construgdo simples

end while
return S

Observacgio 3.2

Um algoritmo de prioridade pode ser relaxado, da mesma forma que
algoritmos gulosos, por selecionar a nova varidvel a ser fixada entre
as % ou as k varidveis de maior prioridade. O

Exemplo 3.4 (Coloracao de grafos)

Com a representacdo do exemplo 1.3 obtemos um algoritmo de pri-
oridade fixa ordenando os vértices por grau ndo-crescente e usando
uma fungdo de mapeamento que atribui a menor cor livre ao vértice
atual. Obtemos uma variante adaptativa ordenando os vértices ainda
néo coloridos por grau nado-crescente com respeito a outros vértices
ndo coloridos, com a mesma funcdo de mapeamento. O

Exemplo 3.5 (Empacotamento bidimensional)

No problema de empacotamento bidimensional (ingl. 2D strip packing)
temos n caixas de dimensodes 1; x ci. O objetivo é empacotar as cai-
xas numa faixa de largura L sem sobreposigdo, paralelo com os eixos,
e sem rotaciond-los, tal que o comprimento total ocupado é minimi-
zado. Um algoritmo de prioridade ordena as caixas por altura, lar-
gura, circunferéncia, ou drea nao-crescente, e aloca a caixa atual na
posicdo mais para baixo e mais para esquerda possivel (“bottom left
heuristic”). O

3.1.3. Busca por raio

A busca por raio (ingl. beam search) mantém k solugdes parciais (k é
chamada a largura do raio (ingl. beam width)). Em cada passo uma
solugéo parcial é estendida para k’ solugdes parciais diferentes, e
entre as kk’ solugdes novas, uma fungdo de ranqueamento seleciona
as k melhores. A funcdo tipicamente fornece um limite inferior para
as solugdes completas que podem ser obtidas a partir da solucdo
parcial atual.

Uma busca por raio pode ser entendida como uma busca por lar-
gura truncada ou ainda como versdo construtiva do algoritmo SOV
na busca. O modelo mais simples para definir a busca por raio é
numa arvore de solugdes parciais, com a solucdo vazia na raiz. Cada
solucdo s possui uma série F(s) de extensdes possiveis (filhos na ar-
vore), que sdo escolhidos com distribui¢ao de probabilidade Ps. Seja
p(s) o pai de s na éarvore.

Algoritmo 3.4 (Busca por raio)
Entrada Uma instancia de um problema.

Saida Uma solugdo s, caso for encontrada.

BeamSearch (k,k’)=
B .= {®}
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3. Busca por construgio de solugdes

while B#® do
repete [Blk' vezes
seja F:=UsepF(s)
B=0
seleciona f€F com prob. Puo)(f)/ 2 ¢ Ppre)(f)
se f & sol. completa: atualiza o incumbente
se f & sol. parcial: B:=BU{f}
{ alguns autores: F:=F\{f} }
end
seleciona as melhores solugdes em B
(no méaximo k)
end while
return s* { eventualmente ndo encontrado }

Observacao 3.3
Uma busca por raio BeamSearch(1,1) é equivalente ao algoritmo gu-
loso generalizado.

3.1.4. Método piloto

O método piloto(ingl. pilot method) (Duin e VoSS 1999) seleciona o
proximo elemento numa heuristica construtiva por gerar uma solu-
¢do completa por uma sub-heuristica para cada alternativa e seleci-
onar a alternativa melhor. Usando uma representacdo por conjuntos
temos

Algoritmo 3.5 (Método piloto)
Entrada Uma sub-heuristica H.

Saida Uma solugdo s, caso for encontrada.

Guluso ()=
S=0
while U#® do
seleciona ueU com @(H(SU{u})) & minimo
U:=Uu\{u}
if SU{u} €V then
S:=Su{u}
end if
end while
return S
end

3.2. Construcao repetida independente

A estratégia de muiltiplos inicios (ingl. multi-start) procura encontrar
solugdes melhores por construgdo repetida. No caso mais simples,
cada repetigdo é independente da outra e o algoritmo retorna a me-
lhor solugdo encontrada. Essa estratégia pode ser usada com qual-
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3.2. Construgdo repetida independente

quer construcdo aleatdria, por exemplo com os algoritmos Guloso-k
e Guloso-o da secdo anterior. Usando o algoritmo Guloso-oc com
« = 1 obtemos uma construcdo totalmente aleatéria. Multiplos ini-
cios também é uma estratégia simples de diversificagdo para outras
heuristicas.

3.2.1. GRASP

A forma mais simples de melhorar uma construcgdo repetida inde-
pendente é aplicar uma busca local monétona as solugdes construi-
das. Este método foi proposto com o nome GRASP (Greedy rando-
mized adaptive search procedure) por Feo e Resende (1989) e Feo e
Resende (1995).

Variantes bésicas do GRASP incluem métodos que escolham « &€
{a1,..., %} de acordo com alguma distribui¢do de probabilidade (a
distribui¢do uniforme frequentemente é uma primeira escolha razoa-
vel), e GRASP reativo (ingl. reactive GRASP) que comega com uma
distribui¢do uniforme e periodicamente adapta as prioridades de
acordo com

Ploi) = qi/ ) _ qj
jelk]

com qi = @(s*)/P; para incumbente s* e com @; o valor médio
encontrado usando o (para um problema de minimizagéo).

O GRASP evoluciondrio (ingl. evolutionary GRASP), uma variante que
usa uma outra forma memoria de longa duracéo é discutida na secédo
44,

3.2.2. Bubble search randomizada

Bubble search (Lesh e Mitzenmacher 2006) generaliza algoritmos de
prioridade. Considera primeiramente um algoritmo de prioridade
fixa. Para melhora-lo, podemos consideras todas permutagdes das
varidveis [ na alocacdo. O Bubble search faz isso em ordem de dis-
tancia Kendall-tau crescente da permutacdo base o(S). A distancia
Kendall-tau mede o nimero de inversdes entre duas permutagdes 7
e pde [n],ie.

dimp)= Y [n() <mlj) e p(i) > p(G)] + [n(i) > 7(j) e p(i) < p(j))-

1<i<j<n

(A distancia Kendall-tau é também conhecida por distincia de Bubble
sort.)

Bubble search randomizada gera uma permutacdo de distancia d
com probabilidade proporcional com (1 —p)¢ para um parametro
pe(0,1).

Observacido 3.4 (Geracido de permuta¢des no Bubble search)
Uma permutagdo de acordo com a probabilidade acima pode ser
selecionado considerando os elementos ciclicamente na ordem o(I).
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3. Busca por construgio de solugdes

Inicia com uma lista em ordem o(I). Comecando com o primeiro
elemento, visite os elementos da lista ciclicamente. Seleciona o item
atual com probabilidade p, caso contrario continua. Ao selecionar
um item, remove-o da lista e repete o processo na lista reduzida,
até ela é vazia. A ordem da selegdo dos itens define a permutacéo
gerada.

O processo da observacgdo acima pode ser aplicado também em al-
goritmos de prioridade adaptativa considerando os elementos cicli-
camente na ordem o(I,S). (Observe que nesse caso ndo existe uma
relagdo simples da ordem resultante com a distancia Kendall-tau.)

3.3. Construcao repetida dependente

Uma construgdo repetida dependente usa informagdes das itera¢des
anteriores para melhorar a construgdo em iteragdes subsequentes.
Um exemplo simples é o Bubble search com reposigio (ingl. Bubble se-
arch with replacement): a ordem base é sempre a ordem em que o
incumbente foi construido.

3.3.1. Iterated greedy algorithm

Algoritmos gulosos iterados foram introduzidos por Ruiz e Stiitzle (2006).
Depois da primeira construgdo, o algoritmo repetidamente destréi
parte da solugdo atual, e reconstréi-a gulosamente. A forma mais
simples da destruicdo é remover d elementos na representacdo por
conjuntos, ou resetar d varidveis na representacdo por varidveis e
aplicar um algoritmo guloso, respectivamente um algoritmo prio-
ridade a partir da solugdo parcial resultante para obter uma nova
solugdo completa.

Um algoritmo guloso iterado é o andlogo de uma busca local ite-
rada. Aplicando uma busca local em cada iteragdo, um algoritmo
guloso iterado vira uma busca local iterada, na qual a perturbagéo é
realizada por destruicdo e reconstrugdo via um algoritmo guloso.

A estratégia de destruir e reconstruir uma solugdo também estd apli-
cada em buscas em vizinhangas grandes (ver Segdo 2.4.3), e também
foi chamada nome “ruinar e recriar” (ingl. ruin and recreate) (Sch-
rimpf et al. 2000).

3.3.2. Squeaky wheel optimization

A otimizacdo da roda que chia (ingl. squeaky wheel optimization),
introduzida por Joslin e Clements (1999), prioriza na construgdo ele-
mentos que aumentam a funcdo objetivo (“the squeaky wheel gets
the grease”). O modelo mais simples para explicar isso é como
modificacdo de um algoritmo de prioridade cuja fungdo de orde-
namento usa pesos w; para i € I e produz o(I, S) = (x1,...,xi) caso
wp > .-+ > Wyg. Supde que as varidveis que aumentaram a fun-

¢do objetivo na ultima construcdo recebem ainda “penalidades” p;

52



3.3. Construgdo repetida dependente

parai € I. A funcdo de ordenamento o(I,S) = (x1,...,xx) tal que
w1 +Pp1 = -+ > Wi + px considera além da ordem base as penali-
dades. A otimizacdo da roda que chia corresponde com a otimizacado
extremal e a busca local guidada que forcam alterar ou penalizam
elementos que aumentam a fungdo objetivo.

Exemplo 3.6
(Continua o exemplo 3.4.) Na coloracédo de grafos podemos penalizar
vértices que usam cores > 1, caso o incumbente tem n cores. O

3.3.3. Otimizacao por colonias de formigas

Algumas espécies de formigas conseguem encontrar caminhos cur-
tos para objetos interessantes comunicando por feromoénio deixado
nas trilhas. O feromoénio é uma forma de memoria de longa duracéo
guiando as formigas. Otimizagdo por colonias de formigas (ingl. ant
colony optimization, ACO) (Dorigo et al. 1996) aplica essa ideia na
otimizagdo.

De forma mais abstrata, ACO realiza uma constru¢do repetida de-
pendente, com probabilidades de transicdo dindmicas, que depen-
dem das iteragdes anteriores. Concretamente, na representagdo de
variaveis, ACO associa dois valores Tj, € N{, com uma variavel i € I
que recebe um valor v € V. O valor Ty, representa a componente
dinamica (o feromonio), e o valor n;,, a componente estatica da pre-
feréncia de atribuir o valor v a varidvel i. Uma fase do ACO constréi
solugdes Sy, ..., Sm de forma independente. Uma construgdo repeti-
damente atribui um valor a préxima varidvel x; numa ordem fixa ou
dindmica o(I, S) = (x1,...,xx), igual a um algoritmo de prioridade,
com probabilidade

P(x;1 =v|S) « T{'ﬁ,nfv, (3.1)

sendo o e [} pardmetros que balanceiam o efeito entre preferéncia
dinamica e estatica. (Logo, para o = 0 obtemos um algoritmo guloso
randomizado.) ACO atualiza no fim de cada fase os feromoénios por

Tw=0-ptv+ D> g(S)
Seul{i—v}es

O primeiro termo diminui o feroménio com o tempo (“evaporac¢do”),
o segundo termo aumenta o feromoénio de acordo com uma fungéo
de avaliagdo g(S) das solugdes S que atribuem v a i. As solugdes S fa-
zem parte de um conjunto U de solugdes candidatas. Os candidatos
tipicamente incluem Sy, ..., Sy e solugdes elites (p.ex. o incumbente
S$*). A funcdo ¢(S) cresce com a qualidade da solu¢do. Concreta-
mente, no exemplo do PCV:

e Sistema de formigas (ingl. ant system): U ={S¢,...,Sm}, Ny =
1/diy, g(S) =1/4d(S).
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3. Busca por construgio de solugdes

o Sistema de formigas elitista: U ={Sy,...,Sm, S*}, iy, = 1/d4y,

(5) = 1/4(S) casoS €{Sq,...,Sm}
~ le/d(S) caso S =S*

com e € IN.

Sistema de formigas com ranqueamento: um sistema de formi-
gas elitista com U ={Sy,...,Sy,S*},sendo Sy,...,Sk osk <m
melhores solugdes da ultima fase.

Sistema de formigas com limites (ingl. min/max ant system):
U ={S*} ou U ={Sq1} com S; a melhor solucdo da tltima fase
(“elitismo forte”) com limites Tmin < Tiv < Tmaxs € Tiv = Tmax
inicialmente.

Sistema de colonia de formigas (ingl. ant colony system): eli-
tismo forte com selecdo “pseudo randémica proporcional”: com
probabilidade q seleciona a varidvel com P(x7 = v|S) méaximo,
sendo de acordo com (3.1). O sistema também diversifica a
construcdo reduzindo a quantidade de feroménio em atribui-
¢Oes selecionadas na fase atual.

3.4. Notas

Algoritmos de prioridade formam propostas por Borodin et al. (2003).

3.5. Exercicios

Exercicio 3.1
Quais sistemas de conjuntos do Exemplo 3.1 sdo acessiveis? Inde-
pendentes? Quais satisfazem a propriedade de troca?

Exercicio 3.2
D4 um exemplo de um algoritmo guloso que ndo pode ser modelado
pelo Algoritmo 3.1.
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4. Busca por recombinacao de solucoes

A recombinagdo de solugdes procura misturar componentes da duas
ou mais solugdes para produzir uma ou mais novas solugdes com-
binadas. Para algumas recombinagdes é conveniente ter uma nogéo
de distancia entre solu¢des. Para as nossas representa¢des padrao
de conjuntos e varidveis, usaremos as distancias d(s,s’) = s ®s’| e
d(s,s") = Y icrlsi # s{], respectivamente. Em fungdo do problema
e sua representacdo outras distdncias podem ser adequadas. Tipica-
mente a representacdo de varidveis é mais conveniente para formular
a recombinacdo de solugdes.

Exemplos de recombinacdes simples na representacdo por varidveis
(com n = |I] varidveis) de solugdes k solugdes s1,...,sx para uma
nova solugdo ¢ = C(sq,...,sk) sédo:

Recombinacédo randomizada Escolhe c; = sij com probabilidade p;,
i € [k] para varidvel j € 1. Para p; = 1/k obtemos uma recombi-
nagdo uniforme. Uma recombinagdo ndo-uniforme comum é es-
colher p; o @(si). No contexto de algoritmos genéticos o caso
k=2,V={0,1}, p=1/2 é chamada crossover uniforme (Ackley
1987). Outro exemplo é definir p; o [{si; | j € [n]} na selegao
da componente j. Caso a fungdo objetivo é linear nas varia-
veis, i.e. ©(si) = Zj c1 ©(sij), um critério melhor pode ser uma
selecdo com probabilidade pij « ¢(si;) para cada componente.

Recombinacdo por mediano Supondo que V possui uma ordem, es-
colhe ¢; = (s7j---snj) com mediano (-). Para n impar e
V ={0, 1} isso é uma recombinacio maioritdria.

Recombinacéo linear Supondo que V =R, selecionac = 3 ;) Aisi
com } oM = 1. Para Ay > 0 obtemos uma recombinagio
convexa.

Recombinacdo particionada Uma recombinac¢do randomizada apli-
cada numa particdo S de [n]. Para cada parte seleciona uma
solucdo s; com probabilidade p; e atribui os valores de toda
parte a solucdo combinada. Um subcaso importante sdo par-
ticbes continuas (i.e. cada parte p € S satisfaz p = [a, b] para
a <b,ab € [n]) Para uma particio continua aleatéria com
|S| = 2 obtemos o recombinagdo em um ponto (ingl. one-point
crossover), caso |S| = k uma recombinagio em k pontos.

Recombinacdo para permutacdes A recombinacédo tem que satisfa-
zer as restri¢cdes do problema. Um caso frequente e por isso impor-
tante sdo permutagdes, com I = V = [n]. Exemplos de estratégias
para recombinar permutagdes sao:
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4. Busca por recombinagdo de solugdes

Recombinacdo irrestrita na tabela de inversdes Aplica uma das re-
combinacdes acima na tabela de inversodes.

Recombinacdo PMX Para permutagdes m = m173 ... T € P = P1P2...Pn
define 0 = PMX(m, p) como segue (Goldberg e Lingle 1985):

1) Seleciona um intervalo aleatério I = [a,b] C [n]. Para uma
permutagdo 7, seja 7p = {7y | i € I}.
2) Define um mapeamento m: 7ty — py : 7t — Pj.

3) Define um mapeamento m* : my — pg : mX(7;), com k o
menor expoente tal que mk(m) € mp. O mapeamento m*
itera m até o elemento ndo pertence a my.

4) Finalmente define

us iel
0y =1 pi pi & T -
m*(pi) pi €M

Exemplo 4.1 (Recombinac¢ao PMX)

Seja m = 12345678%a e p = 49a8173526 e I = [3,6]. Logo my =
{3,4,5,6} e p1 ={a,8,1,7}, e temos os mapeamentos

i 3 4 5 6

m(mgy) a 8 1 7.
m*(m) a 8 1 7

i.e.,, 0 mapeamento iterado m* é igual a m. Obtemos

Indice i 1 2 3 4 5 6 7 8 9 10
Elem. m*(4) p m3 My w5 mWg wm*(3) m*(5) pe m*(6)
o 8 9 3 4 5 6 a 1 2 7

O

Exemplo 4.2 (Recombinac¢ao PMX)
Seja m = 12345678%a e p = 361a849725 e I = [3,6]. Logo my =
{3,4,5,6} e p1 ={a,8,1,7}, e temos os mapeamentos

e 3 4 5 6

m(m) 1 a 8 4 -
m*(m;) 1 a 8 a

Obtemos
Indice i 1 2 3 4 5 6 7 8 9 10
Elem. m*(3) m*(6) m3 M w5 M p7 pg  pPe mM*(5)
o} 1 a 3 4 5 6 9 7 2 8
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4.1. Religamento de caminhos

Exemplo 4.3 (Recombinacdo OX)

A recombinacdo ordenada (ingl. ordered crossover, OX) o = C(m, p)
de permutacdes 7 e p seleciona um intervalo I C [n] de 7t e completa
0 com o0s elementos na ordem de p. O

A selegdo de um ou mais operadores de recombinagdo é um parte
importante do projeto de uma heuristica por recombinac¢do. Além
das recombinagdes genéricas, uma recombinagdo que aproveita a es-
trutura do problema deve ser considerada.

Exemplo 4.4 (Recombinac¢do EAX para o PCV)

O edge assembly crossover (EAX) (Nagata e Kobayashi 1997) trabalha
na representacdo de rotas por conjuntos de arestas. Para rotas A
e B ele forma A UB e extrai um conjunto completo de ciclos AB-
alternantes (i.e. ciclos com arestas alternadamente e A e B; isso sem-
pre é possivel). Seleciona um subconjunto S dos ciclos AB extraidos e
gera uma colegdo de ciclos A @ S. Repetidamente reconecta o menor
ciclo com um outro ciclo até obter uma rota simples.

Para conectar ciclos C e D (representados por conjuntos de arestas),
gulosamente seleciona o par de arestas uu’ € C e w’ € D tal que
(CUD) @ {uu/,vw’,uv,u’v} tem custo minimo.

O

4.1. Religamento de caminhos

O religamento de caminhos (ingl. path relinking), proposto por Glover
(1996) no contexto da busca tabu, explora trajetérias entre uma solu-
¢do inicial s e uma solugdo guia s’. Isso é realizado com uma busca lo-
cal na vizinhanca reduzida (“vizinhanca direcionada”) D(s) ={s” €
N(s) | d(s”,s’) < d(s,s’)}. Logo em no maximo d(s,s’) passos a
busca transforma s em s’. Qualquer distribui¢do de probabilidade
discutida no cap. 2 pode ser usada para explorar D; tipicamente é
usada a estratégia “melhor vizinho”. O resultado do religamento de
caminhos é a melhor solucdo s* encontrada na trajetoria explorada.
Como a melhor solugido da trajetéria s* ndo necessariamente é um
minimo local de N, é comum aplicar uma busca local em N.

