
INF05010 – Otimização combinatória

1 2 3 4 5

1
2
3
4
5
6

x1

x2

(1.85, 3.01)

r = 1.85

Notas de aula

Marcus Ritt
marcus.ritt@inf.ufrgs.br

10 de fevereiro de 2022
Universidade Federal do Rio Grande do Sul

Instituto de Informática
Departamento de Informática Teórica

marcus.ritt@inf.ufrgs.br

ii

Versão 11907 do 2022-02-10, compilada em 10 de fevereiro de 2022. Obra
está licenciada sob uma Licença Creative Commons (Atribuição-Uso Não-
Comercial-Não a obras derivadas 4.0 bnd).

Na parte I, as notas de aula seguem o livro “Linear programming: Foundati-
ons and extensions” de Robert J. Vanderbei, Universidade Princeton, disponí-
vel em http://www.princeton.edu/~rvdb/LPbook. Agradeço contribuições
de Luciana Buriol e Alysson M. Costa às primeiras versões dessas notas.

Fonte das imagens:
George Dantzig (18): INFORMS, Jean Baptiste Joseph Fourier (18): Wikipe-
dia, Xadrez (104): Wikipedia, Mauricio G. C. Resende (172): Página pessoal,
Fred Glover (175): Página pessoal, Pierre Hansen (179): Página pessoal, Pablo
Moscato (192): Página pessoal.

http://creativecommons.org/licenses/by-nc-nd/4.0
http://www.princeton.edu/~rvdb/LPbook
http://www2.informs.org/Press/GeorgeDantzig.jpg
http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/wiki/Knight_(chess)
http://www.research.att.com/~mgcr
http://www.colorado.edu/law/eesi/Fred_Glover.htm
http://www.hec.ca/profs/pierre.hansen.html
http://livesite.newcastle.edu.au/cibm/People.page

Conteúdo

I. Programação linear 5

1. Introdução 7
1.1. Exemplo . 7
1.2. Formas normais . 13
1.3. Solução por busca exaustiva . 15
1.4. Notas históricas . 18
1.5. Exercícios . 19

2. O método Simplex 27
2.1. Um exemplo . 27
2.2. O método resumido . 32
2.3. Sistemas ilimitados . 35
2.4. Encontrar uma solução inicial: o método de duas fases 35

2.4.1. Resumo do método de duas fases 39
2.5. Sistemas degenerados . 40
2.6. Complexidade do método Simplex 47
2.7. Exercícios . 48

3. Dualidade 51
3.1. Introdução . 51
3.2. Características . 54
3.3. Dualidade em forma não-padrão 58
3.4. Interpretação do dual . 61
3.5. Método Simplex dual . 63
3.6. Os métodos em forma matricial 67

3.6.1. O dicionário final em função dos dados 67
3.6.2. Simplex em forma matricial 71

3.7. Análise de sensibilidade . 73
3.8. Exercícios . 81

4. Tópicos 83
4.1. Centro de Chebyshev . 83

2 CONTEÚDO

4.2. Função objetivo convexa e linear por segmentos 84

II. Programação inteira 85

5. Introdução 87
5.1. Definições . 87
5.2. Motivação e exemplos . 92
5.3. Aplicações . 93

6. Formulação 103
6.1. Exemplos . 103
6.2. Técnicas para formular programas inteiros 104

6.2.1. Formular restrições lógicas 105
6.2.2. Formular restrições condicionais 107

6.3. Formulações alternativas . 110
6.4. Exercícios . 111

7. Técnicas de solução 121
7.1. Introdução . 121
7.2. Problemas com solução eficiente 121

7.2.1. Critérios para soluções inteiras 125
7.3. Desigualdades válidas . 131
7.4. Planos de corte . 137
7.5. Algoritmos Branch-and-bound 141
7.6. Notas . 147
7.7. Exercícios . 147

8. Tópicos 151

III. Heurísticas 153

9. Introdução 157

10.Heurísticas baseadas em Busca local 161
10.1. Busca local . 161
10.2. Metropolis e Simulated Annealing 168
10.3. GRASP . 171
10.4. Busca Tabu . 175

CONTEÚDO 3

10.5. Variable Neighborhood Search 179
10.6. Algoritmo Guloso Iterado . 181

11.Heurísticas inspirados da natureza 185
11.1. Algoritmos Genéticos e meméticos 185

IV. Appéndice 195

A. Conceitos matemáticos 197

B. Formatos 199
B.1. CPLEX LP . 199
B.2. Julia/JuMP . 201
B.3. AMPL . 203

C. Soluções dos exercícios 211

Bibliografia 237

Índice 239

Parte I.

Programação linear

1. Introdução

Introdução

If one would take statistics about which mathematical problem
is using up most of the computer time in the world, then . . . the
answer would probably be linear programming. (Laszlo Lovasz)

1.1. Exemplo

Exemplo 1.1 (No Ildo)
Antes da aula visito o Ildo1 para tomar um café e comer um Croissant. Ele
me conta: “Estou especializado em Croissants e Strudels. Tenho um lucro
de 20 centavos por Croissant e 50 centavos por Strudel. Diariamente até
80 clientes compram um Croissant e até 60 um Strudel.” Mas infelizmente,
o Ildo apenas disponibiliza de 150 ovos e 6 kg de açúcar por dia. Entre
outros ingredientes, preciso um ovo e 50g de açúcar para cada Croissant e
um ovo e meio e 50g de açúcar para cada Strudel. “Agora, professor, quantas
Croissants e Strudels devo produzir para obter o maior lucro?”

Sejam c o número de Croissants e s o número de Strudels. O lucro do Ildo em
Reais é 0.2c + 0.5s. Seria ótimo produzir todos 80 Croissants e 60 Strudels,
mas uma conta simples mostra que não temos ovos e açúcar suficiente. Para
produzir os Croissants e Strudels precisamos c + 1.5s ovos e 50c + 50sg de
açúcar que não podem ultrapassar 150 ovos e 6000g. Com a condição óbvia
que c ≥ 0 e s ≥ 0 chegamos no seguinte problema de otimização:

maximiza 0.2c + 0.5s (1.1)

sujeito a c + 1.5s ≤ 150,

50c + 50s ≤ 6000,

c ≤ 80,

s ≤ 60,

c, s ≥ 0.

1Uma lancheria que existia no Instituto de Informática até 2012.

8 Capítulo 1. Introdução

Como resolver esse problema? Com duas variáveis podemos visualizar a
situação num grafo com c no eixo x e s no eixo y

No Ildo

0 20 40 60 80 100
0

20

40

60

80

100

10

20

30

40

c + 1.5s = 150

50c + 50s = 6000

c = 80

s = 60

Soluções viáveis

c (croissants)

s
(s

tr
ud

el
s)

Otimizando o lucro do bar

que nesse caso permite resolver o problema graficamente. Desenhando di-
versos conjunto de nível (ingl. level set) com valor da função objetivo 10, 20, 30,
40 é fácil observar que o lucro máximo encontra-se no ponto c = s = 60, e
possui um valor de 42 reais.

♢

1.1. Exemplo 9

Definição 1.1 (Conjunto de nível (ingl. level set))
Para uma função f (x), x ∈ Rn a conjunto de nível c ∈ R é Lc(f) = {x |
f (x) = c}.

A forma geral de um problema de otimização (ou de programação matemática) é

opt f (x)

sujeito a x ∈ V,

com

• um objetivo opt ∈ {max, min},

• uma função objetivo (ou função critério) f : V → R,

• um conjunto de soluções viáveis (ou soluções candidatas) V.

Falamos de um problema de otimização combinatória, caso V é discreto.
Nessa generalidade um problema de otimização é difícil ou impossível de
resolver. O exemplo 1.1 é um problema de otimização linear (ou programação
linear):

• as variáveis de decisão são reais: x1, . . . , xn ∈ R

• a função de otimização é linear em x1, . . . , xn:

f (x1, . . . , xn) = c1x1 + · · ·+ cnxn (1.2)

• as soluções viáveis são definidas implicitamente por m restrições lineares

a11x1 + a12x2 + · · ·+ a1nxn ./1 b1, (1.3)

a21x1 + a22x2 + · · ·+ a2nxn ./2 b2, (1.4)

· · · (1.5)

am1x1 + am2x2 + · · ·+ amnxn ./m bm, (1.6)

com ./i∈ {≤,=,≥}.

Exemplo 1.2 (O problema da dieta (Dantzig))
Suponha que temos uma tabela de nutrientes de diferentes tipos de alimen-
tos. Sabendo o valor diário de referência (VDR) de cada nutriente (quan-
tidade de nutriente que deve ser ingerido) e o preço de cada unidade de

10 Capítulo 1. Introdução

alimento, qual a dieta ótima, i.e. a dieta de menor custo que contém pelo
menos o valor diário de referência?
Com m nutrientes e n alimentos, seja aij a quantidade do nutriente i no
alimento j (em g/g), ri o valor diário de referência do nutriente i (em g) e cj
o preço do alimento j (em R$/g). Queremos saber as quantidades xj de cada
alimento (em g) que

minimiza c1x1 + · · ·+ cnxn (1.7)

sujeito a a11x1 + · · ·+ a1nxn ≥ r1, (1.8)

· · ·
am1x1 + · · ·+ amnxn ≥ rm, (1.9)

x1, . . . , xn ≥ 0. (1.10)

♢
Exemplo 1.3 (Problema de transporte (Hitchcock))
Uma empresa agrária tem m depósitos, cada um com um estoque de ai,
i ∈ [m] toneladas de milho. Ela quer encaminhar bj, j ∈ [n] toneladas de
milho para n clientes diferentes. O transporte de uma tonelada do depósito
i para cliente j custa R$ cij. Qual seria o esquema de transporte de menor
custo?
Para formular o problema linearmente, podemos introduzir variáveis xij que
representam o peso dos produtos encaminhados do depósito i ao cliente j, e
queremos resolver

minimiza ∑
i∈[m],j∈[n]

cijxij (1.11)

sujeito a ∑
j∈[n]

xij ≤ ai, para todo fornecedor i ∈ [m], (1.12)

∑
i∈[m]

xij = bj, para todo cliente j ∈ [n], (1.13)

xij ≥ 0, para todo fornecedor i ∈ [m] e cliente j ∈ [n].

Concretamente, suponha que temos a situação da Figura 1.1. A figura mos-
tra as toneladas disponíveis de cada fornecedor, a demanda (em toneladas)
de cada cliente e as distâncias (em km) entre eles. O transporte custa R$ 1000
por km e tonelada. Observe que um transporte do fornecedor 1 para cliente
3 e fornecedor 3 para cliente 1 não é possível. Nós usaremos uma distân-
cia grande de 100 km nesses casos (uma outra possibilidade é usar restrições

1.1. Exemplo 11

7

3

5

7

5

3

3

4
1

2 3

4
3

Cliente 1

Cliente 2

Cliente 3

Fornecedor 1

Fornecedor 2
Fornecedor 3

7

3

5

7

5

3

5

2
3

2 3

Cliente 1

Cliente 2

Cliente 3

Fornecedor 1

Fornecedor 2
Fornecedor 3

Figura 1.1.: Esquerda: Instância do problema de transporte. Direita: Solução
ótima correspondente.

x13 = x31 = 0 ou remover as variáveis x13 e x31 do modelo).

minimiza 3x11 + x12 + 100x13 + 4x21 + 2x22

+ 4x23 + 100x31 + 3x32 + 3x33,

sujeito a x11 + x12 + x13 ≤ 5,

x21 + x22 + x23 ≤ 7,

x31 + x32 + x33 ≤ 3,

x11 + x21 + x31 = 7,

x12 + x22 + x32 = 3,

x13 + x23 + x33 = 5,

x11, x12, x13, x21, x22, x23, x31, x32, x33 ≥ 0.

Qual seria a solução ótima? A Figura 1.1 (direita) mostra o número ótimo de
toneladas transportadas. O custo mínimo é 46 (em R$ 1000). ♢

Podemos simplificar a descrição de um programa linear usando notação
matricial. Com A := (aij) ∈ Rm×n, b := (bi) ∈ Rm, c := (ci) ∈ Rn e

12 Capítulo 1. Introdução

x = (xi) ∈ Rn o problema 1.2-1.6), pode ser escrito de forma

opt ctx

sujeito a aix ./i bi, i ∈ [m]

(Denotamos com ai a i-ésima linha e como aj a j-ésima coluna da matriz A.)
Em caso todas restrições usam a mesma relação ≤, ≥ ou = podemos escrever

opt ctx

sujeito a Ax ≤ b,

opt ctx

sujeito a Ax ≥ b, ou

opt ctx

sujeito a Ax = b.

Exemplo 1.4 (Problema do Ildo em forma matricial)
O problema 1.1 em forma matricial é

maximiza (0.2 0.5)(c s)t

sujeito a


1 1.5
50 50
1 0
0 1

(
c
s

)
≤


150
6000
80
60

 ,

(c s) ≥ 0.

♢

Observação 1.1 (“Programar” linearmente)
Como explicado na seção histórica 1.4, o termo “programação” em “pro-
gramação linear” se refere a “agendamento” ou “planejamento”. Porém,
formular programas lineares é uma atividade muito similar à programação
de computadores. Um programa linear consiste de declarações de variáveis,
constantes, uma função objetivo e uma série de restrições. Podemos escrever
um programa linear de forma mais “computacional” para enfatizar a simila-
ridade com programas. No caso do problema de Hitchcock 1.3, por exemplo,
podemos escrever

var xij , i ∈ [m], j ∈ [n] { declaração variáveis }
const ai , i ∈ [m] { estoques }
const bj , j ∈ [n] { demandas }
max ∑i∈[m],j∈[n] cijxij

st ∑j∈[n] xij ≤ ai , i ∈ [m] { limite estoque }
st ∑i∈[m] xij = bj , j ∈ [n] { satisfação demanda }

1.2. Formas normais 13

Podemos ainda, igual a programação, introduzir nomes para funções line-
ares para facilitar a formulação. Por exemplo enviado(i) = ∑j∈[n] xij é a
quantidade total enviada pelo i-ésimo fornecedor. Similarmente, podemos
escrever recebido(j) = ∑i∈[n] xij para a quantidade total recebida pelo j-ésimo
cliente. Com isso nosso “programa” linear fica

var xij , i ∈ [m], j ∈ [n] { declaração variáveis }
const ai , i ∈ [m] { estoques }
const bj , j ∈ [n] { demandas }
const cij , i ∈ [m], j ∈ [n] { custos }
function enviado(i) = ∑j∈[n] xij

function recebido(j) = ∑i∈[m] xij

max ∑i∈[m],j∈[n] cijxij

st enviado(i) ≤ ai , i ∈ [m] { limite estoque }
st recebido(j) = bj , j ∈ [n] { satisfação demanda }

Vamos conhecer linguagens reais para especificar programas lineares no
parte prático. Um exemplo é Julia/JuMP explicado no appéndice B. A nossa
especificação acima pode ser vista como “pseudo-código” de uma linguagem
atual como Julia/JuMP. ♢

1.2. Formas normais

Conversões
É possível converter

• um problema de minimização para um problema de maximização

min ctx ⇐⇒ −max−ctx

(o sinal − em frente do max é uma lembrança que temos que negar a
solução depois.)

• uma restrição “≥” para uma restrição “≤”

aix ≥ bi ⇐⇒ −aix ≤ −bi

• uma igualdade para desigualdades

aix = bi ⇐⇒ aix ≤ bi ∧ aix ≥ bi

14 Capítulo 1. Introdução

Conversões

• uma desigualdade para uma igualdade

aix ≤ b ⇐⇒ aix + xn+1 = bi ∧ xn+1 ≥ 0

aix ≥ b ⇐⇒ aix − xn+1 = bi ∧ xn+1 ≥ 0

usando uma nova variável de folga ou excesso xn+1 (inglês: slack and
surplus variables).

• uma variável xi sem restrições para duas não-negativas

x+i ≥ 0 ∧ x−i ≥ 0

substituindo xi por x+i − x−i .

Essas transformações permitem descrever cada problema linear em uma
forma padrão.

Forma padrão

maximiza ctx

sujeito a Ax ≤ b,

x ≥ 0.

As restrições x ≥ 0 se chamam triviais.

Exemplo 1.5
Dado o problema

minimiza 3x1 − 5x2 + x3

sujeito a x1 − x2 − x3 ≥ 0,

5x1 + 3x2 + x3 ≤ 200,

2x1 + 8x2 + 2x3 ≤ 500,

x1, x2 ≥ 0.

