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1. Introducao

Um problema de busca é uma relagao binaria P C I x S com instancias x € 1
e solugbes y € S. O par (x,y) € P caso y é uma solugdo para X.

Definigao 1.1

A classe de complexidade FNP contém os problemas de busca com relagoes
P polinomialmente limitadas (ver definicao 1.3) tal que (x,y) € P pode ser
decidido em tempo polinomial.

A classe de complexidade FP contém os problemas em FNP para quais existe
um algoritmo polinomial A com

Alx) = y para um y tal que (x,y) € P .
“insoluvel” caso ndo existe y tal que (x,y) € P

Teorema 1.1
FP—=FNP se e somente se P=NP.

Prova. Ver por exemplo Papadimitriou (1993, cap. 10.3). [ ]

Definicao 1.2
Um problema de otimizac¢ao TT = (P, @, opt) é uma relagdo binaria P C I x S
com instancias x € I e solugbes y € S, junto com

e uma fungdo de otimizagao (fung¢ao de objetivo) @ : P — N (ou Q).
e um objetivo: Encontrar minimo ou maximo
OPT(x) = opt{e(x,y) | (x,y) € P}
junto com uma solugéo y* tal que f(x,y*) = OPT(x).
O par (x,y) € P caso y é uma solugao para x.

Uma instancia x de um problema de otimizagado possui solugdes S(x) = {y |
(x,y) € Ph

Convengao 1.1
Escrevemos um problema de otimizac¢ao na forma



1. Introdugao

NOME
Instancia x
Solucgdo y

Objetivo Minimiza ou maximiza @(x,y).

Com um dado problema de otimizagao correspondem trés problemas:
e Construgdo: Dado x, encontra a solugdo 6tima y* e seu valor OPT(x).
e Avaliacdo: Dado x, encontra valor 6timo OPT(x).
e Decisdao: Dado x e k, decide se OPT(x) > k (maximizacao) ou OPT(x) <

k (minimizagao).

Definicao 1.3
Uma relagao binéria R é polinomialmente limitada se

Ip € poly: V(x,y) € R: [yl < p(Ix]).

Definicao 1.4 (Classes de complexidade)

A classe PO consiste dos problemas de otimizagao tal que existe um algoritmo
polinomial A com ¢(x,A(x)) = OPT(x) para x € 1.

A classe NPO consiste dos problemas de otimizagao tal que

(i) As instancias x € I s@o reconheciveis em tempo polinomial.
(ii) A relagdo P é polinomialmente limitada.

(iii) Para y arbitrario, polinomialmente limitado: (x,y) € P é decidivel em
tempo polinomial.

(iv) @ é computavel em tempo polinomial.

1.1. Nao tem almoco de graca

“Sire in eight words I will reveal to you all the wisdom that I
have distilled through all these years from all the writings of all
the economists who once practiced their science in your kingdom.
Here is my text: ‘There ain’t no such thing as free lunch’” (NN
1938)



1.2. Representacgao de solugoes

A frase “there ain’t no such thing as free lunch” (TANSTAFEL) expressa que
uma vantagem (p.ex. o almogo de graca em bares dos EUA no século 19) tipi-
camente é pago de outra forma (p.ex. comida salgada e bebidas caras). Para
problemas de busca e de otimizagdo, Wolpert e Macready (1997) provaram
teoremas que mostram que uma busca universal nao pode ter uma vantagem
em todos problemas de otimizacao.

Para um problema de otimizacao supoe que @ : P — @ é restrito para um
conjunto finito @, e seja F = O3 espaco de todas funcdes objetivos para
uma instancia do problema. Um algoritmo de otimizagao avalia pares de
solugdes e valores (s,v) € S(x) x @. Seja D = Um>0(S(x) x ®)™ o con-
junto de todas sequencias de pares. Um algoritmo de otimizacao que nao
repete avaliagdes pode ser modelado por uma fungdo a: d € D — {s | s #
si,para di = (si,vi),1 € [|d]]} que mapeia a sequencia atual para a proxima
solucao a ser avaliada (observe que o algoritmo toma essa decisao em fungao
das solugbes anteriormente visitadas e os seus valores). A avaliagdo de um
algoritmo de otimizagao é através uma fungdo ¥(d). Ela pode, por exemplo,
atribuir a d o valor minimo encontrado durante a busca.

Teorema 1.2 (Wolpert e Macready (1997))
Para algoritmos a,a’, um nimero de passos m e uma sequencia de valores
ve ™

D Pvifymyal=) P[fyma’l.

feF feFr

O teorema mostra que uma busca genérica nao vai ser melhor que uma busca
aleatoria em média sobre todas fungoes objetivos. Porém, uma grande fracao
das fungées possiveis nao ocorrem na pratica (uma funcao aleatoria é incom-
pressivel, i.e. podemos especifica-la somente por tabulagao, fungoes préticas
muitas vezes exibem localidade). Além disso, algoritmos de busca frequente-
mente aproveitam a estrutura do problema em questao.

1.2. Representacdo de solucoes

A representacao de solugoes influencia as operagoes aplicaveis e a sua com-
plexidade. Por isso a escolha de uma representagao € importante para o de-
sempenho de uma heuristica. A representacido também define o tamanho do
espago de busca, e uma representagdo compacta (e.g. 8 coordenadas versus
permutagoes no problema das 8-rainhas) é preferivel. Para problemas com
muitas restricbes uma representacdo implicita que é transformada para uma
representacao direta por um algoritmo pode ser vantajoso.
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Para uma discussao abstrata usaremos frequentemente duas representagoes
elementares. Na representacdo por conjuntos uma solucdo é um conjunto
S C U de um universo U. Os conjuntos validos sao dados por uma colegdao
V de subconjuntos de U. Na representa¢ao por varidveis uma instancia é um
subconjunto I C U, e uma solugao é uma atribuigao de valores de um universo
V aos elementos em I.

Exemplo 1.1 (Representagdo do PCV por conjuntos)
Uma representa¢do por conjuntos do PCV sobre um grafo G = (V;A) é o
universo de arestas U = A, com V todos subconjuntos que formam ciclos. ¢

Exemplo 1.2 (Representacdo do PCV por variaveis)

Uma representacdo por varidveis do PCV sobre um grafo G = (V,; A) usa um
universo de vértices U. Uma instancia [ =V atribui a cada cidade a préoxima
cidade no ciclo. Uma representacio alternativa usa I = [n] a atribui a cada
variavel 1 € I a i-ésima cidade no ciclo. O

Exemplo 1.3 (Representacao da coloracao de grafos por variaveis)

Seja U um universo de vértices e C um universo de cores. Uma representagao
da uma instancia G = (V, A) do problema da coloracao de grafos usa variaveis
V C Q e atribui cores de C as variaveis. O

1.2.1. Reducdes de problemas

Nao todos elementos do universo sdo usados em solucoes Otimas: frequente-
mente eles tem que satisfazer certos critérios para participar numa solugao
o6tima. Isso permite reduzir o problema para um nicleo. No problema do
PCV, por exemplo, arestas mais longas tem uma baixa probabilidade de fazer
parte de uma solugao 6tima, mas arestas bem curtas com alta probabilidade
aparecem na solugao 6tima. No problema da mochila elementos de alta efici-
éncia sao mais usados, e de baixa eficiéncia menos. Se soubéssemos o arco de
menor distdncia nao usada numa solucao 6tima, e de maior distancia usado,
poderiamos reduzir o problema para um nicleo mais simples. Regras de redu-
¢ao para um nicleo sdo possiveis em diversos problemas (e.g. o problema da
mochila (Kellerer et al. 2004)) e sdo essenciais para problemas tratéveis por
parametro fixo (Niedermeier 2002).

Principio de projeto 1.1 (Redugao de problemas)
Busca por regras de reducao do problema. Procura reduzir o problema para
um nicleo. O niicleo pode ser determinado heuristicamente.



1.2. Representacgao de solugoes

1.2.2. Transformacdes entre representacées

Um transformador recebe uma representaciao de uma solucao e transforma ela
numa representacao diferente. Um algoritmo construtivo randomizado (ver
capitulo 3) pode ser visto como um algoritmo que transforma uma sequencia
de nameros aleatorios em uma solucao explicita. Ambas sdo representagoes
validas da mesma solugao. Essa ideia é aplicada também em algoritmos gené-
ticos, onde a representacao fonte se chama fendtipo e a representagao destino
gendtipo. A ideia de representar uma solugdo por uma sequencia de nimeros
aleatorios é usado diretamente em algoritmo genéticos com chaves aleatorias
(ver 4.5.6).

Uma transformacdo ¢ tipicamente sobrejetiva (“many-to-one”), i.e. existem
varias representacoes fonte para uma representacao destino. Idealmente, existe
o mesmo nimero de representagoes fontes para representagoes destino, para
manter a mesma distribuicao de solugoes nos dois espacos.

Exemplo 1.4 (Representacdo de permutagGes por chaves aleatorias)
Uma permutagao de n elementos pode ser representada por n ntimeros ale-

atorios reais em [0,1]. Para numeros aleatérios sao aj,...,dn, seja 7 uma
permutacao tal que ay(1) < --- < ax(n). Logo os nlimeros a; representam a
permutacio 7t (ou 7t "). O

Uma transformacao pode ser 1til caso o problema possui muitas restrigoes e o
espaco de busca definido por uma representacao direta contém muitas solugoes
invalidas. Em particular buscas locais dependem da geracao facil de solugoes.
Por isso postulamos o

Principio de projeto 1.2 (Solugdes, Hertz e Widmer (2003))
A geragao de solugoes deve ser facil.

Exemplo 1.5 (Coloracao de vértices)

Uma representacao direta da coloracao de vértices pode ser uma atribuicao de
cores a vértices. Para um limite de no méximo n cores, temos n™ possiveis
atribuigoes, mas varias sao infactiveis. Uma representagao indireta é uma
permutacao de vértices. Para uma dada permutacdao um algoritmo guloso
processa os vértices em ordem e atribui o menor cor livre ao vértice atual. A

corretude dessa abordagem mostra

Lema 1.1

Para uma dada k-coloragéo, sejam CqU- - -UCy as classes de cores. Ordenando
os vértices por classes de cores, o algoritmo guloso produz uma coloragao com
no maximo k cores.
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Prova. Mostraremos por indugao que a coloracao das primeiras i classes nao
precisa mais que i cores. Para a primeira classe isso é 6bvio. Supode que na
coloragao da classe 1 precisamos usar a cor i+ 1. Logo existe um vizinho com
cor i. Mas pela hipotese da indugao o vizinho de um vértice da classe 1 + 1
nao pode ser de uma classe menor. Logo, temos uma aresta entre dois vértices
da mesma classe, uma contradicao. |
Com essa representagdo, todas solugoes sao vélidas. Observe que o tamanho
do espago da busca n! &~ v/2mm(n/e)™ (por A.5) é similar nas duas represen-
tagoes. O

Por fim, transformagcdes podem ser tuteis caso podemos resolver subproblemas
restritos do problema eficientemente.

Exemplo 1.6 (Sequenciamento em maquinas paralelas nao relacionadas)
Uma solugao direta de R [| 3~ w;Cj é uma atribuigao das tarefas as maquinas,
junto com a ordem das tarefas em cada méaquina.

Teorema 1.3
A solugao otima de 1 || 3 w;Cj é uma sequencia em ordem de tempo de
processamento ponderado nao-decrescente p1/wy < -+ < ppnwy.

Prova. Supde uma sequencia 6tima com pi/Wi > pi+1/Wi+1. A contribuic¢do
das duas tarefas & fungao objetivo é w = w;C; +w;,1Ci1. Trocando as duas
tarefas a contribuicdo das restantes tarefas ndao muda, e a contribuicdo das
duas tarefas é

Wit1(Civ1 —Ppi) + WilCi +pit1) =W+ Wipit1 — Wip1Ppi.

Logo a fungao objetivo muda por A = wipi+1 — Wi1Pi, mas pela hipotese
A < 0. |
Logo a ordem 6tima de uma méaquina pode ser computada em tempo O(nlogn),
e uma representacao reduzida mantém somente a distribuicdo das tarefas a
méquinas. O

As diferentes representagdes compactas podem ser combinadas.

Exemplo 1.7 (Simple assembly line balancing)

No “simple assembly line balacing problem” do tipo 2 temos que atribuir n
tarefas, restritas por precedéncias, & m de estagoes de trabalho. Cada tarefa
possui um tempo de execugao ti, e o tempo de estacdo é o tempo total das
tarefas atribuidas a uma estagao. O objetivo é minimizar o maior tempo de
estacao.

Uma representacao direta é uma atribuicao de tarefas a estagdes, mas muitas
atribuiges sao invélidas por nao satisfazer as precedéncias entre as tarefas.

10



1.3. Estratégia de busca: Diversificacdo e intensificagdo

Uma representagao mais compacta atribui chaves aleatoérias as tarefas. Com
isso, uma ordem global das tarefas é definida: elas sdo ordenadas topologi-
camente, usando as chaves aleatérias como critério de desempate, caso duas
tarefas concorram para a proxima posi¢ao. Por fim, para uma dada ordem de
tarefas, a solugao 6tima do problema pode ser obtida via programacao diné-
mica. Seja C(i,k) o menor tempo de ciclo para tarefas i,...,n em k maquinas,
a solucao 6tima é C(1, m) e C satisfaz

mini<j<n max{} ;o ;tj, CG+1,k+1)} parai<n, k>0
C(i,k) =<0 parai>mn ,
00 parai<nek=0

e logo a solucdo 6tima pode ser obtida em tempo e espago O(nm) (pré-
calculando as somas parciais). O

Essa observagao é o motivo para o

Principio de projeto 1.3 (Subproblemas)

Identifica os subproblemas mais dificeis que podem ser resolvidos em tempo
polinomial e considera uma representagao que contém somente a informacgao
necessaria para definir os subproblemas.

1.3. Estratégia de busca: Diversificacdo e intensificacdo

No projeto de uma heuristica temos que balancear dois objetivos antagonistas:
a diversificagio da busca e a intensificagdo de busca. A diversificacdo da
busca (ingl. diversification or exploration) procura garantir uma boa cobertura
do espaco de busca, evitando que a solucbes analisadas fiquem confinadas a
uma regiao pequena do espaco total. A diversificacao ideal é um algoritmo
que repetidamente gera solugoes aleatoérias. Em contraste a intensificacdo
(ingl. intensification or exploitation) procura melhorar a solugao atual o mais
possivel. Um exemplo de uma intensificacao seria analisar todas solugoes
dentro uma certa distancia da solucao atual.

O tema de intensificac¢ao e diversificagdo se encontra na discussao da heuristi-
cas individuais na secOes 2 a 4; um procedimento genérico de intensificagao e
diversificagao é apresentado na segao 4.8.

1.4. Notas

Mais informagoes sobre os teoremas NFL se encontram no artigo original de
Wolpert e Macready (1997) e em Burke e Kendall (2005, cap. 11) e Rothlauf

11
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(2011, céap. 3.4.4). Para um critica ver p.ex. Hutter (2010). Talbi (2009,
cap. 1.4.1) discute outras representagdes de solugdes.

12



2. Busca por modificacdo de solucoes

2.1. Vizinhancas

Uma busca local procura melhorar uma solugao de uma instancia de um pro-
blema aplicando uma pequena modificagao, chamada movimento. O conjunto
de solugoes que resultam de uma pequena modificagao formam os vizinhos da
solugao.

Definicao 2.1 (Vizinhanga)

Uma vizinhan¢a de uma instancia x de um problema de otimizagao TT é uma
funcdo N : S(x) — 25(). Para uma solucdo s, os elementos N(s) sdo os
vizinhos de s. Os vizinhos melhores de s sao B(s) ={s’ € N(s) | @(s’) < ¢(s)}.
Uma vizinhanca é simétrica, caso para s’ € N(s) temos s € N(s’).

Para uma dada vizinhanga um minimo local é uma solugao s, tal que @(s) <
@(s') para s’ € N(s) e um mdzimo local caso @(s) > @(s’) para s’ € N(s).
Caso uma solugao é estritamente menor ou maior que os seus vizinhos, o 6timo
local é estrito. Uma vizinhanga é exata, caso cada 6timo local também é um
6timo global.

Definigdo 2.2 (Grafo de vizinhanga)

O grafo de vizinhan¢a G = (V,E) para uma instancia x de um problema de
otimizagdo TT com vizinhanga N possui vértices V = {y | (x,y) € P} e arcos
(s,s’) para s,s’ € S(x), s’ € N(s). Para uma vizinhanga simétrica, o grafo
de vizinhanga ¢ efetivamente nao-direcionado. Uma solugao s’ ¢ alcangavel a
partir da solugao s, caso existe um caminho de s para s’ em G. Caso todo
vértice é alcancavel a partir de qualquer outro, G é conectado. Neste caso
o didmetro de G é o comprimento do maior caminho mais curto entre dois
vértices em G. O grafo G é fracamente otimamente conectada caso a partir
de cada solu¢ao s uma solugao 6tima é alcangavel.

Uma vizinhanca é suficiente para definir uma busca local genérica. Ela seleci-
ona um vizinho de acordo com uma distribuigao P, sobre a vizinhanca fechada
N(s) = {s} UN(s). Para uma distribuicdo Ps sobre N(s), a extensdo padrao
para a vizinhanca fechada é definida por

Ps(s”) caso contrario

13



2. Busca por modificagao de solugoes

Algoritmo 2.1 (LocalSearch)
Entrada Solugdo inicial s, vizinhanga N, distribuigdo Ps.

Saida Uma solu¢do com valor no maximo @(s).

1 LocalSearch (s)=
s*i=s
repeat
seleciona s’ € N(s) de acordo com P
s =g’
if @(s) < @(s*) then s*:=s
until critério de parada satisfeito
return s*
end

© 00O U W

A complexidade de uma busca local depende da complexidade da sele¢ao e do
namero de iteragoes. A complexidade da selecdo muitas vezes é proporcional
ao tamanho da vizinhanca |[N(s)]|.

Duas estratégias basicas para uma busca local sao

Caminhada aleatéria (ingl. random walk) Para N(s) # ), define Pg(s) =
1/IN(s)l.

Amostragem aleatdria (ingl. random picking) Uma caminhada aleatoria com
N(s) = S(x) para todo s € S(x).

Melhor vizinho Para B(s) # 0, define B*(s) ={s’ € B(s) | ¢(s’) = ming.ep(s) @(s”)
e Ps(s’) = 1/|B*(s)| para s’ € B*(s). Esse estratégia tipicamente nao
consegue sair de minimos locais e tem que ser modificado por uma das
técnicas discutidas em 2.3, mas supera plateaus.

Exemplo 2.1 (Politopos e o método Simplex)

O método Simplex define uma vizinhanga entre os vértices do politopo de
um programa linear: cada par variavel entrante e sainte admissivel define
um vizinho. Essa vizinhanga é simétrica, conectada, fracamente otimamente
conectada e exata. Logo o método resolve o problema da programacao linear.

O

Exemplo 2.2 (k-exchange para o PCV)

Uma vizinhanga para o PCV é k-exchange Croes (1958): os vizinhos de um
ciclo sao obtidos removendo k arcos, e conectando os k caminhos resultantes
de outra forma. Para qualquer k fixo, essa vizinhanga é simétrica, conectada,
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2.1. Vizinhancas

fracamente otimamente conectada, mas inexata (por qué?). O tamanho da
vizinhanca é O = ((E) k!2¥) = O(n*) para n cidades e k fixo.

3-exchange
_

O

Exemplo 2.3 (k-SAT)

O problema k-SAT ¢é decidir se existe uma atribuigao x € {0, 1} que satisfaz
uma féormula @(x) da logica proposicional em forma normal conjuntiva com k
literais por clausula.

Seja [x —yl; = Zie[n} [xi # yi] a distAncia Hamming entre dois vetores x,y €
{0, 1}™. Uma vizinhanca conhecida para SAT é k-flip: os vizinhos de uma
solugao sao todas solucoes de distdncia Hamming k. A vizinhancga é simétrica,
fracamente otimamente conectada para k = 1, mas inexata. O tamanho da
vizinhanca é O(n*).

O

Observagao 2.1 (Calculo eficiente da funcao objetivo)
Frequentemente ¢ mais eficiente avaliar a diferenca A(s,s’) = @(s’) — @(s)
para determinar o valor da fungao objetivo de um vizinho. No exemplo 2.2
avaliar @(s) custa O(n), mas avaliar A(s,s’) custa O(1). Logo, determinar
o melhor vizinho na vizinhanca 2-exchange, por exemplo, custa O(n3) na
abordagem ingénua, mas é possivel em O(n?) avaliando as diferencas.

Em alguns casos a avaliacao da diferenca das diferencas é ainda mais eficiente.
Um exemplo é a programagao quadrdtica bindria com fung@o objetivo

Z qijXiXj
1,j€n]

e coeficientes simétricos (Q = Q). Avaliar @(s) custa ©(n?), avaliar a dife-
rencga na vizinhanga 1-flip que troca x; = 1 — xy para um k fixo

E quxlx) E qijXiX;

i,jen] i,jen]
Z i (e — xi)xg + Z qjkx;(x xk) + qkk(xlzz - Xi)
NS, jemI\{k}
= (1 — 2x1) (quk + 2 Z qjkx;)
jemI\{k}
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2. Busca por modificagao de solugoes

custa somente O(n).
Atualizando um bit 1 por x{ = 1 — x; obtemos novas diferencas

, {—Ak caso L=k

k = L (2-1)
Ax +2quc (1 — 2% ) (1 —2xq)  caso contrario.

Dado os valores Ay podemos encontrar o melhor vizinho em tempo O(n). Pas-
sando para o melhor vizinho, podemos atualizar todos valores Ay em tempo
O(n) usando (2.1). Logo, o custo de encontrar o melhor vizinho ¢ ©(n?) ava-
liando solucdes completas, somente @(n?) calculando as diferencas, e somente
O(n) atualizando diferencas. O

2.1.1. Vizinhancas reduzidas

Uma técnica comum para melhorar o desempenho de buscas locais é reduzir
a vizinhancga heuristicamente, excluindo vizinhos com caracteristicas que com
baixa probabilidade se encontram em solugoes de boa qualidade. Uma forma
comum de reduzir a vizinhanca é usar listas de candidatos (ingl. candidate
lists).

Exemplo 2.4 (Vizinhanca reduzida para o PCV)

No caso do 2-exchange para o PCV muitas das ®(n?) vizinhos produzem ro-
tas inferiores, porque eles introduzem uma arestas longas, caso as duas arestas
originais ficam muito distantes. Logo é possivel reduzir a vizinhancga heuristi-
camente, sem expectativa de perder solugoes boas. Uma estratégia de proposto
por Johnson e McGeoch (2003) é: escolher uma cidade aleatoéria, um vizinho
aleatorio dessa cidade na rota, uma terceira cidade entre os 20 vizinhos mais
préoximos de segunda cidade, e a quarta cidade como sucessor da terceira na
orientagao da rota dado pelas primeiras duas cidades. Com isso uma rota tem
no méaximo 40n vizinhos. O

A redugdo de vizinhangas frequentemente é uma estratégia importante para
obter resultados de boa qualidade (Johnson e McGeoch 2003; Toth e Vigo
2003; Glover e Laguna 1997), motivo para

Principio de projeto 2.1 (Reducao de vizinhancas)
Considera eliminar das vizinhangas movimentos com baixa probabilidade de
melhorar a solugao.

2.2. Buscas locais moné6tonas

Uma busca local monotona permite somente modificagbes que melhoram a
solugao atual, i.e. no algoritmo LocalSearch sempre temos Ps(s’) = 0 para

16



2.2. Buscas locais mondétonas

s’ & B(s). Logo, o algoritmo termina num 6timo local. Pela monotonia
também ndo é necessario guardar a melhor solucdo encontrada. A busca
depende da estratégia de selecao da nova solucgao s’, também conhecida como
regra de pivoteamento.

Algoritmo 2.2 (LocalDescent)
Entrada Solucéo inicial s, vizinhanga N, distribui¢do Ps.

Saida Uma solu¢ao com valor no méximo (s).

1 LocalDescent (s):=

2 repeat

3 seleciona s’ € N(s) de acordo com P
4 s:=s'

5 until P(s) =1

6 return s

7

end

Descida aleatéria (ingl. stochastic hill descent) Para B(s) # ) define Ps(s’) =
1/|B(s)| para s’ € B(s). Esta estratégia é equivalente com a primeira
melhora, mas em ordem aleatoria.

Primeira melhora (ingl. first improvement) A primeira melhora supoe uma
vizinhanca ordenada B(s) = {by,...,bx}. Ela seleciona f = min{i |
@(bi) < @(s)}, i.e. Ps(by) = [i = f]. O método é conhecido pelos nomes
“hill climbing” (no caso de maximizacao) ou “hill descent” (no caso de
minimizagao).

Melhor melhora (ingl. best improvement) Para B(s) # 0, define B*(s) =
{s" € B(s) | @(s’) = mingnep(s) @(s”)} e Ps(s’) = 1/|B*(s)| para s’ €
B*(s). O método é conhecido pelos nomes “steepest ascent” (no caso de
maximizagao) ou “steepest descent” (no caso de minimizagao).

Busca por amostragem (ingl. sample search) Seleciona um subconjunto S C
N(x) aleatorio de tamanho «|/N(x)|, define B*(s) ={s’ € B(s) | ¢(s’) =
ming~ecs @(s”) e Ps(s’) = 1/|B*(s)| para s’ € B*(s).

As estratégias obviamente podem ser combinadas, por exemplo, aplicar uma
estratégia de “primeira melhora” apés uma amostragem.

A qualidade de uma busca local depende da vizinhanca: para vizinhancas
maiores esperamos encontrar 6étimos locais melhores. Porém a complexidade
da busca cresce com a vizinhanga. A arte, entdo, consiste em balancear estes
dois objetivos.
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2. Busca por modificagao de solugoes

Exemplo 2.5 (Método Simplex)

Nao conhecemos regras de pivoteamento para o método Simplex que garantem
uma complexidade polinomial. Porém, a programacao linear possui solugoes
polinomiais (que ndo usam busca local). Por isso, a complexidade de encontrar
o6timos locais pode ser menor que a complexidade do método iterativo. O

Exemplo 2.6 (Arvore geradora minima)

Para uma arvore geradora, podemos definir vizinhos como segue: adicione
uma aresta, e remove outra do (inico) ciclo formado. Uma arvore geradora é
minima se e somente se nao existe melhor vizinho (prova: exercicio). Por isso
a busca local resolve o problema de encontrar a arvore geradora minima. A
vizinhanga é simétrica, fracamente otimamente conectada e exata. Porém, a
busca local geralmente nao é eficiente. O

Exemplo 2.7 (OneMax)

Para um x* € {0, 1}™ fixo o problema OneMax consiste encontrar o minimo de
©(x) = [x—x*|1, i.e. x*. O namero de bits X corretos de uma solugéo aleatoria
satisfaz E[X] = n/2 e Pr[X < n/3] < e ™36 ¢ Pr[X > 2n/3] < e /54
(aplicando limites de Chernoff (A.4)).

Uma descida aleatoria precisa tempo O(n) para selecionar um vizinho, ava-
liando a fungdo objetivo em O(1) e sem repetigdo, e O(n) passos, para um
tempo total de O(n?). Uma analise mais detalhada do caso médio é a se-
guinte: para selecionar um vizinho melhor, podemos repetidamente selecionar
um vizinho arbitrario, até encontrar um vizinho melhor. Com 1 bits diferentes,
encontramos um vizinho melhor com probabilidade i/n. Logo a selegao precisa
esperadamente n/i passos até encontrar um vizinho melhor (ver lema A.5) e
logo no méaximo

Z n/i=nH, =~ nlogn

1<i<n

passos até encontrar x*.

A primeira melhora precisa no pior caso (todos bits diferentes) tempo esperado
©(n/i) para encontrar um vizinho melhor, e a melhor melhora tempo @(n).
Logo, ambas precisam tempo @(n?) para encontrar x*. O

Exemplo 2.8 (GSAT)

O algoritmo GSAT (Selman et al. 1992) aplica a estratégia “melhor vizinho” na
vizinhanga 1-flip com fungao objetivo sendo o ntimero de clausulas satisfeitas
(observe que é importante escolher entre os melhores uniformemente). Ele
periodicamente recomeca a busca a partir de uma solucao aleatoéria. O
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2.2. Buscas locais mondétonas

Exemplo 2.9 (WalkSAT)

WalkSAT usa uma estratégia de selecao mais sofisticada: em cada passo uma
clausula nao satisfeita é selecionada, e uma variavel aleatoria dessa clausula
¢ invertida. (O WalkSAT proposto por Selman et al. (1994) seleciona uma
varidvel que nao invalida nenhuma outra cldusula ou com probabilidade p
uma que invalide o menor namero e com probabilidade T —p uma aleatoria.)
Logo a vizinhanga é um subconjunto da vizinhanga 1-flip. WalkSAT também
recomega a busca a partir de uma solugao aleatoéria periodicamente.

