
Universidade Federal do Rio Grande do Sul
Instituto de Informática
Departamento de Informática Teórica

CMP268 – Técnicas de busca heurística
2020/1

Prof. Marcus Ritt

Soluções 1
Ambiente de execução das soluções: um PC com processador AMD Ryzen 9 39000X
com 12 cores de 3.8GHz, 32 GB RAM, e Ubuntu Linux. Código: aqui.

Exercício 1 (Vizinhanças, 2 pt)
1-swap. A vizinhança 1-swap é simétrica, porque trocando os mesmos vértices uma
segunda vez obtemos o estado original. Vamos aproveitar essa observações simples para
introduzir um pouco de notação. Para uma partição (P,Q) balanceada (i.e. ||P |−|Q|| ≤
1) temos (P,Q) ⇌ (p, q) ⇌ (q, p) = (P,Q), onde (P,Q) ⇌ (p, q) para um par de vértices
p ∈ P, q ∈ Q é (P \ {p} ∪ {q}, Q \ {q} ∪ {p}). Ainda vamos escrever |(P,Q)| = |P |+ |Q|
e (P,Q)⊕ (R,S) = (P ⊕R,Q⊕, S).
A vizinhança 1-swap não é conectada: as duas partes sempre tem a mesma quantidade
⌈n/2⌉ e ⌊n/2⌋ de vértices, logo não é possível alcançar um estado onde a primeira
parte tem um vértice a menos. Mas essa definição é rígida demais: podemos identificar
a partição (P,Q) com (Q,P). Agora a vizinhança é conectada: dado duas partições
S = (PS, QS), T = (PT , QT) podemos supor que elas tem o mesmo número de vértices
em |PS| = |PT | (*). Logo existe um vértice p ∈ PS, p ̸∈ PT senão, PT ⊆ PS e (*) implica
PS = PT , i.e. as soluções ficam idênticas. Por um argumento similar também existe
q ∈ QS, q ̸∈ QT . Trocando p e q em S reduz a distância: |(S ⇌ (p, q))⊕T | = |S⊕T |−2,
e um argumento por indução mostra que existe um sequência de 1-swaps que transforma
S em T . Com isso a vizinhança também está fracamente otimamente conectada.
Finalmente ela não é exata: é um mínimo local (não estrito) de valor 2, mas a
solução ótima tem valor 1.
2-swap. A vizinhança 2-swap é simétrica, pelo mesmo argumento. Ela não é conectada,
mesmo identificando soluções (P,Q) e (Q,P), porque podemos ter uma distância 2, mas
um 2-swap muda a distância sempre por 4. Também não é fracamente otimamente
conectada (por exemplo, do estado não podemos alcançar o estado ótimo) e por
isso também não exata.

Exercício 2 (Busca local para um problema polinomial, 4pt)
O processo de geração sugerido no exercício tende a produzir envoltórias convexas com
poucos pontos: ele foi substituído por um processo que gera pontos (r, φ) com r = 0.5 e
φ ∈ U [0, 2π]. Um exemplo é dado na Figura 1 (esquerda).
Vamos comparar buscas local primeira e melhor melhora, PM e MM, com o algoritmo
direto D, que ordena os pontos no sentido anti-horário. As instâncias de teste tinham
n = 100[16] pontos. Cada experimento foi replicado 30 vezes. O tempo do Algoritmo
D foi, em todas instâncias, menos que 1ms. Tabela 1 mostra para cada n o tempo t
em segundos e o número de iterações s, ambos com desvio padrão σ para PM e MM.
Figura 1 (meio, direita) mostra gráficos exemplários para PM.
Podemos ver que o tempo em função do número de iterações segue aproximadamente o
esperado: cada iteração precisa no caso pessimista analisar Θ(n2) vizinhos, para verificar
um mínimo local todos vizinhos tem que ser analisados uma vez. Então esperamos um
complexidade de Ω(n2). Para MM isso é a complexidade por iteração. De fato, a

v5190 1 Licença Creative Commons
(Atribuição–Uso Não-Comercial–Não a obras derivadas 3.0 Brasil).

http://www.inf.ufrgs.br/~mrpritt/msc/e0120201.zip
http://creativecommons.org/licenses/by-nc-nd/3.0/br

Universidade Federal do Rio Grande do Sul
Instituto de Informática
Departamento de Informática Teórica

CMP268 – Técnicas de busca heurística
2020/1

Prof. Marcus Ritt

complexidade empírica, determinada usando uma hipótese polinomial de acordo com a
seção 6.5 da notas de aula, produz TPM(n) = 3.0 · n2.8 ns e TMM(n) = 2.5 · n3.1 ns.