Algoritmo 4.1 (Religamento de caminhos)
Entrada Uma solugéo inicial s, uma solugéo guia s’.

Saida Uma solucédo s* com ¢(s*) < min{e(s), @(s’)}.

PathRelinking(s,s’)=
s* = argmin{o(s), @(s)}
while D(s) Z@DAs #s’ do
seleciona s” € D(s) com probabilidade Ps(s”)
s:=s"
atualiza o incumbente s*
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4. Busca por recombinagdo de solugdes

end
return s*

Observacgdo 4.1 (Conectividade da vizinhanca direcionada)

Caso é garantido que na vizinhanca D existe um caminho de s para
s’ podemos simplificar a condigdo D(s) # @ As # s’ para s # s’.
Um exemplo em que isso nao é satisfeito: para o problema do exem-
plo 1.8 pode ser conveniente restringir a vizinhanca N que desloca
uma tarefa para outra estagdo as estacdes criticas, i.e. as estacdes
com tempo de estacdo igual ao tempo de ciclo. Logo o religamento
de caminhos termina, caso as tarefas alocadas as estagoes criticas na
solucdo atual e guia sdo as mesmas. O

Variantes comuns sdo: religamento de caminhos

para frente (ingl. forward path relinking, “uphill”) Para solucdes s
e sy com @(s1) < @(s2) explore a trajetoria de sy para s;.

para tras (ingl. backward path relinking, “downhill”) Para solugdes
s1 esy com @(s1) < @(s2) explore a trajetéria de s, para sj.

para tras e frente (ingl. back-and-forward path relinking) Para solu-
¢Oes s e sy com @(s1) < @(s2) explore a trajetéria de s, para
s1, seguido da trajetoria de s; para s;.

misto (ingl. mixed path relinking) Altera ambas solucdes até eles se
encontram.

truncado (ingl. truncated path relinking) Explora a trajetéria somente
no inicio ou no final. Esse estratégia é justificada por experi-
mentos que mostram que as melhores solugdes tendem a ser
encontradas no inicio ou no final da trajetéria.

Observagao 4.2

O religamento de caminhos explora a vizinhanga da solugéo inicial
melhor. Logo, caso somente uma trajetéria é explorada, é melhor
usar um religamento para frente, que comeca da melhor das solu-
¢des (Resende e Ribeiro 2005). O

Observagao 4.3 (Selecao do vizinho)

Qualquer estratégia de busca local pode ser aplicada na da préxima
solucdo. Aplicando a estratégia “guloso-«”, por exemplo, obtemos
um religamento de caminhos guloso adaptativo (ingl. greedy randomized
adaptive path-relinking, GRAPR) (Binato et al. 2001). O

4.2. Probe

O population-reinforced optimization-based exploration (PROBE) trabalha
com uma populagio de solugdes St,...,Sn. Sendo C(-,-) algum ope-
rador que recombina duas solugdes, Probe produz em cada iteracdo
uma nova populagdo C(Sy,S2),C(S2,53),...,C(Sn, S1).
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4.3. Scatter search

Teorema 4.1 (Convergéncia de Probe)
Caso ¢(C(S,T)) < min{e(S), ¢(T)} o valor médio da populagdo di-
minui até todas solugdes possuem o mesmo valor.

Prova. Supde que um par de solugdes adjacentes S;, S; 1 ndo possui
o mesmo valor. Logo @(C(S;,S;41) < @(S5) ou @(C(S;,S541) <
©(Sj41) e como as restantes solugdes satisfazem @(C(Si,Si11) <
@(Si) resp. @(C(Si,Si+1) < @(Si4+1) o valor médio diminui. |

Observacdo 4.4 (Convergéncia trivial)
Para C(S,T) = argmin{¢(S), ¢(T)} a populacdo converge para a me-
lhor das n solugdes inicias.

4.3. Scatter search

A busca dispersa (ingl. Scatter search) é um esquema algoritmico que
explora o espaco de busca sistematicamente usando um conjunto de
solugdes de referéncia (ingl. reference set). A enfase da busca dispersa
é na exploracdo deterministica e sistemédtica, similar com a busca
tabu, ao contrario de métodos que focam em randomizagdo. Repeti-
damente a busca dispersa combina um subconjunto das solugdes de
referéncia para gerar novas solugdes e atualiza as solugdes de refe-
réncia. O método procura incluir elementos de diversificagdo e inten-
sificagdo estrategicamente. As solugdes de referéncia R, por exemplo,
tipicamente contém solugdes de boa qualidade e solugdes diversas. O
conjunto de solugdes de referéncia inicial é selecionado entre um nu-
mero grande de solucdes diversas. Depois da recombinac¢do o novo
conjunto de solugdes de referéncia é selecionado entre as solugdes de
referéncia atuais e as solugdes obtidas por recombinacao.

Seja d(p,S) = min{d(p,s) | s € S} e distdncia minima da solugdo p
para qualquer solucdo do conjunto S. Um exemplo de uma cons-
trugdo do conjunto de referéncia que seleciona by solugdes de boa
qualidade e b, solucdes diversas é

refset (P)= { seleciona solugdes de referémncia de P }
seja P={p1,...,pn} com @[p1) <--- < @(pn)
S:={p1,... Poy)
P:=P\S
while PAQOAIS|<b;+by do
p = argmaxp{d(p,S) |p € P}

S:=SuU{p}
P=P\(p)
end

Com isso obtemos

Algoritmo 4.2 (Scatter search)
Entrada Uma instancia de um problema.

Saida Uma solugéo s, caso for encontrada.
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4. Busca por recombinagdo de solugdes

ScatterSearch ()=
cria um conjunto de solugdes diversas C
R := refset(C)
do
seja § uma familia de subconjuntos de R
C=0
for S€S§ do
T := recombine(S)
C:= CUimprove(T)
end for
R:=refset(RUC) { alternativa: refset(C) }
while R changed

Tabela 4.1.: Valores de referéncia para

0s parametros da busca dispersa. Tabela 4.1 mostra valores de referéncia para os pardmetros da busca

Solugdes de referéncia [R| =~ 20 dlspersa.

Solugdes iniciais |C| > 10[R|

Solugdes elite by ~ [R|/2 Observacdo 4.5 (Atualizacdo do conjunto de referéncia)
Solugdes diversas b, ~ [R|/2

Existem diversas estratégias de atualizagdo do conjunto de solucdes
de referéncia. Por exemplo, podemos adicionar uma nova solugdo
ao conjunto de referéncia R caso (i) |R| < b, ou (ii) ela é melhor que
o incumbente, ou (iii) ela é melhor que a pior solugdo de R, dado
que ela possui uma distdncia minima d das solugdes restantes. Em
ambos casos a solugdo de menor distdncia com a nova solugio sai do
conjunto de referéncia. Para implementar isso, podemos modificar o
algoritmo 4.2 para

for each c€C: refset(R,c)
usando o procedimento

refset (R,s)= { atualiza o conjunto R com s }
seja R={ry,...,mn} com o@(r1) < - < @(rn)
if |[Rl<b then
R:=RU/{s}
else if @(s) < @(r1)V(o(s) < @(rn)Amin;d(s, i) >d then
seja k =argmin; d(s,Ti)
R:=R\{r}U{s}
end if
end

Observacgdo 4.6 (Sele¢io da familia S)

A abordagem mais comum é selecionar todos pares de solugdes de
referéncia. Variantes propostas na literatura incluem escolher triplas
formadas por todos pares mais a solucdo de referéncia melhor que
ndo faz parte do par, ou escolher quadruplas formadas por todas
triplas mais a solucdo de referéncia melhor que ndo faz parte da
tripla. Essas abordagens sdo raras, por precisarem uma combinacio
efetiva entre mais que duas solugdes. O
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4.4. GRASP com religamento de caminhos

4.4. GRASP com religamento de caminhos

GRASP com religamento de caminhos mantém um conjunto de solu-
¢des de referéncia. Este conjunto é alimentado pelas solugdes obtidas
em cada iteragdo. Uma proposta tipica da atualizagdo é a regra da
observacdo 4.5. Em cada iteragdo, GRASP+PR aplica religamento
de caminhos entre o minimo local obtido s e uma solucgdo de refe-
réncia r. A solugdo de referéncia é selecionada, por exemplo, com
probabilidade o d(s,r), para religar solu¢des distantes com maior
probabilidade.

O GRASP evoluciondrio (ingl. evolutionary GRASP) reconstréi o con-
junto de solugdes de referéncia periodicamente. Os candidatos para
formar o novo conjunto de solugdes sdo as solugdes obtidas por reli-
gamento de caminhos entre todos pares de solugdes de conjunto de
referéncia do periodo anterior.

4.5. Algoritmos genéticos e meméticos

Observacao 4.7 (Func¢ado objetivo e aptidao)

Como algoritmo genéticos e variantes normalmente sdo formulados
para maximizar uma fungédo objetivo — chamada aptiddo (ingl. fitness)
— vamos seguir essa convengao nesta secao. O

Algoritmos genéticos (ingl. genetic algorithms) foram propostas por
Holland (1975) em analogia com processos evolutivos. Um algoritmo
genético mantém uma populacdo S1,..., Sy de individuos e repeti-
damente seleciona dois individuos pais, gera novos individuos por
recombinacdo dos pais, eventualmente aplica uma mutagdo em indi-
viduos selecionados, e atualiza a populagdo. Um algoritmo genético
difere da busca dispersa principalmente pelos elementos randomi-
zados: a selecdo dos pais ¢é aleatéria (mas tipicamente proporcional
com a qualidade da soluc¢do) bem como a mutacdo. Obtemos um
algoritmo memético (ingl. memetic algorithm) caso um individuo é
melhorado por uma busca local, e um algoritmo genético Lamarckiano
caso essa melhora é herdavel (i.e. a transformacéo inversa do fené-
tipo para genétipo existe, ver cap. 1.2.2). A terminologia bioldgica
é frequentemente usada em algoritmos genéticos. Numa represen-
tagdo de varidveis, por exemplo, uma variavel é chamada gene e os
valores que ela pode assumir os alelos.

O algoritmo 4.3 define um esquema genérico de um algoritmo ge-
nético. Ele é definido por (i) uma populacdo inicial, (ii) por uma
estratégia de selecdo de individuos, (iii) operadores de recombina-
¢do e mutagdo, e (iv) uma estratégia de selegdo da nova populagdo.

Algoritmo 4.3 (Algoritmo genético)
Entrada Uma instancia de um problema.

Saida Uma solucdo s, caso for encontrada.
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4. Busca por recombinagdo de solugdes

GeneticAlgorithm ()=
cria um conjunto de solugles iniciais P
until critério de parada satisfeito
C:=0
{ recombinagdo }
sejam P os pais selecionados de P
for p=(p1,p2) €P do
T :=recombine(py,p2)
C:= CUimprove(T)
end for
{ mutagdo }
sejam M CPUC solugdes sofrendo mutagdo
for se M do
T := mutate(s)
C:= CUimprove(T) \ {s}

end for
P:=update(P,C) { com update (u+A),(n,A)
end

Exemplo 4.5 (Algoritmo genético basico)
Uma instancia basica do algoritmo 4.3 usa

e uma representagdo por varidveis com V = {0, 1};
e uma populacéo inicial com p individuos aleatoérios;

e uma selecdo de |P| = u pares de pais, cada solugdo s com
probabilidade o ¢(s);

e uma recombinacdo em um ponto (p. 55) que gera duas novas
solugdes;

e nenhum procedimento de melhora (improve(C) = C);

e uma muta¢do que inverte cada varidvel com probabilidade p
(frequentemente p = 1/|I]) nas novas solugdes;

e uma atualizagdo (p,A) da populagdo (seleciona os p melhores
entre os novos individuos).

4.5.1. Populacao inicial

A populacdo é criada por alguma heuristica construtiva, frequente-
mente com individuos aleatérios. Reeves (1993) propde um tamanho
minimo que garante que todas solu¢des podem ser obtidas por re-
combinagdo da populagdo inicial, i.e. todo alelo estd presente em
todo gene. Para uma inicializagdo aleatéria uniforme na representa-
¢do por varidveis, temos |V|" possiveis combina¢des de alelos num
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4.5. Algoritmos genéticos e meméticos

determinado gene, para uma populacdo de tamanho n. Dessas com-
binagdes |V|!{|\“/‘} possuem todos alelos, logo a probabilidade que

todos alelos sdo presentes em todos k genes é

('V“{W'V'n)k‘

Em particular para |V| = 2 obtemos a probabilidade (1—2"™). Isso
permite selecionar um n tal que a probabilidade de que todos alelos
estejam presentes € alta.

4.5.2. Selecdo de individuos

Um individuo S é selecionado como pai com probabilidade « ¢(s)
ou conforme alguma regra de selecdo baseado no rank na populagéo
(ver pag. 47). Outro exemplo é uma selegio por torneio que seleciona
o melhor entre k individuos aleatérios, similar da busca por amos-
tragem.

Observacgido 4.8 (Sele¢ido por torneio)

Um 1-torneio é equivalente com uma selecdo aleatéria. Num 2-
torneio a probabilidade de selecionar o elemento com posto i é (n —
)/ (%), logo obtemos uma selegdo linear por posto. Em geral a pro-
babilidade de selecionar o elemento com posto i num k-torneio é

n—i n n—i\ k1
)~ (00 o

Exemplo 4.6 (Fitness uniform selection scheme (FUSS))

Hutter e Legg (2006) propdem um esquema de selecio uniforme base-
ada em aptiddo (ingl. fitness uniform selection scheme): escolhe um valor
uniforme f no intervalo [min;cp @ (i), maxicp @(1)] e seleciona o in-
dividuo com valor da fungdo objetivo mais préximo de f. O objetivo
da selegcdo é manter a populagdo de valores diversa: individuos em
regides com menor densidade da distribui¢do dos valores da funcéo
objetivo possuem uma probabilidade maior de ser selecionado. ¢

Exemplo 4.7 (Selecao estocastica universal)

Baker (1987) propde uma selegio estocdstica universal (ingl. stochastic
uniform selection): Seja pi, a probabilidade de selecionar individuo
i€ [ul, e Py = [} yci1]Pis Zkepi) Pi) O intervalo correspondente,
seleciona, para um r € [0,1/p) aleatério, os individuos iy,...,1, tal
que T+ k/un € Py, para k € [u. (A explicagdio mais simples dessa
selecdo é por uma roleta com p seletores de distancia 1/p). O
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http://nbviewer.jupyter.org/url/www.inf.ufrgs.br/~mrpritt/msc/D11-tournament.ipynb

4. Busca por recombinagdo de solugdes

4.5.3. Recombinacdo e mutacdo

Para recombinagdo de individuos serve qualquer das recombinacdes
discutidas acima, inclusive o religamento de caminhos. Uma mu-
tagdo é uma pequena perturbagdo de uma solucdo. Logo ela pode
ser realizada por um passo de uma busca local estocdstica 2.1. Re-
combinac¢do ou mutagdo podem ser aplicados com probabilidades
diferentes, eventualmente dindmicas.

4.5.4. Selecdao da nova populacdo

A populagao pode ser atualizada depois de criar um ndmero sufi-
ciente de novas solugdes, selecionando uma nova populagdo entre
estes individuos, eventualmente incluindo a populacido antiga. Uma
alternativa é atualizar a populagdo constantemente. (Observe que
isso corresponde exatamente com as estratégias de selegdo da busca
dispersa.) As primeiras duas estratégias de selecdo levam a um algo-
ritmo genético geracional e a dltima a um algoritmo genético em estado de
equilibrio (ingl. steady state genetic algorithm). Para uma populacéo
de tamanho p e A novos individuos eles também sdo conhecidos por
selecio (1, A) (seleciona os 1 melhores dos A novos individuos) ou se-
legio (4 A) (seleciona os p melhores entre a populagdo antiga e os A
novos individuos). Caso uma sele¢do permite solugdes da populacio
antiga entre na nova populacdo, e seleciona algumas das melhores
solugdes, o algoritmo é elitista.

Exemplo 4.8 (Estratégias de evolucado)

Estratégias de evolugdo (ingl. evolution strategies) sdo algoritmos
genéticos sem recombinacdo. Eles recebem o nome da atualizagdo
correspondente: (i, A) ou (i+ A). Observe que uma estratégia de
evolucgéo (1+ 1) é uma busca local monétona estocéstica. O

Uma outra estratégia comum ¢é a delecdo randomizada de individuos
do conjunto de candidatos até p individuos sobram. A variante mais
simples delete individuos com probabilidade uniforme; uma vari-
ante delete com probabilidade « @(smax) + @ (Smin) — @(S) cOM Smax
a melhor e sy a pior solugéo.

Exemplo 4.9 (Fitness uniform deletion scheme (FUDS))

Hutter e Legg (2006) propdem um esquerma de delegdo uniforme baseado
em aptiddo (ingl. fitness uniform deletion scheme): similar ao FUSS, es-
colhe um valor uniforme f no intervalo [minjcp @ (i), maxicp @(i)] e
deleta o individuo com valor da funcdo objetivo mais préximo de f.
FUDS favorece uma exploragao em regides de menor densidade da
distribui¢do dos valores da fungéo objetivo. O

Observacao 4.9 (Resultados experimentais (Levine 1997))
Experimentalmente, parece que

e manter a populagdo em estado de equilibrio é preferivel sobre
abordagens geracionais;
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4.5. Algoritmos genéticos e meméticos

e uma recombinacdo uniforme ou em dois pontos é preferivel
sobre uma em um tnico ponto;

e uma selegdo proporcional com ¢ raramente é bom;
e uma taxa de mutacdo dindmica é preferivel;
e manter a diversidade da populagdo é importante.

e operadores de recombinacdo e mutagado especificos para o pro-
blema sdo mais tteis;

O

Observagao 4.10 (Resultados tedricos)
Pela teoria sabemos que

e 0 desempenho depende fortemente do problema: existem fun-
¢des unimodais em que uma determinada estratégia de evolu-
¢do (14 1) precisa tempo exponencial mas também classes de
fung¢des que podem ser resolvidos em tempo polinomial (Droste
et al. 2002; Jansen e Wegener 2000); e existem instancias de
problemas NP-completos em que uma estratégia de evolugdo
(T + 1) ndo possui garantia de aproximacao (e.g. cobertura por
vértices (Friedrich et al. 2010)), mas também problemas NP-
completos em que a estratégia garante uma aproximacao (e.g. uma
4/3-aproximacio em tempo esperado O(n?) para o problema
de particdo! (Witt 2005)).

e 0 tamanho ideal da populacdo depende fortemente do pro-
blema: existe uma fun¢do em que uma dada estratégia de evo-
lucdo (p, 1)? precisa tempo exponencial para | pequeno, mas
tempo polinomial para p grande e vice versa (Witt 2008);

e 0 desempenho depende fortemente da funcdo objetivo: uma
estratégia de evolucdo (14 1) consegue ordenar n ntmeros em
tempo @(n? logn), mas existem funcdes objetivos para medir o
grau da ordenagdo que levam a um tempo exponencial (Schar-
now et al. 2002);

O

A tltima observagdo experimental, que ndo é restrito a algoritmos
genéticos, em conjunto com os resultados tedricos, é o motivo para
conjeturar que (i) para cada solucdo “genérica” de um problema,
existe um algoritmo heuristico especifico melhor. (ii) para cada heu-
ristica que funciona bem na pratica (i.e. resolve o problema em tempo
esperado polinomial com garantia de qualidade) deve existir um sub-
problema do problema em questdo em P.