1.3. Solução por busca exaustiva 15

vamos substituir “minimiza” por “maximiza”, converter a primeira desi-
gualdade de ≥ para ≤ e introduzir x3 = x+3 − x−3 com duas variáveis positi-
vas x+3 e x−3 para obter a forma padrão

maximiza − 3x1 + 5x2 − x+3 + x−3
sujeito a − x1 + x2 + x+3 − x−3 ≤ 0,

5x1 + 3x2 + x+3 − x−3 ≤ 200,

2x1 + 8x2 + 2x+3 − 2x−3 ≤ 500,

x1, x2, x+3 , x−3 ≥ 0.

Em notação matricial temos

c =


−3
5
−1
1

 ; b =

 0
200
500

 ; A =

−1 1 1 −1
5 3 1 −1
2 8 2 −2

 .

♢
Definição 1.2 (Soluções viáveis, inviáveis e ótimas)
Para um programa linear P em forma normal, um vetor x ∈ Rn é uma
solução viável, caso Ax ≤ b e x ≥ 0. P é viável caso existe alguma solução
viável, caso contrário P é inviável. Um vetor x∗ ∈ Rn é uma solução ótima caso
ctx∗ = max{ctx | Ax ≤ b, x ≥ 0}.

Definição 1.3 (Programas ilimitados)
Uma programa linear em forma normal é ilimitado caso existe um v ∈ R tal
que para todo w ≥ v existe uma solução viável x com ctx ≥ w.

1.3. Solução por busca exaustiva

Uma observação importante na solução de um programa linear é que a so-
lução ótima, caso exista, somente ocorra na borda de região das soluções
viáveis (compara com a figura na página 8). Mais específico a solução ótima
ocorre num vértice (ou ponto extremo) dessa região, definido pela interseção
de n restrições linearmente independentes. Isso justifica tratar a programa-
ção linear como problema de otimização combinatória, porque temos um
número finito de (m

n) candidatos para a solução ótima. Procurando o melhor
entre todos candidatos nos também fornece um algoritmo (muito ineficiente)
para encontrar uma solução ótima de um programa linear, caso exista.

16 Capítulo 1. Introdução

Definição 1.4
Um conjunto C ⊆ Rn é convexo, caso para todo par de pontos x, y ∈ C a sua
combinação convexa λx + (1 − λ)y para λ ∈ [0, 1] também pertence a C.

Proposição 1.1
A região de soluções viáveis V = {x ∈ Rn | Ax ≤ b} definido por um
programa linear é convexa.

Prova. Sejam x, y ∈ V. Então

A(λx + (1 − λ)y) = λAx + (1 − λ)Ay ≤ λb + (1 − λ)b = b.

■
Definição 1.5
Um ponto x ∈ C de uma região C ⊆ Rn é um vértice ou ponto extremo, caso
não existe um y 6= 0 tal que x + y ∈ C e x − y ∈ C.

Proposição 1.2
Caso existe uma única solução ótima de max{ctx | x ∈ V} ela é um vértice
de V.

Prova. Supõe que a solução ótima x∗ não é um vértice de V. Então existe
um y tal que x + y ∈ V e x − y ∈ V. Por x∗ ser a única solução ótima
temos ct(x∗ + y) < ctx∗ e ct(x∗ − y) < ctx∗, i.e., cty < 0 e −cty < 0, uma
contradição. ■
Proposição 1.3
Um vértice de V = {x ∈ Rn | Ax ≤ b} é a interseção de n restrições linear-
mente independentes.

Prova. Para um vértice v ∈ V, seja Av a matriz formado das linhas ai de A
tal que aiv = bi, e bv os lados direitos correspondentes.
Seja v ∈ V a interseção de n restrições linearmente independentes, i.e. posto(Av) =

n. Supõe v não é um vértice. Logo existe um y tal que x+ y, x− y ∈ V que sa-
tisfazem Av(x + y) ≤ bv e Av(x − y) ≤ bv. Como Avx = bv obtemos Avy ≤ 0
e −Avy ≤ 0, i.e. Avy = 0, uma contradição com posto(Av) = n.
Agora seja v ∈ V um vértice e supõe posto(Av) < n, i.e. existe um y tal que
Avy = 0. Para as linhas ai em A com aiv < bi existe um δ > 0 tal que

ai(v + δy) ≤ bi e ai(v − δy) ≤ bi

1.3. Solução por busca exaustiva 17

e logo

A(v + δy) ≤ b e A(v − δy) ≤ b,

porque Avy = 0, em contradição com o fato que v é um vértice. ■
Proposição 1.4
Caso existem múltiplas soluções ótimas de max{ctx | x ∈ V} e V é limitado,
um vértice de V é uma solução ótima.

Prova. Por indução sobre n − posto(Av). Caso n − posto(Av) = 0, v é
um vértice pela proposição (1.3). Para n − posto(Av) > 0 existe um y com
Avy = 0. Seja µ = max{t | v + ty ∈ V}. O valor µ existe porque V é limitado
(e compacto). Como ai(v + µy) ≤ bi para cada linha i temos que

µ = min{(bi − aiv)/aiy | aiy > 0} (+)

Seja i∗ o índice da linha que satisfaz (+) com igualdade. Define v′ = v + µy.
Temos Avv′ = Avv + µAvy = Avv = bv, logo Av′ contém as linhas de Av e
pelo menos a linha ai∗ a mais. Ainda, como Avy = 0 mas ai∗y 6= 0 temos que
posto(Av′) > posto(Av). Logo, pela hipótese da indução, existe um vértice
que é uma solução ótima. ■
Observação 1.2
Caso existem multiplas soluções ótimas de max{ctx | x ∈ V}, mas V não
é limitado, é possível que não existe um vértice ótimo. Um exemplo é o
sistema max{x1 | (x1, x2) ∈ R2, 0 ≤ x1 ≤ 1}. ♢

Aplicando a proposição 1.4 obtemos um algoritmo simples para resolver sis-
temas lineares, que enumera todos vértices e retorna o vértice de maior valor.

Algoritmo 1.1 (Solução de programas linear por exaustão)
Entrada Programa linear max{ctx | Ax ≤ b, x ∈ Rn

+}.

x∗ := null
for todas (m

n) seleções de n restrições lin. indep.
determine a interseção x das n restrições
if Ax ≤ b e ctx ≥ ctx∗ then

x∗ := x
end if

end for
if x∗ 6= null then

18 Capítulo 1. Introdução

return " Solução ótima é x∗ ou sistema ilimitado "
else

return "Não possui solução ou não possui vértice "
end if

1.4. Notas históricas

História da programação linear

• Jean Baptiste Joseph Fourier (1826): Método de resolver um sistema de
desigualdades (eliminação de Fourier-Motzkin) (Williams 1986).

• Leonid Kantorovich (1939): Programação linear.

• George Bernard Dantzig (1948): Método Simplex.

• John von Neumann: Dualidade.

• Leonid Khachiyan (1979): Método de ellipsoides.

• Narendra Karmarkar (1984): Métodos de pontos interiores.

Figura 1.2.: Jean Baptiste Jo-
seph Fourier (*1768, +1830)

Pesquisa operacional, otimização e “programação”

• “The discipline of applying advanced analytical methods to help make
better decisions” (INFORMS)

• O nome foi criado durante a segunda guerra mundial, para métodos
científicos de análise e predição de problemas logísticos.

• Hoje se aplica para técnicas que ajudam tomar decisões sobre a execu-
ção e coordenação de operações em organizações.

• Problemas da pesquisa operacional são problemas de otimização.

• “Programação” não é “Programação”

– Não se refere à computação: a noção significa “planejamento” ou
“agendamento”.

Figura 1.3.: George Bernard
Dantzig (*1914, +2005)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Dantzig_George.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Dantzig_George.html

1.5. Exercícios 19

Técnicas da pesquisa operacional

• Em geral: Técnicas algorítmicas conhecidas como

– Modelagem matemática, e.g. equações, igualdades, desigualda-
des, modelos probabilísticos.

– Algoritmos gulosos, randômicos, . . . ; programação dinâmica, li-
near, convexa, . . .

– Heurísticas e algoritmos de aproximação.

• Algumas dessas técnicas se aplicam para muitos problemas e por isso
são mais comuns:

– Exemplo: Programação linear.

1.5. Exercícios

(Soluções a partir da página 211.)

Exercício 1.1
Na definição da programação linear permitimos restrições lineares da forma

ai1x1 + ai2x2 + · · ·+ ainxn ./i bi

com ./i∈ {≤,=,≥}. Por que não permitimos ./i∈ {<,>} também? Discute.

Exercício 1.2
Procura a tabela nutricional de algum restaurante e resolve o problema da
dieta (exemplo 1.2).

Exercício 1.3
Um investidor pode vender ações de suas duas empresas na bolsa de valores,
mas está sujeito a um limite de 10.000 operações diárias (vendas por dia). Na
cotação atual, as ações da empresa A valorizaram-se 10% e agora cada uma
vale R$ 22. Já a empresa B teve valorização de 2% e cada ação vale R$ 51.
Sabendo-se que o investidor possui 6.000 ações da Empresa A e 7.000 da
empresa B, maximize seu lucro na BOVESPA e diga qual o lucro obtido.

Exercício 1.4
Dona Maria adora ver seus netinhos Marcos, Renato e Vinicius bem alimen-
tados. Sempre na hora de cozinhar ela leva em conta o quanto eles gostam

20 Capítulo 1. Introdução

de cada prato para fazê-los comer o máximo possível. Marcos gosta da lasa-
nha e comeria 3 pratos dela após um prato de sopa; Renato prefere lanches,
e comeria 5 hambúrgueres, ignorando a sopa; Vinicius gosta muita da massa
a bolonhesa, e comeria 2 pratos após tomar dois pratos de sopa. Para fa-
zer a sopa, são necessários entre outros ingredientes, 70 gramas de queijo
por prato e 30 gramas de carne. Para cada prato de lasanha, 200 gramas de
queijo, e 100 gramas de carne. Para cada hambúrguer são necessários 100
gramas de carne, e 100 gramas de queijo. Para cada prato de massa a bo-
lonhesa são necessários 100 gramas de carne e 30 gramas de queijo (ralado
para por sobre a massa). Seus netos vieram visitá-la de surpresa, e tendo
ela somente 800 gramas de carne e 1000 gramas de queijo em casa, como ela
poderia fazê-los comer o maior número de pratos, garantindo que cada um
deles comerá pelo menos dois pratos, e usando somente os ingredientes que
ela possui?

Exercício 1.5
A empresa “Luz para o mundo” produz dois tipos de lampadas, cada um
com partes metálicos e partes eléctricos. A gerencia quer saber com quantas
unidades produzidas por tipo o lucro é maximizado. A produção de uma
unidade de produto 1, precisa uma unidade de partes metálicos e duas uni-
dades de componentes eléctricos. A produção de uma unidade de produto
2, precisa três unidades de partes metálicos e duas unidades de componentes
eléctricos. A empresa tem um estoque de 200 unidades de partes metálicos e
300 unidades de componentes eléctricos. Cada unidade de produto um tem
um lucro de R$ 1 e cada unidade de produto 2, até um limite de 60 unida-
des, um lucro de R$ 2. (Cada unidade acima de 60 no caso do produto 2 não
rende nada.)

Exercício 1.6
A empresa “Janela jóia” com três empregados produz dois tipos de jane-
las: com molduras de madeira e com molduras de alumínio. Eles têm um
lucro de 60 R$ para toda janela de madeira e 30R$ para toda janela de alu-
mínio. João produz as molduras de madeira. Ele consegue produzir até seis
molduras por dia. Sylvana é responsável pelas molduras de alumínio, e ela
consegue produzir até quatro por dia. Ricardo corta o vidro e é capaz de
produzir até 48 m2 por dia. Uma janela de madeira precisa 6 m2 de vidro, e
uma de alumínio 8 m2. A empresa quer maximizar o seu lucro.
Formule como programa linear.

1.5. Exercícios 21

M1 S1

M2 S2

P

R$ 2000/t

30t

R$ 1700/t

30t

R$ 1600/t

50t

R$ 1100/t

50t

R$ 400/t

70t

R$ 800/t

70t

Figura 1.4.: Rede de distribuição de uma empresa de aço.

Exercício 1.7
Uma empresa de aço tem uma rede de distribuição conforme Figura 1.4.
Duas minas P1 e P2 produzem 40t e 60t de mineral de ferro, respectivamente,
que são distribuídos para dois estoques intermediários S1 e S2. A planta
de produção P tem uma demanda dem 100t de mineral de ferro. A vias
de transporte tem limites de toneladas de mineral de ferro que podem ser
transportadas e custos de transporte por tonelada de mineral de ferra (veja
figura). A direção da empresa quer determinar a transportação que minimiza
os custos. Formule o problema como programa linear.

Exercício 1.8
Um importador de Whisky tem as seguintes restrições de importação

• no máximo 2000 garrafas de Johnny Ballantine por 70 R$ cada uma,

• no máximo 2500 garrafas de Old Gargantua por 50 R$ cada uma,

• no máximo 1200 garrafas de Misty Deluxe por 40 R$ cada uma.

Dos Whiskies importados ele produz três misturas A, B, C, que ele vende
por 68 R$, 57 R$ e 45 R$, respectivamente. As misturas são

• A: no mínimo 60% Johnny Ballantine, no máximo 20% Misty Deluxe,

• B: no mínimo 15% Johnny Ballantine, no máximo 60% Misty Deluxe,

• C: no máximo 50% Misty Deluxe.

22 Capítulo 1. Introdução

Quais seriam as misturas ótimas, e quantas garrafas de cada mistura devem
ser produzidas para maximizar o lucro? Formule como programa linear.

Observações:

• Use como variáveis o número de garrafas xm,i da marca m usadas na
mistura i.

• Desconsidere a integralidade das garrafas.

Exercício 1.9
A empresa de televisão “Boa vista” precisa decidir quantas TVs de 29"e
31"ela vai produzir. Uma analise do mercado descobriu que podem ser ven-
didas no máximo 40 TVs de 29"e 10 de 31"por mês. O trabalho máximo
disponível por mês é 500h. A produção de um TV de 29"precisa 20h de tra-
balho, e um TV de 31"precisa 10h. Cada TV de 29"rende um lucro de R$ 120
e cada de 31"um lucro de R$ 80.
Qual a produção ótima média de cada TV por mês?

Exercício 1.10 (da Costa)
Um certo óleo é refinado a partir da mistura de outros óleos, vegetais ou não
vegetais. Temos óleos vegetais V1 e V2 e óleos não vegetais NV1 NV2 NV3.
Por restrições da fábrica, um máximo de 200 toneladas de óleos vegetais
podem ser refinados por mês, e um máximo de 250 toneladas de óleos não
vegetais. A acidez do óleo desejado deve estar entre 3 e 6 (dada uma unidade
de medida) e a acidez depende linearmente das quantidades/acidez dos
óleos brutos usados. O preço de venda de uma tonelada do óleo é R$ 150.
Calcule a mistura que maximiza o lucro, dado que:

Óleo V1 V2 NV1 NV2 NV3

Custo/ton 110 120 130 110 115
Acidez 8,8 6,1 2,0 4,2 5,0

Exercício 1.11 (Campêlo Neto)
Um estudante, na véspera de seus exames finais, dispõe de 100 horas de es-
tudo para dedicar às disciplinas A, B e C. Cada um destes exames é formado
por 100 questões, e o estudante espera acertar, alternativamente, uma ques-
tão em A, duas em B ou três em C, por cada hora de estudo. Suas notas nas
provas anteriores foram 6, 7 e 10, respectivamente, e sua aprovação depende

1.5. Exercícios 23

de atingir uma média mínima de 5 pontos em cada disciplina. O aluno de-
seja distribuir seu tempo de forma a ser aprovado com a maior soma total
de notas.

Exercício 1.12 (Dasgupta et al. (2009))
Moe está decidindo quanta cerveja Duff regular e quanta cerveja Duff Forte
encomendar a cada semana. Duff regular custa a Moe $1 por caneco e ele
a vende por $2 por caneco; Duff Forte custa $1.50 por caneco e ele vende
por $3 por caneco. Entretanto, como parte de uma complicada fraude de
marketing, a companhia Duff somente vende um caneco de Duff Forte para
cada dois canecos ou mais de Duff regular que Moe compra. Além disso,
devido a eventos passados sobre os quais é melhor nem comentar, Duff não
venderá Moe mais do que 3000 canecos por semana. Moe sabe que ele pode
vender tanta cerveja quanto tiver.
Formule um programa linear em duas variáveis para decidir quanto de Duff
regular e quanto de Duff Forte comprar, para maximizar o lucro de Moe.