Exercício 3 (Busca local para um problema NP-completo, 4pt)
a) O desafio está numa implementação razoavelmente eficiente das buscas. Para

acelerar as buscas estamos mantendo um valor gv para todo vértice v ∈ V , que
representa a mudança na função objetivo caso o vértice v passa para o outro parte.
Com isso a troca de vértices u, v tem valor gu+gv+2[uv], onde a expressão [uv] é 1
caso existe uma aresta entre u e v, e 0 caso contrário. Uma troca pode ser avaliada
em tempo O(log∆), com ∆ o maior grau, buscando na lista de vizinhos de vértice
u por v para determinar o valor de [uv]. Depois de trocar u e v temos que atualizar
os valores de u, v e todos vizinhos dos dois vértices em tempo O(δ(u) + δ(v).
No caso da melhor melhora isso ainda implica numa complexidade de Θ(∆n2) para
encontrar o melhor par, um tempo proibitivo em grafos maiores. Então neste caso
vamos usar buckets para acelerar a busca. Nota que −∆ ≤ gv ≤ ∆, para todos
vértices. Logo, para uma partição balanceada (P,Q) de V vamos manter p-buckets
pi e q-buckets qi para i ∈ [−∆,∆], onde cada p-bucket pi contém os vértices em
v ∈ P com gv = i e cada q-bucket os vértices v ∈ Q com gv = i. Escreve |pi| e |qi|
para o número de vértices nos buckets. Para determinar a melhor troca, vamos
encontrar o menor i com |pi| > 0 e o menor j com |qj| > 0. Estes índices sempre
existem porque os partes são não-vazios. Qualquer par de vértices u ∈ pi, v ∈ qj
tem valor i+ j +2[uv]. Então caso [uv] = 0 encontramos uma troca ótima. Senão
ainda é possível encontrar uma troca de menor valor com u ∈ pi+1, v ∈ qj ou com
u ∈ pi, v ∈ qj+1, onde [uv] = 0. Isso é suficiente para encontrar a melhor troca.
Além das atualização dos valores g como no caso da primeira melhores, teremos
que atualizar ainda os buckets: cada vértices que troca de valor g troca de bucket.
Tabela 2 mostra para cada instância o melhor valor conhecido, e para as duas
buscas o número de iterações(± desvio), o tempo (± desvio) e o desvio relativo
(± desvio) do valor encontrado. Podemos observar que os resultados ficam razoá-
veis (em comparação com soluções aleatórias), mas ainda distantes das melhores

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

−0.50

−0.25

0.00

0.25

0.50

−0.50 −0.25 0.00 0.25 0.50
x

y

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●
●
●●●● ●●●

●●●●
●●●●●●●●●●●●●●●

●●●

●
●●

●●●●●●●●

●
●●● ●● ●●

●
●

●
● ●

●●
●●●●

●●

●

●

●

● ●●
●●●●

●
●

●
●

●

●●
●● ●
●

●

●
●
● ●●●

●
●

●●
●

●

●●

●
●

●
●

● ●●

●

●
●●
●

●

●
●

●

●●●●

●

●
●

●●
●

●

●

●

●
●●●●
●

●

●

●

●
●● ●●●
●

●
●●

●

●

●
●

● ●●

●

●●●
●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●
●

●

●
●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0

2

4

6

8

0 5000 10000
Número de iterações

Te
m

po
 (

s)

●●●●
●●●●●●●●●●●●●
●
●●●
●●●●
●●●●
●

●●●
●
●
●
●●●●●●●●
●
●●●●●
●
●●●●
●●
●●
●

●●
●
●
●●●
●
●●
●●●●
●●●
●
●
●●●●●●
●●●●●

●●
●
●●

●●●
●●
●
●
●
●
●●●●
●●
●●

●
●
●●

●
●●
●

●

●●
●
●●●●
●●
●
●●●
●

●

●
●●●
●
●
●
●●
●
●●
●●

●
●

●

●●

●

●
●
●
●●
●
●
●●●
●●●●●

●
●●

●
●●

●
●●

●
●

●
●
●

●●
●
●
●

●
●
●

●●

●

●
●

●

●●

●
●
●●●

●●

●

●

●
●●●

●

●
●

●

●●●
●●●

●

●
●●
●

●

●

●

●
●
●
●
●

●

●

●

●

●
●

●

●
●●●
●

●

●

●
●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●●●
●
●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●
●●
●
●

