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1. Introducao

Um problema de busca é uma relagao binaria P C I x S com instancias x € 1
e solugbes y € S. O par (x,y) € P caso y é uma solugao para x.

Definicao 1.1

A classe de complexidade FNP contém os problemas de busca com relagoes
P polinomialmente limitadas (ver defini¢do 1.3) tal que (x,y) € P pode ser
decidido em tempo polinomial.

A classe de complexidade FP contém os problemas em FNP para quais existe
um algoritmo polinomial A com

y para um y tal que (x,y) € P
AlX) =45 S :
“insoliivel”  caso nao existe y tal que (x,y) € P

Teorema 1.1
FP=FNP se e somente se P=NP.

Prova. Ver por exemplo Papadimitriou (1993, cap. 10.3). [ ]

Definicao 1.2
Um problema de otimizagdo TT = (P, @,opt) é uma relagdo bindria P C 1 x S
com instancias x € I e solugoes y € S, junto com

e uma fungdo de otimizagéo (funcgao de objetivo) @ : P — N (ou Q).
e um objetivo: Encontrar minimo ou maximo
OPT(x) = opt{e(x,y) | (x,y) € P}
junto com uma solucao y* tal que f(x,y*) = OPT(x).
O par (x,y) € P caso y é uma solugdo para x.

Uma instancia x de um problema de otimizagdo possui solugdes S(x) = {y |
(x,y) € P}

Convencgao 1.1
Escrevemos um problema de otimizacao na forma
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NOME
Instancia x
Solucdo y

Objetivo Minimiza ou maximiza @(x,y).

Com um dado problema de otimizagao correspondem trés problemas:
e Construcdo: Dado x, encontra a solugdo étima y* e seu valor OPT(x).
e Avaliacdo: Dado x, encontra valor 6timo OPT(x).
e Decisdao: Dado x e k, decide se OPT(x) > k (maximizacao) ou OPT(x) <

k (minimizagao).

Definicao 1.3
Uma relagao binaria R é polinomialmente limitada se
Jp € poly : V(x,y) € R: |yl < p(x]).

Definigao 1.4 (Classes de complexidade)

A classe PO consiste dos problemas de otimizagao tal que existe um algoritmo
polinomial A com @(x,A(x)) = OPT(x) para x € 1.

A classe NPO consiste dos problemas de otimizagao tal que

(i) As instancias x € I s@o reconheciveis em tempo polinomial.
(ii) A relagdo P é polinomialmente limitada.

(iii) Para y arbitrario, polinomialmente limitado: (x,y) € P é decidivel em
tempo polinomial.

(iv) @ é computavel em tempo polinomial.

1.1. Nao tem almoco de graca

“Sire in eight words I will reveal to you all the wisdom that I
have distilled through all these years from all the writings of all
the economists who once practiced their science in your kingdom.
Here is my text: ‘There ain’t no such thing as free lunch’” (NN
1938)



1.2. Representacgao de solugoes

A frase “there ain’t no such thing as free lunch” (TANSTAFEL) expressa que
uma vantagem (p.ex. o almogo de graga em bares dos EUA no século 19) tipi-
camente é pago de outra forma (p.ex. comida salgada e bebidas caras). Para
problemas de busca e de otimizagdo, Wolpert e Macready (1997) provaram
teoremas que mostram que uma busca universal nao pode ter uma vantagem
em todos problemas de otimizacao.

Para um problema de otimizacao supde que @ : P — O® é restrito para um
conjunto finito @, e seja F = ®3(X) espaco de todas funcoes objetivos para
uma instancia do problema. Um algoritmo de otimizagao avalia pares de
solucées com o seu valor (s,v) € S(x) x @. Seja D = Um>0o(S(x) x @)™ o
conjunto de todas sequencias de pares. Um algoritmo de otimizacao que nao
repete avaliagdes pode ser modelado por uma fungdo a: d € D — {s | s #
si,para di = (si,vi),1 € [|[d|]} que mapeia a sequencia atual para a préxima
solucdo a ser avaliada (observe que o algoritmo toma essa decisao em fungao
das solugoes anteriormente visitadas e os seus valores). A avaliagdo de um
algoritmo de otimizagao é através uma funcao ®(d). Ela pode, por exemplo,
atribuir a d o valor minimo encontrado durante a busca.

Teorema 1.2 (Wolpert e Macready (1997))
Para algoritmos a,a’, um nimero de passos m e uma sequencia de valores
ve ™

Y Pifymyal=) P[fyma’l.

feF fer

O teorema mostra que uma busca genérica nao vai ser melhor que uma busca
aleatéria em média sobre todas funcoes objetivos. Porém, uma grande fracao
das fungoes possiveis nao ocorrem na pratica (uma fungao aleatéria é incom-
pressivel, i.e. podemos especifici-la somente por tabulagao, funcoes praticos
muitas vezes exibem localidade). Além disso, algoritmos de busca frequente-
mente aproveitam a estrutura do problema em questao.

1.2. Representacao de solucoes

A representacao de solugoes influencia as operagoes aplicdveis e a sua com-
plexidade. Por isso a escolha de uma representagao é importante para o de-
sempenho de uma heuristica. A representacao também define o tamanho do
espago de busca, e uma representagdo compacta (e.g. 8 coordenadas versus
permutagoes no problema das 8-rainhas) é preferivel. Para problemas restri-
tos uma representagao implicita que é transformada para uma representacao
direta por um algoritmo pode ser vantajoso.
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Para uma discussao abstrata usaremos frequentemente duas representagoes
elementares. Na representacao por conjuntos uma solucado é um conjunto
S C U de um universo U. Os conjuntos validos sao dados por uma colegao
V de subconjuntos de U. Na representacdo por varidveis uma instancia é um
subconjunto I C U, e uma solugao é uma atribuigao de valores de um universo
V aos elementos em I.

Exemplo 1.1 (Representagao do PCV por conjuntos)
Uma representacdo por conjuntos do PCV sobre um grafo G = (V;A) é o
universo de arestas U = A, com V todos subconjuntos que formam ciclos. ¢

Exemplo 1.2 (Representacdo do PCV por variaveis)

Uma representacdo por varidveis do PCV sobre um grafo G = (V,; A) usa um
universo de vértices U. Uma instancia I =V atribui a cada cidade a préxima
cidade no ciclo. Uma representacio alternativa usa I = [n] a atribui a cada
variavel 1 € I a i-ésima cidade no ciclo. O

Exemplo 1.3 (Representacio da coloragao de grafos por varidveis)

Seja U um universo de vértices e C um universo de cores. Uma representagao
da uma instancia G = (V, A) do problema da coloracao de grafos usa varidveis
V C Q e atribui cores de C as varidveis. O

1.2.1. Reducgdes de problemas

Nao todos elementos do universo sdo usados em solucoes Otimas: frequente-
mente eles tem que satisfazer certos critérios para participar numa solugao
Otima. Isso permite reduzir o problema para um ntcleo. No problema do
PCV, por exemplo, arestas mais longas tem uma baixa probabilidade de par-
ticipar de uma solugao 6tima, mas arestas bem curtas com alta probabili-
dade aparecem na solugao 6tima. No problema da mochila elementos de alta
eficiéncia sdo mais usados, e de baixa eficiéncia menos. Se soubéssemos o
arco de menor distancia nao usado numa solucao étima, e de maior distancia
usado, poderiamos reduzir o problema de acordo. Regras de reducao para um
nicleo sao possiveis em diversos problemas (e.g. o problema da mochila (Kel-
lerer et al. 2004)) e sdo essenciais para problemas tratdveis por pardmetro
fixo (Niedermeier 2002).

Principio de projeto 1.1 (Redugao de problemas)
Busca por regras de reducao do problema. Procura reduzir o problema para
um nucleo heuristico.



1.2. Representacgao de solugoes

1.2.2. Transformacoes entre representacoes

Um transformador recebe uma representagao de uma solugao e transforma
ela numa representacdo diferente. Um algoritmo construtivo randomizado
(ver capitulo 3) pode ser visto como um algoritmo que transforma uma se-
quencia de numeros aleatérios em uma solugao explicita. Ambas sao repre-
sentacoes validas da mesma solugao. Essa ideia é aplicada também em algorit-
mos genéticos, onde a representagao fonte se chama fendtipo e a representacao
destino gendtipo. A ideia de representar uma solucdo por uma sequencia de
nameros aleatérios é usado diretamente em algoritmo genéticos com chaves
aleatdrias (ver 4.5.6).

Uma transformagao é tipicamente sobrejetiva (“many-to-one”), i.e. existem
varias representagoes fonte para uma representacao destino. Idealmente, existe
o mesmo numero de representacoes fontes para representagoes destino, para
manter a mesma distribuicao de solugoes nos dois espagos.

Exemplo 1.4 (Representacdo de permutagées por chaves aleatdrias)
Uma permutagao de n elementos pode ser representada por n ntimeros aleatérios

reais em [0, 1]. Para ndmeros aleatérios sao aq, ..., an, s€ja 7t uma permutacao
tal que az(1) < ---Ax(n). Logo os nimeros a; representam a permutacao 7
(ou ). O

Uma transformacao pode ser 1til caso o problema possui muitas restrigoes e o
espaco de busca definido por uma representagao direta contém muitas solugoes
invalidas.

Exemplo 1.5 (Coloragao de vértices)

Uma representacao direta da coloragao de vértices pode ser uma atribuicao
de cores a vértices. Para um limite de no maximo n cores, temos n™ possiveis
atribuigbes, mas vérias sao infactiveis. Uma representacao indireta é uma
permutagao de vértices. Para uma dada permutacao um algoritmo guloso
processa os vértices em ordem e atribui o menor cor livre ao vértice atual. A
corretude dessa abordagem mostra

Lema 1.1

Para uma dada k-coloragao, sejam C;U- - -UCy as classes de cores. Ordenando
os vértices por classes de cores, o algoritmo guloso produz uma coloragao com
no méximo k cores.

Prova. Mostraremos por indugao que a coloracao das primeiras i classes nao
precisa mais que i cores. Para a primeira classe isso é ébvio. Supde que na
coloracao da classe 1 precisamos usar a cor i+ 1. Logo existe um vizinho com
cor i. Mas pela hipotese da inducao o vizinho nao pode ser de uma classe
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menor. Logo, temos uma aresta entre dois vértices da mesma classe, uma
contradicgao. |
Com essa representacao, todas solugoes sao validas. Observe que o tamanho
do espago da busca n! &~ v2nn(n/e)™ (por A.5) é similar nas duas repre-
sentacoes. O

Por fim, transformagoes podem ser teis caso podemos resolver subproblemas
restritos do problema eficientemente.

Exemplo 1.6 (Sequenciamento em mdéquinas paralelas nao relacionadas)
Uma solugao para R || 3~ w;C;j direta é uma atribuigao das tarefas as méaquinas,
junto com a ordem das tarefas em cada maquina.

Teorema 1.3
A solugao 6tima de 1 || 3 w;Cj é uma sequencia em ordem de tempo de
processamento ponderado nao-decrescente p1/wy < -+ < ppnwhy.

Prova. Supoe uma sequencia étima com pi/wi > piy1/Wit1. A contribuigao
das duas tarefas a fungao objetivo é w = w;Cy +w;i1Cir1. Trocando as duas
tarefas a contribuigao das restantes tarefas nao muda, e a contribuicao das
duas tarefas é

Wit1(Civ1 —Ppi) +WilCi +pis1) =WHWipip1 —Wip1Ppi.

Logo a fungao objetivo muda por A = wipiy1 — Wi1Pi, mas pela hipétese
A <O0. |
Logo a ordem étima de uma méquina pode ser computada em tempo O(nlogn),
e uma representagao reduzida mantém somente a distribuicao das tarefas &
méquinas. O

As diferentes representacoes compactas podem ser combinadas.

Exemplo 1.7 (Simple assembly line balancing)

No “simple assembly line balacing problem” do tipo 2 temos que atribuir n
tarefas, restritas por precedéncias, & m de estacoes de trabalho. Cada tarefa
possui um tempo de execugao ti, e o tempo de estacdo é o tempo total das
tarefas atribuidas a uma estagdao. O objetivo é minimizar o maior tempo de
estacao.

Uma representacgao direta é uma atribuicao de tarefas a estagoes, mas muitas
atribuicoes sao invalidas por nao satisfazer as precedéncias entre as tarefas.
Uma representacdo mais compacta atribui chaves aleatdrias as tarefas. Com
isso, uma ordem global das tarefas é definida: elas sdao ordenadas topologi-
camente, usando as chaves aleatérias como critério de desempate, caso duas
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tarefas concorram para a proxima posicao. Por fim, para uma dada ordem
de tarefas, a solucdo 6tima do problema pode ser obtida via programacao
dindmica. Seja C(i,k) o menor tempo de ciclo para tarefas i,...,n em k
maquinas, a solucao 6tima é C(1, m) e C satisfaz

mini<j<n maX{Zigj’gj tj,CG+T1,k+1)} parai<n, k>0
C(i,k) =<0 parai>mn ,
00 parai<nek=0

e logo a solugdo Gtima pode ser obtida em tempo e espago O(nm) (pré-
calculando as somas parciais). O

Essa observacao é o motivo para o

Principio de projeto 1.2 (Subproblemas)

Identifica os subproblemas mais dificeis que podem ser resolvidos em tempo
polinomial e considera uma representacao que contém somente a informagao
necessaria para definir os subproblemas.

1.3. Estratégia de busca: Diversificacao e intensificacao

No projeto de uma heuristica temos que balancear dois objetivos antagonis-
tas: a diversificagcdo da busca e a intensifica¢cdo de busca. A diversificagdo da
busca (também chamada ezxploration) procura garantir uma boa cobertura do
espaco de busca, evitando que a solugoes analisadas fiquem confinadas a uma
regiao pequena do espago total. A diversificagao ideal é um algoritmo que re-
petidamente gera solugoes aleatérias. Em contraste a intensifica¢do (também
chamada ezploitation) procura melhorar a solucao atual o mais possivel. Um
exemplo de uma intensificagao seria analisar todas solugoes dentro uma certa
distancia da solugao atual.

O tema de intensificagao e diversificacao se encontra na discussao da heuristicas
individuais na se¢bes 2 a 4; um procedimento genérico de intensificagao e di-
versificagao é apresentado na secao 4.8.

1.4. Notas

Mais informagoes sobre os teoremas NFL se encontram no artigo original de
Wolpert e Macready (1997) e em Burke e Kendall (2005, cédp. 11) e Roth-
lauf (2011, cdp. 3.4.4). Para um critica ver p.ex. Hutter (2010). Talbi (2009,
cdp. 1.4.1) discute outras representagoes de solugoes.

11






2. Busca por modificacao de solucoes

2.1. Vizinhancas

Uma busca local procura melhorar uma solugao de uma instancia de um pro-
blema aplicando uma pequena modificagdo, chamada movimento. O conjunto
de solugoes que resultam de uma pequena modificagao formam os vizinhos da
solugao.

Definicao 2.1 (Vizinhanga)

Uma wvizinhan¢a de uma instancia x de um problema de otimizagao TT é uma
funcdo N : S(x) — 25 Para uma solucéo s, os elementos N(s) sio os
vizinhos de s. Os vizinhos melhores de s sao B(s) ={s’ € N(s) | @(s’) < @(s)}.
Uma vizinhanca é simétrica, caso para s’ € N(s) temos s € N(s’).

Para uma dada vizinhanga um minimo local é uma solugao s, tal que @(s) <
@(s’) para s’ € N(s) e um mdzimo local caso @(s) > ¢(s’) para s’ € N(s).
Caso uma solucao é estritamente menor ou maior que os seus vizinhos, o étimo
local é estrito. Uma vizinhanca é exata, caso cada étimo local também é um
otimo global.

Definigao 2.2 (Grafo de vizinhanga)

O grafo de vizinhanca G = (V,E) para uma instancia x de um problema de
otimizagao TT com vizinhanga N possui vértices V = {y | (x,y) € P} e arcos
(s,s’) para s,s’ € S(x), s’ € N(s). Para uma vizinhanga simétrica, o grafo
de vizinhanca ¢ efetivamente nao-direcionado. Uma solugao s’ é alcancdvel a
partir da solugdo s, caso existe um caminho de s para s’ em G. Caso todo
vértice é alcangavel a partir de qualquer outro, G é conectado. Neste caso
o diadmetro de G é o comprimento do maior caminho mais curto entre dois
vértices em G. O grafo G é fracamente otimamente conectada caso a partir
de cada solucao s uma solugao 6tima é alcancgavel.

Uma vizinhanga é suficiente para definir uma busca local genérica. Ela seleci-
ona um vizinho de acordo com uma distribuigao P, sobre a vizinhanca fechada
N(s) = {s} U N(s). Para uma distribuicdo Ps sobre N(s), a extensdo padrao
para a vizinhanca fechada é definida por

Ps(s’) caso contrario

13
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Algoritmo 2.1 (LocalSearch)
Entrada Solugao inicial s, vizinhanga N, distribui¢ao Ps.
Saida Uma solucdo com valor no maximo @(s).
1 LocalSearch(s)=
2 s*i=s
3 repeat
4 seleciona s’ € N(s) de acordo com Py
5 si=s’
6 if @(s) < @(s*) then s*:=s
7 until critério de parada satisfeito
8 return s*
9 end

A complexidade de uma busca local depende da complexidade da selegao e do
nimero de iteragdes. A complexidade da selegdo muitas vezes é proporcional
ao tamanho da vizinhanga |N(s)|.

Duas estratégias béasicas para uma busca local sao

Caminhada aleatéria (ingl. random walk) Para N(s) # (), define Pg(s) =
T1/IN(s)I.

Amostragem aleatéria (ingl. random picking) Uma caminhada aleatdria com
N(s) = S(x) para todo s € S(x).

Melhor vizinho Para B(s) # 0, define B*(s) ={s’ € B(s) | ¢(s’) = ming»ep(s) @(s”)
e Ps(s’) = 1/|B*(s)| para s’ € B*(s). Esse estratégia tipicamente nao
consegue sair de minimos locais e tem que ser modificado por uma das
técnicas discutidas em 2.3, mas supera plateaus.

Exemplo 2.1 (Politopos e o método Simplex)

O método Simplex define uma vizinhanga entre os vértices do politopo de
um programa linear: cada par varidvel entrante e sainte admissivel define
um vizinho. Essa vizinhancga é simétrica, conectada, fracamente otimamente
conectada e exata. Logo o método resolve o problema da programacao linear.

¢

Exemplo 2.2 (k-exchange para o PCV)

Uma vizinhanca para o PCV é k-exchange Croes (1958): os vizinhos de um
ciclo sao obtidos removendo k arcos, e conectando os k caminhos resultantes
de outra forma. Para qualquer k fixo, essa vizinhanga é simétrica, conectada,
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2.1. Vizinhancgas

fracamente otimamente conectada, mas inexata (por qué?). O tamanho da
vizinhanca é O = ((E) k!2¥) = O(n*) para n cidades e k fixo.

3-exchange
_—

O

Exemplo 2.3 (k-SAT)

O problema k-SAT é decidir se existe uma atribuigao x € {0, 1} que satisfaz
uma férmula @(x) da légica proposicional em forma normal conjuntiva com k
literais por clausula.

Seja [x —yl|; = Zie[n} [xi # yi] a distdncia Hamming entre dois vetores x,y €
{0, 1}™. Uma vizinhanca conhecida para SAT é k-flip: os vizinhos de uma
solugao sao todas solucoes de distdncia Hamming k. A vizinhanca é simétrica,
fracamente otimamente conectada para k = 1, mas inexata. O tamanho da
vizinhanca é O(n*).

O

Observagao 2.1 (Célculo eficiente da funcao objetivo)
Frequentemente é mais eficiente avaliar a diferenca A(s,s’) = @(s’) — @(s)
para determinar o valor da funcgao objetivo de um vizinho. No exemplo 2.2
avaliar @(s) custa O(n), mas avaliar A(s,s’) custa O(1). Logo, determinar
o melhor vizinho na vizinhanca 2-exchange, por exemplo, custa O(n3) na
abordagem ingénua, mas é possivel em O(n?) avaliando as diferencas.

Em alguns casos a avaliacao da diferenca das diferencas é ainda mais eficiente.
Um exemplo é a programacdo quadrdtica bindria com fungao objetivo

Z qijXiXj
1,j€n]

e coeficientes simétricos (Q = Q). Avaliar @(s) custa ©(n?), avaliar a dife-
renca na vizinhanga 1-flip que troca x; = 1 — xy para um k fixo

E quxlx) E qijXiX;

i,jen] i,jen]
Z i (e — xi)xg + Z qjkx;(x xK) + qkk(xlzz - Xi)
NS, jemI\{k}
= (1 — 2x) (quk + 2 Z qjkx;)
jemI\{k}
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2. Busca por modificacao de solugoes

custa somente O(n).
Atualizando um bit 1 por x{ = 1 — x; obtemos novas diferencas

, {—Ak caso L =k (2.1)

kT Ax +2qu (1 —2x)(1 —2xq)  caso contrario.

Dado os valores Ay podemos encontrar o melhor vizinho em tempo O(n). Pas-
sando para o melhor vizinho, podemos atualizar todos valores Ay em tempo
O(n) usando (2.1). Logo, o custo de encontrar o melhor vizinho é ©(n?) ava-
liando solucdes completas, somente @(n?) calculando as diferencas, e somente
O(n) atualizando diferencas. O

2.1.1. Vizinhancas reduzidas

Uma técnica comum para melhorar o desempenho de buscas locais é reduzir
a vizinhancga heuristicamente, excluindo vizinhos com caracteristicas que com
baixa probabilidade se encontram em solugoes de boa qualidade. Uma forma
comum de reduzir a vizinhanga é usar listas de candidatos (ingl. candidate
lists).

Exemplo 2.4 (Vizinhanca reduzida para o PCV)

No caso do 2-exchange para o PCV muitas das ®(n?) vizinhos produzem ro-
tas inferiores, porque eles introduzem uma arestas longas, caso as duas arestas
originais ficam muito distantes. Logo é possivel reduzir a vizinhancga heuristi-
camente, sem expectativa de perder solucoes boas. Uma estratégia de proposto
por Johnson e McGeoch (2003) é: escolher uma cidade aleatéria, um vizinho
aleatdrio dessa cidade na rota, uma terceira cidade entre os 20 vizinhos mais
préximos de segunda cidade, e a quarta cidade como sucessor da terceira na
orientagao da rota dado pelas primeiras duas cidades. Com isso uma rota tem
no méximo 40n vizinhos. O

A redugdo de vizinhangas frequentemente é uma estratégia importante para
obter resultados de boa qualidade (Johnson e McGeoch 2003; Toth e Vigo
2003; Glover e Laguna 1997), motivo para

Principio de projeto 2.1 (Reducao de vizinhangas)
Considera eliminar das vizinhangas movimentos com baixa probabilidade de
melhorar a solugao.

2.2. Buscas locais monétonas

Uma busca local mondétona permite somente modificagoes que melhoram a
solugao atual, i.e. no algoritmo LocalSearch sempre temos P (s’) = 0 para s’ &
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2.2. Buscas locais monotonas

B(s). Logo, o algoritmo termina num 6timo local. Pela monotonia também
nao é necessario guardar a melhor solucao encontrada. A busca depende da
estratégia de selecao da nova solucao s’, também conhecida como regra de
pivoteamento.

Algoritmo 2.2 (LocalDescent)
Entrada Solugao inicial s, vizinhanca N, distribuicao Ps.

Saida Uma solucao com valor no méximo @(s).

1 LocalDescent (s):=

2 repeat

3 seleciona s’ € N(s) de acordo com P
4 s:=s'

5 until Pg(s) =1

6 return s

7 end

Descida aleatéria (ingl. stochastic hill descent) Para B(s) # () define P¢(s’) =
1/|B(s)| para s’ € B(s). Esta estratégia é equivalente com a primeira
melhora, mas em ordem aleatéria.

Primeira melhora (ingl. first improvement) A primeira melhora supde uma
vizinhanca ordenada B(s) = {by,...,bx}. Ela seleciona f = min{i |
@(bi) < @(s)}, i.e. Ps(by) = [i = f]. O método é conhecido pelos nomes
“hill climbing” (no caso de maximizagéo) ou “hill descent” (no caso de
minimizagao).

Melhor melhora (ingl. best improvement) Para B(s) # 0, define B*(s) =
{s’ € B(s) | @(s’) = mingnep(s) @(s”)} e Ps(s’) = 1/|B*(s)| para s’ €
B*(s). O método é conhecido pelos nomes “steepest ascent” (no caso de
maximizacao) ou “steepest descent” (no caso de minimizagao).

Busca por amostragem (ingl. sample search) Seleciona um subconjunto S C
N(x) aleatério de tamanho «/N(x)|, define B*(s) ={s’ € B(s) | ¢(s’) =
ming~es @(s”) e Ps(s’) = 1/|B*(s)| para s’ € B*(s).

As estratégias obviamente podem ser combinadas, por exemplo, aplicar uma
estratégia de “primeira melhora” apés uma amostragem.

A qualidade de uma busca local depende da vizinhanca: para vizinhancas
maiores esperamos encontrar étimos locais melhores. Porém a complexidade
da busca cresce com a vizinhanca. A arte, entdo, consiste em balancear estes
dois objetivos.

17



2. Busca por modificacao de solugoes

Exemplo 2.5 (Método Simplex)

Nao conhecemos regras de pivoteamento para o método Simplex que garantem
uma complexidade polinomial. Porém, a programacao linear possui solugoes
polinomiais (que nao usam busca local). Por isso, a complexidade de encontrar
o6timos locais pode ser menor que a complexidade do método iterativo. O

Exemplo 2.6 (Arvore geradora minima)

Para uma arvore geradora, podemos definir vizinhos como segue: adicione
uma aresta, e remove outra do (unico) ciclo formado. Uma drvore geradora é
minima se e somente se nao existe melhor vizinho (prova: exercicio). Por isso
a busca local resolve o problema de encontrar a arvore geradora minima. A
vizinhanga é simétrica, fracamente otimamente conectada e exata. Porém, a
busca local geralmente nao é eficiente. O

Exemplo 2.7 (OneMax)

Para um x* € {0, 1}™ fixo o problema OneMax consiste encontrar o minimo de
@(x) = [x—x*|7, i.e. x*. O ntimero de bits X corretos de uma solugao aleatéria
satisfaz E[X] = n/2 e Pr[X < n/3] < e ™36 ¢ Pr[X > 2n/3] < e "/
(aplicando limites de Chernoff (A.4)).

Uma descida aleatdria precisa tempo O(n) para selecionar um vizinho, ava-
liando a funcdo objetivo em O(1) e sem repetigdo, ¢ O(n) passos, para um
tempo total de O(n?). Uma anélise mais detalhada do caso médio é a se-
guinte: para selecionar um vizinho melhor, podemos repetidamente selecionar
um vizinho arbitrario, até encontrar um vizinho melhor. Com 1 bits diferentes,
encontramos um vizinho melhor com probabilidade i/n. Logo a selegao precisa
esperadamente n/i passos até encontrar um vizinho melhor (ver lema A.5) e
logo no maximo

Z n/i=nH, = nlogn
1<i<n

passos até encontrar x*.

A primeira melhora precisa no pior caso (todos bits diferentes) tempo esperado
©(n/1) para encontrar um vizinho melhor, e a melhor melhora tempo ©(n).
Logo, ambas precisam tempo @(n?) para encontrar x*. O

Exemplo 2.8 (GSAT)

O algoritmo GSAT (Selman et al. 1992) aplica a estratégia “melhor vizinho” na
vizinhanca 1-flip com funcao objetivo sendo o niimero de cldusulas satisfeitas
(observe que é importante escolher entre os melhores uniformemente). Ele
periodicamente recomega a busca a partir de uma solugao aleatoéria. %
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2.2. Buscas locais monotonas

Exemplo 2.9 (WalkSAT)

WalkSAT usa uma estratégia de selecao mais sofisticada: em cada passo uma
cldusula nao satisfeita é selecionada, e uma varidvel aleatéria dessa clausula
¢ invertida. (O WalkSAT proposto por Selman et al. (1994) seleciona uma
varidvel que nao invalida nenhuma outra cldusula ou com probabilidade p
uma que invalide o menor niimero e com probabilidade T —p uma aleatéria.)
Logo a vizinhanga é um subconjunto da vizinhanga 1-flip. WalkSAT também
recomega a busca a partir de uma solugao aleatdria periodicamente.