Exercício 1.13 (Dasgupta et al. (2009))
A companhia de produtos caninos oferece duas comidas para cachorro: Frisky
Pup e Husky Hound, que são feitas de uma mistura de cereais e carne. Um
pacote de Frisky Pup requer 1 quilo de cereal e 1.5 quilo de carne, e é ven-
dido por $7. Um pacote de Husky Hound usa 2 quilos de cereal e 1 quilo de
carne, e é vendido por $6. O cereal bruto custa $1 por quilo e a carne bruta,
$2 por quilo. Há também o custo de $1.40 para empacotar o Frisky Pup e
$0.60 para o Husky Hound. Um total de 240000 quilos de cereal e 180000
quilos de carne estão disponíveis a cada mês. O único gargalo de produção
está no fato de a fábrica poder empacotar apenas 110000 pacotes de Frisky
Pup por mês. Desnecessário dizer, a gerência gostaria de maximizar o lucro.
Formule o problema como um programa linear em duas variáveis.

Exercício 1.14 (Vanderbei (2014))
Formule como problema de otimização linear e resolve graficamente.
Uma empresa de aço produz placas ou canos de ferro. As taxas de produção
são 200t/h para placas e 140t/h para canos. O lucro desses produtos e 25$/t
para placas e 30$/t para canos. Considerando a demanda atual, os limites de
produção são 6000t de placas e 4000t de canos. Na semana atual são 40h de
tempo de produção disponível. Quantas toneladas de placas e canos devem
ser produzidas para maximizar o lucro?

24 Capítulo 1. Introdução

Exercício 1.15 (Vanderbei (2014))
Formule como problema de otimização linear.
Uma pequena empresa aérea oferece um vôo de Pelotas, com escala em Porto
Alegre para Torres. Logo tem três tipos de clientes que voam Pelotas–Porto
Alegre, Pelotas–Torres e Porto Alegre–Torres. A linha também oferece três
tipos de bilhetes:

• Tipo A: bilhete regular.

• Tipo B: sem cancelamento.

• Tipo C: sem cancelamento, pagamento três semanas antes de viajar.

Os preços (em R$) dos bilhetes são

Pelotas–Porto Alegre Porto Alegre–Torres Pelotas–Torres

A 600 320 720
B 440 260 560
C 200 160 280

Baseado na experiência com esse vôo, o marketing tem a seguinte predição
de passageiros:

Pelotas–Porto Alegre Porto Alegre–Torres Pelotas–Torres

A 4 8 3
B 8 13 10
C 22 20 18

O objetivo da empresa e determinar o número ótimo de bilhetes para vender
de cada tipo, respeitando um limite de 30 passageiros em cada vôo e o limite
dos passageiros previstos em cada categoria, que maximiza o lucro.

Exercício 1.16
Resolva graficamente.

1.5. Exercícios 25

maximiza 4x1 + x2

sujeito a − x1 + x2 ≤ 2,

x1 + 8x2 ≤ 36,

x2 ≤ 4,

x1 ≤ 4.25,

x1, x2 ≥ 0.

(a) Qual a solução ótima?

(b) Qual o valor da solução ótima?

Exercício 1.17
Escreve em forma normal.

minimiza z = −5x1 − 5x2 − 5x3

sujeito a − 6x1 − 2x2 − 9x3 ≤ 0,

− 9x1 − 3x2 + 3x3 = 3,

x1, x2, x3 ≥ 0.

maximiza z = −6x1 − 2x2 − 6x3 + 4x4 + 4x5

sujeito a − 3x1 − 8x2 − 6x3 − 7x4 − 5x5 = 3,

5x1 − 7x2 + 7x3 + 7x4 − 6x5 ≤ 6,

1x1 − 9x2 + 5x3 + 7x4 − 10x5 = −6,

x1, x2, x3, x4, x5 ≥ 0.

maximiza z = 7x1 + 4x2 + 8x3 + 7x4 − 9x5

sujeito a − 4x1 − 1x2 − 7x3 − 8x4 + 6x5 = −2,

x1 + 4x2 + 2x3 + 2x4 − 7x5 ≥ −7,

− 8x1 + 2x2 + 8x3 − 6x4 − 7x5 = −7,

x1, x2, x3, x4, x5 ≥ 0.

26 Capítulo 1. Introdução

minimiza z = −6x1 + 5x2 + 8x3 + 7x4 − 8x5

sujeito a − 5x1 − 2x2 + x3 − 9x4 − 7x5 = 9,

7x1 + 7x2 + 5x3 − 3x4 + x5 = −8,

− 5x1 − 3x2 − 5x3 + 9x4 + 8x5 ≤ 0,

x1, x2, x3, x4, x5 ≥ 0.

2. O método Simplex

Graficamente, é difícil resolver sistemas com mais que três variáveis. Por-
tanto é necessário achar métodos que permitam resolver sistemas grandes.
Um dos mais importantes é o método Simplex. Nós vamos estudar esse mé-
todo primeiramente através da aplicação a um exemplo.

2.1. Um exemplo

Começamos com o seguinte sistema em forma padrão:

Exemplo: Simplex

maximiza z = 6x1 + 8x2 + 5x3 + 9x4

sujeito a 2x1 + x2 + x3 + 3x4 ≤ 5,

x1 + 3x2 + x3 + 2x4 ≤ 3,

x1, x2, x3, x4 ≥ 0.

Introduzimos variáveis de folga e reescrevemos as equações:

Exemplo: Com variáveis de folga

maximiza z = 6x1 + 8x2 + 5x3 + 9x4 (2.1)

sujeito a w1 = 5 − 2x1 − x2 − x3 − 3x4, (2.2)

w2 = 3 − x1 − 3x2 − x3 − 2x4, (2.3)

x1, x2, x3, x4, w1, w2 ≥ 0.

Observação 2.1
Nesse exemplo é fácil obter uma solução viável, escolhendo x1 = x2 = x3 =

x4 = 0. Podemos verificar que w1 = 5 e w2 = 3 e todas as restrições são
respeitadas. O valor da função objetivo seria 0. Uma outra solução viável é
x1 = 1, x2 = x3 = x4 = 0, w1 = 3, w2 = 2 com valor z = 6. ♢

28 Capítulo 2. O método Simplex

Com seis variáveis e duas equações lineares independentes o espaço de so-
luções do sistema de equações lineares dado pelas restrições tem 6 − 2 = 4
graus de liberdade. Uma solução viável com esse número de variáveis nulas
(igual a 0) se chama uma solução básica viável. Logo nossa primeira solução
acima é uma solução básica viável.
A idéia do método Simplex é percorrer soluções básicas viáveis, aumentando
em cada passo o valor z da função objetivo.
Logo nosso próximo objetivo é aumentar o valor da função objetivo z. Para
esse fim, podemos aumentar o valor das variáveis x1, x2, x3 ou x4, pois o
coeficiente delas é positivo. Escolhemos x4, porque essa variável tem o maior
coeficiente. Não podemos aumentar x4 arbitrariamente: Para respeitar as
restrições w1, w2 ≥ 0 temos os limites

Limites

w1 = 5 − 3x4 ≥ 0 ⇐⇒ x4 ≤ 5/3

w2 = 3 − 2x4 ≥ 0 ⇐⇒ x4 ≤ 3/2

ou seja x4 ≤ 3/2. Aumentando x4 o máximo possível, obtemos x4 = 3/2 e
w2 = 0. Os valores das demais variáveis não mudam. Essa solução respeita
novamente todas as restrições, e portanto é viável. Ainda, como trocamos
uma variável nula (x4) com uma outra não-nula (w2) temos uma nova solução
básica viável

Solução básica viável

x1 = x2 = x3 = 0; x4 = 3/2; w1 = 1/2; w2 = 0

com valor da função objetivo z = 13.5.
O que facilitou esse primeiro passo foi a forma especial do sistema de equa-
ções. Escolhemos quatro variáveis independentes (x1, x2, x3 e x4) e duas
variáveis dependentes (w1 e w2). Essas variáveis são chamadas não-básicas
e básicas, respectivamente. Na nossa solução básica viável todas variáveis
não-básicas são nulas. Logo, pode-se aumentar uma variável não-básica cujo
coeficiente na função objetivo seja positivo (para aumentar o valor da função
objetivo). Inicialmente tem-se as seguintes variáveis básicas e não-básicas

B = {w1, w2}; N = {x1, x2, x3, x4}.

2.1. Um exemplo 29

Depois de aumentar x4 (e consequentemente zerar w2) podemos escolher

B = {w1, x4}; N = {x1, x2, x3, w2}.

A variável x4 se chama variável entrante, porque ela entra no conjunto de
variáveis básicas B. Analogamente w2 se chama variável sainte.
Para continuar, podemos reescrever o sistema atual com essas novas variáveis
básicas e não-básicas. A segunda restrição 2.3 é fácil de reescrever

w2 = 3 − x1 − 3x2 − x3 − 2x4 ⇐⇒ 2x4 = 3 − x1 − 3x2 − x3 − w2

⇐⇒ x4 = 3/2 − 1/2x1 − 3/2x2 − 1/2x3 − 1/2w2

Além disso, temos que reescrever a primeira restrição 2.2, porque a variável
básica w1 depende de x4 que agora é básica também. Nosso objetivo é es-
crever todas variáveis básicas em termos de variáveis não-básicas. Para esse
fim, podemos usar combinações lineares da linhas, que eliminam as variá-
veis não-básicas. Em nosso exemplo, a combinação (2.2)−3/2(2.3) elimina x4

e resulta em

w1 − 3/2w2 = 1/2 − 1/2x1 + 7/2x2 + 1/2x3

e colocando a variável não-básica w2 no lado direito obtemos

w1 = 1/2 − 1/2x1 + 7/2x2 + 1/2x3 + 3/2w2.

Temos que aplicar uma operação semelhante à função objetivo que ainda
depende da variável básica x4. Escolhemos (2.1)−9/2(2.3) para obter

z = 27/2 + 3/2x1 − 11/2x2 + 1/2x3 − 9/2w2.

Novo sistema

maximiza z = 27/2 + 3/2x1 − 11/2x2 + 1/2x3 − 9/2w2

sujeito a w1 = 1/2 − 1/2x1 + 7/2x2 + 1/2x3 + 3/2w2,

x4 = 3/2 − 1/2x1 − 3/2x2 − 1/2x3 − 1/2w2,

x1, x2, x3, x4, w1, w2 ≥ 0.

que obtemos após uma operação de trocar as variáveis x4 e w2. Essa opera-
ção se chama um pivô. Observe que no novo sistema é fácil recuperar toda

30 Capítulo 2. O método Simplex

informação atual: zerando as variáveis não-básicas obtemos diretamente a
solução x1 = x2 = x3 = w2 = 0, w1 = 1/2 e x4 = 3/2 com função objetivo
z = 27/2.
Antes de continuar “pivotando” introduzimos uma forma mais simples de
escrever o sistema

Dicionário

z = 27/2 +3/2x1 −11/2x2 +1/2x3 −9/2w2

w1 = 1/2 −1/2x1 +7/2x2 +1/2x3 +3/2w2

x4 = 3/2 −1/2x1 −3/2x2 −1/2x3 −1/2w2

que se chama dicionário (inglês: dictionary).

Excurso 2.1
Alguns autores usam um tableau em vez de um dicionário. Para n variáveis
e m restrições, um tableau consiste em n + 1 colunas e m + 1 linhas. Igual
a um dicionário, a primeira linha corresponde com a função objetivo, e as
restantes linhas com as restrições. Diferente do dicionário a primeira coluna
contém as constantes, e as restantes colunas correspondem com as variáveis,
incluindo as básicas. Nosso exemplo acima em forma de tableau é

base︷ ︸︸ ︷
x1 x2 x3 x4 w1 w2

27/2 3/2 −11/2 1/2 0 0 9/2
1/2 1/2 −7/2 −1/2 0 1 −3/2
3/2 1/2 3/2 1/2 1 0 1/2

♢

No próximo passo podemos aumentar somente x1 ou x3 porque somente elas
têm coeficientes positivos. Aumentando x1 temos que respeitar x1 ≤ 1 (da
primeira restrição) e x1 ≤ 3 (da segunda). Logo a primeira restrição é mais
forte, x1 é a variável entrante, w1 a variável sainte, e depois do pivô obtemos

Segundo passo

z = 15 −3w1 +5x2 +2x3

x1 = 1 −2w1 +7x2 +x3 +3w2

x4 = 1 +w1 −5x2 −x3 −2w2

2.1. Um exemplo 31

No próximo pivô x2 entra. A primeira restrição não fornece limite para x2,
porque o coeficiente de x2 é positivo! Mas a segunda x2 ≤ 1/5 e x4 sai da
base. O resultado do pivô é

Terceiro passo

z = 16 −2w1 −x4 +x3 −2w2

x1 = 12/5 −3/5w1 −7/5x4 −2/5x3 +1/5w2

x2 = 1/5 +1/5w1 −1/5x4 −1/5x3 −2/5w2

O próximo pivô: x3 entra, x2 sai:

Quarto passo

z = 17 −w1 −2x4 −5x2 −4w2

x1 = 2 −w1 −x4 +2x2 +w2

x3 = 1 +w1 −x4 −5x2 −2w2

Agora, todos coeficientes da função objetivo são negativos. Isso significa,
que não podemos mais aumentar nenhuma variável não-básica. Como esse
sistema é equivalente ao sistema original, qualquer solução tem que ter um
valor menor ou igual a 17, pois todas as variáveis são positivas. Logo chega-
mos no resultado final: a solução

w1 = x4 = x2 = w2 = 0; x1 = 2; x3 = 1

com valor objetivo 17, é ótima!
Concluímos esse exemplo com mais uma observação. O número de soluções
básicas viáveis é limitado. Em nosso exemplo, se escolhemos um subcon-
junto de quatro variáveis nulas, as duas equações determinam as variáveis
restantes. Logo temos no máximo (6

4) = 15 soluções básicas viáveis. Em
geral, com m equações e n variáveis, uma solução básica viável possui n − m
variáveis nulas e o número delas é limitado por (n

n−m). Portanto, se aumen-
tamos em cada pivô o valor da função objetivo, o método termina em no
máximo (n

n−m) passos.

Exemplo 2.1 (Solução do problema do Ildo)
Exemplo da solução do problema do Ildo na página 7.

32 Capítulo 2. O método Simplex

z = 0/1 +1/5c +1/2s
w1 = 150 −c −3/2s
w2 = 6000 −50c −50s
w3 = 80 −c
w4 = 60 −s

Pivô s–w4

z = 30 +1/5c −1/2w4

w1 = 60 −c +3/2w4

w2 = 3000 −50c +50w4

w3 = 80 −c
s = 60 −w4

Pivô c–w1

z = 42 −1/5w1 −1/5w4

c = 60 −w1 +3/2w4

w2 = +50w1 −25w4

w3 = 20 +w1 −3/2w4

s = 60 −w4

O resultado é um lucro total de R$ 42, com os seguintes valores de variáveis:
c = 60, s = 60, w1 = 0, w2 = 0, w3 = 20 e w4 = 0. A interpretação das
variáveis de folga é como segue.

• w1: Número de ovos sobrando: 0.

• w2: Quantidade de açúcar sobrando: 0 g.

• w3: Croissants não produzidos (abaixo da demanda): 20.

• w4: Strudels não produzidos: 0.

♢

2.2. O método resumido

Considerando n variáveis e m restrições:

2.2. O método resumido 33

Sistema inicial

maximiza z = ∑
j∈[n]

cjxj

sujeito a ∑
j∈[n]

aijxj ≤ bi, i ∈ [m],

xj ≥ 0, j ∈ [n].

Preparação
Introduzimos variáveis de folga

∑
j∈[n]

aijxj + xn+i = bi, i ∈ [m],

e escrevemos as variáveis de folga como dependentes das variáveis restantes

xn+i = bi − ∑
j∈[n]

aijxj, i ∈ [m].

Solução básica viável inicial
Se todos bi ≥ 0 (o caso contrário vamos tratar na próxima seção), temos uma
solução básica inicial

xn+i = bi, i ∈ [m],

xj = 0, j ∈ [n].

Índices das variáveis
Depois do primeiro passo, os conjuntos de variáveis básicas e não-básicas
mudam. Seja B o conjunto dos índices das variáveis básicas (não-nulas) e N
o conjunto das variáveis nulas. No começo temos

B = {n + 1, n + 2, . . . , n + m}; N = {1, 2, . . . , n}

34 Capítulo 2. O método Simplex

A forma geral do sistema muda para

z = z̄ + ∑
j∈N

c̄jxj,

xi = b̄i − ∑
j∈N

āijxj, i ∈ B.