TParticionar um conjunto de niimeros x1,...,xx tal que a diferenca das somas dos
partes é minima.
2A estratégia padrao com atualizagdo por delegio aleatéria.
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Figura 4.1.: Um movimento 4-opt com
dois pontes.

4. Busca por recombinagdo de solugdes

Principio de projeto 4.1 (Estrutura do problema)

Procure aproveitar a estrutura do problema. Caso a heuristica funci-
ona bem: procure identificar quais caracteristicas das instancias sao
responsdveis por isso.

Exemplo 4.10 (Algoritmo genético para o PCV)

Em D. S. Johnson e McGeoch (2003) o algoritmo genético melhor é
degenerado para uma busca local iterada: a “populagdo” consiste de
uma tnica solugdo, e o algoritmo aplica repetidamente uma busca lo-
cal Kernighan-Lin e uma mutagédo na vizinhanca 4-exchange restrito
para dois pontes (Fig. 4.1), i.e. a estratégia de atualizacgdo é (1,1). ¢

Exemplo 4.11 (Algoritmo genético para o PCV)
O algoritmo genético para o PCV de Nagata e Kobayashi (2012)
exemplifica o principio 4.1. Ele usa

e Uma populacdo inicial de tamanho 300 com rotas aleatdrias
otimizadas por 2-opt.

e Uma recombinacdo entre 7; e 7ti_1 para uma permutagdo ale-
atoria da populacdo.

e A recombinacdo entre p, q aplica uma variante “localizada” de
EAX (i.e. produz soluc¢des mais similares com p) e gera diversas
novas solugdes f1, ..., fx (k = 30).

e Uma selegdo que substitui o p atual pela melhor solucédo entre
f],...,fk,p.

e Uma fungdo objetivo modificada que procura manter a diver-
sidade da populagdo. Para P; = (pyj); a distribuicdo de pro-
babilidade dos arcos (i,j) na populacdo, define a entropia da
populagdo por

H= Z Hyi; Hi =— Z pij log pij
ien

] j€n]

e seleciona a solucdo s de maior valor

—AL(s)/e caso AL(s) <0, AH(s) > 0
@(s) =< AL(s)/AH(s) caso AL(s) <0, AH(s) <0
—AL(s) caso AL(s) > 0

com AL(s) o aumento da distdncia total média da populagao

caso s substitui p, e AH(s) o aumento correspondente da entro-
pia.
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4.5.5. O algoritmo genético CHC

O “Cross-generational elitist selection, Heterogeneous recombina-
tion, and Cataclysmic mutation” (CHC) é um exemplo de uma vari-
ante de um algoritmo genético com um foco em intensificagdo (Eshel-
man 1990). Ele recombina sistematicamente todos pares da popula-
¢do atual, e procura manter a diversidade por recombinar somente
solugdes suficientemente diferente com uma recombinacdo HUX. A
recombinac¢do HUX é uniforme, mas troca exatamente a metade das
varidveis diferentes entre os pais e gera dois novos filhos. Caso a
populacdo convergiu ele é recriada aplicando uma mutagdo para a
melhor solugéo.

Algoritmo 4.4 (Algoritmo genético CHC)
Entrada Uma instancia de um problema, uma taxa de mutacao
Pm (tipico: pm =1/2).

Saida Uma solugéo s, caso for encontrada.

CHC ()=
cria um conjunto de solugdes iniciais P

d:=pm(—pm)l]

until critério de parada satisfeito
C=0
for n/2 iteragdes do
seleciona pais pj,p2 €P aleatoriamente
if d(pi1,p2) > 2d then
T := HUX(p1,p2)
C:=CUT; P:=P\{p1,p2}

end

end

if C=@ then
d:=d—1

else
P:=(L+A)(PUC)

end if

if d<0 then
{ re-criagdo cataclismica }
reduz P para a melhor solugdo p em P
until [P|=p do
aplica uma mutag8o em p com prob. 0.35
insere o individuo obtido em P
end
d:=pm(T—pm)l
end if
end
end
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1 Copiar

Elite Elite

—_ ) ———
Recombinagéo

Ranéiomizaclo

Piores solucoes Novas solucoes

Figura 4.2.: Algoritmo genético com chaves aleatérias.

4.5.6. Algoritmos genéticos com chaves aleatérias

Um “biased random-key genetic algorithm” (BRKGA) é uma exten-
sdo do algoritmo genético com chaves aleatérias de Bean (1994). Am-
bos usam uma representagdo por chaves aleatérias (se¢do 1.2.2) e
uma populagdo com trés “castas” (ver Fig. 4.2). A nova populacdo
consiste da elite da populagdo antiga, solu¢des randdmicas que subs-
tituem as piores solugdes e solugdes que foram obtidas por recom-
binacdo uniforme. No caso do BRKGA a recombinac¢do uniforme é
substituida por uma recombinacdo que passa de cada gene indepen-
dentemente o alelo do pai melhor com probabilidade p > 0.5 para
o filho. Tamanhos tipicos para a elite sdo 10 — 20% da populagéo, e
1 —5% de solugdes randdmicas.

4.6. Otimizacdo com enxames de particulas

A otimizagdo com enxames de particulas (ingl. particle swarm op-
timization, PSO) (Eberhart e Kennedy 1995) foi proposta para oti-
mizag¢do continua e mantém uma populacdo de solugdes x1,...,Xxn
em R¥. Cada solucio também possui uma velocidade vi, i € [n] e
em cada passo a posi¢do é atualizada para x] = x;i + ev; para um
parametro € € (0,1]. A velocidade v; é atualizada em direcdo da
melhor solugdo na trajetéria da solugdo atual x}, da melhor solugdo
X] = maxjc x| encontrada por solucdes informantes I C [n] e da
melhor solugdo global x7, , por

* *Xi). (4.1)

n]

vi = awvi + B(x] —xi) +v(x] —xi) +8(x
Com isso obtemos o esquema genérico

Algoritmo 4.5 (Otimizag¢ado com enxames de particulas)
Entrada Uma instancia de um problema, pardmetros «, 3,v, 9, €.
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Saida A melhor solugdo encontrada.

PSO ()=
cria solugdes iniciais Xj,...,Xn
com velocidades Vvi,...,Vn

until critério de parada satisfeito
for cada solugdo i€ [n] do
seleciona um conjunto de informantes I
atualiza v; de acordo com (4.1)
Xi = Xi + €V}
end
return Xy,

end

Na forma mais comum:

e Aproximadamente 50 solugdes e velocidades inicias sdo esco-
lhidas aleatoriamente.

e O conjunto de informantes é um subconjunto aleatério de [nl].
Variantes incluem:

e Selecionar em cada aplicagdo de (4.1) valores aleatérias em
[0, B], [0,v] e [0, 8] para os pesos.

Aplicacado para otimizacao discreta A forma mais simples de apli-
car a otimizag¢do com enxames de particulas em problemas discretos
é trabalhar no espaco real e transformar a solu¢do para uma solucéo
discreta (se¢do 1.2.2). Uma alternativa é definir uma estratégia de
atualizagdo discreta.

Exemplo 4.12 (Variante binaria de PSO)

Kennedy e Eberhart (1997) propdem para solugdes em {0, 1} mapear
as velocidades em R¥ para [0,1]* por uma transformagao logistica
S(x) = (1T4+eX)! aplicada a cada elemento do vetor, e interpre-
tar os componentes das velocidades como probabilidades. Em cada
passo xij recebe o valor 1 com probabilidade S(vy;). O

4.7. Sistemas imunolégicos artificiais

Sistemas imunolégicos artificiais (ingl. artificial immunological sys-
tems) sdo algoritmos de otimizagdo usando principios de sistemas
imunolégicos. Daremos somente um exemplo de um algoritmos co-
mum dessa classe. O principio natural do algoritmo é a observacao
que o sistema imunoldgico se adapta para novas antigenes por clo-
nagem e amadurecimento.
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4. Busca por recombinagdo de solugdes

Algoritmo 4.6 (SIA/Clonalg)
Entrada Uma instancia de um problema, parametros «, f3.

Saida A melhor solugido encontrada.

Clonalg ()=
seja P={pj,...,pn} aleatéria
(supondo ¢(p1) <+ < @(pn))

until critério de parada satisfeito
seleciona as &% melhores solugdes Pj,...,Pk
for i€ [k] do
{ clonagem }
cria um conjunto C; de x1/i cépias de p;
{ amadurecimento por hipermutagdo }
aplica mutacgio a c€ C; com prob. « @(s)
end
selecione a nova populacgio entre P e U;Cj
substitui as (3% piores solugdes
por solucgdes aleatdrias
end
end

4.8. Algoritmos de estimacao de distribuicao

Um algoritmo de estimacao de distribuicao (ingl. estimation of distri-
bution algorithm) aprende um modelo da distribui¢do das solugées
de boa qualidade no espaco de busca. A distribui¢do guia a amos-
tragem de novas solugdes e os valores da novas solugdes sdo usadas
para atualizar a distribui¢do. O procedimento basico é:

Algoritmo 4.7 (AED)
Entrada Uma instancia de um problema.

Saida A melhor solu¢do encontrada.

cria um conjunto de solugdes inicias P
until critério de parada satisfeito
seja SCP um conjunto de solugdes promissoras
cria um modelo probabilistico M
da distribuigdo de S
amostra M para obter
novas solugdes candidatas C
P :=update(P, C)
end

Na versdo mais simples as solug¢@es iniciais sdo aleatdrias, a selecdo
S consiste das « % melhores solu¢des, o tamanho dos candidatos
|C| = |P|, e a fungdo update substitui P por C.
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4.8. Algoritmos de estimagdo de distribuigdo

Em resumo, um AED ¢é definido por
e uma classe de modelos que podem ser representados,

e um algoritmo de construir modelos a partir de amostras de
solucdes de boa qualidade, e

e um algoritmo para amostrar um modelo construido eficiente-
mente.

4.8.1. Modelos univariados

O modelo probabilistico mais simples assume que todas varidveis
sdo independentes e cria um modelo de acordo com a frequéncia da
ocorréncia nas amostras S. Na representagdo por conjuntos temos
probabilidades p,, = {u € s | s € S}|/|S| e na representacdo por
varidveis probabilidades pi, = [{s(i) = v | s € S}{/|V| para toda
variavel i € L.

Na representacdo por varidveis com I ={Xj,..., Xy} o modelo é

com um vetor de varidveis aleatérias X = (X7,...,Xk)!, e um vetor
de realizacdes dessas varidveis x = (x1,...,xx)%, xi € V sendo V o
conjunto de possiveis valores da varidveis.

Exemplo 4.13 (UMDA)
Suponha uma representacdo de uma solugdo por k bits (i.e. o0 domi-
nio das varidveis é V = {0,1}). Neste caso um modelo é represen-
tado por um vetor p € [0, 11% com pi a probabilidade de observar
um bit 1 na posicdo i € [k] em solugdes boas. O algoritmo pa-
drdo com « = 50% é o Univariate marginal distribution algorithm
(UMDA) (Miihlenbein et al. 1996).

0

Exemplo 4.14 (PBIL)

Com a mesma representagdo do exemplo anterior, o Population-
based incremental learning (PBIL) (Baluja 1994) atualiza as proba-
bilidades da seguinte forma:

1. Seleciona a melhor solugédo s* € P,

2. atualiza p := (1 —A)p + As*, para uma taxa de aprendizagem
Ae(0,1),e

3. aplica uma mutagdo p := (1 —w)p + pe {0, 1} com probabi-
lidade de mutagdo p,, € [0,1], para uma taxa de mutagdo
ne(0,1),ee=(11--- Nt

v
Exemplo 4.15 (cGA)

Ainda com a mesma representacdo o Compact GA (cGA) (Harik et
al. 1997) atualiza as probabilidades como segue:
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4. Busca por recombinagdo de solugdes

1. Tira duas solugdes amostras s1 e s3. Seja @(s1) > @(s2).
2. Atualizap:=p+(s1Psz)o(2s1—1)/k.

O algoritmo termina caso o p converge para um vetor integral {0, 1}¥.

¢

Nota que PBIL e cGA trabalham somente com amostragem, i.e. ndo é
necessdrio armazenar a populagdo. Esse tipo de algoritmo se chama
compacto.

Exemplo 4.16 (Instancia dificil para modelos univariados)
Considera a fungdo objetivo sobre {0, 1°, onde H(x) é o peso Ham-
ming, i.e. o nimero de bits diferente de 0:

H(s) ofs) H(s) ols)
0 4 3 1
1 3 4 0
2 2 5 5

Ela é chamada uma armadilha porque para solu¢des com 5k bits, onde
cada grupo de 5 bits ¢ avaliado pelo funcao acima, temos 5% minimos
locais s com H(s) = 0, onde todos grupos possuem 1 bits diferente
de 0, mas somente um minimo global 111---11 com H(s) =5k. ¢

O exemplo mostra que EDAs precisam identificar correlacdes entre
varidveis para melhorar.

4.8.2. Modelos em arvores

Cadeias O mutual-information-maximizing input clustering (MI-
MIC) (De Bonet et al. 1996) permite modelos

P(X) =P(X1 | X2) P(X2 | X3) -+ - P(Xpe_1 | Xi)

para qualquer permutacédo das varidveis, e escolha a permutacdo que
minimiza a informag¢do mutua

ZP logI5 P(x)
ZP )log P(x)

ZP x)logP(X7 =x7 | X2 = x2) — ---—ZP x) log P(Xy. = x)

=—H(P )+H(X1 | X2) + -+ H(Xk—1 X)) + H(Xq).

MIMIC aplica um algoritmo guloso simples para obter uma ordem
de variéveis que minimiza as entropias em I(P, P):

1. Seleciona Xk tal que H(Xx) é minimo.

2. Parai=k—1,k—2,...,1 seleciona X;_1 tal que H(X;_1[X;) é
minimo.
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4.9. Intensificagdo e diversificagdo revisitada

Arvores arbitrarias Baluja e Davies (1997) permitam arvores arbi-
trarias

PX) = T PX: 17Tx,)
ie[k]

onde TTx é o pai da varidvel aleatéria X na drvore. Um modelo é
gerado pelo seguinte algoritmo:

1. Determina a informagao mutual I(Xj, X;) entre cada par de va-
raveis X e Xj.

2. Encontra a arvore geradora maxima T no grafo G = (X, I) sobre
as varidveis aleatorias, onde o peso de uma aresta {Xi, Xj} é a
informagao mutual I(Xj, Xj). A drvore T minimiza a distancia
de Kullback-Leibler em G.

3. Seleciona uma raiz arbitrdria para T.

Para calcular a informacdo mutual o algoritmo mantem uma ta-
bela A[X; = a,X; = b] com as distribui¢des bivariados empiricos
para cada par de varidveis X; e Xj para valores a,b. As matrizes
sdo ndo-normalizadas, i.e P(X; = a,Xj = b) « A%b. Inicialmente
AlX; = aq, Xj = b] = ¢, é constante e representa uma distribui¢do
uniforme. Em cada iteragdo o algoritmo tira k amostras, seleciona as
b melhores amostras sy, ..., s, onde cada solugédo s = (x1,...,xk) é
uma realizacdo das variaveis aleatdrias e atualiza

AlXi=a,X; =b] = xAX; = a,Xj =bl+ ) [ski = a,sij = bl.
ke(b]

Aqui « é uma taxa de reducéo e serve para dar um maior peso para
observagdes recentes.

4.9. Intensificacado e diversificacao revisitada

Uma populagdo de solugdes de alta qualidade junto com a recombi-
nagdo de solucgdes também serve para realizar uma intensificagdo e
diversificacdo genérica (Watson et al. 2006). O IDMF (Intensificati-
on/Diversification metaheuristics framework) supde que temos uma
heuristica de busca H(xo, i) base arbitraria, que podemos rodar para
um namero de itera¢bes i numa instancia inicial xg.

Algoritmo 4.8 (IDMF)

Entrada Uma instdncia de um problema, probabilidade de in-
tensificacdo pi, uma heuristica H, itera¢des iy > i; para
intensificagao.

Saida A melhor solu¢ido encontrada.

H*(xg,10,11)= { heuristica H iterada }
x = H(xg, 10)
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4. Busca por recombinagdo de solugdes

while @(x) < @(xo)

Xo (=X
X = H(Xo,i] )
end
return Xp
end
IDMF () :=

gera uma populacgdo E de o6timos locais
aplica H*(e) em cada e€c€E
repeat
com probabilidade pi: { intensificagdo }
seleciona ecE
g:=e
com probabilidade 1—p;i: { diversificag8o }
seleciona e, feE
gera um elemento g no meio entre e e f
por religamento de caminhos
e’ :=H"(g)
if @(e’) < ¢(e)
e:=¢e'
end
end

4.10. Notas

Mais sobre a busca dispersa se encontra em Gendreau e Potvin (2010,
cap. 4), Glover e Kochenberger (2002, cdp. 1) e Talbi (2009, cép. 3.4).
Uma boa introdugdo em algoritmos de estimacdo de distribuicdo é
Hauschild e Pelikan (2011).

4.10.1. Até mais, e obrigado pelos peixes!

Para quem néo é satisfeito com os métodos discutidos: usa alguma
outra besta de carga como

fireflies, monkeys, cuckoos, viruses, bats, bees, frogs, fish
schools, glowworms, african wild dogs, african buffalos,
migrating birds, shuffled leaping frogs ou competitive
imperialists, comunidades de cientistas, bacterial foraging,
hunting search, sheep flock heredity, penguins, ageist spi-
der monkeys, leaders and followers, binary cockroaches,

ou deixa a fisica resolver o problema com

gravitational search, intelligent waterdrops, ou harmony
search.

Porém, é importante lembrar que o objetivo da pesquisa em heuris-
ticas ndo é produzir novos vocabuldrios para descrever as mesmas
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4.10. Notas

estratégias, mas entender quais métodos servem melhor para resol-
ver problemas. Weyland (2010), por exemplo, mostra que a busca de
harmonias (ingl. harmony search) é uma forma de uma estratégia de
evolugdo. Para uma critica geral ver também Sorensen (2013).
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5. Tépicos

5.1. Hibridizacao de heuristicas

A combinagdo de técnicas de diversas meta-heuristicas ou de uma
meta-heuristica com técnicas das dreas relacionadas de pesquisa ope-
racional ou inteligéncia artificial define heuristicas hibridas. Um exem-
plo é a combinagdo de técnicas usando populagdes para identificar
regides promissoras no espago de busca com técnicas de busca local
para intensificar a busca. Um outro exemplo é o uso de programagao
matemadtica ou constraint programming para resolver subproblemas
ou explorar vizinhangas grandes. Isso é um exemplo de matheuristics,
a combinagdo de heuristicas com técnicas de programagdo matema-
tica, também conhecida por heuristicas baseados em modelos matemdticos
(ingl. model-based heuristics).

5.1.1. Matheuristics

Hibridizacdes bésicas entre heuristicas e programagdo matematica
aplicam as heuristicas para obter limitantes superiores em algorit-
mos de branch-and-bound ou usam programacdo matematica para
resolver subproblemas em heuristicas. Exemplos de outras hibridi-
zagOes sdo relaxagdes lineares de programas inteiros para gerar so-
lugdes inicias ou guiar buscas, e a aplicacdo de técnicas heuristicas
para guiar a exploracdo de buscas em algoritmos exatos.