Lema 2.1 (Schoning (1999))

Seja @ uma férmula em k-CNF satisfativel com m varidveis. O algoritmo
WalkSAT com periodo 3n precisa esperadamente O(n3/2(2(k—1)/k)™) passos
até encontrar uma atribuicao que satisfaz .

Prova. Seja a uma atribuigdo que satisfaz @. Vamos determinar a proba-
bilidade q que um periodo de WalkSAT encontra a. Com p; = (?)2_“ a
probabilidade de iniciar com distdncia Hamming j de a, e q; a probabilidade
de encontrar a a partir da distancia j, temos

a= > P9 (*)
0<j<n

A distancia Hamming para a diminui com probabilidade pelo menos 1/k e
aumenta com probabilidade no méaximo 1—1/k. Podemos modelar o WalkSAT
como caminhada aleatoria entre classes de solugoes com distdncia Hamming
j, com uma probabilidade de transi¢ao de j para j — 1 (“para baixo”) de 1/k
e de j para j + 1 (“para acima”) de 1 — 1/k. Com isso g; é pelo menos a
probabilidade de chegar na classe 0 a partir da classe j em no méximo 3n
passos. Para conseguir isso podemos fazer j passos para baixo, ou j 4+ 1 para
baixo e um para acima, e no geral j + |l para baixo e 1 para acima. Logo

jH 21\ (k—T1\" /1"
max —— — .
- O§l§(3aTllfj)/2 1 k k

q; =

Para 1 = oj com « € (0,1) temos

(142007 [ (k—1\% /1)
q; = . 7 r .
oj k k
Aplicando o lema A.2 é podemos estimar'

(1+20()j> >(8')71/2 1+20¢)“ 1+20¢)1+o¢ j
oj =19 o4 T+«

lSubstituindo diretamente é descartando o fator /(1 + 2«)/(x(1 + «)) > 1.
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2. Busca por modificagao de solugoes

e logo

1 2 o 1 2 T+a 1 (o2 1 (T4+a) j
qj > (8].),]/2 + 2 + 2 L ! )
o T+« k k
Escolhendo o« = 1/(k — 2) e simplificando obtemos

1 j
S (gi)1/2
@z 672 (1) -

Finalmente, substituindo em (*)

j
R A
]

jen

>27"(8n) /2 Z (T]‘) <k1_]>) ni

jeMm]

-rem 2 (1) = g ()

Logo, o nimero esperado de periodos é

e como cada periodo precisa tempo O(n) o resultado segue. |
Para uma formula satisfativel com k = 3, por exemplo, o algoritmo precisa
0(n3/2(4/3)™) passos.

E possivel transformar esta algoritmo num algoritmo randomizado que decide
se uma formula é satisfativel com alta probabilidade. O

Exemplo 2.10 (2-opt para o PCV)
A estratégia 2-opt para o PCV é uma descida aleatéria na vizinhanga 2-
exchange. Similarmente, obtemos k-opt na vizinhanga k-exchange.

Teorema 2.1 (Chandra et al. (1999))
Para k > 2, n > 2k + 8 e para « > 1/n existe uma instancia x do PCV com
n cidades, tal que

k-opt(x)

OPT(x) ~ &
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2.2. Buscas locais mondétonas

Prova. Para um k par, define distancias

dix = 1
dijit+1 =dn1 =1/nax ie2,n)
di43,2k44 = 1/«
dj,2k44—j = 1/ j €K
dij = kn caso contrario

Um ciclo Hamiltoniano 6timo é dado por arestas (i, proximo(i)) com

2k+4—1 paraiimparei<k
i+1 paraiparei<k
i+1 para i€ [k,k+ 2]
. ) 2k +4 parai=k+3

proximo(i) = < | - .
i—1 para i impar e i € [k + 3,2k + 4)
2k+4—1 paraipareie[k+3,2k+4)
i4+1 para i€ 2k +4,n]
1 parai=mn

A otimalidade segue do fato que todas arestas possuem o peso minimo 1/na.
Este ciclo é o tnico ciclo 6timo (Exercicio!). Por outro lado, o ciclo (1,2,...,n)
possui peso total 1+ (n—1)/n«, mas tem k + 1 arestas diferentes. Logo este
ciclo € um minimo local para k-exchange e para a instancia acima temos

k-opt(x)

> — .
OPT(x) = x+1—1/n>«

Para provar o caso para um k impar, podemos observar que um minimo local

para o k 4+ T-exchange, também é um minimo local para k-exchange. |

Teorema 2.2 (Chandra et al. (1999))
No caso métrico 2-opt(x)/OPT(x) < 4/m.

Antes provaremos

Lema 2.2
Seja (C1,€2y.+.yCn,yCns1 = €1) um minimo local de 2-opt, e para k € [n] seja
Ex ={(ci,ci1) | dijiv1 > 20PT(x)/Vk}. Entéo [Ex| < k.

Prova. Supoe que existe um k tal que |Ey| > k.
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Figura 2.1.: Caminhos construidos na prova do teorema 2.1. Esquerda: n =
22, k = 8. Meio: n =12, k = 2. Direita: n =40, k =16. A
figura somente mostra arestas de distancia 1/na.

Figura 2.2.: [lustracao para o teorema 2.2.

A densidade de términos de arcos (ci, ci+1) € Ex? nio pode ser demais: Supde
que numa bola com centro ¢ e raio OPT(x)/vk temos términos ti,...t; com
1 > vk. Sejam i1,...1, os inicios correspondentes Nenhum inicio esta na
bola, por ser mais que 20PT(x)/vk distante do término. Os términos, por
estarem na bola, possuem dlstanc1a no méaximo 20PT(x)/vk entre si. Logo,
os inicios possuem uma distancia mais que 20PT(x)/ ﬁ entre si: caso con-
trario, para um par de inicios iq, i, com distancia menos que 20PT(x)/Vk a
soluc¢do que aplica um 2-exchange substituindo (iq,tq) € (ib,ty) por (iq,iv)
e (tq,tp) séria melhor, uma contradicao com a minimalidade local.
Logo tem pelo menos vk inicios com distancia pelo menos 20PT(x)/Vk.
Mas uma rota minima entre eles possui distancia pelo menos 20PT(x), uma
contradicdo. Isso mostra que numa bola de raio OPT(x)/vk temos menos
que vk términos.

20 término de (u,v) é v, o inicio u.
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2.2. Buscas locais mondétonas

Por consequéncia, em Ey existem pelo menos vk términos com distancia mais
que OPT(x)/Vk entre si: comecando com o conjunto de todos términos de
arcos em Eyx vamos escolher cada vez um, e remové-lo junto com os térmi-
nos com distancia no maximo OPT(x)/vk \f dele, até nenhum término sobrar.
Como em cada passo removeremos no maximo \f k términos, o conjunto resul-
tante possui pelo menos vk términos. Mas entdo uma rota que visita todos
possui distancia mais que OPT(x), uma contradi¢do. Logo [Ex| < k. |
Com isso podemos provar o teorema 2.2.

Prova. Pelo lema, a distancia de i-ésima aresta em ordem nao-crescente e no
méximo 20PT(x)/v/i. Logo temos para a distancia da rota

> da <20PT(x) Y 1/Vi<40PT(x)vn

aeC ien]

(porque Y iy 1/VA< [oi71/2di=2n'/2). -

Observagao 2.2

Os teoremas nao quantificam a complexidade para encontrar o minimo local.
Chandra et al. (1999) ainda provaram que o ntmero esperado de iteragoes
sobre instancias Euclidianas aleatorias em [0,1]2 é O(n'logn). Para [0,1]3
isso se reduz para O(n®logn). Eles também provaram que no caso métrico
existem instancias com minimos locais cujo valor desvia pelo menos um fator
1/4y/n da otimalidade, i.e., o teorema assintoticamente é o melhor possivel.

O

Por final observamos que o PCV em geral néo é resoluvel por busca local (em
contraste com a programagcao linear e o método Simplex).

Teorema 2.3 (Papadimitriou e Steiglitz (1977))
Caso P # NP, ndo existe um algoritmo de busca local com complexidade
polinomial por iteracao que é exato para o PCV.

Considere primeiramente o problema

C1cLo HAMILTONIANO RESTRITO

Entrada Um grafo nao-direcionado G = (V;A) e um caminho Hamilto-
niano p em G.

Decisao Existe um ciclo Hamiltoniano em G?

Lema 2.3
Ciclo Hamiltoniano restrito € NP-completo.
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2. Busca por modificagao de solugoes

Prova. Por redugao do problema “Ciclo Hamiltoniano”. Considere o grafo
“diamante” abaixo com quatro “entradas” norte (N), oeste (W), sul (S) e
este (E). Entrando em N, W, S, E ele s6 pode ser atravessado por um ciclo

Hamiltoniano em dois modos, um modo EW e outro modo NS, como mostrado
do lado.

N N N
VRN VAN 7\
u A% u A% u A%
//\ //\ //\
w E W E W E
N / AN / AN /
X y X Yy X Yy
N/ N/ N /
S S S

Para uma instancia G = (V,;A) do problema do ciclo Hamiltoniano, pode-
mos construir um grafo G’ que possui um caminho Hamiltoniano como segue.
Introduz um “diamante” d, para cada vértice em v € V e chama os quatro
entradas N,,, W,,, S,,, e E,,. Conecta os diamantes de oeste ao este linearmente,
ie. (E1,W2), (E2,W3),...,(E,_1,W,). Isso garante a existéncia de um cami-
nho Hamiltoniano comegando no oeste do primeiro vértice Wy e terminado no
este do ultimo vértice E,,. Para representar a estrutura do grafo G, introduz
para cada aresta (u,v) € A duas arestas (Ny,S,) e (N,,S,) conectando os
diamantes correspondentes a u e v de norte a sul. Caso G possui um ciclo
Hamiltoniano, G’ também, atravessando os diamantes sempre de modo NS
de acordo com o ciclo. Caso G’ possui um ciclo Hamiltoniano, ele usa os
diamantes somente de modo NS. Caso contrario, o ciclo tem que seguir em
alguma dire¢ao no modo WE até terminar num dos dois vértices W7 e E,.
Logo G também possui um ciclo Hamiltoniano.

IS S IS S
wi (===, E
</ < < < < </

|
Prova.(do teorema 2.3) Por contradi¢ao. Caso existe tal busca local, podemos
decidir em tempo polinomial se uma dada solugao s é sub-6tima: é suficiente
chamar N(x, s). Mas o problema de decidir se uma solugao s é sub-6tima é NP-
completo, por redugao do problema Ciclo Hamiltoniano restrito. O problema
pertence a NP, porque uma solucdo otima é um certificado curto da sub-
otimalidade. Dado um grafo nao-direcionado G = (V, A) define uma instancia
do PCV com cidades V, e distancias dqo = 1 caso a € A, e dq = 2 caso
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2.2. Buscas locais mondétonas

contrario. O ciclo Hamiltoniano ¢ obtido por fechar o caminho Hamiltoniano
p possui distancia total (n — 1) + 2. Agora G possui um ciclo Hamiltoniano
sse 0 PCV possui uma solugao de valor n sse ¢ é sub-6timo. | %

As analises de minimos locais podem trazer informacoes relevantes sobre a
qualidade da solugao e sugerem caminhos para melhor minimos locais. Isso é
motivo do

Principio de projeto 2.2 (Vizinhancas)
Encontra exemplos de minimos locais e os compara com solugoes 6timas. In-
vestiga que tipo de modificacao poderia melhorar um minimo local.

2.2.1. Segue os vencedores

Segue os vencedores (ingl. go with the winners) (Aldous e Vazirani 1994) é uma
estratégia que trabalha com miltiplas solugoes. Cada solucao percorre uma
trajetoria de uma busca local monotona. Caso uma das trajetorias termina
num minimo local, ela continua no ponto atual de uma das outras trajetorias
que ainda nao chegaram num minimo local. A busca termina, caso todas
trajetorias terminaram num minimo local.

Algoritmo 2.3 (Segue os vencedores (SOV))
Entrada Solugdo inicial s, vizinhanca N, distribuicdo Ps, o ntumero de
solugoes k.

Saida Uma solug@o com valor no méximo @(s).

1 SV(s)=

2 si:=s para i€ [K]

3 s*=s

4 repeat

5 seja L:={ie[k]|B(s)=0} e L:=[k]\L
6 atribui as solugdes em L

7 uniformemente solucdes em L

8 seleciona s{em(si) de acordo com ﬁsi
9 si =S5/

10 s* = min{s., S1,..., Sk}

11 until L= [k]

12 return s*

13 end
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2. Busca por modificagao de solugoes

Na atribuicdo das linhas 6-7 cada solucdo em L é usada no méaximo [lfl/ |LH
vezes.

A motivacao para SOV pode ser explicada no exemplo da arvore na figura 2.3.
Seja d a variavel aleatoria da profundidade alcangada por uma particula numa
caminhada aleatoria partindo da raiz em direcdo as folhas. Temos Pld >
k] = 2% (a profundidade da raiz ¢ 0). Com n particulas independentes, seja
d* = max{dy,...,dn}. Logo

Pld* >k =1—Pld*<kl=1-— HP[digk]
ien]

=1-J[1-Pd>K=1-J[1-2%=1-(0-279™

ie[n] ien]

Aplicando o lema A.4 obtemos

=) PA@>K=> 1-(1-279"<) 1-(1-2" n)=2n

k>0 k>0 k>0

(a ultima estimativa segue pela desigualdade de Bernoulli A.1).
Seja agora dS a variavel aleatéria do SOV com n particulas. Temos P[dS >
k] = (1 —27™)* e logo

=) P >K=>) (1-27")<=2m

k>0 k>0

Logo a profundidade esperada do SOV é exponencialmente maior que a pro-
fundidade de um ntmero equivalente de exploragoes com uma particula neste
exemplo. De fato, temos:

Teorema 2.4 (Aldous e Vazirani (1994))

Para uma arvore com profundidade D, sejam V; os vértices na profundidade i
e seja p(v) a probabilidade de visitar vértice v numa caminhada aleatéria da
raiz na diregdo das folhas para uma dada distribui¢do de probabilidade p(u | v)
entre os filhos u de cada vértice interno v. Define k = maxo<i<j<p Ki,; com

Kij =Pld>1il/Pld>§* > p(v)Pld >j|vI.
veV;

Entao, SOV com B = kD) particulas falha de chegar na profundidade D
com probabilidade no méximo 1/4.

O valor k é uma medida da dificuldade de superar os D niveis. No exemplo
da figura 2.3 temos k = 2 (para uma profundidade maxima fixa D).
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2.2. Buscas locais mondétonas

Figura 2.3.: Exemplo de uma arvore em que segue os vencedores é exponenci-
almente mais eficiente que uma estratégia de multiplos inicios.

2.2.2. Complexidade

A solugao 6tima de um problema de otimizagao também é um minimo local
para qualquer vizinhanca. Para problemas em PO podemos encontrar um
minimo global (e local) em tempo polinomial. Porém o exemplo do método
Simplex mostra que mesmo em casos em que podemos encontrar um minimo
local em tempo polinomial, isso nao precisa ser por uma busca local monétona.
Logo, temos o problema de analisar a complexidade de uma das busca local,
o problema de encontrar um minimo local de qualquer forma, e o problema
de encontrar o minimo local que a busca local encontraria.

Para calcular um minimo local por uma busca local monétona, claramente pelo
menos a vizinhancga tem que ser analisavel em tempo polinomial. A classe de
complexidade PLS captura essa ideia.

Definicao 2.3 (Johnson et al. (1988))

Um problema de otimizagao TT com P polinomialmente limitada, junto com
uma vizinhanga N (escrito TT/N) pertence & classe de complexidade PLS caso
existem algoritmos polinomiais I, V, N tal que

i) I(x) produz uma solugao (inicial);

ii) V(x,s) decide se é uma solugdo valida da instancia x, e caso sim, calcula
@(x,s);

iii) N(x,s) verifica se s ¢ um minimo local, e caso contrario produz uma
solugao vizinha s’ € N(s) estritamente melhor, i.e. @(s’) < @(s).

Com isso podemos definir quatro problemas concretas.

COMPLEXIDADE DE UMA BUSCA LOCAL

Entrada Um problema em PLS com fungoes I, V, N fixas.
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2. Busca por modificagao de solugoes

Problema Qual a complexidade pessimista em niimero de passos sobre
todas solugoes iniciais em fung¢ao do tamanho do problema?

PROBLEMA DE BUSCA LOCAL
Entrada Um problema em PLS.
Problema Encontra um minimo local.

Observacdées O minimo local pode ser encontrado com qualquer algo-
ritmo, nao necessariamente por busca local.

PROBLEMA DE ENCONTRAR O MINIMO LOCAL PADRAO
Entrada Um problema em PLS com fungdes I, V, N fixas.

Problema Encontra o minimo local que a busca local definido por I, V e
N encontraria.

Teorema 2.5
FP C PLS C FNP.

Prova. Supoe que temos um problema em FP com algoritmo A. Entao existe
TT/N tal que os minimos local correspondem com as solugoes de uma instancia:
podemos escolher S(x) = {y | (x,y) € P}, o(x,s) = 0 e N(x,s) ={s}. O
algoritmo I é o algoritmo A, o algoritmo V decide (x,y) € P em tempo
polinomial e o algoritmo N sempre retorna “falso”.

Caso temos um problema TT/N € PLS, entdao o problema de encontrar um
minimo local pertence a FNP: as solugoes sao limitadas polinomialmente, e
podemos usar o algoritmo N para reconhecer solugoes. |
Logo, a questdo PLS C FP ¢é “podemos encontrar minimos locais em tempo
polinomial?”.

Para relacionar problemas de busca local serve a seguinte nogao de redugao.

Definicao 2.4 (Redugao PLS)
Uma problema de busca local TT; /N7 é PLS-redutivel a um problema de busca
local TT, /N, caso existem algoritmo polinomiais S, T tal que:

e Podemos transformar instancias de TT; /Ny para TT,/N3: Para x; € I,
S(X]) € l,.

e Podemos transformar solucoes de T, /N, para solugoes de TT; /N: Para
s2 € S(x2), T(s2,x1) € S(x1).
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2.2. Buscas locais mondétonas

e Os minimos locais correspondem: Para um minimo local sy € S(x3) de
1T, /N3, T(s2,x7) ¢ um minimo local de TT; /Nj.

Com isso obtemos a nogao normal de completude. Em particular as redugoes
s@o transitivas (ver exercicio 2.2).

Definigao 2.5 (PLS-completo)
Um problema TT/N em PLS é PLS-completo para todo problema em PLS é
PLS-redutivel a TT/N.

Considera o problema Circuit/1-flip: Dado um circuito booleano (sobre A, V, —,
por exemplo) com n entradas e m saidas encontra um minimo local para a
funcdo objetivo que trata as saidas como nimero binario de m bits.

Teorema 2.6 (Completude de Circuit/1-flip)
Circuit/1-flip é PLS-completo.

Prova. Ver por exemplo Yannakakis (2003).

Teorema 2.7
Para k fixo PCV /k-exchange é PLS-completo.

Fato 2.1

Os problemas MaxCut/Flip a Graph-partitioning/Swap are PLS-complete.
Para os problemas Graph-partitioning/Swap, TSP /k-opt e MaxCut/Flip a
busca local precisa no caso pessimista um ntmero exponencial de passos para
encontrar um minimo local. Para os mesmos problemas, o problema de en-
contrar um minimo local especifico ¢ PSPACE-complete.

2.2.3. Notas

Uma boa introdugao a busca local encontra-se em Kleinberg e Tardos (2005,
cap. 12) ou Papadimitriou e Steiglitz (1982, cap. 10). A ultima referéncia
tem mais material sobre a conexao entre busca local e a busca na vizinhanga
definida por um politopo. Michiels et al. (2007) apresentam aspectos teoricos
da busca local. Em particular o cap. 5 dessa referéncia apresenta mais deta-
lhes sobre o PCV métrico e Euclidiano. Neumann e Wegener (2006) analisam
mais profundamente o desempenho de uma busca local randomizada no pro-
blema da arvore geradora minima. Um exemplo em que a busca local é melhor
que outras abordagens é o problema métrico das k-medianas (ver por exem-
plo Korte e Vygen (2008, cap. 22). Dimitriou e Impagliazzo (1996) propoem
uma variante do algoritmo SOV que distribui as solugées de acordo com o nu-
mero de vizinhos melhores. Yannakakis (2009) mostra conexdes entre busca
local e jogos, Knust (1997) entre busca local e problemas de escalonamento.
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2. Busca por modificagao de solugoes

2.3. Buscas locais nao-mondétonas

Uma busca local nao-monétona permite piorar a solugao atual.

Algoritmo 2.4 (S-LocalSearch)
Entrada Solugéo inicial s, distribuigao P

Saida Uma solugao com valor no maximo @(s).

1 S—LocalSearch (s)=

2 s i=s

3 repeat

4 seleciona s’ € N(s) de acordo com Py
5 if aceitavel(s,s’) then s:=s’

6 if @(s) < @(s*) then s*:=s

7 until critério de parada satisfeito
8 return s*

9 end

No que segue usaremos A(s,s’) = ¢@(s’) — @(s). A tabela 2.1 mostra um
resumo de estratégias de selecao e aceitacao dos métodos discutidos abaixa.

2.3.1. Critérios de parada

Em buscas locais ndo-monoétonas temos que definir um critério de parada
(ingl. stopping criterion). Exemplos incluem um nimero maximo de iteragoes
ou um tempo méximo. Ambos sao usados frequentemente, por serem simples,
e por permitirem comparagoes da qualidade obtida com os mesmos recursos
por métodos diferentes. Porém, eles potencialmente gastem tempo demais em
instancias em que uma boa solugao foi encontrada cedo na busca, e provavel-
mente gastem tempo de menos em instancias maiores que foram consideradas
na defini¢ao dos critérios: um bom método precisa ajustar a tempo investido
em fungao do tamanho do problema.

Critérios de parada dinamicos resolvem estes problemas. Exemplos séo: (i) A
solucao encontrada possui um desvio relativo fixo de algum limite inferior do
problema. Este método fornece inclusive uma garantia da qualidade da solu-
¢ao. (ii) Podemos determinar empiricamente, que a probabilidade de melhorar
a solugdo incumbente é baixa. O critério mais simples desse tipo é parar caso
o método nao faz progresso por um numero de iteragdes ou um tempo fixo.
Em fun¢do do método critérios mais rigorosos sdo possiveis (por exemplo por
métodos estatisticos em métodos de multiplos inicios, ver cap. 3.2).
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Tabela 2.1.: Estratégias de busca local.

Nome Estratégia de selecao  Estratégia de aceitagao
Aceitagao por limite ~ Cam. aleatoéria A(s,s’) < W(t)

Grande dilavio Cam. aleatéria e(s’) < W(t)

Recorde para recorde Cam. aleatoria A(s*,s") < W(t)

Algoritmo demonio Cam. aleatoria A(s,s’) < W(t)

Aceitagao atrasada Cam. aleatoria As'ys—x) <0

BLMR De acordo com (2.2)  Com prob. 1.

Teémpera simulada Cam. aleatoria Com prob. min{eiA[s’S,)/Tm, 1}

Busca Tabu Unif. em N(s) \L(t) Com prob. 1.

Exemplo 2.11 (Desvio relativo limitado)
O limitante de Held-Karp (ingl. Held-Karp bound) HK para o PCV ¢é o valor
do programa linear

minimiza Z CeXe
ecE

sujeito a x(8(S)) > 2 para ) #£S £V
x(6(c)) =2 parav eV
0<x <1 para e € E.

e pode ser obtido eficientemente na pratica. (Aqui & é o conjunto de arestas
na fronteira do conjunto S e x o valor total deles.) No caso métrico o valor de
HK néo é menos que 2/3 do valor 6timo (Wolsey 1980). Logo, parando com
um valor menos que ocHK, para um o« > 3/2 temos uma o-aproximagao da
solugao 6tima. O

2.3.2. Aceitacao por limite e variantes

Entre os métodos nao-mondtonos mais simples estao estratégias de aceita-
¢ao por limite. Eles aceitam uma solugao pior, dado que o valor da solu-
¢ao nao ultrapassa um certo limite. Eles foram introduzidos como variantes
deterministicos da témpera simulada. A definicdo concreta do limite difere
entre as estratégias de aceitagao por limite (ingl. threshold accepting) (Du-
eck e Scheuer 1990), o grande dilivio (ingl. great deluge) (Dueck 1993), via-
gem de recorde para recorde (ing. record-to-record-travel), aceitagao atrasada
(ingl. late acceptance) Burke e Bykov 2012, e algoritmo demonio (ingl. demon
algorithm (Creutz 1983).

A tabela 2.1 mostra as estratégias de forma resumida. Na tabela, W(t) é um
limite que varia com o tempo como segue:
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2. Busca por modificagao de solugoes

Aceitacao por limite W(t+1) = W(t)—5 caso o algoritmo nao faz progresso.

Grande dilivio W(t + 1) = W(t) — 6 em cada aceitagdo de um movimento.
Dueck (1993) sugere que § seja “um pouco menos que 1% do valor médio
de A(s, W(t))".

Recorde para recorde W(t) = W.

Algoritmo demédnio Nesse tipo de algoritmo, o demoénio é um bangqueiro:
Wt + 1) = W(t) — A(s,s’). Variantes incluem demoénios limitados
(Wt +1) = min{W(t) — A(s,s’), Wmax}), com inflagio (a “conta” do
deménio diminiu com o tempo), ou com wvalor aleatoria (W(t) repre-
senta a média de uma variavel com distribuigado Gaussiana e desvio pa-
drao fixo).

Outras formas da variagao do limite sao possiveis, e de fato, a selecao dos
W(t) é um problema em aberto (Aarts e Lenstra 2003).

2.3.3. Buscas locais estocasticas

Em buscas estocasticas o critério de aceitagao é probabilistico e geralmente
tal que solucoes de melhor valor possuam uma probabilidade maior de serem
aceitos.

Busca local monétona randomizada (BLMR)

Uma das buscas locais estocasticas mais simples, a busca local mondtona ran-
domizada (ingl. randomised iterative improvement) seleciona com probabili-
dade p um vizinho arbitrario, e com 1 —p um vizinho melhor, i.e.

(2.2)

P(s)) = p/IN(s)|+ (1 —p)/IB(s)| caso s’ € B(s)
’ p/IN(s)| caso s’ € N(s) \ B(s)

A probabilidade de encontrar a solugao 6étima para uma vizinhanca conectada
com uma busca local monétona randomizada converge para 1 com um ntmero
de passos crescente (Hoos e Stiitzle 2004, p. 155).

Algoritmo de Metropolis
O critério de aceitagio de Metropolis (Metropolis et al. 1953) é

caso As,s’) <0

caso contrario

. 1
Placeitar s’ | s] = {eA(s,s’]/kT (2.3)
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(O critério foi introduzido para a simulagdo da evolugao de um solido para o
equilibrio térmico, e por isso inclui a constante de Boltzmann k. No contexto
de otimizacao ela tipicamente é ignorada, i.e. k = 1.) Uma busca local esto-
castica com temperatura fixa é conhecida como algoritmo de Metropolis. Para
um T — oo o algoritmo se aproxima a uma caminhada aleatoéria, para T — 0
a uma busca local monétona.

Témpera simulada

A témpera simulada (ingl. Simulated Annealing) foi proposto por Cerny (1985)
e Kirkpatrick et al. (1983). Ela varia a temperatura do algoritmo de Metropo-
lis de acordo com uma programagao de resfriamento (ingl. cooling schedule).
O motivo é que a temperatura ideal depende da escala da fungao objetivo e
geralmente também da instancia.

Um aspecto teoricamente interessante da témpera simulada é que ela converge
para a solucao Otima para certos programagoes de resfriamento. Define a
profundidade d(s) de um minimo local s como menor valor tal que uma solugao
de valor menor que @(s) é alcangavel a partir de s via solugbes de valor no
méaximo @(s) + d(s). Com isso temos

Teorema 2.8 (Hajek (1988))

Para uma constante ' e T(t) = '/ log(t+2) a témpera simulada converge assin-
toticamente para uma solugao 6tima sse a vizinhanga é conectada, simétrica,
e ' > D, sendo D a profundidade maxima de um minimo local.

Uma heuristica concreta usando témpera simulada precisa definir uma tempe-
ratura inicial, o nimero de iteragoes com temperatura constante ingl. tempe-
rature length, uma programacao de resfriamento, e um critério de parada.