Lema 2.1 (Schoning (1999))

Seja @ uma férmula em k-CNF satisfativel com n varidveis. O algoritmo
WalkSAT com perfodo 3n precisa esperadamente O(n3/2(2(k—1)/k)™) passos
até encontrar uma atribuicao que satisfaz .

Prova. Seja a uma atribuigdo que satisfaz ¢. Vamos determinar a proba-
bilidade q que um periodo de WalkSAT encontra a. Com p; = (?)2_“ a
probabilidade de iniciar com distancia Hamming j de a, e g; a probabilidade
de encontrar a a partir da distancia j, temos

a= > P9 (*)
0<j<n

A distdncia Hamming para a diminui com probabilidade pelo menos 1/k e
aumenta com probabilidade no méximo 1—1/k. Podemos modelar o WalkSAT
como caminhada aleatdria entre classes de solugoes com distancia Hamming
j, com uma probabilidade de transi¢do de j para j — 1 (“para baixo”) de 1/k
e de j para j + 1 (“para acima”) de 1 —1/k. Com isso q; é pelo menos a
probabilidade de chegar na classe 0 a partir da classe j em no maximo 3n
passos. Para conseguir isso podemos fazer j passos para baixo, ou j + 1 para
baixo e um para acima, e no geral j 4+ | para baixo e 1 para acima. Logo

JH 21\ (k—T1\" /1"
max —_— — .
- oglg(sifj)/z 1 k k

q; =

Para 1 = o com o € (0,1) temos

q; > (U +o;oc)i) ((kk1>“ (D(ua});.

1

V

Aplicando o lema A.2 é podemos estimar

(1+20()j> >(8')71/2 1+20¢)“ 1+20¢)1+o¢ j
oj =19 o4 T+«

LSubstituindo diretamente é descartando o fator /(1 + 20)/(x(1 + o)) > 1.
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2. Busca por modificacao de solugoes

e logo

e (T2 12y T ke 1y Y
4 =19 o T+ k k ’

Escolhendo o« = 1/(k — 2) e simplificando obtemos

1 j
. N—1/2
6 > (8)) (k1> :

Finalmente, substituindo em (*)

j
q>2"+ Y G)Z“(SH‘/Z <k1_1>
]

jeln

> 2 (3n) 2 Y (TJ‘) <k‘_]>]1nj

jeMm]

-rem 2 (14 5) = g ()

Logo, o nimero esperado de periodos é

1/q —M(Z(kk_”y

e como cada periodo precisa tempo O(n) o resultado segue. |
Para uma férmula satisfativel com k = 3, por exemplo, o algoritmo precisa
O(n3/2(4/3)™) passos.

E possivel transformar esta algoritmo num algoritmo randomizado que decide
se uma formula é satisfativel com alta probabilidade. O

Exemplo 2.10 (2-opt para o PCV)
A estratégia 2-opt para o PCV é uma descida aleatéria na vizinhanga 2-
exchange. Similarmente, obtemos k-opt na vizinhanca k-exchange.

Teorema 2.1 (Chandra et al. (1999))
Para k > 2, n > 2k + 8 e para « > 1/n existe uma instancia x do PCV com
n cidades, tal que

k-opt(x)

OPT(x) ~ &
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2.2. Buscas locais monotonas

Prova. Para um k par, define distancias

dix = 1
dijit+1 =dn1 =1/nax ie2,n)
di43,2k44 = 1/
dj,2k44—j = 1/ j €K
dij = kn caso contrario

Um ciclo Hamiltoniano 6timo é dado por arestas (i, préximo(i)) com

2k+4—1 paraiimparei<Xk
i+1 paraiparei<k
i+1 para i€ [k, k + 2]
, . . 2k +4 parai=k+3

proximo(i) = < | . .
1—1 para i impar e i € [k + 3,2k + 4)
2k+4—1 paraipareie [k+3,2k+4)
141 para i€ 2k +4,n]
1 parai=n

A otimalidade segue do fato que todas arestas possuem o peso minimo 1/na.
Este ciclo é o tnico ciclo 6timo (Exercicio!). Por outro lado, o ciclo (1,2,...,n)
possui peso total 1+ (n—1)/n«, mas tem k + 1 arestas diferentes. Logo este
ciclo é um minimo local para k-exchange e para a instancia acima temos

k-opt(x)
- = > — .
OPT(x) >a+1—-1/n>«

Para provar o caso para um k impar, podemos observar que um minimo local
para o k 4+ T-exchange, também é um minimo local para k-exchange. |

Teorema 2.2 (Chandra et al. (1999))
No caso métrico 2-opt(x)/OPT(x) < 44/m.

Antes provaremos

Lema 2.2
Seja (€c1,€2y...yCnyCnr1 = €1) um minimo local de 2-opt, e k € [n] seja
Ex ={(ci,ci1) | dijir1 > 20PT(x)/Vk} Entdo [Ex| < k.

Prova. Supoe que existe um k tal que |Ey| > k.
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2. Busca por modificacao de solugoes

Figura 2.1.: Caminhos construidos na prova do teorema 2.1. Esquerda: n =
22, k = 8. Meio: n =12, k = 2. Direita: n =40, k =16. A
figura somente mostra arestas de distancia 1/no.

Figura 2.2.: [lustracao para o teorema 2.2.

A densidade de términos de arcos (ci,ciy1) € Ei? ndo pode ser demais: Supde
que numa bola com centro ¢ e raio OPT(x)/v/k temos términos tq,...t; com
1 > vk. Sejam i1,...1; os inicios correspondentes Nenhum inicio esta na
bola, por ser mais que ZOPT )/Vk distante do término. Os términos, por es-
tarem na bola, possuem dlstanc1a no maximo 20PT(x)/vk entre si. Logo, os
inicios possuem uma distancia mais que 20PT(x)/ ﬁ entre si: caso contrério,
para um par de inicios iq, i, com distancia menos que 20PT(x)/vk a solucéo
que aplica um 2-exchange substituindo (iq,tq) € (ip, ty) por (iq,in) € (ta,tv)
séria melhor, uma contradicao com a minimalidade local.

Logo tem pelo menos vk inicios com distancia pelo menos 20PT(x)/Vk.
Mas uma rota minima entre eles possui distancia pelo menos 20PT(x), uma
contradicio. Isso mostra que numa bola de raio OPT(x)/vk temos menos
que \f k términos.

20 término de (u,v) é v, o inicio u.
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2.2. Buscas locais monotonas

Por consequéncia, em Ey existem pelo menos vk términos com distancia mais
que OPT(x)/vk entre si: comecando com o conjunto de todos términos de ar-
cos em Ey vamos escolher cada vez um, e remové-lo junto com os términos com
distancia no méximo OPT(x)/vVk dele, até nenhum término sobrar. Como em
cada passo removeremos no maximo \f k términos, o conjunto resultante pos-
sui pelo menos vk términos. Mas entdo uma rota que visita todos possui
distancia mais que OPT(x), uma contradi¢do. Logo [Ex| < k. |
Com isso podemos provar o teorema 2.2.

Prova. Pelo lema, a distancia de i-ésima aresta em ordem nao-crescente e no
méximo 20PT(x)/v/i. Logo temos para a distancia da rota

> da <20PT(x) Y 1/Vi<40PT(x)vn

aeC i€n]

(porque Zie[n]]/\[igjgii]/zdi:zﬂ]/z). [

Observagao 2.2

Os teoremas nao quantificam a complexidade para encontrar o minimo local.
Chandra et al. (1999) ainda provaram que o nimero esperado de iteragoes
sobre instancias Euclidianas aleatérias em [0,1]2 é O(n'®logn). Para [0,1]3
isso se reduz para O(n®logn). Eles também provaram que no caso métrico
existem instancias com minimos locais cujo valor desvia pelo menos um fator
1/4\/n da otimalidade, i.e., o teorema assintoticamente é o melhor possivel.

O

Por final observamos que o PCV em geral néo é resolivel por busca local (em
contraste com a programagao linear e o método Simplex).

Teorema 2.3 (Papadimitriou e Steiglitz (1977))
Caso P # NP, nao existe um algoritmo de busca local com complexidade
polinomial por passo que é exato para o PCV.

Considere primeiramente o problema

CicLO HAMILTONIANO RESTRITO

Entrada Um grafo nao-direcionado G = (V;A) e um caminho Hamilto-
niano p em G.

Decisao Existe um ciclo Hamiltoniano em G?

Lema 2.3
Ciclo Hamiltoniano restrito é NP-completo.
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2. Busca por modificacao de solugoes

Prova. Por redugao do problema “Ciclo Hamiltoniano”. Considere o grafo
“diamante” abaixo com quatro “entradas” norte (N), oeste (W), sul (S) e
este (E). Entrando em N, W, S, E ele s6 pode ser atravessado por um ciclo
Hamiltoniano em dois modos, um modo EW e outro modo NS, como mostrado
do lado.

N N N
u v u v u v
/ N / AN / N
w E W E W E
N / AN / N /
X y X Yy X Y
NS N/ N /
Para uma dado instdncia G = (V,A) do problema do ciclo Hamiltoniano,

podemos construir um grafo G’ que possui um caminho Hamiltoniano como
segue. Introduz um “diamante” d, para cada vértice em v € V e chama
os quatro entradas N,, W,,S,,, e E,. Conecta os diamantes de oeste ao este
linearmente, i.e. (Eq,W2), (E2, W3),...,(En_1,Wy). Isso garante a existéncia
de um caminho Hamiltoniano comegando no oeste do primeiro vértice Wy e
terminado no este do ultimo vértice E,,. Para representar a estrutura do grafo
G, introduz para cada aresta (u,v) € A duas arestas (Ny,S,) e (Ny,Su)
conectando os diamantes correspondentes a u e v de norte a sul. Caso G
possui um ciclo Hamiltoniano, G’ também, atravessando os diamantes sempre
de modo WE de acordo com o ciclo. Caso G’ possui um ciclo Hamiltoniano,
ele usa somente os diamantes de modo NS. Caso contrério, o ciclo tem que
seguir o modo WE até terminar num dos dois vértices W7 e E,,. Logo G
também possui um ciclo Hamiltoniano.

IS I, /\\ VS NS
wi =/ — / LS/ —C/ ) E
</ < ~, < </

|
Prova.(do teorema 2.3) Por contradi¢ao. Caso existe tal busca local, podemos
decidir em tempo polinomial se uma dada solugao s é sub-6tima: é suficiente
chamar N(x, s). Mas o problema de decidir se uma solugao s é sub-6tima é NP-
completo, por redugao de Ciclo Hamiltoniano restrito. O problema pertence
a NP, porque uma solucao 6tima é um certificado curto da sub-otimalidade.
Dado um grafo nao-direcionado G = (V, A) define uma instancia do PCV com
cidades V, e distancias dq = 1 caso a € A, e dq = 2 caso contrario. O ciclo
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2.2. Buscas locais monotonas

Hamiltoniano ¢ fechando p possui distancia total (n—1)+2. Agora G possui
um ciclo Hamiltoniano sse o PCV possui uma solucao de valor n sse ¢ é sub-
6timo. ]

O

As analises de minimos locais podem trazer informacgoes relevantes sobre a
qualidade da solucao e sugerem caminhos para melhor minimos locais. Isso é
motivo do

Principio de projeto 2.2 (Vizinhangas)
Encontra exemplos de minimos locais e os compara com solugoes étimas. In-
vestiga que tipo de modificacao poderia melhorar um minimo local.

2.2.1. Segue os vencedores

Segue os vencedores (ingl. go with the winners) (Aldous e Vazirani 1994) é uma
estratégia que trabalha com multiplas solucoes. Cada solucao percorre uma
trajetéria de uma busca local mondtona. Caso uma das trajetdrias termina
num minimo local, ela continua no ponto atual de uma das outras trajetérias
que ainda ndo chegaram num minimo local. A busca termina, caso todas
trajetérias terminaram num minimo local.

Algoritmo 2.3 (Segue os vencedores (SOV))
Entrada Solucao inicial s, vizinhanca N, distribuicao Ps, o nimero de
solugoes k.

Saida Uma solucdo com valor no méximo @(s).

1 SV(s)=

2 si:=s para i€ [K]

3 s*=s

4 repeat

5 seja L:={ie[k]|B(s)=0} e L:=[k]\L
6 atribui as solugdes em L

7 uniformemente solucdes em L

8 seleciona si’em(si) de acordo com ﬁsi
9 i 1= 8]

10 s* = min{s., S1,..., Sk}

11 until L= [k]

12 return s*

13 end
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2. Busca por modificacao de solugoes

Na atribuicdo das linhas 6-7 cada solucdo em L é usada no méximo [lfl/ |LH
vezes.

A motivacao para SOV pode ser explicada no exemplo da drvore na figura 2.3.
Seja d a varidvel aleatoria da profundidade alcangada por uma particula numa
caminhada aleatéria partindo da raiz em direcdo as folhas. Temos Pld >
k] = 2% (a profundidade da raiz ¢ 0). Com n particulas independentes, seja
d* = max{dy,...,dn}. Logo

Pld*>K =1-Pld" <k =1- ] Pldi <k
i€[n]

=1-J[1-Pdi>K=1-J[1-2*=1-(0-279".

ien] ien]

Aplicando o lema A.4 obtemos

=) Pd*>K=) 1-(1-27""<) 1-(1-2"%n)=2n

k>0 k>0 k>0

(a tltima estimativa segue pela desigualdade de Bernoulli A.1).
Seja agora dS a variavel aleatéria do SOV com n particulas. Temos P[dS >
k] = (1 —2"™)* e logo

=) P@>K=>) (1-27")<=2m

k>0 k>0

Logo a profundidade esperada do SOV é exponencialmente maior que a pro-
fundidade de um ntimero equivalente de exploragoes com uma particula neste
exemplo. De fato, temos:

Teorema 2.4 (Aldous e Vazirani (1994))

Para uma arvore com profundidade D, sejam V; os vértices na profundidade i
e seja p(v) a probabilidade de visitar vértice v numa caminhada aleatéria da
raiz na diregao das folhas para uma dada distribuigdo de probabilidade p(u | v)
entre os filhos u de cada vértice interno v. Define k = maxo<i<j<p Ki,j com

Kij=Pld>i/Pld>j* ) pWv)Pld>j|v?
veVi

Entao, SOV com B = kD) particulas falha de chegar na profundidade D
com probabilidade no méximo 1/4.

O valor k é uma medida da dificuldade de superar os D niveis. No exemplo
da figura 2.3 temos k = 2 (para uma profundidade méxima fixa D).
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2.2. Buscas locais monotonas

Figura 2.3.: Exemplo de uma arvore em que segue os vencedores é exponenci-
almente mais eficiente que uma estratégia de miltiplos inicios.

2.2.2. Complexidade

A solugao 6tima de um problema de otimizacao também é um minimo local
para qualquer vizinhanga. Para problemas em PO podemos encontrar um
minimo global (e local) em tempo polinomial. Porém o exemplo do método
Simplex mostra que mesmo em casos em que podemos encontrar um minimo
local em tempo polinomial, isso nao precisa ser por uma busca local monétona.
Logo, temos o problema de analisar a complexidade de uma das busca local,
o problema de encontrar um minimo local de qualquer forma, e o problema
de encontrar o minimo local que a busca local encontraria.

Para calcular um minimo local por uma busca local monétona, claramente
pelo menos a vizinhanca tem que ser analisdvel em tempo polinomial. A
classe de complexidade PLS captura essa ideia.

Definig¢ao 2.3 (Johnson et al. (1988))

Um problema de otimizagao TT com P polinomialmente limitada, junto com
uma vizinhanga N (escrito TT/N) pertence & classe de complexidade PLS caso
existem algoritmos polinomiais I, V, N tal que

i) I(x) produz uma solugao (inicial);

ii) V(x,s) decide se é uma solucdo valida da instancia x, e caso sim, calcula
@(x,8);

iii) N(x,s) verifica se s é um minimo local, e caso contrdrio produz uma
solugao vizinha s’ € N(s) estritamente melhor, i.e. @(s’) < @(s).

Com isso podemos definir quatro problemas concretas.

COMPLEXIDADE DE UMA BUSCA LOCAL

Entrada Um problema em PLS com fungoes I, V, N fixas.
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2. Busca por modificacao de solugoes

Problema Qual a complexidade pessimista em nimero de passos sobre
todas solugoes iniciais em fungao do tamanho do problema?

PROBLEMA DE BUSCA LOCAL
Entrada Um problema em PLS.
Problema Encontra um minimo local.

Observagcdes O minimo local pode ser encontrado com qualquer algo-
ritmo, nao necessariamente por busca local.

PROBLEMA DE ENCONTRAR O MINIMO LOCAL PADRAO
Entrada Um problema em PLS com fungdes I, V, N fixas.

Problema Encontra o minimo local que a busca local definido por I, V e
N encontraria?

Teorema 2.5
FP C PLS C FNP.

Prova. Supoe que temos um problema em FP com algoritmo A. Entao existe
TT/N tal que os minimos local correspondem com as solugoes de uma instancia:
podemos escolher S(x) = {y | (x,y) € P}, ¢(x,s) = 0 e N(x,s) = {s}. O
algoritmo I é o algoritmo A, o algoritmo V decide (x,y) € P em tempo
polinomial e o algoritmo N sempre retorna “falso”.

Caso temos um problema TT/N € PLS, entdao o problema de encontrar um
minimo local pertence a FNP: as solucoes sao limitadas polinomialmente, e
podemos usar o algoritmo N para reconhecer solugoes. |
Logo, a questdo PLS C FP é “podemos encontrar minimos locais em tempo
polinomial?”.

Para relacionar problemas de busca local serve a seguinte nocao de redugao.

Definicao 2.4 (Redugao PLS)
Uma problema de busca local TT; /N7 é PLS-redutivel a um problema de busca
local TT; /N, caso existem algoritmo polinomiais S, T tal que:

e Podemos transformar instancias de TT; /Ny para TT,/N3: Para x; € I,
S(X]) e l,.

e Podemos transformar solugoes de T, /N, para solugoes de TT; /N: Para
s2 € S(x2), T(s2,x1) € S(x1).
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2.2. Buscas locais monotonas

e Os minimos locais correspondem: Para um minimo local sy € S(x3) de
TT5/N3, T(s2,%1) é um minimo local de TT; /Nj.

Com isso obtemos a nogao normal de completude. Em particular as redugoes
s@o transitivas (ver exercicio 2.2).

Definigcao 2.5 (PLS-completo)
Um problema TT/N em PLS é PLS-complete para todo problema em PLS é
PLS-redutivel a TT/N.

Considera o problema Circuit/1-flip: Dado um circuito booleano (sobre A, V, —,
por exemplo) com n entradas e m saidas encontra um minimo local para a
funcao objetivo que trata as saidas como nimero bindrio de m bits.

Teorema 2.6 (Completude de Circuit/1-flip)
Circuit/1-flip é PLS-completo.

Prova. Ver por exemplo Yannakakis (2003).

Teorema 2.7
Para k fixo PCV /k-exchange é PLS-completo.

Fato 2.1

Os problemas MaxCut/Flip a Graph-partitioning/Swap are PLS-complete.
Para os problemas Graph-partitioning/Swap, TSP /k-opt e MaxCut/Flip a
busca local precisa no caso pessimista um nimero exponencial de passos para
encontrar um minimo local. Para os mesmos problemas, o problema de en-
contrar um minimo local especifico é PSPACE-complete.

2.2.3. Notas

Uma boa introdugao a busca local encontra-se em Kleinberg e Tardos (2005,
cép. 12) ou Papadimitriou e Steiglitz (1982, cdp. 10). A dltima referéncia tem
mais material sobre a conexao entre busca local e a busca na vizinhanca de-
finida por um politopo. Michiels et al. (2007) apresentam aspectos teoricos
da busca local. Em particular o cip. 5 dessa referéncia apresenta mais deta-
lhes sobre o PCV métrico e Euclidiano. Neumann e Wegener (2006) analisam
mais profundamente o desempenho de uma busca local randomizada no pro-
blema da arvore geradora minima. Um exemplo em que a busca local é melhor
que outras abordagens é o problema métrico das k-medianas (ver por exem-
plo Korte e Vygen (2008, cép. 22). Dimitriou e Impagliazzo (1996) propoem
uma variante do algoritmo SOV que distribui as solugbes de acordo com o
numero de vizinhos melhores. Yannakakis (2009) mostra conexoes entre busca
local e jogos, Knust (1997) entre busca local e problemas de escalonamento.
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2.3. Buscas locais nao-monétonas

Uma busca local nao-mondtona permite piorar a solugao atual.

Algoritmo 2.4 (S-LocalSearch)
Entrada Solugao inicial s, distribuicao Py

Saida Uma solugdo com valor no méaximo @(s).

1 S—LocalSearch (s)=

2 sti=s

3 repeat

4 seleciona s’ € N(s) de acordo com Py
5 if aceitével(s,s’) then s:=s’

6 if @(s) < @(s*) then s*:=s

7 until critério de parada satisfeito
8 return s*

9 end

No que segue usaremos A(s,s’) = ¢@(s’) — @(s). A tabela 2.1 mostra um
resumo de estratégias de selecao e aceitacao dos métodos discutidos abaixa.

2.3.1. Critérios de parada

Em buscas locais nao-monétonas temos que definir um critério de parada
(ingl. stopping criterion). Exemplos incluem um nimero méximo de iteragoes
ou um tempo maximo. Ambos sao usados frequentemente, por serem simples,
e por permitirem comparacoes da qualidade obtida com os mesmos recursos
por métodos diferentes. Porém, eles potencialmente gastem tempo demais em
instancias em que uma boa solugao foi encontrada cedo na busca, e provavel-
mente gastem tempo de menos em instancias maiores que foram consideradas
na defini¢ao dos critérios: um bom método precisa ajustar a tempo investido
em func¢ao do tamanho do problema.

Critérios de parada dindmicos resolvem estes problemas. Exemplos séo: (i)
A solucédo encontrada possui um desvio relativo fixo de algum limite inferior
do problema. Este método fornece inclusive uma garantia da qualidade da
solucdo. (ii) Podemos determinar empiricamente, que a probabilidade de me-
lhorar a solucao incumbente é baixa. O critério mais simples desse tipo é parar
caso o método nao faz progresso por um nimero de iteragbes ou um tempo
fixo. Em fungao do método critérios mais rigorosos sao possiveis (por exemplo
por métodos estatisticos em métodos de miltiplos inicios, ver cap. 3.2).
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Tabela 2.1.: Estratégias de busca local.

Nome Estratégia de selecdo  Estratégia de aceitagdo
Aceitagao por limite ~ Cam. aleatéria A(s,s") < W(t)

Grande dildvio Cam. aleatdria o(s") < W(t)

Recorde para recorde  Cam. aleatéria A(s*,s") < W(t)

Algoritmo deménio Cam. aleatdria A(s,s’) < W(t)

Aceitagao atrasada Cam. aleatéria As'ys—x) <0

BLMR De acordo com (2.2)  Com prob. 1.

Témpera simulada Cam. aleatdria Com prob. min{eiA[S’sl)/T(t], 1}

Busca Tabu Unif. em N(s) \ L(t) Com prob. 1.

Exemplo 2.11 (Desvio relativo limitado)
O limitante de Held-Karp (ingl. Held-Karp bound) HK para o PCV ¢é o valor
do programa linear

minimiza Z CeXe
ecE

sujeito a x(6(S)) > 2 para ) £S £V
x(6(c)) =2 parav eV
0<x <1 para e € E.

e pode ser obtido eficientemente na pratica. (Aqui & é o conjunto de arestas
na fronteira do conjunto S e x o valor total deles.) No caso métrico o valor de
HK néo é menos que 2/3 do valor 6timo (Wolsey 1980). Logo, parando com
um valor menos que ocHK, para um o« > 3/2 temos uma o-aproximagdo da
solugao 6tima. O

2.3.2. Aceitacao por limite e variantes

Entre os métodos nao-mondtonos mais simples estao estratégias de aceitacao
por limite. Eles aceitam uma solugao pior, dado que o valor da solugao nao
ultrapassa um certo limite. Eles foram introduzidos como variantes deter-
ministicos da témpera simulada. A definicdo concreta do limite difere en-
tre as estratégias de aceitagdo por limite (ingl. threshold accepting) (Du-
eck e Scheuer 1990), o grande dilivio (ingl. great deluge) (Dueck 1993), via-
gem de recorde para recorde (ing. record-to-record-travel), aceitacao atrasada
(ingl. late acceptance) Burke e Bykov 2012, e algoritmo deménio (ingl. demon
algorithm (Creutz 1983).

A tabela 2.1 mostra as estratégias de forma resumida. Na tabela, W(t) é um
limite que varia com o tempo como segue:
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2. Busca por modificacao de solugoes

Aceitacdo por limite W(t+1) = W(t)—25 caso o algoritmo nao faz progresso.

Grande dilavio W(t + 1) = W(t) — 6 em cada aceitagdo de um movimento.
Dueck (1993) sugere que & seja “um pouco menos que 1% do valor médio
de A(s, W(t))".

Recorde para recorde W(t) =W.

Algoritmo demodnio Nesse tipo de algoritmo, o demoénio é um banqueiro:
Wt + 1) = W(t) — A(s,s’). Variantes incluem demodnios limitados
(Wt +1) = min{W(t) — A(s,s"), Wax}), com inflacio (a “conta” do
deménio diminiu com o tempo), ou com valor aleatéria (W(t) representa
a média de uma varidvel com distribuicdo Gaussiana e desvio padrao
fixo).

Outras formas da variagao do limite sao possiveis, e de fato, a selecao dos
W(t) é um problema em aberto (Aarts e Lenstra 2003).

2.3.3. Buscas locais estocasticas

Em buscas estocasticas o critério de aceitagao é probabilistico e geralmente
tal que solucoes de melhor valor possuam uma probabilidade maior de serem
aceitos.

Busca local monétona randomizada (BLMR)

Uma das buscas locais estocasticas mais simples, a busca local mondtona ran-
domizada (ingl. randomised iterative improvement) seleciona com probabili-
dade p um vizinho arbitrario, e com 1 —p um vizinho melhor, i.e.

p(sh) — {p/n\f(sn +(1—p)/IB(s)| caso s’ € B(s) 22)

p/IN(s)] caso s’ € N(s)\ B(s)

A probabilidade de encontrar a solugao 6tima para uma vizinhanca conectada
com uma busca local mondtona randomizada converge para 1 com um numero
de passos crescente (Hoos e Stiitzle 2004, p. 155).

Algoritmo de Metropolis

O critério de aceitagiao de Metropolis (Metropolis et al. 1953) é

1 caso A(s,s’) <0

efA(s,s’]/kT (23)

caso contrario

Placeitar s’ | s] = {
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2.3. Buscas locais nao-monétonas

(O critério foi introduzido para a simula¢do da evolu¢do de um sélido para
o equilibrio térmico, e por isso inclui a constante de Boltzmann k. No con-
texto de otimizacao ela tipicamente é ignorada, i.e. k = 1.) Uma busca local
estocastica com temperatura fixa é conhecida como algoritmo de Metropolis.
Para um T — oo o algoritmo se aproxima a uma caminhada aleatéria, para
T — 0 a uma busca local mondtona.

Témpera simulada

A témpera simulada (ingl. Simulated Annealing) foi proposto por Cerny (1985)
e Kirkpatrick et al. (1983). Ela varia a temperatura do algoritmo de Metropolis
de acordo com uma programagao de resfriamento (ingl. cooling schedule). O
motivo é que a temperatura ideal depende da escala da fungao objetivo e
geralmente também da instancia.

