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3.1.3. Busca por raio . . . . . . . . . . . . . . . . . . . . . . . 49
3.2. Construção repetida independente . . . . . . . . . . . . . . . . 50

3.2.1. GRASP . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2. Bubble search randomizada . . . . . . . . . . . . . . . . 51

3.3. Construção repetida dependente . . . . . . . . . . . . . . . . . 52
3.3.1. Iterated greedy algorithm . . . . . . . . . . . . . . . . . 52
3.3.2. Squeaky wheel optimization . . . . . . . . . . . . . . . . 52
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1. Introdução

Um problema de busca é uma relação binária P ⊆ I× S com instâncias x ∈ I
e soluções y ∈ S. O par (x, y) ∈ P caso y é uma solução para x.

Definição 1.1
A classe de complexidade FNP contém os problemas de busca com relações
P polinomialmente limitadas (ver definição 1.3) tal que (x, y) ∈ P pode ser
decidido em tempo polinomial.
A classe de complexidade FP contém os problemas em FNP para quais existe
um algoritmo polinomial A com

A(x) =

{
y para um y tal que (x, y) ∈ P
“insolúvel” caso não existe y tal que (x, y) ∈ P

.

Teorema 1.1
FP=FNP se e somente se P=NP.

Prova. Ver por exemplo Papadimitriou (1993, cáp. 10.3). �

Definição 1.2
Um problema de otimização Π = (P, ϕ, opt) é uma relação binária P ⊆ I× S
com instâncias x ∈ I e soluções y ∈ S, junto com

• uma função de otimização (função de objetivo) ϕ : P → N (ou Q).

• um objetivo: Encontrar mı́nimo ou máximo

OPT(x) = opt{ϕ(x, y) | (x, y) ∈ P}

junto com uma solução y∗ tal que f(x, y∗) = OPT(x).

O par (x, y) ∈ P caso y é uma solução para x.

Uma instância x de um problema de otimização possui soluções S(x) = {y |

(x, y) ∈ P}.

Convenção 1.1
Escrevemos um problema de otimização na forma
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1. Introdução

Nome

Instância x

Solução y

Objetivo Minimiza ou maximiza ϕ(x, y).

Com um dado problema de otimização correspondem três problemas:

• Construção: Dado x, encontra a solução ótima y∗ e seu valor OPT(x).

• Avaliação: Dado x, encontra valor ótimo OPT(x).

• Decisão: Dado x e k, decide se OPT(x) ≥ k (maximização) ou OPT(x) ≤
k (minimização).

Definição 1.3
Uma relação binária R é polinomialmente limitada se

∃p ∈ poly : ∀(x, y) ∈ R : |y| ≤ p(|x|).

Definição 1.4 (Classes de complexidade)
A classe PO consiste dos problemas de otimização tal que existe um algoritmo
polinomial A com ϕ(x,A(x)) = OPT(x) para x ∈ I.
A classe NPO consiste dos problemas de otimização tal que

(i) As instâncias x ∈ I são reconhećıveis em tempo polinomial.

(ii) A relação P é polinomialmente limitada.

(iii) Para y arbitrário, polinomialmente limitado: (x, y) ∈ P é decid́ıvel em
tempo polinomial.

(iv) ϕ é computável em tempo polinomial.

1.1. Não tem almoço de graça

“Sire in eight words I will reveal to you all the wisdom that I
have distilled through all these years from all the writings of all
the economists who once practiced their science in your kingdom.
Here is my text: ‘There ain’t no such thing as free lunch’ ” (NN
1938)
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1.2. Representação de soluções

A frase “there ain’t no such thing as free lunch” (TANSTAFEL) expressa que
uma vantagem (p.ex. o almoço de graça em bares dos EUA no século 19) tipi-
camente é pago de outra forma (p.ex. comida salgada e bebidas caras). Para
problemas de busca e de otimização, Wolpert e Macready (1997) provaram
teoremas que mostram que uma busca universal não pode ter uma vantagem
em todos problemas de otimização.

Para um problema de otimização supõe que ϕ : P → Φ é restrito para um
conjunto finito Φ, e seja F = ΦS(x) espaço de todas funções objetivos para
uma instância do problema. Um algoritmo de otimização avalia pares de
soluções com o seu valor (s, v) ∈ S(x) × Φ. Seja D = ∪m≥0(S(x) × Φ)m o
conjunto de todas sequencias de pares. Um algoritmo de otimização que não
repete avaliações pode ser modelado por uma função a : d ∈ D → {s | s 6=
si, para di = (si, vi), i ∈ [|d|]} que mapeia a sequencia atual para a próxima
solução a ser avaliada (observe que o algoritmo toma essa decisão em função
das soluções anteriormente visitadas e os seus valores). A avaliação de um
algoritmo de otimização é através uma função Φ(d). Ela pode, por exemplo,
atribuir a d o valor mı́nimo encontrado durante a busca.

Teorema 1.2 (Wolpert e Macready (1997))
Para algoritmos a, a ′, um número de passos m e uma sequencia de valores
v ∈ Φm ∑

f∈F

P[v | f,m, a] =
∑
f∈F

P[v | f,m, a ′].

O teorema mostra que uma busca genérica não vai ser melhor que uma busca
aleatória em média sobre todas funções objetivos. Porém, uma grande fração
das funções posśıveis não ocorrem na prática (uma função aleatória é incom-
presśıvel, i.e. podemos especificá-la somente por tabulação, funções práticos
muitas vezes exibem localidade). Além disso, algoritmos de busca frequente-
mente aproveitam a estrutura do problema em questão.

1.2. Representação de soluções

A representação de soluções influencia as operações aplicáveis e a sua com-
plexidade. Por isso a escolha de uma representação é importante para o de-
sempenho de uma heuŕıstica. A representação também define o tamanho do
espaço de busca, e uma representação compacta (e.g. 8 coordenadas versus
permutações no problema das 8-rainhas) é prefeŕıvel. Para problemas restri-
tos uma representação impĺıcita que é transformada para uma representação
direta por um algoritmo pode ser vantajoso.
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1. Introdução

Para uma discussão abstrata usaremos frequentemente duas representações
elementares. Na representação por conjuntos uma solução é um conjunto
S ⊆ U de um universo U. Os conjuntos válidos são dados por uma coleção
V de subconjuntos de U. Na representação por variáveis uma instância é um
subconjunto I ⊆ U, e uma solução é uma atribuição de valores de um universo
V aos elementos em I.

Exemplo 1.1 (Representação do PCV por conjuntos)
Uma representação por conjuntos do PCV sobre um grafo G = (V,A) é o
universo de arestas U = A, com V todos subconjuntos que formam ciclos. ♦

Exemplo 1.2 (Representação do PCV por variáveis)
Uma representação por variáveis do PCV sobre um grafo G = (V,A) usa um
universo de vértices U. Uma instância I = V atribui a cada cidade a próxima
cidade no ciclo. Uma representação alternativa usa I = [n] a atribui a cada
variável i ∈ I a i-ésima cidade no ciclo. ♦

Exemplo 1.3 (Representação da coloração de grafos por variáveis)
Seja U um universo de vértices e C um universo de cores. Uma representação
da uma instância G = (V,A) do problema da coloração de grafos usa variáveis
V ⊆ Q e atribui cores de C às variáveis. ♦

1.2.1. Reduções de problemas

Não todos elementos do universo são usados em soluções ótimas: frequente-
mente eles tem que satisfazer certos critérios para participar numa solução
ótima. Isso permite reduzir o problema para um núcleo. No problema do
PCV, por exemplo, arestas mais longas tem uma baixa probabilidade de par-
ticipar de uma solução ótima, mas arestas bem curtas com alta probabili-
dade aparecem na solução ótima. No problema da mochila elementos de alta
eficiência são mais usados, e de baixa eficiência menos. Se soubéssemos o
arco de menor distância não usado numa solução ótima, e de maior distância
usado, podeŕıamos reduzir o problema de acordo. Regras de redução para um
núcleo são posśıveis em diversos problemas (e.g. o problema da mochila (Kel-
lerer et al. 2004)) e são essenciais para problemas tratáveis por parâmetro
fixo (Niedermeier 2002).

Prinćıpio de projeto 1.1 (Redução de problemas)
Busca por regras de redução do problema. Procura reduzir o problema para
um núcleo heuŕıstico.
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1.2. Representação de soluções

1.2.2. Transformações entre representações

Um transformador recebe uma representação de uma solução e transforma
ela numa representação diferente. Um algoritmo construtivo randomizado
(ver caṕıtulo 3) pode ser visto como um algoritmo que transforma uma se-
quencia de números aleatórios em uma solução explicita. Ambas são repre-
sentações válidas da mesma solução. Essa ideia é aplicada também em algorit-
mos genéticos, onde a representação fonte se chama fenótipo e a representação
destino genótipo. A ideia de representar uma solução por uma sequencia de
números aleatórios é usado diretamente em algoritmo genéticos com chaves
aleatórias (ver 4.5.6).
Uma transformação é tipicamente sobrejetiva (“many-to-one”), i.e. existem
várias representações fonte para uma representação destino. Idealmente, existe
o mesmo número de representações fontes para representações destino, para
manter a mesma distribuição de soluções nos dois espaços.

Exemplo 1.4 (Representação de permutações por chaves aleatórias)
Uma permutação de n elementos pode ser representada por n números aleatórios
reais em [0, 1]. Para números aleatórios são a1, . . . , an, seja π uma permutação
tal que aπ(1) ≤ · · ·aπ(n). Logo os números ai representam a permutação π

(ou π−1). ♦

Uma transformação pode ser útil caso o problema possui muitas restrições e o
espaço de busca definido por uma representação direta contém muitas soluções
inválidas.

Exemplo 1.5 (Coloração de vértices)
Uma representação direta da coloração de vértices pode ser uma atribuição
de cores a vértices. Para um limite de no máximo n cores, temos nn posśıveis
atribuições, mas várias são infact́ıveis. Uma representação indireta é uma
permutação de vértices. Para uma dada permutação um algoritmo guloso
processa os vértices em ordem e atribui o menor cor livre ao vértice atual. A
corretude dessa abordagem mostra

Lema 1.1
Para uma dada k-coloração, sejam C1∪· · ·∪Ck as classes de cores. Ordenando
os vértices por classes de cores, o algoritmo guloso produz uma coloração com
no máximo k cores.

Prova. Mostraremos por indução que a coloração das primeiras i classes não
precisa mais que i cores. Para a primeira classe isso é óbvio. Supõe que na
coloração da classe i precisamos usar a cor i+ 1. Logo existe um vizinho com
cor i. Mas pela hipótese da indução o vizinho não pode ser de uma classe

9



1. Introdução

menor. Logo, temos uma aresta entre dois vértices da mesma classe, uma
contradição. �
Com essa representação, todas soluções são válidas. Observe que o tamanho
do espaço da busca n! ≈

√
2πn(n/e)n (por A.5) é similar nas duas repre-

sentações. ♦

Por fim, transformações podem ser úteis caso podemos resolver subproblemas
restritos do problema eficientemente.

Exemplo 1.6 (Sequenciamento em máquinas paralelas não relacionadas)
Uma solução para R ||

∑
wjCj direta é uma atribuição das tarefas às máquinas,

junto com a ordem das tarefas em cada máquina.

Teorema 1.3
A solução ótima de 1 ||

∑
wjCj é uma sequencia em ordem de tempo de

processamento ponderado não-decrescente p1/w1 ≤ · · · ≤ pnwn.

Prova. Supõe uma sequencia ótima com pi/wi > pi+1/wi+1. A contribuição
das duas tarefas à função objetivo é w = wiCi+wi+1Ci+1. Trocando as duas
tarefas a contribuição das restantes tarefas não muda, e a contribuição das
duas tarefas é

wi+1(Ci+1 − pi) +wi(Ci + pi+1) = w+wipi+1 −wi+1pi.

Logo a função objetivo muda por ∆ = wipi+1 − wi+1pi, mas pela hipótese
∆ < 0. �
Logo a ordem ótima de uma máquina pode ser computada em tempoO(n logn),
e uma representação reduzida mantém somente a distribuição das tarefas à
máquinas. ♦

As diferentes representações compactas podem ser combinadas.

Exemplo 1.7 (Simple assembly line balancing)
No “simple assembly line balacing problem” do tipo 2 temos que atribuir n
tarefas, restritas por precedências, à m de estações de trabalho. Cada tarefa
possui um tempo de execução ti, e o tempo de estação é o tempo total das
tarefas atribúıdas a uma estação. O objetivo é minimizar o maior tempo de
estação.
Uma representação direta é uma atribuição de tarefas a estações, mas muitas
atribuições são inválidas por não satisfazer as precedências entre as tarefas.
Uma representação mais compacta atribui chaves aleatórias às tarefas. Com
isso, uma ordem global das tarefas é definida: elas são ordenadas topologi-
camente, usando as chaves aleatórias como critério de desempate, caso duas
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1.3. Estratégia de busca: Diversificação e intensificação

tarefas concorram para a próxima posição. Por fim, para uma dada ordem
de tarefas, a solução ótima do problema pode ser obtida via programação
dinâmica. Seja C(i, k) o menor tempo de ciclo para tarefas i, . . . , n em k
máquinas, a solução ótima é C(1,m) e C satisfaz

C(i, k) =


mini≤j≤nmax{

∑
i≤j ′≤j tj ′ , C(j+ 1, k+ 1)} para i ≤ n, k > 0

0 para i > n∞ para i ≤ n e k = 0

,

e logo a solução ótima pode ser obtida em tempo e espaço O(nm) (pré-
calculando as somas parciais). ♦

Essa observação é o motivo para o

Prinćıpio de projeto 1.2 (Subproblemas)
Identifica os subproblemas mais dif́ıceis que podem ser resolvidos em tempo
polinomial e considera uma representação que contém somente a informação
necessária para definir os subproblemas.

1.3. Estratégia de busca: Diversificação e intensificação

No projeto de uma heuŕıstica temos que balancear dois objetivos antagonis-
tas: a diversificação da busca e a intensificação de busca. A diversificação da
busca (também chamada exploration) procura garantir uma boa cobertura do
espaço de busca, evitando que a soluções analisadas fiquem confinadas a uma
região pequena do espaço total. A diversificação ideal é um algoritmo que re-
petidamente gera soluções aleatórias. Em contraste a intensificação (também
chamada exploitation) procura melhorar a solução atual o mais posśıvel. Um
exemplo de uma intensificação seria analisar todas soluções dentro uma certa
distância da solução atual.
O tema de intensificação e diversificação se encontra na discussão da heuŕısticas
individuais na seções 2 a 4; um procedimento genérico de intensificação e di-
versificação é apresentado na seção 4.8.

1.4. Notas

Mais informações sobre os teoremas NFL se encontram no artigo original de
Wolpert e Macready (1997) e em Burke e Kendall (2005, cáp. 11) e Roth-
lauf (2011, cáp. 3.4.4). Para um cŕıtica ver p.ex. Hutter (2010). Talbi (2009,
cáp. 1.4.1) discute outras representações de soluções.
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2. Busca por modificação de soluções

2.1. Vizinhanças

Uma busca local procura melhorar uma solução de uma instância de um pro-
blema aplicando uma pequena modificação, chamada movimento. O conjunto
de soluções que resultam de uma pequena modificação formam os vizinhos da
solução.

Definição 2.1 (Vizinhança)
Uma vizinhança de uma instância x de um problema de otimização Π é uma

função N : S(x) → 2S(x). Para uma solução s, os elementos N(s) são os
vizinhos de s. Os vizinhos melhores de s são B(s) = {s ′ ∈ N(s) | ϕ(s ′) < ϕ(s)}.
Uma vizinhança é simétrica, caso para s ′ ∈ N(s) temos s ∈ N(s ′).
Para uma dada vizinhança um mı́nimo local é uma solução s, tal que ϕ(s) ≤
ϕ(s ′) para s ′ ∈ N(s) e um máximo local caso ϕ(s) ≥ ϕ(s ′) para s ′ ∈ N(s).
Caso uma solução é estritamente menor ou maior que os seus vizinhos, o ótimo
local é estrito. Uma vizinhança é exata, caso cada ótimo local também é um
ótimo global.

Definição 2.2 (Grafo de vizinhança)
O grafo de vizinhança G = (V, E) para uma instância x de um problema de
otimização Π com vizinhança N possui vértices V = {y | (x, y) ∈ P} e arcos
(s, s ′) para s, s ′ ∈ S(x), s ′ ∈ N(s). Para uma vizinhança simétrica, o grafo
de vizinhança é efetivamente não-direcionado. Uma solução s ′ é alcançável a
partir da solução s, caso existe um caminho de s para s ′ em G. Caso todo
vértice é alcançável a partir de qualquer outro, G é conectado. Neste caso
o diâmetro de G é o comprimento do maior caminho mais curto entre dois
vértices em G. O grafo G é fracamente otimamente conectada caso a partir
de cada solução s uma solução ótima é alcançável.

Uma vizinhança é suficiente para definir uma busca local genérica. Ela seleci-
ona um vizinho de acordo com uma distribuição P̂s sobre a vizinhança fechada
N̂(s) = {s} ∪ N(s). Para uma distribuição Ps sobre N(s), a extensão padrão
para a vizinhança fechada é definida por

P̂s(s
′) =

{
1−
∑
s ′∈N(s) Ps(s

′) para s ′ = s

Ps(s
′) caso contrário

13



2. Busca por modificação de soluções

Algoritmo 2.1 (LocalSearch)
Entrada Solução inicial s, vizinhança N, distribuição Ps.

Sáıda Uma solução com valor no máximo ϕ(s).

1 LocalSearch (s)=
2 s∗ := s
3 repeat

4 s e l e c i o n a s ′ ∈ N̂(s) de acordo com P̂s
5 s := s ′

6 i f ϕ(s) < ϕ(s∗) then s∗ := s
7 until c r i t é r i o de parada s a t i s f e i t o
8 return s∗

9 end

A complexidade de uma busca local depende da complexidade da seleção e do
número de iterações. A complexidade da seleção muitas vezes é proporcional
ao tamanho da vizinhança |N(s)|.
Duas estratégias básicas para uma busca local são

Caminhada aleatória (ingl. random walk) Para N(s) 6= ∅, define Ps(s) =
1/|N(s)|.

Amostragem aleatória (ingl. random picking) Uma caminhada aleatória com
N(s) = S(x) para todo s ∈ S(x).

Melhor vizinho Para B(s) 6= ∅, define B∗(s) = {s ′ ∈ B(s) | ϕ(s ′) = mins ′′∈B(s)ϕ(s
′′)}

e Ps(s
′) = 1/|B∗(s)| para s ′ ∈ B∗(s). Esse estratégia tipicamente não

consegue sair de mı́nimos locais e tem que ser modificado por uma das
técnicas discutidas em 2.3, mas supera plateaus.

Exemplo 2.1 (Poĺıtopos e o método Simplex)
O método Simplex define uma vizinhança entre os vértices do poĺıtopo de
um programa linear: cada par variável entrante e sainte admisśıvel define
um vizinho. Essa vizinhança é simétrica, conectada, fracamente otimamente
conectada e exata. Logo o método resolve o problema da programação linear.

♦

Exemplo 2.2 (k-exchange para o PCV)
Uma vizinhança para o PCV é k-exchange Croes (1958): os vizinhos de um
ciclo são obtidos removendo k arcos, e conectando os k caminhos resultantes
de outra forma. Para qualquer k fixo, essa vizinhança é simétrica, conectada,

14



2.1. Vizinhanças

fracamente otimamente conectada, mas inexata (por quê?). O tamanho da
vizinhança é O = (

(
n
k

)
k!2k) = O(nk) para n cidades e k fixo.

3-exchange

♦

Exemplo 2.3 (k-SAT)
O problema k-SAT é decidir se existe uma atribuição x ∈ {0, 1}n que satisfaz
uma fórmula ϕ(x) da lógica proposicional em forma normal conjuntiva com k
literais por cláusula.
Seja |x− y|1 =

∑
i∈[n][xi 6= yi] a distância Hamming entre dois vetores x, y ∈

{0, 1}n. Uma vizinhança conhecida para SAT é k-flip: os vizinhos de uma
solução são todas soluções de distância Hamming k. A vizinhança é simétrica,
fracamente otimamente conectada para k = 1, mas inexata. O tamanho da
vizinhança é O(nk).

♦

Observação 2.1 (Cálculo eficiente da função objetivo)
Frequentemente é mais eficiente avaliar a diferença ∆(s, s ′) = ϕ(s ′) − ϕ(s)
para determinar o valor da função objetivo de um vizinho. No exemplo 2.2
avaliar ϕ(s) custa O(n), mas avaliar ∆(s, s ′) custa O(1). Logo, determinar
o melhor vizinho na vizinhança 2-exchange, por exemplo, custa O(n3) na
abordagem ingênua, mas é posśıvel em O(n2) avaliando as diferenças.
Em alguns casos a avaliação da diferença das diferenças é ainda mais eficiente.
Um exemplo é a programação quadrática binária com função objetivo

ϕ(s) =
∑
i,j∈[n]

qijxixj

e coeficientes simétricos (Q = Qt). Avaliar ϕ(s) custa Θ(n2), avaliar a dife-
rença na vizinhança 1-flip que troca x ′k = 1− xk para um k fixo

∆k(s
′, s) =

∑
i,j∈[n]

qijx
′
ix
′
j −

∑
i,j∈[n]

qijxixj

=
∑

j∈[n]\{k}

qkj(x
′
k − xk)xj +

∑
j∈[n]\{k}

qjkxj(x
′
k − xk) + qkk(x

′
k
2 − x2k)

= (1− 2xk)
(
qkk + 2

∑
j∈[n]\{k}

qjkxj
)

15



2. Busca por modificação de soluções

custa somente O(n).
Atualizando um bit l por x ′l = 1− xl obtemos novas diferenças

∆ ′k =

{
−∆k caso l = k

∆k + 2qlk(1− 2xk)(1− 2xl) caso contrário.
(2.1)

Dado os valores ∆k podemos encontrar o melhor vizinho em tempo O(n). Pas-
sando para o melhor vizinho, podemos atualizar todos valores ∆k em tempo
O(n) usando (2.1). Logo, o custo de encontrar o melhor vizinho é Θ(n3) ava-
liando soluções completas, somente Θ(n2) calculando as diferenças, e somente
O(n) atualizando diferenças. ♦

2.1.1. Vizinhanças reduzidas

Uma técnica comum para melhorar o desempenho de buscas locais é reduzir
a vizinhança heuristicamente, excluindo vizinhos com caracteŕısticas que com
baixa probabilidade se encontram em soluções de boa qualidade. Uma forma
comum de reduzir a vizinhança é usar listas de candidatos (ingl. candidate
lists).

Exemplo 2.4 (Vizinhança reduzida para o PCV)
No caso do 2-exchange para o PCV muitas das Θ(n2) vizinhos produzem ro-
tas inferiores, porque eles introduzem uma arestas longas, caso as duas arestas
originais ficam muito distantes. Logo é posśıvel reduzir a vizinhança heuristi-
camente, sem expectativa de perder soluções boas. Uma estratégia de proposto
por Johnson e McGeoch (2003) é: escolher uma cidade aleatória, um vizinho
aleatório dessa cidade na rota, uma terceira cidade entre os 20 vizinhos mais
próximos de segunda cidade, e a quarta cidade como sucessor da terceira na
orientação da rota dado pelas primeiras duas cidades. Com isso uma rota tem
no máximo 40n vizinhos. ♦

A redução de vizinhanças frequentemente é uma estratégia importante para
obter resultados de boa qualidade (Johnson e McGeoch 2003; Toth e Vigo
2003; Glover e Laguna 1997), motivo para

Prinćıpio de projeto 2.1 (Redução de vizinhanças)
Considera eliminar das vizinhanças movimentos com baixa probabilidade de
melhorar a solução.

2.2. Buscas locais monótonas

Uma busca local monótona permite somente modificações que melhoram a
solução atual, i.e. no algoritmo LocalSearch sempre temos Ps(s

′) = 0 para s ′ 6∈

16
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B(s). Logo, o algoritmo termina num ótimo local. Pela monotonia também
não é necessário guardar a melhor solução encontrada. A busca depende da
estratégia de seleção da nova solução s ′, também conhecida como regra de
pivoteamento.

Algoritmo 2.2 (LocalDescent)
Entrada Solução inicial s, vizinhança N, distribuição Ps.

Sáıda Uma solução com valor no máximo ϕ(s).

1 LocalDescent (s):=
2 repeat

3 s e l e c i o n a s ′ ∈ N̂(s) de acordo com P̂s
4 s := s ′

5 until Ps(s) = 1
6 return s
7 end

Descida aleatória (ingl. stochastic hill descent) Para B(s) 6= ∅ define Ps(s
′) =

1/|B(s)| para s ′ ∈ B(s). Esta estratégia é equivalente com a primeira
melhora, mas em ordem aleatória.

Primeira melhora (ingl. first improvement) A primeira melhora supõe uma
vizinhança ordenada B(s) = {b1, . . . , bk}. Ela seleciona f = min{i |

ϕ(bi) < ϕ(s)}, i.e. Ps(bi) = [i = f]. O método é conhecido pelos nomes
“hill climbing” (no caso de maximização) ou “hill descent” (no caso de
minimização).

Melhor melhora (ingl. best improvement) Para B(s) 6= ∅, define B∗(s) =
{s ′ ∈ B(s) | ϕ(s ′) = mins ′′∈B(s)ϕ(s

′′)} e Ps(s
′) = 1/|B∗(s)| para s ′ ∈

B∗(s). O método é conhecido pelos nomes “steepest ascent” (no caso de
maximização) ou “steepest descent” (no caso de minimização).

Busca por amostragem (ingl. sample search) Seleciona um subconjunto S ⊆
N(x) aleatório de tamanho α|N(x)|, define B∗(s) = {s ′ ∈ B(s) | ϕ(s ′) =
mins ′′∈Sϕ(s

′′) e Ps(s
′) = 1/|B∗(s)| para s ′ ∈ B∗(s).

As estratégias obviamente podem ser combinadas, por exemplo, aplicar uma
estratégia de “primeira melhora” após uma amostragem.
A qualidade de uma busca local depende da vizinhança: para vizinhanças
maiores esperamos encontrar ótimos locais melhores. Porém a complexidade
da busca cresce com a vizinhança. A arte, então, consiste em balancear estes
dois objetivos.

17
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Exemplo 2.5 (Método Simplex)
Não conhecemos regras de pivoteamento para o método Simplex que garantem
uma complexidade polinomial. Porém, a programação linear possui soluções
polinomiais (que não usam busca local). Por isso, a complexidade de encontrar
ótimos locais pode ser menor que a complexidade do método iterativo. ♦

Exemplo 2.6 (Árvore geradora mı́nima)
Para uma árvore geradora, podemos definir vizinhos como segue: adicione
uma aresta, e remove outra do (único) ciclo formado. Uma árvore geradora é
mı́nima se e somente se não existe melhor vizinho (prova: exerćıcio). Por isso
a busca local resolve o problema de encontrar a árvore geradora mı́nima. A
vizinhança é simétrica, fracamente otimamente conectada e exata. Porém, a
busca local geralmente não é eficiente. ♦

Exemplo 2.7 (OneMax)
Para um x∗ ∈ {0, 1}n fixo o problema OneMax consiste encontrar o mı́nimo de
ϕ(x) = |x−x∗|1, i.e. x∗. O número de bits X corretos de uma solução aleatória
satisfaz E[X] = n/2 e Pr[X ≤ n/3] ≤ e−n/36 e Pr[X ≥ 2n/3] ≤ e−n/54

(aplicando limites de Chernoff (A.4)).