A temperatura inicial e o nimero de iteragoes por temperatura dependem
fortemente da instancia e por isso devem ser calibrados dinamicamente. Para
a temperatura inicial, uma técnica é gerar uma série de solugoes aleatorias e
definir a temperatura inicial tal que T = A(Smin, Smax) €M qUE Smin € Smax
sao as solugoes de menor e maior valor encontradas. Uma outra técnica é
incrementar uma temperatura baixa inicial, até uma percentagem desejada de
movimentos (tipicamente > 90%) é aceito.

O numero de iteragoes por temperatura tipicamente deve ser proporcional ao
tamanho da vizinhanga para obter bons resultados (Johnson et al. 1989). Uma
outra abordagem para garantir um progresso por temperatura, e manter ela
constante até um nimero minimo de movimentos foi aceito, mas nao mais que
um limite superior de iteragoes, para evitar um custo alto para temperaturas
baixas.
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A programacéo de resfriamento mais comum é geométrica, em que T(t) = Too
com o € (0,1). Um valor tipico ¢ « € [0.8,0.99]. Johnson et al. (1989)
concluem experimentalmente que nao ha razao para usar outras programagoes
de resfriamento (como p.ex. linear, ou logaritmico).

Como critério de terminacao podemos usar uma temperatura final, por exem-
plo. Um critério adaptativo, que detecta o “dominio” da busca local é ainda
melhor. Johnson et al. (1989) prop6em, por exemplo, usar uma percentagem
minima de movimentos que pioram: caso menos movimentos sao aceitos em
mais que um numero fixo de niveis de temperatura, sem melhorar a melhor so-
lugao encontrada, o método termina. Como o método é estocéstico, é indicado
aplicar uma busca local depois.

Observagdo 2.3 (Johnson et al. (1989))
Experimentalmente, parece que

e A témpera simulada precisa um tempo longo para obter resultados de
boa qualidade.

e Tempo gasto no inicio e no final (dominio de caminhada aleatério e busca
local) tipicamente é pouco efetivo.

e Uma execugao mais longa da témpera simulada tende a produzir melho-
res resultados que diversas repeticoes mais curtas. Isso provavelmente
se aplica também para o “reheating”.

2.3.4. Otimizagdo extremal

Otimizacao extremal (ingl. extremal optimization) (Boettcher e Percus 2003)
supde que uma solugdo s é representada por variaveis (x1,...,%xn) (ver se-
¢ao 1.2) e que cada variavel contribui linearmente a fungéo objetivo com um
valor Ai(s), i.e. @(s) = Zie[n] Ai(s). A vizinhanca na busca local é restrita
para vizinhos que alteram o valor uma determinada variavel, a varidvel ez-
trema. A probabilidade de uma variavel ser a variavel extrema é proporcional
a sua contribuicao Ai(xi) na funcao objetivo.

Algoritmo 2.5 (EO)
Entrada Solugdo inicial s.

Saida Uma solugéo com valor no maximo @(s).

1 EO(s)=
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2 s*i=s

3 repeat

4 seja $=(X1y...,Xn) com Aq(s) > --- > An(s)

5 seleciona i€ [n] com probabilidade oci™™

6 seleciona s’ € N(s) tal que x; muda o valor
7 s:=s'

8 atualiza s*

9 until critério de parada satisfeito

10 return s*

Boettcher e Percus (2003) propéem T =1+ 0(1/1lnn).

2.3.5. Busca local guiada

A busca local guidada (ingl. guided local search) penaliza elementos indeseja-
veis na solugao, similar a otimizagao extremal, mas por modificagao da fungao
objetivo. SupOe uma representagdo por conjuntos e uma fungdo Ay (s) que
define o custo do elemento u € U. (Diferente da otimizacdo extremal este
custo nao precisa entrar diretamente na funcdo objetivo.) Além disso, para
cada elemento u € U, py, é o numero de vezes o elemento foi penalizado. A
busca local guiada usa a funcao objetivo

®'(s)=@(s)+ ) Ppu.

ues

Em cada minimo local o método penaliza os elementos com uma utilidade de
penalizacao

P(s,u) = Au(s)/(1+pi) casoucs
o caso contrario

méxima (i.e. aumenta o p,, correspondente por 1) e continua com a busca.
Observe que a busca local guiada é independente do método para chegar num
minimo local.

2.3.6. Busca tabu

A ideia central da busca tabu é usar memoria adaptativa para guiar uma busca
local. Na forma proposta inicialmente por Glover (1986) ela aplica a estratégia
“melhor melhora” enquanto B(s) # (3, e permite solugoes piores caso contrario.
Uma memoria de curta duragdo (ingl. short-term memory, ou recency-based
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memory) serve para excluir solugdes candidatas (declara-las “tabu”) da vizi-
nhanca com o objetivo de evitar ciclagem. A busca tabu demonstrou a sua
utilidade em varias aplicagbes, porém existe pouca fundamentacao teorica:
nao existe prova de convergéncia para a otimalidade, por exemplo.

Uma busca tabu probabilistica relaxa a estratégia “melhor melhoras” para
uma busca por amostragem. Isso pode ser indicado em vizinhangas grandes
e reduz a probabilidade de ciclagem. Além disso, existem resultados teoéricos
que mostram a convergéncia nesse caso (e.g. (Faigle e Schrader 1992)).

O algoritmo 2.6 mostra uma busca local estocéstica com memoria genérica.

Algoritmo 2.6 (S-LocalSearchMemory)
Entrada Solugao inicial sg, distribuigdo Py

Saida Uma solugao com valor no maximo @(s).

1 S—LocalSearch (s)=

2 inicializa a memoria M

3 st i=s

4 repeat

5 seleciona s’ € N(s) de acordo com ﬁS,M
6 if aceitavel(s’,M) then s:=s’

7 atualiza a memoria M

8 if @(s) < @(s*) then s*:=s

9 until critério de parada satisfeito
10 return s*

11 end

A Dbusca tabu basica define Ps apm(s’) = 1/|B*(s)| para s’ € B*(s) com B*(s) =
{s" € N(s)\ L(s,M) | @(s") = mingren(s)\r(s,m) @(s”)} e sempre aceita a
nova solugao s’. Neste caso a lista de solugoes tabu L(s, M) resulta (da parte
da memoria de curta dura¢ao) de M.

A memoria de curta duracdo mais usada guarda atributos removidos ou in-
seridos em solugoes e trata uma solugao que inclui um atributo removido ou
exclui um atributo inserido recentemente como “tabu”. Na representagao por
conjuntos (ver cap. 1.2) sejam iy, e 1y, o ultimo tempo em que o elemento
u € U foi inserido e removido da solugdo. Para uma duragdo tabu (ingl. tabu
tenure) fixa d, a regra tabu define um vizinho s’ de s tabu no tempo t caso

t <max{r, +d|ues’\s} (2.4)
t<max{i, +d|luecs\s'h (2.5)

Aqui a primeira restrigao proibe introduzir elementos removidos em menos
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tempo que d, e a segunda remover elementos introduzidos em menos tempo
que d. Uma boa duracgao tabu depende do tamanho da instancia e um in-
tervalo adequado [dpyin (M), dmax(n)] € tem que ser determinado experimen-
talmente (Glover e Laguna 1997). Valores mais baixos tendem intensificar a
busca, mas resultam em ciclagem no limite, e valores altos tendem a diversi-
ficar a busca, mas resultam numa qualidade reduzida no limite.

Observagao 2.4 (Implementagao memoria de curta duragao)

Uma implementacao de r e u com vetores na estratégia acima acima permite
um teste tabu em tempo linear no tamanho da modificagdo s @ s’, que fre-
quentemente é O(1). Caso |U| é grande demais, é preferivel usar tabelas hash.

O

A regra tabu béasica permite diversas variagoes. Entre os mais comuns sao

e Considerar um vizinho como tabu somente se ambas condigoes (2.4) e
(2.5) s@o satisfeitas.

e Considerar somente atributos alterados: com a, o tempo da tltima
alteracdo (inser¢do ou remogao), o critério tabu é simplificado para

t <max{a,+d|ucs’ @sh

e Usar uma duragao tabu diferente em (2.4) e (2.5): quanto mais a proibi-
¢ao de um atributo restringe a solugao, quanto menor deve ser a duragao
tabu (Glover e Laguna 1997).

e Usar uma duragao tabu dindmica, por exemplo um valor aleatério em
[dimin (M), dmax(n)] ou uma sequencia fixa (e.g. um mualtiplo adequado
do prefixo do ruler function (1,2,1,3,1,2,1,4,1,2,..., (A001511)); Ga-
linier et al. (2011) é um exemplo de uma abordagem estado de arte que
aplica isso.)

e Declarar diferentes aspectos de um problema tabu, ou usar mais que
uma lista tabu.

e Tratar um tabu como penalidade: um atributo tabu u nao é proibido,
mas penalizado por t — (a, + d).

Exemplo 2.12 (PCV)

Na representagao do PCV por conjuntos usando 2-exchange arestas removidas
ou inseridas se tornam tabu. Considerando critério (2.4) e (2.5) proibe desfazer
o 2-exchange por d iteragoes. Um exemplo de um aspecto diferente é declarar
todas arestas incidentes com as cidades do ultimo 2-exchange tabu. O
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2. Busca por modificagao de solugoes

Uma consequéncia de uma memoria de curta duragao é um critério de aspi-
ra¢do (ingl. aspiration criterion). A exclusdo de atributos exclui nao somente
solucao ja visitadas, mas também pode excluir solugoes ainda nao visitadas,
inclusive solugGes com melhores caracteristicas ou valores da fungao objetivo.
Para contornar este problema, um critério de aspiracao define excecoes da re-
gra tabu. Na forma mais simples ele permite aceitar um vizinho que melhora a
solugao incumbente. Um critério de aspiragao pode também permitir escolher
o vizinho “menos tabu” caso nao existe vizinho ndo-tabu (“aspiration by de-
fault”). Esta condigdo pode servir alternativamente como critério de parada,
além dos critérios genéricos (cap. 2.3.1).

Intensificacdo e diversificacdo Para melhorar a solucao pode ser ttil inten-
sificar a busca perto de solugdes de boa qualidade. Isso pode ser alcangado
reduzindo o tamanho da lista tabu, fixando partes dos atributos para um
determinado tempo, ou aplicando outras formas de buscas (e.g. um solver
exato).

Em outras fases é necessario diversificar a busca, i.e. conduzi-la para novas
solugoes.

Memoria de longa duracdao Uma memoria de longa dura¢do pode ser usada
para guiar a busca mais efetivamente, e para intensica- ou diversifica-la. A
memoria pode guardar solugoes de boa qualidade ou informagoes estatisticas.
Mais comum para as tltimas sao frequéncias de pertinéncia em solugoes (re-
centemente ou globalmente) e frequéncias de alteracao de status de atributos.
Por exemplo, para intensificar a busca podemos fixar elementos que recente-
mente pertenceram a solugoes com alta frequéncia e aplicar um dos métodos
acima (“restarting”). Para diversificar podemos incentivar incluir elementos
que globalmente foram usados com baixa frequéncia, por exemplo incluindo
um termo yf, na fungao objetivo para um movimento que inclui elemento u,
que j4 foi incluido com frequéncia f,,, onde vy é um parametro que depende do
dominio fun¢@o objetivo.

As observagoes sobre intensificagdo e diversificacdo e os diferentes tipos de
memoria motivam

Principio de projeto 2.3

Identifica os elementos de intensificagao e diversificagdo da heuristica. Procure
encontrar um equilibrio entre os dois principios. Em particular, considere for-
mas de memoria de longa duracao para melhorar o desempenho da heuristica.
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2.4. Buscas locais avangadas

Figura 2.4.: Espago de solugoes (azul) e de minimos locais (vermelho).

2.4. Buscas locais avancadas

2.4.1. Busca local iterada

A busca local iterada (ingl. iterated local search) pode ser vista como uma
busca local no espago de minimos locais de um problema (ver figura 2.4).

Definicao 2.6
O basin de atragdo B(s*) associado a um minimo local s* e o conjunto de
solugoes s tal que uma dada busca local iniciada em s termina em s*.

Logo, para passar de um minimo local para outro, temos que alterar a solugao
atual suficientemente para obter uma solucao nova que pertence a um basin
de atragao vizinho. Para isso, a busca local iterada perturba a solugao atual
e aplica a busca local na solugao perturbada, para obter um outro minimo
local. A forma especifica da perturbacao define a vizinhanca entre os minimos
locais e a probabilidade de transigdo. O critério de aceitagao pode ser um dos
critérios usados em uma busca ndo-monétona (e.g. o critério de aceitacao de
Metropolis).

Para perturbar o minimo local atual podemos, por exemplo, caminhar aleato-
riamente para um nimero de iteragoes, ou escolher um movimento aleatério
numa vizinhanca grande. Idealmente a perturbagao é na ordem de grandeza
do diametro do basin da solucao atual: perturbagoes menores levam ao mesmo
minimo local, enquanto perturbacoes maiores se aproximam a uma caminhada
aleatoria no espago de minimos locais.

2.4.2. Busca local com vizinhanga variavel

Os métodos usando k vizinhangas N7, ..., N} sempre voltam a usar a primeira
vizinhanga, caso um movimento melhora a solugao atual. Caso contrario eles
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2. Busca por modificagao de solugoes

passam para préoxima vizinhanga. Isso é o movimento basico:

Algoritmo 2.7 (Movimento)
Entrada Solugao atual s, nova solucgdo s’, vizinhanga atual k.

Saida Uma nova solugdo s e uma nova vizinhanga k.

1 Movimento(s,s’ k) :=
2 if @(s’) < @(s) then

3 s:=s’

4 k:=1

5 else

6 ki=k-+1

7 end if

8 return (s,k)

Com isso podemos definir uma estratégia simples, chamada Variable Neigh-
borhood Descent (VND).

Algoritmo 2.8 (VND)
Entrada Solugao inicial s, conjunto de vizinhancgas Aj, i € [m].

Saida Uma solugao com valor no maximo @(s).

1 rVNS(s {N})=

2 k:==1

3 // até chegar num minimo local

4 // para todas wvizinhang¢as

5 while k<m

6 encontra o melhor vizinho s’ em Ny(s)
7 (s,k) := Movimento(s, s’, k)

8 end while

9 return s

Uma versao randomizada é o reduced variable neighborhood search.

Algoritmo 2.9 (rVNS)
Entrada Solugao inicial s, conjunto de vizinhancas N, i € [m].

Saida Uma solugéo com valor no maximo @(s).

1 VND(s,{N:i})=
2 until critério de parada satisfeito
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2.4. Buscas locais avangadas

k=1
while k<m do
{ shake }
seleciona vizinho aleatério s’ em Ny(s)
(s,k) :== Movimento(s, s’, k)
end while
end until
return s

O © 00O Uk Ww

—_

Uma combinagdo do rVNS com uma busca local é o Variable Neighborhood
Search (VNS) bésico.

Algoritmo 2.10 (VNS)
Entrada Solucao inicial s, um conjunto de vizinhancas N, 1 € [m].

Saida Uma solugdo com valor no méximo @(s).

1 VNS(s,{Ni})=
2 until critério de parada satisfeito
k=1
while k<m do
{ shake }
seleciona vizinho aleatorio s’ em Ny(s)
s” := BuscaLocal(s’)
(s,k) :== Movimento(s, s, k)
end until
return s

O © 00O Uk Ww

—

Observagao 2.5

A busca local em VNS pode usar uma vizinhanga diferente das vizinhangas
que perturbam a solucao atual. Também é possivel usar o VND no lugar da
busca local. O

2.4.3. Busca local em vizinhangas grandes

Uma vizinhanga é considerada massiva (ingl. very large scale) caso o niimero
de vizinhos cresce exponencialmente com o tamanho da instancia (Pisinger
e Ropke 2010). Uma vizinhan¢a massiva tem uma vantagem caso o custo
maior de selecionar um vizinho é compensado pela qualidade das solugoes.
Em particular, isso é possivel caso a vizinhanga pode ser analisada em tempo
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2. Busca por modificagao de solugoes

polinomial apesar do seu tamanho exponencial, e.g. por resolver um problema
de caminhos mais curtos, fluxo maximo ou emparelhamento.

2.4.4. Detecgdo de estagnacao genérica

Watson et al. (2006) propéem um mecanismo explicito e genérico para de-
tecgao de estagnagao. Supoe que temos uma heuristica H arbitraria, e seja
N1 (s) a proxima solucao visitada por H dado a solugéo atual s. O CMF (Core
methaheuristics framework) adiciona a essa heuristica uma detecgao explicita
de estagnacao.

Algoritmo 2.11 (CMF)

Entrada Uma instancia de um problema, uma solucdo inicial s, uma
distancia minima dy,,, distancias Ly e Ap e um namero de iteragoes
ttest-

Saida A melhor solucdo encontrada.

1 CMF(s) :=
2 St =S
3 cada tiest iteracoes:
4 if d(s,s¢) < dpy then
5 if escaping then
6 L:=L+A¢
7 else
8 L:= Lo
9 St =S
10 s := randomWalk(s, L)
11 escaping := true
12 else
13 St:=S§
14 escaping := false
15 end if
16 s := Ny(s)
17 end

2.4.5. Notas

O livro de Hoos e Stiitzle (2004) é uma excelente referéncia para area de
busca local estocastica. Os artigos Dueck e Scheuer (1990) e Dueck (1993)
que propoem aceitagao por limite, o grande dilavio e viagem de recorde para
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recorde sdo bem acessiveis. Talbi (2009) apresenta um bom resumo desses
métodos que inclui o algoritmo demoénio. A referéncia definitiva para a busca
tabu ainda é o livro de Glover e Laguna (1997), uma boa introdugéo é Hertz
et al. (2003).

2.5. Exercicios

Exercicio 2.1
A vizinhanga 2-flip para o k-SAT é simétrico? Fracamente otimamente conec-
tada? Exata? E a vizinhanca k-flip para k > 27

Exercicio 2.2
Mostra que redugoes PLS sao transitivas.
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3. Busca por construcdao de solucoes

3.1. Construcao simples

3.1.1. Algoritmos gulosos

Definicao 3.1 (Sistemas de conjuntos)

Um sistema de conjuntos é um par (U,V) de um universo U de elementos
e uma colegao V de subconjuntos de U. Caso para cada S € V existe um
u € U tal que S\{u} € V o sistema de conjuntos é acessivel. Caso V é fechado
sobre inclusdo (i.e. caso S’ C S para um S € V entdo S’ € V) o sistema é
independente e o seus elementos se chamam conjuntos independentes.

Definicao 3.2 (Matroides e greedoides)

Um sistema de conjuntos satisfaz a propriedade de troca, caso para todos
S, T €V com |S| > [T| existe um u € S\ T tal que TU{u} € V. Um greedoide
é um sistema de conjuntos acessivel que satisfaz a propriedade de troca. Um
matroide é um sistema de conjuntos independente que satisfaz a propriedade
de troca.

Definicao 3.3 (Problema de otimizagao de um sistema de conjuntos)
Para um sistema de conjuntos (U, )) com pesos wy, € R, para u € U, o pro-
blema correspondente de otimizagao é encontrar um subconjunto independente
de maior peso total.

Observagao 3.1
Na pratica o conjunto V é especificado por um algoritmo que decide, para
cada SCUseSeV. O

Exemplo 3.1

Muitos problemas de otimizagao podem ser formulados como sistemas de con-
juntos, por exemplo o PCV (com arestas U, e V subconjuntos de circuitos
Hamiltonianos), o problema do conjunto maximo independente (com vértices
U e V os conjuntos independentes do grafo), o problema do caminho s-t mais
curto (com arestas U e V subconjuntos de caminhos s-t), ou o problema da
mochila (com itens U, e V os subconjuntos de itens que cabem na mochila).

O

Um algoritmo guloso constroi iterativamente uma solucao vélida de um sis-
tema de conjuntos acessivel.
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3. Busca por construcao de solugoes

Algoritmo 3.1 (Algoritmo guloso)
Entrada Um sistema de conjuntos (U, V).

Saida Uma solugao S € V.

1 Guluso()=

S:=0

while U#() do
seleciona ue U com w, maximal
U:=UuU\{u}
if SU{u}€V then

S:=Su{u}

end if

end while

10 return S

11 end

© 00 O Uk W N

Teorema 3.1 (Edmonds-Rado)
O algoritmo guloso resolve o problema correspondente do sistema de conjuntos
independente S = (U, V) se e somente se S é um matroide.

Prova. Supode S é um matroide. Pela propriedade de troca, todos conjun-
tos independentes maximais possuem a mesma cardinalidade. Supoe que o
algoritmo guloso produz uma solugédo S = {s1,...,sn}, mas a solu¢do 6tima
S* ={sy,...,s5} satisfaz w(S) < w(S*). Sem perda de generalidade ws, >
W,y € Ws, > Wy para 1 < i < n. Provaremos por inducdo que (*)
Ws, > Wg/, uma contradigdo com w(S) < w(S*). Para i =1 (*) é correto
pela escolha do algoritmo guloso. Para um i > 1 supde wg, < ws;. Pela
propriedade de troca existe um elemento de w € {sy,...,s{}\{s1,...,8i—1}
tal que {s1,...,si_1,u} € V. Mas w,, < wgs < Wy, uma contradigdo com a
escolha do algoritmo guloso. '

De modo oposto, supoe o algoritmo guloso resolve o problema correspondente
de otimizagao (para pesos arbitrarios), mas a propriedade de troca é invalida.
Logo existem conjuntos S, T € V, tal que |S| = |T| + 1 mas para nenhum
ue S\ T temos TU{u} € V. Define

[T|+2 paraueT
wy =< [T+ 1 paraueS\T.

0 caso contrario
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Para essa instancia o algoritmo guloso comeca escolher todos elementos de T.
Depois ele nao consegue melhorar o peso total, porque um elemento em S\ T
nao pode ser adicionado, e os restantes elementos possuem peso 0. Logo o valor
da solucao gulosa é w(T) = |T|(|T| +2) < (T 4+ 1)2 < w(S), em contradicio
com o fato que o algoritmo guloso resolve o problema otimamente. |
Obtemos uma generalizacao similar com a busca local selecionando o proximo
elemento de acordo com uma distribuicao de probabilidade P sobre o uni-
verso U. Essa distribuigao pode ser adaptativa, i.e. ela depende dos elementos
selecionados anteriormente.

Algoritmo 3.2 (Algoritmo guloso generalizado)
Entrada Um sistema de conjuntos (U, V).

Saida Uma solugdo S € V.

—_

Guluso—Generalizado ()=
S==10
while U#0 do
seleciona ue U de acordo com P
U:=U\{u}
if Su{u}eV then
S:=Su{u}
end if
end while
return S
end

= O © 00O Uik W

—_

Seja u* = argmax, {w(u)ju € U} e B(U) ={u € U|wy =wy-}. A estratégia
gulosa corresponde com P(u) = 1/|B(U)| para u € B(u). Um algoritmo semi-
guloso relaxa este critério. Duas estratégias comuns sao:

Guloso-k  Seja U = {uy,...,un}comw; > wiyq. Seleciona S = {u1, ..., Unin{k,n}}
e define P(u) = 1/|S| para u € S. Essa estratégia seleciona um dos k melhores
elementos.

Guloso-a¢  Seja U = {uq,...,un} com wi > wi;7. Para um 0 < o« < 1,
seleciona S = {u; | wi > oaow,, + (1 — «)w;} e define P(u) = 1/|S| para u € S.
Essa estratégia seleciona um entre os «% melhores elementos.

Entre distribui¢oes de probabilidade alternativas para o guloso-« temos abor-
dagens que usam o rank r do elemento para definir um peso w;, e selecionam

o elemento com rank r com probabilidade wy/ Y~ w,. Exemplos séo
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e pesos polinomiais wy = 17 (ver 2.3.4 para uma aplica¢do na otimizagao
extremal);

e pesos lineares we = 1/T ou we =N — 13
e pesos logaritmicos we, = 1/logr + 1; ou

e pesos exponenciais we = e~ (Bresina 1996).

Exemplo 3.2 (Construgao gulosa para o PCV)
Exemplos de construgoes gulosas para o PCV sao

e vizinho mais proximo: escolhe uma cidade inicial aleatéria, e visita sem-
pre a cidade mais proxima nao visitada ainda, até fechar o ciclo;

e algoritmo guloso: no matroide com U todos arcos e V subconjuntos de
arcos de ciclos Hamiltonianos, como acima;

e 0 algoritmo de Clarke-Wright: define uma cidade aleatoria como centro
e forma “pseudo-rotas” (2-ciclos) do centro para todos outras cidades.
Ranqueia todos pares de cidades diferente do centro pela reducao de
custos (“savings”) obtido passando diretamente de uma cidade para ou-
tra, nao visitando o centro. Processa os pares nessa ordem, aplicando
cada reducao que mantém uma colegao de pseudo-rotas, até a colegao é
reduzida para um tnico ciclo.

e 0 algoritmo de Cristofides para instancias métricas: junta uma arvore
geradora minima das cidades com um emparelhamento perfeito de custo
minimo entre os vértices de grau impar da arvore, encontre um caminho
Euleriano nesse grafo, e torna-lo um ciclo pulando cidades repetidas.

3.1.2. Algoritmos de prioridade

Supoe uma representagao de uma solucao por varidveis. Uma solucao parcial
é um atribuicdo com wvaridveis livres, i.e. variaveis que ainda nao receberam
valores. Algoritmos de prioridade processam as variaveis em I em alguma
ordem definida por uma fun¢do de ordenamento o que retorna um sequencia
das variaveis livres. A variavel atual recebe um valor em V de acordo com uma
funcao de mapeamento f. Caso o depende somente da instédncia obtemos um
algoritmo de prioridade fiza; caso a ordem depende também da atual solugao
parcial obtemos um algoritmo de prioridade adaptativa.
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Algoritmo 3.3 (Algoritmo de prioridade)
Entrada Uma instancia I C U, uma func¢do de ordenamento o e uma
fun¢ao de mapeamento f.

Saida Uma solugdo S, i.e. um atribuigdo de valores em V aos elementos
em [.

1 Prioridade()=

2 S:=10

3 while 1#0 do

4 seja o(L,S) = (x1,...,%k)
5 S Z:SU{X1 Hf(S,X1 )}

6 [:=T1\{x1}

7 end while

8 return S

Observagao 3.2

Um algoritmo de prioridade pode ser relaxado, da mesma forma que algoritmos
gulosos, por selecionar a nova variavel a ser fixada entre as «% ou as k variaveis
de maior prioridade. O

Exemplo 3.3 (Coloragao de grafos)

Com a representacdo do exemplo 1.3 obtemos um algoritmo de prioridade
fixa ordenando os vértices por grau nao-crescente e usando uma funcao de
mapeamento que atribui a menor cor livre ao vértice atual. Obtemos uma
variante adaptativa ordenando os vértices ainda nao coloridos por grau nao-
crescente com respeito a outros vértices nao coloridos, com a mesma fungao
de mapeamento. O

Exemplo 3.4 (Empacotamento bidimensional)

No problema de empacotamento bidimensional (ingl. 2D strip packing) temos
n caixas de dimensoes 1; X ¢;. O objetivo é empacotar as caixas numa faixa
de largura L sem sobreposicao, paralelo com os eixos, e sem rotacioné-los, tal
que o comprimento total ocupado é minimizado. Um algoritmo de prioridade
ordena as caixas por altura, largura, circunferéncia, ou area nao-crescente, e
aloca a caixa atual na posicao mais para baixo e mais para esquerda possivel
(“bottom left heuristic”). O

3.1.3. Busca por raio

A busca por raio (ingl. beam search) mantém k solugoes parciais (k é chamada
a largura do raio (ingl. beam width)). Em cada passo uma solugdo parcial é

49



3. Busca por construcao de solugoes

estendida para k’ solucoes parciais diferentes, e entre as kk’ solugoes novas,
uma funcdo de ranqueamento seleciona as k melhores. A funcéo tipicamente
fornece um limite inferior para as solugbes completas que podem ser obtidas
a partir da solucao parcial atual.

Uma busca por raio pode ser entendida como uma busca por largura truncada
ou ainda como versao construtiva do algoritmo SOV na busca. O modelo mais
simples para definir a busca por raio é numa arvore de solugoes parciais, com a
solucdo vazia na raiz. Cada solugdo s possui uma série F(s) de extensoes pos-
stveis (filhos na arvore), que sao escolhidos com distribui¢ao de probabilidade
Ps. Seja p(s) o pai de s na arvore.

Algoritmo 3.4 (Busca por raio)
Entrada Uma instancia de um problema.

Saida Uma solugao s, caso for encontrada.