As barras em cima dos coeficientes enfatizam que eles mudam ao longo
da aplicação do método. Os coeficientes c̄j são chamados custos reduzidos
(ingl. reduced costs).

Escolher variável entrante (ingl. pricing)
Em cada passo do método Simplex, escolhemos uma variável não-básica xk,
com k ∈ N para aumentar o valor objetivo z. Isso somente é possível para
os índices j tal que c̄j > 0, i.e.

{j ∈ N | c̄j > 0}. (2.4)

Escolhemos um k desse conjunto, e xk é a variável entrante. Uma heurística
simples é a regra do maior coeficiente, que escolhe

k = argmax{c̄j | c̄j > 0, j ∈ N}

Aumentar a variável entrante
Seja xk a variável entrante. Se aumentarmos a variável xk para um valor
positivo, as variáveis básicas assumem novos valores

xi = b̄i − āikxk i ∈ B.

Temos que respeitar xi ≥ 0 para 1 ≤ i ≤ n. Cada equação com āik > 0
fornece uma cota superior

xk ≤ b̄i/āik

para o aumento de xk. Logo podemos aumentar xk no máximo por um valor

α := min
i∈B|āik>0

b̄i/āik =

(
max

i∈B|āik>0
āik/b̄i

)−1

=

(
max
i∈B

āik/b̄i

)−1

> 0. (2.5)

É possível que múltiplas variáveis definem o mesmo limite: podemos esco-
lher a variável sainte entre os índices

{i ∈ B | b̄i/āik = α}. (2.6)

2.3. Sistemas ilimitados 35

2.3. Sistemas ilimitados

Como pivotar?

• Considere o sistema
z = 24 −x1 +2x2

x3 = 2 −x1 +x2

x4 = 5 +x1 +4x2

• Qual a próxima solução básica viável?

• A duas equações não restringem o aumento de x2: existem soluções
com valor ilimitado.

2.4. Encontrar uma solução inicial: o método de duas fases

Solução básica inicial

• Nosso problema inicial é

maximiza z = ∑
j∈[n]

cjxj

sujeito a ∑
j∈[n]

aijxj ≤ bi, i ∈ [m],

xi ≥ 0, i ∈ [n],

• com dicionário inicial

z = z̄ + ∑
j∈N

c̄jxj

xi = b̄i − ∑
j∈N

āijxj, i ∈ B.

Solução básica inicial

• A solução básica inicial desse dicionário é

x = (0 · · · 0 b1 · · · bm)
t

• O que acontece se existe um bi < 0?

• A solução básica não é mais viável! Sabe-se disso porque pelo menos
uma variável básica terá valor negativo.

36 Capítulo 2. O método Simplex

Sistema auxiliar

• Um método para resolver o problema: resolver outro programa linear

– cuja solução fornece uma solução básica viável do programa linear
original e

– que tem uma solução básica viável simples, tal que podemos apli-
car o método Simplex.

maximiza z = −x0

sujeito a ∑
j∈[n]

aijxj − x0 ≤ bi, 0 ≤ i ≤ m,

xi ≥ 0, i ∈ [n].

Resolver o sistema auxiliar

• É fácil encontrar uma solução viável do sistema auxiliar:

– Escolhe xi = 0, para todos i ∈ [n].

– Escolhe x0 suficientemente grande: x0 ≥ maxi∈[m] −bi.

• Isso corresponde com um primeiro pivô com variável entrante x0 após
introduzir as variáveis de folga (“pseudo-pivô”).

– Podemos começar com a solução não-viável x0 = x1 = . . . = xn =

0.

– Depois aumentamos x0 tal que a variável de folga mais negativa
vire positiva.

– x0 e variável sainte xk tal que k = argmaxi∈[m] −bi.

Exemplo: Problema original

maximiza z = −2x1 − x2

sujeito a − x1 + x2 ≤ −1,

− x1 − 2x2 ≤ −2,

x2 ≤ 1,

x1, x2 ≥ 0.

2.4. Encontrar uma solução inicial: o método de duas fases 37

Exemplo: Problema auxiliar

maximiza z = −x0

sujeito a − x1 + x2 − x0 ≤ −1,

− x1 − 2x2 − x0 ≤ −2,

x2 − x0 ≤ 1,

x0, x1, x2 ≥ 0.

Exemplo: Dicionário inicial do problema auxiliar

z = −x0

w1 = −1 +x1 −x2 +x0

w2 = −2 +x1 +2x2 +x0

w3 = 1 −x2 +x0

• Observe que a solução básica não é viável.

• Para achar uma solução básica viável: fazemos um primeiro pivô com
variável entrante x0 e variável sainte w2.

Exemplo: Dicionário inicial viável do sistema auxiliar

z = −2 +x1 +2x2 −w2

w1 = 1 −3x2 +w2

x0 = 2 −x1 −2x2 +w2

w3 = 3 −x1 −3x2 +w2

Primeiro pivô

z = −4/3 +x1 −2/3w1 −1/3w2

x2 = 1/3 −1/3w1 +1/3w2

x0 = 4/3 −x1 +2/3w1 +1/3w2

w3 = 2 −x1 +w1

38 Capítulo 2. O método Simplex

Segundo pivô

z = 0 −x0

x2 = 1/3 −1/3w1 +1/3w2

x1 = 4/3 −x0 +2/3w1 +1/3w2

w3 = 2/3 +x0 +1/3w1 −1/3w2

Solução ótima!

Solução do sistema auxiliar

• O que podemos concluir da solução do sistema auxiliar?

• Obviamente, se o sistema original possui solução, o sistema auxiliar
também possui uma solução com x0 = 0.

• Logo, após aplicar o método Simplex ao sistema auxiliar, temos os ca-
sos

– x0 > 0: O sistema original não tem solução.

– x0 = 0: O sistema original tem solução. Podemos descartar x0

e continuar resolvendo o sistema original com a solução básica
viável obtida.

• A solução do sistema auxiliar se chama fase I, a solução do sistema
original fase II.

Sistema original
Reescreve-se a função objetivo original substituindo as variáveis básicas do
sistema original pelas equações correspondentes do sistema auxiliar, de forma
que a função objetivo z não contenha variáveis básicas. No exemplo, a função
objetivo é rescrita como:

z = −2x1 − x2 = −3 − w1 − w2.

z = −3 −w1 −w2

x2 = 1/3 −1/3w1 +1/3w2

x1 = 4/3 +2/3w1 +1/3w2

w3 = 2/3 +1/3w1 −1/3w2

Nesse exemplo, o dicionário original já é ótimo!

2.4. Encontrar uma solução inicial: o método de duas fases 39

Exemplo 2.2 (Sistema original inviável)
O sistema

maximiza x1 + x2

sujeito a x1 + x2 ≥ 2,

x1 + x2 ≤ 1,

x1, x2 ≥ 0.

obviamente não possui uma solução viável. O dicionário inicial do sistema
auxiliar (após normalização e introdução das variáveis de folga) é

z = 0 −x0

x3 = −2 +x1 +x2 +x0

x4 = 1 −x1 −x2 +x0

e o pseudo-pivô x0–x3 produz

z = −2 +x1 +x2 −x3

x0 = 2 −x1 −x2 +x3

x4 = 3 −2x1 −2x2 +x3

e o pivô x1–x4 produz o sistema ótimo

z = −1/2 −1/2x4 −1/2x3

x0 = 1/2 +1/2x4 +1/2x3

x1 = 3/2 −1/2x4 −x2 +1/2x3 .

O valor ótimo do sistema auxiliar é −z = x0 = 1/2, confirmando que o
sistema original não possui solução viável. ♢

2.4.1. Resumo do método de duas fases

Fase I necessária? Caso bi ≥ 0 para todo i ∈ [m]: continua com a fase II.

Dicionário inicial Cria o dicionário inicial do sistema auxiliar

z = min{x0 | Ax ≤ b + xoe}.

Pseudo-pivô Pivota x0–xk, sendo k = argmini∈[m] bk o índice do lado direito
mais negativo.

Solução fase I Aplica o método no dicionário obtido no passo anterior.

40 Capítulo 2. O método Simplex

Fase II necessária? Caso a solução ótima da fase I possui valor x0 > 0: o
sistema original não possui solução. Para.

Prepara fase II Caso x0 é uma variável básica: pivota x0–xk sendo xk alguma
variável nula tal que a0k 6= 0. Remove a coluna x0. Remove a função
objetivo do sistema auxiliar e introduz a função objetivo do sistema
original (escrita em função das variáveis nulas).

Fase II Aplica o método Simplex no dicionário inicial da fase II.

2.5. Sistemas degenerados

Sistemas, soluções e pivôs degenerados

• Um dicionário é degenerado se existe um i ∈ B tal que b̄i = 0.

• Qual o problema?

• Pode acontecer um pivô que não aumenta a variável entrante, e por-
tanto não aumenta o valor da função objetivo.

• Tais pivôs são degenerados.

Exemplo 1

• Nem sempre é um problema.

z = 5 +x3 −x4

x2 = 5 −2x3 −3x4

x1 = 7 −4x4

w3 = 0 +x4

• x2 é a variável sainte e o valor da função objetivo aumenta.

Exemplo 2

z = 3 −1/2x1 +2x2 −3/2w1

x3 = 1 −1/2x1 −1/2w1

w2 = 0 + x1 −x2 +w1

• Se a variável sainte é determinada pela equação com b̄i = 0, temos um
pivô degenerado.

2.5. Sistemas degenerados 41

• Nesse caso, a variável entrante não aumenta: temos a mesma solução
depois do pivô.

Exemplo 2: Primeiro pivô

• Pivô: x2–w2

z = 3 +3/2x1 −2w2 +1/2w1

x3 = 1 −1/2x1 −1/2w1

x2 = 0 +x1 −w2 +w1

• O valor da função objetivo não aumentou!

Exemplo 2: Segundo pivô

• Pivô: x1–x3

z = 6 −3x3 −2w2 −w1

x1 = 2 −2x3 −w1

x2 = 2 −2x3 −w2

• A segunda iteração aumentou o valor da função objetivo!

Ciclos

• O pior caso seria, se entramos em ciclos.

• É possível? Depende da regra de seleção de variáveis entrantes e sain-
tes.

• Nossas regras

– Escolhe a variável entrante com o maior coeficiente.

– Escolhe a variável sainte mais restrita.

– Em caso de empate, escolhe a variável com o menor índice.

• Ciclos são possíveis: O seguinte sistema possui um ciclo de seis pivôs:
x1–w1, x2–w2, x3–x1, x4–x2, w1–x3, w2–x4.

z = 10x1 −57x2 −9x3 −24x4

w1 = 0 −1/2x1 +11/2x2 +5/2x3 −9x4

w2 = 0 −1/2x1 +3/2x2 +1/2x3 −x4

w3 = 1 −x1

42 Capítulo 2. O método Simplex

Soluções do problema

• Como resolver o problema?

• Três soluções

– Ignora o problema (ou perturba numericamente).

– Método lexicográfico (perturba simbolicamente).

– Regra de Bland.

Método lexicográfico

• Idéia: O fato que existe um b̄i = 0 é por acaso.

• Se introduzimos uma pequena perturbação ϵ � 1

– o problema desaparece

– a solução será (praticamente) a mesma.

Método lexicográfico

• Ainda é possível que duas perturbações numéricas se cancelem.

• Para evitar isso: Trabalha-se simbolicamente.

• Introduzimos perturbações simbólicas

const. � ϵ1 � ϵ2 � · · · � ϵm > 0

em cada equação.

• Característica: Todo ϵi é numa escala diferente dos outros tal que eles
não se cancelam.

2.5. Sistemas degenerados 43

Exemplo

Exemplo 2.3
Sistema original degenerado e sistema perturbado

z = 4 +2x1 −x2

w1 = 1/2 −x2

w2 = 0 −2x1 +4x2

w3 = 0 +x1 −3x2

z = 4 +2x1 −x2

w1 = 1/2 +ϵ1 −x2

w2 = 0 +ϵ2 −2x1 +4x2

w3 = 0 +ϵ3 +x1 −3x2

♢

Comparar perturbações

• Com variável entrante xk, a linha de menor limite b̄i/āik com āik > 0
define a variável sainte.

• Os coeficientes agora contem constantes e perturbações.

• Podemos representá-los como vetores b̄t
i ϵ com

b̄t
i = (v̄i ei1 · · · , eim)

e com ϵ = (1 ϵ1 . . . , ϵm)t).

• Com isso temos limites li = b̄i/āik em cada linha i.

• A comparação de limites respeita a ordem lexicográfica das perturba-
ções: li < lj sse o primeiro coeficiente não-nulo em li − lj é negativo.

Características

• Depois de chegar no valor ótimo, podemos retirar as perturbações ϵi.

Teorema 2.1
O método Simplex sempre termina escolhendo as variáveis saintes usando
a regra lexicográfica.

44 Capítulo 2. O método Simplex

Prova. É suficiente mostrar que o sistema nunca será degenerado. Neste caso
o valor da função objetivo sempre cresce, e o método Simplex não cicla. A
matriz de perturbações 

ϵ1

ϵ2

· · ·
ϵm


inicialmente tem posto m. As operações do método Simplex são operações
lineares que não mudam o posto do matriz. Logo, em cada passo do método
Simplex temos uma matriz de perturbações

e11ϵ1 e12ϵ2 · · · e1mϵm

e21ϵ1 e22ϵ2 · · · e2mϵm

· · · · · ·
em1ϵ1 em2ϵ2 · · · emmϵm


que ainda tem posto m. Portanto, em cada linha i existe pelo menos um eij 6=
0 e assim uma perturbação diferente de zero e o sistema não é degenerado.
■
Exemplo 2.4
Solução do exemplo 2.3.
Pivô x1–w3: z = 4 +1ϵ2 −w2 +3x2

w1 = 1/2 +ϵ1 −x2

x1 = 0 +1/2ϵ2 +2ϵ3 −1/2w2 −2x2

w3 = 0 +1/2ϵ2 +ϵ3 −1/2w2 +3x2

Pivô x2–w3: z = 4 +5/2ϵ2 +3ϵ3 −5/2w2 −3w3

w1 = 1/2 +ϵ1 −1/2ϵ2 −ϵ3 +1/2w2 +w3

x1 = 0 +3/2ϵ2 +2ϵ3 −3/2w2 −2w3

x2 = 0 +1/2ϵ2 +ϵ3 −1/2w2 −w3

♢

Regra de Bland

• Outra solução do problema: A regra de Bland.

• Escolhe como variável entrante e sainte sempre a variável com o menor
índice (caso tiver mais que um candidato).

Teorema 2.2
O método Simplex sempre termina se as variáveis entrantes e saintes
são escolhidas através da regra de Bland.

2.5. Sistemas degenerados 45

Prova. Prova por contradição: Suponha que exista uma sequência de dicio-
nários que entra num ciclo D0, D1, . . . , Dk−1 usando a regra do Bland. Nesse
ciclo algumas variáveis, chamadas instáveis, entram e saem novamente da
base, outras permanecem sempre como básicas, ou como não-básicas. Seja
xt a variável instável com o maior índice. Sem perda de generalidade, seja
xt a variável sainte do primeiro dicionário D0. Seja xs a variável entrante no
D0. Observe que xs também é instável e portanto s < t. Seja D∗ o dicionário
em que xt entra na base. Temos a situação

D0, D1, D2, · · · D∗, · · · Dk−1

xs entra

xt sai

xt entra

com os sistemas correspondentes

D0 : D∗ :

z = z0 + ∑
j∈N

cjxj z = z∗ + ∑
j∈N ∗

c∗j xj

xi = bi − ∑
j∈N

aijxj i ∈ B xi = b∗i − ∑
j∈N ∗

a∗ijxj i ∈ B∗

Como temos um ciclo, todas variáveis instáveis tem valor 0 e o valor da
função objetivo é constante. Logo z0 = z∗ e para D∗ temos

z = z∗ + ∑
j∈N ∗

c∗j xj = z0 + ∑
j∈N ∗

c∗j xj. (2.7)

Se aumentamos em D0 o valor do xs para y, qual é o novo valor da função
objetivo? Os valores das variáveis são

xs = y

xj = 0 j ∈ N \ {s}
xi = bi − aisy i ∈ B

(2.8)

e temos no sistema D1 o novo valor

z = z0 + csy (2.9)

46 Capítulo 2. O método Simplex

Vamos substituir os valores das variáveis (2.8) com índices em N ∗ ∩ B na
equação (2.7). Para facilitar a substituição, vamos definir c∗j := 0 para j 6∈ N ∗,
que permite substituir todas variáveis xj, j ∈ B e assim obtemos

z = z0 + ∑
j∈[1,n+m]

c∗j xj = z0 + c∗s y + ∑
j∈B

c∗j (bj − ajsy). (2.10)

Equações (2.9) e (2.10) representam o mesmo valor, portanto(
cs − c∗s + ∑

j∈B
c∗j ajs

)
y = ∑

j∈B
c∗j bj.

