Prof. Marcus Ritt

Soluções Técnicas de busca heurística

Questão 1 (Busca tabu e tempera simulada)

A questão tinha soluções atuais e listas tabu diferentes. Segue uma solução exemplária.

- a) Com solução atual $x = (1, 0, 0, 0, 1)^t$ e lista tabu $L = \{(x_1, 0), (x_4, 0)\}$ nenhum 1-flip é tabu, e flips de x_2, x_3 , e x_4 são factíveis. O melhor vizinho é $x' = (1, 1, 0, 0, 1)^t$ e o elemento $(x_2, 0)$ entra na lista tabu.
- b) A probabilidade é $\exp(-2/3) \approx 0.51$; para uma probabilidade de $\exp(-2)$ precisa T = 1.

Questão 2 (Sistemas de conjuntos)

Define um universo U=V. Como o problema padrão de um sistema de conjuntos é de maximização, vamos definir a família de subconjuntos \mathcal{V} válidas como complementos de coberturas, i.e.

$$\mathcal{V} = \{ \overline{C} \mid C \subseteq V \text{ \'e uma cobertura} \}$$

com $\overline{C} = V \setminus V$ o complemento do conjunto C.

O sistema é accessível, porque para um conjunto viável $\overline{C} \neq \emptyset$ temos uma cobertura $C \neq V$. Para qualquer vértice $v \in \overline{C}, C' = C \cup \{v\}$ também é uma cobertura $C' \supset C$, logo $\overline{C'} \subset C$ é uma conjunto viável. Um argumento similar mostra que o sistema de fato é independente.

Porém o sistema não satisfaz a propriedade de troca: considere uma estrela $K_{1,3} = ([4], \{\{1,2\}, \{1,3\}, \{1,4\}\})$ e os conjuntos viáveis $T = \{1\}$ é $S = \{2,3,4\}$. Como |S| > |T| deve existir um $u \in S \setminus T$ tal que $T \cup \{u\} \in \mathcal{V}$. Porém $T \cup \{2\} = \{1,2\} \notin \mathcal{V}$, porque $\{3,4\}$ não é uma cobertura, e similarmente para $u \in \{3,4\}$.

Questão 3 (Buscas locais e vizinhanças)

A questão tinha variantes da vizinhança. Aqui uma resposta exemplário com uma vizinhança que remove um elemento e reinsere numa outra posição.

- a) A vizinhança é conectada, porque ele inclui trocas de elementos adjacentes e qualquer permutação pode ser obtida por uma séria de transposições. (Essa resposta vale para todas variantes.)
- b) É suficiente definir $\phi(\pi) = 1$ constante.
- c) É suficiente definir $\phi(\pi)=1$ constante. Um exemplo de uma função objetivo mais interessante é a distância em termos de inversões ("bubble sort distance") para uma permutação alvo ρ fixa.

Questão 4 (Testes estatísticos)

A sequência de resultados foi aleatória. Exemplariamente para 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1: podemos selecionar, por exemplo, um teste de sinal. Neste caso temos 10 sucessos em 16 tentativas. A probabilidade de observar 10 ou mais sucessos caso a moeda é justa é p = 0.10506. Logo, não podemos rejeitar a hipótese nula de uma moeda justa.

Questão 5 (Religamento de caminhos)

A questões tinham matrizes diferentes. Exemplariamente segue a resposta para

$$D = \begin{pmatrix} 0 & 4 & 6 & 4 & 6 & 4 & 5 & 10 & 2 & 2 \\ 8 & 0 & 10 & 2 & 5 & 6 & 8 & 8 & 3 & 6 \\ 1 & 10 & 0 & 3 & 9 & 7 & 6 & 1 & 2 & 7 \\ 8 & 5 & 9 & 0 & 10 & 7 & 7 & 7 & 10 & 7 \\ 8 & 5 & 4 & 7 & 0 & 4 & 3 & 9 & 8 & 7 \\ 3 & 1 & 3 & 3 & 6 & 0 & 2 & 3 & 6 & 9 \\ 8 & 1 & 7 & 4 & 6 & 7 & 0 & 5 & 9 & 6 \\ 5 & 7 & 9 & 4 & 2 & 3 & 9 & 0 & 3 & 4 \\ 2 & 3 & 2 & 8 & 9 & 3 & 7 & 8 & 0 & 4 \\ 2 & 2 & 2 & 10 & 3 & 8 & 2 & 3 & 7 & 0 \end{pmatrix}$$

 $\acute{\rm E}$ necessário definir uma distância: vamos usar o número de inversões ("bubble sort distance") entre as permutações, i.e. somente trocas que reduzem o número de inversões são permitidas. Vamos usar uma representação hexadecimal para as cidades, para facilitar a notação.

Solução(Valor)	Candidatos (Valores)
123456789a(47)	132456789a(48), 123456798a(56)
132456789a(48)	312456789a(37), 134256789a(39), 132456798a(57)
312456789a(37)	314256789a(35), 312456798a(46)
314256789a(35)	314526789a(42), 314256798a(44)
314526789a(42)	314526798a(51)
314526798a(51)	314526978a(50), 31452679a8(49)
3145926a78	Solução guia