1 BeamSearch(k,k’):=

2 B := {0}

3 while B# 0 do

4 repete |Blk' vezes

5 seja F:=UgepF(s)

6 B:=10

7 seleciona fe&F com prob. Pu)(f)/ > s Ppir)(f)
8 se f é sol. completa: atualiza o incumbente §
9 se f é sol. parcial: B:=BU{f}

10 { alguns autores: F:=F\{f} }

11 end

12 seleciona as melhores solucoes em B

13 (no maximo k)

14 end while

15 return s* { eventualmente nao encontrado }

Observagao 3.3
Uma busca por raio BeamSearch(1,1) é equivalente ao algoritmo guloso gene-
ralizado. O

3.2. Construcao repetida independente

A estratégia de maltiplos inicios (ingl. multi-start) procura encontrar solu-
¢oes melhores por construgao repetida. No caso mais simples, cada repeticao
¢é independente da outra e o algoritmo retorna a melhor solugao encontrada.
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Essa estratégia pode ser usada com qualquer construcgao aleatoria, por exemplo
com os algoritmos Guloso-k e Guloso-« da se¢ao anterior. Usando o algoritmo
Guloso-ax com « = 1 obtemos uma construgao totalmente aleatoria. Multi-
plos inicios também é uma estratégia simples de diversificagao para outras
heuristicas.

3.2.1. GRASP

A forma mais simples de melhorar uma construgao repetida independente é
aplicar uma busca local mondétona as solugoes construidas. Este método foi
proposto com o nome GRASP (Greedy randomized adaptive search procedure)
por Feo e Resende (1989).

Variantes basicas do GRASP incluem métodos que escolham « € {«y, ..., ax}
de acordo com alguma distribui¢do de probabilidade (a distribui¢ao uniforme
frequentemente é uma primeira escolha razoavel), e GRASP reativo (ingl. re-
active GRASP) que comega com uma distribuigdo uniforme e periodicamente
adapta as prioridades de acordo com

Plei) =qi/ ) _ g
]

jelk

com q; = @(s*)/®; para incumbente s* e com @; o valor médio encontrado
usando a4 (para um problema de minimizagao).

O GRASP evoluciondrio (ingl. evolutionary GRASP), uma variante que usa
uma outra forma memoria de longa duracao é discutida na secao 4.4.

3.2.2. Bubble search randomizada

Bubble search (Lesh e Mitzenmacher 2006) generaliza algoritmos de prio-
ridade. Considera primeiramente um algoritmo de prioridade fixa. Para
melhoréa-lo, podemos consideras todas permutacoes das varidveis I na aloca-
¢ao. O Bubble search faz isso em ordem de distancia Kendall-tau crescente da
permutagao base o(S). A distancia Kendall-tau mede o namero de inversoes
entre duas permutagoes 7t e p de [n], i.e.

d(mp) = Y [n(i) <n(j) and p(i) > p(j)] + [n(i) > n(j) and p(i) < p(j)].

1<i<j<n

(A distancia Kendall-tau é também conhecida por distdncia de Bubble sort.)
Bubble search randomizada gera uma permutacao de distancia d com proba-
bilidade proporcional com (1 —p)¢ para um parametro p € (0,1).
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3. Busca por construcao de solugoes

Observagao 3.4 (Geragao de permutagoes no Bubble search)

Uma permutagao de acordo com a probabilidade acima pode ser selecionado
considerando os elementos ciclicamente na ordem o(I). Inicia com uma lista
em ordem o(I). Comegando com o primeiro elemento, visite os elementos da
lista ciclicamente. Seleciona o item atual com probabilidade p, caso contrario
continua. Ao selecionar um item, remove-o da lista e repete o processo na lista
reduzida, até ela é vazia. A ordem da sele¢do dos itens define a permutacao
gerada. O

O processo da observacao acima pode ser aplicado também em algoritmos
de prioridade adaptativa considerando os elementos ciclicamente na ordem
o(L,S). (Observe que nesse caso nao existe uma relacdo simples da ordem
resultante com a distancia Kendall-tau.)

3.3. Construcdo repetida dependente

Uma construgao repetida dependente usa informagoes das iteragoes anteriores
para melhorar a construgao em iteragoes subsequentes. Um exemplo simples
é o Bubble search com reposi¢ao (ingl. Bubble search with replacement): a
ordem base é sempre a ordem em que o incumbente foi construido.

3.3.1. lterated greedy algorithm

Algoritmos gulosos iterados foram introduzidos por Ruiz e Stiitzle (2006).
Depois da primeira construgao, o algoritmo repetidamente destréi parte da
solucao atual, e reconstroi-a gulosamente. A forma mais simples da destruicao
é remover d elementos na representagao por conjuntos, ou resetar d variaveis
na representacao por variaveis e aplicar um algoritmo guloso, respectivamente
um algoritmo prioridade a partir da solucao parcial resultante para obter uma
nova solugao completa.

Um algoritmo guloso iterado é o analogo de uma busca local iterada. Apli-
cando uma busca local em cada iteragao, um algoritmo guloso iterado vira
uma busca local iterada, na qual a perturbagao é realizada por destruigao e
reconstrucao via um algoritmo guloso.

3.3.2. Squeaky wheel optimization

A otimizagao da roda que chia (ingl. squeaky wheel optimization), introduzida
por Joslin e Clements (1999), prioriza na construgao elementos que aumentam
a funcdo objetivo (“the squeaky wheel gets the grease”). O modelo mais simples
para explicar isso é como modificagao de um algoritmo de prioridade cuja
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3.3. Construgdo repetida dependente

funcéo de ordenamento usa pesos w; parai € I e produz o(1,S) = (x1,...,%xk)
caso wy > --- > wy. SuplOe que as varidveis que aumentaram a funcao
objetivo na tltima construgdo recebem ainda “penalidades” p; parai € 1. A
funcao de ordenamento o(l, S) = (x1,...,xx) tal que wi +p1 > -+ > Wy +px
considera além da ordem base as penalidades. A otimizacao da roda que chia
corresponde com a otimizacao extremal e a busca local guidada que forcam
alterar ou penalizam elementos que aumentam a fungao objetivo.

Exemplo 3.5
(Continua o exemplo 3.3.) Na coloracdo de grafos podemos penalizar vértices
que usam cores > M, caso 0 incumbente tem n cores. %

3.3.3. Otimizacdo por colénias de formigas

Algumas espécies de formigas conseguem encontrar caminhos curtos para obje-
tos interessantes comunicando por feroménio deixado nas trilhas. O feroménio
¢ uma forma de memoria de longa duragao guiando as formigas. Otimizacao
por colonias de formigas (ingl. ant colony optimization, ACO) (Dorigo et al.
1996) aplica essa ideia na otimizagao.

De forma mais abstrata, ACO realiza uma construgao repetida dependente,
com probabilidades de transicao dindmicas, que dependem das iteragoes an-
teriores. Concretamente, na representagdo de variaveis, ACO associa dois
valores Ti, € 1iy com uma variavel 1 € I que recebe um valor v € V. O valor
Tiy representa a componente dindmica (o feromonio), e o valor ni, a com-
ponente estatica da preferéncia de atribuir o valor v & variavel i. Uma fase
do ACO constrdi solugdes Si,...,Sm de forma independente. Uma constru-
¢ao repetidamente atribui um valor & proxima variavel x; numa ordem fixa
ou dindmica o(I,S) = (x1,...,Xk), igual a um algoritmo de prioridade, com
probabilidade

Pix1 =v|S) &P | (3.1)

sendo o e p pardmetros que balanceiam o efeito entre preferéncia dindmica
e estatica. (Logo, para o« = 0 obtemos um algoritmo guloso randomizado.)
ACO atualiza no fim de cada fase os feromonios por

Tw=[0=—ptw+ Y g(S).

Seul{i—v}es

O primeiro termo diminui o feroménio com o tempo (“evaporagao”), o segundo
termo aumenta o feroménio de acordo com uma fungao de avaliagdo g(S) das
solugoes S que atribuem v a i. As solugbes S fazem parte de um conjunto

33



3. Busca por construcao de solugoes

U de solugdes candidatas. Os candidatos tipicamente incluem Sy,...,Sy, e
solugoes elites (p.ex. o incumbente S*). A funcdo g(S) cresce com a qualidade
da solugao. Concretamente, no exemplo do PCV:

3.4

Sistema de formigas (ingl. ant system): U ={Sq,...,Sm} Niv = 1/div,
g(S) =1/4d(S).

Sistema de formigas elitista: U ={S1,...,Sm,S*}, niv = 1/div,

(S) = 1/d(S) para Sq,...,Sm}
e/d(S) para S*

Sistema de formigas com ranqueamento: um sistema de formigas elitista

com U ={Sq,...,S5«,S*}, sendo Sq,...,Sx os k < m melhores solucoes

da dltima fase.

Sistema de formigas com limites (ingl. min/max ant system): U = {S*}
ou U ={S1} com S; a melhor solucdo da ultima fase (“elitismo forte”)
com limites Tmin < Tiv < Tmax, € Tiv = Tmax inicialmente.

Sistema de colonia de formigas (ingl. ant colony system): elitismo forte
com selegao “pseudo randdémica proporcional” com probabilidade q se-
leciona a variavel com P(x; = v|S) méximo, sendo de acordo com (3.1).
O sistema também diversifica a construcao reduzindo a quantidade de
feromonio em atribuicoes selecionadas na fase atual.

Exercicios

Exercicio 3.1
Quais sistemas de conjuntos do exemplo 3.1 sdo acessiveis? Independentes?
Quais satisfazem a propriedade de troca?
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4. Busca por recombinacao de solucdes

A recombinacao de solugoes procura misturar componentes da duas ou mais
solugoes para produzir uma ou mais novas solucoes combinadas. Para algumas
recombinacoes é conveniente ter uma nocao de distancia entre solugoes. Para
as nossas representagoes padrao de conjuntos e varidveis, usaremos as distan-
cias d(s,s’) =[s ® s’| e d(s,s") = }_;{[si # s{], respectivamente. Em fungao
do problema e sua representagao outras distancias podem ser adequadas. Ti-
picamente a representacao de varidveis é mais conveniente para formular a
recombinacao de solugoes.

Exemplos de recombinagoes simples na representagao por variaveis de solugoes
c=C(s1y...,81) sdo:

Recombinacdo randomizada Escolhe ¢; = sy; com probabilidade py. Para
Pk = 1/n obtemos uma recombinac¢ao uniforme. Uma recombinagio
nao-uniforme comum é escolher py x @(si). No contexto de algoritmos
genéticos o caso n = 2, V ={0,1}, p = 1/2 é chamada crossover uni-
forme] (Ackley 1987). Outro exemplo é definir py « [{ski | k € [n]}| na
selecao da componente i. Caso a fungao objetivo é linear nas varidveis,
i.e. @(sk) =Y ic; ©(ski), um critério melhor pode ser uma sele¢io com
probabilidade pyi o @(ski) para cada componente.

Recombinacédo por mediano Supondo que V possui uma ordem, escolhe ¢; =
(s11 - sni) com mediano (-). Para n impar e V = {0,1} isso é uma
recombinacdo maioritdria.

Recombinacdo linear Supondo que V = R, seleciona c; = Zke[n] AkSikx com
Zke[n] Ax = 1. Para A > 0 obtemos uma, recombinacao convezxa.

Recombinacdo particionada Uma recombinacao randomizada aplicada numa
partigdo S de [n]. Para cada parte seleciona uma solugdo s; com pro-
babilidade p; e atribui os valores de toda parte a solugao combinada.
Um subcaso importante sao parti¢oes continuas (i.e. cada parte p € S
satisfaz p = [a,b] para a < b, a,b € [n].) Para uma partigdo continua
aleatoria com |S| = 2 obtemos o recombina¢do em um ponto (ingl. one-
point crossover), caso |S| = k uma recombinagao em k pontos.

Recombinacao para permutacées A recombinagio tem que satisfazer as res-
trigoes do problema. Um caso frequente e por isso importante sao permuta-
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4. Busca por recombinacao de solugoes

¢oes, com I =V = [n]. Exemplos de estratégias para recombinar permutagoes
sao:

Recombinacao irrestrita na tabela de inversées Aplica uma das recombina-
¢Oes acima na tabela de inversoes.

Recombinacdo PMX Para permutagbes m = M2 ... 7 € P = P1P2...Pn
define 0 = PMX(m, p) como segue (Goldberg e Lingle 1985):

1) Seleciona um intervalo aleatério I = [a, b] C [n]. Para uma permu-
tacdo T, seja iy ={m; |1 € I}.
2) Define um mapeamento m : 7ty — P : 7T — Pi.

3) Define um mapeamento m* : 7y — p; : m*(m;), com k o menor
expoente tal que m*(7;) € ;. O mapeamento m* itera m até o
elemento nao pertence a 7ry.

4) Finalmente define

T iel
Oi = 4 Pi pi & 7 -
m*(pi) pi€M

Exemplo 4.1 (Recombinacdo PMX)
Seja 7 = 12345678%a e p = 49a8173526 ¢ I = [3,6]. Logo m; = {3,4,5,6} ¢
p1 ={a,8,1,7}, e temos os mapeamentos

M 3 4 5

6
m(my) a 8 1 7,
m*(m;) a 8 1 7

i.e., o mapeamento iterado m* é igual a m. Obtemos

Indice 1 1 2 3 4 5 6 7 8 9 10
Elem. m*(4) p m3 m w5 T m*(3) m*(5) pe mM*(6)
(o} 8 9 3 4 5 6 a 1 2 7

O

Exemplo 4.2 (Recombinagao PMX)
Seja T = 12345678%a e p = 361a849725 e I = [3,6]. Logo m; = {3,4,5,6} e
p1 ={a,8,1,7}, e temos os mapeamentos

T 3 4 5 6
m(m) 1 a 8 4
m*(m;) 1 a 8 a
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4.1. Religamento de caminhos

Obtemos
Indice 1 1 2 3 4 5 6 7 8 9 10
Elem. m*(3) m*(6) m3 T M5 T p7  pg  Pe  M*(5)
o 1 a 3 4 5 6 9 7 2 8

A selecao de um ou mais operadores de recombinagao é um parte importante
do projeto de uma heuristica por recombinagdo. Além das recombinagoes
genéricas, uma recombinagao que aproveita a estrutura do problema deve ser
considerada.

Exemplo 4.3 (Recombinacdo EAX para o PCV)

O edge assembly crossover (EAX) (Nagata e Kobayashi 1997) trabalha na
representacao de rotas por conjuntos de arestas. Para rotas A e B ele forma
A UB e extrai um conjunto completo de ciclos AB-alternantes (i.e. ciclos
com arestas alternadamente e A e B; isso sempre é possivel). Seleciona um
subconjunto S dos ciclos AB extraidos e gera uma colegao de ciclos A @ S.
Repetidamente reconecta o menor ciclo com um outro ciclo até obter uma
rota simples.

Para conectar ciclos C e D (representados por conjuntos de arestas), gulo-
samente seleciona o par de arestas uuw’ € C e w’ € D tal que (CUD) @
{uu’, w’, uv, u’v} tem custo minimo.

O

4.1. Religamento de caminhos

O religamento de caminhos (ingl. path relinking), proposto por Glover (1996)
no contexto da busca tabu, explora trajetorias entre uma solucdao inicial s
e uma solucdo guia s’. Isso é realizado com uma busca local na vizinhanga
reduzida (“vizinhanga direcionada”) D(s) ={s” € N(s) | d(s",s’) < d(s,s’)}.
Logo em no maximo d(s,s’) passos a busca transforma s em s’. Qualquer dis-
tribuicao de probabilidade discutida no cap. 2 pode ser usada para explorar D;
tipicamente é usada a estratégia “melhor vizinho”. O resultado do religamento
de caminhos é a melhor solugao s* encontrada na trajetoria explorada. Como
a melhor solugao da trajetoéria s* nao necessariamente € um minimo local de
N, é comum aplicar uma busca local em N.

Algoritmo 4.1 (Religamento de caminhos)
Entrada Uma solugdo inicial s, uma solugao guia s’.
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4. Busca por recombinacao de solugoes

Saida Uma solucao s* com @(s*) < min{¢@(s), @(s’)}.
1 PathRelinking(s,s’) :=
while D(s) #0As+#s’ do
s* = argmin{@(s), @(s')}
seleciona s” € D(s) com probabilidade Pg(s”)
s:=s"
atualiza o incumbente s*
end
return s*

0~ O Ut W N

Observagao 4.1 (Conectividade da vizinhanga direcionada)

Caso é garantido que na vizinhancga D existe um caminho de s para s’ pode-
mos simplificar a condi¢ao da linha 2 para s # s’. Um exemplo em que isso
nao é satisfeito: para o problema do exemplo 1.7 pode ser conveniente res-
tringir a vizinhanga N que desloca uma tarefa para outra estacao as estagoes
criticas, i.e. as estagoes com tempo de estacao igual ao tempo de ciclo. Logo o
religamento de caminhos termina, caso as tarefas alocadas as estagoes criticas
na solugao atual e guia sao as mesmas. O

Variantes comuns sao: religamento de caminhos

para frente (ingl. forward path relinking, “uphill”) Para solugoes s e s, com
©(s1) < @(s2) explore a trajetoria de s para s;.

para tras (ingl. backward path relinking, “downhill”) Para solugdes s; e s
com @(s1) < @(s2) explore a trajetoria de s, para si.

para tras e frente (ingl. back-and-forward path relinking) Para solugoes s;
e sy com @(s1) < @(s2) explore a trajetoria de s, para s, seguido da
trajetoria de s7 para s;.

misto (ingl. mixed path relinking) Altera ambas solugdes até eles se encon-
tram.

truncado (ingl. truncated path relinking) Explora a trajetoria somente no
inicio ou no final. Esse estratégia é justificada por experimentos que
mostram que as melhores solugoes tendem a ser encontradas no inicio
ou no final da trajetoria.

Observagao 4.2

O religamento de caminhos explora a vizinhanga da solugdo inicial melhor.
Logo, caso somente uma trajetoria é explorada, é melhor usar um religamento
para frente, que comega da melhor das solugdes (Resende e Ribeiro 2005). ¢
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Observagao 4.3 (Selecdo do vizinho)

Qualquer estratégia de busca local pode ser aplicada na selecao da linha 4.
Aplicando a estratégia “guloso-«”, por exemplo, obtemos um religamento de
caminhos guloso adaptativo (ingl. greedy randomized adaptive path-relinking,

GRAPR). 0

4.2. Probe

O population-reinforced optimization-based exploration (PROBE) trabalha com
uma populagio de solugdes Sq,...,S,. Sendo C(-,-) algum operador que re-
combina duas solucoes, Probe produz em cada iteragao uma nova populagao
C(S1,82),C(S2,S3), ..., C(Sn, S1)-

Teorema 4.1 (Convergéncia de Probe)
Caso @(C(S,T)) < min{e(S), ©(T)} o valor médio da popula¢do diminui até
todas solugbes possuem o mesmo valor.

Prova. Supoe que um par de solugdes adjacentes S;, Sj 1 nao possui o mesmo
valor. Logo @(C(Sj,Sj4+1) < @(S;) ou @(C(S;,S541) < @(Sj41) e como as
restantes solugoes satisfazem @(C(Si,Siy1) < @(Si) resp. @(C(Si,Siv1) <
©(Si+1) o valor médio diminui. ]

Observagao 4.4 (Convergéncia trivial)
Para C(S,T) = argmin{¢(S), ¢(T)} a populacao converge para a melhor das
n solugdes inicias. O

4.3. Scatter search

A busca dispersa (ingl. Scatter search) ¢ um esquema algoritmico que ex-
plora o espacgo de busca sistematicamente usando um conjunto de solugoes de
referéncia (ingl. reference set). A enfase da busca dispersa é na exploragao de-
terministica e sistematica, similar com a busca tabu, ao contrario de métodos
que focam em randomizagao. Repetidamente a busca dispersa combina um
subconjunto das solugoes de referéncia para gerar novas solucoes e atualiza as
solucoes de referéncia. O método procura incluir elementos de diversificacao
e intensificagao estrategicamente. As solugoes de referéncia R, por exemplo,
tipicamente contém solugoes de boa qualidade e solugoes diversas. O con-
junto de solugoes de referéncia inicial é selecionado entre um namero grande
de solugoes diversas. Depois da recombinagao o novo conjunto de solugoes
de referéncia é selecionado entre as solugoes de referéncia atuais e as solugoes
obtidas por recombinagao.
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Seja d(p,S) = min{d(p,s) | s € S} e distancia minima da solu¢do p para
qualquer solugao do conjunto S. Um exemplo de uma construcao do conjunto
de referéncia que seleciona by solugoes de boa qualidade e b, solugoes diversas
é

refset (P) := { seleciona solucgées de referéncia de P }

seja P={p1,...,pn} com @(p1) < - < @(pn)
SZ:{‘p1,...,pb1}
P:=P\S
while P#ADA|S|<b;+b; do
p = argmax, [d(p,5) | p € P)

S:=SuU{p}
P=P\{p)
end
Com isso obtemos
Algoritmo 4.2 (Scatter search)
Entrada Uma instincia de um problema.
Saida Uma solugéo s, caso for encontrada.
1 ScatterSearch() :=
2 cria um conjunto de solugoes diversas C
3 R :=refset(C)
4 do
5 seja S§ uma familia de subconjuntos de R
6 C:=0
7 for Se€S do
8 T := recombine(S)
9 C = CUimprove(T)
10 end for
11 R:=refset(RUC) { alternativa: refset(C) }
12 while R changed

A tabela 4.1 mostra valores de referéncia para os parametros da busca dispersa.

Observagao 4.5 (Atualizagdo do conjunto de referéncia)

Existem diversas estratégias de atualizagao do conjunto de solugoes de refe-
réncia. Por exemplo, podemos adicionar uma nova solu¢ao ao conjunto de
referéncia R caso (i) [R| < b, ou (ii) ela é melhor que o incumbente, ou (iii) ela
é melhor que a pior solugao de R, dado que ela possui uma distancia minima
d das solugoes restantes. Em ambos casos a solugao de menor distancia com
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4.4. GRASP com religamento de caminhos

Tabela 4.1.: Valores de referéncia para os parametros da busca dispersa.

Numero de solugbes de referéncia [R| = 20

Numero de solugées iniciais |C] > 10|R|
Numero de solugoes elite by ~ |R|/2
Numero de solucgoes diversas b, ~ |R|/2

a nova solugao sai do conjunto de referéncia. Para implementar isso, podemos
modificar o algoritmo 4.2 para

for each ce C: refset(R,c)
usando o procedimento

refset (R,s) := { atualiza o conjunto R com s }
seja R={r,...,mn} com @(r;) <--- < ¢(ra)
if |[Rl<b then
R:=RU({s}

else if o@(s) < @(r1)V (o(s) < @(rn) Amin; d(s,mi) > d then
seja k= argmin; d(s,Ti)
Ri=R\{r}U{s}
end if
end

Observacgao 4.6 (Selecao da familia S)

A abordagem mais comum é selecionar todos pares de solucoes de referéncia.
Variantes propostas na literatura incluem escolher triplas formadas por todos
pares mais a solugao de referéncia melhor que néao faz parte do par, ou escolher
quadruplas formadas por todas triplas mais a solucao de referéncia melhor
que nao faz parte da tripla. Essas abordagens sao raras, por precisarem uma
combinacao efetiva entre mais que duas solugoes. O

4.4. GRASP com religamento de caminhos

GRASP com religamento de caminhos mantém um conjunto de solugbes de
referéncia. Este conjunto é alimentado pelas solucoes obtidas em cada itera-
¢ao. Uma proposta tipica da atualizacao é a regra da observagao 4.5. Em cada
iteragdo, GRASP+PR aplica religamento de caminhos entre o minimo local
obtido s e uma solugao de referéncia r. A soluc¢do de referéncia é selecionada,
por exemplo, com probabilidade o< d(s, 1), para religar solu¢oes distantes com
maior probabilidade.
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4. Busca por recombinacao de solugoes

O GRASP evoluciondrio (ingl. evolutionary GRASP) reconstréi o conjunto
de solugdes de referéncia periodicamente. Os candidatos para formar o novo
conjunto de solucbes sao as solugoes obtidas por religamento de caminhos
entre todos pares de solugoes de conjunto de referéncia do periodo anterior.

4.5. Algoritmos genéticos e memeéticos

Observagao 4.7 (Funcao objetivo e aptidao)

Como algoritmo genéticos e variantes normalmente sdo formulados para ma-
ximizar uma fungao objetivo — chamada aptiddo (ingl. fitness) — vamos seguir
essa convengao nesta secao. %

Algoritmos genéticos (ingl. genetic algorithms) foram propostas por Holland
(1975) em analogia com processos evolutivos. Um algoritmo genético mantém
uma populagao Si,...,S, de individuos e repetidamente seleciona dois indi-
viduos pais, gera novos individuos por recombinagao dos pais, eventualmente
aplica uma mutagao em individuos selecionados, e atualiza a populagao. Um
algoritmo genético difere da busca dispersa principalmente pelos elementos
randomizados: a selegdo dos pais é aleatéria (mas tipicamente proporcional
com a qualidade da solugdo) bem como a mutagdo. Obtemos um algoritmo
memético (ingl. memetic algorithm) caso um individuo é melhorado por uma
busca local, e um algoritmo genético Lamarckiano caso essa melhora é herdavel
(i-e. a transformagao inversa do fenotipo para genotipo existe, ver cap. 1.2.2).
A terminologia biologica é frequentemente usada em algoritmos genéticos.
Numa representacao de variaveis, por exemplo, uma variavel é chamada gene
e os valores que ela pode assumir os alelos.

O algoritmo 4.3 define um esquema genérico de um algoritmo genético. Ele é
definido por (i) uma populagédo inicial, (ii) por uma estratégia de selegdo de
individuos, (iii) operadores de recombinagdo e mutagao, e (iv) uma estratégia
de selecao da nova populagao.

Algoritmo 4.3 (Algoritmo genético)
Entrada Uma instancia de um problema.

Saida Uma solugao s, caso for encontrada.

1 GeneticAlgorithm () :=

cria um conjunto de solug¢des iniciais P

until critério de parada satisfeito
C:=0

{ recombinacgao }

U W N
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4.5. Algoritmos genéticos e meméticos

seja P um conjunto de pais selecionados de P

for p=(p1,p2) €P do
T :=recombine(p1,p2)
C:= CUimprove(T)
end for
{ mutagdo }
seja M CPUC de solugdoes que sofrem mutagao
for se M do
T := mutate(s)
C:=CuUimprove(T) \ {s}
end for
P:=update(P,C) { com update (p+A),(1,A) }
end

Exemplo 4.4 (Algoritmo genético basico)
Uma instancia basica do algoritmo 4.3 usa

4.5.1.

uma representacao por variaveis com V = {0, 1};
uma populagao inicial com p individuos aleatorios;

uma selegao de |P| = p pares de pais, cada solugdo s com probabilidade
x @(s);

uma recombinagdo em um ponto (p. 55) que gera duas novas solugoes;
nenhum procedimento de melhora (improve(C) = C);

uma mutagio que inverte cada variavel com probabilidade p (frequente-
mente p = 1//I]) nas novas solugoes;

uma atualizagdo (p,A) da populagdo (seleciona os p melhores entre os
novos individuos).

O

Populagao inicial

A populagao é criada por alguma heuristica construtiva, frequentemente com
individuos aleatorios. Reeves (1993) propoe um tamanho minimo que garante
que todas solugoes podem ser obtidas por recombinagao da populacao inicial,
i.e. todo alelo esté presente em todo gene. Para uma inicializacao aleatéria
uniforme na representacao por variaveis, temos |V|™ possiveis combinagoes de
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4. Busca por recombinacao de solugoes

alelos num determinado gene, para uma populacao de tamanho n. Dessas
combinacoes |V|!{|\T}‘} possuem todos alelos, logo a probabilidade que todos
alelos sao presentes em todos genes k é

(V“{|3|}'V'_n>k'

Em particular para [V| = 2 obtemos a probabilidade (1—2""")k. Isso permite
selecionar um n tal que a probabilidade de que todos alelos estejam presentes
é alta.

4.5.2. Selecao de individuos

Um individuo S é selecionado como pai com probabilidade o @(s) ou conforme
alguma regra de selecdo baseado no rank na populacao (ver pag. 48). Outro
exemplo é uma selecao por torneio que seleciona o melhor entre k individuos
aleatorios, similar da busca por amostragem.

Observagao 4.8 (Sele¢ao por torneio)

Um 1-torneio é equivalente com uma selegao aleatéria. Num 2-torneio a proba-
bilidade de selecionar o elemento com postoié (n—1i)/ (121), logo obtemos uma
selegao linear por posto. Em geral a probabilidade de selecionar o elemento
com posto i num k-torneio é

() ()

Exemplo 4.5 (Fitness uniform selection scheme (FUSS))

Hutter e Legg (2006) propoem um esquema de sele¢io uniforme baseada em
aptidao (ingl. fitness uniform selection scheme): escolhe um valor uniforme
f no intervalo [minicp @ (1), maxicp @(i)] e seleciona o individuo com valor
da fungdo objetivo mais proximo de f. O objetivo da selegdo é manter a
populagao diversa: individuos em regioes com menor densidade da distribuigao
dos valores da funcao objetivo possuem uma probabilidade maior de selecao.