Um aspecto teoricamente interessante da témpera simulada é que ela converge
para a solucao Otima para certos programagoes de resfriamento. Define a
profundidade d(s) de um minimo local s como menor valor tal que uma solugao
de valor menor que @(s) é alcangéavel a partir de s via solugdes de valor no
méximo @(s) + d(s). Com isso temos

Teorema 2.8 (Hajek (1988))

Para uma constante ' e T(t) = I/ log(t+2) a témpera simulada converge assin-
toticamente para uma solugao étima sse a vizinhanga é conectada, simétrica,
e ' > D, sendo D a profundidade méxima de um minimo local.

Uma heuristica concreta usando témpera simulada precisa definir uma tempe-
ratura inicial, o nimero de iteracoes com temperatura constante ingl. tempe-
rature length, uma programacao de resfriamento, e um critério de parada.

A temperatura inicial e o nimero de iteracoes por temperatura dependem
fortemente da instancia e por isso devem ser calibrados dinamicamente. Para
a temperatura inicial, uma técnica é gerar uma série de solugoes aleatorias e
definir a temperatura inicial tal que T = A(Smin, Smax) €M qUE Spin € Smax
sao as solugoes de menor e maior valor encontradas. Uma outra técnica é
incrementar uma temperatura baixa inicial, até uma percentagem desejada
de movimentos (tipicamente > 90%) é aceito.

O numero de iteragoes por temperatura tipicamente deve ser proporcional ao
tamanho da vizinhanga para obter bons resultados (Johnson et al. 1989). Uma
outra abordagem para garantir um progresso por temperatura, e manter ela
constante até um nimero minimo de movimentos foi aceito, mas nao mais que
um limite superior de iteragoes, para evitar um custo alto para temperaturas
baixas.
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A programacéo de resfriamento mais comum é geométrica, em que T(t) = Too
com o € (0,1). Um valor tipico é « € [0.8,0.99]. Johnson et al. (1989)
concluem experimentalmente que nao ha razao para usar outras programagoes
de resfriamento (como p.ex. linear, ou logaritmico).

Como critério de terminacao podemos usar uma temperatura final, por exem-
plo. Um critério adaptativo, que detecta o “dominio” da busca local é ainda
melhor. Johnson et al. (1989) propdem, por exemplo, usar uma percenta-
gem minima de movimentos que pioram: caso menos movimentos sao aceitos
em mais que um numero fixo de niveis de temperatura, sem melhorar a me-
lhor solucao encontrada, o método termina. Como o método é estocéstico, é
indicado aplicar uma busca local depois.

Observagao 2.3 (Johnson et al. (1989))
Experimentalmente, parece que

e A témpera simulada precisa um tempo longo para obter resultados de
boa qualidade.

e Tempo gasto no inicio e no final (dominio de caminhada aleatério e busca
local) tipicamente é pouco efetivo.

e Uma execucao mais longa da témpera simulada tende a produzir melho-
res resultados que diversas repeticoes mais curtas. Isso provavelmente
se aplica também para o “reheating”.

2.3.4. Otimizacao extremal

Otimizagao extremal (ingl. extremal optimization) (Boettcher e Percus 2003)
supoOe que uma solugao s é representada por varidveis (x1, ..., xn) (ver segio 1.2)
e que cada variavel contribui linearmente a funcao objetivo com um valor
Ai(s), ie. @(s) = Zie[n] Ai(s). A vizinhanca na busca local é restrita para
vizinhos que alteram o valor uma determinada varidvel, a varidvel extrema.
A probabilidade de uma varidvel ser a varidvel extrema é proporcional a sua
contribuicao Ai(xi) na funcdo objetivo.

Algoritmo 2.5 (EO)
Entrada Solucao inicial s.

Saida Uma solugdo com valor no méaximo @(s).

1 EO(s)=
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2 s*i=s

3 repeat

4 seja $=(X71y...,Xn) com A7(s) > --- > An(s)

5 seleciona 1€ [n] com probabilidade o«i™™

6 seleciona s’ € N(s) tal que x; muda o valor
7 s:=s'

8 atualiza s*

9 until critério de parada satisfeito

10 return s*

Boettcher e Percus (2003) propoem T =1+ 0(1/lnn).

2.3.5. Busca local guiada

A busca local guidada (ingl. guided local search) penaliza elementos inde-
sejaveis na solucao, similar a otimizagdo extremal, mas por modificacao da
fungdo objetivo. Supbe uma representagdo por conjuntos e uma fungao A (s)
que define o custo do elemento u € U. (Diferente da otimizagao extremal este
custo nao precisa entrar diretamente na funcdo objetivo.) Além disso, para
cada elemento u € U, p,, é o nimero de vezes o elemento foi penalizado. A
busca local guiada usa a funcao objetivo

@'(s) =(s)+ D Pu.

ues

Em cada minimo local o método penaliza os elementos com uma wutilidade de
penalizacdo

P(s,u) = Au(s)/(1 +pi) casouw € s
o caso contrario

méxima (i.e. aumenta o p,, correspondente por 1) e continua com a busca.
Observe que a busca local guiada é independente do método para chegar num
minimo local.

2.3.6. Busca tabu

A ideia central da busca tabu é usar memoria adaptativa para guiar uma busca
local. Na forma proposta inicialmente por Glover (1986) ela aplica a estratégia
“melhor melhora” enquanto B(s) # (), e permite solucoes piores caso contrario.
Uma memoria de curta duragdo (ingl. short-term memory, ou recency-based
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memory) serve para excluir solucoes candidatas (declard-las “tabu”) da vizi-
nhanca com o objetivo de evitar ciclagem. A busca tabu demonstrou a sua
utilidade em vérias aplicagoes, porém existe pouca fundamentacao teorica:
nao existe prova de convergéncia para a otimalidade, por exemplo.

Uma busca tabu probabilistica relaxa a estratégia “melhor melhoras” para
uma busca por amostragem. Isso pode ser indicado em vizinhancas grandes
e reduz a probabilidade de ciclagem. Além disso, existem resultados tedéricos
que mostram a convergéncia nesse caso (e.g. (Faigle e Schrader 1992)).

O algoritmo 2.6 mostra uma busca local estocdstica com memoria genérica.

Algoritmo 2.6 (S-LocalSearchMemory)
Entrada Solucao inicial sg, distribuigao Pg

Saida Uma solucao com valor no maximo @(s).

1 S—LocalSearch (s)=

2 inicializa a memoria M

3 s*i=s

4 repeat

5 seleciona s’ € N(s) de acordo com ﬁS’M
6 if aceitdavel(s’;,M) then s:=s’

7 atualiza a memoria M

8 if @(s) < @(s*) then s*:=s

9 until critério de parada satisfeito
10 return s*

11 end

A busca tabu bésica define Ps apm(s’) = 1/|B*(s)| para s’ € B*(s) com B*(s) =
{s" € N(s)\ L(s,M) | @(s’") = mingren(s)\r(s,m) @(s”)} e sempre aceita a
nova solugao s’. Neste caso a lista de solugoes tabu L(s, M) resulta (da parte
da memoria de curta duracdo) de M.

A memoria de curta duracdo mais usada guarda atributos removidos ou in-
seridos em solugoes e trata uma solugao que inclui um atributo removido ou
exclui um atributo inserido recentemente como “tabu”. Na representagao por
conjuntos (ver cap. 1.2) sejam i, e 1, o Ultimo tempo em que o elemento
u € U foi inserido e removido da solugdo. Para uma duragdo tabu (ingl. tabu
tenure) fixa d, a regra tabu define um vizinho s’ de s tabu no tempo t caso

t <max{r, +d|ues’\s} (2.4)
t<max{i, +d|luecs\s'h (2.5)

Aqui a primeira restrigao proibe introduzir elementos removidos em menos
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tempo que d, e a segunda remover elementos introduzidos em menos tempo
que d. Uma boa duracao tabu depende do tamanho da instancia e um in-
tervalo adequado [dpnin(N), dmax(n)] € tem que ser determinado experimen-
talmente (Glover e Laguna 1997). Valores mais baixos tendem intensificar a
busca, mas resultam em ciclagem no limite, e valores altos tendem a diversi-
ficar a busca, mas resultam numa qualidade reduzida no limite.

Observagao 2.4 (Implementagao memoria de curta duragao)

Uma implementacao de r e u com vetores na estratégia acima acima permite
um teste tabu em tempo linear no tamanho da modificacao s @ s’, que fre-
quentemente é O(1). Caso |U| é grande demais, é preferivel usar tabelas hash.

O

A regra tabu béasica permite diversas varia¢oes. Entre os mais comuns sao

e Considerar um vizinho como tabu somente se ambas condigoes (2.4) e
(2.5) s@o satisfeitas.

e Considerar somente atributos alterados: com a, o tempo da ultima
alteracao (inser¢do ou remocao), o critério tabu é simplificado para

t <max{a,+d|ucs’ @sh

e Usar uma duragao tabu diferente em (2.4) e (2.5): quanto mais a proibigao
de um atributo restringe a solugao, quanto menor deve ser a duragao
tabu (Glover e Laguna 1997).

e Usar uma duragao tabu dinamica, por exemplo um valor aleatério em
[dimin (1), dmax(n)] ou uma sequencia fixa (e.g. um multiplo adequado
do prefixo do ruler function (1,2,1,3,1,2,1,4,1,2,..., (A001511)); Ga-
linier et al. (2011) é um exemplo de uma abordagem estado de arte que
aplica isso.)

e Declarar diferentes aspectos de um problema tabu, ou usar mais que
uma lista tabu.

e Tratar um tabu como penalidade: um atributo tabu uw nao é proibido,
mas penalizado por t — (a, + d).

Exemplo 2.12 (PCV)

Na representagao do PCV por conjuntos usando 2-exchange arestas removidas
ou inseridas se tornam tabu. Considerando critério (2.4) e (2.5) proibe desfazer
o 2-exchange por d iteragdes. Um exemplo de um aspecto diferente é declarar
todas arestas incidentes com as cidades do ultimo 2-exchange tabu. O
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Uma consequéncia de uma memoria de curta duragao é um critério de as-
pira¢do (ingl. aspiration criterion). A exclusao de atributos exclui ndo somente
solucao ja visitadas, mas também pode excluir solugoes ainda nao visitadas,
inclusive solugoes com melhores caracteristicas ou valores da funcao objetivo.
Para contornar este problema, um critério de aspiracao define excegoes da re-
gra tabu. Na forma mais simples ele permite aceitar um vizinho que melhora a
solugao incumbente. Um critério de aspiracao pode também permitir escolher
o vizinho “menos tabu” caso nao existe vizinho nao-tabu (“aspiration by de-
fault”). Esta condi¢do pode servir alternativamente como critério de parada,
além dos critérios genéricos (cap. 2.3.1).

Intensificacao e diversificacao Para melhorar a solucao pode ser ttil inten-
sificar a busca perto de solugoes de boa qualidade. Isso pode ser alcancado
reduzindo o tamanho da lista tabu, fixando partes dos atributos para um
determinado tempo, ou aplicando outras formas de buscas (e.g. um solver
exato).

Em outras fases é necessario diversificar a busca, i.e. conduzi-la para novas
solugoes.

Memoria de longa duracao Uma memoria de longa duracao pode ser usada
para guiar a busca mais efetivamente, e para intensicd- ou diversifica-la. A
memoria pode guardar solugoes de boa qualidade ou informacgoes estatisticas.
Mais comum para as tltimas sao frequéncias de pertinéncia em solugoes (re-
centemente ou globalmente) e frequéncias de alteracao de status de atributos.
Por exemplo, para intensificar a busca podemos fixar elementos que recente-
mente pertenceram a solugoes com alta frequéncia e aplicar um dos métodos
acima (“restarting”). Para diversificar podemos incentivar incluir elementos
que globalmente foram usados com baixa frequéncia, por exemplo incluindo
um termo yf, na funcao objetivo para um movimento que inclui elemento u,
que j4 foi incluido com frequéncia f,,, onde y é um parametro que depende do
dominio fungao objetivo.

As observagoes sobre intensificagao e diversificagao e os diferentes tipos de
memoria motivam

Principio de projeto 2.3

Identifica os elementos de intensificagao e diversificagao da heuristica. Procure
encontrar um equilibrio entre os dois principios. Em particular, considere for-
mas de memoria de longa duragao para melhorar o desempenho da heuristica.
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Figura 2.4.: Espago de solugoes (azul) e de minimos locais (vermelho).

2.4. Buscas locais avancadas

2.4.1. Busca local iterada

A busca local iterada (ingl. iterated local search) pode ser vista como uma
busca local no espaco de minimos locais de um problema (ver figura 2.4).

Definicao 2.6
O basin de atragdo B(s*) associado a um minimo local s* e o conjunto de
solugoes s tal que uma dada busca local iniciada em s termina em s*.

Logo, para passar de um minimo local para outro, temos que alterar a solugao
atual suficientemente para obter uma solucao nova que pertence a um basin
de atragao vizinho. Para isso, a busca local iterada perturba a solugao atual
e aplica a busca local na solugao perturbada, para obter um outro minimo
local. A forma especifica da perturbacao define a vizinhanca entre os minimos
locais e a probabilidade de transigdo. O critério de aceitacao pode ser um dos
critérios usados em uma busca ndo-monétona (e.g. o critério de aceitacao de
Metropolis).

Para perturbar o minimo local atual podemos, por exemplo, caminhar aleato-
riamente para um numero de iteragoes, ou escolher um movimento aleatério
numa vizinhanca grande. Idealmente a perturbacao é na ordem de grandeza
do diametro do basin da solugao atual: perturbagoes menores levam ao mesmo
minimo local, enquanto perturbagoes maiores se aproximam a uma caminhada
aleatéria no espago de minimos locais.

2.4.2. Busca local com vizinhanca variavel

Os métodos usando k vizinhancas N7, ..., Ny sempre voltam a usar a primeira
) )
vizinhanga, caso um movimento melhora a solucao atual. Caso contrario eles
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2. Busca por modificacao de solugoes

passam para préxima vizinhanca. Isso é o movimento basico:

Algoritmo 2.7 (Movimento)
Entrada Solucao atual s, nova solugio s’, vizinhanga atual k.

Saida Uma nova solugdo s e uma nova vizinhanga k.

1 Movimento(s,s’ k) :=
2 if @(s’) < @(s) then

3 s:=s’

4 k:=1

5 else

6 ki=k+1

7 end if

8 return (s,k)

Com isso podemos definir uma estratégia simples, chamada Variable Neigh-
borhood Descent (VND).

Algoritmo 2.8 (VND)
Entrada Solucao inicial s, conjunto de vizinhancas A;, i € [m].

Saida Uma solucdo com valor no maximo @(s).

1 rVNS(s,{Nih)=

2 k:=1

3 // até chegar num minimo local

4 // para todas wvizinhancas

5 while k<m

6 encontra o melhor vizinho s’ em Ny(s)
7 (s,k) := Movimento(s, s’, k)

8 end while

9 return s

Uma versao randomizada é o reduced variable neighborhood search.

Algoritmo 2.9 (rVNS)
Entrada Solucao inicial s, conjunto de vizinhancas A;, i € [m].
Saida Uma solucdo com valor no maximo @(s).

1 VND(s {Ni})=

2 until critério de parada satisfeito
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k=1
while k<m do
{ shake }
seleciona vizinho aleatdério s’ em Ny(s)
(s,k) :== Movimento(s, s’, k)
end while
end until
return s

O © 00O Uk Ww

—_

Uma combinagao do rVNS com uma busca local é o Variable Neighborhood
Search (VNS) bésico.

Algoritmo 2.10 (VNS)
Entrada Solucao inicial s, um conjunto de vizinhancas N, 1 € [m].

Saida Uma solugao com valor no méximo @(s).

1 VNS(s,{Ni})=
2 until critério de parada satisfeito
k=1
while k<m do
{ shake }
seleciona vizinho aleatdério s’ em Ny(s)
s” := BuscaLocal(s’)
(s,k) :== Movimento(s, s”, k)
end until
return s

O © 00O Uk Ww

—_

Observagao 2.5

A busca local em VNS pode usar uma vizinhanca diferente das vizinhancgas
que perturbam a solugao atual. Também é possivel usar o VND no lugar da
busca local. O

2.4.3. Busca local em vizinhancas grandes

Uma vizinhanga é considerada massiva (ingl. very large scale) caso o niimero
de vizinhos cresce exponencialmente com o tamanho da instancia (Pisinger
e Ropke 2010). Uma vizinhanga massiva tem uma vantagem caso o custo
maior de selecionar um vizinho é compensado pela qualidade das solugoes.
Em particular, isso é possivel caso a vizinhanga pode ser analisada em tempo
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2. Busca por modificacao de solugoes

polinomial apesar do seu tamanho exponencial, e.g. por resolver um problema
de caminhos mais curtos, fluxo maximo ou emparelhamento.

2.4.4. Deteccao de estagnacdo genérica

Watson et al. (2006) propdem um mecanismo explicito e genérico para de-
tecgao de estagnagao. Supoe que temos uma heuristica H arbitréaria, e seja
N1 (s) a préxima solugao visitada por H dado a solugao atual s. O CMF (Core
methaheuristics framework) adiciona a essa heuristica uma detecgao explicita
de estagnacao.

Algoritmo 2.11 (CMF)

Entrada Uma instancia de um problema, uma solucao inicial s, uma
distancia minima d,;i,, distancias Ly e Ap e um ntimero de iteragoes
ttest-

Saida A melhor solucdo encontrada.

1 CMF(s) :=
2 St =S
3 cada tiesy iteracoes:
4 if d(s,s¢) < dpin then
5 if escaping then
6 L:=L+AL
7 else
8 L:= Lo
9 St =S
10 s := randomWalk(s, L)
11 escaping := true
12 else
13 St =S
14 escaping := false
15 end if
16 s := Ng(s)
17 end

2.4.5. Notas

O livro de Hoos e Stiitzle (2004) é uma excelente referéncia para drea de
busca local estocastica. Os artigos Dueck e Scheuer (1990) e Dueck (1993)
que propoem aceitagao por limite, o grande dilivio e viagem de recorde para
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recorde sdo bem acessiveis. Talbi (2009) apresenta um bom resumo desses
métodos que inclui o algoritmo demoénio. A referéncia definitiva para a busca
tabu ainda é o livro de Glover e Laguna (1997), uma boa introdugéo é Hertz
et al. (2003).

2.5. Exercicios

Exercicio 2.1
A vizinhanga 2-flip para o k-SAT é simétrico? Fracamente otimamente conec-
tada? Exata? E a vizinhanca k-flip para k > 27

Exercicio 2.2
Mostra que redugoes PLS sdo transitivas.
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3. Busca por construcao de solucoes

3.1. Construcao simples

3.1.1. Algoritmos gulosos

Definicao 3.1 (Sistemas de conjuntos)

Um sistema de conjuntos é um par (U,V) de um universo U de elementos
e uma colecao V de subconjuntos de U. Caso para cada S € V existe um
u € U tal que S\{u} € V o sistema de conjuntos é acessivel. Caso V é fechado
sobre inclusdo (i.e. caso S’ C S para um S € V entdo S’ € V) o sistema é
independente e o seus elementos se chamam conjuntos independentes.

Definicao 3.2 (Matroides e greedoides)

Um sistema de conjuntos satisfaz a propriedade de troca, caso para todos
S, T €V com |S| > [T| existe um uw € S\ T tal que TU{u} € V. Um greedoide
é um sistema de conjuntos acessivel que satisfaz a propriedade de troca. Um
matroide é um sistema de conjuntos independente que satisfaz a propriedade
de troca.

Definicao 3.3 (Problema de otimizagao de um sistema de conjuntos)
Para um sistema de conjuntos (U, V) com pesos wy, € R, para u € U, o pro-
blema correspondente de otimizagao é encontrar um subconjunto independente
de maior peso total.

Observagao 3.1
Na pratica o conjunto V é especificado por um algoritmo que decide, para
cada SCUseSeV. O

Exemplo 3.1

Muitos problemas de otimizagao podem ser formulados como sistemas de con-
juntos, por exemplo o PCV (com arestas U, e V subconjuntos de circuitos
Hamiltonianos), o problema do conjunto méximo independente (com vértices
U e V os conjuntos independentes do grafo), o problema do caminho s-t mais
curto (com arestas U e V subconjuntos de caminhos s-t), ou o problema da
mochila (com itens U, e V os subconjuntos de itens que cabem na mochila).

O

Um algoritmo guloso constréi iterativamente uma solucao vélida de um sis-
tema de conjuntos acessivel.
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Algoritmo 3.1 (Algoritmo guloso)
Entrada Um sistema de conjuntos (U, V).

Saida Uma solugao S € V.

1 Guluso()=

2 S:=10

3 while U#0 do

4 seleciona ue U com w, maximal
5 U:=Uu\{u}

6 if SU{u}l€V then

7 S:=Su{u}

8 end if

9 end while

10 return S

11 end

Teorema 3.1 (Edmonds-Rado)
O algoritmo guloso resolve o problema correspondente do sistema de conjuntos
independente S = (U, V) se e somente se S é um matroide.

Prova. Supoe S é um matroide. Pela propriedade de troca, todos conjun-
tos independentes maximais possuem a mesma cardinalidade. Supde que o
algoritmo guloso produz uma solugédo S = {s1,...,sn}, mas a solucdo étima
S* ={sy,...,s5} satisfaz w(S) < w(S*). Sem perda de generalidade ws, >
W, € Ws, > Wy - para 1 < i < n. Provaremos por indugao que (*)
Ws, > Wg/, uma contradigdo com w(S) < w(S*). Para i =1 (*) é correto
pela escolha do algoritmo guloso. Para um i > 1 supde wg, < ws;. Pela
propriedade de troca existe um elemento de w € {sy,...,s{}\ {s1,...,8i—1}
tal que {s1,...,si_1,u} € V. Mas w,, < Wws; < Wy, uma contradi¢do com a
escolha do algoritmo guloso.

De modo oposto, supoe o algoritmo guloso resolve o problema correspondente
de otimizagao (para pesos arbitrdrios), mas a propriedade de troca é invélida.
Logo existem conjuntos S, T € V, tal que |S| = |T| + 1 mas para nenhum
ue S\Ttemos TU{u} € V. Define

[TI+2 paraueT
wy =< [T|+1 paraueS\T.
0 caso contrario
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Para essa instancia o algoritmo guloso comeca escolher todos elementos de T.
Depois ele nao consegue melhorar o peso total, porque um elemento em S\ T
nao pode ser adicionado, e os restantes elementos possuem peso 0. Logo o valor
da solucao gulosa é w(T) = |T|(|T| +2) < (T 4+ 1)2 < w(S), em contradicio
com o fato que o algoritmo guloso resolve o problema otimamente. |
Obtemos uma generalizacao similar com a busca local selecionando o préximo
elemento de acordo com uma distribuicao de probabilidade P sobre o uni-
verso U. Essa distribuicao pode ser adaptativa, i.e. ela depende dos elementos
selecionados anteriormente.

Algoritmo 3.2 (Algoritmo guloso generalizado)
Entrada Um sistema de conjuntos (U, V).

Saida Uma solugédo S € V.

—_

Guluso—Generalizado ()=
S==10
while U#0 do
seleciona uwue U de acordo com P
U:=U\{u}
if Su{u}eV then
S:=Su{u}
end if
end while
return S
end

— O © 00 O Uk Wi

—_ =

Seja u* = argmax, {w(u)ju € U} e B(U) ={u € U |wy = wy-}. A estratégia
gulosa corresponde com P(u) = 1/|B(U)| para u € B(u). Um algoritmo semi-
guloso relaxa este critério. Duas estratégias comuns sao:

Guloso-k  Seja U = {ug,...,un}comw; > wiyq. Seleciona S = {u1, ..., Unin{k,n}}
e define P(u) = 1/|S| para u € S. Essa estratégia seleciona um dos k melhores
elementos.

Guloso-a¢  Seja U = {uq,...,un} com wiy > wi;7. Paraum 0 < o« < 1,
seleciona S = {u; | wi > oaow,, + (1 — x)w;} e define P(u) = 1/|S| para u € S.
Essa estratégia seleciona um entre os % melhores elementos.

Entre distribuicoes de probabilidade alternativas para o guloso-« temos abor-
dagens que usam o rank r do elemento para definir um peso w;, e selecionam

o elemento com rank r com probabilidade wy/ Y~ w;. Exemplos séo
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e pesos polinomiais wy = 17 (ver 2.3.4 para uma aplicac¢do na otimizagao
extremal);

e pesos lineares we = 1/1 ou we =N — 13
e pesos logaritmicos we = 1/logr + 1; ou

e pesos exponenciais we = e~ (Bresina 1996).

Exemplo 3.2 (Construgao gulosa para o PCV)
Exemplos de construgoes gulosas para o PCV sao

e vizinho mais prorimo: escolhe uma cidade inicial aleatéria, e visita sem-
pre a cidade mais proxima nao visitada ainda, até fechar o ciclo;

e algoritmo guloso: no matroide com U todos arcos e V subconjuntos de
arcos de ciclos Hamiltonianos, como acima;

e 0 algoritmo de Clarke-Wright: define uma cidade aleatéria como centro
e forma “pseudo-rotas” (2-ciclos) do centro para todos outras cidades.
Ranqueia todos pares de cidades diferente do centro pela reducao de
custos (“savings”) obtido passando diretamente de uma cidade para ou-
tra, nao visitando o centro. Processa os pares nessa ordem, aplicando
cada redugao que mantém uma colecao de pseudo-rotas, até a colegao é
reduzida para um tnico ciclo.

e 0 algoritmo de Cristofides para instancias métricas: junta uma arvore
geradora minima das cidades com um emparelhamento perfeito de custo
minimo entre os vértices de grau impar da arvore, encontre um caminho
Euleriano nesse grafo, e torna-lo um ciclo pulando cidades repetidas.

3.1.2. Algoritmos de prioridade

Supoe uma representacao de uma solugao por variaveis. Uma solucao parcial
é um atribuicao com wvaridveis livres, i.e. variaveis que ainda nao receberam
valores. Algoritmos de prioridade processam as varidveis em I em alguma
ordem definida por uma fun¢do de ordenamento o que retorna um sequencia
das variaveis livres. A varidvel atual recebe um valor em V de acordo com uma
funcdo de mapeamento f. Caso o depende somente da instancia obtemos um
algoritmo de prioridade fiza; caso a ordem depende também da atual solugao
parcial obtemos um algoritmo de prioridade adaptativa.
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Algoritmo 3.3 (Algoritmo de prioridade)
Entrada Uma instancia I C U, uma funcao de ordenamento o e uma
fun¢ao de mapeamento f.

Saida Uma solugao S, i.e. um atribuicdo de valores em V aos elementos
em L.

1 Prioridade()=

2 S:=190

3 while 1#0 do

4 seja o(L,S) = (x1,...,%k)
5 S Z:SU{X1 Hf(S,X1 )}

6 [:=T1\{x7}

7 end while

8 return S

Observagao 3.2

Um algoritmo de prioridade pode ser relaxado, da mesma forma que algoritmos
gulosos, por selecionar a nova varidvel a ser fixada entre as «% ou as k varidveis
de maior prioridade. O

Exemplo 3.3 (Coloragao de grafos)

Com a representacdo do exemplo 1.3 obtemos um algoritmo de prioridade
fixa ordenando os vértices por grau nao-crescente e usando uma funcao de
mapeamento que atribui a menor cor livre ao vértice atual. Obtemos uma
variante adaptativa ordenando os vértices ainda nao coloridos por grau nao-
crescente com respeito a outros vértices nao coloridos, com a mesma funcao
de mapeamento. O

Exemplo 3.4 (Empacotamento bidimensional)

No problema de empacotamento bidimensional (ingl. 2D strip packing) temos
n caixas de dimensoes l; X ci. O objetivo é empacotar as caixas numa faixa
de largura L sem sobreposicao, paralelo com os eixos, e sem rotaciona-los, tal
que o comprimento total ocupado é minimizado. Um algoritmo de prioridade
ordena as caixas por altura, largura, circunferéncia, ou drea nao-crescente, e
aloca a caixa atual na posicao mais para baixo e mais para esquerda possivel
(“bottom left heuristic”). O

3.1.3. Busca por raio

A busca por raio (ingl. beam search) mantém k solugdes parciais (k é chamada
a largura do raio (ingl. beam width)). Em cada passo uma solugdo parcial é

49



3. Busca por construcao de solugoes

estendida para k’ solucoes parciais diferentes, e entre as kk’ solucdes novas,
uma funcao de ranqueamento seleciona as k melhores. A funcéo tipicamente
fornece um limite inferior para as solugdes completas que podem ser obtidas
a partir da solucao parcial atual.