Essa igualdade deve ser correta para qualquer aumento y, portanto os dois
lados são 0, em particular

cs − c∗s + ∑
j∈B

c∗j ajs = 0.

Como xs entra em D0 temos cs > 0. Em D∗ a variável xt entra, então c∗s ≤ 0
senão pela regra de Bland s < t entraria. Logo,

∑
j∈B

c∗j ajs = c∗s − cs ≤ −cs < 0

e deve existir um r ∈ B tal que c∗r ars < 0. Isso tem uma série de consequên-
cias:

(i) c∗r 6= 0.

(ii) r ∈ N ∗, porque somente as variáveis nulas satisfazem c∗j 6= 0 em D∗.

(iii) xr é instável, porque ela é básica em D0 (r ∈ B), mas não-básica em D∗

(r ∈ N ∗).

(iv) r ≤ t, porque t foi a variável instável com o maior índice.

(v) r < t, porque c∗t ats > 0: xt entra em D∗, logo c∗t > 0, e xt sai em D0,
logo ats > 0.

(vi) c∗r ≤ 0, senão r e não t entraria em D∗ seguindo a regra de Bland.

(vii) ars > 0.

(viii) br = 0, porque xr é instável, mas todos variáveis instáveis tem valor 0
no ciclo, e xr é básica em D0.

Os últimos dois itens mostram que xr foi candidato ao sair em D0 com índice
r < t, uma contradição com a regra de Bland. ■

2.6. Complexidade do método Simplex 47

Teorema fundamental
Teorema 2.3 (Teorema fundamental da programação linear)
Para qualquer programa linear temos:

(i) Se não existe solução ótima, o problema é inviável ou ilimitado.

(ii) Se existe uma solução viável, existe uma solução básica viável.

(iii) Se existe uma solução ótima, existe uma solução ótima básica.

2.6. Complexidade do método Simplex

Usando a regra de Bland o método Simplex nunca repete uma base e o nú-
mero de pivôs é limitado pelo número de bases. Com n + m variáveis (de
decisão e de folga) existem no máximo(

n + m
n

)
=

(
n + m

m

)
bases possíveis. Para n + m constante, essa expressão é maximizada para
n = m. Os limites nesse caso são (exercício 2.3)

1
2n

22n ≤
(

2n
n

)
≤ 22n.

Logo é possível que o método Simplex precisa um número exponencial
de pivôs. A existência de sistemas com um número de pivôs exponencial
depende da regra de pivoteamento. Por exemplo, para a regra de maior co-
eficiente, existem sistemas que precisam um número exponencial de pivôs
(Klee-Minty). A pergunta se isso é o caso para qualquer regra de pivotea-
mento está em aberto. O melhor algoritmo para a programação linear precisa
tempo O((n3/ log n)L (Anstreicher 1999), supondo que uma operação arit-
mética custa O(1) e os dados são inteiros de L bits. Empiricamente o método
Simplex precisa O(m + n) pivôs (Vanderbei 2014), e cada pivô custa O(mn)
operações, logo o tempo empírico, novamente supondo que uma operação
aritmética custa O(1) do método Simplex é O((m + n)mn).

Observação 2.2
Spielman e Teng (2004) mostram que o método Simplex possui complexidade
suavizada polinomial, i.e., o máximo do valor esperado do tempo de execu-
ção sobre pequenos perturbações (Gaussianas) é polinomial no tamanho da
instância e no inverso da perturbação.

48 Capítulo 2. O método Simplex

Sem perturbações o problema de encontrar a solução que o método Sim-
plex encontraria usando a regra de Dantzig é PSPACE-completo (Fearnley e
Savani 2014). ♢

2.7. Exercícios

(Soluções a partir da página 218.)

Exercício 2.1 (Maculan e Fampa (2006))
Resolve com o método Simplex.

maximiza z = 3x1 + 5x2

sujeito a x1 ≤ 4,

x2 ≤ 6,

3x1 + 2x2 ≤ 18,

x1, x2 ≥ 0.

Exercício 2.2
Resolve o exercício 1.7 usando o método Simplex.

Exercício 2.3
Prova que

22n

2n
≤

(
2n
n

)
≤ 22n.

Exercício 2.4
Resolve o sistema degenerado

z = 10x1 −57x2 −9x3 −24x4

w1 = −1/2x1 +11/2x2 +5/2x3 −9x4

w2 = −1/2x1 +3/2x2 +1/2x3 −x4

w3 = 1 −x1

usando o método lexicográfico e a regra de Bland.

Exercício 2.5
Dado o problema de otimização

maximiza x1 + x2

sujeito a ax1 + bx2 ≤ 1,

x1, x2 ≥ 0,

2.7. Exercícios 49

determine condições suficientes e necessárias que a e b tem que satisfazer tal
que

(a) existe pelo menos uma solução ótima,

(b) existe exatamente uma solução ótima,

(c) existe nenhuma solução ótima,

(d) o sistema é ilimitado.

ou demonstre que o caso não é possível.

Exercício 2.6
Sabe-se que o dicionário ótimo do problema

maximiza z = 3x1 + x2

sujeito a − 2x1 + 3x2 ≤ 5,

x1 − x2 ≤ 1,

x1, x2 ≥ 0,

é
z∗ = 31 −11w2 −4w1

x2 = 7 −2w2 −w1

x1 = 8 −3w2 −w1

(a) Se a função objetivo passar a z = x1 + 2x2, a solução continua ótima?
No caso de resposta negativa, determine a nova solução ótima.

(b) Se a função objetivo passar a z = x1 − x2, a solução continua ótima?
No caso de resposta negativa, determine a nova solução ótima.

(c) Se a função objetivo passar a z = 2x1 − 2x2, a solução continua ótima?No
caso de resposta negativa, determine a nova solução ótima.

(d) Formular o dual e obter a solução dual ótima.

Exercício 2.7
Prove ou mostre um contra-exemplo.
O problema max{ctx | Ax ≤ b} possui uma solução viável sse min{x0 |
Ax − ex0 ≤ b} possui uma solução viável com x0 = 0. Observação: e é um
vetor com todos compentes igual 1 da mesma dimensão que b.

50 Capítulo 2. O método Simplex

Exercício 2.8
Prove ou mostre um contra-exemplo.
Se x é a variável sainte em um pivô, x não pode ser variável entrante no pivô
seguinte.

Exercício 2.9
Demonstramos na seção 2.5 que existem sistemas em que o método Simplex
entra em ciclos. No exemplo o método Simplex ficou sempre na mesma
solução, representada por bases diferentes. Agora supõe que temos soluções
diferentes com o mesmo valor da função objetivo. É possível que o método
Simplex entra num ciclo sempre visitando soluções diferentes?

Exercício 2.10
Supõe que temos um dicionário com uma base infactível, com um candidato
para a variável entrante xe (i.e. ce > 0) tal que todos coeficientes na coluna
correspondente são negativos (i.e. aie < 0 para todo i ∈ B). Caso a base fosse
viável podemos concluir que o sistema é ilimitado. Podemos concluir isso
também com a base infactível?

3. Dualidade

3.1. Introdução

Visão global

• Dualidade: Cada programa linear (chamada de primal) possui um pro-
grama linear correspondente, chamado de dual.

• A dualidade tem várias aplicações como

– Estimar a qualidade de soluções e a convergência do método Sim-
plex.

– Certificar a otimalidade de um programa linear.

– Analisar a sensibilidade e re-otimizar sistemas.

– Resolver programas lineares mais eficiente com o Método Simplex
dual.

• O programa linear dual possui uma interpretação relevante.

Introdução

• Considere o programa linear

maximiza z = 4x1 + x2 + 3x3, (3.1)

sujeito a x1 + 4x2 ≤ 1,

3x1 − x2 + x3 ≤ 3,

x1, x2, x3 ≥ 0.

• Cada solução viável fornece um limite inferior para o valor máximo.

x1 = x2 = x3 = 0 ⇒ z = 0

x1 = 1, x2 = x3 = 0 ⇒ z = 4

• Qual a qualidade da solução atual?

• Não sabemos, sem limite superior.

52 Capítulo 3. Dualidade

Limites superiores

• Como obter um limite superior?

Observe: z = 4x1 + x2 + 3x3 ≤ 10x1 + x2 + 3x3 ≤ 10

• Podemos construir uma combinação linear das desigualdades, tal que
o coeficiente de cada xj ultrapasse o coeficiente da função objetivo.

• Nosso exemplo:

(x1 + 4x2) + 3(3x1 − x2 + x3) ≤ 1 + 3 · 3 = 10

⇐⇒10x1 + x2 + 3x3 ≤ 10

• Como obter um limite superior para a função objetivo?

• Qual seria o menor limite superior que esse método fornece?

O menor limite superior

• Sejam y1, . . . , yn os coeficientes de cada linha. Observação: Eles devem
ser ≥ 0 para manter a direção das desigualdades.

• Então queremos

minimiza ∑
i∈[m]

biyi

sujeito a ∑
i∈[m]

aijyi ≥ cj, ∀j ∈ [n],

yi ≥ 0.

• Isto é o problema dual com variáveis duais ou multiplicadores duais yi.

Exemplo 3.1
Para o sistema (3.1) obtemos:

minimiza y1 + 3y2

sujeito a y1 + 3y2 ≥ 4,

4y1 − y2 ≥ 1,

y2 ≥ 3,

y1, y2, y3 ≥ 0.

♢

3.1. Introdução 53

Dualidade: Características

• Em notação matricial

maximiza ctx, minimiza bty,

sujeito a Ax ≤ b. sujeito a yt A ≥ ct.

x ≥ 0. y ≥ 0.

• O primeiro se chama primal e o segundo dual.

• Eles usam os mesmos parâmetros cj, aij, bi.

O dual do dual

• Observação: O dual do dual é o primal.

• Forma normal do dual:

−maximiza − bty, −maximiza − bty,

sujeito a − yt A ≤ −ct, = sujeito a (−At)y ≤ −c,

y ≥ 0. y ≥ 0.

• Dual do dual

−minimiza − ctz, maximiza ctz,

sujeito a zt(−At) ≥ −bt, = sujeito a Az ≤ b,

z ≥ 0. z ≥ 0.

Exemplo 3.2
Qual o dual do problema de transporte (1.11)? Com variáveis duais πi, i ∈ [n]
para as das restrições de estoque (1.12) e variáveis duais ρj, j ∈ [m] para as
restrições de demanda (1.13) obtemos

maximiza ∑
i∈[n]

aiπi + ∑
j∈[m]

bjρj, (3.2)

sujeito a πi + ρj ≥ cij, ∀i ∈ [n], j ∈ [m],

πi, ρj ≥ 0, ∀i ∈ [n], j ∈ [m].

♢

54 Capítulo 3. Dualidade

3.2. Características

Teorema da dualidade fraca

Teorema 3.1 (Dualidade fraca)
Se x1, . . . , xn é uma solução viável do sistema primal, e y1, . . . , ym uma solu-
ção viável do sistema dual, então

∑
i∈[n]

cixi ≤ ∑
j∈[m]

bjyj.

Prova.

ctx ≤ (yt A)x = yt(Ax) pela restrição dual (3.3)

≤ ytb pela restrição primal (3.4)

■

Situação

Soluções primais viáveis Soluções duais viáveis
z

Gap de otimalidade?

• Em aberto: Qual o tamanho desse intervalo em geral?

Teorema da dualidade forte
Teorema 3.2
Se x∗1 , . . . , x∗n é uma solução ótima do sistema primal, existe uma solução
ótima y∗1 , . . . , y∗m do sistema dual com

∑
i∈[n]

cix∗i = ∑
j∈[m]

bjy∗j .

Prova. Seja x∗ uma solução ótima do sistema primal. Considere um dicioná-
rio inicial do método Simplex com variáveis de folga

xn+j = bj − ∑
i∈[n]

ajixi, ∀j ∈ [m]

3.2. Características 55

e a função objetivo de um dicionário que corresponde com a solução ótima

z = z∗ + ∑
i∈[n+m]

cixi

(com ci = 0 para variáveis básicas). Temos que construir uma solução ótima
dual y∗. Pela optimalidade, na função objetivo acima, todos c̄i devem ser
não-positivos. Provaremos que y∗j = −c̄n+j ≥ 0 para j ∈ [m] é uma solução
dual ótima. Como z∗ é o valor ótimo do problema, temos z∗ = ∑i∈[n] cix∗i .
Reescrevendo a função objetivo temos

z = ∑
i∈[n]

cixi sistema inicial

= z∗ + ∑
i∈[n+m]

c̄ixi sistema final

= z∗ + ∑
i∈[n]

c̄ixi + ∑
j∈[m]

c̄n+jxn+j separando índices

= z∗ + ∑
i∈[n]

c̄ixi − ∑
j∈[m]

y∗j

(
bj − ∑

i∈[n]
ajixi

)
subst. solução e var. folga

=

(
z∗ − ∑

j∈[m]

y∗j bj

)
+ ∑

i∈[n]

(
c̄i + ∑

j∈[m]

y∗j aji

)
xi agrupando

Essa derivação está válida para qualquer valor das variáveis xi, portanto

z∗ = ∑
j∈[m]

y∗j bj e ci = c̄i + ∑
j∈[m]

y∗j aji, i ∈ [n].

Logo o primal e dual possuem o mesmo valor

∑
j∈[m]

y∗j bj = z∗ = ∑
i∈[n]

cix∗i

e como c̄i ≤ 0 sabemos que a solução y∗ satisfaz as restrições duais

ci ≤ ∑
j∈[m]

y∗j aji, i ∈ [n],

y∗j ≥ 0, j ∈ [m].

■

56 Capítulo 3. Dualidade

Consequências: Soluções primais e duais

• Com o teorema da dualidade forte, temos quatro possibilidades

Sistema primal Sistema dual Intervalo

Ótimo Ótimo Sem
Ilimitado Inviável Sem
Inviável Ilimitado Sem
Inviável Inviável Infinito

Exemplo 3.3 (Primal e dual inviável)
Não segue do teorema da dualidade forte que existe um caso em que tanto
o sistema primal quanto o sistema dual são inviáveis. O seguinte exemplo
mostra que isso pode acontecer. O sistema primal

maximiza x1

sujeito a + x1 − x2 ≤ 0,

− x1 + x2 ≤ −1,

x1, x2 ≥ 0,

possui sistema dual correspondente

minimiza − y2

sujeito a + y1 − y2 ≥ 1,

− y1 + y2 ≥ 0.

Ambos os sistemas são inviáveis. ♢

Podemos resumir as possibilidades na seguinte tabela:

Dual

Primal Inviável Ótimo Ilimitado

Inviável
√

×
√

Ótimo ×
√

×
Ilimitado

√
× ×

3.2. Características 57

Consequências

• Dado soluções primais e duais x∗, y∗ tal que ctx∗ = bty∗ podemos con-
cluir que ambas soluções são ótimas (x∗, y∗ é um certificado da optima-
lidade)1.

• A prova mostra: com o valor ótimo do sistema primal, sabemos tam-
bém o valor ótimo do sistema dual.

• Além disso: Podemos trocar livremente entre o sistema primal e dual.
⇒ Método Simplex dual.

Outra consequência do Teorema da dualidade forte é o

Teorema 3.3 (Teorema das folgas complementares)
Os vetores x∗, y∗ são soluções ótimas do sistema primal e dual, respectiva-
mente, se e somente se

y∗t(b − Ax∗) = 0 (3.5)

(y∗t A − ct)x∗ = 0 (3.6)

Prova. Pelo Teorema da dualidade forte as duas desigualdades (3.3) e (3.4)
da prova do Teorema da dualidade fraca se tornam igualdades para soluções
ótimas:

ctx∗ = y∗t Ax∗ = y∗tb

Reagrupando termos, o teorema segue. Conversamente, caso (3.5) e (3.6)
estão satisfeitos, as soluções primais e duais possuem o mesmo valor e assim
tem que ser ótimas. ■
As igualdades 3.5 e 3.6 são ainda válidas em cada componente, porque tanto
as soluções ótimas x∗, y∗ quanto as folgas primas e duais b − Ax e y∗t A − ct

sempre são positivos.