O

¢

Exemplo 4.6 (Selecdo estocastica universal)

Baker (1987) propoe uma sele¢do estocdstica universal (ingl. stochastic uni-
form selection): Seja pi, a probabilidade de selecionar individuo i € [u], e
Pi = [3_yei11Pi» 2eqy Pi) 0 intervalo correspondente, seleciona, para um
T € 1/p aleatério, os individuos i1,...,1, tal que k/pu € P;, para k € [u].
(A explicagdo mais simples dessa selecao é por uma roleta com p seletores de
distancia 1/p). O
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4.5.3. Recombinacdo e mutacdo

Para recombinacao de individuos serve qualquer das recombinacoes discutidas
acima, inclusive o religamento de caminhos. Uma mutagao é uma pequena
perturbacao de uma solugao. Logo ela pode ser realizada por um passo de uma
busca local estocastica 2.1. Recombinagao ou mutagao podem ser aplicados
com probabilidades diferentes, eventualmente dindmicas.

4.5.4. Selecdo da nova populacédo

A populagao pode ser atualizada depois de criar um nimero suficiente de novas
solugoes, selecionando uma nova populacao entre estes individuos, eventual-
mente incluindo a populacao antiga. Uma alternativa é atualizar a populagao
constantemente. (Observe que isso corresponde exatamente com as estratégias
de sele¢ao da busca dispersa.) As primeiras duas estratégias de sele¢io levam
a um algoritmo genético geracional e a ultima a um algoritmo genético em es-
tado de equilibrio (ingl. steady state genetic algorithm). Para uma populagao
de tamanho p e A novos individuos eles também sao conhecidos por selegao
(1, A) (seleciona os p melhores dos A novos individuos) ou selecao (1L+A) (se-
leciona os pn melhores entre a populagdo antiga e os A novos individuos). Caso
uma selegao permite solugoes da populagao antiga entre na nova populagao, e
seleciona algumas das melhores solugoes, o algoritmo é elitista.

Exemplo 4.7 (Estratégias de evolugao)

Estratégias de evolugao (ingl. evolution strategies) sao algoritmos genéticos
sem recombinacdo. Eles recebem o nome da atualizacao correspondente: (i, A)
ou (L+A). Observe que uma estratégia de evolugao (14 1) é uma busca local
monotona estocastica. O

Uma outra estratégias comum é a delegao randomizada de individuos do con-
junto de candidatos até p individuos sobram. A variante mais simples delete
individuos com probabilidade uniforme; uma variante delete com probabili-
dade o< @ (Smax) + ©(Smin) — ©(s) com s, a melhor e sy, a pior solugao.

Exemplo 4.8 (Fitness uniform deletion scheme (FUDS))

Hutter e Legg (2006) propdoem um esquema de dele¢io uniforme baseado em
aptidao (ingl. fitness uniform deletion scheme): similar ao FUSS, escolhe um
valor uniforme f no intervalo [minicp @ (i), maxicp @(i)] e deleta o individuo
com valor da funcao objetivo mais préoximo de f. FUDS favorece uma explo-
racdo em regioes de menor densidade da distribui¢do dos valores da funcao
objetivo. O

Observacgao 4.9 (Resultados experimentais (Levine 1997))
Experimentalmente, parece que
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4. Busca por recombinacao de solugoes

manter a populagao em estado de equilibrio é preferivel sobre abordagens
geracionais;

uma recombinagao uniforme ou em dois pontos é preferivel sobre uma
em um tnico ponto;

uma selegao proporcional com ¢ raramente é bom;
uma taxa de mutacgao dindmica é preferivel,
manter a diversidade da populagao é importante.

operadores de recombinacao e mutagao especificos para o problema sao
mais uteis;

Observagdo 4.10 (Resultados teoricos)
Pela teoria sabemos que

e 0 desempenho depende fortemente do problema: existem funcées uni-

modais em que uma determinada estratégia de evolugdo (1 + 1) precisa
tempo exponencial mas também classes de fungoes que podem ser re-
solvidos em tempo polinomial (Droste et al. 2002; Jansen e Wegener
2000); e existem instancias de problemas NP-completos em que uma es-
tratégia de evolugao (14 1) ndo possui garantia de aproximacao (e.g. co-
bertura por vértices (Friedrich et al. 2010)), mas também problemas
NP-completos em que a estratégia garante uma aproximacao (e.g. uma
4/3-aproximacdo em tempo esperado O(n?) para o problema de parti-
cao! (Witt 2005)).

o tamanho ideal da populagao depende fortemente do problema: existe
uma funcdo em que uma dada estratégia de evolucao (u,1)? precisa
tempo exponencial para | pequeno, mas tempo polinomial para p grande
e vice versa (Witt 2008);

o desempenho depende fortemente da funcao objetivo: uma estratégia
de evolucao (14 1) consegue ordenar n nimeros em tempo @(n? logn),
mas existem fungoes objetivos para medir o grau da ordenagao que levam
a um tempo exponencial (Scharnow et al. 2002);

O

IParticionar um conjunto de ntimeros x1,...,x, tal que a diferenca das somas dos partes

é minima.

2A estratégia padrio com atualizagio por delecio aleatoria.
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1IN
N2

Figura 4.1.: Um movimento 4-opt com dois pontes.

—

A ultima observagao experimental, que nao é restrito para algoritmos gené-
ticos, em conjunto com os resultados tedricos, é o motivo para conjeturar
que (i) para cada solugdo “genérica” de um problema, existe um algoritmo
heuristico especifico melhor. (ii) para cada heuristica que funciona bem na
pratica (i.e. resolve o problema em tempo esperado polinomial com garantia
de qualidade) deve existir um subproblema do problema em questao em P.

Principio de projeto 4.1 (Estrutura do problema)

Procure aproveitar a estrutura do problema. Caso a heuristica funciona bem:
procure identificar quais caracteristicas das instancias sdo responsaveis por
isso.

Exemplo 4.9 (Algoritmo genético para o PCV)

Em Johnson e McGeoch (2003) o algoritmo genético melhor é degenerado
para uma busca local iterada: a “populacao”’ consiste de uma tnica solugao,
e o algoritmo aplica repetidamente uma busca local Kernighan-Lin e uma
mutagdo na vizinhanga 4-exchange restrito para dois pontes (Fig. 4.1), i.e. a
estratégia de atualizagdo é (1,1). %

Exemplo 4.10 (Algoritmo genético para o PCV)
O algoritmo genético para o PCV de Nagata e Kobayashi (2012) exemplifica
o principio 4.1. Ele usa

e Uma populagao inicial de tamanho 300 com rotas aleatérias otimizadas
por 2-opt.

e Uma recombinacao entre 7t; e 7341 para uma permutacao aleatoéria da
populacao.

e A recombinagdo entre p,q aplica uma variante “localizada” de EAX
(i.e. produz solugdes mais similares com p) e gerar diversas novas so-
lugoes f1,...,fx (k= 30).

e Uma selecao que substitui o p atual pela melhor solugoes entre fy,..., fi,p.
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4. Busca por recombinacao de solugoes

e Uma fungao objetivo modificada que procura manter a diversidade da
populagdo. Para P; = (pij); a distribuicdo de probabilidade dos arcos
(i,j) na populagéo, define a entropia da populagdo por

M=) Hy  Hi=—) pylogpy
]

ien] jen

e seleciona a solugao s de maior valor

—AL(s)/e caso AL(s) <0, AH(s) >0
¢@(s) = < AL(s)/AH(s) caso AL(s) <0, AH(s) <0
—AL(s) caso AL(s) >0

com AL(s) o aumento da distdncia total média da populagdo caso s
substitui p, e AH(s) o aumento correspondente da entropia.

4.5.5. O algoritmo genético CHC

O “Cross-generational elitist selection, Heterogeneous recombination, and Ca-
taclysmic mutation” (CHC) é um exemplo de uma variante de um algoritmo
genético com um foco em intensificagao (Eshelman 1990). Ele recombina siste-
maticamente todos pares da populagao atual, e procura manter a diversidade
por recombinar somente solugdes suficientemente diferente com uma recom-
binacao HUX. A recombinagdo HUX é uniforme, mas troca exatamente a
metade das variaveis diferentes entre os pais e gera dois novos filhos. Caso
a populagao convergiu ele é recriada aplicando uma mutacao para a melhor
solugao.

Algoritmo 4.4 (Algoritmo genético CHC)
Entrada Uma instancia de um problema, uma taxa de mutagdo pm (ti-
pico: pm =1/2).

Saida Uma solugéo s, caso for encontrada.

1 CHC() :=

2 cria um conjunto de solug¢des iniciais P
3 d:= pm(] _pm)m

4

5 until critério de parada satisfeito

6 C:=0
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24
25
26
27
28

end
29 end

4.5. Algoritmos genéticos e meméticos

for n/2 iteragoes do
seleciona pais pi,p2 € P aleatoriamente
if d(pi,p2) >2d then
T = HUX(p1,p2)
C:=CuUT; P:=P\{p1,p2}
end
end
if C=0 then
d:=d-1
else
P:=(u+A)(PUC)
end if
if d <0 then
{ re—criacao cataclismica }
reduz P para a melhor solucao p em P
until |P|=pn do
aplica uma mutacdo em p com prob. 0.35
insere o individuo obtido em P
end
d:=pm (1 —pm)
end if

4.5.6. Algoritmos genéticos com chaves aleatérias

Um “biased random-key genetic algorithm” (BRKGA) é uma extensao do al-
goritmo genético com chaves aleatorias de Bean (1994). Ambos usam uma
representacdo por chaves aleatorias (segdo 1.2.2) e uma populagdo com trés
“castas” (ver Fig. 4.2). A nova populagio consiste da elite da populagdo an-
tiga, solugoes randoémicas que substituem as piores solucoes e solugoes que
foram obtidas por recombinacao uniforme. No caso do BRKGA a recombi-
nacao uniforme é substituida por uma recombinacao que passa de cada gene
independentemente o alelo do pai elite com probabilidade p > 0.5 para o filho.
Tamanhos tipicos para a elite sao 10—20% da populacao, e 1—5% de solugoes

randomicas.
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¢

\ Copiar

Elite Elite

—_ Q) ———
Recombinacao

Rarédomizac o)
Novas solugoes

Piores solucoes

Figura 4.2.: Algoritmo genético com chaves aleatorias.

4.6. Otimizacido com enxames de particulas

A otimizagdo com enxames de particulas (ingl. particle swarm optimization,
PSO) (Eberhart e Kennedy 1995) foi proposta para otimizagao continua e
mantém uma populacdo de solugdes X1, . ..,xn em R¥. Cada solucio também
possui uma velocidade vi, i € [n] e em cada passo a posigéo é atualizada para
x{ = xi + €v; para um parametro € € (0,1]. A velocidade v; é atualizada
em dire¢do da melhor solucao na trajetoria da solucao atual x}, da melhor
solugdo xf = maxier x} encontrada por solugbes informantes I C [n] e da

melhor solucao global x[,,; por

*

vi = owvi + B(x{ —xi) + (X[ —xi) + 8(x[y — x4). (4.1)

Com isso obtemos o0 esquema genérico

Algoritmo 4.5 (Otimizacdo com enxames de particulas)
Entrada Uma instancia de um problema, parametros «, 3,7, 0, €.

Saida A melhor soluc¢do encontrada.

1 PSO() :=

2 cria solucoes iniciais X71,...,Xn

3 com velocidades vi,...,vq

4

) until critério de parada satisfeito
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6 for cada solucao i€ [n] do

7 seleciona um conjunto de informantes I
8 atualiza v; de acordo com (4.1)

9 Xi = Xi + €V}

10 end

11 return X[,

12 end

Na forma mais comum:

e Aproximadamente 50 solugoes e velocidades inicias sao escolhidas alea-
toriamente.

e O conjunto de informantes é um subconjunto aleatério de [n].
Variantes incluem:

e Selecionar em cada aplicagdo de (4.1) valores aleatorias em [0, B], [0,7v]
e [0, 8] para os pesos.

Aplicacdo para otimizacdo discreta A forma mais simples de aplicar a oti-
mizagao com enxames de particulas em problemas discretos é trabalhar no
espago real e transformar a solugdo para uma solucgao discreta (segao 1.2.2).
Uma alternativa é definir uma estratégia de atualizagao discreta.

Exemplo 4.11 (Variante binaria de PSO)

Kennedy e Eberhart (1997) propoem para solucdes in {0, 1}* mapear as veloci-
dades em R¥ para o [0, 1]* por uma transformacdo logistica S(x) = (1 +e~x)’
aplicada a cada elemento do vetor, e interpretar os componentes das veloci-

dades como probabilidades. Em cada passo xij recebe o valor 1 com probabi-
lidade S(Vij ) <>

4.7. Sistemas imunolégicos artificiais

Sistemas imunologicos artificiais (ingl. artificial immunological systems) s&o
algoritmos de otimizagao usando principios de sistemas imunologicos. Dare-
mos somente um exemplo de um algoritmos comum dessa classe. O principio
natural do algoritmo é a observagao que o sistema imunolégico se adapta para
novas antigenes por clonagem e amadurecimento.

\ \
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4. Busca por recombinacao de solugoes

Algoritmo 4.6 (SIA/Clonalg)
Entrada Uma instancia de um problema, pardmetros «, f3.

Saida A melhor soluc¢do encontrada.

1 Clonalg() :=
seja P={p1,...,pn} aleatoria com @(p1) <--- < @(pn)

2
3
4 until critério de parada satisfeito

5 seleciona as a% melhores solugdes pi,...,Px
6 for ic[k] do

7 { clonagem }

8 cria um conjunto C; de «x1/i copias de p;

9 { amadurecimento por hipermutacdo }

10 aplica uma mutacdo a c € C; com taxa o @(s)
11 end

12 selecione a nova populagao entre P e U;C;
13 substitui as B% piores solugoes

14 por solucgoes aleatoérias

15 end

16 end

4.8. Intensificacdo e diversificacdo revisitada

Uma populagao de solugoes de alta qualidade junto com a recombinagao de
solugbes também serve para realizar uma intensificagao e diversificagao gené-
rica (Watson et al. 2006). O IMDF (Intensification/Diversification framework)
supoe que temos uma heuristica de busca H(xo,1) base arbitraria, que pode-
mos rodar para um nimero de iteracoes i numa instancia inicial xg.

Algoritmo 4.7 (IDMF)
Entrada Uma instancia de um problema, probabilidade de intensificagao
pi, uma heuristica H, iteragoes ip > i; para intensificacao.

Saida A melhor soluc¢ao encontrada.

1 H*(Xo) =

2 x := H(xo,10)
3 while @(x) < @(xo)
4 X0 i =X

5 x := H(xo,11)
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6 end
7 return xo
8 end
9
10 IDMF() :=
11 gera uma populagdo E de 6timos locais
12 aplica H*(e) em cada e€E
13 repeat
14 com probabilidade p;: { intensificacao }
15 seleciona ecE
16 g==e
17 com probabilidade 1—p;i: { diversificagao }
18 seleciona e, feE
19 gera um elemento g no meio entre e e f
20 por religamento de caminhos
21 e’ :=H*(g)
22 if @e') < ole)
23 e:=¢e’
24 end
25 end
4.9. Notas

Mais sobre a busca dispersa se encontra em Gendreau e Potvin (2010, cap. 4),
Glover e Kochenberger (2002, cap. 1) e Talbi (2009, cap. 3.4). Uma aplicacdo
recente do operador EAX num algoritmo genético se encontra em Nagata e
Kobayashi (2012).

4.9.1. Até mais, e obrigado pelos peixes!

Para quem nao é satisfeito com os métodos discutidos: usa alguma outra besta
de carga como

fireflies, monkeys, cuckoos, viruses, bats, bees, frogs, fish schools,
glowworms, african wild dogs, migrating birds, shuffled leaping
frogs ou competitive imperialists, comunidades de cientistas, bac-
terial foraging, hunting search, sheep flock heredity

ou deixa a fisica resolver o problema com

gravitational search, intelligent waterdrops, ou harmony search.
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Porém, é importante lembrar que o objetivo da pesquisa em heuristicas nao é
produzir novos vocabularios para descrever as mesmas estratégias, mas enten-
der quais métodos servem melhor para resolver problemas. Weyland (2010),
por exemplo, mostra que a busca de harmonias (ingl. harmony search) é uma
forma de uma estratégia de evolugao. Para uma critica geral ver também
Sorensen (2013).
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5.1. Hibridizacao de heuristicas

A combinacdo de técnicas de diversas meta-heuristicas ou de uma meta-
heuristica com técnicas das areas relacionadas de pesquisa operacional ou
inteligéncia artificial define heuristicas hibridas. Um exemplo é a combinacao
de técnicas usando populagoes para identificar regides promissoras no espago
de busca com técnicas de busca local para intensificar a busca. Um outro
exemplo é o uso de programagao matemaética ou constraint programming para
resolver subproblemas ou explorar vizinhancas grandes. Isso é um exemplo
de matheuristics, a combinacao de heuristicas com técnicas de programagao
mateméatica, também conhecida por heuristicas baseados em modelos mate-

mdticos (ingl. model-based heuristics).

5.1.1. Matheuristics

Hibridizagoes basicas entre heuristicas e programagao matemaética aplicam
as heuristicas para obter limitantes superiores em algoritmos de branch-and-
bound ou usam programagcao matematica para resolver subproblemas em heu-
risticas. Exemplos de outras hibridizacoes sao relaxagoes lineares de progra-
mas inteiros para gerar solugoes inicias ou guiar buscas, e a aplicacao de
técnicas heuristicas para guiar a exploragao de buscas em algoritmos exatos.

Exemplo 5.1 (Diving)

Algoritmos branch-and-bound frequentemente expandem o nodo com o menor
limite inferior. Diving é uma estratégia que estrategicamente aplica uma busca
por profundidade para gerar melhores solugoes. O

Exemplo 5.2 (Ramificagao local)

Ramificagao local (ingl. local branching) guia a exploragdo das solugdes de
programas inteiras 0—1 de um resolvedor genérico para analisar primeiramente
solugoes de distdncia Hamming < k. A distancia Hamming das solugoes x =

(X1y.eeyXn) EB" e X = (X1y...,Xn) EB™ &
A= Y X+ »  1-x.
ien]lx;i=0 ien]lx;i=1
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Com isso para uma dada solucao xp uma estratégia global de ramificacao re-
solve primeiramente o programa inteiro Ax < b A A(x,xg) < k e s6 depois
Ax < b AA(x,x0) > k+ 1. Essa ramificacdo continua no primeiro subpro-
blema, caso o resolvedor encontra uma melhor solugao. Fischetti e Lodi (2003)
sugerem k € [10, 20]. O

Exemplo 5.3 (RINS e religamento de caminhos)

O relazation induced neighorhood search (RINS) é uma estratégia para inten-
sificar a busca para melhores solugoes viaveis. Para um dado n6 na éarvore de
branch-and-bound da solugao de um programa inteiro, ela fixa as variaveis que
possuem o mesmo valor no incumbente e na relaxagao linear atual, e resolve o
subproblema nas restantes variaveis restrito para um valor maximo da fungao
objetivo e com um tempo limite. Danna et al. (2005) propoem aplicar RINS
cada f > 1 n6s com um limite de nos explorados, e.g. f =~ 100, com limite de
~ 1000 nos.

Uma forma similar de explorar o espago entre duas solugoes é uma extensao do
religamento de caminhos: fixa todas variaveis em comum, e resolve o problema
no subespacgo resultante de forma exata. O

Exemplo 5.4 (Geragao heuristica de colunas)

Na geragao de colunas (usado também em algoritmos de branch-and-price)
o subproblema de pricing precisa encontrar uma coluna com custo reduzido
negativo. Para melhorar os limitantes inferiores da decomposi¢ao de Dantzig-
Wolfe, o subproblema de pricing deve ser o mais dificil possivel, que pode
ser resolvido em tempo aceitavel. Uma estratégia diferente resolve o subpro-
blema de pricing heuristicamente. O método continue ser correto caso no final
o subproblema de pricing é resolvido pelo menos uma vez exatamente para
demonstrar que nao existem mais colunas com custo reduzido negativo.

Por exemplo o problema de colorar um grafo nao-direcionado G = (V, E) com
o menor nimero de cores

minimiza Z Ci,
ie[n]
sujeito a Z Xypi > 1, Yv ey
ien]
Xui Fxvi < 1, vi{u,v} € E,1 € [n],
ci > Z Xvi/M, Vi € [n],
vev
Xvi, Ci € B, Vv e Vi€ n],
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pode ser decomposto em um problema mestre de cobertura por conjuntos
independentes maximais [ de G

minimiza Z Xq (5.1)
iel

sujeito a Z xi > 1 YWwevV (5.2)
iellvel
xi €B viel (5.3)

Para custos reduzidos A,, v € V o subproblema problema de pricing é encon-
trar um conjunto independente méximo de maior peso

maximiza Z AvZy

vev
sujeito a zZu+2zy <1 V{u,v} e E
z, €B vev.

Filho e Lorena (2000) propoem um algoritmo genético para resolver o subpro-
blema de pricing. %

5.1.2. Dynasearch

Dynasearch determina a melhor combinacao de varios movimentos numa vizi-
nhanca por programagcao dinamica (Congram et al. 2002). Ela pode ser vista
como uma busca local com estratégia “melhor melhora” intensificada. A apli-
cacao ¢ limitada para movimentos independentes: cada movimento precisa
ser aplicavel independente dos outros, e contribui linearmente para a funcao
objetivo. Numa representagdo por variaveis (x1,...,Xn) seja 8i; a reducdo
da fungao objetivo aplicando um movimento nas varidveis xi,...,x%j. Logo
a maior reducao da fungao objetivo A; por uma combinagao de movimentos
independentes aplicado a x1,...,%; é dado pela recorréncia

A; = max{A;_1, max Ai_7 + 0y;
j { j 1,1S1Si i—1 1]}

e a melhor combinagao de movimentos reduz a fungao objetivo por A,.

Exemplo 5.5 (Dynasearch para o PCV)

Para aplicar dynasearch no PCV supoe uma representagao por variaveis com
[ ={m; |i € [n]} e valores em [n] que representa uma permutacao das cidades.
Um movimento 2-exchange entre arestas (7, mi41) e (715, 7541) com 1 < j é
valido caso i+ 1 < j, i.e. precisa pelo menos quatro vértices. (Todos indices
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sao modulo n.) Dois movimentos (i,j) e (i’,j’) com i < i’ sdo independentes
caso j < i. A reducdo da fungdo objetivo para um movimento (i,j) é &y =
—dij — di41,j+1 + diiq1 + dj j41. Logo obtemos a recorréncia

A = 0 caso j < 4
) max{Aj_1, maxj<i<j—3 Ai_1 + 8ij} caso contrario.

5.2. Hiper-heuristicas

Hiper-heuristicas usam ou combinam heuristicas com o objetivo de produzir
uma heuristica melhor e mais geral (Denzinger et al. 1997; Cowling et al.
2000). A heuristicas podem ser geradas antes da sua aplicagao (“offline”), por
uma busca no espaco das heuristicas. Uma hiper-heuristica desse tipo pode
ser projetada usando alguma meta-heuristica. Importante no projeto é uma
representacao adequada de uma heuristica generalizada para o problema e di-
versas heuristicas ou heurfsticas parametrizadas que instanciam a heuristica
generalizada. As operacoes correspondentes modificam, constroem ou recom-
binam heuristicas. Uma alternativa é aplicar diferentes heuristicas durante
a otimizagao (“online”). Para isso uma hiper-heuristica precisa decidir qual
sub-heuristica aplicar quando.

Exemplo 5.6 (Hiper-heuristica online construtiva)

Considera o empacotamento unidimensional que permite diversas estratégias
gulosas para selecionar o proximo item a ser empacotado (na ordem dada
ou em ordem nao-crescente, no contéiner atual ou no primeiro ou melhor
contéiner). Uma hiper-heuristica pode selecionar a estratégia de acordo com
a solucao parcial. Um exemplo é Ross et al. (2002): uma solugdo parcial
é representada pelo nimero de itens, e as percentagens de itens pequenas,
médias, grandes e muito grandes e um classificador é treinado para decidir
qual de quatro regras candidatas é aplicada. O

Exemplo 5.7 (Hiper-heuristica online por modificagao)

Uma hiper-heuristica pode usar conceitos da busca tabu para a sele¢ao de heu-
risticas de modificagdo Hy,...,Hy. Associa um valor v; com cada heuristica
H;. Aplica em cada passo a heuristica H; de maior valor (uma ou mais vezes).
Caso ela melhora a solugao atual, aumenta v;, senao diminui v; e declara H;
tabu. O

Exemplo 5.8 (Hiper-heuristica offline)
Fukunaga (2008) apresenta uma abordagem para gerar heuristicas que seleci-
onam uma variavel a ser invertida em uma busca local para o problema SAT.
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A regra de selecao é representada por uma expressao, que inclui selegoes tipi-
cas de algoritmos conhecidos como a restricdo para clausulas falsas, a selecao
pelo aumento da funcao objetivo, uma selecao pelo tempo da ultima modifi-
cagao ou uma selegao randoémica. Essas restrigoes podem ser combinadas por
condigoes. A regra de selegdo do WalkSAT, por exemplo, é representada por

(IF-VAR-COND = +NEG-GAIN+ O
(GET-VAR +BCO +NEG-GAIN+)
(IF-RAND-LTE 0.5

(GET-VAR +BCO+ +NEG-GAIN+)
(VAR-RANDOM +BCO+)

)

Um algoritmo genético em estado de equilibrio evolui as regras de selegao. A
populagao inicial consiste de expressoes aleatorias restritas por uma grama-
tica que garante que eles selecionam uma varidvel. O algoritmo seleciona dois
pais com uma probabilidade linear no posto na populagao, e gera 10 filhos. A
estratégia de sele¢@o é (+A). A recombinacao de pais py e p2 € “if (condigdo)
then py else p2” com 10 condigoes diferentes, p.ex. i) uma sele¢ao randoémica
com probabilidade 0.1,0.25,0.5,0.75,0.9, ii) a variavel mais “antiga” entre p;
e p2, ou iii) a variavel de p; caso ela nao invalida nenhuma clausula, senao
p2. Como a recombinagao aumenta a profundidade das expressoes, uma regra
substitui sub-arvores de altura dois que ultrapassam um limite de profundi-
dade por uma expressao de menor altura. Isso serve também como mutagao
das expressoes. Cada regra é avaliada em até 200 instancias com 50 variaveis
e caso pelo menos 130 execugoes tiveram sucesso em mais 400 instancias com
100 variaveis e recebe uma valor s50+5s7100 + 1/f com s; o ntimero de sucessos
em instancias com 1i variaveis e f o niimero médio de inversoes de varidveis em
instancias com sucesso. As heuristicas evoluidas em uma populagao de 1000
individuos, limitado por 5500 avaliagoes, com limite de profundidade entre 2
e 6 sao competitivas com heuristicas criadas manualmente. O

5.3. Heuristicas paralelas

Heuristicas podem ser aceleradas por paralelizagao. A granularidade do para-
lelismo (a relagao entre o tempo de computagio e comunicagio) é importante
para obter uma boa aceleracao e tipicamente define ou limita a escolha da
arquitetura paralela. A paralelizacdo mais béasica executa diversas heuristicas
(ou a mesma heuristica randomizada) em paralelo e retorna a melhor solu-
¢ao encontrada. Essa estratégia corresponde com repetigoes independentes,
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possui uma granularidade alta, tem a vantagem de ser simples de realizar, e
gera uma aceleragao razoavel. Uma variante é uma decomposicao do espago
de busca em subespacos.

Exemplo 5.9 (Aceleracido de heuristicas de busca)

Supoe um problema de busca com uma fungao de probabilidade exponencial
Ae M de encontrar uma solucdo no intervalo [t,t 4 dt]. A distribuicdo do mi-
nimo de p variaveis distribuidas exponencialmente com Aq, ..., Ay é distribuido
exponencial com pardmetro A = ), A;. Logo, para p repeticoes paralelas in-
dependentes, obtemos uma nova distribuigao exponencial do tempo de sucesso
com parametro pA. O valor esperado de uma distribuigio exponencial é A=,
e assim obtemos uma aceleracao esperada de A~'/(pA)~! = p. O

As trés técnicas heuristicas principais permitem algoritmos paralelos de gra-
nularidade fina ou média:

e Buscas por modificacao: a exploracao de uma tnica trajetoria é inerente-
mente sequencial. Uma paralelizagdo de granularidade fina pode avaliar
toda vizinhanca em paralelo (ou alguns movimentos, e.g. na tempera si-
mulada). A granularidade pode ser aumentado por vizinhangas grandes.

e Busca por construgao: similarmente a construgao por elementos é se-
quencial, mas os candidatos podem ser avaliados em paralelo.

e Busca por recombinagao: permite uma granularidade média paraleli-
zando os passos de sele¢ao, recombinagao e melhora de subconjuntos de
solugdes sobre subconjuntos de solugoes independentes.