Uma descida aleatória precisa tempo O(n) para selecionar um vizinho, ava-
liando a função objetivo em O(1) e sem repetição, e O(n) passos, para um
tempo total de O(n2). Uma análise mais detalhada do caso médio é a se-
guinte: para selecionar um vizinho melhor, podemos repetidamente selecionar
um vizinho arbitrário, até encontrar um vizinho melhor. Com i bits diferentes,
encontramos um vizinho melhor com probabilidade i/n. Logo a seleção precisa
esperadamente n/i passos até encontrar um vizinho melhor (ver lema A.5) e
logo no máximo ∑

1≤i≤n

n/i = nHn ≈ n logn

passos até encontrar x∗.

A primeira melhora precisa no pior caso (todos bits diferentes) tempo esperado
Θ(n/i) para encontrar um vizinho melhor, e a melhor melhora tempo Θ(n).
Logo, ambas precisam tempo Θ(n2) para encontrar x∗. ♦

Exemplo 2.8 (GSAT)
O algoritmo GSAT (Selman et al. 1992) aplica a estratégia “melhor vizinho” na
vizinhança 1-flip com função objetivo sendo o número de cláusulas satisfeitas
(observe que é importante escolher entre os melhores uniformemente). Ele
periodicamente recomeça a busca a partir de uma solução aleatória. ♦
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Exemplo 2.9 (WalkSAT)
WalkSAT usa uma estratégia de seleção mais sofisticada: em cada passo uma
cláusula não satisfeita é selecionada, e uma variável aleatória dessa cláusula
é invertida. (O WalkSAT proposto por Selman et al. (1994) seleciona uma
variável que não invalida nenhuma outra cláusula ou com probabilidade p
uma que invalide o menor número e com probabilidade 1− p uma aleatória.)
Logo a vizinhança é um subconjunto da vizinhança 1-flip. WalkSAT também
recomeça a busca a partir de uma solução aleatória periodicamente.

Lema 2.1 (Schöning (1999))
Seja ϕ uma fórmula em k-CNF satisfat́ıvel com n variáveis. O algoritmo

WalkSAT com peŕıodo 3n precisa esperadamente O(n3/2(2(k−1)/k)n) passos
até encontrar uma atribuição que satisfaz ϕ.

Prova. Seja a uma atribuição que satisfaz ϕ. Vamos determinar a proba-
bilidade q que um peŕıodo de WalkSAT encontra a. Com pj =

(
n
j

)
2−n a

probabilidade de iniciar com distância Hamming j de a, e qj a probabilidade
de encontrar a a partir da distância j, temos

q =
∑
0≤j≤n

pjqj. (*)

A distância Hamming para a diminui com probabilidade pelo menos 1/k e
aumenta com probabilidade no máximo 1−1/k. Podemos modelar o WalkSAT
como caminhada aleatória entre classes de soluções com distância Hamming
j, com uma probabilidade de transição de j para j − 1 (“para baixo”) de 1/k
e de j para j + 1 (“para acima”) de 1 − 1/k. Com isso qj é pelo menos a
probabilidade de chegar na classe 0 a partir da classe j em no máximo 3n
passos. Para conseguir isso podemos fazer j passos para baixo, ou j + 1 para
baixo e um para acima, e no geral j+ l para baixo e l para acima. Logo

qj ≥ max
0≤l≤(3n−j)/2

(
j+ 2l

l

)(
k− 1

k

)l(
1

k

)j+l
.

Para l = αj com α ∈ (0, 1) temos

qj ≥
(
(1+ 2α)j

αj

)((
k− 1

k

)α(
1

k

)(1+α)
)j
.

Aplicando o lema A.2 é podemos estimar1(
(1+ 2α)j

αj

)
≥ (8j)−1/2

((
1+ 2α

α

)α(
1+ 2α

1+ α

)1+α)j
1Substituindo diretamente é descartando o fator

√
(1 + 2α)/(α(1 + α)) ≥ 1.
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e logo

qj ≥ (8j)−1/2

((
1+ 2α

α

)α(
1+ 2α

1+ α

)1+α(
k− 1

k

)α(
1

k

)(1+α)
)j
.

Escolhendo α = 1/(k− 2) e simplificando obtemos

qj ≥ (8j)−1/2
(

1

k− 1

)j
.

Finalmente, substituindo em (*)

q ≥ 2−n +
∑
j∈[n]

(
n

j

)
2−n(8j)−1/2

(
1

k− 1

)j

≥ 2−n(8n)−1/2
∑
j∈[n]

(
n

j

)(
1

k− 1

)j
1n−j

= 2−n(8n)−1/2
(
1+

1

k− 1

)n
=

1√
8n

(
k

2(k− 1)

)n
.

Logo, o número esperado de peŕıodos é

1/q =
√
8n

(
2(k− 1)

k

)n
e como cada peŕıodo precisa tempo O(n) o resultado segue. �
Para uma fórmula satisfat́ıvel com k = 3, por exemplo, o algoritmo precisa
O(n3/2(4/3)n) passos.
É posśıvel transformar esta algoritmo num algoritmo randomizado que decide
se uma fórmula é satisfat́ıvel com alta probabilidade. ♦

Exemplo 2.10 (2-opt para o PCV)
A estratégia 2-opt para o PCV é uma descida aleatória na vizinhança 2-
exchange. Similarmente, obtemos k-opt na vizinhança k-exchange.

Teorema 2.1 (Chandra et al. (1999))
Para k ≥ 2, n ≥ 2k + 8 e para α > 1/n existe uma instância x do PCV com
n cidades, tal que

k-opt(x)

OPT(x)
> α.
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Prova. Para um k par, define distâncias

d12 = 1

di,i+1 = dn,1 = 1/nα i ∈ [2, n)

dk+3,2k+4 = 1/nα

dj,2k+4−j = 1/nα j ∈ [k]

di,j = kn caso contrário

Um ciclo Hamiltoniano ótimo é dado por arestas (i, próximo(i)) com

próximo(i) =



2k+ 4− i para i impar e i < k

i+ 1 para i par e i < k

i+ 1 para i ∈ [k, k+ 2]

2k+ 4 para i = k+ 3

i− 1 para i impar e i ∈ [k+ 3, 2k+ 4)

2k+ 4− i para i par e i ∈ [k+ 3, 2k+ 4)

i+ 1 para i ∈ [2k+ 4, n]

1 para i = n

A otimalidade segue do fato que todas arestas possuem o peso mı́nimo 1/nα.
Este ciclo é o único ciclo ótimo (Exerćıcio!). Por outro lado, o ciclo (1, 2, . . . , n)
possui peso total 1+ (n− 1)/nα, mas tem k+ 1 arestas diferentes. Logo este
ciclo é um mı́nimo local para k-exchange e para a instância acima temos

k-opt(x)

OPT(x)
≥ α+ 1− 1/n > α.

Para provar o caso para um k impar, podemos observar que um mı́nimo local
para o k+ 1-exchange, também é um mı́nimo local para k-exchange. �

Teorema 2.2 (Chandra et al. (1999))
No caso métrico 2-opt(x)/OPT(x) ≤ 4

√
n.

Antes provaremos

Lema 2.2
Seja (c1, c2, . . . , cn, cn+1 = c1) um mı́nimo local de 2-opt, e k ∈ [n] seja

Ek = {(ci, ci+1) | di,i+1 > 2OPT(x)/
√
k}. Então |Ek| < k.

Prova. Supõe que existe um k tal que |Ek| ≥ k.
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Figura 2.1.: Caminhos constrúıdos na prova do teorema 2.1. Esquerda: n =
22, k = 8. Meio: n = 12, k = 2. Direita: n = 40, k = 16. A
figura somente mostra arestas de distância 1/nα.

c

OPT(x)/
√
k

i1

t1

i2

t2

i3

tl

Figura 2.2.: Ilustração para o teorema 2.2.

A densidade de términos de arcos (ci, ci+1) ∈ Ek2 não pode ser demais: Supõe
que numa bola com centro c e raio OPT(x)/

√
k temos términos t1, . . . tl com

l ≥
√
k. Sejam i1, . . . il os ińıcios correspondentes. Nenhum ińıcio esta na

bola, por ser mais que 2OPT(x)/
√
k distante do término. Os términos, por es-

tarem na bola, possuem distância no máximo 2OPT(x)/
√
k entre si. Logo, os

ińıcios possuem uma distância mais que 2OPT(x)/
√
k entre si: caso contrário,

para um par de ińıcios ia, ib com distância menos que 2OPT(x)/
√
k a solução

que aplica um 2-exchange substituindo (ia, ta) e (ib, tb) por (ia, ib) e (ta, tb)
séria melhor, uma contradição com a minimalidade local.

Logo tem pelo menos
√
k ińıcios com distância pelo menos 2OPT(x)/

√
k.

Mas uma rota mı́nima entre eles possui distância pelo menos 2OPT(x), uma
contradição. Isso mostra que numa bola de raio OPT(x)/

√
k temos menos

que
√
k términos.

2O término de (u, v) é v, o ińıcio u.
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Por consequência, em Ek existem pelo menos
√
k términos com distância mais

que OPT(x)/
√
k entre si: começando com o conjunto de todos términos de ar-

cos em Ek vamos escolher cada vez um, e removê-lo junto com os términos com
distância no máximo OPT(x)/

√
k dele, até nenhum término sobrar. Como em

cada passo removeremos no máximo
√
k términos, o conjunto resultante pos-

sui pelo menos
√
k términos. Mas então uma rota que visita todos possui

distância mais que OPT(x), uma contradição. Logo |Ek| < k. �
Com isso podemos provar o teorema 2.2.
Prova. Pelo lema, a distância de i-ésima aresta em ordem não-crescente e no
máximo 2OPT(x)/

√
i. Logo temos para a distância da rota∑

a∈C

da ≤ 2OPT(x)
∑
i∈[n]

1/
√
i ≤ 4OPT(x)

√
n

(porque
∑
i∈[n] 1/

√
i ≤
∫n
0
i−1/2di = 2n1/2). �

Observação 2.2
Os teoremas não quantificam a complexidade para encontrar o mı́nimo local.
Chandra et al. (1999) ainda provaram que o número esperado de iterações
sobre instâncias Euclidianas aleatórias em [0, 1]2 é O(n10 logn). Para [0, 1]3

isso se reduz para O(n6 logn). Eles também provaram que no caso métrico
existem instâncias com mı́nimos locais cujo valor desvia pelo menos um fator
1/4
√
n da otimalidade, i.e., o teorema assintoticamente é o melhor posśıvel.

♦

Por final observamos que o PCV em geral não é resolúvel por busca local (em
contraste com a programação linear e o método Simplex).

Teorema 2.3 (Papadimitriou e Steiglitz (1977))
Caso P 6= NP, não existe um algoritmo de busca local com complexidade
polinomial por passo que é exato para o PCV.

Considere primeiramente o problema

Ciclo Hamiltoniano restrito

Entrada Um grafo não-direcionado G = (V,A) e um caminho Hamilto-
niano p em G.

Decisão Existe um ciclo Hamiltoniano em G?

Lema 2.3
Ciclo Hamiltoniano restrito é NP-completo.
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2. Busca por modificação de soluções

Prova. Por redução do problema “Ciclo Hamiltoniano”. Considere o grafo
“diamante” abaixo com quatro “entradas” norte (N), oeste (W), sul (S) e
este (E). Entrando em N, W, S, E ele só pode ser atravessado por um ciclo
Hamiltoniano em dois modos, um modo EW e outro modoNS, como mostrado
do lado.

N

W E

S

u v

x y

N

W E

S

u v

x y

N

W E

S

u v

x y

Para uma dado instância G = (V,A) do problema do ciclo Hamiltoniano,
podemos construir um grafo G ′ que possui um caminho Hamiltoniano como
segue. Introduz um “diamante” dv para cada vértice em v ∈ V e chama
os quatro entradas Nv,Wv, Sv, e Ev. Conecta os diamantes de oeste ao este
linearmente, i.e. (E1,W2), (E2,W3), . . . , (En−1,Wn). Isso garante a existência
de um caminho Hamiltoniano começando no oeste do primeiro vértice W1 e
terminado no este do último vértice En. Para representar a estrutura do grafo
G, introduz para cada aresta (u, v) ∈ A duas arestas (Nu, Sv) e (Nv, SU)
conectando os diamantes correspondentes a u e v de norte a sul. Caso G
possui um ciclo Hamiltoniano, G ′ também, atravessando os diamantes sempre
de modo WE de acordo com o ciclo. Caso G ′ possui um ciclo Hamiltoniano,
ele usa somente os diamantes de modo NS. Caso contrário, o ciclo tem que
seguir o modo WE até terminar num dos dois vértices W1 e En. Logo G
também possui um ciclo Hamiltoniano.

W1 E6

�
Prova.(do teorema 2.3) Por contradição. Caso existe tal busca local, podemos
decidir em tempo polinomial se uma dada solução s é sub-ótima: é suficiente
chamarN(x, s). Mas o problema de decidir se uma solução s é sub-ótima é NP-
completo, por redução de Ciclo Hamiltoniano restrito. O problema pertence
a NP, porque uma solução ótima é um certificado curto da sub-otimalidade.
Dado um grafo não-direcionado G = (V,A) define uma instância do PCV com
cidades V, e distâncias da = 1 caso a ∈ A, e da = 2 caso contrário. O ciclo

24



2.2. Buscas locais monótonas

Hamiltoniano c fechando p possui distância total (n− 1)+ 2. Agora G possui
um ciclo Hamiltoniano sse o PCV possui uma solução de valor n sse c é sub-
ótimo. �

♦

As analises de mı́nimos locais podem trazer informações relevantes sobre a
qualidade da solução e sugerem caminhos para melhor mı́nimos locais. Isso é
motivo do

Prinćıpio de projeto 2.2 (Vizinhanças)
Encontra exemplos de mı́nimos locais e os compara com soluções ótimas. In-
vestiga que tipo de modificação poderia melhorar um mı́nimo local.

2.2.1. Segue os vencedores

Segue os vencedores (ingl. go with the winners) (Aldous e Vazirani 1994) é uma
estratégia que trabalha com múltiplas soluções. Cada solução percorre uma
trajetória de uma busca local monótona. Caso uma das trajetórias termina
num mı́nimo local, ela continua no ponto atual de uma das outras trajetórias
que ainda não chegaram num mı́nimo local. A busca termina, caso todas
trajetórias terminaram num mı́nimo local.

Algoritmo 2.3 (Segue os vencedores (SOV))
Entrada Solução inicial s, vizinhança N, distribuição Ps, o número de

soluções k.

Sáıda Uma solução com valor no máximo ϕ(s).

1 SV(s)=
2 si := s para i ∈ [k]
3 s∗ = s
4 repeat

5 s e j a L := {i ∈ [k] | B(s) = ∅} e L := [k] \ L
6 a t r i b u i às s o l u ç õ e s em L

7 uniformemente s o l u ç õ e s em L

8 s e l e c i o n a s ′i ∈ N̂(si) de acordo com P̂si
9 si := s

′
i

10 s∗ = min{s∗, s1, . . . , sk}
11 until L = [k]
12 return s∗

13 end
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2. Busca por modificação de soluções

Na atribuição das linhas 6–7 cada solução em L é usada no máximo
⌈
|L|/|L|

⌉
vezes.
A motivação para SOV pode ser explicada no exemplo da árvore na figura 2.3.
Seja d a variável aleatória da profundidade alcançada por uma part́ıcula numa
caminhada aleatória partindo da raiz em direção as folhas. Temos P[d >
k] = 2−k (a profundidade da raiz é 0). Com n part́ıculas independentes, seja
d∗ = max{d1, . . . , dn}. Logo

P[d∗ > k] = 1− P[d∗ ≤ k] = 1−
∏
i∈[n]

P[di ≤ k]

= 1−
∏
i∈[n]

1− P[di > k] = 1−
∏
i∈[n]

1− 2−k = 1− (1− 2−k)n.

Aplicando o lema A.4 obtemos

E[d∗] =
∑
k≥0

P[d∗ > k] =
∑
k≥0

1− (1− 2−k)n ≤
∑
k≥0

1− (1− 2−kn) = 2n

(a última estimativa segue pela desigualdade de Bernoulli A.1).
Seja agora dS a variável aleatória do SOV com n part́ıculas. Temos P[dS >
k] = (1− 2−n)k e logo

E[dS] =
∑
k≥0

P[dS > k] =
∑
k≥0

(1− 2−n)k = 2n.

Logo a profundidade esperada do SOV é exponencialmente maior que a pro-
fundidade de um número equivalente de explorações com uma part́ıcula neste
exemplo. De fato, temos:

Teorema 2.4 (Aldous e Vazirani (1994))
Para uma árvore com profundidade D, sejam Vi os vértices na profundidade i
e seja p(v) a probabilidade de visitar vértice v numa caminhada aleatória da
raiz na direção das folhas para uma dada distribuição de probabilidade p(u | v)
entre os filhos u de cada vértice interno v. Define κ = max0≤i<j≤D κi,j com

κi,j = P[d ≥ i]/P[d ≥ j]2
∑
v∈Vi

p(v)P[d ≥ j | v]2.

Então, SOV com B = κDO(1) part́ıculas falha de chegar na profundidade D
com probabilidade no máximo 1/4.

O valor κ é uma medida da dificuldade de superar os D ńıveis. No exemplo
da figura 2.3 temos κ = 2 (para uma profundidade máxima fixa D).
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2.2. Buscas locais monótonas

· · ·

Figura 2.3.: Exemplo de uma árvore em que segue os vencedores é exponenci-
almente mais eficiente que uma estratégia de múltiplos ińıcios.

2.2.2. Complexidade

A solução ótima de um problema de otimização também é um mı́nimo local
para qualquer vizinhança. Para problemas em PO podemos encontrar um
mı́nimo global (e local) em tempo polinomial. Porém o exemplo do método
Simplex mostra que mesmo em casos em que podemos encontrar um mı́nimo
local em tempo polinomial, isso não precisa ser por uma busca local monótona.
Logo, temos o problema de analisar a complexidade de uma das busca local,
o problema de encontrar um mı́nimo local de qualquer forma, e o problema
de encontrar o mı́nimo local que a busca local encontraria.
Para calcular um mı́nimo local por uma busca local monótona, claramente
pelo menos a vizinhança tem que ser analisável em tempo polinomial. A
classe de complexidade PLS captura essa ideia.

Definição 2.3 (Johnson et al. (1988))
Um problema de otimização Π com P polinomialmente limitada, junto com
uma vizinhança N (escrito Π/N) pertence à classe de complexidade PLS caso
existem algoritmos polinomiais I, V, N tal que

i) I(x) produz uma solução (inicial);

ii) V(x, s) decide se é uma solução válida da instância x, e caso sim, calcula
ϕ(x, s);

iii) N(x, s) verifica se s é um mı́nimo local, e caso contrário produz uma
solução vizinha s ′ ∈ N(s) estritamente melhor, i.e. ϕ(s ′) < ϕ(s).

Com isso podemos definir quatro problemas concretas.

Complexidade de uma busca local

Entrada Um problema em PLS com funções I, V, N fixas.
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2. Busca por modificação de soluções

Problema Qual a complexidade pessimista em número de passos sobre
todas soluções iniciais em função do tamanho do problema?

Problema de busca local

Entrada Um problema em PLS.

Problema Encontra um mı́nimo local.

Observações O mı́nimo local pode ser encontrado com qualquer algo-
ritmo, não necessariamente por busca local.

Problema de encontrar o ḿınimo local padrão

Entrada Um problema em PLS com funções I, V, N fixas.

Problema Encontra o mı́nimo local que a busca local definido por I, V e
N encontraria?

Teorema 2.5
FP ⊆ PLS ⊆ FNP.

Prova. Supõe que temos um problema em FP com algoritmo A. Então existe
Π/N tal que os mı́nimos local correspondem com as soluções de uma instância:
podemos escolher S(x) = {y | (x, y) ∈ P}, ϕ(x, s) = 0 e N(x, s) = {s}. O
algoritmo I é o algoritmo A, o algoritmo V decide (x, y) ∈ P em tempo
polinomial e o algoritmo N sempre retorna “falso”.
Caso temos um problema Π/N ∈ PLS, então o problema de encontrar um
mı́nimo local pertence a FNP: as soluções são limitadas polinomialmente, e
podemos usar o algoritmo N para reconhecer soluções. �
Logo, a questão PLS ⊆ FP é “podemos encontrar mı́nimos locais em tempo
polinomial?”.
Para relacionar problemas de busca local serve a seguinte noção de redução.

Definição 2.4 (Redução PLS)
Uma problema de busca local Π1/N1 é PLS-redut́ıvel a um problema de busca
local Π2/N2 caso existem algoritmo polinomiais S, T tal que:

• Podemos transformar instâncias de Π1/N1 para Π2/N2: Para x1 ∈ I1,
S(x1) ∈ I2.

• Podemos transformar soluções de Π2/N2 para soluções de Π1/N1: Para
s2 ∈ S(x2), T(s2, x1) ∈ S(x1).
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2.2. Buscas locais monótonas

• Os mı́nimos locais correspondem: Para um mı́nimo local s2 ∈ S(x2) de
Π2/N2, T(s2, x1) é um mı́nimo local de Π1/N1.

Com isso obtemos a noção normal de completude. Em particular as reduções
são transitivas (ver exerćıcio 2.2).

Definição 2.5 (PLS-completo)
Um problema Π/N em PLS é PLS-complete para todo problema em PLS é
PLS-redut́ıvel a Π/N.

Considera o problema Circuit/1-flip: Dado um circuito booleano (sobre ∧,∨,¬,
por exemplo) com n entradas e m sáıdas encontra um mı́nimo local para a
função objetivo que trata as sáıdas como número binário de m bits.

Teorema 2.6 (Completude de Circuit/1-flip)
Circuit/1-flip é PLS-completo.

Prova. Ver por exemplo Yannakakis (2003).
�

Teorema 2.7
Para k fixo PCV/k-exchange é PLS-completo.

Fato 2.1
Os problemas MaxCut/Flip a Graph-partitioning/Swap are PLS-complete.
Para os problemas Graph-partitioning/Swap, TSP/k-opt e MaxCut/Flip a
busca local precisa no caso pessimista um número exponencial de passos para
encontrar um mı́nimo local. Para os mesmos problemas, o problema de en-
contrar um mı́nimo local espećıfico é PSPACE-complete.

2.2.3. Notas

Uma boa introdução à busca local encontra-se em Kleinberg e Tardos (2005,
cáp. 12) ou Papadimitriou e Steiglitz (1982, cáp. 10). A última referência tem
mais material sobre a conexão entre busca local e a busca na vizinhança de-
finida por um politopo. Michiels et al. (2007) apresentam aspectos teoricos
da busca local. Em particular o cáp. 5 dessa referência apresenta mais deta-
lhes sobre o PCV métrico e Euclidiano. Neumann e Wegener (2006) analisam
mais profundamente o desempenho de uma busca local randomizada no pro-
blema da árvore geradora mı́nima. Um exemplo em que a busca local é melhor
que outras abordagens é o problema métrico das k-medianas (ver por exem-
plo Korte e Vygen (2008, cáp. 22). Dimitriou e Impagliazzo (1996) propõem
uma variante do algoritmo SOV que distribui as soluções de acordo com o
número de vizinhos melhores. Yannakakis (2009) mostra conexões entre busca
local e jogos, Knust (1997) entre busca local e problemas de escalonamento.
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2. Busca por modificação de soluções

2.3. Buscas locais não-monótonas

Uma busca local não-monótona permite piorar a solução atual.

Algoritmo 2.4 (S-LocalSearch)
Entrada Solução inicial s, distribuição Ps

Sáıda Uma solução com valor no máximo ϕ(s).

1 S−LocalSearch (s)=
2 s∗ := s
3 repeat

4 s e l e c i o n a s ′ ∈ N̂(s) de acordo com P̂s
5 i f aceitável(s, s ′) then s := s ′

6 i f ϕ(s) < ϕ(s∗) then s∗ := s
7 until c r i t é r i o de parada s a t i s f e i t o
8 return s∗

9 end

No que segue usaremos ∆(s, s ′) = ϕ(s ′) − ϕ(s). A tabela 2.1 mostra um
resumo de estratégias de seleção e aceitação dos métodos discutidos abaixa.

2.3.1. Critérios de parada

Em buscas locais não-monótonas temos que definir um critério de parada
(ingl. stopping criterion). Exemplos incluem um número máximo de iterações
ou um tempo máximo. Ambos são usados frequentemente, por serem simples,
e por permitirem comparações da qualidade obtida com os mesmos recursos
por métodos diferentes. Porém, eles potencialmente gastem tempo demais em
instâncias em que uma boa solução foi encontrada cedo na busca, e provavel-
mente gastem tempo de menos em instâncias maiores que foram consideradas
na definição dos critérios: um bom método precisa ajustar a tempo investido
em função do tamanho do problema.
Critérios de parada dinâmicos resolvem estes problemas. Exemplos são: (i)
A solução encontrada possui um desvio relativo fixo de algum limite inferior
do problema. Este método fornece inclusive uma garantia da qualidade da
solução. (ii) Podemos determinar empiricamente, que a probabilidade de me-
lhorar a solução incumbente é baixa. O critério mais simples desse tipo é parar
caso o método não faz progresso por um número de iterações ou um tempo
fixo. Em função do método critérios mais rigorosos são posśıveis (por exemplo
por métodos estat́ısticos em métodos de múltiplos ińıcios, ver cap. 3.2).
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Tabela 2.1.: Estratégias de busca local.

Nome Estratégia de seleção Estratégia de aceitação

Aceitação por limite Cam. aleatória ∆(s, s ′) < W(t)
Grande dilúvio Cam. aleatória ϕ(s ′) < W(t)
Recorde para recorde Cam. aleatória ∆(s∗, s ′) < W(t)
Algoritmo demônio Cam. aleatória ∆(s, s ′) < W(t)
Aceitação atrasada Cam. aleatória ∆(s ′, s−k) < 0
BLMR De acordo com (2.2) Com prob. 1.

Têmpera simulada Cam. aleatória Com prob. min{e−∆(s,s ′)/T(t), 1}

Busca Tabu Unif. em N(s) \ L(t) Com prob. 1.

Exemplo 2.11 (Desvio relativo limitado)
O limitante de Held-Karp (ingl. Held-Karp bound) HK para o PCV é o valor
do programa linear

minimiza
∑
e∈E

cexe

sujeito a x(δ(S)) ≥ 2 para ∅ 6= S 6= V
x(δ(c)) = 2 para v ∈ V
0 ≤ xe ≤ 1 para e ∈ E.

e pode ser obtido eficientemente na prática. (Aqui δ é o conjunto de arestas
na fronteira do conjunto S e x o valor total deles.) No caso métrico o valor de
HK não é menos que 2/3 do valor ótimo (Wolsey 1980). Logo, parando com
um valor menos que αHK, para um α > 3/2 temos uma α-aproximação da
solução ótima. ♦

2.3.2. Aceitação por limite e variantes

Entre os métodos não-monótonos mais simples estão estratégias de aceitação
por limite. Eles aceitam uma solução pior, dado que o valor da solução não
ultrapassa um certo limite. Eles foram introduzidos como variantes deter-
mińısticos da têmpera simulada. A definição concreta do limite difere en-
tre as estratégias de aceitação por limite (ingl. threshold accepting) (Du-
eck e Scheuer 1990), o grande dilúvio (ingl. great deluge) (Dueck 1993), via-
gem de recorde para recorde (ing. record-to-record-travel), aceitação atrasada
(ingl. late acceptance) Burke e Bykov 2012, e algoritmo demônio (ingl. demon
algorithm (Creutz 1983).
A tabela 2.1 mostra as estratégias de forma resumida. Na tabela, W(t) é um
limite que varia com o tempo como segue:
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Aceitação por limite W(t+1) =W(t)−δ caso o algoritmo não faz progresso.