Uma busca por raio pode ser entendida como uma busca por largura trun-
cada ou ainda como versao construtiva do algoritmo SOV na busca. O modelo
mais simples para definir a busca por raio é numa arvore de solugdes parci-
ais, com a solugdo vazia na raiz. Cada solucdo s possui uma série F(s) de
extensoes possiveis (filhos na drvore), que sao escolhidos com distribuigao de
probabilidade Ps. Seja p(s) o pai de s na arvore.

Algoritmo 3.4 (Busca por raio)
Entrada Uma instancia de um problema.

Saida Uma solucgao s, caso for encontrada.

1 BeamSearch(k,k’):=

2 B := {0}

3 while B#0 do

4 repete |Blk' vezes

5 seja F:=UgepF(s)

6 B:=1

7 seleciona feF com prob. Pus)(f)/ > o Ppir)(f)
8 se f é sol. completa: atualiza o incumbente §
9 se f é sol. parcial: B:=BU{f}

10 { alguns autores: F:=F\{f} }

11 end

12 seleciona as melhores solucoes em B

13 (no méximo k)

14 end while

15 return s* { eventualmente nao encontrado }

Observagao 3.3
Uma busca por raio BeamSearch(1,1) é equivalente ao algoritmo guloso gene-
ralizado. O

3.2. Construcao repetida independente
A estratégia de maltiplos inicios (ingl. multi-start) procura encontrar solugoes

melhores por construgao repetida. No caso mais simples, cada repetigao € in-
dependente da outra e o algoritmo retorna a melhor solugao encontrada. Essa
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3.2. Construcao repetida independente

estratégia pode ser usada com qualquer construgao aleatéria, por exemplo
com os algoritmos Guloso-k e Guloso-a¢ da secao anterior. Usando o algo-
ritmo Guloso-x com « = 1 obtemos uma construcao totalmente aleatéria.
Multiplos inicios também é uma estratégia simples de diversificagao para ou-
tras heuristicas.

3.2.1. GRASP

A forma mais simples de melhorar uma construgao repetida independente é
aplicar uma busca local mondtona as solugoes construidas. Este método foi
proposto com o nome GRASP (Greedy randomized adaptive search procedure)
por Feo e Resende (1989).

Variantes basicas do GRASP incluem métodos que escolham « € {«y, ..., ax}
de acordo com alguma distribui¢do de probabilidade (a distribui¢ao uniforme
frequentemente é uma primeira escolha razodvel), e GRASP reativo (ingl. re-
active GRASP) que comega com uma distribuigdo uniforme e periodicamente
adapta as prioridades de acordo com

Pla) =qi/ ) _ g
]

jelk

com q; = @(s*)/®; para incumbente s* e com @; o valor médio encontrado
usando &4 (para um problema de minimizagao).

O GRASP evoluciondrio (ingl. evolutionary GRASP), uma variante que usa
uma outra forma memoria de longa duragao é discutida na secao 4.4.

3.2.2. Bubble search randomizada

Bubble search (Lesh e Mitzenmacher 2006) generaliza algoritmos de priori-
dade. Considera primeiramente um algoritmo de prioridade fixa. Para me-
lhoréa-lo, podemos consideras todas permutagoes das varidveis I na alocagao.
O Bubble search faz isso em ordem de distancia Kendall-tau crescente da per-
mutagao base 0(S). A distancia Kendall-tau mede o niimero de inversdes entre
duas permutacgoes 7 e p de [n], i.e.

d(mp) = Y [n(i) <n(j) and p(i) > p(j)] + [n(i) > 7i(j) and p(i) < p(j)].

1<i<j<n

(A distancia Kendall-tau é também conhecida por distancia de Bubble sort.)
Bubble search randomizada gera uma permutacao de distancia d com proba-
bilidade proporcional com (1 —p)9 para um parametro p € (0,1).
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Observagao 3.4 (Geragdo de permutacgoes no Bubble search)

Uma permutacao de acordo com a probabilidade acima pode ser selecionado
considerando os elementos ciclicamente na ordem o(I). Inicia com uma lista
em ordem o(I). Comegando com o primeiro elemento, visite os elementos
da lista ciclicamente. Selecionando o item atual com probabilidade p, caso
contrario continua. Ao selecionar um item, remove-o da lista e repete o pro-
cesso na lista reduzida, até ela é vazia. A ordem da selegao dos itens define a
permutagao gerada. O

O processo da observacao acima pode ser aplicado também em algoritmos
de prioridade adaptativa considerando os elementos ciclicamente na ordem
o(L,S). (Observe que nesse caso nao existe uma relacdo simples da ordem
resultante com a distancia Kendall-tau.)

3.3. Construcao repetida dependente

Uma construgao repetida dependente usa informacgoes das iteragdes anteriores
para melhorar a construgao em iteragoes subsequentes. Um exemplo simples
é o Bubble search com reposi¢io (ingl. Bubble search with replacement): a
ordem base é sempre a ordem em que o incumbente foi construido.

3.3.1. Iterated greedy algorithm

Algoritmos gulosos iterados foram introduzidos por Ruiz e Stiitzle (2006).
Depois da primeira construcao, o algoritmo repetidamente destréi parte da
solucao atual, e reconstréi-a gulosamente. A forma mais simples da destruicao
é remover d elementos na representacao por conjuntos, ou resetar d varidveis
na representacao por varidveis e aplicar um algoritmo guloso, respectivamente
um algoritmo prioridade a partir da solucao parcial resultante para obter uma
nova solugao completa.

Um algoritmo guloso iterado é o andlogo de uma busca local iterada. Apli-
cando uma busca local em cada iteragao, um algoritmo guloso iterado vira
uma busca local iterada, na qual a perturbacao é realizada por destruigao e
reconstrugao via um algoritmo guloso.

3.3.2. Squeaky wheel optimization

A otimizagao da roda que chia (ingl. squeaky wheel optimization), introduzida
por Joslin e Clements (1999), prioriza na construgao elementos que aumentam
a fungdo objetivo (“the squeaky wheel gets the grease”). O modelo mais
simples para explicar isso é como modificagao de um algoritmo de prioridade
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3.3. Construgdo repetida dependente

cuja funcdo de ordenamento usa pesos w;i para i € I e produz o(l,S) =
(X1y...,XK) caso wy > --- > wy. Supde que as varidveis que aumentaram a
fungao objetivo na ultima construgao recebem ainda “penalidades” p; para
i€ I. A fungéo de ordenamento o(I,S) = (x1,...,xk) tal que wy +py3 > --- >
Wy + pk considera além da ordem base as penalidades. A otimizagdo da roda
que chia corresponde com a otimizagao extremal e a busca local guidada que
forgam alterar ou penalizam elementos que aumentam a fungao objetivo.

Exemplo 3.5
(Continua o exemplo 3.3.) Na coloracdo de grafos podemos penalizar vértices
que usam cores > T, caso 0 incumbente tem n cores. O

3.3.3. Otimizacao por coldnias de formigas

Algumas espécies de formigas conseguem encontrar caminhos curtos para obje-
tos interessantes comunicando por feromonio deixado nas trilhas. O feromoénio
é uma forma de memoria de longa duragao guiando as formigas. Otimizacao
por colonias de formigas (ingl. ant colony optimization, ACO) (Dorigo et al.
1996) aplica essa ideia na otimizagao.

De forma mais abstrata, ACO realiza uma construgao repetida dependente,
com probabilidades de transicao dinamicas, que dependem das iteragoes an-
teriores. Concretamente, na representagdo de varidveis, ACO associa dois
valores Tji, € TNi, com uma varidvel i € I que recebe um valor v € V. O
valor Ti, representa a componente dindmica (o feroménio), e o valor 1y, a
componente estdtica da preferéncia de atribuir o valor v a varidvel i. Uma
fase do ACO constréi solugoes S1, ..., Sy de forma independente. Uma cons-
trugao repetidamente atribui um valor a proxima varidvel x; numa ordem fixa
ou dinamica o(I,S) = (x1,...,Xk), igual a um algoritmo de prioridade, com
probabilidade

P(x1 =vI[S) oct&nb, (3.1)

sendo o« e  parametros que balanceiam o efeito entre preferéncia dinamica
e estética. (Logo, para o« = 0 obtemos um algoritmo guloso randomizado.)
ACO atualiza no fim de cada fase os feromonios por

Tw=[0—-pt+ Y g(S).

Seul{i—v}es

O primeiro termo diminui o feromoénio com o tempo (“evaporagao”), o segundo
termo aumenta o feroménio de acordo com uma funcao de avaliacdo g(S) das
solugbes S que atribuem v a i. As solugoes S fazem parte de um conjunto
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U de solugoes candidatas. Os candidatos tipicamente incluem Sq,...,S; e
solugoes elites (p.ex. o incumbente S*). A funcdo g(S) cresce com a qualidade
da solugao. Concretamente, no exemplo do PCV:

Sistema de formigas (ingl. ant system): U ={Sy,...,Sm} Niv = 1/div,
g(S) =1/4d(S).

Sistema de formigas elitista: U ={S1,...,Sm,S*}, niv = 1/div,

(S) = 1/d(S) para Sq,...,Sm}
e/d(S) para S*

Sistema de formigas com ranqueamento: um sistema de formigas elitista

com U ={Sy,...,Sk,S*}, sendo Sy,...,Sk os k < m melhores solugdes

da ultima fase.

Sistema de formigas com limites (ingl. min/max ant system): U = {S*}
ou U ={S1} com S; a melhor solugdo da tltima fase (“elitismo forte”)
com limites Tmin < Tiv < Tmax, € Tiv = Tmax inicialmente.

Sistema de colonia de formigas (ingl. ant colony system): elitismo forte
com selecao “pseudo randomica proporcional”: com probabilidade q
seleciona a varidvel com P(x; = v|S) méximo, senao de acordo com (3.1).
O sistema também diversifica a construgao reduzindo a quantidade de
feromoénio em atribuicGes selecionadas na fase atual.

3.4. Exercicios

Exercicio 3.1
Quais sistemas de conjuntos do exemplo 3.1 sao acessiveis? Independentes?
Quais satisfazem a propriedade de troca?
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4. Busca por recombinacao de solucoes

A recombinacao de solugbes procura misturar componentes da duas ou mais
solugoes para produzir uma ou mais novas solugoes combinadas. Para algu-
mas recombinagoes é conveniente ter uma nocgao de distancia entre solugoes.
Para as nossas representagoes padrao de conjuntos e varidveis, usaremos as
distancias d(s,s’) = [s @ s'| e d(s,s’) = )_;c([si # s{], respectivamente. Em
funcao do problema e sua representagao outras distancias podem ser ade-
quadas. Tipicamente a representacao de varidveis é mais conveniente para
formular a recombinacao de solugoes.

Exemplos de recombinacoes simples na representacao por variaveis de solugoes
c=C(s1,...,8n) sdo:

Recombinacao randomizada Escolhe c; = sy; com probabilidade pyx. Para
px = 1/n obtemos uma recombinacdo uniforme. Uma recombinagéo
nao-uniforme comum é escolher py x @(sk). No contexto de algoritmos
genéticos o caso n = 2, V ={0,1}, p = 1/2 é chamada crossover uni-
forme] (Ackley 1987). Outro exemplo é definir py o« [{ski | k € ]} na
selecdo da componente i. Caso a funcao objetivo é linear nas variaveis,
ie. (sk) =Y ic; ©(ski), um critério melhor pode ser uma selecao com
probabilidade pyi o @(ski) para cada componente.

Recombinacao por mediano Supondo que V possui uma ordem, escolhe ¢; =
(s1i---Sni) com mediano (-). Para n impar e V = {0,1} isso é uma
recombinacao maioritdria.

Recombinacao linear Supondo que V = R, seleciona c¢; = Zke[n] AkSix com
Zke[n] Ax = 1. Para A > 0 obtemos uma recombinacdo conveza.

Recombinacao particionada Uma recombinagao randomizada aplicada numa
partigdo S de [n]. Para cada parte seleciona uma solug¢ao s; com pro-
babilidade p; e atribui os valores de toda parte a solugao combinada.
Um subcaso importante sdo parti¢des continuas (i.e. cada parte p € S
satisfaz p = [a,b] para a < b, a,b € [n].) Para uma parti¢do continua
aleatdria com |S| = 2 obtemos o recombinagao em um ponto (ingl. one-
point crossover), caso |S| = k uma recombinagdo em k pontos.

%)



4. Busca por recombinacao de solugoes

Recombinacdao para permutagcbes A recombinacdao tem que satisfazer as
restrigoes do problema. Um caso frequente e por isso importante sao per-
mutagoes, com I =V = [n]. Exemplos de estratégias para recombinar per-
mutagoes sao:

Recombinaciao irrestrita na tabela de inversées Aplica uma das recombinagoes
acima na tabela de inversoes.

Recombinacao PMX Para permutagbes m = M7 ...7 € P = P1P2...Pn
define 0 = PMX(m, p) como segue (Goldberg e Lingle 1985):

1) Seleciona um intervalo aleatério I = [a,b] C [n]. Para uma per-
mutacéo 7, seja tp = {m; |1 € I}
2) Define um mapeamento m : 7ty — Py : 7T — Pi.

3) Define um mapeamento m* : 7y — p; : m¥(m;), com k o menor
expoente tal que m*(m;) € m;. O mapeamento m* itera m até o
elemento nao pertence a 7ty.

4) Finalmente define

T iel
0i = 4§ Pi pi € T .
m*(pi) piEmM

Exemplo 4.1 (Recombinacdo PMX)
Seja T = 12345678%a e p = 49a8173526 e I = [3,6]. Logo m; = {3,4,5,6} e
p1 ={a,8,1,7}, e temos os mapeamentos

ue 3 4 5 6
m(my) a 8 1 7,
m*(m;)) a 8 1 7

i.e., 0 mapeamento iterado m* é igual a m. Obtemos

Indice 1 1 2 3 4 5 6 7 8 9 10
Elem. m*(4) p2 w3 My w5 T m*(3) m*(5) po mM*(6)
oi 8 9 3 4 5 6 a 1 2 7

O

Exemplo 4.2 (Recombinacao PMX)
Seja T = 12345678%a e p = 361a849725 e I = [3,6]. Logo m; = {3,4,5,6} e
p1 ={a,8,1,7}, e temos os mapeamentos
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4.1. Religamento de caminhos

us 3 4 5 6
m(7;) 1 a 8 4
m*(my) 1 a 8 a
Obtemos
Indice i 1 2 3 4 5 6 7 8 9 10
Elem. m*(3) m*(6) m3 my ms me p7 ps pe m*(5)
i 1 a 3 4 5 6 9 T 2 8

O

A selecao de um ou mais operadores de recombinacao é um parte importante
do projeto de uma heuristica por recombinagao. Além das recombinacoes
genéricas, uma recombinacao que aproveita a estrutura do problema deve ser
considerada.

Exemplo 4.3 (Recombinacdo EAX para o PCV)

O edge assembly crossover (EAX) (Nagata e Kobayashi 1997) trabalha na
representacao de rotas por conjuntos de arestas. Para rotas A e B ele forma
A UB e extrai um conjunto completo de ciclos AB-alternantes (i.e. ciclos
com arestas alternadamente e A e B; isso sempre é possivel). Seleciona um
subconjunto S dos ciclos AB extraidos e gera uma colecao de ciclos A & S.
Repetidamente reconecta o menor ciclo com um outro ciclo até obter uma
rota simples.

Para conectar ciclos C e D (representados por conjuntos de arestas), gulo-
samente seleciona o par de arestas uu’ € C e w’ € D tal que (CUD) @
{uu’, w’ uv, u’v} tem custo minimo.

O

4.1. Religamento de caminhos

O religamento de caminhos (ingl. path relinking), proposto por Glover (1996)
no contexto da busca tabu, explora trajetérias entre uma solu¢do inicial s
e uma solu¢ao guia s’. Isso é realizado com uma busca local na vizinhanga
reduzida (“vizinhanca direcionada”) D(s) ={s” € N(s) | d(s",s’) < d(s,s’)}.
Logo em no maximo d(s,s’) passos a busca transforma s em s’. Qualquer dis-
tribuicao de probabilidade discutida no cap. 2 pode ser usada para explorar
D; tipicamente é usada a estratégia “melhor vizinho”. O resultado do religa-
mento de caminhos é a melhor solugao s* encontrada na trajetoria explorada.
Como a melhor solugao da trajetéria s* nao necessariamente é um minimo
local de N, é comum aplicar uma busca local em N.
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4. Busca por recombinacao de solugoes

Algoritmo 4.1 (Religamento de caminhos)
Entrada Uma solugao inicial s, uma solugao guia s’.

Saida Uma solucao s* com @(s*) < min{@(s), @(s’)}.

1 PathRelinking(s,s’) :=
while D(s) #0As#s’ do
s* = argmin{@(s), (s')}
seleciona s” € D(s) com probabilidade Pg(s”)
s:=s"
atualiza o incumbente s*
end
return s*

0~ O U W

Observagao 4.1 (Conectividade da vizinhanga direcionada)

Caso é garantido que na vizinhancga D existe um caminho de s para s’ pode-
mos simplificar a condi¢ao da linha 2 para s # s’. Um exemplo em que isso
nao ¢é satisfeito: para o problema do exemplo 1.7 pode ser conveniente res-
tringir a vizinhanca N que desloca uma tarefa para outra estagao as estagoes
criticas, i.e. as estagdes com tempo de estacao igual ao tempo de ciclo. Logo o
religamento de caminhos termina, caso as tarefas alocadas as estagoes criticas
na solugao atual e guia sao as mesmas. O

Variantes comuns sao: religamento de caminhos

para frente (ingl. forward path relinking, “uphill”’) Para solugdes s1 e s; com
@(s1) < @(s2) explore a trajetéria de sy para s;.

para tras (ingl. backward path relinking, “downhill”) Para solugoes s; e s
com @(s1) < @(s2) explore a trajetéria de s, para s7.

para tras e frente (ingl. back-and-forward path relinking) Para solugoes s;
e sy com @(s1) < @(s2) explore a trajetéria de s, para s, seguido da
trajetéria de sy para s;.

misto (ingl. mixed path relinking) Altera ambas solugdes até eles se encon-
tram.

truncado (ingl. truncated path relinking) Explora a trajetéria somente no
inicio ou no final. Esse estratégia é justificada por experimentos que
mostram que as melhores solugoes tendem a ser encontradas no inicio
ou no final da trajetéria.
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4.2. Probe

Observagao 4.2

O religamento de caminhos explora a vizinhanga da solugao inicial melhor.
Logo, caso somente uma trajetoria é explorada, é melhor usar um religamento
para frente, que comega da melhor das solugdes (Resende e Ribeiro 2005). ¢

Observagao 4.3 (Selecao do vizinho)

Qualquer estratégia de busca local pode ser aplicada na selecdo da linha 4.
Aplicando a estratégia “guloso-«”, por exemplo, obtemos um religamento de
caminhos guloso adaptativo (ingl. greedy randomized adaptive path-relinking,
GRAPR). %

4.2. Probe

O population-reinforced optimization-based exploration (PROBE) trabalha com
uma populagdo de solugdes Sq,...,S,. Sendo C(-,-) algum operador que re-
combina duas solugoes, Probe produz em cada iteragao uma nova populagao
C(Sl ) SZ)» C(SZ) 53)) cey C(Sn) Sy )

Teorema 4.1 (Convergéncia de Probe)
Caso @(C(S,T)) < min{@(S), @(T)} o valor médio da populagdo diminui até
todas solugoes possuem o mesmo valor.

Prova. Supde que um par de solugoes adjacentes S;, Sj1 nao possui o mesmo
valor. Logo @(C(Sj,Sj+1) < @(S;) ou @(C(Sj,Sj+1) < @(Sj41) e como as
restantes solugoes satisfazem @(C(Si,Siv1) < @(Si) resp. @(C(Si,Si41) <
©(Si+1) o valor médio diminui. |

Observagao 4.4 (Convergéncia trivial)
Para C(S,T) = argmin{@(S), @(T)} a populacao converge para a melhor das
n solugodes inicias. O

4.3. Scatter search

A busca dispersa (ingl. Scatter search) é um esquema algoritmico que ex-
plora o espago de busca sistematicamente usando um conjunto de solugoes de
referéncia (ingl. reference set). A enfase da busca dispersa é na exploragao de-
terministica e sistematica, similar com a busca tabu, ao contrario de métodos
que focam em randomizacao. Repetidamente a busca dispersa combina um
subconjunto das solucoes de referéncia para gerar novas solugoes e atualiza as
solugoes de referéncia. O método procura incluir elementos de diversificacao
e intensificacao estrategicamente. As solucoes de referéncia R, por exemplo,
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tipicamente contém solucoes de boa qualidade e solucoes diversas. O con-
junto de solugoes de referéncia inicial é selecionado entre um ntumero grande
de solugoes diversas. Depois da recombinagao o novo conjunto de solugoes
de referéncia é selecionado entre as solucoes de referéncia atuais e as solugoes
obtidas por recombinagao.
Seja d(p,S) = min{d(p,s) | s € S} e distancia minima da solu¢do p para
qualquer solugao do conjunto S. Um exemplo de uma construcao do conjunto
de referéncia que seleciona by solugdes de boa qualidade e b, solugoes diversas
é
refset (P) := { seleciona solugdes de referéncia de P }

seja P={p1,...,pn} com @(p1) < - < o(pn)

S 5:{]31)--->Pb1}

P:=P\S

while P#QAI|S| <b;+b, do

p = argmax,{d(p,S) | p € P}

S:=Su{p}
P:=P\ {p}
end

Com isso obtemos

Algoritmo 4.2 (Scatter search)
Entrada Uma instancia de um problema.

Saida Uma solucao s, caso for encontrada.

1 ScatterSearch() :=

2 cria um conjunto de solugoes diversas C
3 R :=refset(C)

4 do

) seja & uma familia de subconjuntos de R
6 C:=0

7 for S€S do

8 T := recombine(S)

9 C:= CUimprove(T)

10 end for

11 R:=refset(RUC) { alternativa: refset(C) }

12 while R changed

A tabela 4.1 mostra valores de referéncia para os parametros da busca dispersa.

Observagao 4.5 (Atualizagido do conjunto de referéncia)
Existem diversas estratégias de atualizacdo do conjunto de solugoes de re-
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4.4. GRASP com religamento de caminhos

Tabela 4.1.: Valores de referéncia para os parametros da busca dispersa.

Numero de solugdes de referéncia |[R| = 20

Numero de solugdes iniciais |C| > 10/R]|
Numero de solucdes elite by ~ [R|/2
Numero de solucoes diversas by ~ [R|/2

feréncia. Por exemplo, podemos adicionar uma nova solucao ao conjunto de
referéncia R caso (i) [R| < b, ou (ii) ela é melhor que o incumbente, ou (iii) ela
¢ melhor que a pior solugao de R, dado que ela possui uma distancia minima
d das solugoes restantes. Em ambos casos a solucao de menor distancia com
a nova solugao sai do conjunto de referéncia. Para implementar isso, podemos
modificar o algoritmo 4.2 para

for each ceC: refset(R,c)
usando o procedimento

refset (R,s) := { atualiza o conjunto R com s }
seja R={ri,...,mn} com @(r1) <--- < ()
if [Rl<b then
R:=RU({s}

else if @(s) < @(r1)V (@(s) < @(rn) A min; d(s,mi) >d then
seja k= argmin; d(s,T)
R:=R\ {rc}U{s}
end if
end

Observacgao 4.6 (Selecao da familia S)

A abordagem mais comum é selecionar todos pares de solugoes de referéncia.
Variantes propostas na literatura incluem escolher triplas formadas por todos
pares mais a solugao de referéncia melhor que nao faz parte do par, ou escolher
quadruplas formadas por todas triplas mais a solucao de referéncia melhor
que nao faz parte da tripla. Essas abordagens sao raras, por precisarem uma
combinacao efetiva entre mais que duas solugoes. O

4.4. GRASP com religamento de caminhos
GRASP com religamento de caminhos mantém um conjunto de solugoes de re-

feréncia. Este conjunto é alimentado pelas solugdes obtidas em cada iteragao.
Uma proposta tipica da atualizacao é a regra da observacao 4.5. Em cada
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iteracdo, GRASP+PR aplica religamento de caminhos entre o minimo local
obtido s e uma solugao de referéncia r. A solucao de referéncia é selecionada,
por exemplo, com probabilidade o d(s, ), para religar solugdes distantes com
maior probabilidade.

O GRASP evoluciondrio (ingl. evolutionary GRASP) reconstréi o conjunto
de solugoes de referéncia periodicamente. Os candidatos para formar o novo
conjunto de solugoes sao as solugoes obtidas por religamento de caminhos entre
todos pares de solugbes de conjunto de referéncia do periodo anterior.

4.5. Algoritmos genéticos e memeéticos

Observagao 4.7 (Fungao objetivo e aptidao)

Como algoritmo genéticos e variantes normalmente sao formulados para ma-
ximizar uma fungao objetivo — chamada aptidao (ingl. fitness) — vamos seguir
essa convencao nesta secao. O

Algoritmos genéticos (ingl. genetic algorithms) foram propostas por Holland
(1975) em analogia com processos evolutivos. Um algoritmo genético mantém
uma populagdo Si,...,Sn de individuos e repetidamente seleciona dois in-
dividuos pais, gera novos individuos por recombinagao dos pais, eventualmente
aplica uma mutagao em individuos selecionados, e atualiza a populagao. Um
algoritmo genético difere da busca dispersa principalmente pelos elementos
randomizados: a selegdo dos pais é aleatéria (mas tipicamente proporcional
com a qualidade da solugdo) bem como a mutagido. Obtemos um algoritmo
memético (ingl. memetic algorithm) caso um individuo é melhorado por uma
busca local, e um algoritmo genético Lamarckiano caso essa melhora é herdavel
(i.e. a transformagao inversa do fenétipo para genétipo existe, ver cdp. 1.2.2).
A terminologia biolégica é frequentemente usada em algoritmos genéticos.
Numa representacao de varidveis, por exemplo, uma variavel é chamada gene
e os valores que ela pode assumir os alelos.

O algoritmo 4.3 define um esquema genérico de um algoritmo genético. Ele é
definido por (i) uma populagdo inicial, (ii) por uma estratégia de selecao de
individuos, (iii) operadores de recombinagao e mutagao, e (iv) uma estratégia
de selecao da nova populacgao.

Algoritmo 4.3 (Algoritmo genético)
Entrada Uma instancia de um problema.

Saida Uma solugao s, caso for encontrada.

1 GeneticAlgorithm () :=
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2 cria um conjunto de solugoes iniciais P

3 until critério de parada satisfeito

4 C:=0

5 { recombinacao }

6 seja P um conjunto de pais selecionados de P
7 for p=(p1,p2) € P do

8 T := recombine(p1,p2)

9 C:= CUimprove(T)

10 end for

11 { mutagao }

12 seja M CPUC de solugbes que sofrem mutagao
13 for se M do

14 T := mutate(s)

15 C:=CUimprove(T) \ {s}

16 end for

17 P:=update(P,C) { com update (pn+A),(1,A) }

18 end

Exemplo 4.4 (Algoritmo genético bésico)
Uma instancia basica do algoritmo 4.3 usa

e uma representacio por varidaveis com V = {0, 1};
e uma populacao inicial com p individuos aleatoérios;

e uma selecdo de |P| = u pares de pais, cada solugao s com probabilidade
< @(s);

e uma recombinacao em um ponto (p. 55) que gera duas novas solugoes;
e nenhum procedimento de melhora (improve(C) = C);

e uma mutagio que inverte cada varidvel com probabilidade p (frequente-
mente p = 1/[I]) nas novas solugoes;

e uma atualizagdo (H,A) da populacdo (seleciona os p melhores entre os
novos individuos).
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4.5.1. Populacao inicial

A populagao é criada por alguma heuristica construtiva, frequentemente com
individuos aleatérios. Reeves (1993) propoe um tamanho minimo que garante
que todas solugoes podem ser obtidas por recombinacao da populacao inicial,
i.e. todo alelo estd presente em todo gene. Para uma inicializacao aleatoria
uniforme na representacao por varidveis, temos [V|™" possiveis combinacoes de
alelos num determinado gene, para uma populacao de tamanho n. Dessas
combinacoes |V|!{|{}‘} possuem todos alelos, logo a probabilidade que todos
alelos sao presentes em todos genes k é

(V'!{|$|}'V'n>k'

Em particular para |V| = 2 obtemos a probabilidade (1—2'"™)¥. Isso permite
selecionar um n tal que a probabilidade de que todos alelos estejam presentes
é alta.