Uma busca por modificagdo ou construgdo pode ser paralelizado melhor ava-
liando diversas trajetorias ou construgoes em paralelo. Esse tipo de paraleli-
zagao se aplica diretamente em métodos como segue os vencedores e colonias
de formigas.

Uma paralelizagao com granularidade fina ou média é mais adequada para ar-
quiteturas com memoria compartilhada. Eles podem ser realizadas de forma
conveniente com multiplos threads (explicitamente ou com abordagens semi-
automaticos usando diretivas como OpenMP).

Exemplo 5.10 (GSAT paralelo em C++ com OpenMP)
Uma versao simplificada de uma busca “melhor melhora” para o problema
SAT (ver exercicios) pode ser paralelizada em OpenMP por

#pragma omp parallel shared(bestvalue,bestj)
private(t_bestvalue,t_bestj)
{
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#pragma omp for private(value)
for(unsigned j=1; j<=I.n; j++) {
int value = S.flipvalue(j);
if (value>t_bestvalue) {
t_bestvalue = value;
t_bestj = j;
}
}

#pragma omp critical

if (t_bestvalue < bestvalue) {
bestvalue = t_bestvalue;
bestj = t_bestj;
}
}
}

O

Modelos cooperativos Uma estratégia de granularidade média sao modelos
cooperativos: a mesma ou diferentes heuristicas (“agentes”) que executam em
paralelo trocam tempo a tempo informagoes sobre os resultados da busca. O
projeto de uma estratégia inclui a definigao

e de uma topologia de comunicacao, que define quais agentes trocam in-
formagoes. Exemplos de topologias sao grades (de diferentes dimensoes,
abertas ou fechadas), estrelas, ou grafos completos.

e da informagao trocada. Exemplos incluem incumbentes, memorias de
frequéncia, ou sub-populagoes.

e de uma estratégia de incluir a informagado no recipiente, por exemplo
substituindo um parte da populacao ou combinar memorias de frequén-
cia.

e da frequéncia em que a informacéo é trocada.

Um exemplo simples de modelos cooperativos é um conjunto elite comparti-
lhado, que pode ser implementado de forma mais simples por um esquema de
mestre-escravo.

Exemplo 5.11 (Colaboragao indireta: times assincronos)

Uma extensao da ideia do conjunto elite compartilhado sao times assincronos:
uma colegéo de diferentes algoritmos (de construgao, melhoras, ou recombina-
¢ao) (chamados de agentes) conectadas por memorias. Cada agente trabalha
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Figura 5.1.: Exemplo de times assincronos para o PCV (Souza e Talukdar
1993).

de forma auténoma e insere, no caso de heuristicas construtivas, ou extrai, mo-
difica e retorna, no caso de heuristicas de melhora ou recombinagao, solugoes
das memorias.

Souza e Talukdar (1993) apresentam um time assincrono para o PCV com
nove agentes: insercao arbitrdria (IA) completa uma rota parcial por insergao
de uma cidade aleatoria nao-visitada no melhor ponto; shift (SH) testa todos
deslocamentos de até trés cidades consecutivas; Lin-Kernighan (LK) aplica o
algoritmo do mesmo nome; Lin-Kernigham simples (LS) aplica Lin-Kernighan
mas termina na primeira melhora encontrada; misturador (MI) tenta criar
uma nova rota com as arestas de duas rotas (eventualmente completada por
demais arestas); Held-Karp aplica o algoritmo do mesmo nome para obter um
limite inferior e 1-arvores (uma arvore mais um vértice conectado a ela via
duas arestas); misturador de drvores (MA) mistura uma rota e uma 1-arvore
para gerar uma nova rota; destruidor (DE) quebra rotas em segmentos, dados
pela interse¢ao de duas rotas; limitador (L) remove rotas piores ou aleatorias
(com uma selegao linear de acordo co a distancia, tal que a rota melhor nuca
é removida) para limitar o ntmero de rotas. Os agentes sao conectados de
acordo com a figura 5.1.

O

Exemplo 5.12 (Algoritmos genéticos no modelo de ilhas)

A metafora evolutiva naturalmente sugere uma abordagem distribuida em
algoritmos genéticos: populacdes panmiticas em quais todos individuos da
mesma espécia podem ser recombinadas sao raras. O modelo de ilhas pro-
pOe populagoes com uma evolugao independente e uma troca infrequente de
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individuos entre as ilhas.

Luque e Alba (2011) discutem um algoritmo genético distribuido para MAX-
SAT com 800/p individuos em cada um dos p processadores, recombinacao
em um ponto com probabilidade 0.7 e mutacao 1-flip com probabilidade 0.2.
Os processadores forma um anel direcionado e cada 20 iteragbes uma popula-
¢ao manda um individuo aleatéria para o seu vizinho que incorpora-o caso o
valor da fungao objetivo est4 maior que a pior individuo da populagao. Numa
instancia com 100 variaveis e 430 clausulas eles observam uma aceleracao de
1.93, 3.66, 7.41, e 14.7 para p = 2,4, 8,16 em média sobre 100 replicacoes. ¢

5.4. Heuristicas para problemas multi-objetivos

Um problema multi-objetivo possui mais que uma fungao objetivo. O valor de
uma solucdo @(s) = (@i(s),..., ex(s))t € R¥ domina um outro valor ¢(s’)
caso @(s) < @(s’) (com < tal que existe pelo menos uma componente estrita-
mente menor). Uma solugdo s cujo valor nao é dominado pelo de valor de uma
outra solugdo é eficiente (ou Pareto-dtima). Diferente da otimizagdo mono-
objetivo podem existir valores incomparaveis (e.g. (1,2) e (2,1)). Tais solu-
¢Oes formam a fronteira Pareto (ver fig. 5.3), e um algoritmo multi-objetivo
geralmente mantém uma populacao de solugoes nao-dominadas. Limites para
solugoes nao-dominadas sao o ponto ideal

L= (min@q(s), ..., min @n(s))
dos minimos em cada dimensao, e o nadir

v=( max @i(s)..., max on(s))
s|s eficiente s|s eficiente

dos méaximos das solugoes eficientes em cada dimensao. Um valor v < t que
domina o valor ideal é utdpico.

Em problemas dificeis as func¢oes objetivos tendem a ser antagonisticas, i.e., a
reducgao do valor de uma funcéo geralmente aumenta o valor de uma ou mais
das outras. Frequentemente um problema multi-objetivo é resolvido por esca-
larizagao, usando uma fungado mono-objetivo ponderada w(s) =) ; wi@i(s).
Isso geralmente produz somente um subconjunto das solugoes eficientes (ver
fig. 5.3). Além disso, o conjunto de solugoes suportadas que podem ser ob-
tidas por otimizar w(s) para algum conjunto de pesos w, nao inclui todas
solugoes, i.e. existem solugoes nao-suportadas que para nenhuma escolha de
w s80 minimos de w(s).
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Figura 5.2.: Solugdes de um problema com duas fungoes objetivo. Fronteira
eficiente em vermelho. A solu¢do 6tima ponderada com pesos
wi = w;y em azul. Duas solugoes eficientes nao-suportadas mar-
cadas em verde.
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Exemplo 5.13 (Problema da mochila bi-objetivo)
O problema da mochila bi-objetivo (leia: a versao de decis@o correspondente)

maximiza cx
maximiza dx
sujeito a wx < W
x € B"
é NP-completo por generalizar o problema da mochila. %

Claramente uma variante multi-objetivo de um problema é mais dificil que a
versao mono-objetiva.

Exemplo 5.14 (Caminhos mais curtos)

Determinar o caminho mais curto entre dois vértices num grafo direcionado
conhecidamente permite um algoritmo polinomial (e.g. Dijkstra). A versdo
(de decisao) bi-objetiva é NP-completo (Serafini 1986): para um problema de
mochila max{cx | wx < W} considera um grafo com vértices [0,n] e arestas
(ci,0) e (0,w;) entre 1— 1 e i. O problema da mochila possui uma solugao
com cx > C e wx < W sse existe um caminho de 0 para n com distancias no
mAaximo Zie[n] ci—CeW. O
Avaliacao de algoritmos multi-objetivos A comparacio de algoritmos multi-
objetivos precisa comparar aproximagoes E da fronteira eficiente real E. Caso
E é conhecido, uma medida simples é a fragao das solugoes eficientes encontra-
das [E N E|/|E|. Porém, isso ndo conta solu¢des que sao razoavelmente pertas
de solugoes eficientes. Uma segunda medida aproveita que todas solugoes efi-
cientes sdo solugdes suportadas, ou caiem num subespago “triangular” (ver
figura 5.3) de solugbes suportadas e mede a fragdo das solugbes em £ que
pertencem a esse espago. Outros exemplos de medidas de qualidade incluem
a distancia minima média para uma solucéo eficiente

d(E,E) = ) _mind(s,8)/[E|
sor set

e a distdncia minima maxima

dmax (E, E) = maxmin d(s, §)
s€E gct
ou medidas baseados no volume coberto. Caso E é desconhecido, uma avali-
acao aproximada pode ser obtida usando o conjunto de solugdes suportadas
nas medidas acima. No momento nao ha consenso sobre a comparagao ideal
de dois algoritmos multi-objetivos.
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5.4.1. Busca por modificacdo de solucées

Tempera simulada Para aplicar a tempera simulada no caso multi-objetivo,
o critério de Metropolis (2.3) precisa ser modificado para comparar valores
vetoriais. Uma forma comum é a escalarizac¢ao local: para pesos w a qualidade
da nova solugao é avaliada pela diferenca ponderada das func¢oes objetivos
ou das probabilidades (Ulungu et al. 1999). Por exemplo, com A,,(s,s’) =
w(s’) — w(s) obtemos o critério de Metropolis modificado

caso A, (s,s’) <0

caso contrario

) 1
Placeitar] = {e—Aw(s,s/]/kT (5:4)

O algoritmo mantem um conjunto de solugoes eficientes durante a busca. Ele
aceita uma nova solugdo caso nenhuma outra solucao eficiente domina-la e
aplica critério (5.4) nos outros casos. A tempera simulada é repetida com
varios pesos w aleatorios.

Um outro exemplo de um critério de aceitagao, proposto por Suppapitnarm
et al. (2000), usa um vetor de temperaturas T € R™. Com Ar(s,s’) =
2 icmn(8{ —s{)/Ti uma solugao é aceita com probabilidade

—At(s,s’)

caso contrario

{1 caso Ar(s,s’) <0
e

Isso é uma variante do critério (5.4) com pesos wi = kTT, ! variaveis.

Exemplo 5.15 (MOSA para o problema da mochila bi-objetivo)

O algoritmo descrito acima aplicando o critério (5.4) é conhecido por MOSA
(multi-objective simulated annealing). Ulungu et al. (1999) aplicam MOSA
no problema da mochila bi-objetivo em comparacao com uma solugao exata.
As instancias sao geradas aleatoriamente com pesos e valores de n itens em
[1,1000] e uma capacidade W = 3 _; .y wi/T com 1 € (0,1). O algoritmo usa
uma probabilidade de aceitagdo inicial de Py = 0.5, « = 1—1/40, L = {5, 15, 25}
conjuntos de pesos, e 100,300,500 passos por temperatura. A vizinhanga
remove aleatoriamente itens até todos itens nao selecionados cabem na mochila
e depois adiciona itens aleatérias até nenhum item cabe mais. O

Busca tabu Uma busca tabu multi-objetivo tem que definir a “melhor” so-

lugdo vizinha. O algoritmo MOTS de Gandibleux et al. (1997) usa a escalari-
zagao de Steuer (1986)

S(s") =1IAo(w—o(s)le+plAc—qo(s)
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para selecionar o vizinho nao tabu de menor valor S. O valor de um vizinho
s’ depende um ponto utépico local v (i.e. um ponto que domina o ponto ideal
da vizinhanga N(s)), um conjunto de pesos A que define a dire¢ao da busca
(com ) ey Ai = 1) e um pardmetro p < 1'.

Exemplo 5.16 (MOTS para o problema da mochila bi-objetivo)

O algoritmo determina inicialmente limites [l,u] para o nimero de itens. Na
forma mais simples ele busca solugoes eficientes com um numero de itens
n =u,u—1,...,1, numa vizinhanca que troca um item selecionado x; por
um item nao selecionado x;. A reinsercao do item 1i fica tabu para 7 iteragoes
e a delecao do item j para 3 iteracoes.

Em cada iteragao o algoritmo determina todos vizinhos viaveis nao tabu V,
que dominam um ponto de satisfa¢do o e nao sao dominados por uma solugao
na fronteira eficiente atual ﬁ, e atualiza E com estes pontos. O ponto de
satisfagao o é 0 para n = u e se aproxima ao nadir 1 do conjunto eficiente E
do n anterior de acordo com 0n_1 = On + (NMn — 0n)/6 com um tamanho de
passo & > 2. Depois a solucao vizinha s’ de maior S(s’) ¢ selecionada. Caso
nao existe solugao viavel que nao é tabu, o algoritmo passa para a solugao
nao-tabu que excede a capacidade da mochila menos possivel. Um critério de
aspiragao permite selecionar uma solugao tabu que domina todas solugoes V
ou que domina um nimero grande de solugoes em E.

A solugao inicial é aleatoria (com n = u itens selecionados) e cada diregao
de busca continua com a solugao final anterior. Diminuindo n, o item com o
menor valor minimo dos sobre as dimensoes da mochila é removido.

A implementagao testa 25 conjuntos de pesos (A, 1 —A), com A = i/24 para
i =0,...,24, aplica no maximo 500 iteragoes por busca tabu (para cada
conjunto de pesos e cada n), e usa & = 2 na mesmas instancias do exemplo
anterior. A busca para com n =1 ou caso na vizinhanca nao tem solucao que
domina o ponto de satisfacao. %

5.4.2. Busca por recombinacdo de solucées

A maioria das propostas de heuristicas multi-objetivos recombinando solugoes
sao algoritmos genéticos e evolutivos. Num algoritmo genético somente a se-
lecao de individuos para recombinacgao depende da funcéo objetivo. Portanto,
uma das modificagdes que torna um algoritmo genético multi-objetivo, é uma
selecdo proporcional com w(s), com um vetor de pesos w selecionado aleato-
riamente em cada iteragdo (Murata et al. 1996). Essa abordagem ¢ simples na
implementagao, mas tem a desvantagem que ela foca em solugoes suportadas.

LA operacdo o é a multiplicacdo ponto a ponto de dois vetores.
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Um dos algoritmos pioneiros trabalho com k subpopulagoes, e seleciona indi-
viduos em cada subpopulagdo de acordo com a i-ésima funcéo objetivo (ver
algoritmo 5.1).

Algoritmo 5.1 (Selecao VEGA (Vector-evaluated GA))
Entrada A populacdo atual P.

Saida Uma nova populagao P.

1 para i€ [K]

2 seleciona |P|/k individuos proporcional com @;
3 aplica recombinagao e mutagao
4 na uniao S dos individuos selecionados

5 retorne a nova populacgao

Algoritmos recentes determinam o valor de uma solugdo de acordo com a
proximidade com a fronteira eficiente e a densidade na fronteira eficiente, para
uma exploragao melhor em diregao de solugoes eficientes e em regioes esparsas.
Para um conjunto de solucdes S seja E(S) = £;(S) a fronteira eficiente (local)
e define recursivamente a k + 1-ésima fronteira eficiente por

Bi1(S) =E(S\ | Ex(S9)). (5.5)
]

ielk

(ver o exemplo da Fig. 5.3).

Seja ainda B(x,S) ={s € S | x > s} o conjunto de solugbes em S que dominam
x e W(x,S) ={s € S| x > s} o conjunto de solu¢des dominadas por x em S.
Entre as propostas temos algoritmos que ordenam solugoes s € P da populagao
atual P

e pelo nivel k da sua fronteira eficiente s € Ey(P) correspondente (non-
dominated sorting GA, NSGA, NSGA-II);

e pelo nimero 14 |B(s, P)| de solugoes que dominam s na populagio atual
P (MOGA);

e pela fragao total da cobertura por solugoes de um conjunto E eficiente
atual 1+ ZtGB(S‘E) [W(t,P)|/(|P| + 1) que dominam s (strength Pareto
EA, SPEA);

e pelo soma dos postos das solugdes que dominam s, 7(s) = 1+Zt€B(s,P) r(t).

Técnicas para priorizar a exploracao de regides esparsas incluem
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Figura 5.3.: Decomposi¢do de um conjunto de solu¢oes em fronteiras eficientes
de acordo com (5.5).

e a redugdo da fungdo objetivo por um fator [By(s) N ®(P)[~" (com B, (s)
um esfera de raio v e centro @(s) e ®(s) a fun¢ao objetivo normalizada
para o intervalo [0, 1] em cada dimensao) (MOGA);

e a soma das distAncias normalizadas para os predecessores e sucessores na
fronteira atual em cada dimensao (“crowding distance”) (NSGA-II). Para
cada dimensdo i € [k] supde que as solugdes x',...,x™ de uma fronteira
sao ordenadas pela i-ésima coordenada (i.e. x{ < xiz << x?) Entao
o crowding distance normalizada da solu¢ao x° na dimensao i é

eu(x) = (@slx* ) — il 1)) /(P — )
paras € [2,n—1], ci(x') = ci(x™) = oo e a crowding distance da solucao
éc(x®) =2 icpgcilx®).

Formas de elitismo incluem manter uma ou mais fronteiras eficiente ﬁk(P) ou
Ex(PUC) com filhos C.

Exemplo 5.17 (NSGA-II)

O algoritmo NSGA-II segue o algoritmo genético 4.3 com uma sele¢gao por um
torneio binéario de P: entre duas solugoes aleatérias a solugao de menor nivel
k ou, no caso de empate, de menor “crowding distance” é selecionada. Ele
sempre aplica mutagdo (M = C). A funcdo update que atualiza a populagéo
é realizada por
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R:=PUC
seja P:=E;(R)U---UEL(R) com k maximal t.q. |[PI<n
if |Pl<n
complete P com as n—|P| solugdes de ﬁkH(R)
de menor ‘‘crowding distance ’’

end if

5.5. Heuristicas para problemas continuas

Uma forma geral de um problema de otimizagao continuo é

minimiza f(x)
sujeito a gi(x) <0 Vi€ [m]

com solugoes x € R™, uma fun¢ao objetivo f : R™ — R, e restri¢oes g; : R™ —
R e h; : R™ — R. Casos particulares importantes incluem funcoes lineares
e convexas e o caso irrestrito (m = 1 = 0). As defini¢ées 2.1 continuam ser
validas com uma vizinhanga

Ne(x) ={x" e R™[[lx =x'|| < €} (5.6)

e com a condicao adicional que para um minimo ou maximo local deve existir
um € > 0 que satisfaz a definigao.

Casos simples de um problema de otimizagao continua podem ser resolvidos
por métodos indiretos. Um método indireto encontra primeiramente todos
candidatos para solugoes 6timas por critérios necessarios para otimalidade lo-
cal, depois verifica a otimalidade local por critérios suficientes, e finalmente
encontra a solugao 6tima global por comparagao das solugoes localmente 6ti-
mas. Na otimizagao irrestrita em uma dimensao, por exemplo, temos a con-
digéo suficiente f' = 0 para otimalidade local, e a condigao suficiente f” > 0
para um minimo local e " < 0 para um méximo local (dado que as derivadas
existem).

Caso resolver f = 0 ndo é possivel técnicas de busca em linha (ingl. line
search) podem ser usadas. Para um dominio restrito x € [a,b] um método
simples é a busca regular: escolhe o melhor entre os pontos x = a 4 iAx, para
1=0,...,[(b—a)/Ax], para um tamanho de passo Ax. Um outro exemplo é
uma busca em linha com backtracking.
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Algoritmo 5.2 (Busca em linha com backtracking)
Entrada Um ponto x, uma dire¢ao de descida Ax, o € (0,0.5), p € (0,1).

Saida Uma nova solugéo x.
1 t==1
2 while f(x+tAx) > f(x) 4+ atf’(x)Ax do t:=fpt
3 return x4 tAx

O algoritmo precisa uma dire¢ao de descida Ax, tal que f'(x)Ax < 0, por
exemplo Ax = —f’(x). O parametro o« define uma perda em qualidade aceita-
vel, o parametro 3 a precisao da busca. A busca termina, porque para um t
suficientemente pequeno a condigao é satisfeita localmente.

Os dois métodos podem ser generalizadas para o caso irrestrito no R™. A
busca regular limitada para S = {x € R™ | 1 < x < u} para um limitante
inferior 1 € R™ e superior u € R™ avalia todos pontos x = 1+ 10 Ax € S,
com i € Z, para um tamanho de passo Ax € R™. A busca em linha com
backtracking substitui a derivada f’(x) pelo gradiente Vf(x); uma direcao de
busca entao é Ax = —Vf(x).

Métodos de busca em linha sao elementos de métodos univariados de otimi-
zagao, que otimizam uma varidvel por vez, ou mais geral, uma direcao de
busca por vez. A busca por relaxacdo de Southwell por exemplo repetida-
mente seleciona a variavel x; que corresponde com o maior valor absoluto do
gradiente |0f/9xi|(x). Um dos métodos mais comuns ¢é a descida do gradiente
(ingl. gradient descent).

Algoritmo 5.3 (Descida do gradiente)
Entrada Um ponto inicial x € R™.

Saida Uma nova solugdo x € R™.

1 repeat

2 Ax := —VTf(x)
3 aplica uma busca em linha na direcao Ax
4 para obter um tamanho de passo t

5 X =X+ tAx

6 until critério de parada satisfeito

7 return x

Um critério de parada comum ¢ [[Vf(x)|| < €, para um € > 0 pequeno.

91



5. Tépicos

Exemplo 5.18 (Redes neurais artificias)
Uma grande classe de redes neurais artificias sao redes sem realimentag¢do
(ingl. feed forward networks). Eles recebem informagio numa camada de en-
trada, que passa por miltiplas camada internas até chegar na camada de saida.
A saida x de um elemento de uma camada é uma func¢io da soma ponderada
dos elementos xi,...,x; da camada anterior:

(Z Wix{). (5.7)

ie[n]

A fungdo g é a fungdo de ativagao. (O modelo simples de um neurénio de
McCulloch e Pitts (1943) usa g(x) = [x > 0].) Ela tipicamente é sigmoide
(possui forma de “s”), por exemplo

1

) ez

com derivada g’ = 2fg(1 — g). Em geral supoe que temos uma rede com k
camadas e a camada i possui n elementos. Sejam W',..., W*~1 as matrizes
de pesos entre as camadas, com W' € R™+1 X" [ogo uma entrada x' € R™
na primeira camada é propagada para frente por

hi+1 :Wixi; X’H—] _ g(hl) (58)

para i € [k —1]. O valor h' é a entrada da camada i, o valor x* € R™ a sua
saida. (A funcdo g é aplicada em cada componente.)

O objetivo de uma rede neural artificial é treina-la para produzir saidas de-
sejadas (e espera-se que a rede generaliza e produz resultados desejaveis para
entradas desconhecidas). Na aprendizagem supervisionada a rede repetida-
mente recebe uma entrada x' = & e a saida x* é comparada com uma saida
desejada 0. O erro é definido por

E(W',. =1/2 ) (o
i€[ny]
O treinamento consiste em ajustar o pesos W', ..., W¥ tal que E é minimizado.

Isso é um problema de otimizagao continua, e nos podemos aplicar a descida
de gradiente para obter pesos melhores. No caso de uma rede com somente
uma camada interna (k = 3) temos

2
EW', W) =1/2 ) (Uk—g( > WEe( Y W, ) :

kens] jemn;,] ig€[nq]
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e o gradiente para os pesos entre a segunda e a terceira camada é

oE 3 3\,2
Wl%j = —(ox — xk)g/(hk)xj

_ 52,2
= —0ix;

com 5% =g’ (hi)(ok — xi). Similarmente o gradiente para os pesos entre a

primeira e a segunda camada é

OE
St = 2 (o —x)g ()W (h)x]
jt kensz]
=— ) W9/ (h)x!
kens]
:—él]x!.

1 2 2\4/2
com §; = g’(hj ) 2 xeins 5 Wi+
Aplicando a descida do gradiente com um tamanho de passo 1 obtemos a regra
simples

. OE o
com
5% =g'(h*) o (0—x%)
5! =g'(h?) 0 5 W2,

Isso pode ser generalizado para um niimero arbitrario de camadas por

% = g'(h*) o (0 —x¥)
§t=g'(h*)odTWHT e [k—2l. (5.10)

Logo enquanto os valores sdo propagadas para frente, de acordo com (5.8), os
erros sao propagadas para atras por (5.10) e o método é chamada propagagdo
para atrds (ingl. backpropagation).

Para treinar uma rede serve um conjunto de entradas &',...,&™ com saidas
desejadas o',...,0™. Repetidamente para entrada &' a saida é calculada por
propagagao para frente, os erros § sao calculados por propagacao para atrés
e os pesos sao ajustados pela regra (5.9).

O
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5. Tépicos

5.5.1. Meta-heuristicas para otimizacdo continua

A otimizagdo com enxames de particulas da se¢do 4.6 ¢ um exemplo de uma
meta-heuristica que pode ser aplicado diretamente na otimizagao continua.
De fato a maioria das heuristicas por modificacdo ou recombinacdo podem
ser aplicadas para problemas continuas com uma definicao adequada de uma
vizinhanga e de uma recombinac¢ao. Exemplos de vizinhangas continuas sao
a vizinhanga uniforme N¢(x) (5.6) e a vizinhanga Gaussiana N(x) = N(x, o).
Recombinagoes da secao 4 que podem ser aplicadas no caso continuo sao as
recombinacoes randomizadas, lineares e particionadas.

Um exemplo que inclui uma estratégia construtiva para otimizagao continua

¢ 0 GRASP continuo (C-GRASP).

Algoritmo 5.4 (C-GRASP)
Entrada Conjunto de solugoes viaveis S ={x € R™ | 1 < x < u}, parme-
tros hg, h¢, p e «.

Saida Uma solugao x € S.

1 repeat

2 x = Ul u]

3 h:= ho

4 repeat

5 x := construct(x, o, h)
6 x := localsearch(x, p, h)
7 if x nao melhorou
8 h:=h/2

9 end if

10 until h < hy
11 until critério de parada satisfeito
12 return x

A construgdo gulosa é univariada, selecionando entre uma das melhores dire-
coes de otimizagao

construct (x,a,h) :=
S :=[n]
while S#( do
for 1€ S: z;:=buscaregular(xi,li, ui, h)
C:={ieS|f(zi) < (1 —a)min; z; + xmax; z; }

seleciona je€ C aleatoério
Xy =z
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S:=S\{j}
end while
end
A vizinhanga da busca local projeta todos pontos da grade regular R(x) = {x |
x=1+10Ax €S, i€ Z,} numa esfera de raio h com centro x

Br(x) ={x" €S |x" =x+h(x"—x)/Ix"—xll2,x" € R(x) \ {x}

e repetidamente busca numa direcdo aleatoria em By, (x).

localsearch (x,p,h) :=
repeat
seleciona x’ € By(x) aleatoriamente
if f(x')<f(x): x:=x'
until p/R(x)| pontos examinados sem melhora

return x
end
5.6. Notas

O livro do Talbi (2009, ch. 4) contém uma boa introdugao em otimizacao
multi-objetivo. Konak et al. (2006) apresentam estratégias para algoritmos
genéticos multi-objetivos. Jaszkiewicz e Dabrowski (2005) é uma biblioteca
(j& um pouco antiga) com implementagoes de diversas meta-heuristicas multi-
objetivos. Boyd e Vanderberghe (2004) ¢ uma introducao excelente na otimi-
zagao convexa.

95






6. Metodologia para o projeto de heuristicas

Over the last decade and a half, tabu search algorithms for machine
scheduling have gained a near-mythical reputation by consistently
equaling or establishing state-of-the-art performance levels on a
range of academic and real-world problems. Yet, despite these
successes, remarkably little research has been devoted to develo-
ping an understanding of why tabu search is so effective on this
problem class.