●

●

●●

●●
●

●
●

●

●

●

●●●

●●

●

●

●

●

●

●
●

●●
●●

●

●

●●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●
●●

●

●

●

●
●●
●

●
●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●
●

●●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●●

●

●

●●

●
●
●

●●
●

●●
●
●
●● ●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●●
●

●
●

●

●

●

●

●

●●

●

0

5000

10000

400 800 1200 1600
Número de vértices

N
úm

er
o

de
 it

er
aç

õe
s

Figura 1: Esquerda: exemplo de uma instância, Meio: tempo em função de número de
iterações, Direita: número de iterações em função do número de vértices.

v5190 2 Licença Creative Commons
(Atribuição–Uso Não-Comercial–Não a obras derivadas 3.0 Brasil).

http://creativecommons.org/licenses/by-nc-nd/3.0/br

Universidade Federal do Rio Grande do Sul
Instituto de Informática
Departamento de Informática Teórica

CMP268 – Técnicas de busca heurística
2020/1

Prof. Marcus Ritt

Tabela 1: Resultados das busca locais.
PM MM

n t (s) ±σ s ±σ t (s) ±σ s ±σ

100 0.00 0.00 402.1 38.8 0.00 0.00 120.9 7.2
200 0.01 0.00 1039.1 53.7 0.03 0.00 262.1 20.0
300 0.02 0.01 1738.2 70.5 0.12 0.01 411.8 25.5
400 0.06 0.03 2547.9 102.6 0.28 0.02 553.4 34.5
500 0.11 0.05 3382.3 93.3 0.58 0.03 724.6 41.2
600 0.16 0.08 4154.4 147.9 1.02 0.08 876.8 58.3
700 0.29 0.16 5028.7 240.9 1.58 0.09 1008.9 51.7
800 0.31 0.11 5843.5 163.6 2.42 0.13 1185.5 63.8
900 0.57 0.32 6818.8 240.4 3.48 0.21 1345.7 77.7

1000 0.60 0.38 7597.5 268.5 4.77 0.26 1488.9 78.1
1100 0.95 0.60 8559.0 280.6 6.51 0.34 1671.6 86.2
1200 1.03 0.44 9399.9 297.0 8.70 0.44 1874.6 91.6
1300 1.44 0.78 10325.8 295.2 10.73 0.69 1978.6 97.3
1400 1.90 1.24 11210.2 331.2 13.50 0.68 2134.1 99.8
1500 2.68 1.27 12280.0 276.8 16.83 0.91 2310.1 120.8
1600 2.86 1.43 13091.6 416.6 20.10 3.21 2413.8 383.7

soluções. O tempos para as maiores instâncias são grandes, mas nunca mais que
10 minutos. Uma curiosidade é que o busca melhor melhora é mais rápida que a
primeira melhora, porque implementas uma estrutura de dados com operações efi-
cientes que encontra a melhor melhora sem analisar todas trocas individualmente.

b) A BLMR é uma busca melhor melhora com randomização, então não precisa ne-
nhuma aceleração específica. Porém nos evitamos de selecionar uma das melhores
trocas aleatoriamente por razões de eficiência. A tabela 3 mostra os resultados
para diferentes valores de p: número de iterações “#i” (em M), desvio relativo r
(em %), e tempo t (em s). Podemos observar que o número de iterações diminui
de aprox. 1M/s para 105/s com p crescente. O desvio relativos para p = 0 ficam
mais ou menos idênticos com a busca local melhor melhora, como esperado, mas
melhoram com p crescente, até aprox. p = 0.5 e depois pioram. O melhor desvio
relativo médio sobre todas instâncias é observado para p = 0.5 com um valor de
1080.8.

c) Nenhuma das buscas encontra os melhores valores conhecidos. Então aqui vamos
determinar a complexidade empírica das buscas primeira e melhor melhora em
função do tamanho da instância. (O BLMR tem tempo fixo.) Em ambos os casos
uma hipótese polinomial é mais adequado (com R2 de 0.97 e 0.83, respectivamente)

v5190 3 Licença Creative Commons
(Atribuição–Uso Não-Comercial–Não a obras derivadas 3.0 Brasil).

http://creativecommons.org/licenses/by-nc-nd/3.0/br

Universidade Federal do Rio Grande do Sul
Instituto de Informática
Departamento de Informática Teórica