Grande dilúvio W(t + 1) = W(t) − δ em cada aceitação de um movimento.
Dueck (1993) sugere que δ seja “um pouco menos que 1% do valor médio
de ∆(s,W(t))”.

Recorde para recorde W(t) =W.

Algoritmo demônio Nesse tipo de algoritmo, o demônio é um banqueiro:
W(t + 1) = W(t) − ∆(s, s ′). Variantes incluem demônios limitados
(W(t + 1) = min{W(t) − ∆(s, s ′),Wmax}), com inflação (a “conta” do
demônio diminiu com o tempo), ou com valor aleatória (W(t) representa
a média de uma variável com distribuição Gaussiana e desvio padrão
fixo).

Outras formas da variação do limite são posśıveis, e de fato, a seleção dos
W(t) é um problema em aberto (Aarts e Lenstra 2003).

2.3.3. Buscas locais estocásticas

Em buscas estocásticas o critério de aceitação é probabiĺıstico e geralmente
tal que soluções de melhor valor possuam uma probabilidade maior de serem
aceitos.

Busca local monótona randomizada (BLMR)

Uma das buscas locais estocásticas mais simples, a busca local monótona ran-
domizada (ingl. randomised iterative improvement) seleciona com probabili-
dade p um vizinho arbitrário, e com 1− p um vizinho melhor, i.e.

Ps(s
′) =

{
p/|N(s)|+ (1− p)/|B(s)| caso s ′ ∈ B(s)
p/|N(s)| caso s ′ ∈ N(s) \ B(s)

. (2.2)

A probabilidade de encontrar a solução ótima para uma vizinhança conectada
com uma busca local monótona randomizada converge para 1 com um número
de passos crescente (Hoos e Stützle 2004, p. 155).

Algoritmo de Metropolis

O critério de aceitação de Metropolis (Metropolis et al. 1953) é

P[aceitar s ′ | s] =

{
1 caso ∆(s, s ′) < 0

e−∆(s,s ′)/kT caso contrário
. (2.3)
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(O critério foi introduzido para a simulação da evolução de um sólido para
o equiĺıbrio térmico, e por isso inclui a constante de Boltzmann k. No con-
texto de otimização ela tipicamente é ignorada, i.e. k = 1.) Uma busca local
estocástica com temperatura fixa é conhecida como algoritmo de Metropolis.
Para um T → ∞ o algoritmo se aproxima a uma caminhada aleatória, para
T → 0 a uma busca local monótona.

Têmpera simulada

A têmpera simulada (ingl. Simulated Annealing) foi proposto por Cerny (1985)
e Kirkpatrick et al. (1983). Ela varia a temperatura do algoritmo de Metropolis
de acordo com uma programação de resfriamento (ingl. cooling schedule). O
motivo é que a temperatura ideal depende da escala da função objetivo e
geralmente também da instância.

Um aspecto teoricamente interessante da têmpera simulada é que ela converge
para a solução ótima para certos programações de resfriamento. Define a
profundidade d(s) de um mı́nimo local s como menor valor tal que uma solução
de valor menor que ϕ(s) é alcançável a partir de s via soluções de valor no
máximo ϕ(s) + d(s). Com isso temos

Teorema 2.8 (Hajek (1988))
Para uma constante Γ e T(t) = Γ/ log(t+2) a têmpera simulada converge assin-
toticamente para uma solução ótima sse a vizinhança é conectada, simétrica,
e Γ ≥ D, sendo D a profundidade máxima de um mı́nimo local.

Uma heuŕıstica concreta usando têmpera simulada precisa definir uma tempe-
ratura inicial, o número de iterações com temperatura constante ingl. tempe-
rature length, uma programação de resfriamento, e um critério de parada.

A temperatura inicial e o número de iterações por temperatura dependem
fortemente da instância e por isso devem ser calibrados dinamicamente. Para
a temperatura inicial, uma técnica é gerar uma série de soluções aleatórias e
definir a temperatura inicial tal que T = ∆(smin, smax) em que smin e smax

são as soluções de menor e maior valor encontradas. Uma outra técnica é
incrementar uma temperatura baixa inicial, até uma percentagem desejada
de movimentos (tipicamente > 90%) é aceito.

O número de iterações por temperatura tipicamente deve ser proporcional ao
tamanho da vizinhança para obter bons resultados (Johnson et al. 1989). Uma
outra abordagem para garantir um progresso por temperatura, e manter ela
constante até um número mı́nimo de movimentos foi aceito, mas não mais que
um limite superior de iterações, para evitar um custo alto para temperaturas
baixas.
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A programação de resfriamento mais comum é geométrica, em que T(t) = T0αt
com α ∈ (0, 1). Um valor t́ıpico é α ∈ [0.8, 0.99]. Johnson et al. (1989)
concluem experimentalmente que não há razão para usar outras programações
de resfriamento (como p.ex. linear, ou logaŕıtmico).
Como critério de terminação podemos usar uma temperatura final, por exem-
plo. Um critério adaptativo, que detecta o “domı́nio” da busca local é ainda
melhor. Johnson et al. (1989) propõem, por exemplo, usar uma percenta-
gem mı́nima de movimentos que pioram: caso menos movimentos são aceitos
em mais que um número fixo de ńıveis de temperatura, sem melhorar a me-
lhor solução encontrada, o método termina. Como o método é estocástico, é
indicado aplicar uma busca local depois.

Observação 2.3 (Johnson et al. (1989))
Experimentalmente, parece que

• A têmpera simulada precisa um tempo longo para obter resultados de
boa qualidade.

• Tempo gasto no ińıcio e no final (domı́nio de caminhada aleatório e busca
local) tipicamente é pouco efetivo.

• Uma execução mais longa da têmpera simulada tende a produzir melho-
res resultados que diversas repetições mais curtas. Isso provavelmente
se aplica também para o “reheating”.

♦

2.3.4. Otimização extremal

Otimização extremal (ingl. extremal optimization) (Boettcher e Percus 2003)
supõe que uma solução s é representada por variáveis (x1, . . . , xn) (ver seção 1.2)
e que cada variável contribui linearmente à função objetivo com um valor
λi(s), i.e. ϕ(s) =

∑
i∈[n] λi(s). A vizinhança na busca local é restrita para

vizinhos que alteram o valor uma determinada variável, a variável extrema.
A probabilidade de uma variável ser a variável extrema é proporcional à sua
contribuição λi(xi) na função objetivo.

Algoritmo 2.5 (EO)
Entrada Solução inicial s.

Sáıda Uma solução com valor no máximo ϕ(s).

1 EO(s)=
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2 s∗ := s

3 repeat
4 s e j a s = (x1, . . . , xn) com λ1(s) ≥ · · · ≥ λn(s)
5 s e l e c i o n a i ∈ [n] com probab i l i dade ∝ i−τ
6 s e l e c i o n a s ′ ∈ N(s) t a l que xi muda o va lo r
7 s := s ′

8 a t u a l i z a s∗

9 until c r i t é r i o de parada s a t i s f e i t o
10 return s∗

Boettcher e Percus (2003) propõem τ = 1+Θ(1/ lnn).

2.3.5. Busca local guiada

A busca local guidada (ingl. guided local search) penaliza elementos inde-
sejáveis na solução, similar a otimização extremal, mas por modificação da
função objetivo. Supõe uma representação por conjuntos e uma função λu(s)
que define o custo do elemento u ∈ U. (Diferente da otimização extremal este
custo não precisa entrar diretamente na função objetivo.) Além disso, para
cada elemento u ∈ U, pu é o número de vezes o elemento foi penalizado. A
busca local guiada usa a função objetivo

ϕ ′(s) = ϕ(s) +
∑
u∈s

pu.

Em cada mı́nimo local o método penaliza os elementos com uma utilidade de
penalização

P(s, u) =

{
λu(s)/(1+ pi) caso u ∈ s
0 caso contrário

máxima (i.e. aumenta o pu correspondente por 1) e continua com a busca.
Observe que a busca local guiada é independente do método para chegar num
mı́nimo local.

2.3.6. Busca tabu

A ideia central da busca tabu é usar memoria adaptativa para guiar uma busca
local. Na forma proposta inicialmente por Glover (1986) ela aplica a estratégia
“melhor melhora” enquanto B(s) 6= ∅, e permite soluções piores caso contrário.
Uma memoria de curta duração (ingl. short-term memory, ou recency-based
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memory) serve para excluir soluções candidatas (declará-las “tabu”) da vizi-
nhança com o objetivo de evitar ciclagem. A busca tabu demonstrou a sua
utilidade em várias aplicações, porém existe pouca fundamentação teórica:
não existe prova de convergência para a otimalidade, por exemplo.
Uma busca tabu probabiĺıstica relaxa a estratégia “melhor melhoras” para
uma busca por amostragem. Isso pode ser indicado em vizinhanças grandes
e reduz a probabilidade de ciclagem. Além disso, existem resultados teóricos
que mostram a convergência nesse caso (e.g. (Faigle e Schrader 1992)).
O algoritmo 2.6 mostra uma busca local estocástica com memoria genérica.

Algoritmo 2.6 (S-LocalSearchMemory)
Entrada Solução inicial s0, distribuição Ps

Sáıda Uma solução com valor no máximo ϕ(s).

1 S−LocalSearch (s)=
2 i n i c i a l i z a a memoria M
3 s∗ := s
4 repeat

5 s e l e c i o n a s ′ ∈ N̂(s) de acordo com P̂s,M
6 i f aceitável(s ′,M) then s := s ′

7 a t u a l i z a a memoria M
8 i f ϕ(s) < ϕ(s∗) then s∗ := s
9 until c r i t é r i o de parada s a t i s f e i t o

10 return s∗

11 end

A busca tabu básica define Ps,M(s ′) = 1/|B∗(s)| para s ′ ∈ B∗(s) com B∗(s) =
{s ′ ∈ N(s) \ L(s,M) | ϕ(s ′) = mins ′′∈N(s)\L(s,M)ϕ(s

′′)} e sempre aceita a
nova solução s ′. Neste caso a lista de soluções tabu L(s,M) resulta (da parte
da memoria de curta duração) de M.
A memoria de curta duração mais usada guarda atributos removidos ou in-
seridos em soluções e trata uma solução que inclui um atributo removido ou
exclui um atributo inserido recentemente como “tabu”. Na representação por
conjuntos (ver cap. 1.2) sejam iu e ru o último tempo em que o elemento
u ∈ U foi inserido e removido da solução. Para uma duração tabu (ingl. tabu
tenure) fixa d, a regra tabu define um vizinho s ′ de s tabu no tempo t caso

t ≤ max{ru + d | u ∈ s ′ \ s} (2.4)

t ≤ max{iu + d | u ∈ s \ s ′}. (2.5)

Aqui a primeira restrição próıbe introduzir elementos removidos em menos
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tempo que d, e a segunda remover elementos introduzidos em menos tempo
que d. Uma boa duração tabu depende do tamanho da instância e um in-
tervalo adequado [dmin(n), dmax(n)] e tem que ser determinado experimen-
talmente (Glover e Laguna 1997). Valores mais baixos tendem intensificar a
busca, mas resultam em ciclagem no limite, e valores altos tendem a diversi-
ficar a busca, mas resultam numa qualidade reduzida no limite.

Observação 2.4 (Implementação memoria de curta duração)
Uma implementação de r e u com vetores na estratégia acima acima permite
um teste tabu em tempo linear no tamanho da modificação s ⊕ s ′, que fre-
quentemente é O(1). Caso |U| é grande demais, é prefeŕıvel usar tabelas hash.

♦

A regra tabu básica permite diversas variações. Entre os mais comuns são

• Considerar um vizinho como tabu somente se ambas condições (2.4) e
(2.5) são satisfeitas.

• Considerar somente atributos alterados: com au o tempo da última
alteração (inserção ou remoção), o critério tabu é simplificado para

t ≤ max{au + d | u ∈ s ′ ⊕ s}.

• Usar uma duração tabu diferente em (2.4) e (2.5): quanto mais a proibição
de um atributo restringe a solução, quanto menor deve ser a duração
tabu (Glover e Laguna 1997).

• Usar uma duração tabu dinâmica, por exemplo um valor aleatório em
[dmin(n), dmax(n)] ou uma sequencia fixa (e.g. um múltiplo adequado
do prefixo do ruler function (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, . . ., (A001511 )); Ga-
linier et al. (2011) é um exemplo de uma abordagem estado de arte que
aplica isso.)

• Declarar diferentes aspectos de um problema tabu, ou usar mais que
uma lista tabu.

• Tratar um tabu como penalidade: um atributo tabu u não é proibido,
mas penalizado por t− (au + d).

Exemplo 2.12 (PCV)
Na representação do PCV por conjuntos usando 2-exchange arestas removidas
ou inseridas se tornam tabu. Considerando critério (2.4) e (2.5) próıbe desfazer
o 2-exchange por d iterações. Um exemplo de um aspecto diferente é declarar
todas arestas incidentes com as cidades do último 2-exchange tabu. ♦
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Uma consequência de uma memoria de curta duração é um critério de as-
piração (ingl. aspiration criterion). A exclusão de atributos exclui não somente
solução já visitadas, mas também pode excluir soluções ainda não visitadas,
inclusive soluções com melhores caracteŕısticas ou valores da função objetivo.
Para contornar este problema, um critério de aspiração define exceções da re-
gra tabu. Na forma mais simples ele permite aceitar um vizinho que melhora a
solução incumbente. Um critério de aspiração pode também permitir escolher
o vizinho “menos tabu” caso não existe vizinho não-tabu (“aspiration by de-
fault”). Esta condição pode servir alternativamente como critério de parada,
além dos critérios genéricos (cap. 2.3.1).

Intensificação e diversificação Para melhorar a solução pode ser útil inten-
sificar a busca perto de soluções de boa qualidade. Isso pode ser alcançado
reduzindo o tamanho da lista tabu, fixando partes dos atributos para um
determinado tempo, ou aplicando outras formas de buscas (e.g. um solver
exato).

Em outras fases é necessário diversificar a busca, i.e. conduzi-la para novas
soluções.

Memoria de longa duração Uma memoria de longa duração pode ser usada
para guiar a busca mais efetivamente, e para intensicá- ou diversificá-la. A
memoria pode guardar soluções de boa qualidade ou informações estat́ısticas.
Mais comum para as últimas são frequências de pertinência em soluções (re-
centemente ou globalmente) e frequências de alteração de status de atributos.
Por exemplo, para intensificar a busca podemos fixar elementos que recente-
mente pertenceram a soluções com alta frequência e aplicar um dos métodos
acima (“restarting”). Para diversificar podemos incentivar incluir elementos
que globalmente foram usados com baixa frequência, por exemplo incluindo
um termo γfu na função objetivo para um movimento que inclui elemento u,
que já foi inclúıdo com frequência fu, onde γ é um parâmetro que depende do
domı́nio função objetivo.

As observações sobre intensificação e diversificação e os diferentes tipos de
memoria motivam

Prinćıpio de projeto 2.3
Identifica os elementos de intensificação e diversificação da heuŕıstica. Procure
encontrar um equiĺıbrio entre os dois prinćıpios. Em particular, considere for-
mas de memoria de longa duração para melhorar o desempenho da heuŕıstica.
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s

ϕ(s)

Figura 2.4.: Espaço de soluções (azul) e de mı́nimos locais (vermelho).

2.4. Buscas locais avançadas

2.4.1. Busca local iterada

A busca local iterada (ingl. iterated local search) pode ser vista como uma
busca local no espaço de mı́nimos locais de um problema (ver figura 2.4).

Definição 2.6
O basin de atração B(s∗) associado a um mı́nimo local s∗ e o conjunto de
soluções s tal que uma dada busca local iniciada em s termina em s∗.

Logo, para passar de um mı́nimo local para outro, temos que alterar a solução
atual suficientemente para obter uma solução nova que pertence a um basin
de atração vizinho. Para isso, a busca local iterada perturba a solução atual
e aplica a busca local na solução perturbada, para obter um outro mı́nimo
local. A forma espećıfica da perturbação define a vizinhança entre os mı́nimos
locais e a probabilidade de transição. O critério de aceitação pode ser um dos
critérios usados em uma busca não-monótona (e.g. o critério de aceitação de
Metropolis).
Para perturbar o mı́nimo local atual podemos, por exemplo, caminhar aleato-
riamente para um número de iterações, ou escolher um movimento aleatório
numa vizinhança grande. Idealmente a perturbação é na ordem de grandeza
do diâmetro do basin da solução atual: perturbações menores levam ao mesmo
mı́nimo local, enquanto perturbações maiores se aproximam a uma caminhada
aleatória no espaço de mı́nimos locais.

2.4.2. Busca local com vizinhança variável

Os métodos usando k vizinhanças N1, . . . ,Nk sempre voltam a usar a primeira
vizinhança, caso um movimento melhora a solução atual. Caso contrário eles
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passam para próxima vizinhança. Isso é o movimento básico:

Algoritmo 2.7 (Movimento)
Entrada Solução atual s, nova solução s ′, vizinhança atual k.

Sáıda Uma nova solução s e uma nova vizinhança k.

1 Movimento (s ,s ′ ,k) :=
2 i f ϕ(s ′) < ϕ(s) then
3 s := s ′

4 k := 1
5 else
6 k := k+ 1
7 end i f
8 return (s, k)

Com isso podemos definir uma estratégia simples, chamada Variable Neigh-
borhood Descent (VND).

Algoritmo 2.8 (VND)
Entrada Solução inicial s, conjunto de vizinhanças Ni, i ∈ [m].

Sáıda Uma solução com valor no máximo ϕ(s).

1 rVNS(s , {Ni})=
2 k := 1
3 // at é chegar num mı́nimo l o c a l
4 // para todas v i z i n h a n ç a s
5 while k ≤ m
6 encontra o melhor v i z inho s ′ em Nk(s)
7 (s, k) := Movimento(s, s ′, k)
8 end while
9 return s

Uma versão randomizada é o reduced variable neighborhood search.

Algoritmo 2.9 (rVNS)
Entrada Solução inicial s, conjunto de vizinhanças Ni, i ∈ [m].

Sáıda Uma solução com valor no máximo ϕ(s).

1 VND(s , {Ni})=
2 until c r i t é r i o de parada s a t i s f e i t o
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3 k := 1
4 while k ≤ m do
5 { shake }
6 s e l e c i o n a v i z inho a l e a t ó r i o s ′ em Nk(s)
7 (s, k) := Movimento(s, s ′, k)
8 end while
9 end until

10 return s

Uma combinação do rVNS com uma busca local é o Variable Neighborhood
Search (VNS) básico.

Algoritmo 2.10 (VNS)
Entrada Solução inicial s, um conjunto de vizinhanças Ni, i ∈ [m].

Sáıda Uma solução com valor no máximo ϕ(s).

1 VNS(s , {Ni})=
2 until c r i t é r i o de parada s a t i s f e i t o
3 k := 1
4 while k ≤ m do
5 { shake }
6 s e l e c i o n a v i z inho a l e a t ó r i o s ′ em Nk(s)
7 s ′′ := BuscaLocal (s ′ )
8 (s, k) := Movimento(s, s ′′, k)
9 end until

10 return s

Observação 2.5
A busca local em VNS pode usar uma vizinhança diferente das vizinhanças
que perturbam a solução atual. Também é posśıvel usar o VND no lugar da
busca local. ♦

2.4.3. Busca local em vizinhanças grandes

Uma vizinhança é considerada massiva (ingl. very large scale) caso o número
de vizinhos cresce exponencialmente com o tamanho da instância (Pisinger
e Ropke 2010). Uma vizinhança massiva tem uma vantagem caso o custo
maior de selecionar um vizinho é compensado pela qualidade das soluções.
Em particular, isso é posśıvel caso a vizinhança pode ser analisada em tempo
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polinomial apesar do seu tamanho exponencial, e.g. por resolver um problema
de caminhos mais curtos, fluxo máximo ou emparelhamento.

2.4.4. Detecção de estagnação genérica

Watson et al. (2006) propõem um mecanismo explicito e genérico para de-
tecção de estagnação. Supõe que temos uma heuŕıstica H arbitrária, e seja
NH(s) a próxima solução visitada por H dado a solução atual s. O CMF (Core
methaheuristics framework) adiciona a essa heuŕıstica uma detecção explicita
de estagnação.

Algoritmo 2.11 (CMF)
Entrada Uma instância de um problema, uma solução inicial s, uma

distância mı́nima dmin, distâncias L0 e ∆L e um número de iterações
ttest.

Sáıda A melhor solução encontrada.

1 CMF(s) :=
2 st := s
3 cada ttest i t e r a ç õ e s :
4 i f d(s, st) < dmin then
5 i f escap ing then
6 L := L+ ∆L
7 else
8 L := L0
9 st := s

10 s := randomWalk(s, L)
11 escap ing := true
12 else
13 st := s
14 escap ing := f a l s e
15 end i f
16 s := NH(s)
17 end

2.4.5. Notas

O livro de Hoos e Stützle (2004) é uma excelente referência para área de
busca local estocástica. Os artigos Dueck e Scheuer (1990) e Dueck (1993)
que propõem aceitação por limite, o grande dilúvio e viagem de recorde para
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recorde são bem acesśıveis. Talbi (2009) apresenta um bom resumo desses
métodos que inclui o algoritmo demônio. A referência definitiva para a busca
tabu ainda é o livro de Glover e Laguna (1997), uma boa introdução é Hertz
et al. (2003).

2.5. Exerćıcios

Exerćıcio 2.1
A vizinhança 2-flip para o k-SAT é simétrico? Fracamente otimamente conec-
tada? Exata? E a vizinhança k-flip para k > 2?

Exerćıcio 2.2
Mostra que reduções PLS são transitivas.
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3.1. Construção simples

3.1.1. Algoritmos gulosos

Definição 3.1 (Sistemas de conjuntos)
Um sistema de conjuntos é um par (U,V) de um universo U de elementos
e uma coleção V de subconjuntos de U. Caso para cada S ∈ V existe um
u ∈ U tal que S\ {u} ∈ V o sistema de conjuntos é acesśıvel. Caso V é fechado
sobre inclusão (i.e. caso S ′ ⊆ S para um S ∈ V então S ′ ∈ V) o sistema é
independente e o seus elementos se chamam conjuntos independentes.

Definição 3.2 (Matroides e greedoides)
Um sistema de conjuntos satisfaz a propriedade de troca, caso para todos
S, T ∈ V com |S| > |T | existe um u ∈ S \ T tal que T ∪ {u} ∈ V. Um greedoide
é um sistema de conjuntos acesśıvel que satisfaz a propriedade de troca. Um
matroide é um sistema de conjuntos independente que satisfaz a propriedade
de troca.

Definição 3.3 (Problema de otimização de um sistema de conjuntos)
Para um sistema de conjuntos (U,V) com pesos wu ∈ R+ para u ∈ U, o pro-
blema correspondente de otimização é encontrar um subconjunto independente
de maior peso total.

Observação 3.1
Na prática o conjunto V é especificado por um algoritmo que decide, para
cada S ⊆ U se S ∈ V. ♦

Exemplo 3.1
Muitos problemas de otimização podem ser formulados como sistemas de con-
juntos, por exemplo o PCV (com arestas U, e V subconjuntos de circuitos
Hamiltonianos), o problema do conjunto máximo independente (com vértices
U e V os conjuntos independentes do grafo), o problema do caminho s-t mais
curto (com arestas U e V subconjuntos de caminhos s-t), ou o problema da
mochila (com itens U, e V os subconjuntos de itens que cabem na mochila).

♦

Um algoritmo guloso constrói iterativamente uma solução válida de um sis-
tema de conjuntos acesśıvel.
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Algoritmo 3.1 (Algoritmo guloso)
Entrada Um sistema de conjuntos (U,V).

Sáıda Uma solução S ∈ V.

1 Guluso ()=
2 S := ∅
3 while U 6= ∅ do
4 s e l e c i o n a u ∈ U com wu maximal
5 U := U \ {u}
6 i f S ∪ {u} ∈ V then
7 S := S ∪ {u}
8 end i f
9 end while

10 return S
11 end

Teorema 3.1 (Edmonds-Rado)
O algoritmo guloso resolve o problema correspondente do sistema de conjuntos
independente S = (U,V) se e somente se S é um matroide.

Prova. Supõe S é um matroide. Pela propriedade de troca, todos conjun-
tos independentes maximais possuem a mesma cardinalidade. Supõe que o
algoritmo guloso produz uma solução S = {s1, . . . , sn}, mas a solução ótima
S∗ = {s ′1, . . . , s

′
n} satisfaz w(S) < w(S∗). Sem perda de generalidade wsi ≥

wsi+1
e ws ′

i
≥ ws ′

i+1
para 1 ≤ i < n. Provaremos por indução que (*)

wsi ≥ ws ′i , uma contradição com w(S) < w(S∗). Para i = 1 (*) é correto
pela escolha do algoritmo guloso. Para um i > 1 supõe wsi < ws ′

i
. Pela

propriedade de troca existe um elemento de u ∈ {s ′1, . . . , s
′
i} \ {s1, . . . , si−1}

tal que {s1, . . . , si−1, u} ∈ V. Mas wsi < ws ′i ≤ wu, uma contradição com a
escolha do algoritmo guloso.

De modo oposto, supõe o algoritmo guloso resolve o problema correspondente
de otimização (para pesos arbitrários), mas a propriedade de troca é inválida.
Logo existem conjuntos S, T ∈ V, tal que |S| = |T | + 1 mas para nenhum
u ∈ S \ T temos T ∪ {u} ∈ V. Define

wu =


|T |+ 2 para u ∈ T
|T |+ 1 para u ∈ S \ T
0 caso contrário

.
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Para essa instância o algoritmo guloso começa escolher todos elementos de T .
Depois ele não consegue melhorar o peso total, porque um elemento em S \ T
não pode ser adicionado, e os restantes elementos possuem peso 0. Logo o valor
da solução gulosa é w(T) = |T |(|T | + 2) < (|T | + 1)2 ≤ w(S), em contradição
com o fato que o algoritmo guloso resolve o problema otimamente. �
Obtemos uma generalização similar com a busca local selecionando o próximo
elemento de acordo com uma distribuição de probabilidade P sobre o uni-
verso U. Essa distribuição pode ser adaptativa, i.e. ela depende dos elementos
selecionados anteriormente.

Algoritmo 3.2 (Algoritmo guloso generalizado)
Entrada Um sistema de conjuntos (U,V).

Sáıda Uma solução S ∈ V.

1 Guluso−Genera l i zado ()=
2 S := ∅
3 while U 6= ∅ do
4 s e l e c i o n a u ∈ U de acordo com P
5 U := U \ {u}
6 i f S ∪ {u} ∈ V then
7 S := S ∪ {u}
8 end i f
9 end while

10 return S
11 end

Seja u∗ = argmaxu{w(u)|u ∈ U} e B(U) = {u ∈ U | wu = wu∗ }. A estratégia
gulosa corresponde com P(u) = 1/|B(U)| para u ∈ B(u). Um algoritmo semi-
guloso relaxa este critério. Duas estratégias comuns são:

Guloso-k SejaU = {u1, . . . , un} comwi ≥ wi+1. Seleciona S = {u1, . . . , umin{k,n}}

e define P(u) = 1/|S| para u ∈ S. Essa estratégia seleciona um dos k melhores
elementos.