(Watson et al. 2006)

Despite widespread success, very little is known about why local se-
arch metaheuristics work so well and under what conditions. This
situation is largely due to the fact that researchers typically fo-
cus on demonstrating, and not analyzing, algorithm performance.
Most local search metaheuristics are developed in an ad hoc man-
ner. A researcher devises a new search strategy or a modification
to an existing strategy, typically arrived at via intuition. The algo-
rithm is implemented, and the resulting performance is compared
with that of existing algorithms on sets of widely available bench-
mark problems. If the new algorithm outperforms existing algo-
rithms, the results are published, advancing the state of the art.
Unfortunately, most researchers [...] fail to actually prove that the
proposed enhancements actually led to the observed performance
increase (as typically, multiple new features are introduced simul-
taneously) or whether the increase was due to fine tuning of the
algorithm or associated parameters, implementation tricks, flaws
in the comparative methodology, or some other factors.

Gendreau e Potvin (2010)

The field of optimization is perhaps unique in that natural or man-
made processes completely unrelated to optimization can be used
as inspiration, but other than that, what has caused the research
field to shoot itself in the foot by allowing the wheel to be in-
vented over and over again? Why is the field of metaheuristics
so vulnerable to this pull in an unscientific direction? The field
has shifted from a situation in which metaheuristics are used as
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As citagoes acima caracterizam o estado metodologico do projeto de heuris-
Por isso, é necessario enfatizar que o projeto de heuristicas é uma
disciplina experimental, e tem que seguir o método cientifico. Em particular,

ticas.

inspiration to one in which they are used as justification, a shift
that has far-reaching negative consequences on its credibility as a
research area.

[...]

The field’s fetish with novelty is certainly a likely cause.

[...]

A second reason for this research to pass is the fact that the rese-
arch literature in metaheuristics is positively obsessed with playing
the up-the-wall game (Burke et al., 2009). There are no rules in
this game, just a goal, which is to get higher up the wall (which
translates to “obtain better results”) than your opponents. Science,
however, is not a game. Although some competition between re-
searchers or research groups can certainly stimulate innovation,
the ultimate goal of science is to understand. True innovation in
metaheuristics research therefore does not come from yet another
method that performs better than its competitors, certainly if [it]
is not well understood why exactly this method performs well.

Soérensen (2013)

o projeto

i)

ii)

iii)

iv)

inicia com uma questdo cientifica especifica, bem definida e clara;
(“Qual o melhor método para resolver o PCV?”)

gera um ou mais hipdteses para responder essa questao;

(“Dado o mesmo tempo, Lin-Kernighan iterado sempre é melhor que tem-

pera simulada.”)*

projeta testes experimentais para verificar (estatisticamente) ou rejeitar

as predi¢oes das hipdteses;

analisa os resultados dos experimentos e conclui; isso pode resultar em

novas hipoteses.

6.1. Projeto de heuristicas

O objetivo tipico do projeto de uma heuristica é obter solugoes de boa qua-
lidade em tempo adequado. Os critérios sao correlacionados, i.e. mais tempo

LObserve que isso & uma ilustracdo: essa hipotese é quase irrefutavel, e precisa ser muito

mais especifica na préatica.
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geralmente produz melhores solugbes. O tempo disponivel depende da apli-
cacdo e tipicamente influencia a técnica heuristica (pensa: 100 metros rasos
vs. maratona). Além disso, pode ser o objetivo do projeto obter uma heuristica

e simples, i.e. facil de implementar, entender e explicar;
e robusta, i.e. simples de calibrar e pouco sensivel aos parametros;
e generalizdvel, i.e. aplicdvel a um grande nimero de problemas similares

(Barr et al. 1995; Cordeau et al. 2002).

De acordo com a nossa classificagdo, heuristicas usam trés operacoes prin-
cipais: construgao, por adi¢ao de elementos, modificacao, por alteracdo de
elementos, e recombinacao, por selecionar e unir elementos de mais que uma
solugao. Essas operagoes sao especificas ao problema, junto com a representa-
¢ao e a funcdo objetivo. A literatura sugere que uma meta-heuristica efetiva
depende dos seguintes componentes, em ordem da sua importancia (Watson
et al. 2006; Hertz et al. 2003):

1. as técnicas especificas ao problema;

2. a meta-heuristica; uma meta-heuristica béasica precisa técnicas para evi-
tar estagnacao (minimos locais);

3. aintensificagao e diversificagao estratégica usando memoria que beneficia
geralmente cada heuristica;

4. os parametros dos componentes;

5. a implementagao eficiente.

Na pratica inversoes sao possiveis, e todos os pontos tem que ser tratados
sistematicamente para obter resultados de estado de arte. Por isso sugerimos
uma metodologia construtiva por componentes para o projeto de heuristicas.

1. Estuda diferentes representagoes do problema. Projeta uma estrutura de
dados adequada com apoia eficiente para as principais operagoes (adigao,
delecdo, alteragdo de elementos e avaliagido incremental). Determine a
complexidade dessas operagoes. Considera os principios 1.1 e 1.3.

2. Propoe diferentes operagoes de construgao, modificagao e recombinagao.
Avalia estatisticamente cada uma das operagoes e o seus parametros se-
paradamente. Para modificacdo considera os principios 2.1 e 2.2.

3. Considere uma anélise da paisagem de otimizagao (cap. 6.2).
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4.

Combina sistematicamente operagoes basicas para uma meta-heuristica
bésica que evita minimos locais ou uma meta-heuristica construtiva. Es-
pecificamente projeta e testa se as técnicas para evitar minimos locais
sao efetivas. Avalia a contribuigao e a interagao dos componentes e o seus
pardmetros. Procede das técnicas mais simples para as mais complexas
(e.g. busca local, tempera simulada, busca tabu; resp. construgao gulosa,
bubble search, colonia de formigas).

Adiciona uma estratégia de intensificacdo e diversificagdo usando uma
forma de memoria de longa duragao. Procede das técnicas mais simples
para as mais complexas (e.g. Probe, GRASP-PR, algoritmo genético/-
busca dispersa).

Complementarmente o método cientifico sugere:

1. Compare durante o projeto com o estado de arte em algoritmos exatos,

aproximativos, e heuristicos em tempo e qualidade.

Procure nao simplesmente produzir “melhores” resultados mas explica-
¢oes do funcionamento do método.

Os experimentos tem que ser reproduziveis por outros pesquisadores.
Consequentemente as insténcias, as saidas, as solugdes completas obtidas
e o codigo tem que ser publicado (eventualmente em forma “ilegivel”
mas compilével, caso investimento em desenvolvimento ou propriedade
intelectual tem que ser protegido) (Barr et al. 1995).

Complementarmente a literatura sobre solugao de problemas sugere (e.g. Polya
(1945))

1. Tenta entender o problema profundamente. Resolve algumas insténcias

100

manualmente, testa heuristicas construtivas, de modificagao ou recom-
binagao em alguns exemplos pequenos manualmente. Para heuristicas
de modificacdo estuda exemplos de minimos locais: porque eles sao mi-
nimos locais? Com quais operagoes daria para escapar desses minimos
(principio 2.2)7

. Tenta resolver o problema de melhor forma algoritmicamente, mesmo

ele sendo NP-completo. Estuda algoritmos aproximativos e exatos para
o problema. Usa as técnicas das melhores algoritmos para construir as
operagoes basicas da heuristica.

. Caso problema é NP-completo: estuda a prova da dificuldade cuida-

dosamente: quais caracteristicas do problema torna-o dificil? Eles sao



6.2. Analise de paisagens de otimizac¢ao

comuns em instancias praticas? Caso contrario, a prova pode ser sim-
plificada? Ou é possivel que o problema nao ¢ NP-dificil em instancias
praticas? E possivel isolar caracteristicas que simplificam insténcias?

4. Procure identificar o subproblema mais simples que pode ser resolvido.
Procure identificar problemas semelhantes e estudar as suas solugoes.
Procure generalizar o problema. D& para transformar o problema para
um outro problema similar?

Escolha de uma meta-heuristica Dado o metodologia acima, uma guia ba-
sica para escolha de uma meta-heuristica é

e A meta-heuristica é menos importante que as operacoes basicas. Escolhe
a meta-heuristica mais tarde possivel, e somente depois de estudar as
operagoes basicas.

e Seleciona uma meta-heuristica que conhecidamente funciona bem em
problemas similares.

e Tendencialmente técnicas construtivas sao mais adequadas para proble-
mas mais restritos.

e Tendencialmente intensificacao é preferivel para uma escala de tempo
curta; algoritmos estocésticos (e.g. tempera simulada, construgao iterada
independente) tendem a precisar mais tempo.

e Tendencialmente métodos mais sisteméticos sao preferiveis para proble-
mas maiores. Por exemplo, a probabilidade de encontrar solugoes de
boa qualidade por construgao iterada independente tipicamente diminui
com o tamanho da instancia (Gendreau e Potvin 2010, cap. 20) (“central
limit catastrophe”).

6.2. Analise de paisagens de otimizacdo

Para estimar a dificuldade de resolver um problema para uma dada vizinhanga
temos que responder (empiricamente) perguntas como

e Qual a probabilidade de encontrar uma solugao 6tima a priori?
e O quanto a fungao objetivo varia entre solugoes vizinhas?
e Qual a distancia média entre dois minimos locais?

e O quanto a fungao objetivo guia uma busca local para solugoes 6timas?
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Essa perguntas geralmente sao dificeis para responder, porque eles supoem
que ja conhecemos as solucoes 6timas do problema. Na pratica podemos
obter estimativas dessa medidas por amostragem.

Distribuicdo de tipos de solugdes Para uma dada vizinhanca podemos clas-
sificar a solugbes como segue. Seja E(s) ={s € N(s) | ¢(s’) = ¢@(s)} o conjunto
de vizinhos com o mesmo valor da funcdo objetivo, e W(s) = N(s)\ B(s)\ E(s)
o conjunto de vizinhos piores que s. Com isso obtemos a classificagao

IB(s)l [E(s)] IW(s)

Tipo de solugao

0 0 0 Solugao isolada
>0 0 0 Maximo local estrito
0 >0 0 Plateau
>0 >0 0 Maximo local
0 0 > (0 Minimo local estrito
>0 0 >0 Declive
0 >0 >0 Minimo local
>0 >0 >0 Patamar

Exemplo 6.1 (Permutation flow shop problem)
Obtemos para as 10! = 3.628.800 solugoes da insténcia “carlier5” do PFSSP
na vizinhanga N7 que insere uma tarefa em qualquer outra posigao nova:

Tipo de solucao # (%) Tipo de solucao # (%)

Solugao isolada 0 (0) Minimo local estrito 5 (0.00014)
Maéximo local estrito 0 (0) Declive 134784 (3.71)
Plateau 0 (0) Minimo local 1743 (0.048)
Méaximo local 6 (0.00017) Patamar 3492262 (96.24)

Existem trés minimos globais com valor 7720. Todos trés sao nao-estritos.
Logo a probabilidade a priori de um minimo local ser um minimo global é
0.0017. A distribuigdo dos 86 valores dos minimos locais é (minimo/quartil
inferior/mediana/quartil superior/méximo): 7720, 8039, 8047, 8335, 8591.
Um busca local na vizinhanga N7 entao é no maximo 11.3% acima do valor
oOtimo. O

Variacdo entre solugbes vizinhas Intuitivamente, uma paisagem de otimi-
zagao “menos continua’ e “mais curvada” é mais dificil para um algoritmo de
busca local. Isso pode ser formalizado pela fungao de correlagao da paisagem
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(ingl. landscape correlation function)

cov(@(8)@(sNas,e—t (0()0(s ) ars,s—i — (@(s)
1 .

p(i) = =
o(e)? (@2(s)) — (@(s))?
Temos p(i) € [—1,1]: para valores perto de 1 o valor de solugoes vizinhas é

perto da valor da solugao atual; para um valor perto de 0, o valor de uma
solugao vizinha nao é relacionado com o valor da solucao atual.

(6.1)

Exemplo 6.2 (Permutation flow shop problem)

No caso do PFSSP obtemos p(1) ~ 0.79. Logo existe uma alta correlacio
entre o valor de uma solucao e o valor das solugoes vizinhas: podemos esperar
que uma busca local funciona razoavelmente bem. O

A distancia média entre dois minimos locais pode ser estimado pela distdncia
de correlagdo (ingl. correlation length) 1=} .-, p(i). Com B(r) o nimero de
solucdes numa distancia no maximo r de uma solucio esperamos que

P[s é 6timo local] ~ 1/B(1).

Essa relacao é conhecida como conjetura da distdncia de correlagado.
A funcao de correlagdo p(i) pode ser determinada empiricamente pela auto-

correlacao de uma caminhada aleatoria. Para uma caminhada aleatoéria sq,s2,...

com m > 1 obtemos o estimador

p(l) = p((p(51:m—i)) (p(si—b—]:m)))

onde Sq.p = (Say---48p) € ©(s) = (@©(s1)y...,@©(sSm)). Essa estimativa é so-
mente correta, caso uma caminhada aleatéria é representativa para toda paisa-
gem de otimizagao. Tais paisagens sao chamadas isotrdpicas. Frequentemente
a correlacdo diminui exponencialmente com a distancia de forma p(i) = p(1)*
e p(1) = e /1. Neste caso, podemos determinar | por

L= (=In(p(N)N)~".

Para usar uma p(1) estimado por um caminho aleatério na conjetura da dis-
tancia de correlagao, ainda temos que corrigir a distancia: caso uma cami-
nhada aleatoéria de 1 passos resulta numa solugéo de distancia média d(i), a
probabilidade de uma solucdo ser um 6timo local é =~ 1/B(d(1)).

Correlacdo entre qualidade e distancia A fungéo objetivo guia uma busca
local para solugdes melhores caso a distancia d*(s) para a solu¢ao 6tima mais
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proxima de uma solugéo s e correlacionada com a valor da fungdo objetivo. A
correlagao qualidade-distancia (ingl. fitness distance correlation)

p((p, d*) _ COV((p) d:) _ <(p(s)d*(s)> _ ((p(s))(d*(s)> (62)
oleold) 12— (ols))2y/ (a2 (s)) — (a*(s))?

mede isso. Temos p(¢@,d*) € [—1,1]: para valores positivos temos uma es-
trutura “big valley” com o um extremo de uma correlagao linear ideal para
um valor de 1; para valores negativos a fungao objetivo de fato nao guia a
busca. No primeiro caso intensificagao maior, no segundo uma diversificagao
maior é indicado. A correlagdo também serve para comparar vizinhancas:
muitas vezes a vizinhanga que possui uma maior correlagao produz resultados

melhores.

Exemplo 6.3 (Permutation flow shop problem)

Para a vizinhanca “shift” que desloca uma elemento da permutagao para qual-
quer outra posi¢ao, obtemos a seguinte distribuicao de distancia e desvio de
uma solugao da solugao 6tima mais perta.

Desvio
"

| | | |
1 2 3 4 8 7 g
Distancia

Um p ~ 1.7-107° que a correlacio entre distancia e qualidade é negligivel. ¢
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6.3. Avaliacdo de heuristicas

Uma heuristica, como qualquer algoritmo, transforma determinadas entradas
(as instancias do problema) em saidas ou resposta (as solugdes viaveis). Essa
transformagao é influenciada por fatores experimentais e pode ser analisado
(como qualquer outro processo) com métodos estatisticos adequadas. Os com-
ponentes do processo e o seu parametros sao fatores controldveis; além disso
o processo sofre fatores incontrolaveis (e.g. randomizagao e as instancias).
Na avaliagao queremos responder perguntas como

e Como os diferentes niveis dos fatores controlaveis influem a resposta do
processo? Quais sao os fatores principais? O quanto os fatores influem
a resposta? Existe uma interacao entre diferentes fatores? Qual escolha
de niveis produz resultados bons para uma grande variagao dos fatores
incontrolaveis (i.e. uma heuristica robusta)?

e Qual o tempo (empirico) para encontrar uma solugdo viavel, de boa
qualidade, ou 6tima em funcao do tamanho da instancia?

Observagao 6.1

Medidas de tempo devem ser acompanhadas por informacoes detalhadas sobre
o ambiente de teste (tipo de processador, memoria, etc.). Uma alternativa é
informar o custo computacional em nimero de operagoes elementares. O

Complexidade empirica de algoritmos A complexidade de tempo de um
algoritmo préatico com alta probabilidade possui a forma

T(n) ~ ab™nlog?n

(ver p.ex. Sedgewick e Wayne (2011, cap. 1.4) e Sedgewick (2010)). Frequen-
temente podemos focar em dois casos simples. Para uma série de medidas
(n, T) podemos avaliar

uma hipétese exponencial Com T(n) ~ ab™, obtemos log T ~ log a +nlogb.
Logo podemos determinar um modelo por regressao linear entre log T e
n;

uma hipétese polinomial Com T(n) ~ an® obtemos log T ~ loga + blogn.
Logo podemos determinar um modelo por regressao linear entre log T e
logn.

Exemplo 6.4 (Complexidade empirica em GNU R)
Para um arquivo com tamanho da instancia n e tempo T da forma
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nT

100 233.0000
260 689.7667
500 1655.8667

podemos determinar a complexidade empirica em GNU R usando

d<—read.table("x.dat"  header=T)
Im(log(T) log(n) ,data=d)
Im(log(T) n,data=d)
%

Observagdo 6.2 (Soma de quadrados na regressdo linear)

Supoe que temos valores x € R™ e m observagoes y; € R™ paracadai € [n]. A
regressao linear determina uma fungédo {j = aX+b. Para a soma de quadrados
das distancias dos pontos aproximados {j e as observagoes obtemos

SSt = Z(‘Jii —y)? = Z (Ui —9) — (yy —Qi))z

.)j

= Z )2 +2(ys —Y)(Yg5 — Y1) + (yij —y1)?

_mZ +ZZ Zyll Yi +Z Yij — Ul)
j i,j
ngi_ngi:O!

_mZ ++Z Yij — i

= SSx + SSg.

Isso mostra que podemos decompor a soma de quadrados total SSt em duas
componentes: a soma de quadrados obtida pela variagao das médias em cada
ponto x da média geral SSy. Este parte da variacao é explicado pela hipdtese
linear: ele vem da varia¢ao da fungao linear. O segundo termo representa a
soma de quadrados obtida pela variagao das medidas individuais das médias
em cada ponto x. Este parte pode ser atribuido ao erro experimental. Logo a
quantidade

SSx
SST
representa a “fragao explicada” da variagao dos dados, e serve como medida
da qualidade da aproximacao linear. Observe que isso é somente possivel

aplicando a regressao linear em todos os dados, nao nas médias das observacoes
em cada ponto. O

R? = € [0,1]
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Exemplo 6.5 (R? em GNU R)
Aplicando a regressao linear nos dados de Rad et al. (2009) obtemos

d<—read.table("rad—cpu.dat" ,header=T)
Im(log(neht) log(tasks)+log(machines) ,data=d)

Call:
Im(formula = log(neht) ~ log(tasks) + log(machines), data = d)

Coefficients:
(Intercept) log(tasks) log(machines)
-15.0553 1.6194 0.6468

> summary (1m(log(neht) “log(tasks)+log(machines) ,data=d))

Call:
Im(formula = log(neht) ~ log(tasks) + log(machines), data = d)

Residuals:
Min 1Q Median 3Q Max
-0.46303 -0.20359 -0.05573 0.17781 0.64577

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -15.0553 0.5960 -25.262 1.15e-09 **x*
log(tasks) 1.6194 0.1171 13.830 2.28e-07 **x*
log(machines) 0.6468 0.2068 3.128 0.0122 *
Signif. codes: O ’**x’ 0.001 ’%x> 0.01 ’%’ 0.05 >.” 0.1’ > 1

Residual standard error: 0.3767 on 9 degrees of freedom
Multiple R-squared: 0.9657,Adjusted R-squared: 0.9581
F-statistic: 126.7 on 2 and 9 DF, p-value: 2.562e-07

Logo a complexidade empirica do algoritmo NEHT é T(n) = 289ns n'-®m?0-°

com R? = 0.9657. O

Aplicado & avaliacao de uma heuristica isso supoe um critério de parada di-
ferente de tempo (e.g. encontrar uma solugdo em problemas de decisdo ou
convergéncia em problemas de otimizac¢do). Essas técnicas podem ser gene-
ralizadas para mais que uma variavel. Por exemplo, em problemas de grafos
com M vértices e m arestas a hipotese T(n,m) ~ an®m¢® gera um modelo
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linear log T ~ loga + blogn + clogm e pode ser obtido por regressao linear
novamente.

Distribuicdo de tempo e qualidade Frequentemente a heuristica é randomi-
zada e logo o tempo de execugao T e a valor V sao variaveis aleatérias. Caso
a heuristica resolve um problema de decisao, e.g. SAT, s6 consideramos a va-
riavel T. Para um problema de decisao obtemos a probabilidade de sucesso
pela funcgao de distribuicao acumulada F(t) = P[T < t]. O algoritmo encontra
um solu¢do em tempo no maximo t com probabilidade F(t).

Para um problema de otimizac¢ao o tempo depende da qualidade. Logo obte-
mos a uma probabilidade de sucesso em duas variaveis pela funcao de distri-
bui¢ao acumulada

F(t,v) =P[T<tAV <v].

Para um valor fixo v/ obtemos a distribuicao restrita de sucesso F(t) = F(t,v’).
A funcdo F(t) também é chamada o grafo time-to-target. Para um tempo fixo
t’ obtemos a distribuicao de qualidade de solu¢ao F(v) = F(t’,v).

Exemplo 6.6 (Fungao de distribuicao acumulada para SAT)
A seguinte figura mostra a probabilidade de sucesso de um GRASP com o =
0.8 na instancia flat75-1 e 100 replicagoes.
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GRASP flat75-1
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Exemplo 6.7 (Distribuicao de tempo e qualidade em GNU R)
Dado um arquivo de tempos de execugao

time

695

2888

podemos visualizar a distribuicao dos tempos e a distribuicao acumulada
usando

d<—read.table("x.dat"  /header=T)
hist (d$time)
plot (ecdf (d$time),verticals=T,do.points=F)

6.3.1. Testes estatisticos

O meétodo béasico para comparar a influéncia de fatores experimentais é o
teste estatistico. Como podemos tratar o algoritmo usado como um fator
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experimental, ele também serve para comparar diferentes heuristicas. Para
aplicar um teste temos que

e formular uma hipo6tese nula e uma hipotese alternativa;
e escolher um teste estatistico adequado;
e definir um nivel de significincia;

e aplicar o teste e rejeitar ou aceitar a hipdtese nula de acordo.

Exemplo 6.8 (Teste binomial)

Queremos descobrir se numa dada populagao nascem mais homens que mu-
lheres. Seja X a variavel aleatoria tal que X =1 caso nasce um homem. Logo
a hipotese nula é P[X] = 0.5 e a hipotese alternativa é P[X] > 0.5.

Para decidir essa hipotese, podemos tirar uma amostra Xi,..., X9 da popu-
lagdo base (de nascimentos). Supondo que as amostras sdo independentes,
X =2 icm Xi ¢ distribuido binomialmente.

B(k;n,p) = (2)pk(1 —p)nk

a distribuicao do X ~ B(k; 10, 0.5) caso a hipotese nula é satisfeito. No exemplo
obtemos

k 0/10 1/9 2/8 3/T  4/6 5
PIX=K 0.001 0.010 0044 0.117 0205 0.246
PIX >kl 1.000 0999 0989 00945 0.828 0.623
k 6 7 8 9 10
PIX >k 0377 0.172 0055 0011 0.001

Para aplicar o teste estatistico, temos que definir um nivel de significancia.
Por exemplo, para um nivel de significincia p = 0.05 temos P[X > 9] < p.
Logo podemos rejeitar a hipotese nula, com p = 0.05 caso na amostra tem 9
ou 10 nascimentos de homens. Para testar em R:

binom. test (9,10, alternative="g")

¢

No exemplo acima formulas a hipotese alternativa P[X] > 0.5. Esse hipotese
é wunilateral (ou monocaudal), porque ela testa em determinada diregdo do
desvio. Similarmente a hipotese alternativa P[X] < 0.5 é unilateral. Uma
hipétese bilateral (ou bicaudal) é P[X] # 0.5. Neste caso temos que considerar
desvios para as duas diregoes.
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O exemplo mostra que o teste estatistico adequado depende das hipoteses
sobre a distribui¢do da quantidade que queremos testar (no exemplo uma
distribui¢do binomial). Um teste estatistico pode falhar em dois casos: num
erro de tipo 1 ele rejeita a hipotese nula, mesmo ela sendo correta; num erro
de tipo 2 ele nao rejeita a hipotese nula, mesmo ela sendo falso. Isso pode ser
resumido por

Ho mantido Hy rejeitado
Hy verdadeiro | Correto Erro tipo 1
H; verdadeiro | Erro tipo 2  Correto

O nivel de significancia do teste é a probabilidade da fazer um erro de tipo 1
P[H, rejeitado | Hp verdadeiro]. A probabilidade condicional de nao fazer um
erro de tipo 2

1 — P[Hp mantido | Hy verdadeiro = P[Hg rejeitado | Hy verdadeiro]

¢ chamada a poténcia do teste.

Exemplo 6.9 (Teste binomial)

A poténcia de um teste depende da magnitude do efeito que queremos detectar.
Supde, por exemplo, que estamos interessados em detectar (pelo menos) o
efeito caso na hipotese alternativa P[X] > 0.6. A distribuigao B(1;10,0.6) é

k 0 1 2 3 4 5
PX=k| 0.0001 0.002 0.011 0.042 0.111 0.201
P[X > K] 1.000 0.9999 0.998 0.988 0.945 0.834
k 6 7 8 9 10
PIX =kl 0.251 0.215 0.121 0.040 0.006
P[X > K] 0.633 0.382 0.167 0.046 0.006

Logo a poténcia do teste é com 0.046 relativamente fraco. Para P[X] > 0.8 a
poténcia aumenta para 0.376. %

O exemplo mostra que o planejamento do experimento influencia a poténcia.
Para aumentar a poténcia em geral, podemos

e aumentar o nivel de significancia: Isso aumenta também o probabilidade
de erros do tipo 1.

e aumentar a magnitude de efeito: tipicamente nao temos controle direto
da magnitude, mas podemos planejar o experimento de acordo com a
magnitude do efeito que queremos detectar (e.g. a redugdo do desvio
relativo por 1%).
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e diminuir a varianga do efeito: tipicamente nao temos controle direta da
variancga.

e aumentar o ntimero de amostras (que diminui a varianga): por exemplo
para n = 50 amostras, com o mesmo nivel de significancia p = 0.05 o
teste acima precisa X > 31 para rejeitar a hipotese nula e a poténcia do
teste acima para detectar o efeito P[X] > 0.6 aumenta para 0.336, a para
o efeito P[X] > 0.8 para 0.997. Uma amostra suficientemente grande que
garante uma poténcia de 0.8 é considerada aceitavel.

As caracteristicas principais para a escolha de um teste adequado sao

e 0 tipo de parametro que queremos analisar (e.g. minimos, médias, me-
dianas);

e testes paramétricos ou nao-paramétricos: um teste paramétrico (tipica-
mente) supde que a variavel estudada é distribuida normalmente;

e o numero de fatores e o namero de niveis dos fatores;

e testes pareados ou nao-pareados: em testes pareados, as amostras sao
dependentes. Um teste de dois algoritmos numa cole¢ao de instancias
é um exemplo de um teste pareado. Caso as instancias sao geradas
aleatoriamente, e cada algoritmo é avaliado em uma séria de instancias
geradas independentemente, o teste é nao-pareado. (Testes de diferentes
algoritmos com as mesmas sementes randémicos nao podem ser consi-
derados pareados, porque nao podemos esperar que o semente tem um
efeito semelhante nos dois algoritmos.) Em geral para mais que dois
niveis de fatores temos um teste (randomizado) em blocos.

Testes comuns para comparacao de algoritmos Para comparacdo de dois
niveis temos como testes mais relevantes no caso nao-paramétrico o teste do si-
nal (ingl. sign test) e de Wilcoxon de postos com sinais (ingl. Wilcoxon signed-
rank test) para dados pareados, e 0 Wilcoxon da soma dos postos (ingl. Wilco-
xon rank-sum test, equivalente com o teste U de Mann-Whitney) para dados
nao pareados. No caso paramétrico o teste t (pareado ou nao pareado) pode
ser aplicado.

Teste estatistico 6.1 (Teste do sinal)

Pré-condi¢des Duas amostras pareadas Xi,...,Xn € Y1,...,Yn. Os va-
lores x; —y; sao independentes e distribuidos com mediana comum
m.
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Hipotese nula Hy: m = 0;
Hipotese alternativa Hi: m >0, m <0, m # 0.
Estatistica de teste B =} ;. [xi > yil.

Observagdes Valores z; = 0 sdo descartadas (ou atribuidos pela metade
para o grupo com x; > Yi).