CMP268 – Técnicas de busca heurística
2020/1

Prof. Marcus Ritt

Tabela 2: Resultados das buscas locais.
FI BI

Inst n BKV #i ±σ r ±σ t (s) ±σ #i ±σ r ±σ t (s) ±σ

add20 2395 596 1305.5 91.6 93.9 15.6 0.0 0.0 464.0 34.2 57.4 15.3 0.0 0.0
data 2851 189 2105.6 129.3 859.0 94.8 0.0 0.0 612.5 16.3 629.8 67.9 0.0 0.0
3elt 4720 90 2258.0 53.9 2007.1 104.3 0.1 0.0 785.2 26.0 2022.2 93.5 0.0 0.0
uk 4824 19 1924.9 50.0 4939.6 132.5 0.1 0.0 766.9 16.6 4602.1 138.1 0.0 0.0
add32 4960 11 2371.9 93.5 9880.6 636.1 0.1 0.0 875.9 22.1 7298.2 520.8 0.0 0.0
bcsstk33 8738 10171 12338.7 1408.1 157.1 58.1 0.9 0.7 2229.3 70.8 42.0 36.2 0.1 0.0
whitaker3 9800 127 4863.5 130.6 3754.4 95.3 0.2 0.0 1648.7 19.3 3029.0 85.0 0.0 0.0
crack 10240 184 5877.6 140.4 2216.4 51.9 0.3 0.0 1662.7 17.9 2234.4 47.4 0.0 0.0
wingnodal 10937 1707 10687.7 639.3 215.5 65.8 1.2 0.3 2946.5 150.8 278.3 58.1 0.0 0.0
fe4elt2 11143 130 5176.8 147.9 3781.1 120.8 0.3 0.1 1937.5 28.1 3191.6 125.9 0.0 0.0
vibrobox 12328 10343 12402.0 457.0 84.7 13.4 1.3 0.5 3197.5 84.9 39.2 10.9 0.1 0.0
bcsstk29 13992 2843 13230.5 657.9 890.1 114.7 1.0 0.3 3350.7 49.0 438.4 61.0 0.1 0.0
4elt 15606 139 7117.0 120.1 4317.4 101.0 1.3 0.3 2593.0 28.6 4478.8 85.7 0.0 0.0
fesphere 16386 386 6630.7 115.1 1686.4 32.8 1.0 0.3 2687.7 35.2 1699.6 37.2 0.0 0.0
cti 16840 334 8837.5 214.0 2642.0 70.9 0.9 0.3 2840.3 38.8 2386.2 79.2 0.0 0.0
memplus 17758 5499 9538.7 172.0 57.5 3.4 1.0 0.2 3196.8 44.9 64.5 3.0 0.0 0.0
cs4 22499 369 7610.3 348.3 2186.8 47.4 1.6 0.5 2688.1 30.7 2292.7 22.7 0.0 0.0
bcsstk30 28924 6394 34071.1 922.5 1640.6 118.0 4.1 1.2 7178.9 87.5 307.9 159.5 0.4 0.0
bcsstk31 35588 2762 37912.9 865.7 1792.2 123.9 4.8 1.5 8519.5 120.9 1000.0 144.7 0.2 0.0
fepwt 36519 340 19951.8 348.7 5306.7 117.9 4.9 1.5 7027.0 79.4 5048.9 135.4 0.1 0.0
bcsstk32 44609 4667 44251.7 1285.9 2393.4 119.0 9.1 1.4 10755.1 92.8 907.2 161.1 0.3 0.0
febody 45087 262 27986.7 1104.0 8236.9 189.8 9.4 2.2 9015.5 81.7 6690.9 139.1 0.1 0.0
t60k 60005 79 21960.8 160.4 16219.6 122.1 24.8 12.9 10406.0 62.0 13788.9 131.9 0.1 0.0
wing 62032 789 23710.2 1345.3 2723.5 41.0 19.3 2.4 7325.1 52.2 3033.3 23.1 0.1 0.0
brack2 62631 731 64107.9 1144.7 5417.3 216.1 19.4 4.9 15322.5 177.3 4431.5 219.9 0.2 0.0
finan512 74752 162 41834.3 1264.8 29300.2 421.9 33.1 10.3 14000.9 143.7 22190.7 544.2 0.1 0.0
fetooth 78136 3816 78715.1 1203.3 1198.6 30.2 33.2 6.3 18977.2 264.6 1015.1 49.3 0.2 0.0
ferotor 99617 2098 95356.7 1986.9 2550.0 120.3 52.4 13.6 25644.5 267.6 2606.3 107.8 0.4 0.0
598a 110971 2398 110406.1 1705.7 1969.3 72.6 176.2 48.0 29271.1 258.1 2467.2 87.8 0.6 0.0
feocean 143437 464 74396.1 1815.4 15249.2 312.1 217.5 107.8 24111.5 95.4 14659.6 123.6 0.2 0.0
144 144649 6486 146677.5 3023.4 1144.0 52.8 261.5 116.1 38392.5 344.3 1283.5 38.0 0.9 0.0
wave 156317 8677 164300.9 3693.1 1043.7 66.0 337.4 137.1 41784.5 515.8 970.1 32.1 0.6 0.0
m14b 214765 3836 230879.5 3760.5 2996.9 139.7 495.2 125.9 58047.9 620.5 3274.6 119.4 1.4 0.0
auto 448695 10101 464066.2 7143.9 2355.6 66.1 2715.7 797.0 121709.6 724.2 2618.2 72.5 3.8 0.5