Exemplo 5.1 (Diving)

Algoritmos branch-and-bound frequentemente expandem o nodo com
o menor limite inferior. Diving é uma estratégia que estrategicamente
aplica uma busca por profundidade para gerar melhores solucoes. ¢

Exemplo 5.2 (Ramificacdo local)

Ramificagdo local (ingl. local branching) guia a exploragdo das solugoes
de programas inteiras 0 — 1 de um resolvedor genérico para analisar
primeiramente solugdes de distdncia Hamming < k. A distancia
Hamming das solugdes x = (x1,...,xn) € B* e X = (X1,...,Xn) €
B™é

Axx) = Y X+ )y 1-x

ien]|x;=0 ien]lx;=1

Com isso para uma dada solugdo xp uma estratégia global de ramifi-
cacdo resolve primeiramente o programa inteiro Ax < b/AA(x,xp) <
k e s6 depois Ax < bAA(x,xo) > k+ 1. Essa ramificacdo continua
no primeiro subproblema, caso o resolvedor encontra uma melhor
solucdo. Fischetti e Lodi (2003) sugerem k € [10, 20]. O
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Exemplo 5.3 (RINS e religamento de caminhos)

O relaxation induced neighorhood search (RINS) é uma estratégia para
intensificar a busca para melhores solugdes vidveis. Para um dado né
na arvore de branch-and-bound da solu¢do de um programa inteiro,
ela fixa as varidveis que possuem o mesmo valor no incumbente e
na relaxagdo linear atual, e resolve o subproblema nas restantes va-
ridveis restrito para um valor mdximo da fungdo objetivo e com um
tempo limite. Danna et al. (2005) propdem aplicar RINS cada f > 1
nés com um limite de nds explorados, e.g. f ~ 100, com limite de
~ 1000 nos.

Uma forma similar de explorar o espaco entre duas solucdes é uma
extensdo do religamento de caminhos: fixa todas varidveis em co-
mum, e resolve o problema no subespago resultante de forma exata.

¢

Exemplo 5.4 (Geragdo heuristica de colunas)

Na geragdo de colunas (usado também em algoritmos de branch-
and-price) o subproblema de pricing precisa encontrar uma coluna
com custo reduzido negativo. Para melhorar os limitantes inferio-
res da decomposicdo de Dantzig-Wolfe, o subproblema de pricing
deve ser o mais dificil possivel, que pode ser resolvido em tempo
aceitavel. Uma estratégia diferente resolve o subproblema de pri-
cing heuristicamente. O método continue ser correto caso no final o
subproblema de pricing é resolvido pelo menos uma vez exatamente
para demonstrar que ndo existem mais colunas com custo reduzido
negativo.

Por exemplo o problema de colorar um grafo ndo-direcionado G =
(V,E) com o menor ntimero de cores

minimiza E ci,
i€[n]

sujeito a Z Xvi > 1, Yvev,
ien]
Xui +xvi <1, Y{u,v} € E,1i€ [n],
cy > Z Xvi/M, Vi€ [n],
veV
Xvi,Ci € B, Vv e V,ien]

pode ser decomposto em um problema mestre de cobertura por con-
juntos independentes maximais I de G

minimiza Z Xi (5.1)
iel
sujeitoa ) x> 1 VeV (5.2)
iellvel
xi € B Viel (5.3)

Para custos reduzidos Ay, v € V o subproblema problema de pricing
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5.1. Hibridizagio de heuristicas

é encontrar um conjunto independente méximo de maior peso

maximiza E AvZy

vev
sujeitoa zy +z, <1 V{u,v}eE
zy, € B vev.

Filho e Lorena (2000) propdem um algoritmo genético para resolver
o subproblema de pricing.

O

Exemplo 5.5 (Construir, unir, resolver e ajustar)

Blum et al. (2016) propdem a matheuristic CMSA (do ingl. cons-
truct, merge, solve and adapt) que identifica elementos promissores
de uma solugdo e depois resolvem o subproblema limitado a estes
elementos de forma exata. O algoritmo 5.1 supde uma representagdo
por conjuntos com universo U.

Algoritmo 5.1 (CSMA)
Entrada O ntimero de solugdes construidas por iteracdo nq e a
idade méxima de elementos a.

Saida A melhor solugdo encontrada s*.

ay,=0,Vuelu
C=0 { elementos promissores }
until critério de parada satisfeito
repeat ng vezes
s := criaSolugioAleatéria(ll)
for ues|uégcC
a, =0
C:=Cu{u}
end
end
s’ := exactSolver (C)
atualiza (C,s’,a)
end
return s*

atualiza(C,s,a) :=
ay:=ay+1,Vue C { aumenta idade }
ay,:=0,YVu€es { reseta idade }
C:=C\{u|ay=a} { remove antigos }

5.1.2. Dynasearch

Dynasearch determina a melhor combinac¢do de varios movimentos
numa vizinhanga por programacao dindmica (Congram et al. 2002).
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Ela pode ser vista como uma busca local com estratégia “melhor
melhora” intensificada. A aplicagdo é limitada para movimentos in-
dependentes: cada movimento precisa ser aplicdvel independente dos
outros, e contribui linearmente para a func¢do objetivo. Numa repre-
sentacdo por variaveis (x7,...,Xn) seja 8i; a redugdo da fungao obje-
tivo aplicando um movimento nas variaveis x;, ..., x;j. Logo a maior
reducdo da fungéo objetivo A; por uma combinacdo de movimentos
independentes aplicado a x1, ..., x;j € dado pela recorréncia

Aj = max{A;j_7, max Aj_7 + 0y}
1<i55

e a melhor combinacdo de movimentos reduz a funcdo objetivo por
An.

Exemplo 5.6 (Dynasearch para o PCV)

Para aplicar dynasearch no PCV supde uma representagdo por va-
ridveis com I = {m; | i € [n]} e valores em [n] que representa uma
permutagdo das cidades. Um movimento 2-exchange entre arestas
(7ri, 7ti41) e (75, 7501) com i < j é valido caso i+ 1 < j, i.e. precisa
pelo menos quatro vértices. (Todos indices sdo modulo n.) Dois mo-
vimentos (i,j) e (i/,j’) com i < i’ sdo independentes caso j < i.
A reducdo da funcdo objetivo para um movimento (i,j) é di; =
—dij —dit1,j+1 +diit1 +dj541- Logo obtemos a recorréncia

0 casoj <4

A = .
) max{A;_1,maxj<i<j—3Ai_1 +8ij} caso contrdrio.

5.2. Hiper-heuristicas

Hiper-heuristicas usam ou combinam heuristicas com o objetivo de
produzir uma heuristica melhor e mais geral (Denzinger et al. 1997;
Cowling et al. 2000). A heuristicas podem ser geradas antes da sua
aplicagao (“offline”), por uma busca no espago das heuristicas. Uma
hiper-heuristica desse tipo pode ser projetada usando alguma meta-
heuristica. Importante no projeto é uma representagdo adequada de
uma heuristica generalizada para o problema e diversas heuristicas
ou heurfsticas parametrizadas que instanciam a heuristica generali-
zada. As operagdes correspondentes modificam, constroem ou re-
combinam heuristicas. Uma alternativa é aplicar diferentes heuristi-
cas durante a otimizagdo (“online”). Para isso uma hiper-heuristica
precisa decidir qual sub-heuristica aplicar quando.

Exemplo 5.7 (Hiper-heuristica online construtiva)

Considera o empacotamento unidimensional que permite diversas
estratégias gulosas para selecionar o préximo item a ser empacotado
(na ordem dada ou em ordem nao-crescente, no contéiner atual ou no
primeiro ou melhor contéiner). Uma hiper-heuristica pode selecionar

80



5.2. Hiper-heuristicas

a estratégia de acordo com a solugdo parcial. Um exemplo é Ross
et al. (2002): uma solucdo parcial é representada pelo nimero de
itens, e as percentagens de itens pequenas, médias, grandes e muito
grandes e um classificador é treinado para decidir qual de quatro
regras candidatas é aplicada.

Exemplo 5.8 (Hiper-heuristica online por modificagao)

Uma hiper-heuristica pode usar conceitos da busca tabu para a sele-
¢do de heuristicas de modificagdo Hj,..., Hx. Associa um valor v;
com cada heuristica H;. Aplica em cada passo a heuristica H; de
maior valor (uma ou mais vezes). Caso ela melhora a solugédo atual,
aumenta v;, sendo diminui v; e declara H; tabu. O

Exemplo 5.9 (Hiper-heuristica offline)

Fukunaga (2008) apresenta uma abordagem para gerar heuristicas
que selecionam uma varidvel a ser invertida em uma busca local para
o problema SAT. A regra de selegdo é representada por uma expres-
sdo, que inclui sele¢des tipicas de algoritmos conhecidos como a res-
trigdo para clausulas falsas, a selegdo pelo aumento da funcédo obje-
tivo, uma selecdo pelo tempo da tltima modificagdo ou uma selecédo
randomica. Essas restri¢gdes podem ser combinadas por condigdes.
A regra de selecdo do WalkSAT, por exemplo, é representada por

BCO: clausula falsa aleatéria (CFA)
vl, caso tem perda O, sendo v2
vl: var. de menor perda numa CFA
v2: com 0.5 de probabilidade,

var. de menor perda numa CFA

ou uma var. aleatéria de uma CFA

(IF-VAR-COND = +NEG-GAIN+ O
(GET-VAR +BCO +NEG-GAIN+)
(IF-RAND-LTE 0.5

(GET-VAR +BCO+ +NEG-GAIN+)
(VAR-RANDOM +BCO+)

H OH H H HH

)

Um algoritmo genético em estado de equilibrio evolui as regras de
selecdo. A populacdo inicial consiste de expressdes aleatdrias restri-
tas por uma gramaética que garante que eles selecionam uma varia-
vel. O algoritmo seleciona dois pais com uma probabilidade linear
no posto na populacido, e gera 10 filhos. A estratégia de selegdo é
(L+A). A recombinagdo de pais p1 e p é “if (condigdo) then p;
else p2” com 10 condigdes diferentes, p.ex. i) uma sele¢do randdmica
com probabilidade 0.1,0.25,0.5,0.75,0.9, ii) a varidvel mais “antiga”
entre p; e pz, ou iii) a varidvel de py caso ela ndo invalida nenhuma
cldusula, sendo p,. Como a recombinac¢do aumenta a profundidade
das expressdes, uma regra substitui sub-arvéres de altura dois que
ultrapassam um limite de profundidade por uma expressdo de me-
nor altura. Isso serve também como mutacgdo das expressdes. Cada
regra é avaliada em até 200 instancias com 50 varidveis e caso pelo
menos 130 execugdes tiveram sucesso em mais 400 instancias com
100 variaveis e recebe uma valor s50 + 55100 + 1/f com s; o niimero
de sucessos em instancias com i varidveis e f o ntimero médio de ite-
racdes em instancias com sucesso. As heurfsticas evoluidas em uma
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populacdo de 1000 individuos, limitado por 5500 avalia¢des, com li-
mite de profundidade entre 2 e 6 sdo competitivas com heuristicas
criadas manualmente. O

5.3. Heuristicas paralelas

Heuristicas podem ser aceleradas por paralelizacdo. A granularidade
do paralelismo (a relacdo entre o tempo de computacdo e comuni-
cacdo) é importante para obter uma boa aceleracdo e tipicamente
define ou limita a escolha da arquitetura paralela. A paralelizacdo
mais bdasica executa diversas heuristicas (ou a mesma heuristica ran-
domizada) em paralelo e retorna a melhor solugdo encontrada. Essa
estratégia corresponde com repeti¢cdes independentes, possui uma
granularidade alta, tem a vantagem de ser simples de realizar, e gera
uma aceleragdo razoavel. Uma variante é uma decomposicdo do es-
pago de busca em subespacos.

Exemplo 5.10 (Acelera¢do de heuristicas de busca)

Supde um problema de busca com uma fungdo de probabilidade ex-
ponencial Ae— M de encontrar uma solucdo no intervalo [t, t+ dt]. A
distribui¢cdo do minimo de p varidveis distribuidas exponencialmente
com Ap,..., A é distribuido exponencial com parametro A = } ; A;.
Logo, para p repeticdes paralelas independentes, obtemos uma nova
distribuicdo exponencial do tempo de sucesso com parametro pA. O
valor esperado de uma distribuicao exponencial é A~!, e assim obte-
mos uma aceleragdo esperada de A—'/(pA)~! =p. O

As trés técnicas heuristicas principais permitem algoritmos paralelos
de granularidade fina ou média:

e Buscas por modificagdo: a exploragdo de uma tnica trajetéria
é inerentemente sequencial. Uma paraleliza¢do de granulari-
dade fina pode avaliar toda vizinhanga em paralelo (ou alguns
movimentos, e.g. na tempera simulada). A granularidade pode
ser aumentada por vizinhangas grandes.

e Busca por construcdo: similarmente a constru¢do por elemen-
tos é sequencial, mas os candidatos podem ser avaliados em
paralelo.

e Busca por recombinagdo: permite uma granularidade média
paralelizando os passos de sele¢do, recombinacdo e melhora
de subconjuntos de solugdes sobre subconjuntos de solugdes
independentes.

Uma busca por modificagdo ou construgao pode ser paralelizado me-
lhor avaliando diversas trajetérias ou construgdes em paralelo. Esse
tipo de paralelizagdo se aplica diretamente em métodos como segue
os vencedores e colonias de formigas.

Uma paralelizagdo com granularidade fina ou média é mais ade-
quada para arquiteturas com memoria compartilhada. Eles podem

82



5.3. Heuristicas paralelas

ser realizadas de forma conveniente com miultiplos threads (explici-
tamente ou com abordagens semiautomaticos usando diretivas como
OpenMP).

Exemplo 5.11 (GSAT paralelo em C++ com OpenMP)
Uma versdo simplificada de uma busca “melhor melhora” para o
problema SAT (ver exercicios) pode ser paralelizada em OpenMP

por

#pragma omp parallel shared(bestvalue,bestj)
private(t_bestvalue,t_bestj)
{
#pragma omp for private(value)
for(unsigned j=1; j<=I.n; j++) {
int value = S.flipvalue(j);
if (value>t_bestvalue) {
t_bestvalue = value;
t_bestj = j;
}
X
#pragma omp critical
{
if (t_bestvalue > bestvalue) {
bestvalue = t_bestvalue;
bestj = t_bestj;
}
}
}

O

Modelos cooperativos Uma estratégia de granularidade média sdo
modelos cooperativos: a mesma ou diferentes heuristicas (“agentes”)
que executam em paralelo trocam tempo a tempo informagdes sobre
os resultados da busca. O projeto de uma estratégia inclui a definicdo

e de uma topologia de comunicacdo, que define quais agentes
trocam informagdes. Exemplos de topologias sdo grades (de
diferentes dimensdes, abertas ou fechadas), estrelas, ou grafos
completos.

e da informagdo trocada. Exemplos incluem incumbentes, me-
morias de frequéncia, ou sub-populagoes.

e de uma estratégia de incluir a informagdo no recipiente, por
exemplo substituindo um parte da populagdo ou combinar me-
morias de frequéncia.

e da frequéncia com qual a informagéo ¢é trocada.

Um exemplo simples de modelos cooperativos é um conjunto elite
compartilhado, que pode ser implementado de forma mais simples
por um esquema de mestre-escravo.
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Exemplo 5.12 (Colaboragao indireta: times assincronos)

Uma extensdo da ideia do conjunto elite compartilhado séo times as-
sincronos: uma colegdo de diferentes algoritmos (de construgdo, me-
lIhoras, ou recombinagdo) (chamados de agentes) conectadas por me-
morias. Cada agente trabalha de forma auténoma e insere, no caso
de heuristicas construtivas, ou extrai, modifica e retorna, no caso de
heuristicas de melhora ou recombinacéo, solugdes das memorias.
Souza e Talukdar (1993) apresentam um time assincrono para o PCV
com nove agentes: insercio arbitrdria (IA) completa uma rota par-
cial por inser¢do de uma cidade aleatéria ndo-visitada no melhor
ponto; shift (SH) testa todos deslocamentos de até trés cidades con-
secutivas; Lin-Kernighan (LK) aplica o algoritmo do mesmo nome;
Lin-Kernigham simples (LS) aplica Lin-Kernighan mas termina na pri-
meira melhora encontrada; misturador (MI) tenta criar uma nova rota
com as arestas de duas rotas (eventualmente completada por demais
arestas); Held-Karp aplica o algoritmo do mesmo nome para obter um
limite inferior e 1-drvores (uma drvore mais um vértice conectado a
ela via duas arestas); misturador de drvores (MA) mistura uma rota e
uma 1-arvore para gerar uma nova rota; destruidor (DE) quebra ro-
tas em segmentos, dados pela intersecdo de duas rotas; limitador (L)
remove rotas piores ou aleatdrias (com uma selecéo linear de acordo
co a distancia, tal que a rota melhor nuca é removida) para limi-
tar o ndmero de rotas. Os agentes sdo conectados de acordo com a
figura 5.1.
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O

Exemplo 5.13 (Algoritmos genéticos no modelo de ilhas)

A metéafora evolutiva naturalmente sugere uma abordagem distri-
buida em algoritmos genéticos: populagdes panmiticas em quais todos
pares de individuos da mesma espécie sdo candidatos para serem
recombinados sdo raras. O modelo de ilhas propde populagdes com
uma evolucdo independente e uma troca infrequente de individuos
entre as ilhas.

Luque e Alba (2011) discutem um algoritmo genético distribuido
para MAXSAT com 800/p individuos em cada um dos p processa-
dores, recombinagdo em um ponto com probabilidade 0.7 e mutacado
1-flip com probabilidade 0.2. Os processadores formam um anel di-
recionado e cada 20 itera¢des uma populagdo manda um individuo
aleatéria para o seu vizinho que incorpora-o caso o valor da fun-
¢do objetivo estd maior que a pior individuo da populagdo. Numa
instancia com 100 varidveis e 430 cldusulas eles observam uma ace-
leracdo de 1.93, 3.66, 7.41, e 14.7 para p = 2,4,8,16 em média sobre
100 replicagdes. O

5.4. Heuristicas para problemas multi-objetivos

Um problema multi-objetivo possui mais que uma fungdo objetivo.
O valor de uma solucao @(s) = (@1(s), ..., ex(s))t € R¥ domina um
outro valor @(s’) caso @(s) < @(s’) (com < tal que existe pelo me-
nos uma componente estritamente menor). Uma solucéo s cujo valor
ndo é dominado pelo de valor de uma outra solugdo é eficiente (ou
Pareto-étima). Diferente da otimiza¢do mono-objetivo podem exis-
tir valores incomparéaveis (e.g. (1,2) e (2,1)). Tais solugdes formam
a fronteira Pareto (ver fig. 5.2), e um algoritmo multi-objetivo geral-
mente mantém uma populacdo de solu¢des ndo-dominadas. Limites
para solugdes ndo-dominadas sdo o ponto ideal

t=(min@1(s),..., min en(s))
dos minimos em cada dimenséo, e o nadir

v=( max @q(s),..., max @n(s))
s|s eficiente s|s eficiente

dos maximos das solugdes eficientes em cada dimensdo. Um valor
v < t que domina o valor ideal é utdpico.

Em problemas dificeis as fun¢des objetivos tendem a ser antagonisti-
cas, i.e., a redugdo do valor de uma funcéo geralmente aumenta o va-
lor de uma ou mais das outras. Frequentemente um problema multi-

objetivo é resolvido por escalarizagdo, usando uma fun¢do mono-objetivo

ponderada w(s) = we(s) = > ; wi@i(s). Isso geralmente produz
somente um subconjunto das solugdes eficientes (ver fig. 5.2). Além
disso, o conjunto de solug¢des suportadas que podem ser obtidas por
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otimizar w(s) para algum conjunto de pesos w, nao inclui todas solu-
¢Oes, i.e. existem solugdes ndo-suportadas que para nenhuma escolha
de w sdo minimos de w(s).

Exemplo 5.14 (Problema da mochila bi-objetivo)
O problema da mochila bi-objetivo (leia: a versdo de decisdo corres-

pondente)
maximiza cx,
maximiza dx,
sujeito a wx < W,
x € B",
é NP-completo por generalizar o problema da mochila. O

Claramente uma variante multi-objetivo de um problema é mais di-
ficil que a versdo mono-objetiva.