4.5.2. Selecdo de individuos

Um individuo S é selecionado como pai com probabilidade o< @ (s) ou conforme
alguma regra de sele¢ao baseado no rank na populagao (ver pag. 48). Outro
exemplo é uma selecao por torneio que seleciona o melhor entre k individuos
aleatorios, similar da busca por amostragem.

Observagao 4.8 (Selecao por torneio)

Um 1-torneio é equivalente com uma selegao aleatoria. Num 2-torneio a proba-
bilidade de selecionar o elemento com posto i é (n—1)/ ('21)7 logo obtemos uma
selecao linear por posto. Em geral a probabilidade de selecionar o elemento
com posto i num k-torneio é

()~ ) -orme

Exemplo 4.5 (Fitness uniform selection scheme (FUSS))

Hutter e Legg (2006) propoem um esquema de sele¢io uniforme baseada em
aptidao (ingl. fitness uniform selection scheme): escolhe um valor uniforme
f no intervalo [minicp @(i), maxicp @(i)] e seleciona o individuo com valor
da funcao objetivo mais préoximo de f. O objetivo da selecao é manter a
populagao diversa: individuos em regioes com menor densidade da distribuigao
dos valores da funcao objetivo possuem uma probabilidade maior de selecao.

O

¢
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4.5. Algoritmos genéticos e meméticos

Exemplo 4.6 (Selecao estocastica universal)

Baker (1987) propoe uma selecdo estocdstica universal (ingl. stochastic uni-
form selection): Seja pi, a probabilidade de selecionar individuo i € [u], e
Pi = [3_yeri11Pis 2iepi Pi) © intervalo correspondente, seleciona, para um

r € 1/u aleatdrio, os individuos i1,...,1, tal que k/u € P;, para k € [u].
(A explicagio mais simples dessa selecio é por uma roleta com p seletores de
distancia 1/p). O

4.5.3. Recombinacdo e mutacao

Para recombinagao de individuos serve qualquer das recombinacoes discutidas
acima, inclusive o religamento de caminhos. Uma mutacao é uma pequena
perturbacao de uma solucao. Logo ela pode ser realizada por um passo de uma
busca local estocastica 2.1. Recombinagao ou mutagao podem ser aplicados
com probabilidades diferentes, eventualmente dinamicas.

4.5.4. Selecao da nova populacao

A populagao pode ser atualizada depois de criar um nimero suficiente de novas
solugoes, selecionando uma nova populacao entre estes individuos, eventual-
mente incluindo a populacao antiga. Uma alternativa é atualizar a populagao
constantemente. (Observe que isso corresponde exatamente com as estratégias
de selegao da busca dispersa.) As primeiras duas estratégias de selegao levam
a um algoritmo genético geracional e a ultima a um algoritmo genético em es-
tado de equilibrio (ingl. steady state genetic algorithm). Para uma populagao
de tamanho @ e A novos individuos eles também sao conhecidos por selecdo
(1, A) (seleciona os p melhores dos A novos individuos) ou selecdo (L—+A) (se-
leciona os pn melhores entre a populagdo antiga e os A novos individuos). Caso
uma selecao permite solugoes da populagao antiga entre na nova populacao, e
seleciona algumas das melhores solugoes, o algoritmo ¢ elitista.

Exemplo 4.7 (Estratégias de evolugao)

Estratégias de evolugdo (ingl. evolution strategies) sao algoritmos genéticos
sem recombinacéo. Eles recebem o nome da atualizacao correspondente: (p, A)
ou (L+A). Observe que uma estratégia de evolugao (1+ 1) é uma busca local
mondtona estocastica. O

Uma outra estratégias comum é a delegao randomizada de individuos do con-
junto de candidatos até p individuos sobram. A variante mais simples delete
individuos com probabilidade uniforme; uma variante delete com probabili-
dade o< @ (Smax) + ©(Smin) — @(s) com sy,ax a melhor e s,,;, a pior solugao.
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Exemplo 4.8 (Fitness uniform deletion scheme (FUDS))

Hutter e Legg (2006) propoem um esquema de delecao uniforme baseado em
aptiddo (ingl. fitness uniform deletion scheme): similar ao FUSS, escolhe um
valor uniforme f no intervalo [minjcp @ (i), maxicp @(1)] e deleta o individuo
com valor da fungdo objetivo mais préximo de f. FUDS favorece uma ex-
ploracao em regides de menor densidade da distribuicao dos valores da fungao
objetivo. O

Observagao 4.9 (Resultados experimentais (Levine 1997))
Experimentalmente, parece que

e manter a populacao em estado de equilibrio é preferivel sobre abordagens
geracionais;

e uma recombinagao uniforme ou em dois pontos é preferivel sobre uma
em um 1nico ponto;

e uma selecao proporcional com ¢ raramente é bom;
e uma taxa de mutagao dinamica é preferivel;
e manter a diversidade da populacao é importante.

e operadores de recombinagao e mutagao especificos para o problema sao
mais 1teis;

Observagao 4.10 (Resultados tedricos)
Pela teoria sabemos que

e 0 desempenho depende fortemente do problema: existem fungoes uni-
modais em que uma determinada estratégia de evolugdo (1 + 1) pre-
cisa tempo exponencial mas também classes de fungoes que podem ser
resolvidos em tempo polinomial (Droste et al. 2002; Jansen e Wege-
ner 2000); e existem instancias de problemas NP-completos em que
uma estratégia de evolugao (14 1) ndo possui garantia de aproximagao
(e.g. cobertura por vértices (Friedrich et al. 2010)), mas também pro-
blemas NP-completos em que a estratégia garante uma aproximagao
(e.g. uma 4/3-aproximacio em tempo esperado O(n?) para o problema
de partigao® (Witt 2005)).

1Particionar um conjunto de niimeros x1,...,Xy tal que a diferenca das somas dos partes
é minima.
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1IN
N2

Figura 4.1.: Um movimento 4-opt com dois pontes.

—

e 0 tamanho ideal da populagao depende fortemente do problema: existe
uma funcdo em que uma dada estratégia de evolucdo (u,1)? precisa
tempo exponencial para |t pequeno, mas tempo polinomial para p grande
e vice versa (Witt 2008);

e 0 desempenho depende fortemente da fungao objetivo: uma estratégia
de evolucao (1+1) consegue ordenar n niimeros em tempo @(n? logn),
mas existem fungoes objetivos para medir o grau da ordenagao que levam
a um tempo exponencial (Scharnow et al. 2002);

O

A 1ltima observagao experimental, que nao é restrito para algoritmos genéticos,
em conjunto com os resultados tedricos, é o motivo para conjeturar que (i) para
cada solucao “genérica” de um problema, existe um algoritmo heuristico es-
pecifico melhor. (ii) para cada heuristica que funciona bem na prética (i.e. re-
solve o problema em tempo esperado polinomial com garantia de qualidade)
deve existir um subproblema do problema em questao em P.

Principio de projeto 4.1 (Estrutura do problema)

Procure aproveitar a estrutura do problema. Caso a heuristica funciona bem:
procure identificar quais caracteristicas das instancias sao responsaveis por
isso.

Exemplo 4.9 (Algoritmo genético para o PCV)

Em Johnson e McGeoch (2003) o algoritmo genético melhor é degenerado
para uma busca local iterada: a “populagao” consiste de uma tnica solugao,
e o algoritmo aplica repetidamente uma busca local Kernighan-Lin e uma
mutagdo na vizinhanga 4-exchange restrito para dois pontes (Fig. 4.1), i.e. a
estratégia de atualizagao é (1,1). O

Exemplo 4.10 (Algoritmo genético para o PCV)
O algoritmo genético para o PCV de Nagata e Kobayashi (2012) exemplifica
o principio 4.1. Ele usa

2A estratégia padrdo com atualizacio por delecdo aleatéria.
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4. Busca por recombinacao de solugoes

e Uma populagao inicial de tamanho 300 com rotas aleatérias otimizadas
por 2-opt.

e Uma recombinacao entre 7; e 7ti41 para uma permutacao aleatéria da
populagao.

e A recombinagdo entre p,q aplica uma variante “localizada” de EAX
(i.e. produz solugoes mais similares com p) e gerar diversas novas solugoes
f1y..., Tk (k= 30).

e Uma selecao que substitui o p atual pela melhor solugoes entre fy, ..., fi,p.

e Uma funcao objetivo modificada que procura manter a diversidade da
populacao. Para P; = (pyj); a distribuicdo de probabilidade dos arcos
(i,j) na populagéo, define a entropia da populagéo por

]

ie[n] j€Mm

e seleciona a solucao s de maior valor

—AL(s)/¢€ caso AL(s) <0, AH(s) >0
@(s) = ¢ AL(s)/AH(s) caso AL(s) <0, AH(s) <0
—AL(s) caso AL(s) >0

com AL(s) o aumento da distdncia total média da populagdo caso s
substitui p, e AH(s) o aumento correspondente da entropia.

4.5.5. O algoritmo genético CHC

O “Cross-generational elitist selection, Heterogeneous recombination, and Ca-
taclysmic mutation” (CHC) é um exemplo de uma variante de um algoritmo
genético com um foco em intensificagdo (Eshelman 1990). Ele recombina siste-
maticamente todos pares da populagao atual, e procura manter a diversidade
por recombinar somente solugoes suficientemente diferente com uma recom-
binagdo HUX. A recombinagdo HUX é uniforme, mas troca exatamente a
metade das varidveis diferentes entre os pais e gera dois novos filhos. Caso
a populacao convergiu ele é recriada aplicando uma mutagao para a melhor
solugao.
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Algoritmo 4.4 (Algoritmo genético CHC)
Entrada Uma instancia de um problema, uma taxa de mutacao pm
(tipico: pm = 1/2).

Saida Uma solucgao s, caso for encontrada.

1 CHC() :=

2 cria um conjunto de solucgdes iniciais P
3 d:= ‘pm(1 —Pm)|1|

4

5 until critério de parada satisfeito

6 C:=10

7 for n/2 iteragoes do

8 seleciona pais pi,p2 € P aleatoriamente
9 if d(pi1,p2) > 2d then

10 T := HUX(p1,Pp2)

11 C:=CuUT; P:=P\{p1,p2}

12 end

13 end

14 if C=0 then

15 d:=d—-1

16 else

17 P:=(nu+A)PUC)

18 end if

19 if d<0 then

20 { re—criagdo cataclismica }

21 reduz P para a melhor solugao p em P
22 until |P|=pun do

23 aplica uma mutacao em p com prob. 0.35
24 insere o individuo obtido em P

25 end

26 di=pm(1—pm)ll

27 end if

28 end

29 end

4.5.6. Algoritmos genéticos com chaves aleatérias

Um “biased random-key genetic algorithm” (BRKGA) é uma extensao do al-
goritmo genético com chaves aleatérias de Bean (1994). Ambos usam uma
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Y
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Piores solucoes Novas solucoes

Figura 4.2.: Algoritmo genético com chaves aleatérias.

representacdo por chaves aleatdrias (segdo 1.2.2) e uma populagdo com trés
“castas” (ver Fig. 4.2). A nova populagdo consiste da elite da populagéo an-
tiga, solugoes randoémicas que substituem as piores solugoes e solugoes que
foram obtidas por recombinagdo uniforme. No caso do BRKGA a recom-
binacao uniforme é substituida por uma recombinacao que passa de cada gene
independentemente o alelo do pai elite com probabilidade p > 0.5 para o filho.
Tamanhos tipicos para a elite sao 10—20% da populacao, e 1 —5% de solugoes
randémicas.

4.6. Otimizacao com enxames de particulas

A otimizagdo com enxames de particulas (ingl. particle swarm optimization,
PSO) (Eberhart e Kennedy 1995) foi proposta para otimizagdo continua e
mantém uma populacao de solucdes x1,...,xn em R¥. Cada solucdo também
possui uma velocidade vy, 1 € [n] e em cada passo a posigao é atualizada para
x{ = Xi + €v; para um parametro € € (0,1]. A velocidade v; é atualizada
em direcao da melhor solucdo na trajetoria da solucao atual x}, da melhor
solucdo xf = maxierx} encontrada por solugdes informantes I C [n] e da
melhor solucao global x[,] por

Vi = avi + B(x{ —xi) +v(X] —xi) + 8(x[y) — xi)- (4.1)

Com isso obtemos o esquema genérico
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Algoritmo 4.5 (Otimizacdo com enxames de particulas)
Entrada Uma instancia de um problema, parametros «, 3,7V, d, €.

Saida A melhor solucao encontrada.

1 PSO() :=

2 cria solucgdes iniciais X1,...,Xn

3 com velocidades vi,...,vy

4

5 until critério de parada satisfeito
6 for cada solucao ie[n] do

7 seleciona um conjunto de informantes I
8 atualiza vi de acordo com (4.1)
9 Xi = X{i 1+ €V}

10 end

11 return X[,

12 end

Na forma mais comum:

e Aproximadamente 50 solugoes e velocidades inicias sao escolhidas alea-
toriamente.

e O conjunto de informantes é um subconjunto aleatério de [n].
Variantes incluem:

e Selecionar em cada aplicagao de (4.1) valores aleatérias em [0, B], [0,7v]
e [0, 8] para os pesos.

Aplicacao para otimizacdo discreta A forma mais simples de aplicar a oti-
mizagao com enxames de particulas em problemas discretos é trabalhar no
espago real e transformar a solugdo para uma solugdo discreta (segdo 1.2.2).
Uma alternativa é definir uma estratégia de atualizagao discreta.

Exemplo 4.11 (Variante bindria de PSO)

Kennedy e Eberhart (1997) propoem para solucoes in {0, 1}* mapear as veloci-
dades em R¥ para o [0, 1]% por uma transformacéo logistica S(x) = (14 e~ x)’
aplicada a cada elemento do vetor, e interpretar os componentes das veloci-

dades como probabilidades. Em cada passo xi; recebe o valor 1 com probabi-
lidade S(Vi]‘ ) <>
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4.7. Sistemas imunolégicos artificiais

Sistemas imunolégicos artificiais (ingl. artificial immunological systems) séo
algoritmos de otimizacao usando principios de sistemas imunolégicos. Dare-
mos somente um exemplo de um algoritmos comum dessa classe. O principio
natural do algoritmo é a observagao que o sistema imunologico se adapta para
novas antigenes por clonagem e amadurecimento.

Algoritmo 4.6 (SIA /Clonalg)
Entrada Uma instancia de um problema, parametros o, [3.

Saida A melhor solucao encontrada.

Clonalg () :=
seja P={p1,...,pn} aleatdéria com @(p1) <--- < @(pn)

1
2
3
4 until critério de parada satisfeito

5 seleciona as oa% melhores solugdes pi,...,Px
6 for i€ k] do

7 { clonagem }

8 cria um conjunto C; de «x1/i cépias de p;

9 { amadurecimento por hipermutacao }

10 aplica uma mutacdo a c € C; com taxa o @(s)
11 end

12 selecione a nova populacao entre P e U;iCy
13 substitui as B% piores solugdes

14 por solucgoes aleatérias

15 end

16 end

4.8. Intensificacao e diversificacao revisitada

Uma populacao de solucoes de alta qualidade junto com a recombinacao
de solugoes também serve para realizar uma intensificacdo e diversificacdo
genérica (Watson et al. 2006). O IMDF (Intensification/Diversification fra-
mework) supde que temos uma heuristica de busca H(xo,1) base arbitréria,
que podemos rodar para um nimero de iteragoes i numa instancia inicial xg.

Algoritmo 4.7 (IDMF)
Entrada Uma instancia de um problema, probabilidade de intensificagao
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Pi, uma heuristica H, iteragoes ip > i; para intensificagao.
Saida A melhor solu¢ao encontrada.
1 H*(Xo) =
2 x := H(xo, 10)
3 while @(x) < @(xo)
4 X0 =X
5 x == H(xo,11)
6 end
7 return xg
8 end
9
10 IDMF() :=
11 gera uma populagao E de 4étimos locais
12 aplica H*(e) em cada ecE
13 repeat
14 com probabilidade p;: { intensificacado }
15 seleciona ec€E
16 g:=e
17 com probabilidade 1—p;i: { diversificagao }
18 seleciona e, feE
19 gera um elemento g no meio entre e e f
20 por religamento de caminhos
21 e’ :==H*(g)
22 if @e’) < o(e)
23 e:=c¢e'
24 end
25 end
4.9. Notas

Mais sobre a busca dispersa se encontra em Gendreau e Potvin (2010, cép. 4),
Glover e Kochenberger (2002, cép. 1) e Talbi (2009, cép. 3.4). Uma aplicacao
recente do operador EAX num algoritmo genético se encontra em Nagata e
Kobayashi (2012).

4.9.1. Até mais, e obrigado pelos peixes!

Para quem néo ¢ satisfeito com os métodos discutidos: usa alguma outra besta
de carga como
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fireflies, monkeys, cuckoos, viruses, bats, bees, frogs, ou competi-
tive imperialists,

ou deixa a fisica resolver o problema com
gravitational search, intelligent waterdrops, ou harmony search.

Porém, é importante lembrar que o objetivo da pesquisa em heuristicas nao é
produzir novos vocabularios para descrever as mesmas estratégias, mas enten-
der quais métodos servem melhor para resolver problemas. Weyland (2010),
por exemplo, mostra que a busca de harmonias (ingl. harmony search) é uma
forma de uma estratégia de evolucao. Para uma critica geral ver também
Soérensen (2013).

74



5. Topicos

5.1. Hibridizacao de heuristicas

A combinacdo de técnicas de diversas meta-heuristicas ou de uma meta-
heuristica com técnicas das areas relacionadas de pesquisa operacional ou
inteligéncia artificial define heuristicas hibridas. Um exemplo é a combinacao
de técnicas usando populagoes para identificar regides promissoras no espago
de busca com técnicas de busca local para intensificar a busca. Um outro
exemplo é o uso de programagao matematica ou constraint programming para
resolver subproblemas ou explorar vizinhangas grandes. Isso é um exemplo de
matheuristics, a combinagao de heuristicas com técnicas de programacao ma-
tematica, também conhecida por heuristicas baseados em modelos matemdticos
(ingl. model-based heuristics).

5.1.1. Matheuristics

HibridizagGes bésicas entre heuristicas e programacgao matemaética aplicam
as heuristicas para obter limitantes superiores em algoritmos de branch-and-
bound ou usam programacao matemadtica para resolver subproblemas em
heuristicas. Exemplos de outras hibridizagoes sao relaxagoes lineares de pro-
gramas inteiros para gerar solugoes inicias ou guiar buscas, e a aplicacao de
técnicas heuristicas para guiar a exploragao de buscas em algoritmos exatos.

Exemplo 5.1 (Diving)

Algoritmos branch-and-bound frequentemente expandem o nodo com o menor
limite inferior. Diving é uma estratégia que estrategicamente aplica uma busca
por profundidade para gerar melhores solugoes. O

Exemplo 5.2 (Ramificacao local)

Ramificagdo local (ingl. local branching) guia a exploracdo das solugoes de
programas inteiras 0—1 de um resolvedor genérico para analisar primeiramente
solucdes de distancia Hamming < k. A distancia Hamming das solucoes x =

(X1y.eeyXn) EB" e X = (X1y...,Xn) EB™ &
A= Y X+ »  1-x.
ien]lx;i=0 ien]lx;i=1

(0]
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Com isso para uma dada solucao xp uma estratégia global de ramificagao re-
solve primeiramente o programa inteiro Ax < b A A(x,xg) < k e s6 depois
Ax < b AA(x,x0) > k+ 1. Essa ramificacdo continua no primeiro subpro-
blema, caso o resolvedor encontra uma melhor solugao. Fischetti e Lodi (2003)
sugerem k € [10, 20]. O

Exemplo 5.3 (RINS e religamento de caminhos)

O relazation induced neighorhood search (RINS) é uma estratégia para inten-
sificar a busca para melhores solucoes vidveis. Para um dado né na arvore de
branch-and-bound da solugao de um programa inteiro, ela fixa as variaveis que
possuem o mesmo valor no incumbente e na relaxagao linear atual, e resolve o
subproblema nas restantes variaveis restrito para um valor maximo da fungao
objetivo e com um tempo limite. Danna et al. (2005) propdem aplicar RINS
cada f > 1 nés com um limite de nds explorados, e.g. f ~ 100, com limite de
~ 1000 nds.

Uma forma similar de explorar o espago entre duas solugoes é uma extensao do
religamento de caminhos: fixa todas variaveis em comum, e resolve o problema
no subespaco resultante de forma exata. O

Exemplo 5.4 (Geragao heuristica de colunas)

Na geragdo de colunas (usado também em algoritmos de branch-and-price)
o subproblema de pricing precisa encontrar uma coluna com custo reduzido
negativo. Para melhorar os limitantes inferiores da decomposicao de Dantzig-
Wolfe, o subproblema de pricing deve ser o mais dificil possivel, que pode
ser resolvido em tempo aceitdvel. Uma estratégia diferente resolve o subpro-
blema de pricing heuristicamente. O método continue ser correto caso no final
o subproblema de pricing é resolvido pelo menos uma vez exatamente para
demonstrar que nao existem mais colunas com custo reduzido negativo.

Por exemplo o problema de colorar um grafo nao-direcionado G = (V, E) com
o0 menor numero de cores

minimiza Z Ci,
ien]
sujeito a Z Xypi > 1, Yvey
ie[n]
Xui +Fxvi < 1, v{u,v} € E,;1 € [n],
ci > Z Xvi/M, Vi € [n],
vev
Xvi, Ci € B, Y e Vi€ [n],
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pode ser decomposto em um problema mestre de cobertura por conjuntos
independentes maximais I de G

minimiza Z Xq (5.1)
iel

sujeito a Z xi > 1 YWwevV (5.2)
iellvel
xi €B viel (5.3)

Para custos reduzidos A,, v € V o subproblema problema de pricing é encon-
trar um conjunto independente méximo de maior peso

maximiza E AvZy

vev
sujeito a zu+2zy, <1 V{u,v} € E
z, €B vev.

Filho e Lorena (2000) propoem um algoritmo genético para resolver o subpro-
blema de pricing. %

5.1.2. Dynasearch

Dynasearch determina a melhor combinagao de varios movimentos numa vi-
zinhanga por programacao dindmica (Congram et al. 2002). Ela pode ser
vista como uma busca local com estratégia “melhor melhora” intensificada. A
aplicacao ¢é limitada para movimentos independentes: cada movimento precisa
ser aplicavel independente dos outros, e contribui linearmente para a funcao
objetivo. Numa representagdo por varidveis (x1,...,Xn) seja 8i; a reducdo
da funcao objetivo aplicando um movimento nas varidveis xi,...,%;. Logo
a maior reducao da funcao objetivo A; por uma combinagao de movimentos
independentes aplicado a x1,...,%; é dado pela recorréncia

Ay = max{Aj_, &1@(}_ A1 + dy5)

e a melhor combinagao de movimentos reduz a funcao objetivo por A,.

Exemplo 5.5 (Dynasearch para o PCV)

Para aplicar dynasearch no PCV supoe uma representacao por varidveis com
[ ={m; |i € [n]} e valores em [n] que representa uma permutacao das cidades.
Um movimento 2-exchange entre arestas (i, mi41) e (715, 7541) com 1 < j é
vélido caso 1+ 1 < j, i.e. precisa pelo menos quatro vértices. (Todos indices
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sd@o modulo n.) Dois movimentos (i,j) e (i’,j’) com i < i’ sdo independentes
caso j < i. A reducdo da fungdo objetivo para um movimento (i,j) é &y =
—dij — di41,j+1 + diiq1 + dj j41. Logo obtemos a recorréncia

0 caso j < 4
max{Aj_1, maxi<i<j—3 Ai_1 + 85} caso contrario.

j =

5.2. Hiper-heuristicas

Hiper-heuristicas usam ou combinam heuristicas com o objetivo de produzir
uma heuristica melhor e mais geral (Denzinger et al. 1997; Cowling et al.
2000). A heuristicas podem ser geradas antes da sua aplicagao (“offline”), por
uma busca no espaco das heuristicas. Uma hiper-heuristica desse tipo pode
ser projetada usando alguma meta-heuristica. Importante no projeto é uma
representacao adequada de uma heuristica generalizada para o problema e di-
versas heuristicas ou heuristicas parametrizadas que instanciam a heuristica
generalizada. As operacoes correspondentes modificam, constroem ou recom-
binam heuristicas. Uma alternativa é aplicar diferentes heuristicas durante
a otimizacao (“online”). Para isso uma hiper-heuristica precisa decidir qual
sub-heuristica aplicar quando.

Exemplo 5.6 (Hiper-heuristica online construtiva)

Considera o empacotamento unidimensional que permite diversas estratégias
gulosas para selecionar o préximo item a ser empacotado (na ordem dada
ou em ordem nao-crescente, no contéiner atual ou no primeiro ou melhor
contéiner). Uma hiper-heuristica pode selecionar a estratégia de acordo com
a solugdo parcial. Um exemplo é Ross et al. (2002): uma solugdo parcial
é representada pelo nimero de itens, e as percentagens de itens pequenas,
médias, grandes e muito grandes e um classificador é treinado para decidir
qual de quatro regras candidatas é aplicada. %

Exemplo 5.7 (Hiper-heuristica online por modificacao)

Uma hiper-heuristica pode usar conceitos da busca tabu para a selecao de
heuristicas de modificagao Hy, ..., Hyk. Associa um valor v; com cada heuristica
H;. Aplica em cada passo a heuristica H; de maior valor (uma ou mais vezes).
Caso ela melhora a solugao atual, aumenta v;, senao diminui v; e declara H;
tabu. O

Exemplo 5.8 (Hiper-heuristica offline)
Fukunaga (2008) apresenta uma abordagem para gerar heuristicas que selecio-
nam uma varidvel a ser invertida em uma busca local para o problema SAT. A
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regra de selecao é representada por uma expressao, que inclui selegoes tipicas
de algoritmos conhecidos como a restricao para clausulas falsas, a selecao pelo
aumento da fungao objetivo, uma selegao pelo tempo da ultima modificagao ou
uma selegao randomica. Essas restricoes podem ser combinadas por condigoes.
A regra de selecao do WalkSAT, por exemplo, é representada por

(IF-VAR-COND = +NEG-GAIN+ O
(GET-VAR +BCO +NEG-GAIN+)
(IF-RAND-LTE 0.5

(GET-VAR +BCO+ +NEG-GAIN+)
(VAR-RANDOM +BCO+)

)

Um algoritmo genético em estado de equilibrio evolui as regras de selegao. A
populacao inicial consiste de expressoes aleatdrias restritas por uma gramética
que garante que eles selecionam uma varidavel. O algoritmo seleciona dois pais
com uma probabilidade linear no posto na populacdo, e gera 10 filhos. A
estratégia de selegao é (L+A). A recombinacio de pais py e p2 é “if (condicdo)
then py else p2” com 10 condigdes diferentes, p.ex. i) uma selegdo randémica
com probabilidade 0.1,0.25,0.5,0.75,0.9, ii) a varidvel mais “antiga” entre
P1 e p2, ou iii) a varidvel de p; caso ela nao invalida nenhuma cldusula,
sendao pz2. Como a recombinagao aumenta a profundidade das expressoes,
uma regra substitui sub-arvéres de altura dois que ultrapassam um limite de
profundidade por uma expressao de menor altura. Isso serve também como
mutacao das expressoes. Cada regra é avaliada em até 200 instancias com
50 varidveis e caso pelo menos 130 execugoes tiveram sucesso em mais 400
instancias com 100 varidveis e recebe uma valor sso + 5s100 + 1/f com s;
o niimero de sucessos em instancias com i varidveis e f o nimero médio de
inversoes de varidveis em instancias com sucesso. As heuristicas evoluidas
em uma populagao de 1000 individuos, limitado por 5500 avaliagGes, com
limite de profundidade entre 2 e 6 sao competitivas com heuristicas criadas
manualmente. O

5.3. Heuristicas paralelas

Heuristicas podem ser aceleradas por paralelizagao. A granularidade do para-
lelismo (a relagao entre o tempo de computagio e comunicagao) é importante
para obter uma boa aceleracdo e tipicamente define ou limita a escolha da
arquitetura paralela. A paralelizacdo mais béasica executa diversas heuristicas
(ou a mesma heuristica randomizada) em paralelo e retorna a melhor solugao
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encontrada. Essa estratégia corresponde com repeticoes independentes, possui
uma granularidade alta, tem a vantagem de ser simples de realizar, e gera uma
aceleragao razoavel. Uma variante é uma decomposi¢ao do espaco de busca
em subespagos.