Exemplo 6.10 (Teste do sinal)
O teste do sinal de fato é equivalente com um teste binomial. Para estatistica
de teste B é n amostras

binom. test (B,n, alternative="greater")

binom. test (B,n, alternative="1less")

binom . test (B,n, alternative="two—sided")

testa a hipotese em GNU R (com nivel de significAncia padrao 0.05.). Por
exemplo, para comparar os tempos do GSAT com os do WalkSAT (ver exerci-
cios) com hipdtese alternative que WalkSAT precisa mais tempo que o GSAT

e

GSAT  WalkSAT
1 9178.66667 120000.00
2 44.13333 17502.87
3 974.60000 120000.00
4 189.80000 107423.87

binom. test (sum(e$WalkSAT>e$GSAT) , 4, alternative="greater")

Exact binomial test

data: sum(e$WalkSAT > e$GSAT) and 4
number of successes = 4, number of trials = 4, p-value = 0.0625
alternative hypothesis: true probability of success is greater than 0.5
95 percent confidence interval:
0.4728708 1.0000000
sample estimates:
probability of success
1

Mesmo o GSAT precisando em todos quatro casos menos tempo que o Walk-
SAT nao podemos rejeitar a hipdtese nula com nivel de significAncia p = 0.05,
pelo nimero baixo de amostras. O
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Exemplo 6.11 (Teste do sinal para comparacdo de modelos matematicos)
Tseng et al. (2004) usam o teste de sinal para testar se pares de modelos
matematicas para o problema do permutation flow shop precisam tempo sig-
nificadamente diferente.

¢

Teste estatistico 6.2 (Teste de Wilcoxon de postos com sinais)

Pré-condi¢cdes Duas amostras pareadas Xi,...,Xn € Yi,...,Yn. Os valo-
res zi = xi —Yi sao independentes ¢é distribuidos simétricos relativo
a um mediana comum m.

Hipétese nula Hy: m = 0.
Hipoétese alternativa Hi: m >0, m < 0, m # 0.

Estatistica de teste T™ = 2 iemm Tilxi > yYil com 7; o ranque do valor
z; em ordem crescente de |zi].

Observacdes Valores z; = 0 sdo descartadas. Em caso de empates na
ordem de |z;i] cada elemento de um grupo recebe o ranque médio.

Em GNU R wilcox.test(...,paired=T).

Exemplo 6.12 (Teste de Wilcoxon de postos com sinais)
(Continuando o exemplo anterior.)

wilcox . test (e$WalkSAT, e$GSAT, alternative="greater" ,paired=T)
Wilcoxon signed rank test

data: e$WalkSAT and e$GSAT
V = 10, p-value = 0.0625
alternative hypothesis: true location shift is greater than O

Exemplo 6.13 (Gino versus Optisolve)
Coffin e Saltzmann (2000) apresentam uma analise de um exemplo de Golden
et al. (1986)2.

2 A analise na publicacio esta errada: ela compara o tempo da primeira instancia de Gino
com o tempos do Optisolve.
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d<—read.table("golden—etal.dat"  header=T)
d<—subset (d, opt G=T&opt O==1&! is .na(timeO ))
plot (d$timeG ,d$timeO)

abline (0,1)

binom . test (sum(d$timeO>d$timeG ) ,nrow (e
wilcox . test (sum(d$timeO>d$timeG ) ,nrow(

)
e),paired=T)

Teste estatistico 6.3 (Teste de Wilcoxon da soma dos postos)

Pré-condi¢gdes Duas amostras ndo-pareadas Xi,...,Xn € Y1y...,Ym. Os
xi sao independentes e distribuidos igualmente, os y; sao indepen-
dentes e distribuidos igualmente, e os x; e y; sao independentes.

Hipétese nula F,(t) = Fy(t) para todo t, para distribui¢des acumuladas
Fx e Fy desconhecidas. No modelo mais simples supondo a mesma
distribuico Fx(t) = Fy(t), a hipdtese alternativa é um desloca-
mento, i.e.Fy(t) = Fy(t —A). A hip6tese nula nessa caso é A = 0.

Hipétese alternativa H1: A<0, A=0, A>0.

Estatistica de teste S = ) ;_; ;7i com 1; o ranque de y; na ordem
crescente de todos valores x; € yi.

Em GNU R wilcox.test(...,paired=F).

Exemplo 6.14 (Teste de Wilcoxon da soma dos postos)
Continuando o exemplo anterior.

wilcox . test (e$WalkSAT, e$GSAT, alternative="greater" ,paired=F)

Wilcoxon rank sum test with continuity correction

data: e$WalkSAT and e$GSAT
W = 16, p-value = 0.0147
alternative hypothesis: true location shift is greater than O

Warning message:

In wilcox.test.default(e$WalkSAT, e$GSAT, alternative = "greater",
cannot compute exact p-value with ties
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Teste estatistico 6.4 (Teste t de Student)

Pré-condi¢cdes Duas amostras pareadas Xi,...,Xn, € Yi,...Yn. Os va-
lores z; = x{ — y; sdo distribuidos normalmente ~ N(u,c?). (A
normalidade nao é necesséaria para amostras suficientemente gran-
des, e.g. n, m < 30).

Hipétese nula Hy: 1 =0.
Hipoétese alternativa Hy: n< 0, p> 0, u#0.

Estatistica de teste t =z/Sy/n com $? =Y ,(zi —z)/(n— 1) uma esti-
mativa da varianga da populacdo inteira. A estatistica é distribuida
t com n — 1 graus de liberdade.

Em GNU R t.test.

Teste estatistico 6.5 (Teste t de Student)

Pré-condi¢cdes Duas amostras ndo-pareadas X1,...,Xn, € Yi,...Ym. OS
xi sao distribuidos normalmente ~ N(L, 02), os y; normalmente
~ N(uy, 02). (A normalidade nao é necessaria para amostras sufi-
cientemente grandes, e.g. n, m < 30).

Hipétese nula Ho: py = py.
Hipétese alternativa Hi: p, < [y, Wy > Wy, Uy 7 Wy-

Estatistica de teste t = (X —5)/(S/1/n+ 1/m) com

S_\/(nnsgﬂmnsg

o n4+m-—2

uma estimativa do desvio padrao da populagao inteira. A estatistica
é distribuida t com n + m — 2 graus de liberdade.

Em GNU R t.test(x,y,var.equal=T,paired=F); para variancas dife-
rentes: t.test(x, y,var.equal=F ,paired=F).

Exemplo 6.15 (MINOS versus OB1)
Coffin e Saltzmann (2000) apresentam uma analise de um exemplo de Lustig
et al. (1991). O teste do coeficiente 1 da regressao linear do exemplo é um
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teste t. Neste caso a estatistica de teste t = (B1 — B1)/se(B1) com

2 _
se(Bq) = \/( Zi.e(ix),/(nx)zm

e residuos e; é distribuida t com n — 2 graus de liberdade.

## one—sided test for regression coefficient b (‘‘lower than’’)

testcoef = function(x,1,b) {
n=length (resid (1))—2

t=(b—coef(1)[2])/sqrt (sum(resid(l)"~2)/n/sum((x—mean(x))"2))

pt(t.,n,lower. tail=F)
}
d<—read.table("lustig—etal.dat" header=T)
attach(d)
plot (minos.time,obl .time)
plot (log(minos.time) ,log(obl.time))
Im<—Im (log (obl.time) log (minos.time))
summary (lm)
# t—test
testcoef (log(minos.time),lm,1)

6.3.2. Escolha de parametros

Principio de projeto 6.1 (Parametros (Hertz et al. 2003, p. 127))

O projeto do método em si (vizinhanga, fungdo objetivo, etc.) é mais im-
portante que a escolha de parametros. Um bom método deve ser robusto: a
qualidade das solugoes é menos sensivel & escolha de pardmetros. Porém, a
calibragao de parametros ndo compensa um método fraco.

O ponto de partido frequentemente é um conjunto de pardmetros inciais obti-
dos durante o projeto por testes ad hoc. Para heuristicas robustas e parame-
tros simples um tal conjunto frequentemente é uma escolha razoavel. Porém
robustez tem que ser demonstrada e nao podemos esperar robustez sobre a
modificacdo de componentes da heuristica (e.g. vizinhancas, operadores de
recombinagio).

A busca para um conjunto ideal de pardmetros é uma problema de otimizacao
separado, que a principio pode ser resolvido pelas técnicas discutidas. Porém
para obter o valor fungao objetivo temos que avaliar agora uma heuristica (em
diversas instancias e com replicages no caso de algoritmos randomizados).
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A estratégia mais simples é analisar um pardmetro por vez (ingl. one factor
at a time, OFAT): determine a variagdo do desempenho da heuristica para
cada parametro independentemente, com os outros parametros fixos. Depois
seleciona uma combinagao de parametros que melhora o desempenho e even-
tualmente repete. Para comparagao de diferentes niveis de uma parametro
pode-se aplicar testes estatisticos. Esse método serve também para analisar
o impacto de diversos parametros e selecionar um subconjunto para ser cali-
brado (“screening”). As desvantagens do OFAT sdo: i) ignorar interagoes de
parametros, ii) aumentar os erros de tipo 1 no caso de aplicagdes de testes
estatisticos, e iii) um custo maior que outras formas de experimentos (Mont-
gomery 2009).

Um projeto fatorial testa 1% células, i.e., combinacdes dos 1 niveis de k fato-
res. Para algoritmos randomizados cada célula precisa algumas replicagoes
do experimento. Projetos fatoriais comuns sdo o projeto fatorial completo
2% (muitas vezes usado para “screening”) e o projeto fatorial completo com
um fator em 1 niveis. Um projeto fatorial geralmente supoe um modelo li-
near dos efeitos dos fatores. No caso de uma aplicagao em instancias fixas
obtemos um projeto em blocos que generaliza um projeto pareado. (A aplica-
cao para instancias geradas aleatoriamente poderia ser tratado como projeto
completamente randomizado; porém o efeito da instancia muitas vezes é sig-
nificativo, e ndo pode ser modelado como um erro simples.) A disciplina de
projeto de experimentos (ingl. design of experiments) oferece mais possibilida-
des, inclusive projetos fatoriais fracionarios que testam menos combinacoes de
parametros, mas em contrapartida nao conseguem identificar todas interagoes
univocamente.

Projetos fatoriais podem ser avaliados por analise de variag¢io (ingl. analysis
of variation, ANOVA) no caso paramétrico, e no caso nao-paramétrico por um
teste Kruskal-Wallis (sem blocos) ou um teste de Friedman (com blocos).

Um exemplo de uma ANOVA com um fator experimental:
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6.3. Avaliagdo de heuristicas

Teste estatistico 6.6 (ANOVA)
Pré-condicées Um projeto k tratamentos e n replica¢oes por tratamento.
O problema é modelado linearmente por

Xij = H+Ti+€ij.

para tratamentos i € [k] e replicagoes j € [n]. O valor T; é o efeito
do tratamento i € [k]. Os error sdo independentes e distribuidos
normalmente como N(0; 02). (Em particular a varianga é constante,
i.e. os erros sao homoscedasticos).

Hipétese nula Hy: 11 =--- =71 =0.
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Hipoétese alternativa H;: existe um i com T; # 0.

Estatistica de teste A soma de quadrados total SSt pode ser decom-
posta por SSt = SSa 4+ SS¢ (similar com a observagao 6.2) em uma
soma de quadrados dos tratamentos SSa e dos erros SSg. Os trata-
mentos possuem k—1 graus de liberdade, os erros kn—k. As médias
das somas de quadrados MSa = SSa/(k—1) e MSg = SSg/(kn—k)
sao distribuidos X e a estatistica de teste Fg = MSA /MSg é distri-
buida F. Caso nao existe um efeito dos tratamentos, esperamos
Fo = 1, caso contrario Fo > 1.

Em GNU R aov.

Exemplo 6.16 (ANOVA)
d=read . table ("mont—etch.dat" ,header=T,
colClasses=c("factor","numeric"))
a=aov (rate power,data=d)
summary (a)
plot (a)
plot (TukeyHSD (a,ordered=T))
%

Caso a hipodtese nula é rejeitada um teste post-hoc pode ser usado para identi-
ficar os grupos significativamente diferentes. Uma abordagem simples é com-
parar todos grupos par a par com um teste simples (e.g. um teste t). Porém
a probabilidade de um erro do tipo 1 aumenta com o namero de testes. Uma
solucao para este problema é aplicar uma corre¢cao Bonferroni: para um ni-
vel de significAncia desejada « e n testes em total, cada teste é aplicado com
um nivel de significancia «/n. Um exemplo de um teste menos conservativo
é Tukey’s honest significant differences, uma generalizagao do teste t para
multiplas médias.

Teste estatistico 6.7 (Teste de Friedman)

Pré-condi¢des Um projeto em blocos (randomizado) com k tratamentos
e n blocos. As varidveis aleatérias xij seguem distribuicoes desco-
nhecidas Fj; relacionadas por Fij(u) = F(u — 3 — 7j), com B; o
efeito do bloco 1 € [n] e Tj o efeito do tratamento j € [k].

Hipétese nula Hy: 71 = - = Ty.

Hipétese alternativa H;: nao todos T; sdo iguais.
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Estatistica de teste Com Rj; o posto do tratamento j no bloco i e Rj =

2 iRy

(k—1) ¥ eng (R —n(k+1)/2)?

T= .
2 icnljelk] Rizj —nk(k+1)2/4

Observacdes Para amostras suficientemente grandes T ~ x? com k — 1
graus de liberdade. Caso Hy é rejeitado, testes post-hoc podem ser
usados para identificar o melhor tratamento.

Em GNU R friedman.test(m) com matriz m.

Exemplo 6.17 (Teste Friedman)
e=data.frame(n=gl(3,3) ,h=rep(c(1,2,3)),v=runif(9))
with (e, friedman . test (v h*n))

O

Uma aplicacdo do teste de Friedman: corridas Testar todas combinagoes
de pardmetros em todas instancias investe um tempo igual em todas combina-
¢oes. Uma corrida (ingl. race) aplica as combinagoes instancia por instancia
e elimina combinagdes inefetivas da corrida logo, investindo mais tempo de
teste em combinagoes melhores. Uma exemplo de uma estratégia de corrida é
F-RACE, um algoritmo que aplica o teste de Friedman para eliminar combi-
nacoes de parametros.

Algoritmo 6.1 (F-RACE)
Entrada Um conjunto de combinagoes de pardmetros © = {Q1,...,0}.

Saida Um subconjunto ®' C © de combinacoes de parametros efetivas.

1 FRACE(O) :=
2 repeat for i=1,...

3 gera a i—ésima instancia [

4 aplica todas combinac¢does de parametros em O em I
5 aplica o teste de Friedman

6 (na matriz ix|0|)

7 if Hyp rejeitada then

8 seleciona o O; de menor posto combinado R;

9 remove todos tratamentos significadamente

10 pior que ©; (via testes post—hoc) de ©
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11 end if
12 wuntil [©|=1 ou limite de tempo
13 return ©

Para gerar a conjunto © inicial podemos usar um projeto fatorial completo
(F-RACE(FFD)) ou simplesmente gerar amostras aleatorias dos parametros
(F-RACE(RSD)).

6.3.3. Comparar com que?

e Quietly employ assembly code and other low-level language
constructs.

e When direct run time comparison are required, compare with
an old code on an obsolete system.

“Twelve Ways to Fool the Masses When Giving Performance
Results on Parallel Computers”, Bailey (1991)

Uma heuristica tem que ser comparado com outros algoritmos existentes; em
casos de problemas novos podemos comparar com algoritmos existentes para
casos particulares e generalizagoes do problema, ou com algoritmos mais sim-
ples (e.g. uma construgdo ou busca randomizada simples, ou versdes simpli-
ficadas do algoritmo proposto) ou genéricos (e.g. CPLEX, localsolver). Isso
inclui algoritmos exatos e aproximativos, e evita situagoes como essa:

A recent paper (Davidovi¢ et al. 2012) presented a bee colony me-
taheuristic for scheduling independent tasks to identical proces-
sors, evaluating its performance on a benchmark set of instances
from the literature. We examine two exact algorithms from the li-
terature, the former published in 1995, the latter in 2008 (and not
cited by the authors). We show that both such algorithms solve to
proven optimality all the considered instances in a computing time
that is several orders of magnitude smaller than the time taken by
the new algorithm to produce an approximate solution.

Dell’Amico et al. (2012)

6.4. Notas

Barr et al. (1995) e Silberholz e Golden (2010) explicam de forma geral o tem
que ser considerado na avaliagido de heuristicas. Luke (2011, cap. 11.) é uma
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6.4. Notas

boa introducao na ideias gerais de comparagao de algoritmos e Coffin e Saltz-
mann (2000) é uma excelente introdugdo com diversos exemplos praticos. Uma
referéncia excelente para projeto de experimentos e avaliagao estatistica com
um foco em métodos paramétricos é Montgomery (2009). O livro de Bartz-
Beielstein et al. (2010) apresenta em grande detalhe a aplicacdo de métodos
estatisticos na avaliacdo de heuristicas. Hollander ¢ Wolfe (2013) é uma refe-
réncia detalhada para métodos estatisticos nao-paramétricos. LeVeque (2013)
é um ensaio recomendado sobre a publicagao de cédigo.
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A. Conceitos matematicos

Definigao A.1
Uma funcao f é conveza se ela satisfaz a desigualdade de Jensen

f(Ox + (1 —0)y) < Of(x) + (1 —O)f(y). (A.1)

Similarmente uma fungao f é concava caso —f é convexo, i.e., ela satisfaz

f(Ox + (1 —0)y) > Of(x) + (1 —O)f(y). (A.2)
Exemplo A.1
Exemplos de funcoes convexas sao x?%, 1/x. Exemplos de funcoes concavas
sao logx, v/x. O

Proposigao A.1
Para } ;.;,,;©i =1 e pontos xi, i € [n] uma fungdo convexa satisfaz

Z@X1<Z®fxl (A.3)

ie[n]

e uma fungao concava

Z®X1>Z®fxl (A4)

ien]

Prova. Provaremos somente o caso convexo por indugdo, o caso concavo
sendo similar. Para n = 1 a desigualdade ¢é trivial, para n = 2 ela é valida
por defini¢do. Para n > 2 define ©® = } ; ., ;1O tal que © + ® =1. Com
isso temos

f( Z @ixi) = f(@1X1 + Z @ixi) = f(©1x7 +@y)

ie[n] i€2,n]
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A. Conceitos matemaéaticos
onde y = Zje[z,n](®j/®)xj7 logo

f( ) Oxi) < O:1f(x1) + Of(y)

ie[n]

=0:f(x1) +Of( ) (6;/0))

Definicao A.2
O fatorial é a funcao

n:N-oN:n— H i.

1<i<n
Temos a seguinte aproximagao do fatorial (formula de Stirling)
n
nl = Zﬂn(%) (1+0(1/n)) (A.5)

Uma estimativa menos preciso pode ser obtido por

que implica
(n/e)™ <n!<n™

Lema A.1 (Desigualdade de Bernoulli)
Parax > —1en e N temos (1 +x)™ > 1+ xn.

Prova. Por indugao sobre n.

(T+x)"T =1 +x)(T+x)" > (14+x)(1+xn)
=l4+xn+x+x*n=1T+xn+1)+x*n>1+xn+1).
onde a primeira desigualdade é valida porque (1 + x) > 0. |

Defini¢do A.3 (Entropia binaria)
A entropia binaria para « € (0,1) é h(x) = —alog, « — (1 — &) log, T — cx.
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Lema A.2 (Ash (1967))
Para o € (0,1)

n

(8ol — o))~ 1/2 2R < ( ) < 2mna(1 — )~ /220 en

an
Lema A.3
Para o € (0,1/2]
(Bna(1 — o))~ /220 < K (n> < 2hlem,
1<i<n« t

Prova. A primeira desigualdade é uma consequéncia do lema A.2. Para a
segunda desigualdade temos

1=l -t = Y (e -

1<i<n

1§§n“ <T11> (1i(oc>i (T—a)™

n o n« .
1§§mx <l> (Hﬁ) (1=
_oonx(1 A\ (1—a)n n
e 2 ()

1<i<n«

— )—nh(«) Z <711)

1<i<n«x

%

%

O terceiro passo é valido porque para o € (0,1/2] temos /(1 — ) < 1 e
i<nao. ]
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A.1. Probabilidade discreta
Probabilidade: Nocdes basicas

e FEspaco amostral finito Q de eventos elementares e € Q.

e Distribuic¢do de probabilidade Prle] tal que

Prle] >0; ) Prle] =1

ecQ)

e FEventos (compostos) E C Q com probabilidade

Pr[E] = Z Prle]

ecE

Exemplo A.2
Para um dado sem bias temos Q = {1,2,3,4,5,6} e Pr[i] = 1/6.
Par = {2,4, 6} tem probabilidade Pr[Par] = Zeepar Prle] =1/2.

Probabilidade: Nocdes basicas

o Varidvel aleatoria
X:0O—N

e Escrevemos Pr[X = 1] para Pr[X~'(i)].
e Varidveis aleatorias independentes

PIX=xeY =y] = P[X=x]PlY =y]

Valor esperado

EX]= ) PrlelX(e) =) iPr[X =i

ec i>0

Linearidade do valor esperado: Para varidveis aleatorias X, Y

E[X+Y] =E[X] + E[Y]
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A.1. Probabilidade discreta

Prova. (Das formulas equivalentes para o valor esperado.)

Z Pr[X =ili = Z Pr[x!

0<i 0<i
=Y ) PrlelX(e) =) PrlelX(e)
0<ieeX—1(1) ecQ
[
Prova. (Da linearidade.)
EX+Y] = Z Prle Y(e))
ecQ
= ) Prle]X(e) Y PrlelY(e)) = EX] + E[Y]
ecQ) ecQ
[

Exemplo A.3

(Continuando exemplo A.2.)

Seja X a variavel aleatério que denota o numero sorteado, e Y a variavel
aleatorio tal que Y = [a face em cima do dado tem um ponto no meio].

=) PriX=1ii=1/6 ) i=21/6=7/2

i>0 1<i<6
=Y PrlY=ili=PrlY =1 =1/2EX+Y]  =EX +E[Y] =4
i>0

Lema A.4 (Forma alternativa da expectativa)
Para uma variavel aleatoria X que assume somente valores nao-negativos in-
teiros E[X] = 3y o1 PIX> k] =3, -, PIX >kl

Prova.

=) KPX=Kk=) > PX=k=) Y PX=k=) PX=>jl.

k>1 k>1jek] i>1j<k j>1

Lema A.5
Para tentativas repetidas com probabilidade de sucesso p, o ntimero esperado
de passos para o primeiro sucesso é 1/p.
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Prova. Seja X o niimero de passos até o primeiro sucesso. Temos P[X > k] =
(1 —p)* e logo pelo lema A.4

EXI=) (1—-p)*=1/p.

k>0
|
Proposicao A.2
Para ¢ convexo @(E[X]) < E[@(X)] e para ¢ concavo @(E[X]) > E[e(X)].
Prova. Pela proposicao A.1. |

Proposicao A.3 (Desigualdade de Markov)
Seja X uma variavel aleatoria com valores nao-negativas. Entao, para todo
a>0

Pr(X > a] < E[X]/a.

Prova. Seja I =[X > a]. Como X > 0 temos I < X/a. O valor esperado de I
é E[lIl =Pr[I =1] =Pr[X > dal, logo

Pr[X > a] = E[I] < E[X/a] = E[X]/a.

Proposi¢do A.4 (Limites de Chernoff (ingl. Chernoff bounds))
Sejam Xj,..., Xy indicadores independentes com Pr[X;] = pi. Para X =
> i Xi temos para todo & > 0

e® "
PrX > (T+8)ul < ((1-1—5)(”5))

para todo & € (0,1)

A

e d "
Pix < (180 < (=5 )
para todo & € (0, 1]
PrX > (1+8)u] < e ¥/
e para todo & € (0,1)

PriX < (1—8)u] < e H°/2,
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Exemplo A.4

Sejam Xj,..., Xy indicadores com Pr[X; = 1] = a e X = ) ; X;. Temos
p=E[X] = )}, E[X{] = ak. Qual a probabilidade de ter menos que a metade
dos X; =17

PriX < |k/2J] < PriX < k/2) = Pr[X < u/20] =
Pr(X < p(1— (1= 1/20))] < e™07/2 = g~ /2xla1/2)%,

O
Medidas basicas A covariancia de duas variaveis aleatorias X e Y é
cov(X,Y) = E[(X — EIX])E[Y — E[Y]] = E[XY] — E[X]E[Y].
A varianga de uma variavel aleatoria X é a covarianca com si mesmo
o(X) = cov(X, X) = E[X?] — E[X]? (A.6)

e o seu desvio padrao & o(X) = 1/cov(X). A correlagio entre duas varidveis
aleatoérias é a covarianca normalizada

p(X,Y) = cov(X,Y)/(a(X)a(Y)). (A7)

A figura A.1 mostra exemplos de dados com correlagoes diferentes.
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Figura A.1.: Trés conjuntos de dados com correlagdo alta, quase zero, e

negativa.
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limitante de Held-Karp, 31

limites de Chernoff, 130

Lin-Kernighan, 82

line search, ver busca em linha

linearidade do valor esperado, 129

listas de candidatos, 16

local branching, 75

méaximo local, 13
multiplos inicios, 50
minimo local, 13
matheuristics, 75
matroide, 45
melhor melhora, 17
melhor vizinho, 14
memetic algorithm, ver algoritmo
memético
memoria
de longa duracao, 38, 53
memoria adaptativa, 35
memoria de curta duragao, 35
MOGA, 88
mono-objetivo, 83
MOSA, 86
MOTS, 87
movimento, 13
multi-start, ver multiplos inicios

nadir, 83
non-dominated sorting GA, 88

NSGA, ver non-dominated sorting

GA

OneMax, 18
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otimizagao com enxames de parti-
culas, 70

otimizagao continua, 90

otimizagao da roda que chia, 52

otimizagao extremal, 34

otimizagao por colonias de formi-
gas, 53

paisagem
isotropipa, 103
particle swarm optimization, ver oti-
mizacao com enxames de
particulas
path relinking, ver religamento de
caminhos
PCV, ver caixeiro viajante
permutation flow shop, 104
politopo, 14
ponto ideal, 83
populacao, 59
primeira melhora, 17
probabilidade, 128
probabilidade de sucesso, 108
probabilidade de sucesso, 108
problema
de avaliacao, 6
de busca, 5
de construgao, 6
de decisao, 6
de otimizacao, 5
problema de busca local, 28
problema de encontrar o minimo
local padrao, 28
profundidade, 33
programa linear, 14
programacao de resfriamento, 33
programacao quadratica binaria, 15
projeto de experimentos, 118
projetos fatorial fracionario, 118
propagagao para atras, 93
propriedade de troca, 45
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ramificagao local, 75
random descent, ver descida alea-
toria
random picking, ver amostragem
aleatoria
random walk, ver caminhada alea-
toria
randomised iterative improvement,
32
reactive GRASP, 51
recency-based memory, ver memo-
ria de curta duragao
recombinacao
convexa, 55
em k pontos, 55
em um ponto, 55
linear, 55
maioritaria, 55
particionada, 55
por mediano, 55
randomizada, 55
record-to-record-travel, ver recorde
para recorde
recorde para recorde, 42
redes neural artificial, 92
reducgao, 28
reduced variable neighborhood se-
arch, 40
regra tabu, 36
relagao
polinomialmente limitada, 6
religamento de caminhos, 57
misto, 58
para frente, 58
para tras, 58
para tréas e frente, 58
truncado, 58
representagao, 7
por conjuntos, 8, 36
por variaveis, 8, 34



sample search, ver busca por amos-
tragem

scatter search, 59

segue os vencedores, 25

segue os vencedores, 29

selegao por torneio, 64

short-term memory, ver memoria
de curta duragao

Simplex, 14

simulated annealing, ver témpera
simulada

sistema de conjuntos, 45

acessivel, 45
independente, 45

sistemas imunologicos artificiais, 72

squeaky wheel optimization, ver oti-
mizagao da roda que chia

Stirling, James, 126

stopping criterion, wver critério de
parada

término de um arco, 22
témpera simulada, 33
tabu search, ver busca tabu
tabu tenure, ver duragao tabu
TANSTAFEL, 7
temperature length, 33
teste
de Friedman, 118
Kruskal-Wallis, 118
threshold accepting, ver aceitagao
por limite
time-to-target, 108
times assincronos, 82
transformador, 9

utoépico, 83
valor esperado, 129

variavel
extrema, 34
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variavel aleatéria, 128, 129

independente, 128
variable neighborhood descent, 40
variable neighborhood search, 41
very large scale neighborhood, 41
viagem de recorde para recorde, 31
vizinhancga, 13

conectada, 13

exata, 13

fechada, 13

fracamente otimamente conec-

tada, 13

grafo de, 13

grande, 41

massiva, 41

simétrica, 13
vizinho, 13
vizinho mais préximo, 48
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