Exemplo 5.15 (Caminhos mais curtos)
Determinar o caminho mais curto entre dois vértices num grafo di-

Exclui Inclui recionado conhecidamente permite um algoritmo polinomial (e.g. al-
n goritmo de Dijkstra). A versdo (de decisdo) bi-objetiva é NP-completo (Se-

rafini 1986): para um problema de mochila max{cx | wx < W,x €

B™} considera um grafo com vértices [0,n] e arestas (ci,0) e (0, w;)

entre i—1 e i Seja Coum = ) _jc[n) Ci- O problema da mochila pos-
sui uma solugdo com cx > C e wx < W sse Cgym — cx < Cgym — C

e wx < W sse existe um caminho de 0 para n com distancias no
(c2,0) < > (0,w2) méximo Csym — C e W (ver Figura 5.3).
1 O
(c1,0) (O,w1) S . Lo ~ .
Avaliacao de algoritmos multi-objetivos A comparacdo de algorit-
0 mos multi-objetivos precisa comparar aproximacdes E da fronteira

i 5 eficiente real E. Caso E é conhecido, uma medida simples ¢ a fracdo
Figura 5.3.: Reducdo do problema da d lucd ficient trad \ﬁﬂE|/|E| Poré . ~ t
mochila para o caminho mais curto bi- e solugdes eficientes encontradas - Porém, isso ndo conta
objetivo. solucdes que sdo razoavelmente pertas de solucdes eficientes. Uma

segunda medida aproveita que todas solugdes eficientes sdo solugoes
suportadas, ou caiem num subespago “triangular” (ver figura 5.2)
de solugdes suportadas e mede a fragdo das solugdes em E que per-
tencem a esse espago. Outros exemplos de medidas de qualidade
incluem a distancia minima média para uma solugéo eficiente

d(E,E) =) mind(s,$)/[E|
sek s€

e a distdncia minima méaxima

dmax(E, E) = maxmin d(s, §)
scE gct
ou medidas baseados no volume coberto. Caso E é desconhecido,
uma avaliagdo aproximada pode ser obtida usando o conjunto de so-
lugbes suportadas nas medidas acima. No momento ndo ha consenso
sobre a comparacdo ideal de dois algoritmos multi-objetivos.
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5.4.1. Busca por modificacdo de solucdes

Tempera simulada Para aplicar a tempera simulada no caso multi-
objetivo, o critério de Metropolis (2.3) precisa ser modificado para
comparar valores vetoriais. Uma forma comum € a escalarizagio local:
para pesos w a qualidade da nova solugdo é avaliada pela diferenca
ponderada das fungdes objetivos ou das probabilidades (Ulungu et
al. 1999). Por exemplo, com A, (s,s’) = w(s’) — w(s) obtemos o
critério de Metropolis modificado

caso Ay (s,s') <0

L (5.4)
caso contrario

. 1
P(aceitar) = {eAw(s,s/)/kT

O algoritmo mantem um conjunto de solugdes eficientes durante a
busca. Ele aceita uma nova solucdo caso nenhuma outra solugio
eficiente dominé-la e aplica critério (5.4) nos outros casos. A tempera
simulada é repetida com vérios pesos w aleatérios.

Um outro exemplo de um critério de aceitagdo, proposto por Suppa-
pitnarm et al. (2000), usa um vetor de temperaturas T € R™. Com
At(s,s") = Y icin(s{ —s{)/T; uma solugdo é aceita com probabili-
dade

1 caso At(s,s’) <0
e=A1(ss")  cago contrario

Isso é uma variante do critério (5.4) com pesos w; = kKTT; " ! variaveis.

Exemplo 5.16 (MOSA para o problema da mochila bi-objetivo)

O algoritmo descrito acima aplicando o critério (5.4) é conhecido por
MOSA (multi-objective simulated annealing). Ulungu et al. (1999)
aplicam MOSA no problema da mochila bi-objetivo em compara-
¢do com uma solucdo exata. As instancias sdo geradas aleatoria-
mente com pesos e valores de n itens em [1,1000] e uma capacidade
W =3 iciywi/r comr € (0,1). O algoritmo usa uma probabi-
lidade de aceitagdo inicial de Py = 0.5, um fator de resfriamento
a=1—1/40, L ={5,15,25} conjuntos de pesos, e 100, 300, 500 passos
por temperatura. A vizinhanca remove aleatoriamente itens até to-
dos itens ndo selecionados cabem na mochila e depois adiciona itens
aleatérias até nenhum item cabe mais. O

Busca tabu Uma busca tabu multi-objetivo tem que definir a “me-
lhor” solugédo vizinha. O algoritmo MOTS de Gandibleux.etal/1997
usa a escalarizagao de Steuer (1986)

S(s") = [Aov—e(s")] +plAov—els],

mostrada na Figura 5.4 para selecionar o vizinho ndo tabu de menor
valor S. O valor de um vizinho s’ depende um ponto utépico local
v (i.e. um ponto que domina o ponto ideal da vizinhanca N(s)), um
conjunto de pesos A que define a direcao da busca (com } ;< 1A =
1) e um pardmetro p < 1.
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Exemplo 5.17 (MOTS para o problema da mochila bi-objetivo)

O algoritmo determina inicialmente limites [l, u] para o nimero de
itens. Na forma mais simples ele busca solugdes eficientes com um
numero de itens n = w,u—1,...,1, numa vizinhanga que troca um
item selecionado x; por um item ndo selecionado x;. A reinser¢do do
item 1 fica tabu para 7 iteragdes e a dele¢do do item j para 3 iteragdes.
Em cada iteragdo o algoritmo determina todos vizinhos vidveis nédo
tabu V, que dominam um ponto de satisfacio o e ndo sdo dominados
por uma solugdo na fronteira eficiente atual £, e atualiza € com estes
pontos. O ponto de satisfacio o é 0 para n = u e se aproxima ao
nadir 1 do conjunto eficiente E do n anterior de acordo com o7 =
On + (Mn —0on) /0 com um tamanho de passo > 2. Depois a solugdo
vizinha s’ de maior S(s’) é selecionada. Caso ndo existe solugdo
vidvel em V, algoritmo seleciona o vizinho ndo-tabu que excede a
capacidade da mochila menos possivel. Um critério de aspiracdo
permite selecionar uma solugédo tabu que domina todas solugdes V
ou que domina um namero grande de solugdes em E.

A solucdo inicial é aleatdria (com n = u itens selecionados) e cada
direcdo de busca continua com a solugéo final anterior. Diminuindo
n, o item com o menor valor minimo dos sobre as dimensodes da
mochila é removido.

A implementagdo testa 25 conjuntos de pesos (A, 1—A), com A =i/24
para i = 0,...,24, aplica no méximo 500 iteragdes por busca tabu
(para cada conjunto de pesos e cada n), e usa 6 = 2 na mesmas
instancias do exemplo anterior. A busca para com n = 1 ou caso na
vizinhanga ndo tem solu¢do que domina o ponto de satisfagéo. O

5.4.2. Busca por recombinacdo de solucdes

A maioria das propostas de heuristicas multi-objetivos recombinando
solugdes sdo algoritmos genéticos e evolutivos. Num algoritmo ge-
nético somente a selecdo de individuos para recombinagdo depende
da fungdo objetivo. Portanto, uma das modificagdes que torna um
algoritmo genético multi-objetivo, é uma selegdo proporcional com
w(s), com um vetor de pesos w selecionado aleatoriamente em cada
iteragdo (Murata et al. 1996). Essa abordagem ¢é simples na imple-
mentacdo, mas tem a desvantagem que ela foca em solugdes supor-
tadas. Um dos algoritmos pioneiros trabalho com k subpopulacdes, e
seleciona individuos em cada subpopulagdo de acordo com a i-ésima
fungdo objetivo (ver algoritmo 5.2).

Algoritmo 5.2 (Selecio VEGA (Vector-evaluated GA))
Entrada A populagdo atual P.

Saida Uma nova populacio P.

para i€ [K]
seleciona |P|/k individuos proporcional com @;
aplica recombinacgdo e mutacgédo
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na unido S dos individuos selecionados
retorne a nova populacgédo

Algoritmos recentes determinam o valor de uma solugdo de acordo
com a proximidade com a fronteira eficiente e a densidade na fron-
teira eficiente, para uma explora¢do melhor em dire¢do de solugdes
eficientes e em regides esparsas. Para um conjunto de solucdes S seja
E(S) = E1(S) a fronteira eficiente (local) e define recursivamente a
k + T-ésima fronteira eficiente por

Exi1(S) =E(s\ | Ex(9)). (5.5)

ie[k]

(ver o exemplo da Fig. 5.5).

Seja ainda B(x,S) = {s € S | s > x} o conjunto de solugdes em S
que dominam x e W(x,S) ={s € S| x > s} o conjunto de solugdes
dominadas por x em S. Entre as propostas temos algoritmos que
ordenam solugdes s € P da populagdo atual P

e pelo nivel k da sua fronteira eficiente s € Ex(P) correspondente
(non-dominated sorting GA, NSGA, NSGA-II);

e pelo numero 1+ |B(s, P)| de solu¢des que dominam s na popu-
lagédo atual P (MOGA);

e pela fragdo total da cobertura por solucdes de um conjunto E
eficiente atual 1+ 3 ;. (s ) IW(t, P)I/(IPI+1) que dominam s
(strength Pareto EA, SPEA);

e pelo soma dos postos das solu¢des que dominam s, r(s) =1+
2 teB(s,p) T(L).

Técnicas para priorizar a exploragdo de regides esparsas incluem

e a redugdo da fungdo objetivo por um fator [Bs(s) N QP!
(com By (s) um esfera de raio r e centro ¢(s) e ®(s) a funcéo
objetivo normalizada para o intervalo [0, 1] em cada dimensao)

(MOGA);

e a soma das distancias normalizadas para os predecessores e
sucessores na fronteira atual em cada dimensido (“crowding
distance”) (NSGA-II). Para cada dimensdo i € [k| supde que
as solucoes x! ,...,x™ de uma fronteira sdo ordenadas pela i-
ésima coordenada (i.e. xz < xiz < --- <xI'). Entdo o crowding
distance normalizada da solugédo x* na dimenséo i é

ci(x®) = (@i (x* 1) — @i (x*F 1)) /(@™ — @I™™)

paras € 2,n—1], ci(x) =ci(x™) =0 ea crowding distance

da solugdo é c(x*) = 3 ;) cix®).

Formas de elitismo incluem manter uma ou mais fronteiras eficiente
Ex(P) ou Ex (P U C) com filhos C.
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Exemplo 5.18 (NSGA-II)

O algoritmo NSGA-II segue o algoritmo genético 4.3 com uma sele-
¢do por um torneio bindrio de P: entre duas solugdes aleatérias a
solucdo de menor nivel k ou, no caso de empate, de menor “crow-
ding distance” é selecionada. Ele sempre aplica mutagdo (M = C).
A fungdo update que atualiza a populagdo é realizada por

R:=PUC
seja P:=E;(R)U---UEL(R) com k maximal t.q. |[PI<n
if [Pl<n

complete P com as n—|P| solugdes de ﬁkH(R)

de menor ‘‘crowding distance’’
end if

5.5. Heuristicas para problemas continuos
Uma forma geral de um problema de otimizac¢do continuo é

minimiza f(x),

sujeitoa gi(x) <0, Vi€ [m],
hj(x) =0, vj e [,
x € R™,

com uma funcdo objetivo f : R™ — R, e restri¢des g; : R* — R
e hj : R™ — R. Casos particulares importantes incluem fungoes
lineares e convexas e o caso irrestrito (m = 1 = 0). As defini¢des 2.1
continuam ser validas com uma vizinhanga

Ne(x) ={x' € R" | [lx —x'|| < €} (5.6)

e com a condi¢do adicional que para um minimo ou maximo local
deve existir um e > 0 que satisfaz a definicdo.

Casos simples de um problema de otimizacdo continua podem ser
resolvidos por métodos indiretos. Um método indireto encontra pri-
meiramente todos candidatos para solugdes 6timas por critérios ne-
cessdrios para otimalidade local, depois verifica a otimalidade local
por critérios suficientes, e finalmente encontra a solugao 6tima global
por comparacdo das solugdes localmente 6timas. Na otimizagdo ir-
restrita em uma dimensdo, por exemplo, temos a condicdo suficiente
f’ = 0 para otimalidade local, e a condigdo suficiente f” > 0 para um
minimo local e "/ < 0 para um méaximo local (dado que as derivadas
existem).

Caso resolver f = 0 ndo é possivel técnicas de busca em linha (ingl. line
search) podem ser usadas. Para um dominio restrito x € [a,b] um
método simples é a busca regular: escolhe o melhor entre os pon-
tos x = a+1iAx, parai=0,...,|(b—a)/Ax], para um tamanho de
passo Ax. Um outro exemplo é uma busca em linha com backtracking.
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Algoritmo 5.3 (Busca em linha com backtracking)
Entrada Um ponto x, uma direcdo de descida Ax, x € (0,0.5),
Be(0,1).

Saida Uma nova solugéo x.

ti=1
while f(x +tAx) > f(x) + otf/(x)Ax do t:=ft
return x -+ tAx

O algoritmo precisa uma diregdo de descida Ax, tal que f'(x)Ax < 0,
por exemplo Ax = —f’(x). O pardmetro « define uma perda em
qualidade aceitdvel, o parametro  a precisdo da busca. A busca
termina, porque para um t suficientemente pequeno a condigdo é
satisfeita localmente.

Os dois métodos podem ser generalizadas para o caso irrestrito no
R™. A busca regular limitada para S = {x € R™ | 1 < x < u} para
um limitante inferior 1 € R™ e superior u € IR™ avalia todos pontos
x=14+1i0Ax € §,com i € ZT para um tamanho de passo Ax € R™.
A busca em linha com backtracking substitui a derivada f’(x) pelo
gradiente Vf(x); uma dire¢do de busca entdo é Ax = —Vf(x).
Métodos de busca em linha sdo elementos de métodos univariados
de otimizag¢do, que otimizam uma varidvel por vez, ou mais geral,
uma direcdo de busca por vez. A busca por relaxacio de Southwell por
exemplo repetidamente seleciona a variavel x; que corresponde com
o maior valor absoluto do gradiente [9f/0x;|(x). Um dos métodos
mais comuns é a descida do gradiente (ingl. gradient descent).

Algoritmo 5.4 (Descida do gradiente)
Entrada Um ponto inicial x € R™.

Saida Uma nova solugdo x € R™.

repeat
Ax := —VTf(x)
aplica uma busca em linha na diregio Ax
para obter um tamanho de passo t
X =X+ tAx
until critério de parada satisfeito
return x

Um critério de parada comum é
queno.

Vix)ll2 < €, para um € > 0 pe-

Exemplo 5.19 (Redes neurais artificias)

Uma grande classe de redes neurais artificias sdo redes sem realimentagio
(ingl. feed forward networks). Eles recebem informacdo numa camada de
entrada, que passa por multiplas camada internas até chegar na camada
de saida. A saida x de um elemento de uma camada é uma fungéo da
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Figura 5.6.: Fungéo sigmoide (5.8).

5. Tépicos

kal

ni n2 Nk—1 Nk

Figura 5.7.: Rede neural artificial.

soma ponderada dos elementos xé ,...,xh da camada anterior:

x=g( Z Wix{). (5.7)

ien]

A func@o g é a fungio de ativagdo. (O modelo simples de um neurdnio
de McCulloch e Pitts (1943) usa g(x) = [x > 0].) Ela tipicamente é
sigmoide (possui forma de “s”), por exemplo

1

90x) = 1+ exp(—2px)

(5.8)
com derivada g’ = 2fg(1 — g) (ver Fig 5.6). Em geral supde que
temos uma rede com k camadas e a camada i possui n; elementos.
Sejam W, ..., WKk=1 as matrizes de pesos entre as camadas, com
Wt € RM+1XM, Logo uma entrada x' € R™ na primeira camada é
propagada para frente por

hiJr] _ Wixi; Xi+1 _ g(hlj (59)

paraie€ [k—1]. Ovalor h' é a entrada da camada 1, o valor x! € R™
a sua saida. (A fungdo g é aplicada em cada componente.) O objetivo
de uma rede neural artificial é treind-la para produzir saidas deseja-
das (e espera-se que a rede generaliza e produz resultados desejaveis
para entradas desconhecidas). Na aprendizagem supervisionada a rede
repetidamente recebe uma entrada x' = ¢ e a saida x* é comparada
com uma safda desejada o. O erro é definido por

EW,.. W =172 ) (o —x9)2
i€ ny]

O treinamento consiste em ajustar o pesos W‘, - ,Wk tal que E é
minimizado. Isso é um problema de otimiza¢do continua, e nos po-
demos aplicar a descida de gradiente para obter pesos melhores. No
caso de uma rede com somente uma camada interna (k = 3) temos

2
EW', W2) =1/2 Z (Gk—g( Z Wl%jg( Z Wj1ixi1))) :
] ]

kens] jeln, ie[ny
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5.5. Heuristicas para problemas continuos

e o gradiente para os pesos entre a segunda e a terceira camada é

)
o7 = (o —x{)g' (h)xf
OWE,

—éﬁx)z

com 6£ =g’ (hi)(ck — xi). Similarmente o gradiente para os pesos
entre a primeira e a segunda camada é

JF
sw = 2 (o x)g (WG g (hxd
o kemns]
- Y W )]
ke 113}
:_6]'Xi.

1 2 242
com §; = g’(hj ) X kems) S Wi
Aplicando a descida do gradiente com um tamanho de passo 1 ob-
temos a regra simples

) OF .
)

com

5% =g'(h*) o (0 —x%)
8! = g/(h?) 0 52W2.

Isso pode ser generalizado para um ntdmero arbitrdrio de camadas
por

85T =g'(h*) o (o —x¥)
st=g'(h oW ie k-2 (5.11)

Logo enquanto os valores sdo propagadas para frente, de acordo
com (5.9), os erros sdo propagadas para atrds por (5.11) e o método
é chamada propagacio para atrds (ingl. backpropagation).

Para treinar uma rede serve um conjunto de entradas £',...,£™ com
safdas desejadas o', ..., o™. Repetidamente para entrada &' a saida
é calculada por propagacdo para frente, os erros 6 sdo calculados por
propagacdo para atrds e os pesos sdo ajustados pela regra (5.10).

5.5.1. Meta-heuristicas para otimizacdo continua

A otimizagdo com enxames de particulas da secdo 4.6 é um exemplo
de uma meta-heuristica que pode ser aplicado diretamente na otimi-
zagdo continua. De fato a maioria das heuristicas por modificagdo ou
recombinacdo podem ser aplicadas para problemas continuas com
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T2

T

Figura 5.8.: Construcdo no C-GRASP.

Figura 5.9.: Busca local com h = 1 no
C-GRASP.

5. Topicos

uma defini¢do adequada de uma vizinhanga e de uma recombina-
¢do. Exemplos de vizinhancas continuas sdo a vizinhanga uniforme
Ne(x) (5.6) e a vizinhanca Gaussiana N(x) = N(x, o). Recombina-
¢des da secdo 4 que podem ser aplicadas no caso continuo sdo as
recombinacdes randomizadas, lineares e particionadas.

Um exemplo que inclui uma estratégia construtiva para otimizacao
continua é o GRASP continuo (C-GRASP).

Algoritmo 5.5 (C-GRASP)
Entrada Conjunto de solugdes vidveis S = {x € R™ |1 <x < u},
pardmetros hg, h¢, p e .