Exemplo 5.9 (Aceleragdo de heuristicas de busca)

Supoe um problema de busca com uma fungao de probabilidade exponencial
Ae M de encontrar uma solucdo no intervalo [t,t + dt]. A distribuicdo do
minimo de p varidveis distribuidas exponencialmente com Aj,..., A é dis-
tribuido exponencial com parametro A = ) ; A;. Logo, para p repeticoes pa-
ralelas independentes, obtemos uma nova distribuigao exponencial do tempo
de sucesso com parametro pA. O valor esperado de uma distribui¢ao expo-
nencial é ™', e assim obtemos uma aceleracao esperada de A~'/(pA)~! =p.

O

As trés técenicas heuristicas principais permitem algoritmos paralelos de gra-
nularidade fina ou média:

e Buscas por modificacdo: a exploracao de uma tnica trajetoria é inerente-
mente sequencial. Uma paralelizacao de granularidade fina pode avaliar
toda vizinhanga em paralelo (ou alguns movimentos, e.g. na tempera si-
mulada). A granularidade pode ser aumentado por vizinhangas grandes.

e Busca por construgao: similarmente a construcao por elementos é se-
quencial, mas os candidatos podem ser avaliados em paralelo.

e Busca por recombinagao: permite uma granularidade média paraleli-
zando os passos de sele¢ao, recombinagao e melhora de subconjuntos de
solugdes sobre subconjuntos de solugoes independentes.

Uma busca por modificacao ou construgao pode ser paralelizado melhor ava-
liando diversas trajetorias ou construgoes em paralelo. Esse tipo de parale-
lizacao se aplica diretamente em métodos como segue os vencedores e colonias
de formigas.

Uma paralelizacdo com granularidade fina ou média é mais adequada para ar-
quiteturas com memoria compartilhada. Eles podem ser realizadas de forma
conveniente com miiltiplos threads (explicitamente ou com abordagens semi-
automaticos usando diretivas como OpenMP).

Exemplo 5.10 (GSAT paralelo em C++ com OpenMP)
Uma versao simplificada de uma busca “melhor melhora” para o problema
SAT (ver exercicios) pode ser paralelizada em OpenMP por
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#pragma omp parallel shared(bestvalue,bestj)
private(t_bestvalue,t_bestj)

{

#pragma omp for private(value)

for(unsigned j=1; j<=I.n; j++) {
int value = S.flipvalue(j);
if (value>t_bestvalue) {
t_bestvalue = value;

t_bestj = j;
X
}
#pragma omp critical
{

if (t_bestvalue < bestvalue) {
bestvalue = t_bestvalue;
bestj = t_bestj;
}
}
}

O

Modelos cooperativos Uma estratégia de granularidade média sao modelos
cooperativos: a mesma ou diferentes heuristicas (“agentes”) que executam em
paralelo trocam tempo a tempo informagoes sobre os resultados da busca. O
projeto de uma estratégia inclui a definigao

e de uma topologia de comunicacao, que define quais agentes trocam in-
formagoes. Exemplos de topologias sdo grades (de diferentes dimensdes,
abertas ou fechadas), estrelas, ou grafos completos.

e da informagao trocada. Exemplos incluem incumbentes, memorias de
frequéncia, ou sub-populagoes.

e de uma estratégia de incluir a informacao no recipiente, por exemplo
substituindo um parte da populacido ou combinar memorias de frequéncia.

e da frequéncia em que a informacao é trocada.

Um exemplo simples de modelos cooperativos é um conjunto elite comparti-
lhado, que pode ser implementado de forma mais simples por um esquema de
mestre-escravo.
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Figura 5.1.: Exemplo de times assincronos para o PCV (Souza e Talukdar
1993).

Exemplo 5.11 (Colaboragao indireta: times assincronos)

Uma extensao da ideia do conjunto elite compartilhado sao times assincronos:
uma colegdo de diferentes algoritmos (de construcdo, melhoras, ou recom-
binagéo) (chamados de agentes) conectadas por memorias. Cada agente tra-
balha de forma auténoma e insere, no caso de heuristicas construtivas, ou ex-
trai, modifica e retorna, no caso de heuristicas de melhora ou recombinacao,
solugoes das memorias.

Souza e Talukdar (1993) apresentam um time assincrono para o PCV com nove
agentes: insercdo arbitrdria (IA) completa uma rota parcial por insergéo de
uma cidade aleatéria ndo-visitada no melhor ponto; shift (SH) testa todos
deslocamentos de até trés cidades consecutivas; Lin-Kernighan (LK) aplica o
algoritmo do mesmo nome; Lin-Kernigham simples (LS) aplica Lin-Kernighan
mas termina na primeira melhora encontrada; misturador (MI) tenta criar
uma nova rota com as arestas de duas rotas (eventualmente completada por
demais arestas); Held-Karp aplica o algoritmo do mesmo nome para obter um
limite inferior e 1-drvores (uma drvore mais um vértice conectado a ela via
duas arestas); misturador de drvores (MA) mistura uma rota e uma 1-arvore
para gerar uma nova rota; destruidor (DE) quebra rotas em segmentos, dados
pela intersegao de duas rotas; limitador (L) remove rotas piores ou aleatdrias
(com uma selegao linear de acordo co a distancia, tal que a rota melhor nuca
é removida) para limitar o nimero de rotas. Os agentes sdo conectados de
acordo com a figura 5.1.

¢
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Exemplo 5.12 (Algoritmos genéticos no modelo de ilhas)

A metafora evolutiva naturalmente sugere uma abordagem distribuida em
algoritmos genéticos: populacoes panmiticas em quais todos individuos da
mesma espécia podem ser recombinadas sao raras. O modelo de ilhas propoe
populagoes com uma evolucdo independente e uma troca infrequente de in-
dividuos entre as ilhas.

Luque e Alba (2011) discutem um algoritmo genético distribuido para MAX-
SAT com 800/p individuos em cada um dos p processadores, recombinagdo em
um ponto com probabilidade 0.7 e mutacao 1-flip com probabilidade 0.2. Os
processadores forma um anel direcionado e cada 20 iteracbes uma populacdo
manda um individuo aleatéria para o seu vizinho que incorpora-o caso o va-
lor da funcao objetivo estd maior que a pior individuo da populagao. Numa
instancia com 100 varidveis e 430 cldusulas eles observam uma aceleracao de
1.93, 3.66, 7.41, e 14.7 para p = 2,4, 8, 16 em média sobre 100 replicacoes. ¢

5.4. Heuristicas para problemas multi-objetivos

Um problema multi-objetivo possui mais que uma fungao objetivo. O valor de
uma solucao @(s) = (@1(s),..., ox(s))t € R* domina um outro valor ¢(s’)
caso @(s) < @(s’) (com < tal que existe pelo menos uma componente estrita-
mente menor). Uma solugdo s cujo valor ndo é dominado pelo de valor de uma
outra solugdo é eficiente (ou Pareto-étima). Diferente da otimizagdo mono-
objetivo podem existir valores incomparaveis (e.g. (1,2) e (2,1)). Tais solugoes
formam a fronteira Pareto (ver fig. 5.3), e um algoritmo multi-objetivo ge-
ralmente mantém uma populacao de solugoes nao-dominadas. Limites para
solugoes nao-dominadas sao o ponto ideal

L= (min@1(s), ..., min @n(s))
dos minimos em cada dimensao, e o nadir

v=( max @i(s),..., max @n(s))
s|s eficiente s|s eficiente

dos méaximos das solugoes eficientes em cada dimensao. Um valor v < t que
domina o valor ideal é utopico.

Em problemas dificeis as fungoes objetivos tendem a ser antagonisticas, i.e., a
reducgao do valor de uma fungao geralmente aumenta o valor de uma ou mais
das outras. Frequentemente um problema multi-objetivo € resolvido por esca-
larizagao, usando uma fungao mono-objetivo ponderada w(s) = ) ; wi@i(s).
Isso geralmente produz somente um subconjunto das solugoes eficientes (ver
fig. 5.3). Além disso, o conjunto de solugdes suportadas que podem ser ob-
tidas por otimizar w(s) para algum conjunto de pesos w, nao inclui todas
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Figura 5.2.: Solugoes de um problema com duas fungoes objetivo. Fronteira
eficiente em vermelho. A solucdo 6tima ponderada com pesos
wi = wy em azul. Duas solugtes eficientes nao-suportadas mar-
cadas em verde.
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solugoes, i.e. existem solugoes ndo-suportadas que para nenhuma escolha de
w sdao minimos de w(s).

Exemplo 5.13 (Problema da mochila bi-objetivo)
O problema da mochila bi-objetivo (leia: a versdo de decisdo correspondente)

maximiza cx
maximiza dx
sujeito a wx < W
x € B"

é NP-completo por generalizar o problema da mochila. %

Claramente uma variante multi-objetivo de um problema é mais dificil que a
versao mono-objetiva.

Exemplo 5.14 (Caminhos mais curtos)

Determinar o caminho mais curto entre dois vértices num grafo direcionado
conhecidamente permite um algoritmo polinomial (e.g. Dijkstra). A versao
(de decisao) bi-objetiva é NP-completo (Serafini 1986): para um problema de
mochila max{cx | wx < W} considera um grafo com vértices [0,n] e arestas
(c,0) e (0,w;) entre i — 1 e i. O problema da mochila possui uma solugéo
com cx > C e wx < W sse existe um caminho de 0 para n com distancias no
méximo ) ;. ¢i—CeW. O
Avaliacao de algoritmos multi-objetivos A comparacao de algoritmos multi-
objetivos precisa comparar aproximacoes E da fronteira eficiente real E. Caso
E é conhecido, uma medida simples € a fracao das solucoes eficientes encontra-
das |E N E|/|E|. Porém, isso nao conta solugdes que sdo razoavelmente pertas
de solugoes eficientes. Uma segunda medida aproveita que todas solugoes efi-
cientes s@o solugdes suportadas, ou caiem num subespago “triangular” (ver
figura 5.3) de solugbes suportadas e mede a fragdo das solugdes em £ que per-
tencem a esse espago. Outros exemplos de medidas de qualidade incluem a
distancia minima média para uma solucao eficiente

PN

SEE °

d(E,E) = ) mind(s,8)/IEl
e a distancia minima méaxima

Hmax(ﬁ, E) = maxmin d(s, §)
sE€E gt
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ou medidas baseados no volume coberto. Caso E é desconhecido, uma ava-
liacao aproximada pode ser obtida usando o conjunto de solugoes suportadas
nas medidas acima. No momento nao ha consenso sobre a comparagao ideal
de dois algoritmos multi-objetivos.

5.4.1. Busca por modificacdo de solucoes

Tempera simulada Para aplicar a tempera simulada no caso multi-objetivo,
o critério de Metropolis (2.3) precisa ser modificado para comparar valores
vetoriais. Uma forma comum é a escalarizagdo local: para pesos w a qualidade
da nova solugao é avaliada pela diferenca ponderada das fungoes objetivos
ou das probabilidades (Ulungu et al. 1999). Por exemplo, com A,,(s,s’) =
w(s’) — w(s) obtemos o critério de Metropolis modificado

caso A, (s,s) <0

. (5.4)
caso contrario

. 1
Placeitar] = {e_AW(S»S/J/kT

O algoritmo mantem um conjunto de solugoes eficientes durante a busca. Ele
aceita uma nova solugdo caso nenhuma outra solugao eficiente domina-la e
aplica critério (5.4) nos outros casos. A tempera simulada é repetida com
varios pesos w aleatdrios.

Um outro exemplo de um critério de aceitagao, proposto por Suppapitnarm
et al. (2000), usa um vetor de temperaturas T € R™. Com Ar(s,s’) =
2 icin(8{ —s{)/Ti uma solugao é aceita com probabilidade

—At(s,s’)

caso contrario

{1 caso At(s,s’) <0
e

Isso é uma variante do critério (5.4) com pesos wi = kTT, ! varidveis.

Exemplo 5.15 (MOSA para o problema da mochila bi-objetivo)

O algoritmo descrito acima aplicando o critério (5.4) é conhecido por MOSA
(multi-objective simulated annealing). Ulungu et al. (1999) aplicam MOSA
no problema da mochila bi-objetivo em comparacao com uma solugao exata.
As instancias sdo geradas aleatoriamente com pesos e valores de n itens em
(1,1000] e uma capacidade W =} ;_; ;wi/T com 1 € (0,1). O algoritmo usa
uma probabilidade de aceitacao inicial de Py = 0.5, « = 1—1/40, L = {5, 15, 25}
conjuntos de pesos, e 100,300,500 passos por temperatura. A vizinhanga
remove aleatoriamente itens até todos itens nao selecionados cabem na mochila
e depois adiciona itens aleatérias até nenhum item cabe mais. O
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Busca tabu Uma busca tabu multi-objetivo tem que definir a “melhor”
solugdo vizinha. O algoritmo MOTS de Gandibleux et al. (1997) usa a es-
calarizagdo de Steuer (1986)

S(s") =1Ao(w—o(s)le+plAcv—qe(s)

para selecionar o vizinho nao tabu de menor valor S. O valor de um vizinho
s’ depende um ponto utépico local v (i.e. um ponto que domina o ponto ideal
da vizinhanga N(s)), um conjunto de pesos A que define a direcao da busca
(com ) ey Ai = 1) e um pardmetro p < 1'.

Exemplo 5.16 (MOTS para o problema da mochila bi-objetivo)

O algoritmo determina inicialmente limites [l,u] para o ntimero de itens. Na
forma mais simples ele busca solugoes eficientes com um nimero de itens
n =u,u—1,...,1, numa vizinhanca que troca um item selecionado x; por
um item nao selecionado x;. A reinsercdo do item 1 fica tabu para 7 iteracoes
e a dele¢ao do item j para 3 iteragoes.

Em cada iteracao o algoritmo determina todos vizinhos vidveis nao tabu V,
que dominam um ponto de satisfacdo o e nao sao dominados por uma solugao
na fronteira eficiente atual ﬁ, e atualiza £ com estes pontos. O ponto de
satisfagao o é 0 para n = u e se aproxima ao nadir 11 do conjunto eficiente E
do n anterior de acordo com 0n_1 = 0 + (Mn — 01 )/0 com um tamanho de
passo & > 2. Depois a solugdo vizinha s’ de maior S(s’) é selecionada. Caso
nao existe solucao viavel que nao é tabu, o algoritmo passa para a solugao
nao-tabu que excede a capacidade da mochila menos possivel. Um critério de
aspiracao permite selecionar uma solugao tabu que domina todas solugoes V
ou que domina um nimero grande de solucdes em E.

A solugao inicial é aleatéria (com n = u itens selecionados) e cada diregao
de busca continua com a solugao final anterior. Diminuindo n, o item com o
menor valor minimo dos sobre as dimensoes da mochila é removido.

A implementagao testa 25 conjuntos de pesos (A, 1 —A), com A = i/24 para
i =0,...,24, aplica no mdximo 500 itera¢oes por busca tabu (para cada
conjunto de pesos e cada n), e usa & = 2 na mesmas instancias do exemplo
anterior. A busca para com n =1 ou caso na vizinhanca nao tem solucao que
domina o ponto de satisfacao. %

5.4.2. Busca por recombinacao de solucoes

A maijoria das propostas de heuristicas multi-objetivos recombinando solucoes
sao algoritmos genéticos e evolutivos. Num algoritmo genético somente a

LA operacdo o é a multiplicacdo ponto a ponto de dois vetores.
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selecao de individuos para recombinagao depende da funcao objetivo. Por-
tanto, uma das modificagbes que torna um algoritmo genético multi-objetivo,
é uma selegdo proporcional com w(s), com um vetor de pesos w selecionado
aleatoriamente em cada iteragdo (Murata et al. 1996). Essa abordagem é sim-
ples na implementacao, mas tem a desvantagem que ela foca em solugoes
suportadas. Um dos algoritmos pioneiros trabalho com k subpopulagoes, e
seleciona individuos em cada subpopulacdo de acordo com a i-ésima funcéo
objetivo (ver algoritmo 5.1).

Algoritmo 5.1 (Selecio VEGA (Vector-evaluated GA))
Entrada A populagao atual P.

Saida Uma nova populagdo P.

1 para i€ [K]

2 seleciona |P|/k individuos proporcional com ;
3 aplica recombinacao e mutagao

4 na uniao S dos individuos selecionados

5 retorne a nova populagio

Algoritmos recentes determinam o valor de uma solugdo de acordo com a
proximidade com a fronteira eficiente e a densidade na fronteira eficiente, para
uma exploragao melhor em direcao de solugoes eficientes e em regioes esparsas.
Para um conjunto de solugdes S seja E(S) = E1(S) a fronteira eficiente (local)
e define recursivamente a k + 1-ésima fronteira eficiente por

B () =E(S\ | Ex(S)). (5.5)
]

ielk

(ver o exemplo da Fig. 5.3).

Seja ainda B(x,S) ={s € S| x > s} o conjunto de solugdes em S que dominam
x e W(x,S) ={s € S| x > s} o conjunto de solugdes dominadas por x em S.
Entre as propostas temos algoritmos que ordenam solugoes s € P da populagao
atual P

e pelo nivel k da sua fronteira eficiente s € €y (P) correspondente (non-
dominated sorting GA, NSGA, NSGA-II);

e pelo nimero 14 |B(s, P)| de solucoes que dominam s na populagao atual
P (MOGA);

e pela fracao total da cobertura por solugoes de um conjunto E eficiente
atual 1+ ZteB(S‘E) [W(t, P)I/(IP| + 1) que dominam s (strength Pareto
EA, SPEA);
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Figura 5.3.: Decomposic¢do de um conjunto de solugbes em fronteiras eficientes
de acordo com (5.5).

e pelo soma dos postos das solugoes que dominam s, T(s) = H—ZtEB(S)P) T(t).
Técnicas para priorizar a exploragao de regioes esparsas incluem

e a reducdo da fungdo objetivo por um fator [By(s) N @®(P)|~" (com B, (s)
um esfera de raio T e centro @(s) e ¢(s) a fungdo objetivo normalizada
para o intervalo [0, 1] em cada dimensao) (MOGA);

e a soma das distancias normalizadas para os predecessores e sucessores
na fronteira atual em cada dimensao (“crowding distance”) (NSGA-II).
Para cada dimensdo i € [k] supde que as solucoes x',...,x™ de uma
fronteira sdo ordenadas pela i-ésima coordenada (i.e. XI < xiz < ... <
xI'). Entdo o crowding distance normalizada da solugdo x* na dimensao
ié

ci(x*) = (@i (x* 1) = @i (x*" 1))/ (@™ — ™)

paras € [2,n—1], ci(x') = ci(x™) = o0 e a crowding distance da solucao
éc(x®) = icpg cilx®).

Formas de elitismo incluem manter uma ou mais fronteiras eficiente Ek(P] ou
Ex(PUC) com filhos C.
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Exemplo 5.17 (NSGA-II)
O algoritmo NSGA-II segue o algoritmo genético 4.3 com uma sele¢ao por um
torneio binario de P: entre duas solugoes aleatoérias a solugao de menor nivel
k ou, no caso de empate, de menor “crowding distance” é selecionada. Ele
sempre aplica mutagdo (M = C). A funcdo update que atualiza a populagao
é realizada por
R:=PUC
seja P:=E;(R)U---UEL(R) com k maximal t.q. |[P|<n
if [Pl<n

complete P com as n—|P| solugdes de Exiq(R)

wdi .
de menor ‘‘crowding distance ’’
end if

5.5. Heuristicas para problemas continuas

Uma forma geral de um problema de otimizagao continuo é

minimiza f(x)
sujeito a gi(x) <0 Vi€ [m]
hy(x) = 0 vj e U,

com solugoes x € R™, uma func¢do objetivo f : R™ — R, e restrigoes g; : R™ —
R e hj : R — R. Casos particulares importantes incluem fungoes lineares e
convexas e o caso irrestrito (m =1=0). As defini¢bes 2.1 continuam validas
com uma vizinhanca N¢(x) = {x’ € R™ | ||x —x'|| < €} e com a condicao
adicional para um minimos ou maximos locais deve existir um € > 0 que
satisfaz a defini¢ao.

Casos simples de um problema de otimizacao continua podem ser resolvidos
por métodos indiretos. Um método indireto encontra primeiramente todos
candidatos para solugoes étimas por critérios necessarios para otimalidade
local, depois verifica a otimalidade local por critérios suficientes, e finalmente
encontra a solucao étima global por comparagao dos solugoes 6timas locais.
Na otimizagao irrestrita em uma dimensao, por exemplo, temos a condigao
suficiente f' = 0 para otimalidade local, e a condicao suficiente f” > 0 para
um minimo local e f” < 0 para um méximo local (dado que as derivadas
existem).

Caso resolver f' = 0 néo é possivel técnicas de busca numa linha (ingl. line
search) podem ser usadas. Para um dominio restrito x € [a,b] um método
simples é a busca regular: escolhe o melhor entre os pontos x = a 4+ iAx, para
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5.5. Heuristicas para problemas continuas

1=0,...,[(b—a)/Ax]|, para um tamanho de passo Ax. Um outro exemplo é
uma busca em linha com backtracking.

Algoritmo 5.2 (Busca em linha com backtracking)
Entrada Um ponto x, uma direcao de descida Ax, o € (0,0.5), p € (0,1).

Saida Uma nova solugao x.
1 t==1
2 while f(x+tAx) > f(x) + atf’(x)Ax do t:=fpt
3 return x4 tAx

O algoritmo precisa uma dire¢ao de descida Ax, tal que f’(x)Ax < 0, por exem-
plo Ax = —f’(x). O parametro « define uma perda em qualidade aceitavel,
o parametro  a precisdo da busca. A busca termina, porque para um t
suficientemente pequeno a condigao é satisfeita localmente.

Os dois métodos podem ser generalizadas para o caso irrestrito no R™. A
busca regular limitada para S = {x € R™ | 1| < x < u} para um limitante
inferior 1 € R™ e superior u € R™ avalia todos pontos x = 1+ 10 Ax € S,
com i € Z, para um tamanho de passo Ax € R™. A busca em linha com
backtracking substitui a derivada f’(x) pelo gradiente V{(x); uma direcao de
busca entao é Ax = —V{(x).

Métodos de busca em linha sao elementos de métodos univariados de oti-
mizagao, que otimizam uma variavel por vez, ou mais geral, uma direcao de
busca por vez. A busca por relaza¢do de Southwell por exemplo repetida-
mente seleciona a variavel x; que corresponde com o maior valor absoluto do
gradiente |0f/0xi|(x). Um dos métodos mais comuns é a descida do gradiente
(ingl. gradient descent).

Algoritmo 5.3 (Descida do gradiente)
Entrada Um ponto inicial x € R™.

Saida Uma nova solucao x € R™.

1 repeat

2 Ax := —VT1(x)

3 aplica uma busca em linha na diregao Ax
4 para obter um tamanho de passo t

5 x =X+ tAx

6 wuntil critério de parada satisfeito

7 return x
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Um critério de parada comum é ||[Vf(x)||2 < €, para um € > 0 pequeno.

Exemplo 5.18 (Redes neurais artificias)

Uma grande classe de redes neurais artificias sdo redes sem realimentagdo
(ingl. feed forward networks). Eles recebem informagao numa camada de en-
trada, que passa por multiplas camada internas até chegar na camada de saida.
A saida x de um elemento de uma camada é uma fungdo da soma ponderada

dos elementos xi,...,x;, da camada anterior:
x=¢( Z Wix{). (5.6)
iem]

A funcdo g é a fungdo de ativagao. (O modelo simples de um neurénio de
McCulloch e Pitts (1943) usa g(x) = [x > 0].) Ela tipicamente é sigmoide
(possui forma de “s”), por exemplo

1
1+ exp(—2ph)
com derivada g’ = 2Bg(1 — g). Em geral supoe que temos uma rede com k
camadas e a camada i possui n; elementos. Sejam W',..., W*~T as matrizes

de pesos entre as camadas, com W' € R™+1 X" Logo uma entrada x' € R™
na primeira camada é propagada para frente por

hi+1 — Wixi; xi+1 — g(hl) (57)

g(x) =

para i € [k —1]. O valor h' é a entrada da camada i, o valor x* € R™ a sua
saida. (A fungdo g é aplicada em cada componente.)

O objetivo de uma rede neural artificial é treina-lo para produzir saidas de-
sejadas (e espera-se que a rede generaliza e produz resultados desejaveis para
entradas desconhecidas). Na aprendizagem supervisionada a rede repetida-
mente recebe uma entrada x' = £ e a safda x* é comparada com uma saida
desejada 0. O erro é definido por

EW',. =1/2 Z
ie nk]
O treinamento consiste em ajustar o pesos W', ..., W¥ tal que E é minimizado.

Isso é um problema de otimizacao continua, e nos podemos aplicar a descida
de gradiente para obter pesos melhores. No caso de uma rede com somente
uma camada interna (k = 3) temos

2
EW', W) =1/2 ) (Uk—g( > Whe( Y W, ) :

kelns] jemn;,] i€[nq]
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e o gradiente para os pesos entre a segunda e a terceira camada é

oE 3 31,2
W%j = —(ox *Xk)gl(hk)xj
= —Sﬁsz

com 6% = g'(h})(ox —x3). Similarmente o gradiente para os pesos entre a

primeira e a segunda camada é

oE
s == 2 (o —x)g (MIWg' ()
ji kens]
=— > 5W4e'(hx
kens]
:fél]x!.

1 _ 2 2\4/2
com 8} = g'(h; ).Zke[ng] ék.ij.
Aplicando a descida do gradiente com um tamanho de passo 1 obtemos a regra
simples

AWy = =X} (5.8)

_OF
Tawg,

com

5 =g'(h*) o (0 —x3)
5! = g’(h?) 0 8 W2,

Isso pode ser generalizado para um numero arbitrario de camadas por

8% =g’ (h*) o (0 —x¥)

§t=g/(h")ost TWHT T ie k-2 (5.9)

Logo enquanto os valores sao propagadas para frente, de acordo com (5.7), os
erros sao propagadas para atrds por (5.9) e o método é chamada propagacdo
para atrds (ingl. backpropagation).

Para treinar uma rede serve um conjunto de entradas &',...,&™ com saidas
desejadas o', ..., 0™. Repetidamente para entrada &' a saida é calculada por
propagacao para frente, os erros § sao calculados por propagacao para atrés
e os pesos sao ajustados pela regra (5.8).

O

93



1
2
3
4
5
6
7

5. Tépicos

5.5.1. Meta-heuristicas para otimizacao continua

A otimizagdo com enxames de particulas da se¢do 4.6 é um exemplo de uma
meta-heuristica que pode ser aplicado diretamente na otimizagao continua.
De fato a maioria das heuristicas por modificacdo ou recombinacao podem
ser aplicadas para problemas continuas com uma definicao adequada de uma
vizinhanga e de uma recombinagao. Exemplos de vizinhangas continuas sao a
vizinhancga uniforme N (x) de acima e a vizinhanga Gaussiana N(x) = N(x, o).
Recombinagoes da secao 4 que podem ser aplicadas no caso continuo sao as
recombinacoes randomizadas, lineares e particionadas.