e obtemos

TFI(n) = 0.3 · n2.3 ns

TBI(n) = 187 · n1.3 ns

v5190 4 Licença Creative Commons
(Atribuição–Uso Não-Comercial–Não a obras derivadas 3.0 Brasil).

http://creativecommons.org/licenses/by-nc-nd/3.0/br

Universidade Federal do Rio Grande do Sul
Instituto de Informática
Departamento de Informática Teórica

CMP268 – Técnicas de busca heurística
2020/1

Prof. Marcus Ritt

Tabela 3: Resultados da busca BLMR para diferentes valores de p.
0 0.05 0.25 0.5 0.75 1

Inst #i(M) r t (s) #i(M) r t (s) #i(M) r t (s) #i(M) r t (s) #i(M) r t (s) #i(M) r t (s)

add20 373.5 57.7 300.4 344.1 10.0 300.5 180.8 7.7 300.9 117.5 15.6 300.9 99.2 192.0 300.9 87.0 523.4 300.5
data 251.9 616.8 300.9 212.9 215.7 300.8 111.3 196.1 300.8 71.6 164.9 300.8 76.0 2495.8 300.6 67.4 3899.0 300.6
3elt 355.7 2084.2 300.8 230.9 133.3 300.7 87.2 132.4 300.8 51.1 278.9 300.5 72.5 5047.8 300.6 55.8 7503.3 300.6
uk 847.2 4594.7 300.8 344.4 358.9 300.9 101.7 232.6 300.8 55.8 1036.8 300.8 71.5 11860.0 300.4 60.0 18004.2 300.8
add32 782.7 6718.2 300.7 379.2 3138.2 300.6 161.3 2276.4 300.5 90.7 1630.9 301.1 84.7 25005.5 300.4 67.6 43170.9 300.4
bcsstk33 32.5 38.0 300.8 27.4 34.2 300.8 19.5 27.2 300.8 14.4 50.6 300.9 15.1 879.5 300.6 13.1 1335.1 300.8
whitaker3 498.3 3033.4 300.8 152.6 257.6 300.9 39.4 201.6 300.6 21.1 357.2 301.1 40.6 7757.5 300.7 29.2 11346.6 301.0
crack 253.3 2222.0 300.9 149.4 237.3 300.4 55.6 199.6 300.8 30.8 191.5 300.5 36.6 5806.7 300.7 26.8 8146.0 300.7
wingnodal 272.8 249.2 300.7 145.6 126.5 300.6 62.5 96.8 300.5 36.3 28.7 300.5 38.8 1426.8 300.5 27.7 2115.9 301.0
fe4elt2 436.6 3210.0 301.1 176.4 454.5 301.0 49.1 375.1 300.7 25.4 319.2 300.7 40.5 8579.4 300.8 29.0 12558.0 301.0
vibrobox 69.6 38.7 300.9 51.1 29.4 300.7 39.3 24.7 300.5 28.6 24.2 300.5 24.8 408.1 301.2 19.1 699.3 300.6
bcsstk29 56.7 471.3 300.7 39.2 472.2 300.6 25.4 432.0 301.0 19.3 271.9 300.6 19.0 3323.3 300.5 15.4 5218.4 300.5
4elt 408.5 4409.2 301.1 85.4 566.3 300.9 20.9 484.2 300.8 10.7 335.0 300.7 24.5 11014.1 300.8 16.6 16357.8 300.7
fesphere 348.1 1694.8 301.1 60.6 64.0 300.3 13.9 68.2 300.8 7.4 142.6 300.7 19.4 4194.3 300.5 13.2 6268.0 300.9
cti 333.0 2382.8 300.8 109.3 589.6 301.0 29.1 554.3 300.8 12.5 222.3 300.9 25.9 4854.3 301.0 18.4 7128.6 300.5
memplus 213.2 63.2 300.7 99.7 36.7 300.5 32.8 34.1 300.6 18.3 38.9 300.7 21.1 180.9 300.9 16.6 393.5 300.6