Guloso-α Seja U = {u1, . . . , un} com wi ≥ wi+1. Para um 0 < α ≤ 1,
seleciona S = {ui | wi ≥ αwn + (1 − α)w1} e define P(u) = 1/|S| para u ∈ S.
Essa estratégia seleciona um entre os α% melhores elementos.
Entre distribuições de probabilidade alternativas para o guloso-α temos abor-
dagens que usam o rank r do elemento para definir um peso wr, e selecionam
o elemento com rank r com probabilidade wr/

∑
wr. Exemplos são
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• pesos polinomiais wr = r
−τ (ver 2.3.4 para uma aplicação na otimização

extremal);

• pesos lineares we = 1/r ou we = n− r;

• pesos logaŕıtmicos we = 1/ log r+ 1; ou

• pesos exponenciais we = e
−r (Bresina 1996).

Exemplo 3.2 (Construção gulosa para o PCV)
Exemplos de construções gulosas para o PCV são

• vizinho mais próximo: escolhe uma cidade inicial aleatória, e visita sem-
pre a cidade mais próxima não visitada ainda, até fechar o ciclo;

• algoritmo guloso: no matroide com U todos arcos e V subconjuntos de
arcos de ciclos Hamiltonianos, como acima;

• o algoritmo de Clarke-Wright : define uma cidade aleatória como centro
e forma “pseudo-rotas” (2-ciclos) do centro para todos outras cidades.
Ranqueia todos pares de cidades diferente do centro pela redução de
custos (“savings”) obtido passando diretamente de uma cidade para ou-
tra, não visitando o centro. Processa os pares nessa ordem, aplicando
cada redução que mantém uma coleção de pseudo-rotas, até a coleção é
reduzida para um único ciclo.

• o algoritmo de Cristofides para instâncias métricas: junta uma árvore
geradora mı́nima das cidades com um emparelhamento perfeito de custo
mı́nimo entre os vértices de grau impar da árvore, encontre um caminho
Euleriano nesse grafo, e torná-lo um ciclo pulando cidades repetidas.

♦

3.1.2. Algoritmos de prioridade

Supõe uma representação de uma solução por variáveis. Uma solução parcial
é um atribuição com variáveis livres, i.e. variáveis que ainda não receberam
valores. Algoritmos de prioridade processam as variáveis em I em alguma
ordem definida por uma função de ordenamento o que retorna um sequencia
das variáveis livres. A variável atual recebe um valor em V de acordo com uma
função de mapeamento f. Caso o depende somente da instância obtemos um
algoritmo de prioridade fixa; caso a ordem depende também da atual solução
parcial obtemos um algoritmo de prioridade adaptativa.
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Algoritmo 3.3 (Algoritmo de prioridade)
Entrada Uma instância I ⊆ U, uma função de ordenamento o e uma

função de mapeamento f.

Sáıda Uma solução S, i.e. um atribuição de valores em V aos elementos
em I.

1 Pr io r idade ()=
2 S := ∅
3 while I 6= ∅ do
4 s e j a o(I, S) = (x1, . . . , xk)
5 S := S ∪ {x1 7→ f(S, x1)}
6 I := I \ {x1}
7 end while
8 return S

Observação 3.2
Um algoritmo de prioridade pode ser relaxado, da mesma forma que algoritmos
gulosos, por selecionar a nova variável a ser fixada entre as α% ou as k variáveis
de maior prioridade. ♦

Exemplo 3.3 (Coloração de grafos)
Com a representação do exemplo 1.3 obtemos um algoritmo de prioridade
fixa ordenando os vértices por grau não-crescente e usando uma função de
mapeamento que atribui a menor cor livre ao vértice atual. Obtemos uma
variante adaptativa ordenando os vértices ainda não coloridos por grau não-
crescente com respeito a outros vértices não coloridos, com a mesma função
de mapeamento. ♦

Exemplo 3.4 (Empacotamento bidimensional)
No problema de empacotamento bidimensional (ingl. 2D strip packing) temos
n caixas de dimensões li × ci. O objetivo é empacotar as caixas numa faixa
de largura L sem sobreposição, paralelo com os eixos, e sem rotacioná-los, tal
que o comprimento total ocupado é minimizado. Um algoritmo de prioridade
ordena as caixas por altura, largura, circunferência, ou área não-crescente, e
aloca a caixa atual na posição mais para baixo e mais para esquerda posśıvel
(“bottom left heuristic”). ♦

3.1.3. Busca por raio

A busca por raio (ingl. beam search) mantém k soluções parciais (k é chamada
a largura do raio (ingl. beam width)). Em cada passo uma solução parcial é
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estendida para k ′ soluções parciais diferentes, e entre as kk ′ soluções novas,
uma função de ranqueamento seleciona as k melhores. A função tipicamente
fornece um limite inferior para as soluções completas que podem ser obtidas
a partir da solução parcial atual.
Uma busca por raio pode ser entendida como uma busca por largura trun-
cada ou ainda como versão construtiva do algoritmo SOV na busca. O modelo
mais simples para definir a busca por raio é numa árvore de soluções parci-
ais, com a solução vazia na raiz. Cada solução s possui uma série F(s) de
extensões posśıveis (filhos na árvore), que são escolhidos com distribuição de
probabilidade Ps. Seja p(s) o pai de s na árvore.

Algoritmo 3.4 (Busca por raio)
Entrada Uma instância de um problema.

Sáıda Uma solução s, caso for encontrada.

1 BeamSearch (k ,k ′ ):=
2 B := {∅}
3 while B 6= ∅ do
4 repe t e |B|k ′ vezes
5 s e j a F := ∪s∈BF(s)
6 B := ∅
7 s e l e c i o n a f ∈ F com prob . Pp(s)(f)/

∑
f∈F Pp(f)(f)

8 se f é s o l . completa : a t u a l i z a o incumbente s∗

9 se f é s o l . p a r c i a l : B := B ∪ {f}
10 { alguns autores : F := F \ {f} }
11 end
12 s e l e c i o n a as melhores s o l u ç õ e s em B
13 ( no máximo k)
14 end while
15 return s∗ { eventualmente não encontrado }

Observação 3.3
Uma busca por raio BeamSearch(1,1) é equivalente ao algoritmo guloso gene-
ralizado. ♦

3.2. Construção repetida independente

A estratégia de múltiplos ińıcios (ingl. multi-start) procura encontrar soluções
melhores por construção repetida. No caso mais simples, cada repetição é in-
dependente da outra e o algoritmo retorna a melhor solução encontrada. Essa
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estratégia pode ser usada com qualquer construção aleatória, por exemplo
com os algoritmos Guloso-k e Guloso-α da seção anterior. Usando o algo-
ritmo Guloso-α com α = 1 obtemos uma construção totalmente aleatória.
Múltiplos ińıcios também é uma estratégia simples de diversificação para ou-
tras heuŕısticas.

3.2.1. GRASP

A forma mais simples de melhorar uma construção repetida independente é
aplicar uma busca local monótona às soluções constrúıdas. Este método foi
proposto com o nome GRASP (Greedy randomized adaptive search procedure)
por Feo e Resende (1989).

Variantes básicas do GRASP incluem métodos que escolham α ∈ {α1, . . . , αk}
de acordo com alguma distribuição de probabilidade (a distribuição uniforme
frequentemente é uma primeira escolha razoável), e GRASP reativo (ingl. re-
active GRASP) que começa com uma distribuição uniforme e periodicamente
adapta as prioridades de acordo com

P(αi) = qi/
∑
j∈[k]

qj

com qi = ϕ(s∗)/ϕi para incumbente s∗ e com ϕi o valor médio encontrado
usando αi (para um problema de minimização).

O GRASP evolucionário (ingl. evolutionary GRASP), uma variante que usa
uma outra forma memória de longa duração é discutida na seção 4.4.

3.2.2. Bubble search randomizada

Bubble search (Lesh e Mitzenmacher 2006) generaliza algoritmos de priori-
dade. Considera primeiramente um algoritmo de prioridade fixa. Para me-
lhorá-lo, podemos consideras todas permutações das variáveis I na alocação.
O Bubble search faz isso em ordem de distância Kendall-tau crescente da per-
mutação base o(S). A distância Kendall-tau mede o número de inversões entre
duas permutações π e ρ de [n], i.e.

d(π, ρ) =
∑

1≤i<j≤n

[π(i) < π(j) and ρ(i) > ρ(j)] + [π(i) > π(j) and ρ(i) < ρ(j)].

(A distância Kendall-tau é também conhecida por distância de Bubble sort.)

Bubble search randomizada gera uma permutação de distância d com proba-
bilidade proporcional com (1− p)d para um parâmetro p ∈ (0, 1).
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Observação 3.4 (Geração de permutações no Bubble search)
Uma permutação de acordo com a probabilidade acima pode ser selecionado
considerando os elementos ciclicamente na ordem o(I). Inicia com uma lista
em ordem o(I). Começando com o primeiro elemento, visite os elementos
da lista ciclicamente. Selecionando o item atual com probabilidade p, caso
contrário continua. Ao selecionar um item, remove-o da lista e repete o pro-
cesso na lista reduzida, até ela é vazia. A ordem da seleção dos itens define a
permutação gerada. ♦

O processo da observação acima pode ser aplicado também em algoritmos
de prioridade adaptativa considerando os elementos ciclicamente na ordem
o(I, S). (Observe que nesse caso não existe uma relação simples da ordem
resultante com a distância Kendall-tau.)

3.3. Construção repetida dependente

Uma construção repetida dependente usa informações das iterações anteriores
para melhorar a construção em iterações subsequentes. Um exemplo simples
é o Bubble search com reposição (ingl. Bubble search with replacement): a
ordem base é sempre a ordem em que o incumbente foi constrúıdo.

3.3.1. Iterated greedy algorithm

Algoritmos gulosos iterados foram introduzidos por Ruiz e Stützle (2006).
Depois da primeira construção, o algoritmo repetidamente destrói parte da
solução atual, e reconstrói-a gulosamente. A forma mais simples da destruição
é remover d elementos na representação por conjuntos, ou resetar d variáveis
na representação por variáveis e aplicar um algoritmo guloso, respectivamente
um algoritmo prioridade a partir da solução parcial resultante para obter uma
nova solução completa.
Um algoritmo guloso iterado é o análogo de uma busca local iterada. Apli-
cando uma busca local em cada iteração, um algoritmo guloso iterado vira
uma busca local iterada, na qual a perturbação é realizada por destruição e
reconstrução via um algoritmo guloso.

3.3.2. Squeaky wheel optimization

A otimização da roda que chia (ingl. squeaky wheel optimization), introduzida
por Joslin e Clements (1999), prioriza na construção elementos que aumentam
a função objetivo (“the squeaky wheel gets the grease”). O modelo mais
simples para explicar isso é como modificação de um algoritmo de prioridade
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cuja função de ordenamento usa pesos wi para i ∈ I e produz o(I, S) =
(x1, . . . , xk) caso w1 ≥ · · · ≥ wk. Supõe que as variáveis que aumentaram a
função objetivo na última construção recebem ainda “penalidades” pi para
i ∈ I. A função de ordenamento o(I, S) = (x1, . . . , xk) tal que w1+p1 ≥ · · · ≥
wk + pk considera além da ordem base as penalidades. A otimização da roda
que chia corresponde com a otimização extremal e a busca local guidada que
forçam alterar ou penalizam elementos que aumentam a função objetivo.

Exemplo 3.5
(Continua o exemplo 3.3.) Na coloração de grafos podemos penalizar vértices
que usam cores ≥ n, caso o incumbente tem n cores. ♦

3.3.3. Otimização por colônias de formigas

Algumas espécies de formigas conseguem encontrar caminhos curtos para obje-
tos interessantes comunicando por feromônio deixado nas trilhas. O feromônio
é uma forma de memoria de longa duração guiando as formigas. Otimização
por colônias de formigas (ingl. ant colony optimization, ACO) (Dorigo et al.
1996) aplica essa ideia na otimização.
De forma mais abstrata, ACO realiza uma construção repetida dependente,
com probabilidades de transição dinâmicas, que dependem das iterações an-
teriores. Concretamente, na representação de variáveis, ACO associa dois
valores τiv e ηiv com uma variável i ∈ I que recebe um valor v ∈ V. O
valor τiv representa a componente dinâmica (o feromônio), e o valor ηiv a
componente estática da preferência de atribuir o valor v à variável i. Uma
fase do ACO constrói soluções S1, . . . , Sm de forma independente. Uma cons-
trução repetidamente atribui um valor à próxima variável x1 numa ordem fixa
ou dinâmica o(I, S) = (x1, . . . , xk), igual a um algoritmo de prioridade, com
probabilidade

P(x1 = v | S) ∝ ταivη
β
iv, (3.1)

sendo α e β parâmetros que balanceiam o efeito entre preferência dinâmica
e estática. (Logo, para α = 0 obtemos um algoritmo guloso randomizado.)
ACO atualiza no fim de cada fase os feromônios por

τiv = (1− ρ)τiv +
∑

S∈U|{i7→v}∈Sg(S).

O primeiro termo diminui o feromônio com o tempo (“evaporação”), o segundo
termo aumenta o feromônio de acordo com uma função de avaliação g(S) das
soluções S que atribuem v a i. As soluções S fazem parte de um conjunto
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U de soluções candidatas. Os candidatos tipicamente incluem S1, . . . , Sm e
soluções elites (p.ex. o incumbente S∗). A função g(S) cresce com a qualidade
da solução. Concretamente, no exemplo do PCV:

• Sistema de formigas (ingl. ant system): U = {S1, . . . , Sm}, ηiv = 1/div,
g(S) = 1/d(S).

• Sistema de formigas elitista: U = {S1, . . . , Sm, S
∗}, ηiv = 1/div,

g(S) =

{
1/d(S) para S1, . . . , Sm}

e/d(S) para S∗

• Sistema de formigas com ranqueamento: um sistema de formigas elitista
com U = {S1, . . . , Sk, S

∗}, sendo S1, . . . , Sk os k ≤ m melhores soluções
da última fase.

• Sistema de formigas com limites (ingl. min/max ant system): U = {S∗}
ou U = {S1} com S1 a melhor solução da última fase (“elitismo forte”)
com limites τmin ≤ τiv ≤ τmax, e τiv = τmax inicialmente.

• Sistema de colônia de formigas (ingl. ant colony system): elitismo forte
com seleção “pseudo randômica proporcional”: com probabilidade q
seleciona a variável com P(x1 = v|S) máximo, senão de acordo com (3.1).
O sistema também diversifica a construção reduzindo a quantidade de
feromônio em atribuições selecionadas na fase atual.

3.4. Exerćıcios

Exerćıcio 3.1
Quais sistemas de conjuntos do exemplo 3.1 são acesśıveis? Independentes?
Quais satisfazem a propriedade de troca?
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A recombinação de soluções procura misturar componentes da duas ou mais
soluções para produzir uma ou mais novas soluções combinadas. Para algu-
mas recombinações é conveniente ter uma noção de distância entre soluções.
Para as nossas representações padrão de conjuntos e variáveis, usaremos as
distâncias d(s, s ′) = |s ⊕ s ′| e d(s, s ′) =

∑
i∈I[si 6= s ′i], respectivamente. Em

função do problema e sua representação outras distâncias podem ser ade-
quadas. Tipicamente a representação de variáveis é mais conveniente para
formular a recombinação de soluções.

Exemplos de recombinações simples na representação por variáveis de soluções
c = C(s1, . . . , sn) são:

Recombinação randomizada Escolhe ci = ski com probabilidade pk. Para
pk = 1/n obtemos uma recombinação uniforme. Uma recombinação
não-uniforme comum é escolher pk ∝ ϕ(sk). No contexto de algoritmos
genéticos o caso n = 2, V = {0, 1}, p = 1/2 é chamada crossover uni-
forme] (Ackley 1987). Outro exemplo é definir pk ∝ |{ski | k ∈ [n]}| na
seleção da componente i. Caso a função objetivo é linear nas variáveis,
i.e. ϕ(sk) =

∑
i∈Iϕ(ski), um critério melhor pode ser uma seleção com

probabilidade pki ∝ ϕ(ski) para cada componente.

Recombinação por mediano Supondo que V possui uma ordem, escolhe ci =
〈s1i · · · sni〉 com mediano 〈·〉. Para n impar e V = {0, 1} isso é uma
recombinação maioritária.

Recombinação linear Supondo que V = R, seleciona ci =
∑
k∈[n] λksik com∑

k∈[n] λk = 1. Para λk ≥ 0 obtemos uma recombinação convexa.

Recombinação particionada Uma recombinação randomizada aplicada numa
partição S de [n]. Para cada parte seleciona uma solução si com pro-
babilidade pi e atribui os valores de toda parte à solução combinada.
Um subcaso importante são partições cont́ınuas (i.e. cada parte p ∈ S
satisfaz p = [a, b] para a < b, a, b ∈ [n].) Para uma partição cont́ınua
aleatória com |S | = 2 obtemos o recombinação em um ponto (ingl. one-
point crossover), caso |S | = k uma recombinação em k pontos.
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Recombinação para permutações A recombinação tem que satisfazer as
restrições do problema. Um caso frequente e por isso importante são per-
mutações, com I = V = [n]. Exemplos de estratégias para recombinar per-
mutações são:

Recombinação irrestrita na tabela de inversões Aplica uma das recombinações
acima na tabela de inversões.

Recombinação PMX Para permutações π = π1π2 . . . πn e ρ = ρ1ρ2 . . . ρn
define σ = PMX(π, ρ) como segue (Goldberg e Lingle 1985):

1) Seleciona um intervalo aleatório I = [a, b] ⊆ [n]. Para uma per-
mutação π, seja πI = {πi | i ∈ I}.

2) Define um mapeamento m : πI → ρI : πi 7→ ρi.

3) Define um mapeamento m∗ : πI → ρI : mk(πi), com k o menor
expoente tal que mk(πi) 6∈ πI. O mapeamento m∗ itera m até o
elemento não pertence a πI.

4) Finalmente define

σi =


πi i ∈ I
ρi ρi 6∈ πI
m∗(ρi) ρi ∈ πI

.

Exemplo 4.1 (Recombinação PMX)
Seja π = 123456789a e ρ = 49a8173526 e I = [3, 6]. Logo πI = {3, 4, 5, 6} e
ρI = {a, 8, 1, 7}, e temos os mapeamentos

πi 3 4 5 6
m(πi) a 8 1 7
m∗(πi) a 8 1 7

,

i.e., o mapeamento iterado m∗ é igual a m. Obtemos

Índice i 1 2 3 4 5 6 7 8 9 10
Elem. m∗(4) ρ2 π3 π4 π5 π6 m∗(3) m∗(5) ρ9 m∗(6)
σi 8 9 3 4 5 6 a 1 2 7

♦

Exemplo 4.2 (Recombinação PMX)
Seja π = 123456789a e ρ = 361a849725 e I = [3, 6]. Logo πI = {3, 4, 5, 6} e
ρI = {a, 8, 1, 7}, e temos os mapeamentos
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πi 3 4 5 6
m(πi) 1 a 8 4
m∗(πi) 1 a 8 a

.

Obtemos

Índice i 1 2 3 4 5 6 7 8 9 10
Elem. m∗(3) m∗(6) π3 π4 π5 π6 ρ7 ρ8 ρ9 m∗(5)
σi 1 a 3 4 5 6 9 7 2 8

♦

A seleção de um ou mais operadores de recombinação é um parte importante
do projeto de uma heuŕıstica por recombinação. Além das recombinações
genéricas, uma recombinação que aproveita a estrutura do problema deve ser
considerada.

Exemplo 4.3 (Recombinação EAX para o PCV)
O edge assembly crossover (EAX) (Nagata e Kobayashi 1997) trabalha na
representação de rotas por conjuntos de arestas. Para rotas A e B ele forma
A ∪ B e extrai um conjunto completo de ciclos AB-alternantes (i.e. ciclos
com arestas alternadamente e A e B; isso sempre é posśıvel). Seleciona um
subconjunto S dos ciclos AB extráıdos e gera uma coleção de ciclos A ⊕ S.
Repetidamente reconecta o menor ciclo com um outro ciclo até obter uma
rota simples.
Para conectar ciclos C e D (representados por conjuntos de arestas), gulo-
samente seleciona o par de arestas uu ′ ∈ C e vv ′ ∈ D tal que (C ∪ D) ⊕
{uu ′, vv ′, uv, u ′v} tem custo mı́nimo.

♦

4.1. Religamento de caminhos

O religamento de caminhos (ingl. path relinking), proposto por Glover (1996)
no contexto da busca tabu, explora trajetórias entre uma solução inicial s
e uma solução guia s ′. Isso é realizado com uma busca local na vizinhança
reduzida (“vizinhança direcionada”) D(s) = {s ′′ ∈ N(s) | d(s ′′, s ′) < d(s, s ′)}.
Logo em no máximo d(s, s ′) passos a busca transforma s em s ′. Qualquer dis-
tribuição de probabilidade discutida no cap. 2 pode ser usada para explorar
D; tipicamente é usada a estratégia “melhor vizinho”. O resultado do religa-
mento de caminhos é a melhor solução s∗ encontrada na trajetória explorada.
Como a melhor solução da trajetória s∗ não necessariamente é um mı́nimo
local de N, é comum aplicar uma busca local em N.
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Algoritmo 4.1 (Religamento de caminhos)
Entrada Uma solução inicial s, uma solução guia s ′.

Sáıda Uma solução s∗ com ϕ(s∗) ≤ min{ϕ(s), ϕ(s ′)}.

1 PathRel inking (s ,s ′ ) :=
2 while D(s) 6= ∅∧ s 6= s ′ do
3 s∗ = argmin{ϕ(s), ϕ(s ′)}
4 s e l e c i o n a s ′′ ∈ D(s) com probab i l i dade Ps(s

′′)
5 s := s ′′

6 a t u a l i z a o incumbente s∗

7 end
8 return s∗

Observação 4.1 (Conectividade da vizinhança direcionada)
Caso é garantido que na vizinhança D existe um caminho de s para s ′ pode-
mos simplificar a condição da linha 2 para s 6= s ′. Um exemplo em que isso
não é satisfeito: para o problema do exemplo 1.7 pode ser conveniente res-
tringir a vizinhança N que desloca uma tarefa para outra estação às estações
cŕıticas, i.e. as estações com tempo de estação igual ao tempo de ciclo. Logo o
religamento de caminhos termina, caso as tarefas alocadas às estações cŕıticas
na solução atual e guia são as mesmas. ♦

Variantes comuns são: religamento de caminhos

para frente (ingl. forward path relinking, “uphill”) Para soluções s1 e s2 com
ϕ(s1) ≤ ϕ(s2) explore a trajetória de s1 para s2.

para trás (ingl. backward path relinking, “downhill”) Para soluções s1 e s2
com ϕ(s1) ≤ ϕ(s2) explore a trajetória de s2 para s1.

para trás e frente (ingl. back-and-forward path relinking) Para soluções s1
e s2 com ϕ(s1) ≤ ϕ(s2) explore a trajetória de s2 para s1, seguido da
trajetória de s1 para s2.

misto (ingl. mixed path relinking) Altera ambas soluções até eles se encon-
tram.

truncado (ingl. truncated path relinking) Explora a trajetória somente no
ińıcio ou no final. Esse estratégia é justificada por experimentos que
mostram que as melhores soluções tendem a ser encontradas no ińıcio
ou no final da trajetória.
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Observação 4.2
O religamento de caminhos explora a vizinhança da solução inicial melhor.
Logo, caso somente uma trajetória é explorada, é melhor usar um religamento
para frente, que começa da melhor das soluções (Resende e Ribeiro 2005). ♦

Observação 4.3 (Seleção do vizinho)
Qualquer estratégia de busca local pode ser aplicada na seleção da linha 4.
Aplicando a estratégia “guloso-α”, por exemplo, obtemos um religamento de
caminhos guloso adaptativo (ingl. greedy randomized adaptive path-relinking,
GRAPR). ♦

4.2. Probe

O population-reinforced optimization-based exploration (PROBE) trabalha com
uma população de soluções S1, . . . , Sn. Sendo C(·, ·) algum operador que re-
combina duas soluções, Probe produz em cada iteração uma nova população
C(S1, S2), C(S2, S3), . . . , C(Sn, S1).

Teorema 4.1 (Convergência de Probe)
Caso ϕ(C(S, T)) ≤ min{ϕ(S), ϕ(T)} o valor médio da população diminui até
todas soluções possuem o mesmo valor.

Prova. Supõe que um par de soluções adjacentes Sj, Sj+1 não possui o mesmo
valor. Logo ϕ(C(Sj, Sj+1) < ϕ(Sj) ou ϕ(C(Sj, Sj+1) < ϕ(Sj+1) e como as
restantes soluções satisfazem ϕ(C(Si, Si+1) ≤ ϕ(Si) resp. ϕ(C(Si, Si+1) ≤
ϕ(Si+1) o valor médio diminui. �

Observação 4.4 (Convergência trivial)
Para C(S, T) = argmin{ϕ(S), ϕ(T)} a população converge para a melhor das
n soluções inicias. ♦

4.3. Scatter search

A busca dispersa (ingl. Scatter search) é um esquema algoŕıtmico que ex-
plora o espaço de busca sistematicamente usando um conjunto de soluções de
referência (ingl. reference set). A enfase da busca dispersa é na exploração de-
termińıstica e sistemática, similar com a busca tabu, ao contrário de métodos
que focam em randomização. Repetidamente a busca dispersa combina um
subconjunto das soluções de referência para gerar novas soluções e atualiza as
soluções de referência. O método procura incluir elementos de diversificação
e intensificação estrategicamente. As soluções de referência R, por exemplo,
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tipicamente contém soluções de boa qualidade e soluções diversas. O con-
junto de soluções de referência inicial é selecionado entre um número grande
de soluções diversas. Depois da recombinação o novo conjunto de soluções
de referência é selecionado entre as soluções de referência atuais e as soluções
obtidas por recombinação.
Seja d(p, S) = min{d(p, s) | s ∈ S} e distância mı́nima da solução p para
qualquer solução do conjunto S. Um exemplo de uma construção do conjunto
de referência que seleciona b1 soluções de boa qualidade e b2 soluções diversas
é

1 r e f s e t (P ) := { seleciona soluções de referência de P }
2 s e j a P = {p1, . . . , pn} com ϕ(p1) ≤ · · · ≤ ϕ(pn)
3 S := {p1, . . . , pb1

}

4 P := P \ S
5 while P 6= ∅∧ |S| ≤ b1 + b2 do
6 p := argmaxp{d(p, S) | p ∈ P}
7 S := S ∪ {p}
8 P := P \ {p}
9 end

Com isso obtemos

Algoritmo 4.2 (Scatter search)
Entrada Uma instância de um problema.

Sáıda Uma solução s, caso for encontrada.

1 Scat te rSearch ( ) :=
2 c r i a um conjunto de s o l u ç õ e s d i v e r s a s C
3 R := refset(C)
4 do
5 s e j a S uma f a m ı́ l i a de subconjuntos de R
6 C := ∅
7 for S ∈ S do
8 T := recombine(S)
9 C := C ∪ improve(T)

10 end for
11 R := refset(R ∪ C) { alternativa : refset(C) }
12 while R changed

A tabela 4.1 mostra valores de referência para os parâmetros da busca dispersa.

Observação 4.5 (Atualização do conjunto de referência)
Existem diversas estratégias de atualização do conjunto de soluções de re-

60



4.4. GRASP com religamento de caminhos

Tabela 4.1.: Valores de referência para os parâmetros da busca dispersa.