Um exemplo que inclui uma estratégia construtiva para otimizacao continua

é 0 GRASP continuo (C-GRASP).

Algoritmo 5.4 (C-GRASP)
Entrada Conjunto de solugdes vidveis S = {x € R™ | 1 < x < u},
parametros hg, he, p e .

Saida Uma solucao x € S.

1 repeat

2 x = Ul u]

3 h:= ho

4 repeat

5 x := construct(x, o, h)
6 x := localsearch(x, p, h)
7 if x nao melhorou
8 h:=h/2

9 endif

10 until h < hy
11 until critério de parada satisfeito
12 return x

A construgédo gulosa é univariada, selecionando entre uma das melhores diregoes
de otimizacao

construct (x,oc,h) =
S :=[n]
while S #( do
for i€ S: z;:=buscaregular(x;, li, ui, h)
C:={ieS|f(zi) < (1 —a)min; z; + xmax; z; }

seleciona je€ C aleatério
Xy =z
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S:=S\{j}
end while
end
A vizinhanca da busca local projeta todos pontos da grade regular R(x) = {x |
x=1+10Ax €S, i€ Z,} numa esfera de raio h com centro x

Br(x) ={x" €S |x" =x+h(x"—x)/Ix"—xll2,x" € R(x) \ {x}

e repetidamente busca numa direcdo aleatdria em By, (x).

localsearch (x,p,h) :=
repeat
seleciona x’ € By(x) aleatoriamente
if f(x')<f(x): x:=x'
until p/R(x)| pontos examinados sem melhora

return x
end
5.6. Notas

O livro do Talbi (2009, ch. 4) contém uma boa introdu¢ado em otimizacao
multi-objetivo. Konak et al. (2006) apresentam estratégias para algoritmos
genéticos multi-objetivos. Jaszkiewicz e Dabrowski (2005) é uma biblioteca
(j& um pouco antiga) com implementagoes de diversas meta-heuristicas multi-
objetivos. Boyd e Vanderberghe (2004) é uma introdugao excelente na oti-
mizagao convexa.
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6. Metodologia para o projeto de heuristicas

Over the last decade and a half, tabu search algorithms for machine
scheduling have gained a near-mythical reputation by consistently
equaling or establishing state-of-the-art performance levels on a
range of academic and real-world problems. Yet, despite these
successes, remarkably little research has been devoted to develo-
ping an understanding of why tabu search is so effective on this
problem class.

(Watson et al. 2006)

Despite widespread success, very little is known about why local se-
arch metaheuristics work so well and under what conditions. This
situation is largely due to the fact that researchers typically fo-
cus on demonstrating, and not analyzing, algorithm performance.
Most local search metaheuristics are developed in an ad hoc man-
ner. A researcher devises a new search strategy or a modification
to an existing strategy, typically arrived at via intuition. The algo-
rithm is implemented, and the resulting performance is compared
with that of existing algorithms on sets of widely available bench-
mark problems. If the new algorithm outperforms existing algo-
rithms, the results are published, advancing the state of the art.
Unfortunately, most researchers [...] fail to actually prove that the
proposed enhancements actually led to the observed performance
increase (as typically, multiple new features are introduced simul-
taneously) or whether the increase was due to fine tuning of the
algorithm or associated parameters, implementation tricks, flaws
in the comparative methodology, or some other factors.

Gendreau e Potvin (2010)

The field of optimization is perhaps unique in that natural or man-
made processes completely unrelated to optimization can be used
as inspiration, but other than that, what has caused the research
field to shoot itself in the foot by allowing the wheel to be in-
vented over and over again? Why is the field of metaheuristics
so vulnerable to this pull in an unscientific direction? The field
has shifted from a situation in which metaheuristics are used as
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6. Metodologia para o projeto de heuristicas

As citagOes acima caracterizam o estado metodoldgico do projeto de heuristicas.
Por isso, é necessario enfatizar que o projeto de heuristicas é uma disciplina
experimental, e tem que seguir o método cientifico. Em particular, o projeto

i)

ii)

iii)

iv)

inspiration to one in which they are used as justification, a shift
that has far-reaching negative consequences on its credibility as a
research area.

[...]

The field’s fetish with novelty is certainly a likely cause.

[...]

A second reason for this research to pass is the fact that the rese-
arch literature in metaheuristics is positively obsessed with playing
the up-the-wall game (Burke et al., 2009). There are no rules in
this game, just a goal, which is to get higher up the wall (which
translates to “obtain better results”) than your opponents. Sci-
ence, however, is not a game. Although some competition between
researchers or research groups can certainly stimulate innovation,
the ultimate goal of science is to understand. True innovation in
metaheuristics research therefore does not come from yet another
method that performs better than its competitors, certainly if [it]
is not well understood why exactly this method performs well.

Soérensen (2013)

inicia com uma questdo cientifica especifica, bem definida e clara;
(“Qual o melhor método para resolver o PCV?”)

gera um ou mais hipdteses para responder essa questao;

(“Dado o mesmo tempo, Lin-Kernighan iterado sempre é melhor que

tempera simulada.”)?

projeta testes experimentais para verificar (estatisticamente) ou rejeitar

as predicoes das hipdteses;

analisa os resultados dos experimentos e conclui; isso pode resultar em

novas hipéteses.

6.1. Projeto de heuristicas

O objetivo tipico do projeto de uma heuristica é obter solugoes de boa quali-
dade em tempo adequado. Os critérios sao correlacionados, i.e. mais tempo ge-
ralmente produz melhores solugoes. O tempo disponivel depende da aplicacao

1Observe que isso é uma ilustracio: essa hipétese é quase irrefutével, e precisa ser muito

mais especifica na prética.
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e tipicamente influencia a técnica heuristica (pensa: 100 metros rasos vs. ma-
ratona). Além disso, pode ser o objetivo do projeto obter uma heuristica

o simples, i.e. facil de implementar, entender e explicar;
e robusta, i.e. simples de calibrar e pouco sensivel aos parametros;
e generalizdvel, i.e. aplicivel a um grande ntimero de problemas similares

(Barr et al. 1995; Cordeau et al. 2002).

De acordo com a nossa classificagao, heuristicas usam trés operagoes prin-
cipais: construgao, por adicao de elementos, modificacao, por alteracao de
elementos, e recombinacao, por selecionar e unir elementos de mais que uma
solugao. KEssas operagoes sao especificas ao problema, junto com a repre-
sentagao e a fungao objetivo. A literatura sugere que uma meta-heuristica efe-
tiva depende dos seguintes componentes, em ordem da sua importancia (Wat-
son et al. 2006; Hertz et al. 2003):

1. as técnicas especificas ao problema;

2. a meta-heuristica; uma meta-heuristica béasica precisa técnicas para evi-
tar estagnagdo (minimos locais);

3. aintensificacao e diversificagao estratégica usando memoria que beneficia
geralmente cada heuristica;

4. os parametros dos componentes;

5. a implementagao eficiente.

Na prética inversoes sao possiveis, e todos os pontos tem que ser tratados
sistematicamente para obter resultados de estado de arte. Por isso sugerimos
uma metodologia construtiva por componentes para o projeto de heuristicas.

1. Estuda diferentes representacoes do problema. Projeta uma estrutura de
dados adequada com apoia eficiente para as principais operacoes (adigao,
delegdo, alteracdo de elementos e avaliagdo incremental). Determine a
complexidade dessas operagoes. Considera os principios 1.1 e 1.2.

2. Propoe diferentes operagoes de construcao, modificacao e recombinacao.
Avalia estatisticamente cada uma das operagoes e o seus parametros
separadamente. Para modificagao considera os principios 2.1 e 2.2.

3. Considere uma anélise da paisagem de otimizacdo (cép. 6.2).
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4. Combina sistematicamente operacoes basicas para uma meta-heuristica
bésica que evita minimos locais ou uma meta-heuristica construtiva. Es-
pecificamente projeta e testa se as técnicas para evitar minimos locais
sao efetivas. Avalia a contribuicao e a interacao dos componentes e o
seus parametros. Procede das técnicas mais simples para as mais com-
plexas (e.g. busca local, tempera simulada, busca tabu; resp. construcao
gulosa, bubble search, colonia de formigas).

5. Adiciona uma estratégia de intensificagdo e diversificacdo usando uma
forma de memoria de longa duragao. Procede das técnicas mais simples
para as mais complexas (e.g. Probe, GRASP-PR, algoritmo genético/busca
dispersa).

Complementarmente o método cientifico sugere:

1. Compare durante o projeto com o estado de arte em algoritmos exatos,
aproximativos, e heuristicos em tempo e qualidade.

2. Procure nao simplesmente produzir “melhores” resultados mas explicagoes
do funcionamento do método.

3. Os experimentos tem que ser reproduziveis por outros pesquisadores.
Consequentemente as instancias, as saidas, as solugoes completas obtidas
e o cbdigo tem que ser publicado (eventualmente em forma “ilegivel”
mas compildvel, caso investimento em desenvolvimento ou propriedade
intelectual tem que ser protegido) (Barr et al. 1995).

Complementarmente a literatura sobre solugao de problemas sugere (e.g. Polya
(1945))

1. Tenta entender o problema profundamente. Resolve algumas instancias
manualmente, testa heuristicas construtivas, de modificagao ou recom-
binagao em alguns exemplos pequenos manualmente. Para heuristicas
de modificacdo estuda exemplos de minimos locais: porque eles sao
minimos locais? Com quais operacoes daria para escapar desses minimos
(principio 2.2)7

2. Tenta resolver o problema de melhor forma algoritmicamente, mesmo
ele sendo NP-completo. Estuda algoritmos aproximativos e exatos para
o problema. Usa as técnicas das melhores algoritmos para construir as
operagoes basicas da heuristica.

3. Caso problema é NP-completo: estuda a prova da dificuldade cuida-
dosamente: quais caracteristicas do problema torna-o dificil? Eles sao
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comuns em instancias praticas? Caso contrario, a prova pode ser sim-
plificada? Ou é possivel que o problema nao é NP-dificil em instancias
praticas? E possivel isolar caracteristicas que simplificam instancias?

4. Procure identificar o subproblema mais simples que pode ser resolvido.
Procure identificar problemas semelhantes e estudar as suas solugoes.
Procure generalizar o problema. D& para transformar o problema para
um outro problema similar?

Escolha de uma meta-heuristica Dado o metodologia acima, uma guia
basica para escolha de uma meta-heuristica é

e A meta-heuristica é menos importante que as operagoes basicas. Escolhe
a meta-heuristica mais tarde possivel, e somente depois de estudar as
operagoes basicas.

e Seleciona uma meta-heuristica que conhecidamente funciona bem em
problemas similares.

e Tendencialmente técnicas construtivas sao mais adequadas para proble-
mas mais restritos.

e Tendencialmente intensificagao é preferivel para uma escala de tempo
curta; algoritmos estocdsticos (e.g. tempera simulada, construgao ite-
rada independente) tendem a precisar mais tempo.

e Tendencialmente métodos mais sistemédticos sao preferiveis para proble-
mas maiores. Por exemplo, a probabilidade de encontrar solugoes de
boa qualidade por construgao iterada independente tipicamente diminui
com o tamanho da instancia (Gendreau e Potvin 2010, cap. 20) (“central
limit catastrophe”).

6.2. Analise de paisagens de otimizacao

Para estimar a dificuldade de resolver um problema para uma dada vizinhanga
temos que responder (empiricamente) perguntas como

e Qual a probabilidade de encontrar uma solugao 6tima a prior:i?
e O quanto a fungao objetivo varia entre solugoes vizinhas?
e Qual a distancia média entre dois minimos locais?

e O quanto a fungao objetivo guia uma busca local para solugoes 6timas?
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Essa perguntas geralmente sao dificeis para responder, porque eles supoem
que ja conhecemos as solucoes 6timas do problema. Na pratica podemos
obter estimativas dessa medidas por amostragem.

Distribuicao de tipos de solugées Para uma dada vizinhanca podemos clas-
sificar a solugoes como segue. Seja E(s) ={s € N(s) | ¢(s’) = @(s)} o conjunto
de vizinhos com o mesmo valor da funcdo objetivo, e W(s) = N(s)\ B(s)\ E(s)
o conjunto de vizinhos piores que s. Com isso obtemos a classificagao

IB(s)l [E(s)] IW(s)

Tipo de solucao

0 0 0 Solucao isolada
>0 0 0 Maximo local estrito
0 >0 0 Plateau
>0 >0 0 Maiaximo local
0 0 >0 Minimo local estrito
>0 0 >0 Declive
0 >0 >0 Minimo local
>0 >0 > (0 Patamar

Exemplo 6.1 (Permutation flow shop problem)
Obtemos para as 10! = 3.628.800 solugoes da instancia “carlier5” do PFSSP
na vizinhanca N7 que insere uma tarefa em qualquer outra posigao nova:

Tipo de solucao # (%) Tipo de solucao # (%)

Solugao isolada 0 (0) Minimo local estrito 5 (0.00014)
Méximo local estrito 0 (0) Declive 134784 (3.71)
Plateau 0 (0) Minimo local 1743 (0.048)
Méximo local 6 (0.00017) Patamar 3492262 (96.24)

Existem trés minimos globais com valor 7720. Todos trés sao nao-estritos.
Logo a probabilidade a priori de um minimo local ser um minimo global é
0.0017. A distribuicdo dos 86 valores dos minimos locais é (minimo/quartil
inferior/mediana/quartil superior/méximo): 7720, 8039, 8047, 8335, 8591.
Um busca local na vizinhanga N7 entao é no maximo 11.3% acima do valor
6timo. O

Variacao entre solucoes vizinhas Intuitivamente, uma paisagem de otimizagao
“menos continua” e “mais curvada” é mais dificil para um algoritmo de busca
local. Isso pode ser formalizado pela fungao de correlagéo da paisagem (ingl. lands-
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cape correlation function)

cov(@(8)@(s N ags,e—t (0(8)0(s ) ars,s—i — (@(s)>
= .

p(i) = =
o(e)? (@2(s)) — (@(s))?
Temos p(i) € [—1,1]: para valores perto de 1 o valor de solucoes vizinhas é

perto da valor da solugao atual; para um valor perto de 0, o valor de uma
solucao vizinha nao é relacionado com o valor da solucao atual.

(6.1)

Exemplo 6.2 (Permutation flow shop problem)

No caso do PFSSP obtemos p(1) ~ 0.79. Logo existe uma alta correlacio
entre o valor de uma solugao e o valor das solugoes vizinhas: podemos esperar
que uma busca local funciona razoavelmente bem. O

A distancia média entre dois minimos locais pode ser estimado pela distancia
de correlagao (ingl. correlation length) 1 = Zizo p(i). Com B(r) o nimero de
solugoes numa distancia no maximo r de uma solugao esperamos que

Pls é 6timo local] ~ 1/B(1).

Essa relacao é conhecida como conjetura da distancia de correlacao.
A funcao de correlacdo p(i) pode ser determinada empiricamente pela auto-

correlacao de uma caminhada aleatéria. Para uma caminhada aleatéria s1,s2, ...

com m > 1 obtemos o estimador

p(l) = p((p(51:m—i)) (p(si—b—]:m)))

onde Sq.p = (Say---48p) € ©(s) = (@(s1)y...,@©(Sm)). Essa estimativa é so-
mente correta, caso uma caminhada aleatéria é representativa para toda paisa-
gem de otimizagao. Tais paisagens sao chamadas isotrdpicas. Frequentemente
a correlacdo diminui exponencialmente com a distancia de forma p(i) = p(1)}
e p(1) = e /1. Neste caso, podemos determinar | por

L= (=In(lp(1)))~".

Para usar uma p(1) estimado por um caminho aleatério na conjetura da
distancia de correlagao, ainda temos que corrigir a distdncia: caso uma cami-
nhada aleatéria de 1 passos resulta numa solugéo de distancia média d(i), a
probabilidade de uma solucao ser um 6timo local é ~ 1/B(d(1)).

Correlacao entre qualidade e distancia A funcao objetivo guia uma busca
local para solugdes melhores caso a distancia d*(s) para a solu¢ao étima mais
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proxima de uma solugéo s e correlacionada com a valor da fungdo objetivo. A
correlagao qualidade-distancia (ingl. fitness distance correlation)

o dr) = V) (0ls)d(s)) = ((s) (@ ()
ole)old) T — (ol {ar2(s)) — (d(s))2

mede isso. Temos p(@,d*) € [—1,1]: para valores positivos temos uma es-
trutura “big valley” com o um extremo de uma correlacao linear ideal para
um valor de 1; para valores negativos a funcao objetivo de fato nao guia a
busca. No primeiro caso intensificacao maior, no segundo uma diversificacao
maior é indicado. A correlagdo também serve para comparar vizinhangas:
muitas vezes a vizinhanga que possui uma maior correlagao produz resultados
melhores.

(6.2)

Exemplo 6.3 (Permutation flow shop problem)

Para a vizinhanca “shift” que desloca uma elemento da permutagao para qual-
quer outra posicao, obtemos a seguinte distribui¢ao de distancia e desvio de
uma solugao da solugao 6tima mais perta.

Desvio
I

1 2 3 4 g T 8
Distancia

Um p ~ 1.7 - 10> confirma uma fraca correlacio entre distancia e qualidade.

O
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6.3. Avaliacao de heuristicas

Uma heuristica, como qualquer algoritmo, transforma determinadas entradas
(as instancias do problema) em saidas ou resposta (as solugdes vidveis). Essa
transformacao é influenciada por fatores experimentais e pode ser analisado
(como qualquer outro processo) com métodos estatisticos adequadas. Os com-
ponentes do processo e o seu parametros sao fatores controldveis; além disso
o processo sofre fatores incontrolaveis (e.g. randomizacao e as instancias).
Na avaliagao queremos responder perguntas como

e Como os diferentes niveis dos fatores controlaveis influem a resposta do
processo? Quais sao os fatores principais? O quanto os fatores influem
a resposta? Existe uma interacao entre diferentes fatores? Qual escolha
de niveis produz resultados bons para uma grande variagao dos fatores
incontroldveis (i.e. uma heuristica robusta)?

e Qual o tempo (empirico) para encontrar uma solucdo vidvel, de boa
qualidade, ou 6tima em func¢do do tamanho da instancia?

Observagao 6.1

Medidas de tempo devem ser acompanhadas por informacoes detalhadas sobre
o ambiente de teste (tipo de processador, memoria, etc.). Uma alternativa é
informar o custo computacional em nimero de operacoes elementares. O

Complexidade empirica de algoritmos A complexidade de tempo de um
algoritmo pratico com alta probabilidade possui a forma

T(n) ~ ab™n®logdn

(ver p.ex. Sedgewick e Wayne (2011, cép. 1.4) e Sedgewick (2010)). Frequen-
temente podemos focar em dois casos simples. Para uma série de medidas
(n, T) podemos avaliar

uma hipétese exponencial Com T(n) ~ ab™, obtemos log T ~ log a + nlogb.
Logo podemos determinar um modelo por regressao linear entre log T e
n;

uma hipétese polinomial Com T(n) ~ an® obtemos log T ~ loga + blogn.
Logo podemos determinar um modelo por regressao linear entre log T e
logn.

Exemplo 6.4 (Complexidade empirica em GNU R)
Para um arquivo com tamanho da instancia n e tempo T da forma
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nT

100 233.0000
2560 689.7667
500 1655.8667

podemos determinar a complexidade empirica em GNU R usando

d<-read.table("x.dat" ,header=T)
1m(log(T) “log(n) ,data=d)
Im(log(T) "n,data=d)

O

Observagao 6.2 (Soma de quadrados na regressao linear)

Supde que temos valores x € R™ e m observagoes y; € R™ paracadai e [n]. A
regressao linear determina uma fungédo {j = ak®+b. Para a soma de quadrados
das distancias dos pontos aproximados {j e as observagoes obtemos

SSt = Z(Uii —9)? =) ((Bi—1) — (yy —Qi))z

i,

= Z 2+ 25 — 9)(yy — o) + (Y5 — )2

:mZ( ~v) HZ 9) 3 tyg — 90+ 3 (s — 9
1 :xgi—ngi:oz !

—mZ ++Z Y5 — 1)

=SS, + SS¢.

Isso mostra que podemos decompor a soma de quadrados total SSt em duas
componentes: a soma de quadrados obtida pela variagao das médias em cada
ponto x da média geral SSy. Este parte da variacao é explicado pela hipdtese
linear: ele vem da variacao da fungao linear. O segundo termo representa a
soma de quadrados obtida pela variagao das medidas individuais das médias
em cada ponto x. Este parte pode ser atribuido ao erro experimental. Logo a
quantidade

SSx

RZ
SSt

€1[0,1]

representa a “fracdo explicada” da variacao dos dados, e serve como medida
da qualidade da aproximagao linear. Observe que isso é somente possivel
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aplicando a regressao linear em todos os dados, nao nas médias das observagoes
em cada ponto. O

Exemplo 6.5 (R? em GNU R)
Aplicando a regressao linear nos dados de Rad et al. (2009) obtemos

d<-read.table("rad-cpu.dat" ,header=T)
> Im(log(neht) "log(tasks)+log(machines) ,data=d)

Call:
Im(formula = log(neht) ~ log(tasks) + log(machines), data = d)

Coefficients:
(Intercept) log(tasks) log(machines)
-15.0553 1.6194 0.6468

> summary (lm(log(neht) “log(tasks)+log(machines) ,data=d))

Call:
Im(formula = log(neht) ~ log(tasks) + log(machines), data = d)

Residuals:
Min 1Q Median 3Q Max
-0.46303 -0.20359 -0.05573 0.17781 0.64577

Coefficients:

Estimate Std. Error t value Pr(>lt])
(Intercept)  -15.0553 0.5960 -25.262 1.15e-09 *x*x
log(tasks) 1.6194 0.1171 13.830 2.28e-07 **x*
log(machines) 0.6468 0.2068 3.128 0.0122 *
Signif. codes: O ’**x’ 0.001 ’*x> 0.01 ’%’ 0.05 ’>.” 0.1’ > 1

Residual standard error: 0.3767 on 9 degrees of freedom
Multiple R-squared: 0.9657,Adjusted R-squared: 0.9581
F-statistic: 126.7 on 2 and 9 DF, p-value: 2.562e-07

Logo a complexidade empirica do algoritmo NEHT é T(n) = 289ns n'-6m?0-¢

com R% = 0.9657. O

Aplicado a avaliacdo de uma heuristica isso supoe um critério de parada di-
ferente de tempo (e.g. encontrar uma solugdo em problemas de decisdo ou
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convergéncia em problemas de otimizagdo). Essas técnicas podem ser gene-
ralizadas para mais que uma variavel. Por exemplo, em problemas de grafos
com n vértices e m arestas a hipétese T(n,m) ~ an®m¢ gera um modelo
linear log T ~ log a + blogn + clogm e pode ser obtido por regressao linear
novamente.

Distribuicao de tempo e qualidade Frequentemente a heuristica é rando-
mizada e logo o tempo de execucao T e a valor V sao variaveis aleatorias.
Caso a heuristica resolve um problema de decis@o, e.g. SAT, s6 consideramos
a variavel T. Para um problema de decisao obtemos a probabilidade de sucesso
pela fun¢ao de distribuicao acumulada F(t) = P[T < t]. O algoritmo encontra
um solucdo em tempo no maximo t com probabilidade F(t).

Para um problema de otimizacao o tempo depende da qualidade. Logo obte-
mos a uma probabilidade de sucesso em duas varidveis pela funcao de distri-
buicao acumulada

F(t,v) =P[T<tAV <.

Para um valor fixo v/ obtemos a distribuigao restrita de sucesso F(t) = F(t,v’).
A funcao F(t) também é chamada o grafo time-to-target. Para um tempo fixo
t’ obtemos a distribuicao de qualidade de solucao F(v) = F(t/,v).

Exemplo 6.6 (Fungao de distribuicao acumulada para SAT)
A seguinte figura mostra a probabilidade de sucesso de um GRASP com o =
0.8 na instancia flat75-1 e 100 replicagoes.
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GRASP flat75-1
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Exemplo 6.7 (Distribuicao de tempo e qualidade em GNU R)
Dado um arquivo de tempos de execugao

time

695

2888

podemos visualizar a distribuicao dos tempos e a distribuicao acumulada
usando

d<-read.table("x.dat" ,header=T)
hist(d$time)
plot(ecdf (d$time) ,verticals=T,do.points=F)

6.3.1. Testes estatisticos

O método bésico para comparar a influéncia de fatores experimentais é o
teste estatistico. Como podemos tratar o algoritmo usado como um fator
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experimental, ele também serve para comparar diferentes heuristicas. Para
aplicar um teste temos que

e formular uma hipdtese nula e uma hipotese alternativa;
e escolher um teste estatistico adequado;
e definir um nivel de significancia;

e aplicar o teste e rejeitar ou aceitar a hipétese nula de acordo.

Exemplo 6.8 (Teste binomial)

Queremos descobrir se numa dada populacao nascem mais homens que mu-
lheres. Seja X a varidvel aleatéria tal que X =1 caso nasce um homem. Logo
a hipétese nula é P[X] = 0.5 e a hip6tese alternativa é P[X] > 0.5.

Para decidir essa hipdtese, podemos tirar uma amostra Xj,..., X0 da po-
pulagdo base (de nascimentos). Supondo que as amostras sdo independentes,
X =2 icim Xi é distribuido binomialmente.

B(k;n,p) = (2)pk(1 —p)nk

a distribuicao do X ~ B(k;10,0.5) caso a hipdtese nula é satisfeito. No exemplo
obtemos

k 0/10  1/9  2/8 3/7  4/6 5
PIX=k 0.001 0010 0.044 0.117 0205 0.246
PX >kl 1.000 0999 0989 0945 0.828 0.623
K 6 7 8 9 10
PX >k 0377 0.172 0.055 0.011 0.001

Para aplicar o teste estatistico, temos que definir um nivel de significancia.
Por exemplo, para um nivel de significancia p = 0.05 temos P[X > 9] < p.
Logo podemos rejeitar a hipétese nula, com p = 0.05 caso na amostra tem 9
ou 10 nascimentos de homens. Para testar em R:

binom.test(9,10,alternative="g")

O

No exemplo acima formulas a hipdtese alternativa P[X] > 0.5. Esse hipétese
é wunilateral (ou monocaudal), porque ela testa em determinada diregdo do
desvio. Similarmente a hipdtese alternativa P[X] < 0.5 é unilateral. Uma
hipétese bilateral (ou bicaudal) é P[X] # 0.5. Neste caso temos que considerar
desvios para as duas diregoes.
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O exemplo mostra que o teste estatistico adequado depende das hipdteses
sobre a distribuicio da quantidade que queremos testar (no exemplo uma
distribui¢do binomial). Um teste estatistico pode falhar em dois casos: num
erro de tipo 1 ele rejeita a hipétese nula, mesmo ela sendo correta; num erro
de tipo 2 ele nao rejeita a hipotese nula, mesmo ela sendo falso. Isso pode ser
resumido por

Ho mantido Hy rejeitado
Hy verdadeiro | Correto Erro tipo 1
H; verdadeiro | Erro tipo 2  Correto

O nivel de significancia do teste é a probabilidade da fazer um erro de tipo 1
P[Ho rejeitado | Hy verdadeiro]. A probabilidade condicional de nao fazer um
erro de tipo 2

1 — P[Hp mantido | Hy verdadeiro = P[Hq rejeitado | Hy verdadeiro]

é chamada a poténcia do teste.