1Uma consequência é que o problema de decisão correspondente, determinar se existe uma
solução maior que um dado valor, possui um certificado que pode ser verificado em tempo
polinomial tanto para uma resposta positiva quanto uma resposta negativa. Portanto, já
antes da descoberta de um algoritmo polinomial para esse problema, foi claro que ele
pertence a NP∩ co-NP.

58 Capítulo 3. Dualidade

xi > 0 ⇒ ∑
j∈[m]

yjaji = ci (3.7)

∑
j∈[m]

yjaji > ci ⇒ xi = 0 (3.8)

yj > 0 ⇒ bj = ∑
i∈[n]

ajixi (3.9)

bj > ∑
i∈[n]

ajixi ⇒ yj = 0 (3.10)

Como consequência podemos ver que, por exemplo, caso uma igualdade
primal não possui folga, a variável dual correspondente é positiva, e, con-
trariamente, caso uma igualdade primal possui folga, a variável dual cor-
respondente é zero. As mesmas relações se aplicam para as desigualdades
no sistema dual. Após a introdução da forma matricial no seção 3.6 vamos
analisar a interpretação das variáveis duais com mais detalha no seção 3.7.
O teorema das folgas complementares pode ser usado ainda para obter a
solução dual dado a solução primal:

Exemplo 3.4
A solução ótima de

maximiza z = 6x1 + 8x2 + 5x3 + 9x4

sujeito a 2x1 + x2 + x3 + 3x4 ≤ 5,

x1 + 3x2 + x3 + 2x4 ≤ 3,

x1, x2, x3, x4 ≥ 0,

é x1 = 2 e x3 = 1 com valor 17. Pela equação (3.7) sabemos que

2y1 + y2 = 6

y1 + y2 = 5.

Portanto a solução dual é y1 = 1 e y2 = 4. ♢

3.3. Dualidade em forma não-padrão

Dualidade em forma padrão

3.3. Dualidade em forma não-padrão 59

maximiza ctx, minimiza bty,

sujeito a Ax ≤ b, sujeito a yt A ≥ ct,

x ≥ 0. y ≥ 0.

• O que acontece se o sistema não é em forma padrão?

Igualdades

• Caso de igualdades: Substituindo desigualdades..

maximiza ctx, maximiza ctx,

sujeito a Ax = b, sujeito a Ax ≤ b,

x ≥ 0. Ax ≥ b,

x ≥ 0.

• ... padronizar novamente, e formar o dual:

maximiza ctx, minimiza bty+ − bty−,

sujeito a Ax ≤ b, sujeito a y+t A − y−t A ≥ c,

− Ax ≤ −b, y+ ≥ 0, y− ≥ 0,

x ≥ 0. y+ = (y+1 , . . . , y+m)
t,

y− = (y−1 , . . . , y−m)
t.

Igualdades

• Equivalente, usando variáveis irrestritas y = y+ − y−

minimiza bty

sujeito a yt A ≥ c,

yt ≶ 0.

• Resumo

60 Capítulo 3. Dualidade

Primal (max) Dual (min)

Igualdade Variável dual livre
Desigualdade (≤) Variável dual não-negativa
Desigualdade (≥) Variável dual não-positiva
Variável primal livre Igualdade
Variável primal não-negativa Desigualdade (≥)
Variável primal não-positiva Desigualdade (≤)

Exemplo 3.5 (Exemplo dualidade não-padrão)
O dual de

maximiza 3x1 + x2 + 4x3

sujeito a x1 + 5x2 + 9x3 = 2,

6x1 + 5x2 + 3x3 ≤ 5,

x1, x3 ≥ 0, x2 ≶ 0,

é

minimiza 2y1 + 5y2

sujeito a y1 + 6y2 ≥ 3,

5y1 + 5y2 = 1,

9y1 + 3y2 ≥ 4,

y1 ≶ 0, y2 ≥ 0.

♢
Exemplo 3.6 (Dual do problema de transporte)
O dual do problema de transporte num grafo direcionado G = (V, A) com
custos nas arestas ca, limites inferiores e superiores para o fluxo la e ua em
cada arco, e demandas bv em cada vértice

minimiza ∑
a∈A

caxa

sujeito a ∑
(u,v)∈A

x(u,v) − ∑
(v,u)∈A

x(v,u) = bv, ∀v ∈ V,

xa ≥ la, ∀a ∈ A,

xa ≤ ua, ∀a ∈ A,

xa ≥ 0, ∀a ∈ A,

3.4. Interpretação do dual 61

usando variáveis duais πv ≶ 0, v ∈ V, ρa ≥ 0, a ∈ A e σa ≤ 0, a ∈ A para as
três restrições é

maximiza ∑
v∈V

bvπv + ∑
a∈A

laρa + uaσa

sujeito a − πu + πv + ρa + σa ≥ ca, ∀a = (u, v) ∈ A,

πv ∈ R, ∀v ∈ V,

ρa ≥ 0, ∀a ∈ A,

σa ≤ 0, ∀a ∈ A.

♢

3.4. Interpretação do dual

Exemplo: Dieta dual

• Problema da dieta: Minimiza custos de uma dieta x que alcance dados
VDR mínimos.

minimiza ctx

sujeito a Ax ≥ r,

x ≥ 0.

• Unidades das variáveis e parâmetros

– x ∈ Rn: Quantidade do alimento [g]

– c ∈ Rn: R$/alimento [R$/g]

– aij ∈ Rm×n: Nutriente/Alimento [g/g]

– r ∈ Rm: Quantidade de nutriente [g].

Exemplo: Dieta dual

• O problema dual é

maximiza ytr

sujeito a yt A ≤ ct,

y ≥ 0.

62 Capítulo 3. Dualidade

• Qual a unidade de y? Preço por nutriente [R$/g].

• Imagine uma empresa, que produz cápsulas que substituem os nutri-
entes.

• Para vender no mercado, a empresa tem que garantir que uma dieta
baseado em cápsulas custa menos que os alimentos correspondentes:

∑
i∈[m]

yiaij ≤ cj, ∀j ∈ [m]

• Além disso, ela define preços por nutriente que maximizam o custo de
uma dieta adequada, para maximizar o próprio lucro.

maximiza ytr

Interpretação do dual

• Outra interpretação: o valor de uma variável dual yj é o custo marginal
de adicionar mais uma unidade bj.
Teorema 3.4
Se um sistema possui pelo menos uma solução básica ótima não-degenerada,
existe um ϵ > 0 tal que, se |tj| ≤ ϵ para j ∈ [m],

maximiza ctx

sujeito a Ax ≤ b + t,

x ≥ 0,

tem uma solução ótima com valor

z = z∗ + y∗tt

(com z∗ o valor ótimo do primal, é y∗ a solução ótima do dual).

Exemplo 3.7
Considere uma modificação do sistema do Ildo

maximiza 0.2c + 0.5c (3.11)

sujeito a c + 1.5s ≤ 150, (3.12)

50c + 50s ≤ 6000, (3.13)

c ≤ 80, (3.14)

s ≤ 70, (3.15)

c, s ≥ 0. (3.16)

3.5. Método Simplex dual 63

0 20 40 60 80 100
0

20

40

60

80

100

(3.12)

(3.13)

(3.14)

(3.15)

y4 = 1/5

y1 = 1/5

c (croissants)

s
(s

tr
ud

el
s)

Figura 3.1.: Solução ótima do sistema (3.11) com variáveis duais.

(O sistema foi modificado para a solução ótima atender as condições do
teorema 3.4.) A solução ótima do sistema primal é x∗ = (45 70)t com valor 44,
a solução ótima do dual y∗(1/5 0 0 1/5)t. A figura 3.1 mostra a solução ótima
com as variáveis duais associadas com as restrições. O valor da variável dual
correspondente com uma restrição é o lucro marginal de um aumento do lado
direito da restrição por um.

♢

3.5. Método Simplex dual

Método Simplex dual

64 Capítulo 3. Dualidade

• Considere

maximiza − x1 − x2

sujeito a − 2x1 − x2 ≤ 4,

− 2x1 + 4x2 ≤ −8,

− x1 + 3x2 ≤ −7,

x1, x2 ≥ 0.

• Qual o dual?

minimiza 4y1 − 8y2 − 7y3

sujeito a − 2y1 − 2y2 − y3 ≥ −1,

− y1 + 4y2 + 3y2 ≥ −1,

y1, y2, y3 ≥ 0.

Com dicionários

z = −x1 −x2

w1 = 4 +2x1 +x2

w2 = −8 +2x1 −4x2

w3 = −7 +x1 −3x2

−w = −4y1 +8y2 +7y3

z1 = 1 −2y1 −2y2 −y3

z2 = 1 −y1 +4y2 +3y3

• Observação: O primal não é viável, mas o dual é!

• Correspondência das variáveis:

Variáveis

principais de folga
Primal x1, . . . , xn w1, . . . , wm

Dual z1, . . . , zn, y1, . . . , ym

de folga principais

• Primeiro pivô: y2 entra, z1 sai. No primal: w2 sai, x1 entra.

3.5. Método Simplex dual 65

Primeiro pivô

z = −4 −0.5w2 −3x2

w1 = 12 +w2 +5x2

x1 = 4 +0.5w2 +2x2

w3 = −3 +0.5w2 −x2

−w = 4 −12y1 −4z1 +3y3

y2 = 0.5 −y1 −0.5z1 −0.5y3

z2 = 3 −5y1 −2z1 +y3

• Segundo pivô: y3 entra, y2 sai. No primal: w3 sai, w2 entra.

Segundo pivô

z = −7 −w3 −4x2

w1 = 18 +2w3 +7x2

x1 = 7 +w3 +3x2

w2 = 6 +2w3 +2x2

−w = 7 −18y1 −7z1 −6y2

y3 = 1 −2y1 −z1 −2y2

z2 = 4 −7y1 −3z1 −2y2

• Sistema dual é ótimo, e portanto o sistema primal também.

Método Simplex dual

• Observação: Não é necessário escrever o sistema dual. Ele é sempre o
negativo transposto do sistema primal.

z = z̄ + ∑
j∈N

c̄jxj,

xi = b̄i − ∑
j∈N

āijxj, i ∈ B

• Mas é necessário modificar as regras para resolver o sistema dual.

Método Simplex dual: Viabilidade e otimalidade

• Pré-condição: O dicionário é dualmente viável, i.e. os coeficientes das
variáveis não-básicas na função objetivo tem quer ser não-positivos.

c̄j ≤ 0 para j ∈ N .

• Otimalidade: Todos variáveis básicas primais positivas

∀i ∈ B : b̄i ≥ 0

66 Capítulo 3. Dualidade

Método Simplex dual: Pivô

• Caso existe uma variável primal negativa: A solução dual não é ótima.

• Regra do maior coeficiente: A variável básica primal de menor valor
(que é negativo) sai da base primal.

i = argmin
i∈B

b̄i

• A variável primal nula com fração āij/c̄j maior entra.

j = argmin
j∈N
āij<0

c̄j

āij
= argmax

j∈N
āij<0

āij

c̄j
= argmax

j∈N

āij

c̄j

Método Simplex dual
Resumo:

• Dualmente viável: c̄j ≤ 0 para j ∈ N .

• Otimalidade: ∀i ∈ B : b̄i ≥ 0.

• Variável sainte: i = argmini∈B b̄i

• Variável entrante: j = argmaxj∈N
āij
c̄j

.

Exemplo

maximiza z = −2x1 − x2

sujeito a − x1 + x2 ≤ −1,

− x1 − 2x2 ≤ −2,

x2 ≤ 1,

x1, x2 ≥ 0.

3.6. Os métodos em forma matricial 67

Exemplo: Dicionário inicial
z = −2x1 −x2

w1 = −1 +x1 −x2

w2 = −2 +x1 +2x2

w3 = 1 −x2

• O dicionário primal não é viável, mas o dual é.

Exemplo: Primeiro pivô
z = −1 −3/2x1 −1/2w2

w1 = −2 +3/2x1 −1/2w2

x2 = 1 −1/2x1 +1/2w2

w3 = +1/2x1 −1/2w2

Exemplo: Segundo pivô
z = −3 −w1 −w2

x1 = 4/3 +2/3w1 +1/3w2

x2 = 1/3 −1/3w1 +1/3w2

w3 = 2/3 +1/3w1 −1/3w2

3.6. Os métodos em forma matricial

A forma matricial permite uma descrição mais sucinta do método Simplex. A
seguir vamos resumir os métodos Simplex primal e dual na forma matricial.
Mais importante, nessa forma é possível expressar o dicionário correspon-
dente com qualquer base em termos dos dados inicias (A, c, b). Na próxima
seção vamos usar essa forma para analisar a sensibilidade de uma solução à
pequenas perturbações dos dados (i.e. os coeficientes A,b, e c).

3.6.1. O dicionário final em função dos dados

Sistema padrão

• O sistema padrão é

maximiza ctx

sujeito a Ax ≤ b,

x ≥ 0.

68 Capítulo 3. Dualidade

• Com variáveis de folga xn+1, . . . , xn+m e A,c,x novo (definição segue
abaixo)

maximiza ctx

sujeito a Ax = b,

x ≥ 0.

Matrizes

A =


a11 a12 · · · a1n 1
a21 a22 · · · a2n 1
...

...
...

. . .
am1 am2 . . . amn 1

 ;

b =


b1

b2
...

bm

 ; c =



c1

c2
...

cn

0
...
0


; x =



x1

x2
...

xn

xn+1
...

xn+m



Separação das variáveis

• Em cada iteração as variáveis estão separados em básicas e não-básicas.

• Conjuntos de índices correspondentes: B
.
∪ N = [1, n + m].

• A componente i de Ax pode ser separado como

∑
j∈[n+m]

aijxj = ∑
j∈B

aijxj + ∑
j∈N

aijxj.

3.6. Os métodos em forma matricial 69

Separação das variáveis

• Para obter a mesma separação na forma matricial: Reordenamos as
colunas e separamos as matrizes e vetores:

A = (B N) ; x =

(
xB

xN

)
; c =

(
cB

cN

)

• com B ∈ Rm×m, N ∈ Rm×n, c ∈ Rn+m.

Forma matricial das equações

• Agora Ax = b é equivalente com

(B N)

(
xB

xN

)
= BxB + NxN = b

• Numa solução básica, a matriz B tem posto m tal que as colunas de B
formam uma base do Rm. Logo B possui inversa e

xB = B−1(b − NxN) = B−1b − B−1NxN

Forma matricial da função objetivo

• A função objetivo é

z = ctx = (ct
B ct

N)

(
xB

xN

)
= ct

BxB + ct
NxN

• e usando xB = B−1b − B−1NxN obtemos

z = ct
B(B−1b − B−1NxN) + ct

NxN

= ct
BB−1b − (ct

BB−1N − ct
N)xN

= ct
BB−1b − ((B−1N)tcB − cN)

txN

70 Capítulo 3. Dualidade

Dicionário em forma matricial

• Logo, o dicionário em forma matricial é

z = ct
BB−1b − ((B−1N)tcB − cN)

txN

xB = B−1b − B−1NxN

• Compare com a forma em componentes:

z = z̄ + ∑
j∈N

c̄jxj z = z̄ + c̄txN

xi = b̄i − ∑
j∈N

āijxj i ∈ B xB = b̄ − ĀxN

Dicionário em forma matricial

• Portanto, vamos identificar

z̄ = ct
BB−1b; c̄ = −((B−1N)tcB − cN)

b̄ = B−1b; Ā = (āij) = B−1N

• para obter o dicionário

z = z̄ + c̄txN

xB = b̄ − ĀxN

Sistema dual

• As variáveis primais são

x = (x1 . . . xn︸ ︷︷ ︸
original

xn+1 . . . xn+m︸ ︷︷ ︸
folga

)t

• Para manter índices correspondentes, escolhemos variáveis duais da
forma

y = (y1 . . . yn︸ ︷︷ ︸
folga

yn+1 . . . yn+m︸ ︷︷ ︸
dual

)t

• O dicionário do dual correspondente então é

Primal Dual

z = z̄ + c̄txN −w = −z̄ − b̄tyB

xB = b̄ − ĀxN yN = −c̄ + ĀtyB

3.6. Os métodos em forma matricial 71

Primal e dual

• A solução básica do sistema primal é

x∗N = 0; x∗B = b̄ = B−1b

• A solução dual correspondente é

y∗B = 0; y∗N = −c̄ = (B−1N)tcB − cN

• Com isso temos os dicionários

z = z̄ − (y∗N)
txN −w = −z̄ − (x∗B)

tyB

xB = x∗B − (B−1N)xN yN = y∗N + (B−1N)tyB

Observação 3.1
A solução dual completa é yt = ct

BB−1A − ct (isso pode ser visto como?), ou
yi = ct

BB−1ai − ci para cada índice i ∈ [n + m]. As variáveis duais originais
com índice i ∈ [n + 1, m] correspondem com as colunas ai = ei das variáveis
de folga e possuem coeficientes ci = 0. Logo yt

o = ct
BB−1 é a solução do

sistema dual sem as variáveis de folga, e podemos escrever y = (yt
o A− ct)t =

Atyo − c e para os custos reduzidos c̄ = c − Atyo. ♢

3.6.2. Simplex em forma matricial

Método Simplex em forma matricial

• Começamos com uma partição B
.
∪ N = [1, n + m].