Saida Uma solucgéo x € S.

repeat
x = U[l, u]
h:= ho
repeat
x := construct(x, &, h)
x := localsearch(x, p, h)
if x ndo melhorou
h:=h/2
end if
until h < h¢
until critério de parada satisfeito
return x*

A construcdo gulosa é univariada, selecionando entre uma das me-
lhores dire¢des de otimizacao

construct (x,x,h)=
S:=[n]
while S#® do
for i€ S: zi:=buscaregular(xi, li,ui, h)
C:={ieS|f(zy) <(1—oa)min; z; + amax; z;}
seleciona j€ C aleatério

X]' = Z]'
S:=S\{j}
end while

end

A vizinhanca da busca local projeta todos pontos da grade regular
Rix) ={x | x =14+1i0Ax € §,1 € Z,} numa esfera de raio h com
centro x

Br(x) ={x" € S[x" =x+h(x"—x)/Ix" —xll2,x" € R(x) \ {x}}

e repetidamente busca numa direc¢do aleatéria em By, (x).

localsearch(x,p,h)=
repeat
seleciona x’' € By,(x) aleatoriamente
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5.6. Notas

if f(x')<f(x): x=x'
until p|R(x)| pontos examinados sem melhora
return x
end

5.6. Notas

O livro do Talbi (2009, ch. 4) d4 uma boa introdug¢éo a otimizagdo
multi-objetivo. Konak et al. (2006) apresentam estratégias para algo-
ritmos genéticos multi-objetivos. Jaszkiewicz e Dabrowski (2005) é
uma biblioteca (j& um pouco antiga) com implementag¢ées de diver-
sas meta-heuristicas multi-objetivos. Boyd e Vanderberghe (2004) é
uma introducdo excelente a otimizacdo convexa.
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Over the last decade and a half, tabu search algorithms
for machine scheduling have gained a near-mythical re-
putation by consistently equaling or establishing state-of-
the-art performance levels on a range of academic and
real-world problems. Yet, despite these successes, remar-
kably little research has been devoted to developing an
understanding of why tabu search is so effective on this
problem class.

(Watson et al. 2006)

Despite widespread success, very little is known about
why local search metaheuristics work so well and under
what conditions. This situation is largely due to the fact
that researchers typically focus on demonstrating, and
not analyzing, algorithm performance. Most local search
metaheuristics are developed in an ad hoc manner. A
researcher devises a new search strategy or a modifica-
tion to an existing strategy, typically arrived at via in-
tuition. The algorithm is implemented, and the resulting
performance is compared with that of existing algorithms
on sets of widely available benchmark problems. If the
new algorithm outperforms existing algorithms, the re-
sults are published, advancing the state of the art. Unfor-
tunately, most researchers [...] fail to actually prove that
the proposed enhancements actually led to the observed
performance increase (as typically, multiple new features
are introduced simultaneously) or whether the increase
was due to fine tuning of the algorithm or associated pa-
rameters, implementation tricks, flaws in the comparative
methodology, or some other factors.

Gendreau e Potvin (2010)

The field of optimization is perhaps unique in that natu-
ral or man-made processes completely unrelated to opti-
mization can be used as inspiration, but other than that,
what has caused the research field to shoot itself in the
foot by allowing the wheel to be invented over and over
again? Why is the field of metaheuristics so vulnerable to
this pull in an unscientific direction? The field has shif-
ted from a situation in which metaheuristics are used as
inspiration to one in which they are used as justification,
a shift that has far-reaching negative consequences on its
credibility as a research area.

6. Metodologia para o projeto de heuristicas
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6. Metodologia para o projeto de heuristicas

[...]

The field’s fetish with novelty is certainly a likely cause.
[...]

A second reason for this research to pass is the fact that
the research literature in metaheuristics is positively ob-
sessed with playing the up-the-wall game (Burke et al,,
2009). There are no rules in this game, just a goal, which
is to get higher up the wall (which translates to “obtain
better results”) than your opponents. Science, however, is
not a game. Although some competition between resear-
chers or research groups can certainly stimulate innova-
tion, the ultimate goal of science is to understand. True
innovation in metaheuristics research therefore does not
come from yet another method that performs better than
its competitors, certainly if [it] is not well understood why
exactly this method performs well.

Sorensen (2013)

As citagdes acima caracterizam o estado metodolégico do projeto de
heuristicas. Por isso, é necessdrio enfatizar que o projeto de heu-
risticas é uma disciplina experimental, e tem que seguir o método
cientifico. Em particular, o projeto

i) inicia com uma questdo cientifica especifica, bem definida e clara;
(“Qual o melhor método para resolver o PCV?”)

ii) gera um ou mais hipdteses para responder essa questdo;
(“Dado o mesmo tempo, Lin-Kernighan iterado sempre é me-
lhor que tempera simulada.”)!

iii) projeta testes experimentais para verificar (estatisticamente) ou
rejeitar as predigoes das hipoteses;

iv) analisa os resultados dos experimentos e conclui; isso pode re-
sultar em novas hipéteses.

6.1. Projeto de heuristicas

O objetivo tipico do projeto de uma heuristica é obter solucdes de
boa qualidade em tempo adequado. Os critérios sdo correlaciona-
dos, i.e. mais tempo geralmente produz melhores solugdes. O tempo
disponivel depende da aplicacdo e tipicamente influencia a técnica
heuristica (pensa: 100 metros rasos vs. maratona). Além disso, pode
ser o objetivo do projeto obter uma heuristica

o simples, i.e. facil de implementar, entender e explicar;

e robusta, i.e. simples de calibrar e pouco sensivel aos pardmetros;

1Observe que isso é uma ilustragio: essa hipétese é quase irrefutavel, e precisa ser
muito mais especifica na prética.
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6.1. Projeto de heuristicas

o generalizdvel, i.e. aplicavel a um grande ntimero de problemas
similares

(Barr et al. 1995; Cordeau et al. 2002).

De acordo com a nossa classificacdo, heuristicas usam trés operacdes
principais: construgdo, por adi¢do de elementos, modificagdo, por
alteracdo de elementos, e recombinacdo, por selecionar e unir ele-
mentos de mais que uma solugdo. Essas operagdes sdo especificas ao
problema, junto com a representacgdo e a fungdo objetivo. A litera-
tura sugere que uma meta-heuristica efetiva depende dos seguintes
componentes, em ordem da sua importdncia (Watson et al. 2006; Hertz,
Taillard et al. 2003):

1. as técnicas especificas ao problema;

2. a meta-heuristica; uma meta-heuristica basica precisa técnicas
para evitar estagnacdo (minimos locais);

3. a intensificagdo e diversificacdo estratégica usando memoria
que beneficia geralmente cada heuristica;

4. os parametros dos componentes;

5. a implementacdo eficiente.

Na prética inversdes sdo possiveis, e todos os pontos tem que ser
tratados sistematicamente para obter resultados de estado de arte.
Por isso sugerimos uma metodologia construtiva por componentes para
o projeto de heuristicas.

1. Estuda diferentes representa¢des do problema. Projeta uma es-
trutura de dados adequada com apoia eficiente para as princi-
pais operacdes (adigdo, delecdo, alteracdo de elementos e ava-
liagdo incremental). Determine a complexidade dessas opera-
¢oes. Considera os principios 1.1 e 1.3.

2. Propde diferentes operagdes de construcdo, modificagdo e re-
combinacdo. Avalia estatisticamente cada uma das operagdes e
o0 seus pardmetros separadamente. Para modificacdo considera
os principios 2.2 e 2.4.

3. Considere uma andlise da paisagem de otimizacéo (cap. 6.2).

4. Combina sistematicamente opera¢des bdsicas para uma meta-
heuristica basica que evita minimos locais ou uma meta-heuristica
construtiva. Especificamente projeta e testa se as técnicas para
evitar minimos locais sdo efetivas. Avalia a contribuicdo e a
interacdo dos componentes e o seus parametros. Procede das
técnicas mais simples para as mais complexas (e.g. busca local,
tempera simulada, busca tabu; resp. construgdo gulosa, bubble
search, colonia de formigas).
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6. Metodologia para o projeto de heuristicas

5. Adiciona uma estratégia de intensificagdo e diversificagdo usando
uma forma de memoria de longa duragdo. Procede das técnicas
mais simples para as mais complexas (e.g. Probe, GRASP-PR,
algoritmo genético/busca dispersa).

Complementarmente o método cientifico sugere:

1. Compare durante o projeto com o estado de arte em algoritmos
exatos, aproximativos, e heuristicos em tempo e qualidade.

2. Procure ndo simplesmente produzir “melhores” resultados mas
explicagdes do funcionamento do método.

3. Os experimentos tem que ser reproduziveis por outros pesqui-
sadores. Consequentemente as instancias, as saidas, as solu-
¢des completas obtidas e o cédigo tem que ser publicado (even-
tualmente em forma “ilegivel” mas compildvel, caso investi-
mento em desenvolvimento ou propriedade intelectual tem que
ser protegido) (Barr et al. 1995).

Complementarmente a literatura sobre solucdo de problemas sugere
(e.g. Polya (1945))

1. Tenta entender o problema profundamente. Resolve algumas
instincias manualmente, testa heuristicas construtivas, de mo-
dificagdo ou recombinagdo em alguns exemplos pequenos ma-
nualmente. Para heuristicas de modificacdo estuda exemplos
de minimos locais: porque eles sdo minimos locais? Com quais
operacdes daria para escapar desses minimos (principio 2.4)?

2. Tenta resolver o problema de melhor forma algoritmicamente,
mesmo ele sendo NP-completo. Estuda algoritmos aproxima-
tivos e exatos para o problema. Usa as técnicas das melhores
algoritmos para construir as operagdes bésicas da heuristica.

3. Caso problema é NP-completo: estuda a prova da dificuldade
cuidadosamente: quais caracteristicas do problema torna-o di-
ficil? Eles sdo comuns em instincias préaticas? Caso contrario,
a prova pode ser simplificada? Ou é possivel que o problema
nao é NP-dificil em instancias préticas? E possivel isolar carac-
teristicas que simplificam instancias?

4. Procure identificar o subproblema mais simples que pode ser
resolvido. Procure identificar problemas semelhantes e estudar
as suas solugdes. Procure generalizar o problema. Da para
transformar o problema para um outro problema similar?

Escolha de uma meta-heuristica Dado o metodologia acima, uma
guia bdsica para escolha de uma meta-heuristica é

e A meta-heuristica é menos importante que as operac¢des basi-
cas. Escolhe a meta-heuristica mais tarde possivel, e somente
depois de estudar as operagdes basicas.

100



6.2. Analise de paisagens de otimizagio

e Seleciona uma meta-heurfstica que conhecidamente funciona
bem em problemas similares.

o Tendencialmente técnicas construtivas sdo mais adequadas para
problemas mais restritos.

o Tendencialmente intensificagdo é preferivel para uma escala
de tempo curta; algoritmos estocésticos (e.g. tempera simu-
lada, construgdo iterada independente) tendem a precisar mais
tempo.

o Tendencialmente métodos mais sistemdticos sdo preferiveis para
problemas maiores. Por exemplo, a probabilidade de encon-
trar solucdes de boa qualidade por construcéo iterada indepen-
dente tipicamente diminui com o tamanho da instancia (Gen-
dreau e Potvin 2010, cap. 20) (“central limit catastrophe”).

6.2. Analise de paisagens de otimizacao

Para estimar a dificuldade de resolver um problema para uma dada
vizinhanga temos que responder (empiricamente) perguntas como

e Qual a probabilidade de encontrar uma solugdo 6tima a priori?
e O quanto a funcdo objetivo varia entre solug¢des vizinhas?
e Qual a distdncia média entre dois minimos locais?

e O quanto a fungdo objetivo guia uma busca local para solugdes
6timas?

Essa perguntas geralmente sdo dificeis para responder, porque eles
supdem que ja conhecemos as solugdes 6timas do problema. Na
prética podemos obter estimativas dessa medidas por amostragem.

Distribuicao de tipos de solu¢cdes Para uma dada vizinhanga po-
demos classificar a solugdes como segue. Seja E(s) = {s € N(s) |
@(s") = @(s)} o conjunto de vizinhos com 0 mesmo valor da fungéo
objetivo, e W(s) = N(s) \ B(s) \ E(s) o conjunto de vizinhos piores
que s. Com isso obtemos a classificagdo

IB(s)l [E(s)] [W(s)

Tipo de solugdo

0 0 0 Solugao isolada
>0 0 0 Maximo local estrito
0 >0 0 Plateau
>0 >0 0 Maximo local
0 0 >0 Minimo local estrito
>0 0 >0 Declive
0 >0 >0 Minimo local
>0 >0 > (0 Patamar
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6. Metodologia para o projeto de heuristicas

Exemplo 6.1 (Permutation flow shop problem)

Obtemos para as 10! = 3.628.800 solugdes da instancia “carlier5” do
PFSSP na vizinhanga N1 que insere uma tarefa em qualquer outra
posicdo nova: Existem trés minimos globais com valor 7720. Todos

Tipo de solugdo # (%)  Tipo de solugdo # (%)
Solugdo isolada 0 (0) Minimo local estrito 5(0.00014)
Maéximo local estrito 0 (0) Declive 134784  (3.71)
Plateau 0 (0) Minimo local 1743 (0.048)
Maéximo local 6(0.00017) Patamar 3492262 (96.24)

Demonstracdo: Anélise de
paisagens de otimizacao.

trés sdo ndo-estritos. Logo a probabilidade a priori de um minimo
local ser um minimo global é 0.0017. A distribui¢do dos 86 valores
dos minimos locais é (minimo/quartil inferior/mediana/quartil su-
perior/maéaximo): 7720, 8039, 8047, 8335, 8591. Um busca local na
vizinhanca N entdo é no méaximo 11.3% acima do valor 6timo. ¢

Variacdo entre solucdes vizinhas Intuitivamente, uma paisagem de
otimizagdo “menos continua” e “mais curvada” é mais dificil para
um algoritmo de busca local. Isso pode ser formalizado pela funcéo
de correlagdo da paisagem (ingl. landscape correlation function)

_ {o(s)o(s ) ags,sn—i— (@(s))?

_ covl@(8)0(s)ags,s) s s
(@2 (p(s))?

o(¢)?

. d(s,s
P (s)) —
6.1)

Temos p(i) € [—1,1]: para valores perto de 1 o valor de solucdes
vizinhas é perto da valor da solugdo atual; para um valor perto de
0, o valor de uma solugdo vizinha nao é relacionado com o valor da
solucdo atual.

Exemplo 6.2 (Permutation flow shop problem)

No caso do PFSSP obtemos p(1) ~ 0.79. Logo existe uma alta corre-
lacdo entre o valor de uma solugdo e o valor das soluc¢des vizinhas:
podemos esperar que uma busca local funciona razoavelmente bem.

¢

A distdncia média entre dois minimos locais pode ser estimado pela
distdncia de correlagdo (ingl. correlation length) 1 = 3 <, p(i). Com B(r)
o ntmero de solu¢des numa distAncia no maximo r de uma solugao
esperamos que

P(s é 6timo local) =~ 1/B(1).

Essa relagdo é conhecida como conjetura da distdncia de correlagio.

A funcdo de correlagdo p(i) pode ser determinada empiricamente
pela auto-correlagdo de uma caminhada aleatéria. Para uma cami-
nhada aleatéria s1,s2,...,Sm com m > i obtemos o estimador

p(i) = pl@(s1:m—1), ©(si+1:m)),
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6.2. Analise de paisagens de otimizagio

onde sq.p = (Sa,..-,Sp) € ©(s) = (@(s1),...,©(sm)). Essa estima-
tiva é somente correta, caso uma caminhada aleatéria é representa-
tiva para toda paisagem de otimizagdo. Tais paisagens sdo chamadas
isotrdpicas. Frequentemente a correlacdo diminui exponencialmente
com a distancia de forma p(i) = p(1)t e p(1) = e~ /L. Neste caso,
podemos determinar 1 por

L= (=In(lo(M)~".

Exemplo 6.3 (Permutation flow shop problem)
Com p(1) = 0.79 obtemos 1 =~ 4.24 e com B(4) = 337210 obtemos
uma probabilidade de 0.000003. O

Para usar p(1) estimado por um caminho aleatério na conjetura da
distancia de correlagdo, ainda temos que corrigir a distancia: caso
uma caminhada aleatéria de i passos resulta numa solugdo de dis-
tancia média d(i), a probabilidade de uma solucdo ser um 6timo
local é =~ 1/B(d(1)).

Correlacdo entre qualidade e distdncia A funcio objetivo guia uma
busca local para solucdes melhores caso a distancia d*(s) para a so-
lugdo 6tima mais préxima de uma solugéo s e correlacionada com a
valor da func¢do objetivo. A correlacdo qualidade-distancia (ingl. fit-
ness distance correlation)

Ple,d) = otota) ~ Ve

cov(ep, d¥) (@(s)d*(s)) — (@(s))(d*(s))
— (o ) —

—
()23 (a2(s)) — (a*(s))?
(6.2)

mede isso. Temos p(¢@,d") € [—1,1]: para valores positivos temos
uma estrutura “big valley” com o um extremo de uma correlagédo
linear ideal para um valor de 1; para valores negativos a funcéo obje-
tivo de fato ndo guia a busca. No primeiro caso intensificagdo maior,
no segundo uma diversificagdo maior é indicado. A correlagdo tam-
bém serve para comparar vizinhancas: muitas vezes a vizinhanca
que possui uma maior correlacdo produz resultados melhores.

Exemplo 6.4 (Permutation flow shop problem)

Para a vizinhanca “shift” que desloca uma elemento da permuta-
¢do para qualquer outra posicdo, obtemos a seguinte distribuicdo de
distancia e desvio de uma solugao da solugdo 6tima mais perta.
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Desvio

1 2 3 4

Distancia

Umop ~ 1.7-107° que a correlagdo entre distancia e qualidade é
negligivel. %

6.3. Avaliacao de heuristicas

Uma heuristica, como qualquer algoritmo, transforma determinadas
entradas (as instdncias do problema) em saidas ou respostas (as so-
lugdes vidveis). Essa transformagdo é influenciada por fatores expe-
rimentais e pode ser analisado (como qualquer outro processo) com
métodos estatisticos adequadas. Os componentes do processo e o
seus parametros sdo fatores controldveis; além disso o processo sofre
fatores incontrolaveis (e.g. randomizacéo e as instancias).

Na avaliagdo queremos responder perguntas como

o Como os diferentes niveis dos fatores controlaveis influem a res-
posta do processo? Quais sdo os fatores principais? O quanto
os fatores influem a resposta? Existe uma interacdo entre dife-
rentes fatores? Qual escolha de niveis produz resultados bons
para uma grande variacdo dos fatores incontroldveis (i.e. uma
heuristica robusta)?

e Qual o tempo (empfirico) para encontrar uma solugéo viavel, de
boa qualidade, ou 6tima em fun¢do do tamanho da instdncia?

Observacgdo 6.1

Medidas de tempo devem ser acompanhadas por informagdes de-
talhadas sobre o ambiente de teste (tipo de processador, memoria,
etc.). Uma alternativa é informar o custo computacional em niimero
de operagdes elementares. O
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Complexidade empirica de algoritmos A complexidade de tempo
de um algoritmo pratico com alta probabilidade possui a forma

T(n) ~ab™n€ logd n

(ver p.ex. Sedgewick e Wayne (2011, cap. 1.4) e Sedgewick (2010)).
Frequentemente podemos focar em dois casos simples. Para uma
série de medidas (n, T) podemos avaliar

uma hipétese exponencial Com T(n) ~ ab™, obtemos log T ~ log a +
nlogb. Logo podemos determinar um modelo por regressdo
linear entre log T e n;

uma hipétese polinomial Com T(n) ~ an® obtemos logT ~ loga+
blogn. Logo podemos determinar um modelo por regressido
linear entre log T e log 1.