Número de soluções de referência |R| ≈ 20
Número de soluções iniciais |C| ≥ 10|R|
Número de soluções elite b1 ≈ |R|/2
Número de soluções diversas b2 ≈ |R|/2

ferência. Por exemplo, podemos adicionar uma nova solução ao conjunto de
referência R caso (i) |R| < b, ou (ii) ela é melhor que o incumbente, ou (iii) ela
é melhor que a pior solução de R, dado que ela possui uma distância mı́nima
d das soluções restantes. Em ambos casos a solução de menor distância com
a nova solução sai do conjunto de referência. Para implementar isso, podemos
modificar o algoritmo 4.2 para

11 for each c ∈ C : r e f s e t (R, c )
usando o procedimento

1 r e f s e t (R ,s) := { atualiza o conjunto R com s }
2 s e j a R = {r1, . . . , rn} com ϕ(r1) ≤ · · · ≤ ϕ(rn)
3 i f |R| < b then
4 R := R ∪ {s}
5 else i f ϕ(s) < ϕ(r1)∨ (ϕ(s) < ϕ(rn)∧ mini d(s, ri) > d then
6 s e j a k = argmini d(s, ri)
7 R := R \ {rk} ∪ {s}
8 end i f
9 end

♦

Observação 4.6 (Seleção da famı́lia S)
A abordagem mais comum é selecionar todos pares de soluções de referência.
Variantes propostas na literatura incluem escolher triplas formadas por todos
pares mais a solução de referência melhor que não faz parte do par, ou escolher
quadruplas formadas por todas triplas mais a solução de referência melhor
que não faz parte da tripla. Essas abordagens são raras, por precisarem uma
combinação efetiva entre mais que duas soluções. ♦

4.4. GRASP com religamento de caminhos

GRASP com religamento de caminhos mantém um conjunto de soluções de re-
ferência. Este conjunto é alimentado pelas soluções obtidas em cada iteração.
Uma proposta t́ıpica da atualização é a regra da observação 4.5. Em cada
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iteração, GRASP+PR aplica religamento de caminhos entre o mı́nimo local
obtido s e uma solução de referência r. A solução de referência é selecionada,
por exemplo, com probabilidade ∝ d(s, r), para religar soluções distantes com
maior probabilidade.
O GRASP evolucionário (ingl. evolutionary GRASP) reconstrói o conjunto
de soluções de referência periodicamente. Os candidatos para formar o novo
conjunto de soluções são as soluções obtidas por religamento de caminhos entre
todos pares de soluções de conjunto de referência do peŕıodo anterior.

4.5. Algoritmos genéticos e meméticos

Observação 4.7 (Função objetivo e aptidão)
Como algoritmo genéticos e variantes normalmente são formulados para ma-
ximizar uma função objetivo – chamada aptidão (ingl. fitness) – vamos seguir
essa convenção nesta seção. ♦

Algoritmos genéticos (ingl. genetic algorithms) foram propostas por Holland
(1975) em analogia com processos evolutivos. Um algoritmo genético mantém
uma população S1, . . . , Sn de indiv́ıduos e repetidamente seleciona dois in-
div́ıduos pais, gera novos indiv́ıduos por recombinação dos pais, eventualmente
aplica uma mutação em indiv́ıduos selecionados, e atualiza a população. Um
algoritmo genético difere da busca dispersa principalmente pelos elementos
randomizados: a seleção dos pais é aleatória (mas tipicamente proporcional
com a qualidade da solução) bem como a mutação. Obtemos um algoritmo
memético (ingl. memetic algorithm) caso um indiv́ıduo é melhorado por uma
busca local, e um algoritmo genético Lamarckiano caso essa melhora é herdável
(i.e. a transformação inversa do fenótipo para genótipo existe, ver cáp. 1.2.2).
A terminologia biológica é frequentemente usada em algoritmos genéticos.
Numa representação de variáveis, por exemplo, uma variável é chamada gene
e os valores que ela pode assumir os alelos.
O algoritmo 4.3 define um esquema genérico de um algoritmo genético. Ele é
definido por (i) uma população inicial, (ii) por uma estratégia de seleção de
indiv́ıduos, (iii) operadores de recombinação e mutação, e (iv) uma estratégia
de seleção da nova população.

Algoritmo 4.3 (Algoritmo genético)
Entrada Uma instância de um problema.

Sáıda Uma solução s, caso for encontrada.

1 GeneticAlgorithm ( ) :=
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2 c r i a um conjunto de s o l u ç õ e s i n i c i a i s P

3 until c r i t é r i o de parada s a t i s f e i t o
4 C := ∅
5 { recombinação }
6 s e j a P um conjunto de pa i s s e l e c i o n a d o s de P
7 for p = (p1, p2) ∈ P do
8 T := recombine(p1, p2)
9 C := C ∪ improve(T)

10 end for
11 { mutação }
12 s e j a M⊆ P ∪ C de s o l u ç õ e s que sofrem mutação
13 for s ∈M do
14 T := mutate(s)
15 C := C ∪ improve(T) \ {s}
16 end for
17 P := update(P,C) { com update (µ+ λ), (µ, λ) }
18 end

Exemplo 4.4 (Algoritmo genético básico)
Uma instância básica do algoritmo 4.3 usa

• uma representação por variáveis com V = {0, 1};

• uma população inicial com µ indiv́ıduos aleatórios;

• uma seleção de |P | = µ pares de pais, cada solução s com probabilidade
∝ ϕ(s);

• uma recombinação em um ponto (p. 55) que gera duas novas soluções;

• nenhum procedimento de melhora (improve(C) = C);

• uma mutação que inverte cada variável com probabilidade p (frequente-
mente p = 1/|I|) nas novas soluções;

• uma atualização (µ, λ) da população (seleciona os µ melhores entre os
novos indiv́ıduos).

♦
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4.5.1. População inicial

A população é criada por alguma heuŕıstica construtiva, frequentemente com
indiv́ıduos aleatórios. Reeves (1993) propõe um tamanho mı́nimo que garante
que todas soluções podem ser obtidas por recombinação da população inicial,
i.e. todo alelo está presente em todo gene. Para uma inicialização aleatória
uniforme na representação por variáveis, temos |V |n posśıveis combinações de
alelos num determinado gene, para uma população de tamanho n. Dessas
combinações |V |!

{
n
|V |

}
possuem todos alelos, logo a probabilidade que todos

alelos são presentes em todos genes k é(
|V |!

{
n

|V |

}
|V |−n

)k
.

Em particular para |V | = 2 obtemos a probabilidade (1−21−n)k. Isso permite
selecionar um n tal que a probabilidade de que todos alelos estejam presentes
é alta.

4.5.2. Seleção de indiv́ıduos

Um indiv́ıduo S é selecionado como pai com probabilidade ∝ ϕ(s) ou conforme
alguma regra de seleção baseado no rank na população (ver pág. 48). Outro
exemplo é uma seleção por torneio que seleciona o melhor entre k indiv́ıduos
aleatórios, similar da busca por amostragem.

Observação 4.8 (Seleção por torneio)
Um 1-torneio é equivalente com uma seleção aleatória. Num 2-torneio a proba-

bilidade de selecionar o elemento com posto i é (n− i)/
(
n
2

)
, logo obtemos uma

seleção linear por posto. Em geral a probabilidade de selecionar o elemento
com posto i num k-torneio é(

n− i

k− 1

)
/

(
n

k

)
∝
(
n− i

k− 1

)
= Θ((n− i)k−1).

♦

Exemplo 4.5 (Fitness uniform selection scheme (FUSS))
Hutter e Legg (2006) propõem um esquema de seleção uniforme baseada em
aptidão (ingl. fitness uniform selection scheme): escolhe um valor uniforme
f no intervalo [mini∈P ϕ(i),maxi∈P ϕ(i)] e seleciona o indiv́ıduo com valor
da função objetivo mais próximo de f. O objetivo da seleção é manter a
população diversa: indiv́ıduos em regiões com menor densidade da distribuição
dos valores da função objetivo possuem uma probabilidade maior de seleção.

♦
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Exemplo 4.6 (Seleção estocástica universal)
Baker (1987) propõe uma seleção estocástica universal (ingl. stochastic uni-
form selection): Seja pi, a probabilidade de selecionar indiv́ıduo i ∈ [µ], e
Pi = [

∑
k∈[i−1] pi,

∑
k∈[i] pi) o intervalo correspondente, seleciona, para um

r ∈ 1/µ aleatório, os indiv́ıduos i1, . . . , iµ tal que k/µ ∈ Pik para k ∈ [µ].
(A explicação mais simples dessa seleção é por uma roleta com µ seletores de
distância 1/µ). ♦

4.5.3. Recombinação e mutação

Para recombinação de indiv́ıduos serve qualquer das recombinações discutidas
acima, inclusive o religamento de caminhos. Uma mutação é uma pequena
perturbação de uma solução. Logo ela pode ser realizada por um passo de uma
busca local estocástica 2.1. Recombinação ou mutação podem ser aplicados
com probabilidades diferentes, eventualmente dinâmicas.

4.5.4. Seleção da nova população

A população pode ser atualizada depois de criar um número suficiente de novas
soluções, selecionando uma nova população entre estes indiv́ıduos, eventual-
mente incluindo a população antiga. Uma alternativa é atualizar a população
constantemente. (Observe que isso corresponde exatamente com as estratégias
de seleção da busca dispersa.) As primeiras duas estratégias de seleção levam
a um algoritmo genético geracional e a última a um algoritmo genético em es-
tado de equiĺıbrio (ingl. steady state genetic algorithm). Para uma população
de tamanho µ e λ novos indiv́ıduos eles também são conhecidos por seleção
(µ, λ) (seleciona os µ melhores dos λ novos indiv́ıduos) ou seleção (µ+ λ) (se-
leciona os µ melhores entre a população antiga e os λ novos indiv́ıduos). Caso
uma seleção permite soluções da população antiga entre na nova população, e
seleciona algumas das melhores soluções, o algoritmo é elitista.

Exemplo 4.7 (Estratégias de evolução)
Estratégias de evolução (ingl. evolution strategies) são algoritmos genéticos
sem recombinação. Eles recebem o nome da atualização correspondente: (µ, λ)
ou (µ+ λ). Observe que uma estratégia de evolução (1+ 1) é uma busca local
monótona estocástica. ♦

Uma outra estratégias comum é a deleção randomizada de indiv́ıduos do con-
junto de candidatos até µ indiv́ıduos sobram. A variante mais simples delete
indiv́ıduos com probabilidade uniforme; uma variante delete com probabili-
dade ∝ ϕ(smax) +ϕ(smin) −ϕ(s) com smax a melhor e smin a pior solução.
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Exemplo 4.8 (Fitness uniform deletion scheme (FUDS))
Hutter e Legg (2006) propõem um esquema de deleção uniforme baseado em
aptidão (ingl. fitness uniform deletion scheme): similar ao FUSS, escolhe um
valor uniforme f no intervalo [mini∈P ϕ(i),maxi∈P ϕ(i)] e deleta o indiv́ıduo
com valor da função objetivo mais próximo de f. FUDS favorece uma ex-
ploração em regiões de menor densidade da distribuição dos valores da função
objetivo. ♦

Observação 4.9 (Resultados experimentais (Levine 1997))
Experimentalmente, parece que

• manter a população em estado de equiĺıbrio é prefeŕıvel sobre abordagens
geracionais;

• uma recombinação uniforme ou em dois pontos é prefeŕıvel sobre uma
em um único ponto;

• uma seleção proporcional com ϕ raramente é bom;

• uma taxa de mutação dinâmica é prefeŕıvel;

• manter a diversidade da população é importante.

• operadores de recombinação e mutação espećıficos para o problema são
mais úteis;

♦

Observação 4.10 (Resultados teóricos)
Pela teoria sabemos que

• o desempenho depende fortemente do problema: existem funções uni-
modais em que uma determinada estratégia de evolução (1 + 1) pre-
cisa tempo exponencial mas também classes de funções que podem ser
resolvidos em tempo polinomial (Droste et al. 2002; Jansen e Wege-
ner 2000); e existem instâncias de problemas NP-completos em que
uma estratégia de evolução (1+ 1) não possui garantia de aproximação
(e.g. cobertura por vértices (Friedrich et al. 2010)), mas também pro-
blemas NP-completos em que a estratégia garante uma aproximação
(e.g. uma 4/3-aproximação em tempo esperado O(n2) para o problema
de partição1 (Witt 2005)).

1Particionar um conjunto de números x1, . . . , xk tal que a diferença das somas dos partes
é mı́nima.
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Figura 4.1.: Um movimento 4-opt com dois pontes.

• o tamanho ideal da população depende fortemente do problema: existe
uma função em que uma dada estratégia de evolução (µ, 1)2 precisa
tempo exponencial para µ pequeno, mas tempo polinomial para µ grande
e vice versa (Witt 2008);

• o desempenho depende fortemente da função objetivo: uma estratégia
de evolução (1+ 1) consegue ordenar n números em tempo Θ(n2 logn),
mas existem funções objetivos para medir o grau da ordenação que levam
a um tempo exponencial (Scharnow et al. 2002);

♦

A última observação experimental, que não é restrito para algoritmos genéticos,
em conjunto com os resultados teóricos, é o motivo para conjeturar que (i) para
cada solução “genérica” de um problema, existe um algoritmo heuŕıstico es-
pećıfico melhor. (ii) para cada heuŕıstica que funciona bem na prática (i.e. re-
solve o problema em tempo esperado polinomial com garantia de qualidade)
deve existir um subproblema do problema em questão em P.

Prinćıpio de projeto 4.1 (Estrutura do problema)
Procure aproveitar a estrutura do problema. Caso a heuŕıstica funciona bem:
procure identificar quais caracteŕısticas das instâncias são responsáveis por
isso.

Exemplo 4.9 (Algoritmo genético para o PCV)
Em Johnson e McGeoch (2003) o algoritmo genético melhor é degenerado
para uma busca local iterada: a “população” consiste de uma única solução,
e o algoritmo aplica repetidamente uma busca local Kernighan-Lin e uma
mutação na vizinhança 4-exchange restrito para dois pontes (Fig. 4.1), i.e. a
estratégia de atualização é (1, 1). ♦

Exemplo 4.10 (Algoritmo genético para o PCV)
O algoritmo genético para o PCV de Nagata e Kobayashi (2012) exemplifica
o prinćıpio 4.1. Ele usa

2A estratégia padrão com atualização por deleção aleatória.
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• Uma população inicial de tamanho 300 com rotas aleatórias otimizadas
por 2-opt.

• Uma recombinação entre πi e πi+1 para uma permutação aleatória da
população.

• A recombinação entre p, q aplica uma variante “localizada” de EAX
(i.e. produz soluções mais similares com p) e gerar diversas novas soluções
f1, . . . , fk (k ≈ 30).

• Uma seleção que substitui o p atual pela melhor soluções entre f1, . . . , fk, p.

• Uma função objetivo modificada que procura manter a diversidade da
população. Para Pi = (pij)j a distribuição de probabilidade dos arcos
(i, j) na população, define a entropia da população por

H =
∑
i∈[n]

Hi; Hi = −
∑
j∈[n]

pij log pij

e seleciona a solução s de maior valor

ϕ(s) =


−∆L(s)/ε caso ∆L(s) < 0, ∆H(s) ≥ 0
∆L(s)/∆H(s) caso ∆L(s) < 0, ∆H(s) < 0

−∆L(s) caso ∆L(s) ≥ 0

com ∆L(s) o aumento da distância total média da população caso s
substitui p, e ∆H(s) o aumento correspondente da entropia.

♦

4.5.5. O algoritmo genético CHC

O “Cross-generational elitist selection, Heterogeneous recombination, and Ca-
taclysmic mutation” (CHC) é um exemplo de uma variante de um algoritmo
genético com um foco em intensificação (Eshelman 1990). Ele recombina siste-
maticamente todos pares da população atual, e procura manter a diversidade
por recombinar somente soluções suficientemente diferente com uma recom-
binação HUX. A recombinação HUX é uniforme, mas troca exatamente a
metade das variáveis diferentes entre os pais e gera dois novos filhos. Caso
a população convergiu ele é recriada aplicando uma mutação para a melhor
solução.
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Algoritmo 4.4 (Algoritmo genético CHC)
Entrada Uma instância de um problema, uma taxa de mutação pm

(t́ıpico: pm = 1/2).

Sáıda Uma solução s, caso for encontrada.

1 CHC( ) :=
2 c r i a um conjunto de s o l u ç õ e s i n i c i a i s P
3 d := pm(1− pm)|I|
4
5 until c r i t é r i o de parada s a t i s f e i t o
6 C := ∅
7 for n/2 i t e r a ç õ e s do
8 s e l e c i o n a pa i s p1, p2 ∈ P a l ea to r i amente
9 i f d(p1, p2) > 2d then

10 T := HUX(p1, p2)
11 C := C ∪ T ; P := P \ {p1, p2}
12 end
13 end
14 i f C = ∅ then
15 d := d− 1
16 else
17 P := (µ+ λ)(P ∪ C)
18 end i f
19 i f d < 0 then
20 { re−criação catacl ı́smica }
21 reduz P para a melhor so lu ç ã o p em P
22 until |P| = µ do
23 a p l i c a uma mutação em p com prob . 0.35
24 i n s e r e o ind iv ı́ duo obt ido em P
25 end
26 d := pm(1− pm)|I|
27 end i f
28 end
29 end

4.5.6. Algoritmos genéticos com chaves aleatórias

Um “biased random-key genetic algorithm” (BRKGA) é uma extensão do al-
goritmo genético com chaves aleatórias de Bean (1994). Ambos usam uma
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Figura 4.2.: Algoritmo genético com chaves aleatórias.

representação por chaves aleatórias (seção 1.2.2) e uma população com três
“castas” (ver Fig. 4.2). A nova população consiste da elite da população an-
tiga, soluções randômicas que substituem as piores soluções e soluções que
foram obtidas por recombinação uniforme. No caso do BRKGA a recom-
binação uniforme é substitúıda por uma recombinação que passa de cada gene
independentemente o alelo do pai elite com probabilidade p ≥ 0.5 para o filho.
Tamanhos t́ıpicos para a elite são 10−20% da população, e 1−5% de soluções
randômicas.

4.6. Otimização com enxames de part́ıculas

A otimização com enxames de part́ıculas (ingl. particle swarm optimization,
PSO) (Eberhart e Kennedy 1995) foi proposta para otimização cont́ınua e
mantém uma população de soluções x1, . . . , xn em Rk. Cada solução também
possui uma velocidade vi, i ∈ [n] e em cada passo a posição é atualizada para
x ′i = xi + εvi para um parâmetro ε ∈ (0, 1]. A velocidade vi é atualizada
em direção da melhor solução na trajetoria da solução atual x∗i , da melhor
solução x∗I = maxi∈I x

∗
i encontrada por soluções informantes I ⊆ [n] e da

melhor solução global x[n] por

v ′i = αvi + β(x
∗
i − xi) + γ(x

∗
I − xi) + δ(x

∗
[n] − xi). (4.1)

Com isso obtemos o esquema genérico
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Algoritmo 4.5 (Otimização com enxames de part́ıculas)
Entrada Uma instância de um problema, parâmetros α,β, γ, δ, ε.

Sáıda A melhor solução encontrada.

1 PSO( ) :=
2 c r i a s o l u ç õ e s i n i c i a i s x1, . . . , xn
3 com v e l o c i d a d e s v1, . . . , vn
4
5 until c r i t é r i o de parada s a t i s f e i t o
6 for cada so lu ç ã o i ∈ [n] do
7 s e l e c i o n a um conjunto de in formantes I
8 a t u a l i z a vi de acordo com (4.1)
9 xi := xi + εvi

10 end
11 return x∗[n]
12 end

Na forma mais comum:

• Aproximadamente 50 soluções e velocidades inicias são escolhidas alea-
toriamente.

• O conjunto de informantes é um subconjunto aleatório de [n].

Variantes incluem:

• Selecionar em cada aplicação de (4.1) valores aleatórias em [0, β], [0, γ]
e [0, δ] para os pesos.

Aplicação para otimização discreta A forma mais simples de aplicar a oti-
mização com enxames de part́ıculas em problemas discretos é trabalhar no
espaço real e transformar a solução para uma solução discreta (seção 1.2.2).
Uma alternativa é definir uma estratégia de atualização discreta.

Exemplo 4.11 (Variante binária de PSO)
Kennedy e Eberhart (1997) propõem para soluções in {0, 1}k mapear as veloci-

dades em Rk para o [0, 1]k por uma transformação loǵıstica S(x) = (1+e−x)1

aplicada a cada elemento do vetor, e interpretar os componentes das veloci-
dades como probabilidades. Em cada passo xij recebe o valor 1 com probabi-
lidade S(vij). ♦
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4.7. Sistemas imunológicos artificiais

Sistemas imunológicos artificiais (ingl. artificial immunological systems) são
algoritmos de otimização usando prinćıpios de sistemas imunológicos. Dare-
mos somente um exemplo de um algoritmos comum dessa classe. O prinćıpio
natural do algoritmo é a observação que o sistema imunológico se adapta para
novas antigenes por clonagem e amadurecimento.

Algoritmo 4.6 (SIA/Clonalg)
Entrada Uma instância de um problema, parâmetros α, β.

Sáıda A melhor solução encontrada.

1 Clonalg ( ) :=
2 s e j a P = {p1, . . . , pn} a l e a t ó r i a com ϕ(p1) ≤ · · · ≤ ϕ(pn)
3
4 until c r i t é r i o de parada s a t i s f e i t o
5 s e l e c i o n a as α% melhores s o l u ç õ e s p1, . . . , pk
6 for i ∈ [k] do
7 { clonagem }
8 c r i a um conjunto Ci de ∝ 1/i c óp i a s de pi
9 { amadurecimento por h́ıpermutação }

10 a p l i c a uma mutação a c ∈ Ci com taxa ∝ ϕ(s)
11 end
12 s e l e c i o n e a nova populaç ão ent r e P e ∪iCi
13 s u b s t i t u i as β% p i o r e s s o l u ç õ e s
14 por s o l u ç õ e s a l e a t ó r i a s
15 end
16 end

4.8. Intensificação e diversificação revisitada

Uma população de soluções de alta qualidade junto com a recombinação
de soluções também serve para realizar uma intensificação e diversificação
genérica (Watson et al. 2006). O IMDF (Intensification/Diversification fra-
mework) supõe que temos uma heuŕıstica de busca H(x0, i) base arbitrária,
que podemos rodar para um número de iterações i numa instância inicial x0.

Algoritmo 4.7 (IDMF)
Entrada Uma instância de um problema, probabilidade de intensificação
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pi, uma heuŕıstica H, iterações i0 > i1 para intensificação.
Sáıda A melhor solução encontrada.

1 H∗(x0) :=
2 x := H(x0, i0)
3 while ϕ(x) < ϕ(x0)
4 x0 := x
5 x := H(x0, i1)
6 end
7 return x0
8 end
9

10 IDMF( ) :=
11 gera uma populaç ão E de ót imos l o c a i s
12 a p l i c a H∗(e) em cada e ∈ E
13 repeat
14 com probab i l i dade pi : { intensif icaç ão }
15 s e l e c i o n a e ∈ E
16 g := e
17 com probab i l i dade 1− pi : { diversif icaç ão }
18 s e l e c i o n a e, f ∈ E
19 gera um elemento g no meio ent r e e e f
20 por re l i gamento de caminhos
21 e ′ := H∗(g)
22 i f ϕ(e ′) < ϕ(e)
23 e := e ′

24 end
25 end

4.9. Notas

Mais sobre a busca dispersa se encontra em Gendreau e Potvin (2010, cáp. 4),
Glover e Kochenberger (2002, cáp. 1) e Talbi (2009, cáp. 3.4). Uma aplicação
recente do operador EAX num algoritmo genético se encontra em Nagata e
Kobayashi (2012).

4.9.1. Até mais, e obrigado pelos peixes!

Para quem não é satisfeito com os métodos discutidos: usa alguma outra besta
de carga como
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fireflies, monkeys, cuckoos, viruses, bats, bees, frogs, ou competi-
tive imperialists,

ou deixa a f́ısica resolver o problema com

gravitational search, intelligent waterdrops, ou harmony search.

Porém, é importante lembrar que o objetivo da pesquisa em heuŕısticas não é
produzir novos vocabulários para descrever as mesmas estratégias, mas enten-
der quais métodos servem melhor para resolver problemas. Weyland (2010),
por exemplo, mostra que a busca de harmonias (ingl. harmony search) é uma
forma de uma estratégia de evolução. Para uma cŕıtica geral ver também
Sörensen (2013).
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5.1. Hibridização de heuŕısticas

A combinação de técnicas de diversas meta-heuŕısticas ou de uma meta-
heuŕıstica com técnicas das áreas relacionadas de pesquisa operacional ou
inteligência artificial define heuŕısticas h́ıbridas. Um exemplo é a combinação
de técnicas usando populações para identificar regiões promissoras no espaço
de busca com técnicas de busca local para intensificar a busca. Um outro
exemplo é o uso de programação matemática ou constraint programming para
resolver subproblemas ou explorar vizinhanças grandes. Isso é um exemplo de
matheuristics, a combinação de heuŕısticas com técnicas de programação ma-
temática, também conhecida por heuŕısticas baseados em modelos matemáticos
(ingl. model-based heuristics).

5.1.1. Matheuristics

Hibridizações básicas entre heuŕısticas e programação matemática aplicam
as heuŕısticas para obter limitantes superiores em algoritmos de branch-and-
bound ou usam programação matemática para resolver subproblemas em
heuŕısticas. Exemplos de outras hibridizações são relaxações lineares de pro-
gramas inteiros para gerar soluções inicias ou guiar buscas, e a aplicação de
técnicas heuŕısticas para guiar a exploração de buscas em algoritmos exatos.

Exemplo 5.1 (Diving)
Algoritmos branch-and-bound frequentemente expandem o nodo com o menor
limite inferior. Diving é uma estratégia que estrategicamente aplica uma busca
por profundidade para gerar melhores soluções. ♦

Exemplo 5.2 (Ramificação local)
Ramificação local (ingl. local branching) guia a exploração das soluções de
programas inteiras 0−1 de um resolvedor genérico para analisar primeiramente
soluções de distância Hamming ≤ k. A distância Hamming das soluções x =
(x1, . . . , xn) ∈ Bn e x = (x1, . . . , xn) ∈ Bn é

∆(x, x) =
∑

i∈[n]|xi=0

xi +
∑

i∈[n]|xi=1

1− xi.
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Com isso para uma dada solução x0 uma estratégia global de ramificação re-
solve primeiramente o programa inteiro Ax ≤ b ∧ ∆(x, x0) ≤ k e só depois
Ax ≤ b ∧ ∆(x, x0) ≥ k + 1. Essa ramificação continua no primeiro subpro-
blema, caso o resolvedor encontra uma melhor solução. Fischetti e Lodi (2003)
sugerem k ∈ [10, 20]. ♦

Exemplo 5.3 (RINS e religamento de caminhos)
O relaxation induced neighorhood search (RINS) é uma estratégia para inten-
sificar a busca para melhores soluções viáveis. Para um dado nó na árvore de
branch-and-bound da solução de um programa inteiro, ela fixa as variáveis que
possuem o mesmo valor no incumbente e na relaxação linear atual, e resolve o
subproblema nas restantes variáveis restrito para um valor máximo da função
objetivo e com um tempo limite. Danna et al. (2005) propõem aplicar RINS
cada f� 1 nós com um limite de nós explorados, e.g. f ≈ 100, com limite de
≈ 1000 nós.