• Em cada iteração selecionamos uma variável sainte i ∈ B e entrante
j ∈ N .

• Fazemos o pivô xi com xj.

• Depois a nova base é B \ {i} ∪ {j}.

72 Capítulo 3. Dualidade

Método Simplex em forma matricial

S1: Verifique solução ótima Se y∗N ≥ 0 a solução atual é ótima. Pare.

S2: Escolhe variável entrante Escolhe j ∈ N com y∗j < 0. A variável en-
trante é xj.

S3: Determine passo básico Aumentando xj uma unidade temos novas va-
riáveis não-básicas xN = x∗N + ∆xN com ∆xN = (0 · · · 010 · · · 0)t = ej e
ej o vetor nulo com somente 1 na posição correspondente com índice j.
Como

xB = x∗B − B−1NxN ,

a diminuição correspondente das variáveis básicas é ∆xB = B−1Nej.

Método Simplex em forma matricial

S4: Determine aumento máximo O aumento máximo de xj é limitado por
xB ≥ 0, i.e.

xB = x∗B − t∆xB ≥ 0 ⇐⇒ x∗B ≥ t∆xB.

Com t, x∗B ≥ 0 temos

t ≤ t∗ = min
i∈B

∆xi>0

x∗i
∆xi

S5: Escolhe variável sainte Escolhe um i ∈ B com x∗i = t∗∆xi.

Método Simplex em forma matricial

S5: Determine passo dual A variável entrante dual é yi. Aumentando uma
unidade, as variáveis yN diminuem ∆yN = −(B−1N)tei.

S6: Determina aumento máximo Com variável sainte yj, sabemos que yi
pode aumentar ao máximo

s =
y∗j

∆yj
.

S7: Atualiza solução

x∗j := t y∗i := s

x∗B := x∗B − t∆xB y∗N := y∗N − s∆yN

B := B \ {i} ∪ {j}

3.7. Análise de sensibilidade 73

3.7. Análise de sensibilidade

Motivação

• Na solução da programas lineares os parâmetros são fixos.

• Qual o efeito de uma perturbação

c := c + ∆c; b := b + ∆b; A := A + ∆A?

(Imagina erros de medida, pequenas flutuações, etc.)

Análise de sensibilidade

• Após a solução de um sistema linear, temos o dicionário ótimo

z = z∗ − (y∗N)
txN

xB = x∗B − B−1NxN

• com

x∗B = B−1b

y∗N = (B−1N)tcB − cN

z∗ = ct
BB−1b

Modificar c

• Mudarmos c para ĉ, mantendo a base B.

• x∗B não muda, mas temos que reavaliar y∗N e z∗.

• Depois, x∗B ainda é uma solução básica viável do sistema primal.

• Logo, podemos continuar aplicando o método Simplex primal.

Modificar b

• Da mesma forma, modificamos b para b̂ (mantendo a base).

• y∗N não muda, mas temos que reavaliar x∗B e z∗.

• Depois, y∗N ainda é uma solução básica viável do sistema dual.

• Logo, podemos continuar aplicando o método Simplex dual.

74 Capítulo 3. Dualidade

Vantagem dessa abordagem

• Nos dois casos, esperamos que a solução inicial já é perto da solução
ótima.

• Experiência prática confirma isso.

• O que acontece se queremos modificar tanto b quanto c ou ainda A?

• A solução atual não necessariamente é viável no sistema primal ou
dual.

• Mas: Mesmo assim, a convergência na prática é mais rápido.

Estimar intervalos

• Pergunta estendida: Qual o intervalo de t ∈ R tal que o sistema com
ĉ = c + t∆c permanece ótimo?

• Para t = 1: y∗N = (B−1N)tcB − cN aumenta ∆yN := (B−1N)t∆cB − ∆cN .

• Em geral: Aumento t∆yN .

• Condição para manter a viabilidade dual:

y∗N + t∆yN ≥ 0

• Para t > 0 temos

t ≤ min
j∈N

∆yj<0

−
y∗j

∆yj

• Para t < 0 temos

max
j∈N

∆yj>0

−
y∗j

∆yj
≤ t

Estimar intervalos

• Agora seja b̂ = b + t∆b.

• Para t = 1: x∗B = B−1b aumenta ∆xB := B−1∆b.

• Em geral: Aumento t∆xB.

3.7. Análise de sensibilidade 75

• Condição para manter a viabilidade primal:

x∗B + t∆xB ≥ 0

• Para t > 0 temos

t ≤ min
i∈B

∆xi<0

−
x∗i

∆xi

• Para t < 0 temos

max
i∈B

∆xi>0

−
x∗i

∆xi
≤ t

Observação 3.2
A matriz B−1 é formada pelas colunas do dicionário final que correspondem
com as variáveis de folga. ♢

Exemplo 3.8
Considere o problema da empresa de aço (visto na aula prática, veja também
execício 1.7).

maximiza 25p + 30c

sujeito a 7p + 10c ≤ 56000,

p ≤ 6000,

c ≤ 4000,

p, c ≥ 0.

Qual o intervalo em que o valor do lucro das placas de 25R $ pode variar
sem alterar a solução ótima?

Exemplo: Empresa de aço

• Sistema ótimo

76 Capítulo 3. Dualidade

• Base B = {p, w3, c}, variáveis não-básicas N = {w1, w2}. (Observe:
usamos conjuntos de variáveis, ao invés de conjuntos de índices).

Exemplo: Variáveis

• Vetores c e ∆c. Observe que reordenamos os dados do sistema inicial
de forma correspondente com a ordem das variáveis do sistema final.

c =


25
0
30
0
0

 ; cB =

25
0
30

 ; cN =

(
0
0

)
;

∆c =


1
0
0
0
0

 ; ∆cB =

1
0
0

 ; ∆cN =

(
0
0

)

Exemplo: Aumentos

• Aumento das variáveis duais

∆yN = (B−1N)t∆cB − ∆cN = (B−1N)t∆cB

• com

B−1N =

 0 1
−1/10 7/10
1/10 −7/10


• temos

∆yN =

(
0
1

)

Exemplo: Limites

• Limites em geral

max
j∈N

∆yj>0

−
y∗j

∆yj
≤ t ≤ min

j∈N
∆yj<0

−
y∗j

∆yj

3.7. Análise de sensibilidade 77

• Logo
−4 ≤ t ≤ ∞.

• Uma variação do preço entre 25 + [−4, ∞] = [21, ∞] preserve a otimali-
dade da solução atual.

• O novo valor da função objetivo é

z == ĉt
BB−1b =

(
25 + t 0 30

)6000
2600
1400

 = 192000 + 6000t

e os valores das variáveis p e c permanecem os mesmos.

♢
Exemplo 3.9
Qual o intervalo em que o lucro das placas (R$ 25) e dos canos (R$ 30) podem
variar sem que a solução ótima seja alterada?

Exemplo: Variação do lucro dos placas e canos

• Os vetores c, cB, cN e ∆cN permanecem os mesmos do exemplo anterior.
Enquanto que:

∆c =


1
0
1
0
0

 ; ∆cB =

1
0
1

 ;

• Neste caso, o valor de ∆yN é

∆yN = (B−1N)t∆cB =

(
0 −1/10 1/10
1 7/10 −7/10

)1
0
1

 =

(
1/10
3/10

)
.

• Logo −40/3 ≤ t ≤ ∞

• Ou seja, uma variação do lucro das placas entre R$ 11.67 e ∞, e do lucro
dos canos entre R$ 16.67 e ∞, não altera a solução ótima do sistema.

♢

78 Capítulo 3. Dualidade

Exemplo: Modificação

• Qual o intervalo em que o lucro dos canos (R$ 30) podem variar sem
que a solução ótima seja alterada?

• Os vetores c, cB, cN e ∆cN permanecem os mesmos do exemplo anterior.
Enquanto que:

∆c =


0
0
1
0
0

 ; ∆cB =

0
0
1

 ;

• Neste caso, o valor de ∆yN é:

∆cB =

(
1/10
−7/10

)
;

• Logo −30 ≤ t ≤ 40/7

• Ou seja, uma variação do lucro dos canos entre R$ 0 e R$ 35.71, não
altera a solução ótima do sistema.

Exemplo 3.10
O que acontece se mudarmos o lucro das placas para R$ 20?

Exemplo: Placas com lucro R$ 20

• Novos vetores

ĉ =


20
0
30
0
0

 ; ĉB =

20
0
30

 ; ĉN =

(
0
0

)

• Aumento

ŷ∗N = (B−1N)t ĉB − ĉN = (B−1N)t ĉB

=

(
0 −1/10 1/10
1 7/10 −7/10

)20
0
30

 =

(
3
−1

)

3.7. Análise de sensibilidade 79

Novas variáveis

• Com

B−1b =

6000
2600
1400


• Novo valor da função objetivo

ẑ∗ = ĉt
BB−1b =

(
20 0 30

)6000
2600
1400

 = 162000

Exemplo: Novo dicionário

• Novo sistema primal viável, mas não ótimo:

z = 162000 −3w1 +w2

p = 6000 −w2

w3 = 2600 +1/10w1 −7/10w2

c = 1400 −1/10w1 +7/10w2

• Depois um pivô: Sistema ótimo.

z = 165714 2/7 −20/7w1 −10/7w3

p = 2285 5/7 −1/7w1 +10/7w3

w2 = 3714 2/7 +1/7w1 −10/7w2

c = 4000 −w3

♢
Exemplo 3.11
O que acontece se mudarmos o lucro das placas de R$ 25 para R$ 35 e dos
canos de R$ 30 para R$ 10?

Exemplo: Placas e canos com lucro R$ 35 e R$ 10

• Novos vetores

ĉ =


35
0
10
0
0

 ; ĉB =

35
0

10

 ; ĉN =

(
0
0

)

80 Capítulo 3. Dualidade

• Aumento

ŷ∗N = ((B−1N)tcB − cN) =

(
0 −1/10 1/10
1 7/10 −7/10

)35
0

10

 =

(
1
28

)

Novas variáveis e novo dicionário

• Novo valor da função objetivo

ẑ∗ = ĉt
BB−1b = ĉt

Bx∗B =
(
35 0 10

)6000
2600
1400

 = 224000

• O novo sistema primal viável é

z = 224000 −1w1 −28w2

p = 6000 −w2

w3 = 2600 +1/10w1 −7/10w2

c = 1400 −1/10w1 +7/10w2

• O sistema é ótimo.

♢

Exemplo 3.12
Qual o efeito de uma variação do lado direito 6000 da segunda restrição?
Para estudar essa variação escolhemos ∆b = (0 1 0)t. Temos, pela Observ-
ção 3.2

B−1 = 1/10

 0 10 0
−1 7 10
1 −7 0


e logo ∆xB = B−1∆b = 1/10(10 7 − 7)t. Obtemos a nova solução básica

x̂∗B =

6000
2600
1400

+ t/10

 10
7
−7



3.8. Exercícios 81

e a condição de otimalidade x̂∗B ≥ 0 nos fornece os limites

−26000/7 ≤ t ≤ 2000

entre quais ela é ótima. O valor da função objetivo dentro desses limites é

ẑ∗ = ct
B x̂∗B = (25 0 30)t

 6000 + t
2600 + 7/10t
1400 − 7/10t

 = 192000 + 4t.

♢

3.8. Exercícios

(Soluções a partir da página 220.)

Exercício 3.1
Qual o sistema dual de

minimiza 7x1 + x2 + 5x3

sujeito a x1 − x2 + 3x3 ≥ 10,

5x1 + 2x2 − x3 ≥ 6,

x1, x2, x3 ≥ 0?

Exercício 3.2
Considere o problema

Cobertura por conjuntos ponderados (weighted set cover)

Instância Um universo U, uma familia S de subconjuntos do universo,
i.e. para todo S ∈ S , S ⊆ U, e custos c(S) para cada conjunto S ∈ S .

Solução Uma cobertura por conjuntos, i.e. uma seleção de conjuntos
T ⊆ S tal que para cada elemento e ∈ U existe pelo menos um
S ∈ T com e ∈ S.

Objetivo Minimizar o custo total dos conjuntos selecionados.

82 Capítulo 3. Dualidade

Uma formulação inteira do problema é

minimiza ∑
S∈S

c(S)xS

sujeito a ∑
S:e∈S

xS ≥ 1, e ∈ U,

xS ∈ B, S ∈ S .

O problema com restrições de integralidade é NP-completo. Substituindo as
restrições de integralidade xS ∈ B por restrições triviais xS ≥ 0 obtemos um
programa linear. Qual o seu dual?

Exercício 3.3
O sistema

maximiza 2x1 − x2 + x3

sujeito a 3x1 + x2 + x3 ≤ 60,

x1 − x2 + 2x3 ≤ 10,

x1 + x2 − x3 ≤ 20,

x1, x2, x3 ≥ 0.

possui dicionário ótimo

z = 25 −3/2x5 −1/2x6 −3/2x3

x4 = 10 +x5 +2x6 −x3

x1 = 15 −1/2x5 −1/2x6 −1/2x3

x2 = 5 +1/2x5 −1/2x6 +3/2x3

a) Em qual intervalo o coeficiente c1 = 2 pode variar?

b) Em qual intervalo o coeficiente b2 = 10 pode variar?

c) Modifique o lado direito de (60 10 20)t para (70 20 10)t: o sistema
mantém-se ótimo? Caso contrário, determina a nova solução ótima.

d) Modifique a função objetivo para 3x1 − 2x2 + 3x3: o sistema mantém-se
ótimo? Caso contrário, determina a nova solução ótima.

4. Tópicos

4.1. Centro de Chebyshev

Seja B(c, r) = {c + u | ||u|| ≤ r} a esfera com centro c e raio r. Para um
polígono convexo aix ≤ bi, para i ∈ [n], queremos encontrar o centro e o raio
da maior esfera, que cabe dentro do polígono, i.e. resolver

maximiza r

sujeito a sup
p∈B(c,r)

ai p ≤ bi, ∀i ∈ [n].

Temos
sup

p∈B(c,r)
ai p = cai + sup

||u||≤r
aiu = cai + ||ai||r

porque o segundo supremo é atingido por u = rai/||ai||. Assim obtemos
uma formulação linear

maximiza r

sujeito a aic + r||ai|| ≤ bi, ∀i ∈ [n].

Exemplo 4.1
O polígono da Fig. 4.1 possui a descrição

2x1 + 4x2 ≤ 24,

4x1 − x2 ≤ 12,

−x1 ≤ 0,

−x2 ≤ 0.

Portanto o programa linear para encontrar o centro e o raio do maior círculo

1 2 3 4 5

1

2

3

4

5

6

x1

x2

(1.85, 3.01)
r = 1.85

Figura 4.1.: Exemplo do
centro de Chebyshev

é

maximiza r

sujeito a 2c1 + 4c2 +
√

20r ≤ 24,

4c1 − c2 +
√

17r ≤ 12,

− c1 + r ≤ 0,

− c2 + r ≤ 0.