Exemplo 6.5 (Complexidade empirica em GNU R)
Para um arquivo com tamanho da instancia n e tempo T da forma

nT

100 233.0000
260 689.7667
500 1655.8667

podemos determinar a complexidade empirica em GNU R usando Demonstragdo: Regressdo

d<-read.table("x.dat",header=T) linear.

Im(log(T)~log(n) ,data=d)
1Im(log(T)~n,data=d)
O

Observacido 6.2 (Soma de quadrados na regressio linear)

Supode que temos valores x € R™ e m observagdes y; € R™ para
cada i € [n]. A regressdo linear determina uma fun¢do §j = aX +b.
Para a soma de quadrados das distancias dos pontos aproximados {j
e as observagoes obtemos

SSt = Z(Uii -9)° = Z (91 —T) + (Y35 —131))2

i i)
= Z(Qi —9)2+2(Gi —9)(yyy — 90 + (Y5 — 91)?
ij

j ij

mY (Gi—9)°+2) Gi—9) ) Uy -9+ (yy—9:)°

my;—my;=0!
=m) @i—-9)7+) (yy—9i)?
i ¥
= S5Sx + SSk.

Isso mostra que podemos decompor a soma de quadrados total SSt
em duas componentes: a soma de quadrados obtida pela variagdo
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das médias em cada ponto x da média geral SSx. Este parte da
variacdo é explicado pela hipétese linear: ele vem da variacdo da
funcdo linear. O segundo termo representa a soma de quadrados
obtida pela variagdo das medidas individuais das médias em cada
ponto x. Este parte pode ser atribuido ao erro experimental. Logo a
quantidade

SSx
RZ=_2=€0,1
SSt 0,1
representa a “fragdo explicada” da varia¢do dos dados, e serve como
medida da qualidade da aproximacdo linear. Observe que isso é
somente possivel aplicando a regressdo linear em todos os dados,
ndo nas médias das observagdes em cada ponto. O

Exemplo 6.6 (R> em GNU R)
Aplicando a regressdo linear nos dados de Rad et al. (2009) obtemos

d<-read.table("rad-cpu.dat",header=T)
Im(log(neht)~log(tasks)+log(machines),data=d)

O resultado é uma complexidade empirica do algoritmo NEHT de
T(n) = 28%ns n'-6m°€ com RZ = 0.9657. O

Aplicado a avaliagdo de uma heuristica isso supde um critério de
parada diferente de tempo (e.g. encontrar uma solucdo em proble-
mas de decisdo ou convergéncia em problemas de otimizacdo). Es-
sas técnicas podem ser generalizadas para mais que uma varidvel.
Por exemplo, em problemas de grafos com n vértices e m ares-
tas a hipétese T(n,m) ~ an®m¢ gera um modelo linear logT ~
loga +blogn + clogm e pode ser obtido por regressdo linear no-
vamente.

Distribuicao de tempo e qualidade Geralmente a heuristica é ran-
domizada e logo o tempo de execugdo T e a valor V sdo variaveis ale-
atérias. Caso a heuristica resolve um problema de decisdo, e.g. SAT,
s6 consideramos a varidvel T. Para um problema de decisdo obte-
mos a probabilidade de sucesso pela fungio de distribuicdo acumulada
F(t) = P(T < t). O algoritmo encontra um solug¢do em tempo no
méximo t com probabilidade F(t).

Para um problema de otimiza¢do o tempo depende da qualidade.
Logo obtemos a uma probabilidade de sucesso em duas varidveis
pela funcdo de distribuigdo acumulada (ingl. cumulative distribution
function)

F(t,v) =P(T <tAV <wv).
Para um valor fixo v/ obtemos a distribuicdo restrita de sucesso
F(t) = F(t,v/). A funcdo F(t) também é chamada o grafo time-to-

target. Para um tempo fixo t’ obtemos a distribui¢do de qualidade
de solucdo F(v) = F(t/,v).
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GRASP flat75-1

1.00-

Valor

~—— 836
—— 837
~—— 838
~—— 839

100 10000
Tempo [ms]

Figura 6.1.: Funcdo de distribui¢do de tempo de um GRASP para o
problema SAT na instancia flat75-1 e diferentes valores.

Exemplo 6.7 (Funcdo de distribui¢do acumulada para SAT)
A Figura 6.1 mostra a probabilidade de sucesso de um GRASP com
o = 0.8 na instancia flat75-1 e 100 replicagdes.

O

Exemplo 6.8 (Distribuicido de tempo e qualidade em GNU R)
Dado um arquivo de tempos de execugdo

time
695
2888

podemos visualizar a distribui¢do dos tempos e a distribuicdo acu-
mulada usando

d<-read.table("x.dat",header=T)
hist (d$time)
plot (ecdf (d$time) ,verticals=T,do.points=F)

6.3.1. Testes estatisticos

O método basico para comparar a influéncia de fatores experimentais
é o teste estatistico. Como podemos tratar o algoritmo usado como
um fator experimental, ele também serve para comparar diferentes
heuristicas. Para aplicar um teste temos que
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o formular uma hipétese nula e uma hipétese alternativa;

o escolher um teste estatistico adequado;

o definir um nivel de significancia;

e aplicar o teste e rejeitar ou aceitar a hipétese nula de acordo.

Exemplo 6.9 (Teste binomial)

Queremos descobrir se numa dada populacdo nascem mais homens
que mulheres. Seja X a variavel aleatéria tal que X = 1 caso nasce um
homem. Logo a hipétese nula é P(X) = 0.5 e a hipotese alternativa é
P(X) > 0.5.

Para decidir essa hipétese, podemos tirar uma amostra Xy,...,Xjo
da populacdo base (de nascimentos). Supondo que as amostras sdo
independentes, X = 3 ;) X € distribuido binomialmente.

B(k;mn,p) = (Dpk(] —p)k

a distribuicdo do X ~ B(k;10,0.5) caso a hipétese nula é satisfeito.
No exemplo obtemos

k 0/10 1/9 2/8 3/7 4/6 5

P(X=%k) 0.001 0.010 0.044 0.117 0.205 0.246
P(X>X%) 1.000 0.999 0989 0945 0.828 0.623
k 6 7 8 9 10
P(X>%) 0377 0172 0.055 0.011 0.001

Para aplicar o teste estatistico, temos que definir um nivel de signifi-
cancia. Por exemplo, para um nivel de significancia p = 0.05 temos
P(X > 9) < p. Logo podemos rejeitar a hipétese nula, com p = 0.05
caso na amostra tem ¢ ou 10 nascimentos de homens. Para testar em
R:

binom.test(9,10,alternative="g")

¢

No exemplo acima formulas a hipétese alternativa P(X) > 0.5. Esse
hipétese é unilateral (ou monocaudal), porque ela testa em determi-
nada dire¢do do desvio. Similarmente a hipétese alternativa P(X) <
0.5 é unilateral. Uma hipétese bilateral (ou bicaudal) é P(X) # 0.5.
Neste caso temos que considerar desvios para as duas diregdes.

O exemplo mostra que o teste estatistico adequado depende das hi-
poteses sobre a distribuigdo da quantidade que queremos testar (no
exemplo uma distribui¢do binomial). Um teste estatistico pode falhar
em dois casos: num erro de tipo 1 ele rejeita a hipotese nula, mesmo
ela sendo correta; num erro de tipo 2 ele ndo rejeita a hipdtese nula,
mesmo ela sendo falso. Isso pode ser resumido por

Hp mantido Hy rejeitado
Ho verdadeiro | Correto Erro tipo 1
H; verdadeiro | Erro tipo2  Correto
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O nivel de significancia do teste é a probabilidade da fazer um erro
de tipo 1 P[Hy rejeitado | Hp verdadeiro]. A probabilidade condicio-
nal de nédo fazer um erro de tipo 2

1 —P(Hp mantido | H; verdadeiro) = P(Hy rejeitado | Hy verdadeiro)
é chamada a poténcia do teste.

Exemplo 6.10 (Teste binomial)

A poténcia de um teste depende da magnitude do efeito que quere-
mos detectar. Supde, por exemplo, que estamos interessados em de-
tectar (pelo menos) o efeito caso na hipoétese alternativa P(X) > 0.6.
A distribuicdo B(1;10,0.6) é

k 0 1 2 3 4 5

P(X=%k) 0.0001 0.002 0.011 0.042 0.111 0.201
P(X > k) 1.000 0.9999 0998 0.988 0945 0.834

k 6 7 8 9 10
P(X=Xk) 0.251 0215 0121 0.040 0.006
P(X > k) 0633 0382 0.167 0.046 0.006

2

Logo a poténcia do teste é com 0.046 relativamente fraco. Para
P(X) > 0.8 a poténcia aumenta para 0.376. O

O exemplo mostra que o planejamento do experimento influencia a
poténcia. Para aumentar a poténcia em geral, podemos

e aumentar o nivel de significancia: Isso aumenta também o pro-
babilidade de erros do tipo 1.

e aumentar a magnitude de efeito: tipicamente ndo temos con-
trole direto da magnitude, mas podemos planejar o experi-
mento de acordo com a magnitude do efeito que queremos
detectar (e.g. a reducédo do desvio relativo por 1%).

e diminuir a varianga do efeito: tipicamente ndo temos controle
direta da varianga.

e aumentar o nimero de amostras (que diminui a varianga): por
exemplo para n = 50 amostras, com o mesmo nivel de signi-
ficancia p = 0.05 o teste acima precisa X > 31 para rejeitar a
hipétese nula e a poténcia do teste acima para detectar o efeito
P(X) > 0.6 aumenta para 0.336, a para o efeito P(X) > 0.8 para
0.997. Uma amostra suficientemente grande que garante uma
poténcia de 0.8 é considerada aceitével.

As caracteristicas principais para a escolha de um teste adequado sédo

e o tipo de parametro que queremos analisar (e.g. minimos, mé-
dias, medianas);

o testes paramétricos ou ndo-paramétricos: um teste paramétrico
(tipicamente) supde que a variavel estudada é distribuida nor-
malmente;
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e 0 nuimero de fatores e o nimero de niveis dos fatores;

o testes pareados ou ndo-pareados: em testes pareados, as amos-
tras sdo dependentes. Um teste de dois algoritmos numa cole-
¢do de instancias é um exemplo de um teste pareado. Caso as
instdncias sdo geradas aleatoriamente, e cada algoritmo é ava-
liado em uma séria de instancias geradas independentemente,
o teste é ndo-pareado. (Testes de diferentes algoritmos com
as mesmas sementes randdmicos ndo podem ser considerados
pareados, porque ndo podemos esperar que o semente tem um
efeito semelhante nos dois algoritmos.) Em geral para mais que
dois niveis de fatores temos um teste (randomizado) em blocos.

Testes comuns para comparacao de algoritmos DPara comparagao

de dois niveis temos como testes mais relevantes no caso ndo-paramétrico
o teste do sinal (ingl. sign test) e de Wilcoxon de postos com sinais
(ingl. Wilcoxon signed-rank test) para dados pareados, e o Wilco-
xon da soma dos postos (ingl. Wilcoxon rank-sum test, equivalente
com o teste U de Mann-Whitney) para dados ndo pareados. No caso
paramétrico o teste t (pareado ou ndo pareado) pode ser aplicado.

Teste estatistico 6.1 (Teste do sinal)

Pré-condicdes Duas amostras pareadas x1,...,Xn € Y1,...,Yn.
Os valores x; —y; sdo independentes e distribuidos com
mediana comum m.

Hipotese nula Hy: m =0;
Hipétese alternativa Hi: m >0, m <0, m # 0.
Estatistica de teste B = Zie[n} [xi > yil.

Observacées Valores z; = 0 sdo descartadas (ou atribuidos pela
metade para o grupo com x; > Yj).

Exemplo 6.11 (Teste do sinal)
O teste do sinal de fato é equivalente com um teste binomial. Para
estatistica de teste B é n amostras

binom.test(B,n,alternative="greater")
binom.test(B,n,alternative="1less")
binom.test(B,n,alternative="two-sided")

testa a hipétese em GNU R (com nivel de significancia padrao 0.05.).
Por exemplo, para comparar os tempos do GSAT com os do WalkSAT
(ver exercicios) com hipétese alternative que WalkSAT precisa mais
tempo que o GSAT

d=read.table("gsat-walksat.dat" ,h=T)
head (d)

GSAT  WalkSAT
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1 9178.66667 120000.00
2 44.13333 17502.87
3 974.60000 120000.00
4 189.80000 107423.87

with(d,binom.test (sum(WalkSAT >GSAT) ,4,alternative="greater"))

Exact binomial test

data: sum(WalkSAT > GSAT) and 4
number of successes = 4, number of trials = 4, p-value = 0.0625
alternative hypothesis: true probability of success is greater than 0.5
95 percent confidence interval:
0.4728708 1.0000000
sample estimates:
probability of success
1

Mesmo o GSAT precisando em todos quatro casos menos tempo que
0 WalkSAT ndo podemos rejeitar a hipétese nula com nivel de signi-
ficancia p = 0.05, pelo ntimero baixo de amostras. O

Exemplo 6.12 (Teste do sinal para comparacao de modelos matematicos)
Tseng et al. (2004) usam o teste de sinal para testar se pares de mode-

los matemaéticas para o problema do permutation flow shop precisam
tempo significadamente diferente.

O

Teste estatistico 6.2 (Teste de Wilcoxon de postos com sinais)

Pré-condicdes Duas amostras pareadas x1,...,Xn € Y1,...,Yn.
Os valores z; = x{ —y; sdo independentes é distribuidos
simétricos relativo a um mediana comum m.

Hipotese nula Hy: m = 0.
Hipétese alternativa Hi: m >0, m <0, m # 0.

Estatistica de teste T+ = ) ;,;Ti[xi > yil com r; o ranque
do valor z; em ordem crescente de |z;].

Observacdes Valores z; = 0 sdo descartadas. Em caso de empa-
tes na ordem de |z;| cada elemento de um grupo recebe o
ranque médio.

Em GNU R wilcox.test(...,paired=T).

Exemplo 6.13 (Teste de Wilcoxon de postos com sinais)
(Continuando o exemplo anterior.)

with(d,wilcox.test (WalkSAT ,GSAT,alternative="greater",paired=T))
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Wilcoxon signed rank test

data: WalkSAT and GSAT
V = 10, p-value = 0.0625
alternative hypothesis: true location shift is greater than 0

¢

Exemplo 6.14 (Gino versus Optisolve)
Coffin e Saltzmann (2000) apresentam uma andlise de um exemplo
de B. L. Golden et al. (1986)2.

d<-read.table("golden-etal.dat",header=T)
d<-subset (d,optG==T&opt0==T&!is.na(time0))

plot (d$timeG ,d$time0)

abline (0,1)

binom.test (sum(d$time0>d$timeG) ,nrow(e))
wilcox.test (sum(d$time0>d$timeG) ,nrow(e) ,paired=T)

¢

Teste estatistico 6.3 (Teste de Wilcoxon da soma dos postos)

Pré-condicdes Duas amostras ndo-pareadas xi,...,Xn €Y1,...,Ym.
Os x; sdo independentes e distribuidos igualmente, os y;
sdo independentes e distribuidos igualmente, e os x; e y;
sdo independentes.

Hipétese nula Fy(t) = Fy(t) para todo t, para distribui¢des acu-
muladas Fy e F desconhecidas. No modelo mais simples
supondo a mesma distribuigao Fx(t) = Fy(t), a hipétese
alternativa é um deslocamento, i.e.Fx(t) = Fy(t—A). A
hipétese nula nessa caso é A = 0.

Hipoétese alternativa Hi: A<0,A=0,A>0.

Estatistica de teste S = Zie[m] Ti com T; o ranque de y; na
ordem crescente de todos valores x; e yj.

Em GNU R wilcox.test(...,paired=F).

Exemplo 6.15 (Teste de Wilcoxon da soma dos postos)
Continuando o exemplo anterior.

wilcox.test (e$WalkSAT ,e$GSAT ,alternative="greater" ,paire

Wilcoxon rank sum test with continuity correction

data: e$WalkSAT and e$GSAT
W = 16, p-value = 0.0147
alternative hypothesis: true location shift is greater than O

2A andlise na publicagéo estd errada: ela compara o tempo da primeira instancia de
Gino com o tempos do Optisolve.
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Warning message:
In wilcox.test.default(e$WalkSAT, e$GSAT, alternative = "greater",
cannot compute exact p-value with ties

Teste estatistico 6.4 (Teste t de Student)

Pré-condicées Duas amostras pareadas x1,...,Xn, € Y1,...Yn.
Os valores z; = x; —y; sdo distribuidos normalmente ~
N(n, 02). (A normalidade nio é necessaria para amostras
suficientemente grandes, e.g. n, m < 30).

Hipotese nula Hp: 1= 0.
Hipétese alternativa Hy: n <0, u >0, n#£0.

Estatistica de teste t = z/Sy/n com $? = Y ;(z; —2)/(n—1)
uma estimativa da varianca da populacdo inteira. A esta-
tistica é distribuida t com n — 1 graus de liberdade.

Em GNU R t.test.

Teste estatistico 6.5 (Teste t de Student)
Pré-condicdes Duas amostras ndo-pareadas x1,...,Xn,€Y1,...Ym.

Os x; sdo distribuidos normalmente ~ N(p, 0%), 0s y; nor-
malmente ~ N(py, 02). (A normalidade ndo é necessaria
para amostras suficientemente grandes, e.g. n, m < 30).

Hipétese nula Ho: pyx = py.
Hipétese alternativa Hi: py < py, Ux > Wy, Bx 7 Hy-

Estatistica de teste t = (Xx—7)/(Sv/1/n+1/m) com

- (m—1)82 +(m—1)S
n+m-—2

uma estimativa do desvio padrdo da populacdo inteira. A
estatistica é distribuida t com n +m — 2 graus de liberdade.

Em GNU R t.test(x,y,var.equal=T,paired=F); para varian-
cas diferentes: t.test(x,y,var.equal=F,paired=F).

Exemplo 6.16 (MINOS versus OB1)

Coffin e Saltzmann (2000) apresentam uma anélise de um exemplo
de Lustig et al. (1991). O teste do coeficiente 31 da regressdo linear
do exemplo é um teste t. Neste caso a estatistica de teste t = (B —
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B1)/se(1) com

5 _\/(zie%)/(n—a

e residuos e; é distribuida t com n — 2 graus de liberdade.
Demonstracdo: MINOS versus

OBI. testcoef = function(x,1l,b) {

n=length(resid (1)) -2
t=(b-coef (1) [2])/sqrt(sum(resid(1)~2)/n/sum((x-mean(x))’
pt(t,n,lower.tail=F)
}
d<-read.table("lustig-etal.dat",header=T)
attach(d)
plot (minos.time,obl.time)
plot (log(minos.time),log(obl.time))
Ilm<-1m(log(obl.time)~log(minos.time))
summary (1lm)

testcoef (log(minos.time),1lm,1)

6.3.2. Escolha de parametros

Principio de projeto 6.1 (Parametros (Hertz, Taillard et al. 2003, p. 127))
O projeto do método em si (vizinhanga, func¢do objetivo, etc.) é mais
importante que a escolha de pardmetros. Um bom método deve ser
robusto: a qualidade das solu¢des é menos sensivel a escolha de
parametros. Porém, a calibragdo de pardmetros ndo compensa um
método fraco.

O ponto de partido frequentemente é um conjunto de parametros
inciais obtidos durante o projeto por testes ad hoc. Para heuristi-
cas robustas e pardmetros simples um tal conjunto frequentemente
é uma escolha razodvel. Porém robustez tem que ser demonstrada e
ndo podemos esperar robustez sobre a modificacio de componentes
da heurfstica (e.g. vizinhangas, operadores de recombinagéo).