Uma forma similar de explorar o espaço entre duas soluções é uma extensão do
religamento de caminhos: fixa todas variáveis em comum, e resolve o problema
no subespaço resultante de forma exata. ♦

Exemplo 5.4 (Geração heuŕıstica de colunas)
Na geração de colunas (usado também em algoritmos de branch-and-price)
o subproblema de pricing precisa encontrar uma coluna com custo reduzido
negativo. Para melhorar os limitantes inferiores da decomposição de Dantzig-
Wolfe, o subproblema de pricing deve ser o mais dif́ıcil posśıvel, que pode
ser resolvido em tempo aceitável. Uma estratégia diferente resolve o subpro-
blema de pricing heuristicamente. O método continue ser correto caso no final
o subproblema de pricing é resolvido pelo menos uma vez exatamente para
demonstrar que não existem mais colunas com custo reduzido negativo.

Por exemplo o problema de colorar um grafo não-direcionado G = (V, E) com
o menor número de cores

minimiza
∑
i∈[n]

ci,

sujeito a
∑
i∈[n]

xvi ≥ 1, ∀v ∈ V,

xui + xvi ≤ 1, ∀{u, v} ∈ E, i ∈ [n],

ci ≥
∑
v∈V

xvi/n, ∀i ∈ [n],

xvi, ci ∈ B, ∀v ∈ V, i ∈ [n],
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pode ser decomposto em um problema mestre de cobertura por conjuntos
independentes maximais I de G

minimiza
∑
i∈I

xi (5.1)

sujeito a
∑

i∈I|v∈I

xi ≥ 1 ∀v ∈ V (5.2)

xi ∈ B ∀i ∈ I. (5.3)

Para custos reduzidos λv, v ∈ V o subproblema problema de pricing é encon-
trar um conjunto independente máximo de maior peso

maximiza
∑
v∈V

λvzv

sujeito a zu + zv ≤ 1 ∀{u, v} ∈ E
zv ∈ B v ∈ V.

Filho e Lorena (2000) propõem um algoritmo genético para resolver o subpro-
blema de pricing. ♦

5.1.2. Dynasearch

Dynasearch determina a melhor combinação de vários movimentos numa vi-
zinhança por programação dinâmica (Congram et al. 2002). Ela pode ser
vista como uma busca local com estratégia “melhor melhora” intensificada. A
aplicação é limitada para movimentos independentes: cada movimento precisa
ser aplicável independente dos outros, e contribui linearmente para a função
objetivo. Numa representação por variáveis (x1, . . . , xn) seja δij a redução
da função objetivo aplicando um movimento nas variáveis xi, . . . , xj. Logo
a maior redução da função objetivo ∆j por uma combinação de movimentos
independentes aplicado a x1, . . . , xj é dado pela recorrência

∆j = max{∆j−1, max
1≤i≤j

∆i−1 + δij}

e a melhor combinação de movimentos reduz a função objetivo por ∆n.

Exemplo 5.5 (Dynasearch para o PCV)
Para aplicar dynasearch no PCV supõe uma representação por variáveis com
I = {πi | i ∈ [n]} e valores em [n] que representa uma permutação das cidades.
Um movimento 2-exchange entre arestas (πi, πi+1) e (πj, πj+1) com i < j é
válido caso i + 1 < j, i.e. precisa pelo menos quatro vértices. (Todos ı́ndices
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são modulo n.) Dois movimentos (i, j) e (i ′, j ′) com i < i ′ são independentes
caso j < i. A redução da função objetivo para um movimento (i, j) é δij =
−dij − di+1,j+1 + di,i+1 + dj,j+1. Logo obtemos a recorrência

∆j =

{
0 caso j < 4

max{∆j−1,max1≤i≤j−3 ∆i−1 + δij} caso contrário.

♦

5.2. H́ıper-heuŕısticas

Hı́per-heuŕısticas usam ou combinam heuŕısticas com o objetivo de produzir
uma heuŕıstica melhor e mais geral (Denzinger et al. 1997; Cowling et al.
2000). A heuŕısticas podem ser geradas antes da sua aplicação (“offline”), por
uma busca no espaço das heuŕısticas. Uma h́ıper-heuŕıstica desse tipo pode
ser projetada usando alguma meta-heuŕıstica. Importante no projeto é uma
representação adequada de uma heuŕıstica generalizada para o problema e di-
versas heuŕısticas ou heuŕısticas parametrizadas que instanciam a heuŕıstica
generalizada. As operações correspondentes modificam, constroem ou recom-
binam heuŕısticas. Uma alternativa é aplicar diferentes heuŕısticas durante
a otimização (“online”). Para isso uma h́ıper-heuŕıstica precisa decidir qual
sub-heuŕıstica aplicar quando.

Exemplo 5.6 (Hı́per-heuŕıstica online construtiva)
Considera o empacotamento unidimensional que permite diversas estratégias
gulosas para selecionar o próximo item a ser empacotado (na ordem dada
ou em ordem não-crescente, no contêiner atual ou no primeiro ou melhor
contêiner). Uma h́ıper-heuŕıstica pode selecionar a estratégia de acordo com
a solução parcial. Um exemplo é Ross et al. (2002): uma solução parcial
é representada pelo número de itens, e as percentagens de itens pequenas,
médias, grandes e muito grandes e um classificador é treinado para decidir
qual de quatro regras candidatas é aplicada. ♦

Exemplo 5.7 (Hı́per-heuŕıstica online por modificação)
Uma h́ıper-heuŕıstica pode usar conceitos da busca tabu para a seleção de
heuŕısticas de modificaçãoH1, . . . , Hk. Associa um valor vi com cada heuŕıstica
Hi. Aplica em cada passo a heuŕıstica Hi de maior valor (uma ou mais vezes).
Caso ela melhora a solução atual, aumenta vi, senão diminui vi e declara Hi
tabu. ♦

Exemplo 5.8 (Hı́per-heuŕıstica offline)
Fukunaga (2008) apresenta uma abordagem para gerar heuŕısticas que selecio-
nam uma variável a ser invertida em uma busca local para o problema SAT. A
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regra de seleção é representada por uma expressão, que inclui seleções t́ıpicas
de algoritmos conhecidos como a restrição para cláusulas falsas, a seleção pelo
aumento da função objetivo, uma seleção pelo tempo da última modificação ou
uma seleção randômica. Essas restrições podem ser combinadas por condições.
A regra de seleção do WalkSAT, por exemplo, é representada por

(IF-VAR-COND = +NEG-GAIN+ 0

(GET-VAR +BC0 +NEG-GAIN+)

(IF-RAND-LTE 0.5

(GET-VAR +BC0+ +NEG-GAIN+)

(VAR-RANDOM +BC0+)

)

)

Um algoritmo genético em estado de equiĺıbrio evolui as regras de seleção. A
população inicial consiste de expressões aleatórias restritas por uma gramática
que garante que eles selecionam uma variável. O algoritmo seleciona dois pais
com uma probabilidade linear no posto na população, e gera 10 filhos. A
estratégia de seleção é (µ+λ). A recombinação de pais p1 e p2 é “if (condição)
then p1 else p2” com 10 condições diferentes, p.ex. i) uma seleção randômica
com probabilidade 0.1, 0.25, 0.5, 0.75, 0.9, ii) a variável mais “antiga” entre
p1 e p2, ou iii) a variável de p1 caso ela não invalida nenhuma cláusula,
senão p2. Como a recombinação aumenta a profundidade das expressões,
uma regra substitui sub-arvóres de altura dois que ultrapassam um limite de
profundidade por uma expressão de menor altura. Isso serve também como
mutação das expressões. Cada regra é avaliada em até 200 instâncias com
50 variáveis e caso pelo menos 130 execuções tiveram sucesso em mais 400
instâncias com 100 variáveis e recebe uma valor s50 + 5s100 + 1/f com si
o número de sucessos em instâncias com i variáveis e f o número médio de
inversões de variáveis em instâncias com sucesso. As heuŕısticas evolúıdas
em uma população de 1000 indiv́ıduos, limitado por 5500 avaliações, com
limite de profundidade entre 2 e 6 são competitivas com heuŕısticas criadas
manualmente. ♦

5.3. Heuŕısticas paralelas

Heuŕısticas podem ser aceleradas por paralelização. A granularidade do para-
lelismo (a relação entre o tempo de computação e comunicação) é importante
para obter uma boa aceleração e tipicamente define ou limita a escolha da
arquitetura paralela. A paralelização mais básica executa diversas heuŕısticas
(ou a mesma heuŕıstica randomizada) em paralelo e retorna a melhor solução
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encontrada. Essa estratégia corresponde com repetições independentes, possui
uma granularidade alta, tem a vantagem de ser simples de realizar, e gera uma
aceleração razoável. Uma variante é uma decomposição do espaço de busca
em subespaços.

Exemplo 5.9 (Aceleração de heuŕısticas de busca)
Supõe um problema de busca com uma função de probabilidade exponencial

λe−λt de encontrar uma solução no intervalo [t, t + dt]. A distribuição do
mı́nimo de p variáveis distribúıdas exponencialmente com λ1, . . . , λk é dis-
tribúıdo exponencial com parâmetro λ =

∑
i λi. Logo, para p repetições pa-

ralelas independentes, obtemos uma nova distribuição exponencial do tempo
de sucesso com parâmetro pλ. O valor esperado de uma distribuição expo-
nencial é λ−1, e assim obtemos uma aceleração esperada de λ−1/(pλ)−1 = p.

♦

As três técnicas heuŕısticas principais permitem algoritmos paralelos de gra-
nularidade fina ou média:

• Buscas por modificação: a exploração de uma única trajetória é inerente-
mente sequencial. Uma paralelização de granularidade fina pode avaliar
toda vizinhança em paralelo (ou alguns movimentos, e.g. na tempera si-
mulada). A granularidade pode ser aumentado por vizinhanças grandes.

• Busca por construção: similarmente a construção por elementos é se-
quencial, mas os candidatos podem ser avaliados em paralelo.

• Busca por recombinação: permite uma granularidade média paraleli-
zando os passos de seleção, recombinação e melhora de subconjuntos de
soluções sobre subconjuntos de soluções independentes.

Uma busca por modificação ou construção pode ser paralelizado melhor ava-
liando diversas trajetórias ou construções em paralelo. Esse tipo de parale-
lização se aplica diretamente em métodos como segue os vencedores e colônias
de formigas.

Uma paralelização com granularidade fina ou média é mais adequada para ar-
quiteturas com memoria compartilhada. Eles podem ser realizadas de forma
conveniente com múltiplos threads (explicitamente ou com abordagens semi-
automáticos usando diretivas como OpenMP).

Exemplo 5.10 (GSAT paralelo em C++ com OpenMP)
Uma versão simplificada de uma busca “melhor melhora” para o problema
SAT (ver exerćıcios) pode ser paralelizada em OpenMP por
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#pragma omp parallel shared(bestvalue,bestj)

private(t_bestvalue,t_bestj)

{

#pragma omp for private(value)

for(unsigned j=1; j<=I.n; j++) {

int value = S.flipvalue(j);

if (value>t_bestvalue) {

t_bestvalue = value;

t_bestj = j;

}

}

#pragma omp critical

{

if (t_bestvalue < bestvalue) {

bestvalue = t_bestvalue;

bestj = t_bestj;

}

}

}

♦

Modelos cooperativos Uma estratégia de granularidade média são modelos
cooperativos: a mesma ou diferentes heuŕısticas (“agentes”) que executam em
paralelo trocam tempo a tempo informações sobre os resultados da busca. O
projeto de uma estratégia inclui a definição

• de uma topologia de comunicação, que define quais agentes trocam in-
formações. Exemplos de topologias são grades (de diferentes dimensões,
abertas ou fechadas), estrelas, ou grafos completos.

• da informação trocada. Exemplos incluem incumbentes, memorias de
frequência, ou sub-populações.

• de uma estratégia de incluir a informação no recipiente, por exemplo
substituindo um parte da população ou combinar memorias de frequência.

• da frequência em que a informação é trocada.

Um exemplo simples de modelos cooperativos é um conjunto elite comparti-
lhado, que pode ser implementado de forma mais simples por um esquema de
mestre-escravo.
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Rotas
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Figura 5.1.: Exemplo de times asśıncronos para o PCV (Souza e Talukdar
1993).

Exemplo 5.11 (Colaboração indireta: times asśıncronos)
Uma extensão da ideia do conjunto elite compartilhado são times asśıncronos:
uma coleção de diferentes algoritmos (de construção, melhoras, ou recom-
binação) (chamados de agentes) conectadas por memorias. Cada agente tra-
balha de forma autônoma e insere, no caso de heuŕısticas construtivas, ou ex-
trai, modifica e retorna, no caso de heuŕısticas de melhora ou recombinação,
soluções das memorias.

Souza e Talukdar (1993) apresentam um time asśıncrono para o PCV com nove
agentes: inserção arbitrária (IA) completa uma rota parcial por inserção de
uma cidade aleatória não-visitada no melhor ponto; shift (SH) testa todos
deslocamentos de até três cidades consecutivas; Lin-Kernighan (LK) aplica o
algoritmo do mesmo nome; Lin-Kernigham simples (LS) aplica Lin-Kernighan
mas termina na primeira melhora encontrada; misturador (MI) tenta criar
uma nova rota com as arestas de duas rotas (eventualmente completada por
demais arestas); Held-Karp aplica o algoritmo do mesmo nome para obter um
limite inferior e 1-árvores (uma árvore mais um vértice conectado a ela via
duas arestas); misturador de árvores (MA) mistura uma rota e uma 1-árvore
para gerar uma nova rota; destruidor (DE) quebra rotas em segmentos, dados
pela interseção de duas rotas; limitador (L) remove rotas piores ou aleatórias
(com uma seleção linear de acordo co a distância, tal que a rota melhor nuca
é removida) para limitar o número de rotas. Os agentes são conectados de
acordo com a figura 5.1.

♦
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Exemplo 5.12 (Algoritmos genéticos no modelo de ilhas)
A metáfora evolutiva naturalmente sugere uma abordagem distribúıda em
algoritmos genéticos: populações panmı́ticas em quais todos indiv́ıduos da
mesma espécia podem ser recombinadas são raras. O modelo de ilhas propõe
populações com uma evolução independente e uma troca infrequente de in-
div́ıduos entre as ilhas.
Luque e Alba (2011) discutem um algoritmo genético distribúıdo para MAX-
SAT com 800/p indiv́ıduos em cada um dos p processadores, recombinação em
um ponto com probabilidade 0.7 e mutação 1-flip com probabilidade 0.2. Os
processadores forma um anel direcionado e cada 20 iterações uma população
manda um individuo aleatória para o seu vizinho que incorpora-o caso o va-
lor da função objetivo está maior que a pior indiv́ıduo da população. Numa
instância com 100 variáveis e 430 cláusulas eles observam uma aceleração de
1.93, 3.66, 7.41, e 14.7 para p = 2, 4, 8, 16 em média sobre 100 replicações. ♦

5.4. Heuŕısticas para problemas multi-objetivos

Um problema multi-objetivo possui mais que uma função objetivo. O valor de
uma solução ϕ(s) = (ϕ1(s), . . . , ϕk(s))

t ∈ Rk domina um outro valor ϕ(s ′)
caso ϕ(s) < ϕ(s ′) (com < tal que existe pelo menos uma componente estrita-
mente menor). Uma solução s cujo valor não é dominado pelo de valor de uma
outra solução é eficiente (ou Pareto-ótima). Diferente da otimização mono-
objetivo podem existir valores incomparáveis (e.g. (1, 2) e (2, 1)). Tais soluções
formam a fronteira Pareto (ver fig. 5.2), e um algoritmo multi-objetivo ge-
ralmente mantém uma população de soluções não-dominadas. Limites para
soluções não-dominadas são o ponto ideal

ι = (min
s
ϕ1(s), . . . ,min

s
ϕn(s))

dos mı́nimos em cada dimensão, e o nadir

ν = ( max
s|s eficiente

ϕ1(s), . . . , max
s|s eficiente

ϕn(s))

dos máximos das soluções eficientes em cada dimensão. Um valor υ ≤ ι que
domina o valor ideal é utópico.
Em problemas dif́ıceis as funções objetivos tendem a ser antagońısticas, i.e., a
redução do valor de uma função geralmente aumenta o valor de uma ou mais
das outras. Frequentemente um problema multi-objetivo é resolvido por esca-
larização, usando uma função mono-objetivo ponderada ω(s) =

∑
iwiϕi(s).

Isso geralmente produz somente um subconjunto das soluções eficientes (ver
fig. 5.2). Além disso, o conjunto de soluções suportadas que podem ser ob-
tidas por otimizar ω(s) para algum conjunto de pesos w, não inclui todas
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ϕ1

ϕ2

w1 = w2

Fronteira Pareto

Soluções não-suportadas

Figura 5.2.: Soluções de um problema com duas funções objetivo. Fronteira
eficiente em vermelho. A solução ótima ponderada com pesos
w1 = w2 em azul. Duas soluções eficientes não-suportadas mar-
cadas em verde.
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soluções, i.e. existem soluções não-suportadas que para nenhuma escolha de
w são mı́nimos de ω(s).

Exemplo 5.13 (Problema da mochila bi-objetivo)
O problema da mochila bi-objetivo (leia: a versão de decisão correspondente)

maximiza cx

maximiza dx

sujeito a wx ≤W
x ∈ Bn

é NP-completo por generalizar o problema da mochila. ♦

Claramente uma variante multi-objetivo de um problema é mais dif́ıcil que a
versão mono-objetiva.

Exemplo 5.14 (Caminhos mais curtos)
Determinar o caminho mais curto entre dois vértices num grafo direcionado
conhecidamente permite um algoritmo polinomial (e.g. Dijkstra). A versão
(de decisão) bi-objetiva é NP-completo (Serafini 1986): para um problema de
mochila max{cx | wx ≤ W} considera um grafo com vértices [0, n] e arestas
(ci, 0) e (0,wi) entre i − 1 e i. O problema da mochila possui uma solução
com cx ≥ C e wx ≤W sse existe um caminho de 0 para n com distâncias no
máximo

∑
i∈[n] ci − C e W. ♦

Avaliação de algoritmos multi-objetivos A comparação algoritmo multi-
objetivos precisa comparar aproximações Ê da fronteira eficiente real E. Caso E
é conhecido, uma medida simples é a fração das soluções eficientes encontradas
|Ê∩E|/|E|. Porém isso conta soluções que são razoavelmente perto de soluções
eficientes. Uma segunda medida aproveita que todas soluções eficientes são
soluções suportadas, ou caiem num subespaço “triangular” (ver figura 5.2) de
soluções suportadas e meda a fração das soluções em Ê que pertencem a esse
espaço. Outros exemplos de medidas de qualidade incluem a distância mı́nima
média para uma solução eficiente

d(Ê, E) =
∑
s∈E

min
ŝ∈Ê

d(s, ŝ)/|E|

e a distância mı́nima máxima

dmax(Ê, E) = max
s∈E

min
ŝ∈Ê

d(s, ŝ)
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ou medidas baseados no volume coberto. Caso E é desconhecido, uma ava-
liação aproximada pode ser obtido por usar o conjunto de soluções suportadas
nas medidas acima. No momento não há consenso sobre a comparação ideal
de dois algoritmos multi-objetivos.

5.4.1. Busca por modificação de soluções

Tempera simulada Para aplicar a tempera simulada no caso multi-objetivo,
o critério de Metropolis (2.3) precisa que ser modificado para comparar valores
vetoriais. Uma forma comum é a escalarização local : para pesos w a qualidade
da nova solução é avaliada pela diferença ponderada das funções objetivos
ou das probabilidades (Ulungu et al. 1999). Por exemplo, com ∆w(s, s

′) =
ω(s ′) −ω(s) obtemos o critério de Metropolis modificado

P[aceitar] =

{
1 caso ∆w(s, s

′) ≤ 0
e−∆w(s,s ′)/kT caso contrário

. (5.4)

O algoritmo mantem um conjunto de soluções eficientes durante a busca. Ele
aceita uma nova solução caso nenhuma outra solução eficiente dominá-la e
aplica critério (5.4) nos outros casos. A tempera simulada é repetida com
vários pesos w aleatórios.
Um outro exemplo de um critério de aceitação, proposto por Suppapitnarm
et al. (2000), usa um vetor de temperaturas T ∈ Rn. Com ∆T (s, s

′) =∑
i∈[n](s

′
i − s

′
i)/Ti uma solução é aceita com probabilidade{

1 caso ∆T (s, s
′) ≤ 0

e−∆T (s,s ′) caso contrário

Isso pode ser visto uma variante do critério (5.4) com pesos wi = kTT−1i
variáveis.

Exemplo 5.15 (MOSA para o problema da mochila bi-objetivo)
O algoritmo descrito acima aplicando o critério (5.4) é conhecido por MOSA
(multi-objective simulated annealing). Ulungu et al. (1999) aplicam MOSA
no problema da mochila bi-objetivo em comparação com uma solução exata.
As instâncias são geradas aleatoriamente com pesos e valores de n itens em
[1, 1000] e uma capacidade W =

∑
i∈[n]wi/r com r ∈ (0, 1). Com uma

probabilidade de aceitação inicial de P0 = 0.5, α = 1 − 1/40, L = {5, 15, 25}
conjuntos de pesos, e 100, 300, 500 passos por temperatura. A vizinhança
remove aleatoriamente itens até todos itens não selecionados cabem na mochila
e depois adiciona itens aleatórias até nenhum item cabe mais. ♦
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Busca tabu Uma busca tabu multi-objetivo tem que definir a “melhor”
solução vizinha. O algoritmo MOTS de Gandibleux et al. (1997) usa a es-
calarização de Steuer (1986)

S(s ′) = ‖λ ◦ (υ−ϕ(s ′))‖∞ + ρ ‖λ ◦ (υ−ϕ(s ′))|1

para selecionar o vizinho não tabu de menor valor S. O valor de um vizinho
s ′ depende um ponto utópico local υ (i.e. um ponto que domina o ponto ideal
da vizinhança N(s)), um conjunto de pesos λ que define a direção da busca
(com

∑
i∈[n] λi = 1) e um parâmetro ρ� 11.

Exemplo 5.16 (MOTS para o problema da mochila bi-objetivo)
O algoritmo determina inicialmente limites [l, u] para o número de itens. Na
forma mais simples ele busca soluções eficientes com um número de itens
n = u, u − 1, . . . , l, numa vizinhança que troca um item selecionado xi por
um item não selecionado xj. A reinserção do item i fica tabu para 7 iterações
e a deleção do item j para 3 iterações.
Em cada iteração o algoritmo determina todos vizinhos viáveis não tabu V,
que dominam um ponto de satisfação σ e não são dominados por uma solução
na fronteira eficiente atual Ê, e atualiza Ê com estes pontos. O ponto de
satisfação σ é 0 para n = u e se aproxima ao nadir η do conjunto eficiente Ê
do n anterior de acordo com σn−1 = σn + (ηn − σn)/δ com um tamanho de
passo δ ≥ 2. Depois a solução vizinha s ′ de maior S(s ′) é selecionada. Caso
não existe solução viável que não é tabu, o algoritmo passa para a solução
não-tabu que excede a capacidade da mochila menos posśıvel. Um critério de
aspiração permite selecionar uma solução tabu que domina todas soluções V
ou que domina um número grande de soluções em Ê.
A solução inicial é aleatória (com n = u itens selecionados) e cada direção
de busca continua com a solução final anterior. Diminuindo n, o item com o
menor valor mı́nimo dos sobre as dimensões da mochila é removido.
A implementação testa 25 conjuntos de pesos, aplica no máximo 500 iterações
por busca tabu (para cada conjunto de pesos e cada n), e usa δ = 2 na mesmas
instâncias do exemplo anterior. A busca para com n = l ou caso na vizinhança
não tem solução que domina o ponto de satisfação. ♦

5.4.2. Busca por recombinação de soluções

A maioria das propostas para heuŕısticas recombinando soluções e para algo-
ritmos genéticos e evolutivos. Num algoritmo genético somente a seleção de
indiv́ıduos para recombinação depende da função objetivo. Portanto, uma das

1A operação ◦ é multiplicação ponto a ponto de dois vetores.
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modificações que torna um algoritmo genético multi-objetivo, é uma seleção
proporcional com ω(s), com um vetor de pesos w selecionado aleatoriamente
em cada iteração (Murata et al. 1996). Essa abordagem é simples na im-
plementação, mas tem a desvantagem que ela foca em soluções suportadas.
Um dos algoritmos pioneiros trabalho com n subpopulações, e seleciona in-
div́ıduos em cada subpopulação de acordo com a k-ésima função objetivo (ver
algoritmo 5.1).

Algoritmo 5.1 (Seleção VEGA (Vector-evaluated GA))
Entrada A população atual P.

Sáıda Uma nova população P.

1 para k ∈ [n]
2 s e l e c i o n a |P|/n i n d i v ı́ d uo s p ropor c i ona l com ϕk
3 a p l i c a recombinaç ão e mutação
4 na uni ão S dos in d iv ı́ du o s s e l e c i o n a d o s
5 r e to rne a nova populaç ão

Algoritmos recentes determinam o valor de uma solução de acordo com a
proximidade com a fronteira eficiente e a densidade na fronteira eficiente, para
uma exploração melhor em direção de soluções eficientes e em regiões esparsas.
Para um conjunto de soluções S seja Ê(S) = Ê1(S) a fronteira eficiente (local)
e define recursivamente a k+ 1-ésima fronteira eficiente por

Êk+1(S) = Ê
(
S \

⋃
i∈[k]

Êk(S)
)
.

Seja ainda B(x, S) = {s ∈ S | x > s} o conjunto de soluções em S que dominam
x e W(x, S) = {s ∈ S | x > s} o conjunto de soluções dominadas por x em S.
Entre as propostas temos algoritmos que ordenam soluções s ∈ P da população
atual P

• pelo ńıvel k da sua fronteira eficiente s ∈ Êk(P) correspondente (non-
dominated sorting GA, NSGA, NSGA-II);

• pelo número 1+ |B(s, P)| de soluções que dominam s na população atual
P (MOGA);

• pelo fração total da cobertura das soluções de um conjunto E eficiente
atual que dominam s 1+

∑
t∈B(s,E) |W(t, P)|/(|P|+ 1) (strength Pareto

EA, SPEA);

• pelo soma dos postos das soluções que dominam s, r(s) = 1+
∑
t∈B(s,P) r(t).
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Técnicas para priorizar a exploração de regiões esparsas incluem

• a redução da função objetivo por um fator |Bσ(s)∩ ϕ̂(P)|−1 (com Br(s)
um esfera de raio r e centro ϕ̂(s) e ϕ̂(s) a função objetivo normalizada
para o intervalo [0, 1] em cada dimensão) (MOGA);

• a soma das distâncias normalizadas para os predecessores e sucessores
na fronteira atual em cada dimensão (“crowding distance”) (NSGA-II).

Formas de elitismo incluem manter uma ou mais fronteiras eficiente Êk(P) ou
Êk(P ∪ C) com filhos C.

Exemplo 5.17 (NSGA-II)
O algoritmo NSGA-II segue o algoritmo genético 4.3 com uma seleção por um
torneio binário de P: entre duas soluções aleatórias a solução de menor ńıvel
k ou, no caso de empate, de menor “crowding distance” é selecionada. Ele
sempre aplica mutação (M = C). A função update que atualiza a população
é realizada por

1 R := P ∪ C
2 s e j a P := Ê1(R) ∪ · · · ∪ Êk(R) com k maximal
3 i f |P| < n

4 complete P com as n− |P| s o l u ç õ e s de Êk+1(R)
5 de menor ‘ ‘ crowding d i s tance ’ ’
6 end i f

♦
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Over the last decade and a half, tabu search algorithms for machine
scheduling have gained a near-mythical reputation by consistently
equaling or establishing state-of-the-art performance levels on a
range of academic and real-world problems. Yet, despite these
successes, remarkably little research has been devoted to develo-
ping an understanding of why tabu search is so effective on this
problem class.