Exemplo 6.9 (Teste binomial)

A poténcia de um teste depende da magnitude do efeito que queremos detectar.
Supde, por exemplo, que estamos interessados em detectar (pelo menos) o
efeito caso na hipdtese alternativa P[X] > 0.6. A distribuigao B(1;10,0.6) é

k 0 1 2 3 4 5
PX=k| 0.0001 0.002 0.011 0.042 0.111 0.201
P[X > K] 1.000 0.9999 0.998 0.988 0.945 0.834
k 6 7 8 9 10
PIX =kl 0.251 0.215 0.121 0.040 0.006
P[X > K] 0.633 0.382 0.167 0.046 0.006

Logo a poténcia do teste é com 0.046 relativamente fraco. Para P[X] > 0.8 a
poténcia aumenta para 0.376. %

O exemplo mostra que o planejamento do experimento influencia a poténcia.
Para aumentar a poténcia em geral, podemos

e aumentar o nivel de significancia: Isso aumenta também o probabilidade
de erros do tipo 1.

e aumentar a magnitude de efeito: tipicamente nao temos controle direto
da magnitude, mas podemos planejar o experimento de acordo com a
magnitude do efeito que queremos detectar (e.g. a redugado do desvio
relativo por 1%).
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e diminuir a varianca do efeito: tipicamente nao temos controle direta da
varianca.

e aumentar o nimero de amostras (que diminui a varianga): por exemplo
para n = 50 amostras, com o mesmo nivel de significincia p = 0.05 o
teste acima precisa X > 31 para rejeitar a hipotese nula e a poténcia do
teste acima para detectar o efeito P[X] > 0.6 aumenta para 0.336, a para
o efeito P[X] > 0.8 para 0.997. Uma amostra suficientemente grande que
garante uma poténcia de 0.8 é considerada aceitdvel.

As caracteristicas principais para a escolha de um teste adequado s&o

e 0 tipo de pardmetro que queremos analisar (e.g. minimos, médias, me-
dianas);

e testes paramétricos ou nao-paramétricos: um teste paramétrico (tipica-
mente) supde que a varidvel estudada é distribuida normalmente;

e 0 numero de fatores e o nimero de niveis dos fatores;

e testes pareados ou nao-pareados: em testes pareados, as amostras sao
dependentes. Um teste de dois algoritmos numa colecao de instancias
é um exemplo de um teste pareado. Caso as instancias sao geradas
aleatoriamente, e cada algoritmo é avaliado em uma séria de instancias
geradas independentemente, o teste é nao-pareado. (Testes de diferentes
algoritmos com as mesmas sementes randomicos nao podem ser consi-
derados pareados, porque nao podemos esperar que o semente tem um
efeito semelhante nos dois algoritmos.) Em geral para mais que dois
niveis de fatores temos um teste (randomizado) em blocos.

Testes comuns para comparacao de algoritmos Para comparacao de dois
niveis temos como testes mais relevantes no caso nao-paramétrico o teste do si-
nal (ingl. sign test) e de Wilcoxon de postos com sinais (ingl. Wilcoxon signed-
rank test) para dados pareados, e o Wilcoxon da soma dos postos (ingl. Wilco-
xon rank-sum test, equivalente com o teste U de Mann-Whitney) para dados
nao pareados. No caso paramétrico o teste t (pareado ou nao pareado) pode
ser aplicado.

Teste estatistico 6.1 (Teste do sinal)

Pré-condicoes Duas amostras pareadas X1,...,Xn € Y1,y...,Yn. Os va-
lores x; —y; sao independentes e distribuidos com mediana comum
m.
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Hipétese nula Hy: m = 0;
Hipétese alternativa H;: m >0, m <0, m #£ 0.
Estatistica de teste B =} ;. [xi > yil.

Observagdes Valores z; = 0 sdo descartadas (ou atribuidos pela metade
para o grupo com Xi > Yi).

Exemplo 6.10 (Teste do sinal)
O teste do sinal de fato é equivalente com um teste binomial. Para estatistica
de teste B é n amostras

binom.test(B,n,alternative="greater")
binom.test(B,n,alternative="less")
binom.test(B,n,alternative="two-sided")

testa a hipdtese em GNU R (com nivel de significincia padrao 0.05.). Por
exemplo, para comparar os tempos do GSAT com os do WalkSAT (ver exercicios)
com hipétese alternative que WalkSAT precisa mais tempo que o GSAT

> e
GSAT WalkSAT
1 9178.66667 120000.00
2 44.13333 17502.87
3 974.60000 120000.00
4 189.80000 107423.87
> binom.test (sum(e$WalkSAT>e$GSAT) ,4,alternative="greater")

Exact binomial test

data: sum(e$WalkSAT > e$GSAT) and 4
number of successes = 4, number of trials = 4, p-value = 0.0625
alternative hypothesis: true probability of success is greater than 0.5
95 percent confidence interval:
0.4728708 1.0000000
sample estimates:
probability of success
1

Mesmo o GSAT precisando em todos quatro casos menos tempo que o Walk-
SAT nao podemos rejeitar a hipdtese nula com nivel de significancia p = 0.05,
pelo nimero baixo de amostras. O

113



6. Metodologia para o projeto de heuristicas

Exemplo 6.11 (Teste do sinal para comparacdo de modelos matematicos)
Tseng et al. (2004) usam o teste de sinal para testar se pares de modelos
matematicas para o problema do permutation flow shop precisam tempo sig-
nificadamente diferente.

%
Teste estatistico 6.2 (Teste de Wilcoxon de postos com sinais)
Pré-condicoes Duas amostras pareadas Xq,...,Xn € Y1,...,Yn. Os valo-
res zi = Xi —Y;i sao independentes é distribuidos simétricos relativo
a um mediana comum m.
Hipétese nula Hy: m = 0.
Hipétese alternativa Hi: m >0, m <0, m # 0.
Estatistica de teste T™ = Zie[n] ri[xi > yi] com 1; o ranque do valor
z; em ordem crescente de |zi|.
Observacoes Valores z; = 0 sao descartadas. Em caso de empates na
ordem de |zi| cada elemento de um grupo recebe o ranque médio.
Em GNU R wilcox.test(...,paired=T).
Exemplo 6.12 (Teste de Wilcoxon de postos com sinais)
(Continuando o exemplo anterior.)
wilcox.test (e$WalkSAT,e$GSAT,alternative="greater" ,paired=T)
Wilcoxon signed rank test
data: e$WalkSAT and e$GSAT
V = 10, p-value = 0.0625
alternative hypothesis: true location shift is greater than O
%

Exemplo 6.13 (Gino versus Optisolve)
Coffin e Saltzmann (2000) apresentam uma anélise de um exemplo de Golden
et al. (1986)2.

2A aniélise na publicacdo estd errada: ela compara o tempo da primeira instancia de Gino
com o tempos do Optisolve.
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d<-read.table("golden-etal.dat" ,header=T)
d<-subset (d, optG==T&opt0==T&'is.na(time0))

plot (d$timeG,d$time0)

abline(0,1)

binom.test (sum(d$time0>d$timeG) ,nrow(e))
wilcox.test (sum(d$time0>d$timeG) ,nrow(e) ,paired=T)

Teste estatistico 6.3 (Teste de Wilcoxon da soma dos postos)

Pré-condicdes Duas amostras nao-pareadas X1,...,Xn € Y1,...,Ym. Os
x;i sao independentes e distribuidos igualmente, os y; sdo indepen-
dentes e distribuidos igualmente, e os x; e y; sao independentes.

Hipétese nula F,(t) = Fy(t) para todo t, para distribuicées acumuladas
Fy e Fy desconhecidas. No modelo mais simples supondo a mesma
distribuicao Fy(t) = Fy(t), a hipdtese alternativa é um desloca-
mento, i.e.Fx(t) = Fy(t — A). A hipétese nula nessa caso é A = 0.

Hipétese alternativa Hy: A< 0,A=0,A > 0.

Estatistica de teste S = Zie[m] Ti com Ti o ranque de y; na ordem
crescente de todos valores x; € Yi.

Em GNU R wilcox.test(...,paired=F).

Exemplo 6.14 (Teste de Wilcoxon da soma dos postos)
Continuando o exemplo anterior.

wilcox.test (e$WalkSAT,e$GSAT,alternative="greater" ,paired=F)
Wilcoxon rank sum test with continuity correction

data: e$WalkSAT and e$GSAT

W = 16, p-value = 0.0147

alternative hypothesis: true location shift is greater than 0
Warning message:

In wilcox.test.default(e$WalkSAT, e$GSAT, alternative = "greater",
cannot compute exact p-value with ties
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Teste estatistico 6.4 (Teste t de Student)

Pré-condicoes Duas amostras pareadas Xi,...,Xn, € Y1,...Yn. Os va-
lores z; = x{ — yi sdo distribuidos normalmente ~ N(u,c?). (A
normalidade nao é necessaria para amostras suficientemente gran-
des, e.g. n, m < 30).

Hipétese nula Hy: u=0.
Hipétese alternativa Hy: <0, u >0, u#0.

Estatistica de teste t =Z/Sy/n com $? =Y ,(zi —z)/(n— 1) uma esti-
mativa da varianga da populacdo inteira. A estatistica é distribuida
t com n — 1 graus de liberdade.

Em GNU R t.test.

Teste estatistico 6.5 (Teste t de Student)

Pré-condi¢cées Duas amostras nao-pareadas X1,...,Xn, € Yi,...Ym. Os
xi sao distribuidos normalmente ~ N(i, 02), os y; normalmente
~ N(uy, 02). (A normalidade ndo é necesséria para amostras sufi-
cientemente grandes, e.g. n, m < 30).

Hipétese nula Ho: p, = py.
Hipétese alternativa Hq: pu, <y, B > Wy, Uy 7 Hy-

Estatistica de teste t = (x —y)/(Sy/1/n+ 1/m) com

S_\/(n1)5§+(m1)5§

n+m-—2

uma estimativa do desvio padrao da populagao inteira. A estatistica
é distribuida t com n 4+ m — 2 graus de liberdade.

Em GNU R t.test(x,y,var.equal=T,paired=F); para variancas dife-
rentes: t.test(x,y,var.equal=F,paired=F).

Exemplo 6.15 (MINOS versus OB1)
Coffin e Saltzmann (2000) apresentam uma anélise de um exemplo de Lustig
et al. (1991). O teste do coeficiente 1 da regressdo linear do exemplo é um
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teste t. Neste caso a estatistica de teste t = (B1 — B1)/se(B1) com

2 _
se(Br) = V/(zéffzg/f?Q)zz)

e residuos e; ¢é distribuida t com n — 2 graus de liberdade.

d<-read.table("lustig-etal.dat" ,header=T)
attach(d)

plot(minos.time,obl.time)
plot(log(minos.time),log(obl.time))
1<-1m(log(obl.time) “log(minos.time))
summary (1m)

# t-test

es = resid(l)

n = length(es)

se = sqrt(sum(es~2)/(n-2))

se = se/sqrt(sum((log(minos.time)-mean(log(minos.time))) ~2))
t=(1-coef (1) [2])/se
pt(t,n-2,lower.tail=F)

6.3.2. Escolha de parametros

Principio de projeto 6.1 (Parametros (Hertz et al. 2003, p. 127))

O projeto do método em si (vizinhanga, fungdo objetivo, etc.) é mais im-
portante que a escolha de parametros. Um bom método deve ser robusto: a
qualidade das solugoes é menos sensivel a escolha de parametros. Porém, a
calibragao de parametros nao compensa um método fraco.

O ponto de partido frequentemente é um conjunto de parametros inciais
obtidos durante o projeto por testes ad hoc. Para heuristicas robustas e
parametros simples um tal conjunto frequentemente é uma escolha razoavel.
Porém robustez tem que ser demonstrada e nao podemos esperar robustez so-
bre a modificagdo de componentes da heuristica (e.g. vizinhangas, operadores
de recombinagao).

A busca para um conjunto ideal de parametros é uma problema de otimizacao
separado, que a principio pode ser resolvido pelas técnicas discutidas. Porém
para obter o valor fungao objetivo temos que avaliar agora uma heuristica (em
diversas instancias e com replicagoes no caso de algoritmos randomizados).
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A estratégia mais simples é analisar um pardmetro por vez (ingl. one factor
at a time, OFAT): determine a variagdo do desempenho da heuristica para
cada parametro independentemente, com os outros parametros fixos. Depois
seleciona uma combinagao de parametros que melhora o desempenho e even-
tualmente repete. Para comparagao de diferentes niveis de uma parametro
pode-se aplicar testes estatisticos. Esse método serve também para analisar
o impacto de diversos parametros e selecionar um subconjunto para ser cali-
brado (“screening”). As desvantagens do OFAT sdo: i) ignorar interagoes de
pardmetros, ii) aumentar os erros de tipo 1 no caso de aplicagdes de testes
estatisticos, e iii) um custo maior que outras formas de experimentos (Mont-
gomery 2009).

Um projeto fatorial testa 1% células, i.e., combinacdes dos 1 niveis de k fa-
tores. Para algoritmos randomizados cada célula precisa algumas replicagoes
do experimento. Projetos fatoriais comuns sdo o projeto fatorial completo 2
(muitas vezes usado para “screening”) e o projeto fatorial completo com um
fator em 1 niveis. Um projeto fatorial geralmente supoe um modelo linear dos
efeitos dos fatores. No caso de uma aplicacao em instancias fixas obtemos
um projeto em blocos que generaliza um projeto pareado. (A aplicagao para
instancias geradas aleatoriamente poderia ser tratado como projeto completa-
mente randomizado; porém o efeito da instancia muitas vezes é significativo, e
nao pode ser modelado como um erro simples.) A disciplina de projeto de ex-
perimentos (ingl. design of experiments) oferece mais possibilidades, inclusive
projetos fatoriais fracionarios que testam menos combinagoes de parametros,
mas em contrapartida nao conseguem identificar todas interagoes univoca-
mente.

Projetos fatoriais podem ser avaliados por analise de variag¢do (ingl. analysis
of variation, ANOVA) no caso paramétrico, e no caso nao-paramétrico por um
teste Kruskal-Wallis (sem blocos) ou um teste de Friedman (com blocos).

Em exemplo de uma ANOVA com um fator experimental:
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6.3. Avaliacdo de heuristicas

Teste estatistico 6.6 (ANOVA)
Pré-condicoes Um projeto k tratamentos e n replicagoes por tratamento.
O problema é modelado linearmente por

Xij = H+Ti+€ij.

para tratamentos i € [k] e replicagdes j € [n]. O valor T; é o efeito
do tratamento i € [k]. Os error sdo independentes e distribuidos
normalmente como N(0; 02). (Em particular a varianga é constante,
i.e. os erros sao homoscedasticos).

Hipétese nula Hy: 11 =--- =11 =0.
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6. Metodologia para o projeto de heuristicas

Hipétese alternativa H;: existe um i com T; # 0.

Estatistica de teste A soma de quadrados total SSt pode ser decom-
posta por SSt = SSa 4+ SS¢ (similar com a observagao 6.2) em uma
soma de quadrados dos tratamentos SSa e dos erros SSg. Os trata-
mentos possuem k—1 graus de liberdade, os erros kn—k. As médias
das somas de quadrados MSa = SSa/(k—1) e MSg = SSg/(kn—k)
sao distribuidos x e a estatistica de teste Fg = MSa/MSg é dis-
tribuida F. Caso nao existe um efeito dos tratamentos, esperamos
Fo =1, caso contrario Fo > 1.

Em GNU R aov.

Exemplo 6.16 (ANOVA)
d=read.table("mont-etch.dat" ,header=T,
colClasses=c("factor","numeric"))
a=aov(rate~power,data=d)
summary (a)
plot(a)
plot (TukeyHSD(a,ordered=T))
%

Caso a hipdtese nula é rejeitada um teste post-hoc pode ser usado para identi-
ficar os grupos significativamente diferentes. Uma abordagem simples é com-
parar todos grupos par a par com um teste simples (e.g. um teste t). Porém
a probabilidade de um erro do tipo 1 aumenta com o ntimero de testes. Uma
solugao para este problema ¢é aplicar uma correcdéo Bonferroni: para um nivel
de significancia desejada o e n testes em total, cada teste é aplicado com
um nivel de significancia o/n. Um exemplo de um teste menos conservativo
é Tukey’s honest significant differences, uma generalizagao do teste t para
miultiplas médias.

Teste estatistico 6.7 (Teste de Friedman)

Pré-condigdées Um projeto em blocos (randomizado) com k tratamentos
e n blocos. As varidveis aleatorias xij seguem distribuigoes desco-
nhecidas Fj; relacionadas por Fij(u) = F(u — 3 — 7j), com B; o
efeito do bloco 1 € [n] e Tj o efeito do tratamento j € [k].

Hipdtese nula Hpy: T1 = -+ = Ty.

Hipdtese alternativa H;: nao todos T; sao iguais.
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6.3. Avaliacdo de heuristicas

Estatistica de teste Com Ry o posto do tratamento j no bloco i e Rj =

Zi Rii

(k=1 Tjeng Ry —nlk+1)/2)°
Y icmjeng RG —nk(k+1)2/4 7

Observacdes Para amostras suficientemente grandes T ~ x? com k — 1
graus de liberdade. Caso Hy é rejeitado, testes post-hoc podem ser
usados para identificar o melhor tratamento.

Em GNU R friedman.test(m) com matriz m.

Exemplo 6.17 (Teste Friedman)
e=data.frame(n=gl(3,3) ,h=rep(c(1,2,3)),v=runif (9))
with(e,friedman.test(v~h*n))

o

Uma aplicacao do teste de Friedman: corridas Testar todas combinagoes de
parametros em todas instancias investe um tempo igual em todas combinagoes.
Uma corrida (ingl. race) aplica as combinagoes instancia por insténcia e eli-
mina combinagoes inefetivas da corrida logo, investindo mais tempo de teste
em combinagbes melhores. Uma exemplo de uma estratégia de corrida é
F-RACE, um algoritmo que aplica o teste de Friedman para eliminar com-
binagoes de parametros.

Algoritmo 6.1 (F-RACE)
Entrada Um conjunto de combinacoes de pardmetros © = {Qq,...,O}.

Saida Um subconjunto ©’ C © de combinagoes de pardmetros efetivas.

1 FRACE(O) :=
2 repeat for i=1,...

3 gera a i—ésima instancia I

4 aplica todas combinagoes de parametros em O em I
5 aplica o teste de Friedman

6 (na matriz ix|0|)

7 if Hy rejeitada then

8 seleciona o ©; de menor posto combinado R;

9 remove todos tratamentos significadamente

10 pior que ©; (via testes post—hoc) de ©
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11 end if

12 wuntil |©|=1 ou limite de tempo
13 return ©

Para gerar a conjunto © inicial podemos usar um projeto fatorial completo
(F-RACE(FFD)) ou simplesmente gerar amostras aleatérias dos pardmetros
(F-RACE(RSD)).

6.3.3. Comparar com que?

e Quietly employ assembly code and other low-level language
constructs.

e When direct run time comparison are required, compare with
an old code on an obsolete system.

“Twelve Ways to Fool the Masses When Giving Performance
Results on Parallel Computers”, Bailey (1991)

Uma heuristica tem que ser comparado com outros algoritmos existentes; em
casos de problemas novos podemos comparar com algoritmos existentes para
casos particulares e generalizagoes do problema, ou com algoritmos mais sim-
ples (e.g. uma construgdo ou busca randomizada simples, ou versoes simpli-
ficadas do algoritmo proposto) ou genéricos (e.g. CPLEX, localsolver). Isso
inclui algoritmos exatos e aproximativos, e evita situagoes como essa:

A recent paper (Davidovié¢ et al. 2012) presented a bee colony me-
taheuristic for scheduling independent tasks to identical proces-
sors, evaluating its performance on a benchmark set of instances
from the literature. We examine two exact algorithms from the li-
terature, the former published in 1995, the latter in 2008 (and not
cited by the authors). We show that both such algorithms solve to
proven optimality all the considered instances in a computing time
that is several orders of magnitude smaller than the time taken by
the new algorithm to produce an approximate solution.

Dell’Amico et al. (2012)

6.4. Notas

Barr et al. (1995) e Silberholz e Golden (2010) explicam de forma geral o tem
que ser considerado na avaliagido de heurfsticas. Luke (2011, cép. 11.) é uma
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6.4. Notas

boa introducao na ideias gerais de comparagao de algoritmos e Coffin e Saltz-
mann (2000) é uma excelente introdugao com diversos exemplos praticos. O
livro de Bartz-Beielstein et al. (2010) apresenta em grande detalhe a aplicagéo
de métodos estatisticos na avaliacdo de heuristicas. Hollander e Wolfe (1999)
é uma referéncia detalhada para métodos estatisticos nao-paramétricos. (Le-
Veque 2013) é um ensaio recomendado sobre a publicagdo de c6digo.
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A. Conceitos matematicos

Definicao A.1
Uma funcao f é conveza se ela satisfaz a desigualdade de Jensen

f(Ox + (1 — O)y) < Of(x) + (1 — O)f(y). (A1)

Similarmente uma fungao f é concava caso —f é convexo, i.e., ela satisfaz

f(Ox + (1 —0)y) > Of(x) + (1 —O)f(y). (A.2)
Exemplo A.1
Exemplos de funcoes convexas sao x2¥, 1/x. Exemplos de funcdes concavas
sao logx, v/X. O

Proposigao A.1
Para } i,y ®i =1 e pontos xi, i € [n] uma fungao convexa satisfaz

f( Z @ixi) < Z @if(xi) (A3)
ie[n]

i€[n]

e uma fungao concava

f() Oxi)> ) Oif(xi) (A.4)
ie[n]

ien]

Prova. Provaremos somente o caso convexo por indugao, o caso concavo
sendo similar. Para n = 1 a desigualdade é trivial, para n = 2 ela ¢é vélida
por definicio. Para n > 2 define © = Zie[Z,n] ©; tal que ® +© = 1. Com
isso temos

f( Z @ixi) = f(@1X1 + Z @ixi) = f(©1x7 +@y)

ie[n] i€2,n]
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A. Conceitos matematicos
onde y = Zje[z,n](Gj/@)Xj7 logo

(Y Owi) < Oif(x1) +Bf(y)

ien]

=©f(x1) +Of( Y (©;/0)x;)

jelzm]

<Oif(x1)+0 ) (8/0)f(x) =) O

jel2zm] ien]

Definigao A.2
O fatorial é a fungao
n:N—>N:n— H i.

1<i<n
Temos a seguinte aproximacao do fatorial (férmula de Stirling)

nl = Zm(%)“u +0(1/n) (A.5)

Uma estimativa menos preciso pode ser obtido estimando

que implica
(n/e)™ <n!<n™

Lema A.1 (Desigualdade de Bernoulli)
Parax > —Ten e N temos (1 +x)™ > 1+ xn.

Prova. Por indugao sobre n.

(T+x)"™ =1 +x)(T+x)™ > (1 +x)(1 +xn)
=T4+xn+x+x*n=T+xn+1)+x*n>1T+x(n+1).

onde a primeira desigualdade é vélida porque (14 x) > 0. |

Definicao A.3 (Entropia bindria)
A entropia bindria para « € (0,1) é h(«) = —alog, « — (1 — o) log, T — cx.
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Lema A.2 (Ash (1967))
Para o € (0,1)

n

(8ol — o))~ 1/2 2Rl < ( ) < 2mna(1 — )~ /220 en

an
Lema A.3
Para « € (0,1/2]
(Bna(1 — o))~ /220 < Y- (“) < e,
1<i<n«x v

Prova. A primeira desigualdade é uma consequéncia do lema A.2. Para a
segunda desigualdade temos

1=l -t = Y (e -

1<i<n

vV
N
~ 3
~
N
(-}
53
~
|
2
3

1<i<na«x

() (=) -
1<iznoa NV -«

Ce e 5 (%)

1<i<na

—y ey <Tll>

1<i<na«x

M

O terceiro passo é valido porque para o € (0,1/2] temos o/(1 — ) < 1 e
i< nao. |
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A.1l. Probabilidade discreta
Probabilidade: Nocoes basicas
e FEspaco amostral finito QO de eventos elementares e € Q.

e Distribuicdo de probabilidade Prle] tal que

Prle] >0; ) Prle] =1

ecQ

e Fventos (compostos) E C Q com probabilidade

Pr[E] = Z Prle]

eckE

Exemplo A.2
Para um dado sem bias temos Q = {1,2,3,4,5,6} e Pr[i] = 1/6.
Par = {2,4, 6} tem probabilidade Pr[Par] = ZeGPar Prle] =1/2.

Probabilidade: Nocoes basicas

o Varidvel aleatoria

X: 00— N

Escrevemos Pr[X = i] para Pr[X~"(i)].
e Variaveis aleatérias independentes

PIX=xeY =y] =P[X=x]P[Y =]

Valor esperado

EIX] = Z PrlelX(e) = ZiPr[X =i

ecQ >0

Linearidade do valor esperado: Para varidveis aleatérias X, Y

E[X+ Y] = E[X] + E[Y]
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A.1. Probabilidade discreta

Prova. (Das formulas equivalentes para o valor esperado.)

Z Pr[X =ili = Z Pr[x!

0<i 0<i
- Z Z PrlelX(e) = Z PrlelX(e)
0<ieeX—1(1) ecQ
|
Prova. (Da linearidade.)
EX+Y] = Z Prle Y(e))
ecQ
= Z PrlelX(e) Z Prle]Y(e)) = E[X] + E[Y]
ecQ ecQ
]

Exemplo A.3

(Continuando exemplo A.2.)

Seja X a varidvel aleatério que denota o numero sorteado, e Y a variavel
aleatdrio tal que Y = [a face em cima do dado tem um ponto no meio].

X|=) PriX=ili=1/6 ) i=21/6=7/2
i>0 1<i<e6

ZPr fi=Pr[Y=11=1/2EX+Y] =EX]+E[Y]=4
i>0

Lema A.4 (Forma alternativa da expectativa)
Para uma variavel aleatoria X que assume somente valores nao-negativos in-

teiros E[X] = 3, o PIX > k] =}, 5, PIX > KI.

Prova.

=) kKPX=Kk=) > PX=k=) Y PX=K=) PX=>jl.

k>1 k>1je[k] i>1j<k j>1

Lema A.5
Para tentativas repetidas com probabilidade de sucesso p, o niimero esperado
de passos para o primeiro sucesso é 1/p.
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Prova. Seja X o nimero de passos até o primeiro sucesso. Temos P[X > k] =
(1 —p)* e logo pelo lema A.4

EXI=) (1—-p)*=1/p.

k>0
|
Proposicao A.2
Para ¢ convexo @(E[X]) < E[p(X)] e para ¢ concavo @(E[X]) > E[e(X)].
Prova. Pela proposigao A.1. |

Proposicao A.3 (Desigualdade de Markov)
Seja X uma varidvel aleatdria com valores nao-negativas. Entao, para todo
a>0

Pr(X > a] < E[X]/a.

Prova. Seja I =[X > a]. Como X > 0 temos I < X/a. O valor esperado de I
é E[I] =Pr[I =1] =Pr[X > dal, logo

Pr(X > a] = E[I] < E[X/a] = E[X]/a.

Proposicdo A.4 (Limites de Chernoff (ingl. Chernoff bounds))
Sejam Xi,...,X; indicadores independentes com Pr[X;] = p;. Para X =
> : Xi temos para todo & >0

ed H
PrX> (1468)ul < <(1—|—6)(1+5])

para todo & € (0,1)

e d K
PriX<(1-9)u) < (“_5)(15))

para todo & € (0, 1]
Pr{X > (14 8)p] < e /3
e para todo 6 € (0,1)

PriX < (1—8)u] < e #°/2,
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Exemplo A.4

Sejam Xj,..., Xy indicadores com Pr[X; = 1] = a e X = ) ; X;. Temos
u=E[X] = ) ; E[Xi{] = ak. Qual a probabilidade de ter menos que a metade
dos X; =17

PriX < [k/2]] < PrX < k/2] =Pr[X < p/2a] =
PriX < p(1 — (1 —1/2a))] < e W°/2 — g k/2a(a=1/2)%

O
Medidas basicas A covaridncia de duas varidveis aleatérias X e Y é
cov(X,Y) = E[(X — EIX])E[Y — E[Y]] = E[XY] — E[X]E[Y].
A varianga de uma variavel aleatéria X é a covarianga com si mesmo
o(X) = cov(X, X) = E[X?] — E[X]? (A.6)

e o seu desvio padrao é o(X) = y/cov(X). A correlagdo entre duas varidveis
aleatérias é a covarianca normalizada

p(X,Y) = cov(X,Y)/(o(X)a(Y)). (A7)

A figura A.1 mostra exemplos de dados com correlagoes diferentes.
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Figura A.1.: Trés conjuntos de dados com correlacdo alta, quase zero, e

negativa.
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