A busca para um conjunto ideal de parametros é uma problema de
otimizagdo separado, que a principio pode ser resolvido pelas técni-
cas discutidas. Porém para obter o valor fun¢do objetivo temos que
avaliar agora uma heuristica (em diversas instancias e com replica-
¢Oes no caso de algoritmos randomizados).

A estratégia mais simples é analisar um parametro por vez (ingl. one
factor at a time, OFAT): determine a variagdo do desempenho da
heuristica para cada pardmetro independentemente, com os outros
parametros fixos. Depois seleciona uma combinacdo de parametros
que melhora o desempenho e eventualmente repete. Para compa-
racdo de diferentes niveis de uma parametro pode-se aplicar testes
estatisticos. Esse método serve também para analisar o impacto de
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diversos parametros e selecionar um subconjunto para ser calibrado
(“screening”). As desvantagens do OFAT sdo: i) ignorar intera¢des
de parametros, ii) aumentar os erros de tipo 1 no caso de aplica-
¢des de testes estatisticos, e iii) um custo maior que outras formas de
experimentos (Montgomery 2009).

Um projeto fatorial testa 1* células, i.e., combinacdes dos 1 niveis de k
fatores. Para algoritmos randomizados cada célula precisa algumas
replicagcdes do experimento. Projetos fatoriais comuns sdo o projeto
fatorial completo 2% (muitas vezes usado para “screening”) e o projeto
fatorial completo com um fator em 1 niveis. Um projeto fatorial ge-
ralmente supde um modelo linear dos efeitos dos fatores. No caso
de uma aplicagdo em instancias fixas obtemos um projeto em blocos
que generaliza um projeto pareado. (A aplicacdo para instancias ge-
radas aleatoriamente poderia ser tratado como projeto completamente
randomizado; porém o efeito da instdncia muitas vezes é significativo,
e ndo pode ser modelado como um erro simples.) A disciplina de
projeto de experimentos (ingl. design of experiments) oferece mais pos-
sibilidades, inclusive projetos fatoriais fraciondrios que testam menos
combinagdes de parametros, mas em contrapartida ndo conseguem
identificar todas intera¢bes univocamente.

Projetos fatoriais podem ser avaliados por analise de variagio (ingl. analy-
sis of variation, ANOVA) no caso paramétrico, e no caso ndo-paramétrico
por um teste Kruskal-Wallis (sem blocos) ou um teste de Friedman
(com blocos).

Um exemplo de uma ANOVA com um fator experimental:

Teste estatistico 6.6 (ANOVA)
Pré-condicées Um projeto k tratamentos e n replicagdes por tra-
tamento. O problema é modelado linearmente por

Xij = H+Ti+€ij-

para a resposta ao tratamento i € [k] na replicacdo j €
[n]. O valor 1; é o efeito do tratamento 1 € [k]. Os erros
€ij sdo independentes e distribuidos normalmente como
N(0; 02). (Em particular a varianca é constante, i.e. os erros
sdo homoscedasticos).

Hipodtese nula Hp: 11 =--- =1 =0.
Hipétese alternativa H;: existe um i com t; # 0.

Estatistica de teste A soma de quadrados total SSt pode ser
decomposta por SSt = SSa + SSg (similar com a observa-
¢do 6.2) em uma soma de quadrados dos tratamentos SS A
e dos erros SSg. Os tratamentos possuem k — 1 graus de
liberdade, os erros kn —k. As médias das somas de qua-
drados MSp = SSa/(k—1) e MSg = SSg/(kn — k) sdo
distribuidos x e a estatistica de teste Fy = MSa /MSg é
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Demonstracdo: ANOVA.

6. Metodologia para o projeto de heuristicas

distribuida F. Caso ndo existe um efeito dos tratamentos,
esperamos Fo = 1, caso contrdrio Fo > 1.

Em GNU R aov.

Exemplo 6.17 (ANOVA)

d=read.table("mont-etch.dat",header=T,
colClasses=c("factor","numeric"))
a=aov(rate~power ,data=d)
summary (a)
plot (a)
plot (TukeyHSD (a,ordered=T))
O

Caso a hipétese nula é rejeitada um teste post-hoc pode ser usado
para identificar os grupos significativamente diferentes. Uma abor-
dagem simples é comparar todos grupos par a par com um teste
simples (e.g. um teste t). Porém a probabilidade de um erro do tipo
1 aumenta com o nimero de testes. Uma solugédo para este problema
é aplicar uma corregio Bonferroni: para um nivel de significancia de-
sejada « e n testes em total, cada teste é aplicado com um nivel de
significancia a/n. Um exemplo de um teste menos conservativo é
Tukey's honest significant differences, uma generalizacdo do teste t para
multiplas médias.

Teste estatistico 6.7 (Teste de Friedman)

Pré-condicoes Um projeto em blocos (randomizado) com k tra-
tamentos e n blocos. As varidveis aleatérias xij seguem
distribui¢des desconhecidas Fi; relacionadas por Fyj(u) =
F(u—Bi —Tj), com B; o efeito do bloco i € [n] e 7; o efeito
do tratamento j € [k].

Hipotese nula Hy: 11 = - - - = Ty.
Hipotese alternativa H;: ndo todos T; sdo iguais.
Estatistica de teste Com Rj; o posto do tratamento j no bloco i

e R] = Zi Rij

(k=1) Zjepg (R —nlk+1)/2)?

T= _
Y icmjena Rg —nk(k+1)2/4

Observacdes Para amostras suficientemente grandes T ~ x? com
k —1 graus de liberdade. Caso Hy € rejeitado, testes post-
hoc podem ser usados para identificar o melhor tratamento.

Em GNU R friedman.test(m) com matriz m.
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6.3. Awvaliagdo de heuristicas

Exemplo 6.18 (Teste Friedman)

e=data.frame(n=gl(3,3),h=rep(c(1,2,3)),v=runif (9))
with(e,friedman.test (v~h*n))

O

Uma aplicacdo do teste de Friedman: corridas Testar todas com-
binagdes de parametros em todas instancias investe um tempo igual
em todas combinagdes. Uma corrida (ingl. race) aplica as combi-
nagdes instancia por instancia e elimina combinag¢des inefetivas da
corrida logo, investindo mais tempo de teste em combinagdes me-
lhores. Uma exemplo de uma estratégia de corrida é F-RACE, um
algoritmo que aplica o teste de Friedman para eliminar combinagées
de parametros.

Algoritmo 6.1 (F-RACE)
Entrada Um conjunto de combina¢des de parametros © = {O1, ..., O}.

Saida Um subconjunto ©’ C © de combinagdes de pardmetros
efetivos.

F-RACE (@)=
repeat for i=1,...
gera a i-ésima insténcia I
aplica todas combinagdes de pardmetros em O em I
aplica o teste de Friedman
(na matriz ix|[0|)
if Hp rejeitada then
seleciona o ®i de menor posto combinado Rj
remove todos tratamentos significadamente
pior que ©; (via testes post-hoc) de ©
end if
until [©|=1 ou limite de tempo
return O

Para gerar a conjunto © inicial podemos usar um projeto fatorial
completo (F-RACE(FFD)) ou simplesmente gerar amostras aleatérias
dos parametros (F-RACE(RSD)).

6.3.3. Comparar com que?

e Quietly employ assembly code and other low-level
language constructs.

e When direct run time comparison are required, com-
pare with an old code on an obsolete system.

“Twelve Ways
to Fool the Masses When Giving Performance Results on
Parallel Computers”, Bailey (1991)
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6. Metodologia para o projeto de heuristicas

Uma heuristica tem que ser comparado com outros algoritmos exis-
tentes; em casos de problemas novos podemos comparar com algorit-
mos existentes para casos particulares e generalizagdes do problema,
ou com algoritmos mais simples (e.g. uma construgdo ou busca ran-
domizada simples, ou versdes simplificadas do algoritmo proposto)
ou genéricos (e.g. CPLEX, localsolver). Isso inclui algoritmos exatos
e aproximativos, e evita situagdes como essa:

A recent paper (Davidovi et al. 2012) presented a bee co-
lony metaheuristic for scheduling independent tasks to
identical processors, evaluating its performance on a ben-
chmark set of instances from the literature. We examine
two exact algorithms from the literature, the former pu-
blished in 1995, the latter in 2008 (and not cited by the
authors). We show that both such algorithms solve to
proven optimality all the considered instances in a com-
puting time that is several orders of magnitude smaller
than the time taken by the new algorithm to produce an
approximate solution.

Dell’ Amico et al. (2012)

6.4. Notas

Barr et al. (1995) e Silberholz e B. Golden (2010) explicam de forma
geral o tem que ser considerado na avaliagdo de heuristicas. Luke
(2011, cap. 11.) é uma boa introdugdo na ideias gerais de comparagao
de algoritmos e Coffin e Saltzmann (2000) é uma excelente introdu-
¢do com diversos exemplos praticos. Uma referéncia excelente para
projeto de experimentos e avaliacdo estatistica com um foco em mé-
todos paramétricos é Montgomery (2009). O livro de Bartz-Beielstein
et al. (2010) apresenta em grande detalhe a aplicacdo de métodos es-
tatisticos na avaliagdo de heuristicas. Hollander et al. (2014) é uma
referéncia detalhada para métodos estatisticos ndo-paramétricos. Le-
Veque (2013) é um ensaio recomendado sobre a publicagdo de co6-
digo.
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A. Conceitos matematicos

Definicao A.1
Uma funo f convexa se ela satisfaz a desigualdade de Jensen

f(Ox+(1-0)y) < Of(x) + (1 —O)f(y). (A1)

Similarmente uma funo f concava caso —f convexo, i.e., ela satisfaz

f(Ox+ (1 —0)y) > Of(x) + (1 —O)f(y). (A2)
Exemplo A.1
Exemplos de funes convexas so XZk, 1/x. Exemplos de funes conca-
vas so logx, v/x. O

Proposicao A.1
Para } ;c(,,;©; =1 e pontos x;, i € [n] uma funo convexa satisfaz

f(D)_ Oxi) < ) Oif(xy) (A3)
ie[n] ien]

e uma funo concava
f() Oixi) > ) Oif(x) (A4)
ie[n] ie[n]

Prova. Provaremos somente o caso convexo por induo, o caso con-
cavo sendo similar. Para n = 1 a desigualdade trivial, para n = 2
ela vlida por definio. Para n > 2 define © = 1 ©4 tal que

_ ie2n
©+ 0 = 1. Com isso temos

f( Z @ixi) = f(@]X] + Z @ixi) =f(©®1%x7 —|—®y)

ie[n] ie[2,n]

ondey = Y ;c2n1(©5/O)xj, logo
f( ) ©ixi) <O1f(x1)+6f(y)
ien]

= O1f(x1) + Of( (©5/0)x;)

< O1f(x7)+6
jel2m] i€n]
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A. Conceitos matemdticos

Defini¢ao A.2
O fatorial a funo

n:N—-N:n— H i.

1<i<n
Temos a seguinte aproximao do fatorial (frmula de Stirling)
nt=v2mn (2)7 1+ 001/m) (A5)

Uma estimativa menos precisa pode ser obtida por

n_y nnt
=) T
que implica
(n/e)™ <n!<n™.

Lema A.1 (Desigualdade de Bernoulli)
Parax > —lTen € N temos (1 +x)™ > 1+ xn.

Prova. Por indugdo sobre n.

T4+ =14+ +x)™ > (1+x)(1+xn)
=T4+xn+x+x*n=T+xm+1+x*n>1+xn+1).

onde a primeira desigualdade é vélida porque (1+x) > 0. |

A.1l. Probabilidade discreta

Probabilidade: Noes bsicas
e Espao amostral finito Q) de eventos elementares e € Q).

o Distribuio de probabilidade Ple] tal que

Pl >0; ) Plej=1

ecQ

e Eventos (compostos) E C Q) com probabilidade

PE] = ) Ple]

eckE

Exemplo A.2

Para um dado sem bias temos Q = {1,2,3,4,5,6} e P[i]] = 1/6. O

evento Par = {2,4, 6} tem probabilidade P[Par] =} _p,. Plel =1/2.
O
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A.1. Probabilidade discreta

Probabilidade: Noes bsicas

o Varivel aleatria
X: 00— N

Escrevemos P[X = 1] para PIX—T(1)).

e Variveis aleatrias independentes

PIX=xeY =y] =PX=x]|P[Y =y]

Valor esperado

EXI= ) PlelX(e) =) iP[X =i

ecQ i>0

Linearidade do valor esperado: Para variveis aleatrias X, Y

E[X+ Y] = E[X] + E[Y]

Prova. (Das formulas equivalentes para o valor esperado.)

Z PX =ii= Z PX T

0<i 0<i
=> ) PlX(e)= ) PlelX(e)
0<ieex—1(i) ecQ
|
Prova. (Da linearidade.)
EX+YI= ) Plel(X(e) +Y(e))
ecQ
= ) PlelX(e) ) PlelY(e)) = EIX] +E[Y]
ecQ ecQ
|

Exemplo A.3

(Continuando exemplo A.2.)

Seja X a varivel aleatrio que denota o nmero sorteado, e Y a varivel
aleatrio tal que Y = [a face em cima do dado tem um ponto no meio].

EXl=) PX=ili=1/6 ) i=21/6=7/2

i>0 1<i<6
E[Y]:ZP[Y:i]i:P[Y:H:1/2E[X+Y] =EX]+E[Y] =4
i>0
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A. Conceitos matemdticos

Lema A.2 (Forma alternativa da expectativa)
Para uma varivel aleatria X que assume somente valores no-negativos
inteiros E[X] = 3 11 PIX> k] =3 -, PIX >kl

Prova.
EX| =) kPX=k=D) ) PX=K=) ) PX=k=) PX>jl.
k=1 k>1jelk] jz21j<k j=1
|
Lema A.3

Para tentativas repetidas com probabilidade de sucesso p, o nmero
esperado de passos para o primeiro sucesso 1/p.

Prova. Seja X o nmero de passos at o primeiro sucesso. Temos P[X >
k] = (1 —p)¥ e logo pelo lema A.2

EXl=) (1-p)*=1/p.

k>0
|
Proposicdao A.2
Para ¢ convexo @(E[X]) < E[p(X)] e para ¢ concavo @(E[X]) >
E[o(X)].
Prova. Pela proposio A.1. u

Proposicao A.3 (Desigualdade de Markov)
Seja X uma varivel aleatria com valores no-negativas. Ento, para todo
a>0

Pr(X > a] < E[X]/a.

Prova. Seja I = [X > a]. Como X > 0 temos I < X/a. O valor
esperado de I E[I] = P[I =1] =P[X > al, logo

PIX > a] = E[l] < E[X/a] = E[X]/a.

Proposicao A.4 (Limites de Chernoff (ingl. Chernoff bounds))
Sejam Xj,..., Xy indicadores independentes com P[X;] = p;. Para
X =3 ; X; temos para todo 5 > 0

66 H
PX> (148)u) < <(]+5)(1+6))

para todo & € (0,1)

e H
PIX < (1-d)ul < <(16)“5))
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A.2. Nogdes elementares da teoria da informagio

para todo & € (0,1]
PIX > (148)u] < e H8/3
e para todo 6 € (0,1)
PIX < (1—8)u) < e H/2,
Exemplo A.4
Sejam X1, ..., Xy indicadores com P[X; = 1] = x e X = ) ; X;. Temos

u=E[X] =3 ; E[Xi] = ak. Qual a probabilidade de ter menos que a
metade dos X; = 1?

PIX < |k/2]] < PIX < k/2] = PIX < u/2a =
PIX < (1 — (1—1/2a))] < e M8%/2 — g=k/2(a=1/2)?

O
Medidas bsicas A covarincia de duas variveis aleatrias X e Y
cov(X,Y) = E[(X—=E[X])E[Y — E[Y]] = E[XY] — EIX]E[Y].
A variana de uma varivel aleatria X a covariana com si mesmo
o(X) = cov(X, X) = E[X?] — E[X]? (A.6)

e o seu desvio padro o(X) = /cov(X). A correlao entre duas variveis
aleatrias a covariana normalizada

p(X,Y) =cov(X,Y)/(a(X)o(Y)). (A7)

A figura A.1 mostra exemplos de dados com correlaes diferentes.

A.2. Nocodes elementares da teoria da informacao

Defini¢do A.3 (Entropia bindaria)

A entropia binaria para o € (0,1) é H(x) = —xlog, «—(1—o)log, 1—  Para outras bases obtemos

o (medida em bits). A entropia de uma varidvel aleatéria X é entropias similares, e.g. para
base 3 em trits, para base exp

HX)= ) HPX=x)= ) —P(X=x)log,P(X=x)=—Ellog,@hts.

xeX(Q) xeX(Q)

com X(Q) a imagem de X, a entropia conjunta de varidveis aleatérias
XeY

HX,Y)= Y P(X=xY=y)log,P(X=xY=y),

xeX(Q)
yev(Q)
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P

Figura A.2.: Entropia bindria.

1

A. Conceitos matemdticos

0.85 0.048 -0.85

i i ' ' [ i ' ' (S ' ' ' i
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
X

Figura A.1.: Trs conjuntos de dados com correlao alta, quase zero, e
negativa.

a entropia condicional entre X e Y
H(X1Y) =H(X,Y) —H(Y),
e a informagdo miitua

I(X;Y) = H(X) — H(X | Y) = H(X) + H(Y) — H(X, Y).

Exemplo A.5 (Entropia)
Para uma moeda com probabilidade p = 3/4 da cair “cara” temos
H(3/4) ~ 0.81, para p =4/5 temos H(4/5) ~ 0.72. O

Definicao A.4 (Entropias cruzadas e relativas)
Para distribui¢des de probabilidade P e Q e entropia cruzada é

Hq(P) =Ep[—logQl =— > P(e)logQ(e
ecQ
e a divergéncia de Kullback-Leibler (ou entropia relativa)

Di.(P | Q) = Hg(P) — — D Ple)logQ(e)/P(e).

ecQ)

Observagiao A.1
O valor de Hq(P) pode ser interpretado como informagado neces-
sdria para codificar uma mensagem de uma fonte distribuida por
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A.2. Nogdes elementares da teoria da informagio

P usando um cédigo perfeito para uma fonte de informagdo distri-
buido como Q. Logo a distancia de Kullback-Leibler é a informacédo
adicional necessdria usando Q ao invés do cédigo perfeito para P. ¢

Definicdo A.5 (Defini¢io alternativa da informagio mutud)
Para duas varidveis aleatérias X,Y com distribuigdo conjunta P(x y)
e distribui¢des marginas Px e Py a informagio miitua é

[(X,Y) = Dkr(Px,v) I Px ®Py)

Exemplo A.6
Para a distribuicdo

X; 1/9 4/9|5/9
X, 2/9 2/9|4/9

Py 1/3 2/3
temos I(X,Y) = 0.05. O
Exemplo A.7
Para a distribuicdo
i Y2 | Px

X, 1/9 2/9|1/3
Xo 2/9 4/9]2/3
Py 1/3 2/3

temos I(X,Y) = 0. A distribui¢do conjunta é idéntica com o produto
das distribui¢des marginais. O

Lema A.4 (Ash (1967))
Para o € (0,1)

n
an

wnauan—“QzH“ﬂ“<<< ) < (2ma(1 — )1/ 22H(«n

Lema A.5
Para « € (0,1/2]

(Snof1—a)) /22N < K <7‘>sszn.
1

1<i<na«x

Prova. A primeira desigualdade é uma consequéncia do lema A 4.
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A. Conceitos matemdticos

Para a segunda desigualdade temos

T=(a+(1-a)= > (T;)cxi(l—oc)“i

v %
M M
N

8 -3

=™ (1—ogT=em % (?)

1<i<n«x

L (Tl‘)

1<i<n«x

O terceiro passo é valido porque para « € (0,1/2] temos & /(1 — o) <
lei<na |
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P(X =

E[X]
Hn

Coeficiente binomial, pagina 22
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