(Watson et al. 2006)

Despite widespread success, very little is known about why local se-
arch metaheuristics work so well and under what conditions. This
situation is largely due to the fact that researchers typically fo-
cus on demonstrating, and not analyzing, algorithm performance.
Most local search metaheuristics are developed in an ad hoc man-
ner. A researcher devises a new search strategy or a modification
to an existing strategy, typically arrived at via intuition. The algo-
rithm is implemented, and the resulting performance is compared
with that of existing algorithms on sets of widely available bench-
mark problems. If the new algorithm outperforms existing algo-
rithms, the results are published, advancing the state of the art.
Unfortunately, most researchers [...] fail to actually prove that the
proposed enhancements actually led to the observed performance
increase (as typically, multiple new features are introduced simul-
taneously) or whether the increase was due to fine tuning of the
algorithm or associated parameters, implementation tricks, flaws
in the comparative methodology, or some other factors.

Gendreau e Potvin (2010)

The field of optimization is perhaps unique in that natural or man-
made processes completely unrelated to optimization can be used
as inspiration, but other than that, what has caused the research
field to shoot itself in the foot by allowing the wheel to be in-
vented over and over again? Why is the field of metaheuristics
so vulnerable to this pull in an unscientific direction? The field
has shifted from a situation in which metaheuristics are used as

91



6. Metodologia para o projeto de heuŕısticas

inspiration to one in which they are used as justification, a shift
that has far-reaching negative consequences on its credibility as a
research area.
[. . .]
The field’s fetish with novelty is certainly a likely cause.
[. . .]
A second reason for this research to pass is the fact that the rese-
arch literature in metaheuristics is positively obsessed with playing
the up-the-wall game (Burke et al., 2009). There are no rules in
this game, just a goal, which is to get higher up the wall (which
translates to “obtain better results”) than your opponents. Sci-
ence, however, is not a game. Although some competition between
researchers or research groups can certainly stimulate innovation,
the ultimate goal of science is to understand. True innovation in
metaheuristics research therefore does not come from yet another
method that performs better than its competitors, certainly if [it]
is not well understood why exactly this method performs well.

Sörensen (2013)

As citações acima caracterizam o estado metodológico do projeto de heuŕısticas.
Por isso, é necessário enfatizar que o projeto de heuŕısticas é uma disciplina
experimental, e tem que seguir o método cient́ıfico. Em particular, o projeto

i) inicia com uma questão cient́ıfica espećıfica, bem definida e clara;
(“Qual o melhor método para resolver o PCV?”)

ii) gera um ou mais hipóteses para responder essa questão;
(“Dado o mesmo tempo, Lin-Kernighan iterado sempre é melhor que
tempera simulada.”)1

iii) projeta testes experimentais para verificar (estatisticamente) ou rejeitar
as predições das hipóteses;

iv) analisa os resultados dos experimentos e conclui; isso pode resultar em
novas hipóteses.

6.1. Projeto de heuŕısticas

O objetivo t́ıpico do projeto de uma heuŕıstica é obter soluções de boa quali-
dade em tempo adequado. Os critérios são correlacionados, i.e. mais tempo ge-
ralmente produz melhores soluções. O tempo dispońıvel depende da aplicação

1Observe que isso é uma ilustração: essa hipótese é quase irrefutável, e precisa ser muito
mais espećıfica na prática.
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e tipicamente influencia a técnica heuŕıstica (pensa: 100 metros rasos vs. ma-
ratona). Além disso, pode ser o objetivo do projeto obter uma heuŕıstica

• simples, i.e. fácil de implementar, entender e explicar;

• robusta, i.e. simples de calibrar e pouco senśıvel aos parâmetros;

• generalizável, i.e. aplicável a um grande número de problemas similares

(Barr et al. 1995; Cordeau et al. 2002).
De acordo com a nossa classificação, heuŕısticas usam três operações prin-
cipais: construção, por adição de elementos, modificação, por alteração de
elementos, e recombinação, por selecionar e unir elementos de mais que uma
solução. Essas operações são espećıficas ao problema, junto com a repre-
sentação e a função objetivo. A literatura sugere que uma meta-heuŕıstica efe-
tiva depende dos seguintes componentes, em ordem da sua importância (Wat-
son et al. 2006; Hertz et al. 2003):

1. as técnicas espećıficas ao problema;

2. a meta-heuŕıstica; uma meta-heuŕıstica básica precisa técnicas para evi-
tar estagnação (mı́nimos locais);

3. a intensificação e diversificação estratégica usando memoria que beneficia
geralmente cada heuŕıstica;

4. os parâmetros dos componentes;

5. a implementação eficiente.

Na prática inversões são posśıveis, e todos os pontos tem que ser tratados
sistematicamente para obter resultados de estado de arte. Por isso sugerimos
uma metodologia construtiva por componentes para o projeto de heuŕısticas.

1. Estuda diferentes representações do problema. Projeta uma estrutura de
dados adequada com apoia eficiente para as principais operações (adição,
deleção, alteração de elementos e avaliação incremental). Determine a
complexidade dessas operações. Considera os prinćıpios 1.1 e 1.2.

2. Propõe diferentes operações de construção, modificação e recombinação.
Avalia estatisticamente cada uma das operações e o seus parâmetros
separadamente. Para modificação considera os prinćıpios 2.1 e 2.2.

3. Considere uma análise da paisagem de otimização (cáp. 6.2).
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4. Combina sistematicamente operações básicas para uma meta-heuŕıstica
básica que evita mı́nimos locais ou uma meta-heuŕıstica construtiva. Es-
pecificamente projeta e testa se as técnicas para evitar mı́nimos locais
são efetivas. Avalia a contribuição e a interação dos componentes e o
seus parâmetros. Procede das técnicas mais simples para as mais com-
plexas (e.g. busca local, tempera simulada, busca tabu; resp. construção
gulosa, bubble search, colônia de formigas).

5. Adiciona uma estratégia de intensificação e diversificação usando uma
forma de memoria de longa duração. Procede das técnicas mais simples
para as mais complexas (e.g. Probe, GRASP-PR, algoritmo genético/busca
dispersa).

Complementarmente o método cient́ıfico sugere:

1. Compare durante o projeto com o estado de arte em algoritmos exatos,
aproximativos, e heuŕısticos em tempo e qualidade.

2. Procure não simplesmente produzir “melhores” resultados mas explicações
do funcionamento do método.

3. Os experimentos tem que ser reproduźıveis por outros pesquisadores.
Consequentemente as instâncias, as sáıdas, as soluções completas obtidas
e o código tem que ser publicado (eventualmente em forma “ileǵıvel”
mas compilável, caso investimento em desenvolvimento ou propriedade
intelectual tem que ser protegido) (Barr et al. 1995).

Complementarmente a literatura sobre solução de problemas sugere (e.g. Polya
(1945))

1. Tenta entender o problema profundamente. Resolve algumas instâncias
manualmente, testa heuŕısticas construtivas, de modificação ou recom-
binação em alguns exemplos pequenos manualmente. Para heuŕısticas
de modificação estuda exemplos de mı́nimos locais: porque eles são
mı́nimos locais? Com quais operações daria para escapar desses mı́nimos
(prinćıpio 2.2)?

2. Tenta resolver o problema de melhor forma algoritmicamente, mesmo
ele sendo NP-completo. Estuda algoritmos aproximativos e exatos para
o problema. Usa as técnicas das melhores algoritmos para construir as
operações básicas da heuŕıstica.

3. Caso problema é NP-completo: estuda a prova da dificuldade cuida-
dosamente: quais caracteŕısticas do problema torna-o dif́ıcil? Eles são
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comuns em instâncias práticas? Caso contrário, a prova pode ser sim-
plificada? Ou é posśıvel que o problema não é NP-dif́ıcil em instâncias
práticas? É posśıvel isolar caracteŕısticas que simplificam instâncias?

4. Procure identificar o subproblema mais simples que pode ser resolvido.
Procure identificar problemas semelhantes e estudar as suas soluções.
Procure generalizar o problema. Dá para transformar o problema para
um outro problema similar?

Escolha de uma meta-heuŕıstica Dado o metodologia acima, uma guia
básica para escolha de uma meta-heuŕıstica é

• A meta-heuŕıstica é menos importante que as operações básicas. Escolhe
a meta-heuŕıstica mais tarde posśıvel, e somente depois de estudar as
operações básicas.

• Seleciona uma meta-heuŕıstica que conhecidamente funciona bem em
problemas similares.

• Tendencialmente técnicas construtivas são mais adequadas para proble-
mas mais restritos.

• Tendencialmente intensificação é prefeŕıvel para uma escala de tempo
curta; algoritmos estocásticos (e.g. tempera simulada, construção ite-
rada independente) tendem a precisar mais tempo.

• Tendencialmente métodos mais sistemáticos são prefeŕıveis para proble-
mas maiores. Por exemplo, a probabilidade de encontrar soluções de
boa qualidade por construção iterada independente tipicamente diminui
com o tamanho da instância (Gendreau e Potvin 2010, cap. 20) (“central
limit catastrophe”).

6.2. Analise de paisagens de otimização

Para estimar a dificuldade de resolver um problema para uma dada vizinhança
temos que responder (empiricamente) perguntas como

• Qual a probabilidade de encontrar uma solução ótima a priori?

• O quanto a função objetivo varia entre soluções vizinhas?

• Qual a distância média entre dois mı́nimos locais?

• O quanto a função objetivo guia uma busca local para soluções ótimas?
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Essa perguntas geralmente são dif́ıceis para responder, porque eles supõem
que já conhecemos as soluções ótimas do problema. Na prática podemos
obter estimativas dessa medidas por amostragem.

Distribuição de tipos de soluções Para uma dada vizinhança podemos clas-
sificar a soluções como segue. Seja E(s) = {s ∈ N(s) | ϕ(s ′) = ϕ(s)} o conjunto
de vizinhos com o mesmo valor da função objetivo, e W(s) = N(s)\B(s)\E(s)
o conjunto de vizinhos piores que s. Com isso obtemos a classificação

|B(s)| |E(s)| |W(s)| Tipo de solução
0 0 0 Solução isolada

> 0 0 0 Máximo local estrito
0 > 0 0 Plateau

> 0 > 0 0 Máximo local
0 0 > 0 Mı́nimo local estrito

> 0 0 > 0 Declive
0 > 0 > 0 Mı́nimo local

> 0 > 0 > 0 Patamar

Exemplo 6.1 (Permutation flow shop problem)
Obtemos para as 10! = 3.628.800 soluções da instância “carlier5” do PFSSP
na vizinhança N1 que insere uma tarefa em qualquer outra posição nova:

Tipo de solução # (%) Tipo de solução # (%)
Solução isolada 0 (0) Mı́nimo local estrito 5 (0.00014)
Máximo local estrito 0 (0) Declive 134784 (3.71)
Plateau 0 (0) Mı́nimo local 1743 (0.048)
Máximo local 6 (0.00017) Patamar 3492262 (96.24)

Existem três mı́nimos globais com valor 7720. Todos três são não-estritos.
Logo a probabilidade a priori de um mı́nimo local ser um mı́nimo global é
0.0017. A distribuição dos 86 valores dos mı́nimos locais é (mı́nimo/quartil
inferior/mediana/quartil superior/máximo): 7720, 8039, 8047, 8335, 8591.
Um busca local na vizinhança N1 então é no máximo 11.3% acima do valor
ótimo. ♦

Variação entre soluções vizinhas Intuitivamente, uma paisagem de otimização
“menos cont́ınua” e “mais curvada” é mais dif́ıcil para um algoritmo de busca
local. Isso pode ser formalizado pela função de correlação da paisagem (ingl. lands-
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cape correlation function)

ρ(i) =
cov(ϕ(s)ϕ(s ′))d(s,s ′)=i

σ(ϕ)2
=
〈ϕ(s)ϕ(s ′)〉d(s,s ′)=i − 〈ϕ(s)〉2

〈ϕ2(s)〉− 〈ϕ(s)〉2
. (6.1)

Temos ρ(i) ∈ [−1, 1]: para valores perto de 1 o valor de soluções vizinhas é
perto da valor da solução atual; para um valor perto de 0, o valor de uma
solução vizinha não é relacionado com o valor da solução atual.

Exemplo 6.2 (Permutation flow shop problem)
No caso do PFSSP obtemos ρ(1) ≈ 0.79. Logo existe uma alta correlação
entre o valor de uma solução e o valor das soluções vizinhas: podemos esperar
que uma busca local funciona razoavelmente bem. ♦

A distância média entre dois mı́nimos locais pode ser estimado pela distância
de correlação (ingl. correlation length) l =

∑
i≥0 ρ(i). Com B(r) o número de

soluções numa distância no máximo r de uma solução esperamos que

P[s é ótimo local] ≈ 1/B(l).

Essa relação é conhecida como conjetura da distância de correlação.
A função de correlação ρ(i) pode ser determinada empiricamente pela auto-
correlação de uma caminhada aleatória. Para uma caminhada aleatória s1, s2, . . . , sm
com m� i obtemos o estimador

ρ(i) = ρ(ϕ(s1:m−i), ϕ(si+1:m)),

onde sa:b = (sa, . . . , sb) e ϕ(s) = (ϕ(s1), . . . , ϕ(sm)). Essa estimativa é so-
mente correta, caso uma caminhada aleatória é representativa para toda paisa-
gem de otimização. Tais paisagens são chamadas isotrópicas. Frequentemente
a correlação diminui exponencialmente com a distância de forma ρ(i) = ρ(1)i

e ρ(1) = e−1/l. Neste caso, podemos determinar l por

l = (− ln(|ρ(1)|))−1.

Para usar uma ρ(1) estimado por um caminho aleatório na conjetura da
distância de correlação, ainda temos que corrigir a distância: caso uma cami-
nhada aleatória de i passos resulta numa solução de distância média d(i), a
probabilidade de uma solução ser um ótimo local é ≈ 1/B(d(l)).

Correlação entre qualidade e distância A função objetivo guia uma busca
local para soluções melhores caso a distância d∗(s) para a solução ótima mais
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próxima de uma solução s e correlacionada com a valor da função objetivo. A
correlação qualidade-distância (ingl. fitness distance correlation)

ρ(ϕ,d∗) =
cov(ϕ,d∗)

σ(ϕ)σ(d∗)
=

〈ϕ(s)d∗(s)〉− 〈ϕ(s)〉〈d∗(s)〉√
〈ϕ2(s)〉− 〈ϕ(s)〉2

√
〈d∗2(s)〉− 〈d∗(s)〉2

(6.2)

mede isso. Temos ρ(ϕ,d∗) ∈ [−1, 1]: para valores positivos temos uma es-
trutura “big valley” com o um extremo de uma correlação linear ideal para
um valor de 1; para valores negativos a função objetivo de fato não guia a
busca. No primeiro caso intensificação maior, no segundo uma diversificação
maior é indicado. A correlação também serve para comparar vizinhanças:
muitas vezes a vizinhança que possui uma maior correlação produz resultados
melhores.

Exemplo 6.3 (Permutation flow shop problem)
Para a vizinhança “shift” que desloca uma elemento da permutação para qual-
quer outra posição, obtemos a seguinte distribuição de distância e desvio de
uma solução da solução ótima mais perta.

Um ρ ≈ 1.7 · 10−5 confirma uma fraca correlação entre distância e qualidade.
♦
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6.3. Avaliação de heuŕısticas

Uma heuŕıstica, como qualquer algoritmo, transforma determinadas entradas
(as instâncias do problema) em sáıdas ou resposta (as soluções viáveis). Essa
transformação é influenciada por fatores experimentais e pode ser analisado
(como qualquer outro processo) com métodos estat́ısticos adequadas. Os com-
ponentes do processo e o seu parâmetros são fatores controláveis; além disso
o processo sofre fatores incontroláveis (e.g. randomização e as instâncias).
Na avaliação queremos responder perguntas como

• Como os diferentes ńıveis dos fatores controláveis influem a resposta do
processo? Quais são os fatores principais? O quanto os fatores influem
a resposta? Existe uma interação entre diferentes fatores? Qual escolha
de ńıveis produz resultados bons para uma grande variação dos fatores
incontroláveis (i.e. uma heuŕıstica robusta)?

• Qual o tempo (emṕırico) para encontrar uma solução viável, de boa
qualidade, ou ótima em função do tamanho da instância?

Observação 6.1
Medidas de tempo devem ser acompanhadas por informações detalhadas sobre
o ambiente de teste (tipo de processador, memoria, etc.). Uma alternativa é
informar o custo computacional em número de operações elementares. ♦

Complexidade emṕırica de algoritmos A complexidade de tempo de um
algoritmo prático com alta probabilidade possui a forma

T(n) ∼ abnnc logd n

(ver p.ex. Sedgewick e Wayne (2011, cáp. 1.4) e Sedgewick (2010)). Frequen-
temente podemos focar em dois casos simples. Para uma série de medidas
(n, T) podemos avaliar

uma hipótese exponencial Com T(n) ∼ abn, obtemos log T ∼ loga+n log b.
Logo podemos determinar um modelo por regressão linear entre log T e
n;

uma hipótese polinomial Com T(n) ∼ anb obtemos log T ∼ loga + b logn.
Logo podemos determinar um modelo por regressão linear entre log T e
logn.

Exemplo 6.4 (Complexidade emṕırica em GNU R)
Para um arquivo com tamanho da instância n e tempo T da forma
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n T

100 233.0000

250 689.7667

500 1655.8667

podemos determinar a complexidade emṕırica em GNU R usando

d<-read.table("x.dat",header=T)

lm(log(T)~log(n),data=d)

lm(log(T)~n,data=d)

♦

Observação 6.2 (Soma de quadrados na regressão linear)
Supõe que temos valores x ∈ Rn em observações yi ∈ Rm para cada i ∈ [n]. A
regressão linear determina uma função ŷ = ax̂+b. Para a soma de quadrados
das distâncias dos pontos aproximados ŷ e as observações obtemos

SST =
∑
i,j

(yij − ȳ)
2 =
∑
i,j

(
(ȳi − ȳ) − (yij − ȳi)

)2
=
∑
i,j

(ȳi − ȳ)
2 + 2(ȳi − ȳ)(yij − ȳi) + (yij − ȳi)

2

= m
∑
i

(ȳi − ȳ)
2 + 2

∑
i

(ȳi − ȳ)
∑
j

(yij − ȳi)︸ ︷︷ ︸
nȳi−nȳi=0!

+
∑
i,j

(yij − ȳi)
2

= m
∑
i

(ȳi − ȳ)
2 ++

∑
i,j

(yij − ȳi)
2

= SSx + SSE.

Isso mostra que podemos decompor a soma de quadrados total SST em duas
componentes: a soma de quadrados obtida pela variação das médias em cada
ponto x da média geral SSx. Este parte da variação é explicado pela hipótese
linear: ele vem da variação da função linear. O segundo termo representa a
soma de quadrados obtida pela variação das medidas individuais das médias
em cada ponto x. Este parte pode ser atribúıdo ao erro experimental. Logo a
quantidade

R2 =
SSX
SST

∈ [0, 1]

representa a “fração explicada” da variação dos dados, e serve como medida
da qualidade da aproximação linear. Observe que isso é somente posśıvel
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aplicando a regressão linear em todos os dados, não nas médias das observações
em cada ponto. ♦

Exemplo 6.5 (R2 em GNU R)
Aplicando a regressão linear nos dados de Rad et al. (2009) obtemos

d<-read.table("rad-cpu.dat",header=T)

> lm(log(neht)~log(tasks)+log(machines),data=d)

Call:

lm(formula = log(neht) ~ log(tasks) + log(machines), data = d)

Coefficients:

(Intercept) log(tasks) log(machines)

-15.0553 1.6194 0.6468

> summary(lm(log(neht)~log(tasks)+log(machines),data=d))

Call:

lm(formula = log(neht) ~ log(tasks) + log(machines), data = d)

Residuals:

Min 1Q Median 3Q Max

-0.46303 -0.20359 -0.05573 0.17781 0.64577

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -15.0553 0.5960 -25.262 1.15e-09 ***

log(tasks) 1.6194 0.1171 13.830 2.28e-07 ***

log(machines) 0.6468 0.2068 3.128 0.0122 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.3767 on 9 degrees of freedom

Multiple R-squared: 0.9657,Adjusted R-squared: 0.9581

F-statistic: 126.7 on 2 and 9 DF, p-value: 2.562e-07

Logo a complexidade emṕırica do algoritmo NEHT é T(n) = 289ns n1.6m0.6

com R2 = 0.9657. ♦

Aplicado à avaliação de uma heuŕıstica isso supõe um critério de parada di-
ferente de tempo (e.g. encontrar uma solução em problemas de decisão ou
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convergência em problemas de otimização). Essas técnicas podem ser gene-
ralizadas para mais que uma variável. Por exemplo, em problemas de grafos
com n vértices e m arestas a hipótese T(n,m) ∼ anbmc gera um modelo
linear log T ∼ loga + b logn + c logm e pode ser obtido por regressão linear
novamente.

Distribuição de tempo e qualidade Frequentemente a heuŕıstica é rando-
mizada e logo o tempo de execução T e a valor V são variáveis aleatórias.
Caso a heuŕıstica resolve um problema de decisão, e.g. SAT, só consideramos
a variável T . Para um problema de decisão obtemos a probabilidade de sucesso
pela função de distribuição acumulada F(t) = P[T ≤ t]. O algoritmo encontra
um solução em tempo no máximo t com probabilidade F(t).

Para um problema de otimização o tempo depende da qualidade. Logo obte-
mos a uma probabilidade de sucesso em duas variáveis pela função de distri-
buição acumulada

F(t, v) = P[T ≤ t∧ V ≤ v].

Para um valor fixo v ′ obtemos a distribuição restrita de sucesso F(t) = F(t, v ′).
A função F(t) também é chamada o grafo time-to-target. Para um tempo fixo
t ′ obtemos a distribuição de qualidade de solução F(v) = F(t ′, v).

Exemplo 6.6 (Função de distribuição acumulada para SAT)
A seguinte figura mostra a probabilidade de sucesso de um GRASP com α =
0.8 na instância flat75-1 e 100 replicações.
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♦

Exemplo 6.7 (Distribuição de tempo e qualidade em GNU R)
Dado um arquivo de tempos de execução

time

695

2888

...

podemos visualizar a distribuição dos tempos e a distribuição acumulada
usando

d<-read.table("x.dat",header=T)

hist(d$time)

plot(ecdf(d$time),verticals=T,do.points=F)

♦

6.3.1. Testes estat́ısticos

O método básico para comparar a influência de fatores experimentais é o
teste estat́ıstico. Como podemos tratar o algoritmo usado como um fator
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experimental, ele também serve para comparar diferentes heuŕısticas. Para
aplicar um teste temos que

• formular uma hipótese nula e uma hipótese alternativa;

• escolher um teste estat́ıstico adequado;

• definir um ńıvel de significância;

• aplicar o teste e rejeitar ou aceitar a hipótese nula de acordo.

Exemplo 6.8 (Teste binomial)
Queremos descobrir se numa dada população nascem mais homens que mu-
lheres. Seja X a variável aleatória tal que X = 1 caso nasce um homem. Logo
a hipótese nula é P[X] = 0.5 e a hipótese alternativa é P[X] > 0.5.
Para decidir essa hipótese, podemos tirar uma amostra X1, . . . , X10 da po-
pulação base (de nascimentos). Supondo que as amostras são independentes,
X =
∑
i∈[n] Xi é distribúıdo binomialmente.

B(k;n, p) =

(
n

k

)
pk(1− p)n−k

a distribuição do X ∼ B(k; 10, 0.5) caso a hipótese nula é satisfeito. No exemplo
obtemos

k 0/10 1/9 2/8 3/7 4/6 5

P[X = k] 0.001 0.010 0.044 0.117 0.205 0.246
P[X ≥ k] 1.000 0.999 0.989 0.945 0.828 0.623

k 6 7 8 9 10
P[X ≥ k] 0.377 0.172 0.055 0.011 0.001

Para aplicar o teste estat́ıstico, temos que definir um ńıvel de significância.
Por exemplo, para um ńıvel de significância p = 0.05 temos P[X ≥ 9] ≤ p.
Logo podemos rejeitar a hipótese nula, com p = 0.05 caso na amostra tem 9
ou 10 nascimentos de homens. Para testar em R:

binom.test(9,10,alternative="g")

♦

No exemplo acima formulas a hipótese alternativa P[X] > 0.5. Esse hipótese
é unilateral (ou monocaudal), porque ela testa em determinada direção do
desvio. Similarmente a hipótese alternativa P[X] < 0.5 é unilateral. Uma
hipótese bilateral (ou bicaudal) é P[X] 6= 0.5. Neste caso temos que considerar
desvios para as duas direções.
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O exemplo mostra que o teste estat́ıstico adequado depende das hipóteses
sobre a distribuição da quantidade que queremos testar (no exemplo uma
distribuição binomial). Um teste estat́ıstico pode falhar em dois casos: num
erro de tipo 1 ele rejeita a hipótese nula, mesmo ela sendo correta; num erro
de tipo 2 ele não rejeita a hipótese nula, mesmo ela sendo falso. Isso pode ser
resumido por

H0 mantido H0 rejeitado
H0 verdadeiro Correto Erro tipo 1
H1 verdadeiro Erro tipo 2 Correto

O ńıvel de significância do teste é a probabilidade da fazer um erro de tipo 1
P[H0 rejeitado | H0 verdadeiro]. A probabilidade condicional de não fazer um
erro de tipo 2

1− P[H0 mantido | H1 verdadeiro = P[H0 rejeitado | H1 verdadeiro]

é chamada a potência do teste.

Exemplo 6.9 (Teste binomial)
A potência de um teste depende da magnitude do efeito que queremos detectar.
Supõe, por exemplo, que estamos interessados em detectar (pelo menos) o
efeito caso na hipótese alternativa P[X] > 0.6. A distribuição B(l; 10, 0.6) é

k 0 1 2 3 4 5

P[X = k] 0.0001 0.002 0.011 0.042 0.111 0.201
P[X ≥ k] 1.000 0.9999 0.998 0.988 0.945 0.834

k 6 7 8 9 10
P[X = k] 0.251 0.215 0.121 0.040 0.006
P[X ≥ k] 0.633 0.382 0.167 0.046 0.006

Logo a potência do teste é com 0.046 relativamente fraco. Para P[X] > 0.8 a
potência aumenta para 0.376. ♦

O exemplo mostra que o planejamento do experimento influencia a potência.
Para aumentar a potência em geral, podemos

• aumentar o ńıvel de significância: Isso aumenta também o probabilidade
de erros do tipo 1.

• aumentar a magnitude de efeito: tipicamente não temos controle direto
da magnitude, mas podemos planejar o experimento de acordo com a
magnitude do efeito que queremos detectar (e.g. a redução do desvio
relativo por 1%).
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• diminuir a variança do efeito: tipicamente não temos controle direta da
variança.

• aumentar o número de amostras (que diminui a variança): por exemplo
para n = 50 amostras, com o mesmo ńıvel de significância p = 0.05 o
teste acima precisa X ≥ 31 para rejeitar a hipótese nula e a potência do
teste acima para detectar o efeito P[X] > 0.6 aumenta para 0.336, a para
o efeito P[X] > 0.8 para 0.997. Uma amostra suficientemente grande que
garante uma potência de 0.8 é considerada aceitável.