cs4 445.0 2288.3 300.6 70.9 730.9 300.5 16.3 678.3 300.9 6.5 204.1 300.9 12.0 3857.1 300.9 9.3 5826.0 300.5
bcsstk30 202.7 260.0 300.7 58.1 263.4 300.6 18.9 256.5 300.8 10.7 363.3 301.0 11.4 4899.6 301.2 8.7 7773.9 300.9
bcsstk31 82.6 1060.1 300.6 54.1 964.6 301.0 26.7 913.9 300.4 15.3 667.8 301.0 16.6 5648.9 300.7 11.1 10270.2 301.2
fepwt 253.3 5057.2 300.4 31.7 1068.2 300.5 6.8 966.5 300.9 3.4 839.7 301.1 9.9 14419.5 300.6 6.2 21171.6 301.0
bcsstk32 77.1 902.2 301.2 51.0 921.1 301.0 21.0 1011.3 301.0 12.3 582.2 301.3 12.1 6423.9 300.9 8.8 10452.4 300.9
febody 744.9 6733.1 300.7 105.0 3157.6 301.4 22.4 2782.6 301.1 10.6 1533.4 300.9 13.5 20918.3 300.8 7.8 31113.4 300.7
t60k 766.7 13725.3 301.0 20.8 4341.5 300.5 3.8 3683.8 301.2 1.8 2791.4 300.8 3.0 37624.3 301.0 2.2 56596.7 300.7
wing 723.1 3048.9 300.9 25.9 1057.7 301.1 5.2 1025.9 300.9 2.4 703.1 300.5 3.6 5011.4 301.0 2.7 7597.6 300.8
brack2 159.1 4429.6 300.6 81.2 2490.2 300.7 25.5 2309.2 301.0 13.2 976.1 301.2 12.8 16790.6 301.2 6.3 24970.6 301.2
finan512 308.6 22171.6 300.7 54.8 10156.4 300.7 13.2 9629.5 300.4 6.7 8772.5 300.8 6.3 50247.3 300.9 3.4 80575.3 300.8
fetooth 243.0 1016.7 300.7 70.7 629.3 300.7 20.9 560.3 300.9 10.9 192.1 300.8 10.6 3902.9 300.4 5.1 5836.4 300.9
ferotor 214.1 2682.8 300.7 43.7 1572.6 300.9 11.1 1517.3 301.1 5.5 999.0 300.9 7.7 10754.6 300.7 3.7 15690.2 301.0
598a 91.0 2486.6 301.7 25.6 1499.5 301.1 8.3 1402.9 301.2 4.5 761.4 300.8 5.2 10380.1 300.6 3.0 15365.9 301.0
feocean 383.6 14633.5 300.9 12.3 6120.5 301.0 2.3 5883.7 300.9 0.9 5479.1 301.0 1.8 29943.5 300.6 1.3 44053.1 300.8
144 86.8 1290.6 301.6 22.3 864.8 300.8 5.7 841.3 301.0 3.8 570.9 301.5 4.0 5722.8 300.8 1.7 8181.4 301.0
wave 119.9 985.3 301.1 19.9 617.4 301.4 5.0 601.7 300.9 2.4 427.8 300.9 2.8 4129.4 300.8 1.6 6000.9 300.7
m14b 92.6 3211.5 301.2 15.4 2321.4 301.7 3.6 2319.2 301.4 1.6 2277.5 301.2 1.6 15177.6 300.8 0.6 21780.2 301.1
auto 83.2 2639.5 302.1 4.9 2164.9 302.2 0.9 2244.3 302.0 0.7 3495.0 302.2 0.5 11864.0 301.9 0.3 16301.3 302.2
Avgs 312.1 3544.3 300.9 99.3 1402.0 300.9 36.7 1293.3 300.9 21.3 1080.8 300.9 24.9 10315.9 300.8 19.0 15712.5 300.8

v5190 5 Licença Creative Commons
(Atribuição–Uso Não-Comercial–Não a obras derivadas 3.0 Brasil).

http://creativecommons.org/licenses/by-nc-nd/3.0/br