As caracteŕısticas principais para a escolha de um teste adequado são

• o tipo de parâmetro que queremos analisar (e.g. mı́nimos, médias, me-
dianas);

• testes paramétricos ou não-paramétricos: um teste paramétrico (tipica-
mente) supõe que a variável estudada é distribúıda normalmente;

• o número de fatores e o número de ńıveis dos fatores;

• testes pareados ou não-pareados: em testes pareados, as amostras são
dependentes. Um teste de dois algoritmos numa coleção de instâncias
é um exemplo de um teste pareado. Caso as instâncias são geradas
aleatoriamente, e cada algoritmo é avaliado em uma séria de instâncias
geradas independentemente, o teste é não-pareado. (Testes de diferentes
algoritmos com as mesmas sementes randômicos não podem ser consi-
derados pareados, porque não podemos esperar que o semente tem um
efeito semelhante nos dois algoritmos.) Em geral para mais que dois
ńıveis de fatores temos um teste (randomizado) em blocos.

Testes comuns para comparação de algoritmos Para comparação de dois
ńıveis temos como testes mais relevantes no caso não-paramétrico o teste do si-
nal (ingl. sign test) e de Wilcoxon de postos com sinais (ingl. Wilcoxon signed-
rank test) para dados pareados, e o Wilcoxon da soma dos postos (ingl. Wilco-
xon rank-sum test, equivalente com o teste U de Mann-Whitney) para dados
não pareados. No caso paramétrico o teste t (pareado ou não pareado) pode
ser aplicado.

Teste estat́ıstico 6.1 (Teste do sinal)
Pré-condições Duas amostras pareadas x1, . . . , xn e y1, . . . , yn. Os va-

lores xi−yi são independentes e distribúıdos com mediana comum
m.
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Hipótese nula H0: m = 0;

Hipótese alternativa H1: m > 0, m < 0, m 6= 0.

Estat́ıstica de teste B =
∑
i∈[n][xi > yi].

Observações Valores zi = 0 são descartadas (ou atribúıdos pela metade
para o grupo com xi > yi).

Exemplo 6.10 (Teste do sinal)
O teste do sinal de fato é equivalente com um teste binomial. Para estat́ıstica
de teste B é n amostras

binom.test(B,n,alternative="greater")

binom.test(B,n,alternative="less")

binom.test(B,n,alternative="two-sided")

testa a hipótese em GNU R (com ńıvel de significância padrão 0.05.). Por
exemplo, para comparar os tempos do GSAT com os do WalkSAT (ver exerćıcios)
com hipótese alternative que WalkSAT precisa mais tempo que o GSAT

> e

GSAT WalkSAT

1 9178.66667 120000.00

2 44.13333 17502.87

3 974.60000 120000.00

4 189.80000 107423.87

> binom.test(sum(e$WalkSAT>e$GSAT),4,alternative="greater")

Exact binomial test

data: sum(e$WalkSAT > e$GSAT) and 4

number of successes = 4, number of trials = 4, p-value = 0.0625

alternative hypothesis: true probability of success is greater than 0.5

95 percent confidence interval:

0.4728708 1.0000000

sample estimates:

probability of success

1

Mesmo o GSAT precisando em todos quatro casos menos tempo que o Walk-
SAT não podemos rejeitar a hipótese nula com ńıvel de significância p = 0.05,
pelo número baixo de amostras. ♦
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Exemplo 6.11 (Teste do sinal para comparação de modelos matemáticos)
Tseng et al. (2004) usam o teste de sinal para testar se pares de modelos
matemáticas para o problema do permutation flow shop precisam tempo sig-
nificadamente diferente.

♦

Teste estat́ıstico 6.2 (Teste de Wilcoxon de postos com sinais)
Pré-condições Duas amostras pareadas x1, . . . , xn e y1, . . . , yn. Os valo-

res zi = xi−yi são independentes é distribúıdos simétricos relativo
a um mediana comum m.

Hipótese nula H0: m = 0.

Hipótese alternativa H1: m > 0, m < 0, m 6= 0.

Estat́ıstica de teste T+ =
∑
i∈[n] ri[xi > yi] com ri o ranque do valor

zi em ordem crescente de |zi|.

Observações Valores zi = 0 são descartadas. Em caso de empates na
ordem de |zi| cada elemento de um grupo recebe o ranque médio.

Em GNU R wilcox.test(...,paired=T).

Exemplo 6.12 (Teste de Wilcoxon de postos com sinais)
(Continuando o exemplo anterior.)

wilcox.test(e$WalkSAT,e$GSAT,alternative="greater",paired=T)

Wilcoxon signed rank test

data: e$WalkSAT and e$GSAT

V = 10, p-value = 0.0625

alternative hypothesis: true location shift is greater than 0

♦

Exemplo 6.13 (Gino versus Optisolve)
Coffin e Saltzmann (2000) apresentam uma análise de um exemplo de Golden
et al. (1986)2.

2A análise na publicação está errada: ela compara o tempo da primeira instância de Gino
com o tempos do Optisolve.

108



6.3. Avaliação de heuŕısticas

d<-read.table("golden-etal.dat",header=T)

d<-subset(d,optG==T&optO==T&!is.na(timeO))

plot(d$timeG,d$timeO)

abline(0,1)

binom.test(sum(d$timeO>d$timeG),nrow(e))

wilcox.test(sum(d$timeO>d$timeG),nrow(e),paired=T)

♦

Teste estat́ıstico 6.3 (Teste de Wilcoxon da soma dos postos)
Pré-condições Duas amostras não-pareadas x1, . . . , xn e y1, . . . , ym. Os

xi são independentes e distribúıdos igualmente, os yi são indepen-
dentes e distribúıdos igualmente, e os xi e yi são independentes.

Hipótese nula Fx(t) = Fy(t) para todo t, para distribuições acumuladas
Fx e Fy desconhecidas. No modelo mais simples supondo a mesma
distribuição Fx(t) = Fy(t), a hipótese alternativa é um desloca-
mento, i.e.Fx(t) = Fy(t− ∆). A hipótese nula nessa caso é ∆ = 0.

Hipótese alternativa H1: ∆ < 0, ∆ = 0, ∆ > 0.

Estat́ıstica de teste S =
∑
i∈[m] ri com ri o ranque de yi na ordem

crescente de todos valores xi e yi.

Em GNU R wilcox.test(...,paired=F).

Exemplo 6.14 (Teste de Wilcoxon da soma dos postos)
Continuando o exemplo anterior.

wilcox.test(e$WalkSAT,e$GSAT,alternative="greater",paired=F)

Wilcoxon rank sum test with continuity correction

data: e$WalkSAT and e$GSAT

W = 16, p-value = 0.0147

alternative hypothesis: true location shift is greater than 0

Warning message:

In wilcox.test.default(e$WalkSAT, e$GSAT, alternative = "greater", :

cannot compute exact p-value with ties

♦
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Teste estat́ıstico 6.4 (Teste t de Student)
Pré-condições Duas amostras pareadas x1, . . . , xn, e y1, . . . yn. Os va-

lores zi = xi − yi são distribúıdos normalmente ∼ N(µ, σ2). (A
normalidade não é necessária para amostras suficientemente gran-
des, e.g. n,m < 30).

Hipótese nula H0: µ = 0.

Hipótese alternativa H1: µ < 0, µ > 0, µ 6= 0.

Estat́ıstica de teste t = z/S
√
n com S2 =

∑
i(zi − z)/(n− 1) uma esti-

mativa da variança da população inteira. A estat́ıstica é distribúıda
t com n− 1 graus de liberdade.

Em GNU R t.test.

Teste estat́ıstico 6.5 (Teste t de Student)
Pré-condições Duas amostras não-pareadas x1, . . . , xn, e y1, . . . ym. Os

xi são distribúıdos normalmente ∼ N(µx, σ
2), os yi normalmente

∼ N(µy, σ
2). (A normalidade não é necessária para amostras sufi-

cientemente grandes, e.g. n,m < 30).

Hipótese nula H0: µx = µy.

Hipótese alternativa H1: µx < µy, µx > µy, µx 6= µy.

Estat́ıstica de teste t = (x− y)/(S
√
1/n+ 1/m) com

S =

√
(n− 1)S2x + (m− 1)S2y

n+m− 2

uma estimativa do desvio padrão da população inteira. A estat́ıstica
é distribúıda t com n+m− 2 graus de liberdade.

Em GNU R t.test(x,y,var.equal=T,paired=F); para varianças dife-
rentes: t.test(x,y,var.equal=F,paired=F).

Exemplo 6.15 (MINOS versus OB1)
Coffin e Saltzmann (2000) apresentam uma análise de um exemplo de Lustig
et al. (1991). O teste do coeficiente β1 da regressão linear do exemplo é um

110



6.3. Avaliação de heuŕısticas

teste t. Neste caso a estat́ıstica de teste t = (β̂1 − β1)/se(β̂1) com

se(β̂1) =

√
(
∑
i e
2
i )/(n− 2)∑
i(xi − x)

2

e reśıduos ei é distribúıda t com n− 2 graus de liberdade.

d<-read.table("lustig-etal.dat",header=T)

attach(d)

plot(minos.time,ob1.time)

plot(log(minos.time),log(ob1.time))

l<-lm(log(ob1.time)~log(minos.time))

summary(lm)

# t-test

es = resid(l)

n = length(es)

se = sqrt(sum(es^2)/(n-2))

se = se/sqrt(sum((log(minos.time)-mean(log(minos.time)))^2))

t=(1-coef(l)[2])/se

pt(t,n-2,lower.tail=F)

♦

6.3.2. Escolha de parâmetros

Prinćıpio de projeto 6.1 (Parâmetros (Hertz et al. 2003, p. 127))
O projeto do método em si (vizinhança, função objetivo, etc.) é mais im-
portante que a escolha de parâmetros. Um bom método deve ser robusto: a
qualidade das soluções é menos senśıvel à escolha de parâmetros. Porém, a
calibração de parâmetros não compensa um método fraco.

O ponto de partido frequentemente é um conjunto de parâmetros inciais
obtidos durante o projeto por testes ad hoc. Para heuŕısticas robustas e
parâmetros simples um tal conjunto frequentemente é uma escolha razoável.
Porém robustez tem que ser demonstrada e não podemos esperar robustez so-
bre a modificação de componentes da heuŕıstica (e.g. vizinhanças, operadores
de recombinação).
A busca para um conjunto ideal de parâmetros é uma problema de otimização
separado, que a prinćıpio pode ser resolvido pelas técnicas discutidas. Porém
para obter o valor função objetivo temos que avaliar agora uma heuŕıstica (em
diversas instâncias e com replicações no caso de algoritmos randomizados).
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A estratégia mais simples é analisar um parâmetro por vez (ingl. one factor
at a time, OFAT): determine a variação do desempenho da heuŕıstica para
cada parâmetro independentemente, com os outros parâmetros fixos. Depois
seleciona uma combinação de parâmetros que melhora o desempenho e even-
tualmente repete. Para comparação de diferentes ńıveis de uma parâmetro
pode-se aplicar testes estat́ısticos. Esse método serve também para analisar
o impacto de diversos parâmetros e selecionar um subconjunto para ser cali-
brado (“screening”). As desvantagens do OFAT são: i) ignorar interações de
parâmetros, ii) aumentar os erros de tipo 1 no caso de aplicações de testes
estat́ısticos, e iii) um custo maior que outras formas de experimentos (Mont-
gomery 2009).
Um projeto fatorial testa lk células, i.e., combinações dos l ńıveis de k fa-
tores. Para algoritmos randomizados cada célula precisa algumas replicações
do experimento. Projetos fatoriais comuns são o projeto fatorial completo 2k

(muitas vezes usado para “screening”) e o projeto fatorial completo com um
fator em l ńıveis. Um projeto fatorial geralmente supõe um modelo linear dos
efeitos dos fatores. No caso de uma aplicação em instâncias fixas obtemos
um projeto em blocos que generaliza um projeto pareado. (A aplicação para
instâncias geradas aleatoriamente poderia ser tratado como projeto completa-
mente randomizado; porém o efeito da instância muitas vezes é significativo, e
não pode ser modelado como um erro simples.) A disciplina de projeto de ex-
perimentos (ingl. design of experiments) oferece mais possibilidades, inclusive
projetos fatoriais fracionários que testam menos combinações de parâmetros,
mas em contrapartida não conseguem identificar todas interações univoca-
mente.
Projetos fatoriais podem ser avaliados por analise de variação (ingl. analysis
of variation, ANOVA) no caso paramétrico, e no caso não-paramétrico por um
teste Kruskal-Wallis (sem blocos) ou um teste de Friedman (com blocos). A
seguir discutiremos o exemplo do teste de Friedman e uma aplicação.

Teste estat́ıstico 6.6 (Teste de Friedman)
Pré-condições Um projeto em blocos (randomizado) com k tratamentos

e n blocos. As variáveis aleatórias xij seguem distribuições desco-
nhecidas Fij relacionadas por Fij(u) = F(u − βi − τj), com βi o
efeito do bloco i ∈ [n] e τj o efeito do tratamento j ∈ [k].

Hipótese nula H0: τ1 = · · · = τk.

Hipótese alternativa H1: não todos τj são iguais.

Estat́ıstica de teste Com Rij o posto do tratamento j no bloco i e Rj =
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i Rij

T =
(k− 1)

∑
j∈[k] (Rj − n(k+ 1)/2)

2∑
i∈[n],j∈[k] R

2
ij − nk(k+ 1)

2/4
.

Observações Para amostras suficientemente grandes T ∼ χ2 com k − 1
graus de liberdade. Caso H0 é rejeitado, testes post-hoc podem ser
usados para identificar o melhor tratamento.

Em GNU R friedman.test(m) com matriz m.

Uma aplicação: corridas Testar todas combinações de parâmetros em to-
das instâncias investe um tempo igual em todas combinações. Uma corrida
(ingl. race) aplica as combinações instância por instância e elimina com-
binações inefetivas da corrida logo, investindo mais tempo de teste em com-
binações melhores. Uma exemplo de uma estratégia de corrida é F-RACE,
um algoritmo que aplica o teste de Friedman para eliminar combinações de
parâmetros.

Algoritmo 6.1 (F-RACE)
Entrada Um conjunto de combinações de parâmetros Θ = {Θ1, . . . , Θk}.

Sáıda Um subconjunto Θ ′ ⊆ Θ de combinações de parâmetros efetivas.

1 F−RACE(Θ) :=
2 repeat for i = 1, . . .
3 gera a i−és ima i n s t â n c i a I
4 a p l i c a todas combinaç ões de parâmetros em Θ em I
5 a p l i c a o t e s t e de Friedman
6 ( na matr iz i× |Θ|)
7 i f H0 r e j e i t a d a then
8 s e l e c i o n a o Θj de menor posto combinado Rj
9 remove todos tratamentos s i gn i f i c adament e

10 p io r que Θj ( v ia t e s t e s post−hoc ) de Θ
11 end i f
12 until |Θ| = 1 ou l i m i t e de tempo
13 return Θ

Para gerar a conjunto Θ inicial podemos usar um projeto fatorial completo
(F-RACE(FFD)) ou simplesmente gerar amostras aleatórias dos parâmetros
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(F-RACE(RSD)).

6.3.3. Comparar com que?

• Quietly empoy assembly code and other low-level language
constructs.

• When direct run time comparison are required, compare with
an old code on an obsolete system.

“Twelve Ways to Fool the Masses When Giving Performance
Results on Parallel Computers”, Bailey (1991)

Uma heuŕıstica tem que ser comparado com outros algoritmos existentes; em
casos de problemas novos podemos comparar com algoritmos existentes para
casos particulares e generalizações do problema, ou com algoritmos mais sim-
ples (e.g. uma construção ou busca randomizada simples, ou versões simpli-
ficadas do algoritmo proposto) ou genéricos (e.g. CPLEX, localsolver). Isso
inclui algoritmos exatos e aproximativos, e evita situações como essa:

A recent paper (Davidović et al. 2012) presented a bee colony me-
taheuristic for scheduling independent tasks to identical proces-
sors, evaluating its performance on a benchmark set of instances
from the literature. We examine two exact algorithms from the li-
terature, the former published in 1995, the latter in 2008 (and not
cited by the authors). We show that both such algorithms solve to
proven optimality all the considered instances in a computing time
that is several orders of magnitude smaller than the time taken by
the new algorithm to produce an approximate solution.

Dell’Amico et al. (2012)

6.4. Notas

Barr et al. (1995) e Silberholz e Golden (2010) explicam de forma geral o tem
que ser considerado na avaliação de heuŕısticas. Luke (2011, cáp. 11.) é uma
boa introdução na ideias gerais de comparação de algoritmos e Coffin e Saltz-
mann (2000) é uma excelente introdução com diversos exemplos práticos. O
livro de Bartz-Beielstein et al. (2010) apresenta em grande detalhe a aplicação
de métodos estat́ısticos na avaliação de heuŕısticas. Hollander e Wolfe (1999)
é uma referência detalhada para métodos estat́ısticos não-paramétricos. (Le-
Veque 2013) é um ensaio recomendado sobre a publicação de código.
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Definição A.1
Uma função f é convexa se ela satisfaz a desigualdade de Jensen

f(Θx+ (1−Θ)y) ≤ Θf(x) + (1−Θ)f(y). (A.1)

Similarmente uma função f é concava caso −f é convexo, i.e., ela satisfaz

f(Θx+ (1−Θ)y) ≥ Θf(x) + (1−Θ)f(y). (A.2)

Exemplo A.1
Exemplos de funções convexas são x2k, 1/x. Exemplos de funções concavas
são log x,

√
x. ♦

Proposição A.1
Para

∑
i∈[n]Θi = 1 e pontos xi, i ∈ [n] uma função convexa satisfaz

f
(∑
i∈[n]

Θixi
)
≤
∑
i∈[n]

Θif(xi) (A.3)

e uma função concava

f
(∑
i∈[n]

Θixi
)
≥
∑
i∈[n]

Θif(xi) (A.4)

Prova. Provaremos somente o caso convexo por indução, o caso concavo
sendo similar. Para n = 1 a desigualdade é trivial, para n = 2 ela é válida
por definição. Para n > 2 define Θ̄ =

∑
i∈[2,n]Θi tal que Θ + Θ̄ = 1. Com

isso temos

f
(∑
i∈[n]

Θixi
)
= f
(
Θ1x1 +

∑
i∈[2,n]

Θixi
)
= f(Θ1x1 + Θ̄y)
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onde y =
∑
j∈[2,n](Θj/Θ̄)xj, logo

f
(∑
i∈[n]

Θixi
)
≤ Θ1f(x1) + Θ̄f(y)

= Θ1f(x1) + Θ̄f
( ∑
j∈[2,n]

(Θj/Θ̄)xj
)

≤ Θ1f(x1) + Θ̄
∑
j∈[2,n]

(Θj/Θ̄)f(xj) =
∑
i∈[n]

Θixi

�

Definição A.2
O fatorial é a função

n! : N→ N : n 7→ ∏
1≤i≤n

i.

Temos a seguinte aproximação do fatorial (fórmula de Stirling)

n! =
√
2πn

(n
e

)n
(1+O(1/n)) (A.5)

Uma estimativa menos preciso pode ser obtido estimando

en =
∑
i≥0

ni

i!
>
nn

n!

que implica

(n/e)n ≤ n! ≤ nn.

Lema A.1 (Desigualdade de Bernoulli)
Para x ≥ −1 e n ∈ N temos (1+ x)n ≥ 1+ xn.

Prova. Por indução sobre n.

(1+ x)n+1 = (1+ x)(1+ x)n ≥ (1+ x)(1+ xn)

= 1+ xn+ x+ x2n = 1+ x(n+ 1) + x2n ≥ 1+ x(n+ 1).

onde a primeira desigualdade é válida porque (1+ x) ≥ 0. �

Definição A.3 (Entropia binária)
A entropia binária para α ∈ (0, 1) é h(α) = −α log2 α− (1− α) log2 1− α.
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Lema A.2 (Ash (1967))
Para α ∈ (0, 1)

(8nα(1− α))−1/2 2h(α)n ≤
(
n

αn

)
≤ (2πnα(1− α))−1/22h(α)n

Lema A.3
Para α ∈ (0, 1/2]

(8nα(1− α))−1/2 2h(α)n ≤
∑

1≤i≤nα

(
n

i

)
≤ 2h(α)n.

Prova. A primeira desigualdade é uma consequência do lema A.2. Para a
segunda desigualdade temos

1 = (α+ (1− α))n =
∑
1≤i≤n

(
n

i

)
αi(1− α)n−i

≥
∑

1≤i≤nα

(
n

i

)(
α

1− α

)i
(1− α)n

≥
∑

1≤i≤nα

(
n

i

)(
α

1− α

)nα
(1− α)n

= αnα(1− α)(1−α)n
∑

1≤i≤nα

(
n

i

)

= 2−nh(α)
∑

1≤i≤nα

(
n

i

)
.

O terceiro passo é valido porque para α ∈ (0, 1/2] temos α/(1 − α) ≤ 1 e
i ≤ nα. �
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A.1. Probabilidade discreta

Probabilidade: Noções básicas

• Espaço amostral finito Ω de eventos elementares e ∈ Ω.

• Distribuição de probabilidade Pr[e] tal que

Pr[e] ≥ 0;
∑
e∈Ω

Pr[e] = 1

• Eventos (compostos) E ⊆ Ω com probabilidade

Pr[E] =
∑
e∈E

Pr[e]

Exemplo A.2
Para um dado sem bias temos Ω = {1, 2, 3, 4, 5, 6} e Pr[i] = 1/6. O evento
Par = {2, 4, 6} tem probabilidade Pr[Par] =

∑
e∈Par Pr[e] = 1/2. ♦

Probabilidade: Noções básicas

• Variável aleatória

X : Ω→ N

• Escrevemos Pr[X = i] para Pr[X−1(i)].

• Variáveis aleatórias independentes

P[X = x e Y = y] = P[X = x]P[Y = y]

• Valor esperado

E[X] =
∑
e∈Ω

Pr[e]X(e) =
∑
i≥0

iPr[X = i]

• Linearidade do valor esperado: Para variáveis aleatórias X, Y

E[X+ Y] = E[X] + E[Y]
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Prova. (Das formulas equivalentes para o valor esperado.)∑
0≤i

Pr[X = i]i =
∑
0≤i

Pr[X−1(i)]i

=
∑
0≤i

∑
e∈X−1(i)

Pr[e]X(e) =
∑
e∈Ω

Pr[e]X(e)

�
Prova. (Da linearidade.)

E[X+ Y] =
∑
e∈Ω

Pr[e](X(e) + Y(e))

=
∑
e∈Ω

Pr[e]X(e)
∑
e∈Ω

Pr[e]Y(e)) = E[X] + E[Y]

�

Exemplo A.3
(Continuando exemplo A.2.)
Seja X a variável aleatório que denota o número sorteado, e Y a variável
aleatório tal que Y = [a face em cima do dado tem um ponto no meio].

E[X] =
∑
i≥0

Pr[X = i]i = 1/6
∑
1≤i≤6

i = 21/6 = 7/2

E[Y] =
∑
i≥0

Pr[Y = i]i = Pr[Y = 1] = 1/2E[X+ Y] = E[X] + E[Y] = 4

♦

Lema A.4 (Forma alternativa da expectativa)
Para uma variável aleatória X que assume somente valores não-negativos in-
teiros E[X] =

∑
k≥1 P[X ≥ k] =

∑
k≥0 P[X > k].

Prova.

E[X] =
∑
k≥1

kP[X = k] =
∑
k≥1

∑
j∈[k]

P[X = k] =
∑
j≥1

∑
j≤k

P[X = k] =
∑
j≥1

P[X ≥ j].

�

Lema A.5
Para tentativas repetidas com probabilidade de sucesso p, o número esperado
de passos para o primeiro sucesso é 1/p.
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Prova. Seja X o número de passos até o primeiro sucesso. Temos P[X > k] =
(1− p)k e logo pelo lema A.4

E[X] =
∑
k≥0

(1− p)k = 1/p.

�

Proposição A.2
Para ϕ convexo ϕ(E[X]) ≤ E[ϕ(X)] e para ϕ concavo ϕ(E[X]) ≥ E[ϕ(X)].

Prova. Pela proposição A.1. �

Proposição A.3 (Desigualdade de Markov)
Seja X uma variável aleatória com valores não-negativas. Então, para todo
a > 0

Pr[X ≥ a] ≤ E[X]/a.

Prova. Seja I = [X ≥ a]. Como X ≥ 0 temos I ≤ X/a. O valor esperado de I
é E[I] = Pr[I = 1] = Pr[X ≥ a], logo

Pr[X ≥ a] = E[I] ≤ E[X/a] = E[X]/a.

�

Proposição A.4 (Limites de Chernoff (ingl. Chernoff bounds))
Sejam X1, . . . , Xn indicadores independentes com Pr[Xi] = pi. Para X =∑
i Xi temos para todo δ > 0

Pr[X ≥ (1+ δ)µ] ≤
(

eδ

(1+ δ)(1+δ)

)µ
para todo δ ∈ (0, 1)

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ
para todo δ ∈ (0, 1]

Pr[X ≥ (1+ δ)µ] ≤ e−µδ
2/3

e para todo δ ∈ (0, 1)

Pr[X ≤ (1− δ)µ] ≤ e−µδ
2/2.
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Exemplo A.4
Sejam X1, . . . , Xk indicadores com Pr[Xi = 1] = α e X =

∑
i Xi. Temos

µ = E[X] =
∑
i E[Xi] = αk. Qual a probabilidade de ter menos que a metade

dos Xi = 1?

Pr[X ≤ bk/2c] ≤ Pr[X ≤ k/2] = Pr[X ≤ µ/2α] =

Pr[X ≤ µ(1− (1− 1/2α))] ≤ e−µδ
2/2 = e−k/2α(α−1/2)

2

.

♦

Medidas básicas A covariância de duas variáveis aleatórias X e Y é

cov(X, Y) = E[(X− E[X])E[Y − E[Y]] = E[XY] − E[X]E[Y].

A variança de uma variável aleatória X é a covariança com si mesmo

σ(X) = cov(X,X) = E[X2] − E[X]2 (A.6)

e o seu desvio padrão é σ(X) =
√

cov(X). A correlação entre duas variáveis
aleatórias é a covariança normalizada

ρ(X, Y) = cov(X, Y)/(σ(X)σ(Y)). (A.7)

A figura A.1 mostra exemplos de dados com correlações diferentes.
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Figura A.1.: Três conjuntos de dados com correlação alta, quase zero, e
negativa.
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World Applications. INF: Recurso eletrônico. Springer. isbn: 978-3642220838.
url: http://link.springer.com/book/10.1007/978-3-642-22084-
5/page/1 (ver p. 83).

Lustig, I. J., R. E. Marsten e D. F. Shanno (1991). “Computational experience
with a primal-dual interior point method for linear programming”. Em:
Linear algebra and its applications 152, pp. 191–222. doi: 10.1016/0024-
3795(91)90275-2 (ver p. 110).

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller e E. Teller (1953).
“Equation of state calculations by fast computing machines”. Em: Journal
of Chemical Physics 21, pp. 1087–1092 (ver p. 32).

Michiels, W., E. Aarts e J. Korst (2007). Theoretical Aspects of Local Search.
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ińıcio de arco, 22
independente, 45
intensificação, 11, 38

Jensen
desigualdade de, 113

landscape correlation function, ver
função de correlação

late acceptance, ver aceitação atra-
sada

limitante de Held-Karp, 31
limites de Chernoff, 118
Lin-Kernighan, 82
linearidade do valor esperado, 117
listas de candidatos, 16
local branching, 75
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projeto de experimentos, 110
projetos fatorial fracionário, 110
propriedade de troca, 45

ramificação local, 75
random descent, ver descida aleatória
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