84 Capítulo 4. Tópicos

♢

4.2. Função objetivo convexa e linear por segmentos

Uma função f é convexa se f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y) para qual-
quer x e y e 0 ≤ t ≤ t. Funções convexas são importantes na otimização,
porque eles possuem no máximo um mínimo no interior do domínio deles,
e portanto o mínimo de uma função convexa pode ser obtido com métodos
locais.
Seja fi(x), i ∈ [n] uma coleção de funções lineares. O máximo f (x) =

maxi∈[n] fi(x) é uma função convexa linear por segmentos. O problema de
otimização

minimiza max
i∈[n]

fi(x)

é equivalente com o programa linear

minimiza x0 (4.1)

sujeito a fi(x) ≤ x0, ∀i ∈ [n]. (4.2)

Portanto podemos minimizar uma função convexa linear por segmentos
usando programação linear. De forma similar, f é concava se f (tx + (1 −
t)y) ≥ t f (x) + (1 − t) f (y). (Observe que uma função convexa e concava é
afina.) O sistema

maximiza x0

sujeito a fi(x) ≥ x0,

x∀i ∈ [n].

maximiza uma função concava linear por segmentos.

Parte II.

Programação inteira

5. Introdução

5.1. Definições

Problema da dieta

• Problema da dieta

minimiza ctx

sujeito a Ax ≥ r,

x ≥ 0.

• Uma solução (laboratório): 5 McDuplos, 3 maçãs, 2 casquinhas mista
para R$ 24.31

• Mentira! Solução correta: 5.05 McDuplos, 3.21 maças, 2.29 casquinhas
mistas.

• Observação: Correto somente em média sobre várias refeições.

Como resolver?

• Com saber o valor ótima para uma única refeição?

• Restringe as variáveis x ao conjunto Z.

• Será que método Simplex ainda funciona?

• Não. Pior: O problema torna-se NP-completo.

Problemas de otimização

• Forma geral

optimiza f (x),

sujeito a x ∈ V.

88 Capítulo 5. Introdução

Programação inteira

• Programação linear (PL)

maximiza ctx

sujeito a Ax ≤ b,

x ∈ Rn ≥ 0;

• Programação inteira pura (PI)

maximiza hty

sujeito a Gy ≤ b,

y ∈ Zn ≥ 0.

Programação inteira

• Programação (inteira) mista (PIM)

maximiza ctx + hty

sujeito a Ax + Gy ≤ b,

x ∈ Rn ≥ 0, y ∈ Zm ≥ 0;

• Programação linear e inteira pura são casos particulares da programa-
ção mista.

• Outro caso particular: 0-1-PIM e 0-1-PI.

x ∈ Bn

Exemplo

maximiza x1 + x2

sujeito a 2x1 + 7x2 ≤ 49,

5x1 + 3x2 ≤ 50.

5.1. Definições 89

Exemplo

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

3

6

9

12

Soluções viáveis

2x1 + 7x2 = 49

5x1 + 3x2 = 50

x1

x 2

• Sorte: A solução ótima é inteira! x1 = 7, x2 = 5, V = 12.

• Observação: Se a solução ótima é inteira, um problema de PI(M) pode
ser resolvido com o método Simplex.

Exemplo

90 Capítulo 5. Introdução

maximiza x1 + x2

sujeito a 1.8x1 + 7x2 ≤ 49,

5x1 + 2.8x2 ≤ 50.

Exemplo

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

3

6

9

12

Soluções viáveis

1.8x1 + 7x2 = 49

5x1 + 2.8x2 = 50

x1

x 2

• Solução ótima agora: x1 ≈ 7.10, x2 ≈ 5.17, V = 12.28.

5.1. Definições 91

• Será que bx1c , bx2c é a solução ótima do PI?

Exemplo

maximiza − x1 + 7.5x2

sujeito a − x1 + 7.2x2 ≤ 50.4,

5x1 + 2.8x2 ≤ 62.

Exemplo

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

10

20

30

40

50

Soluções viáveis

−x1 + 7.2x2 = 50.4

5x1 + 2.8x2 = 62

x1

x 2

92 Capítulo 5. Introdução

• Solução ótima agora: x1 ≈ 7.87, x2 ≈ 8.09, V = 52.83.

• bx1c = 7, bx2c = 8.

• Solução ótima inteira: x1 = 0, x2 = 7!

• Infelizmente a solução ótima inteira pode ser arbitrariamente distante!

Métodos para resolver PI

• Prove que a solução da relaxação linear sempre é inteira.

• Insere cortes.

• Branch-and-bound.

5.2. Motivação e exemplos

Motivação

• Otimização combinatória é o ramo da ciência da computação que es-
tuda problemas de otimização em conjuntos (wikipedia).

• “The discipline of applying advanced analytical methods to help make
better decisions” (INFORMS)

• Tais problemas são extremamente frequentes e importantes.

Máquina de fazer dinheiro

• Imagine uma máquina com 10 botões, cada botão podendo ser ajustado
em um número entre 0 e 9.

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

5.3. Aplicações 93

Máquina de fazer dinheiro
2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

• há uma configuração que retorna R$ 10.000.

• total de combinações: 1010.

• dez testes por segundo

• em um ano:⇒ 10 × 60 × 60 × 24 × 365 ∼= 3 × 108

Explosão combinatória
Funções típicas:

n log n n0.5 n2 2n n!
10 3.32 3.16 102 1.02 × 103 3.6 × 106

100 6.64 10.00 104 1.27 × 1030 9.33 × 10157

1000 9.97 31.62 106 1.07 × 10301 4.02 × 102567

“Conclusões”
2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

• Melhor não aceitar a máquina de dinheiro.

• Problemas combinatórios são difíceis.

5.3. Aplicações

Apanhado de problemas de otimização combinatória

• Caixeiro viajante

• Roteamento
1retirado de Integer Programming - Wolsey (1998)

94 Capítulo 5. Introdução

• Projeto de redes

• Alocação de horários

• Tabelas esportivas

• Gestão da produção

• etc.

Caixeiro Viajante

Caixeiro Viajante

Caixeiro Viajante

• Humanos são capazes de produzir boas soluções em pouco tempo!

• Humanos ?

5.3. Aplicações 95

Caixeiro Viajante

Fonte: Applegate et al. (2007)

Caixeiro Viajante

Fonte: Applegate et al. (2007)

Caixeiro Viajante

Fonte: Applegate et al. (2007)

96 Capítulo 5. Introdução

Caixeiro Viajante

Business leads the traveling salesman here and there, and there is
not a good tour for all occurring cases; but through an expedient
choice division of the tour so much time can be won that we feel
compelled to give guidelines about this. Everyone should use as
much of the advice as he thinks useful for his application. We
believe we can ensure as much that it will not be possible to plan
the tours through Germany in consideration of the distances and
the traveling back and fourth, which deserves the traveler’s spe-
cial attention, with more economy. The main thing to remember
is always to visit as many localities as possible without having to
touch them twice.

“Der Handlungsreisende wie er sein soll und was er zu tun hat,
um Aufträge zu erhalten und eines glücklichen Erfolgs in seinen
Geschäften gewiss zu sein. Von einem alten Commis-Voyageur”
(O caixeiro viajante, como ele deve ser e o que ele deve fazer para
obter encomendas e garantir um sucesso feliz dos seus negócios.
Por um caixeiro viajante experiente).

Fonte: Applegate et al.
(2007)

First brought to the attention of the TSP research community in 1983 by
Heiner Muller-Merbach [410]. The title page of this small book is shown
in Figure 1.1. The Commis-Voyageur [132] explicitly described the need for
good tours in the following passage, translated from the German original by
Linda Cook.

Caixeiro Viajante

5.3. Aplicações 97

1960 1980 2000 2020

102

103

104

105

DFJ HKCFM

G

CP
PR

GH

PR

ABCC

ABCCABCC
ABCC

ABCCH

ABCCEGH
ABCCEGH

Year

Si
ze

Fonte: Applegate et al. (2007)

Formulando matemáticamente o PCV

• Associar uma variável a cada possível decisão.

Formulando matemáticamente o PCV

• Associar uma variável a cada possível decisão.

98 Capítulo 5. Introdução

minimiza ∑
i,j∈N

cijyij

sujeito a ∑
j∈N

xij + ∑
j∈N

xji = 2, ∀i ∈ N,

xij ∈ B, ∀i, j ∈ N.

Formulando matemáticamente o PCV

• Associar uma variável a cada possível decisão.

minimiza ∑
i,j∈N

cijyij

sujeito a ∑
j∈N

xij + ∑
j∈N

xji = 2, ∀i ∈ N

xij ∈ B, ∀i, j ∈ N.

+ restrições de eliminação de sub-
ciclos!

Problemas de roteamento

Problemas de roteamento

5.3. Aplicações 99

(10−12)

(10−12)

(Tercas e quintas)

(Tercas e quintas)

(segundas e quartas)

Etc.

Problemas em árvores

Problemas em árvores

Problemas em árvores - aplicações

100 Capítulo 5. Introdução

• Telecomunicações

• Redes de acesso local

• Engenharias elétrica, civil, etc..

Alocação de tripulações

Tabelas esportivas

Gestão da produção

5.3. Aplicações 101

Etc.

• programação de projetos

• rotação de plantações

• alocação de facilidades (escolas, centros de comércio, ambulâncias...)

• projeto de circuitos integrados

• portfolio de ações

• etc, etc, etc, etc...

6. Formulação

6.1. Exemplos

“Regras de formulação”

• Criar (boas) formulações é uma arte.

• Algumas diretivas básicas:

– escolha das variáveis de decisão.

– escolha do objetivo.

– ajuste das restrições.

Exemplo: 0-1-Knapsack

Problema da Mochila (Knapsack)

Instância Um conjunto de n itens com valores vi e pesos pi, i ∈ [n]. Um
limite de peso P do mochila.

Solução Um conjunto S ⊆ [n] de itens que cabe na mochila, i.e. ∑i∈S pi ≤
P.

Objetivo Maximizar o valor ∑i∈S vi.

• Observação: Existe uma solução (pseudo-polinomial) com programa-
ção dinâmica em tempo O(Pn) usando espaço O(P).

Formulação – Problema da mochila

maximiza ∑
i∈[n]

vixi

sujeito a ∑
i∈[n]

pixi ≤ P,

xi ∈ B.

104 Capítulo 6. Formulação

Exemplo 6.1 (Maximizar cavalos num tabuleiro de xadrez)
Qual o número máximo de cavalos que cabe num tabuleiro de xadrez, tal
que nenhum ameaça um outro?

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0M0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figura 6.1.: Os campos ata-
cados por um cavalo num
tabuleiro de xadrez.

Formulação do problema dos cavalos com variáveis indicadores xij:

maximiza ∑
i,j∈[8]

xij

sujeito a xij + xi−2,j+1 ≤ 1, 3 ≤ i ≤ 8, j ∈ [7],

xij + xi−1,j+2 ≤ 1, 2 ≤ i ≤ 8, j ∈ [6],

xij + xi+2,j+1 ≤ 1, i ∈ [6], j ∈ [7],

xij + xi+1,j+2 ≤ 1, i ∈ [7], j ∈ [6].

Número de soluções do problema dos cavalos (A030978)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k 1 4 5 8 13 18 25 32 41 50 61 72 85 98 113

♢

6.2. Técnicas para formular programas inteiros

Um problema recorrente com indicadores x1, . . . , xn ∈ B e selecionar no má-
ximo, exatamente, ou no mínimo k dos n itens. As restrições

∑
i∈[n]

xi ≤ k; ∑
i∈[n]

xi = k; ∑
i∈[n]

xi ≥ k

conseguem isso.

Exemplo 6.2 (Localização de facilidades simples 1)
Em n cidades dadas queremos instalar no máximo k fábricas (k ≤ n) de
modo a minimizar o custo da instalação das fábricas. A instalação na cidade
j ∈ [n] custa f j. Podemos usar indicadores para yj ∈ B para a instalação da
uma fábrica na cidade j e formular

minimiza ∑
j∈[n]

f jyj

sujeito a ∑
j∈[n]

yj = k,

yj ∈ B, j ∈ [n].

http://www.research.att.com/~njas/sequences/A030978

6.2. Técnicas para formular programas inteiros 105

(Obviamente para resolver este problema é suficiente escolher as k cidades
de menor custo. No exemplo 6.3 estenderemos esta formulação para incluir
custos de transporte.) ♢

6.2.1. Formular restrições lógicas

Formulação: Indicadores

• Variáveis indicadores x, y ∈ B: Seleção de um objeto.

• Implicação (limitada): Se x for selecionado, então y deve ser selecio-
nado

x ≤ y, x, y ∈ B

• Ou (disjunção):

x + y ≥ 1, x, y ∈ B

• Ou-exlusivo:

x + y = 1, x, y ∈ B

Exemplo 6.3 (Localização de facilidades não-capacitado)
Queremos incluir no exemplo 6.2 clientes. Suponha que em cada cidade tem
um cliente, e queremos, junto com os custos das fábricas instaladas, mini-
mizar o custo de atendimento dos clientes. Entre cada par de cidade, i e j,
o custo de transporte é dado por cij (ver Figura 6.2). Para formulação esco-
lhemos variáveis de decisão xij ∈ B, que indicam se o cliente i for atendido
pela fábrica em j. É importante “vincular” as variáveis de decisão: o cliente
i pode ser atendido pela cidade j somente se na cidade j foi instalada uma
fábrica, i.e. xij → yj.

106 Capítulo 6. Formulação

clientes

fabricas

(a) Exemplo de uma instância (b) Exemplo de uma solução

Figura 6.2.: Localização de facilidades.

minimiza ∑
j∈[n]

f jyj + ∑
i,j∈[n]

cijxij

sujeito a ∑
j∈[n]

xij = 1, i ∈ [n], (só uma fábrica atende)

∑
j∈[n]

yj ≤ m, (no máximo m fábricas)

xij ≤ yj, i ∈ [n], j ∈ [n], (só fáb. existentes atendem)

xij ∈ B, i ∈ [n], j ∈ [n],

yj ∈ B, j ∈ [n].

♢

Formulação: Indicadores
Para x, y, z ∈ B

• Conjunção x = yz = y ∧ z

x ≤ (y + z)/2 (6.1)

x ≥ y + z − 1

• Disjunção x = y ∨ z

x ≥ (y + z)/2 (6.2)

x ≤ y + z

• Negação x = ¬y

x = 1 − y (6.3)

6.2. Técnicas para formular programas inteiros 107

• Implicação: z = x → y

z ≤ 1 − x + y (6.4)

z ≥ (1 − x + y)/2 (6.5)

Exemplo 6.4 (Max-3-SAT)
Seja φ(x1, . . . , xn) =

∧
i∈[m] ci uma fórmula em forma normal conjuntiva, com

cláusulas da forma ci = li1 ∨ li2 ∨ li3. Queremos encontrar uma atribuição
xi ∈ { f , v} maximizando o número de cláusulas satisfeitas.
Seja c̄i ∈ B uma variável que indica que cláusula ci é satisfeita. Também
vamos introduzir uma variável binária x̄k ∈ B para cada variável xk do pro-
blema, e uma variável auxiliar l̄ij para literal lij do problema.

maximiza ∑
i∈[m]

c̄i

sujeito a c̄i ≤ l̄i1 + l̄i2 + l̄i3,

l̄ij = x̄k, caso lij = xk,

l̄ij = 1 − x̄k, caso lij = ¬xk,

c̄i ∈ B, x̄k ∈ B, l̄ij ∈ B.

♢

6.2.2. Formular restrições condicionais

Indicadores para igualdades satisfeitas Queremos definir uma variável y ∈
B que indica se uma dada restrição é satisfeita.

• Para ∑i∈[n] aixi ≤ b: Escolhe um limite superior M para ∑i∈[n] aixi − b,
um limite inferior m para ∑i∈[n] aixi − b e uma constante ϵ > 0 pequena.

∑
i∈[n]

aixi ≤ b + M(1 − y) (6.6)

∑
i∈[n]

aixi ≥ b + my + (1 − y)ϵ

• Para x > 0: Escolhe um limite superior M para x e uma constante ϵ

pequena.

x ≥ ϵy, (6.7)

x ≤ My.

108 Capítulo 6. Formulação

Exemplo 6.5 (Custos fixos)
Uma aplicação para problemas de minimização com uma função objetivo
não-linear. Queremos minimizar custos, com uma “entrada” fixa c da forma

f (x) =

{
0 caso x = 0

c + l(x) caso 0 < x ≤ x̄

e l(x) uma função linear (ver Figura 6.3). Com uma y ∈ B indica a positivi-

x

f (x)

x̄

c

0

c + l(x)

Figura 6.3.: Função objetivo
não-linear

dade de x, i.e. y = 1 sse x > 0 podemos definir a função objetivo por

f (x) = cy + l(x)

e a técnica da equação (6.7) resolve o problema. Como o objetivo é minimizar
f (x) a primeira equação x ≥ ϵy é redundante: caso y = 1 não faz sentido
escolher uma solução com x = 0, porque para x = 0 existe a solução de
menor custo x = y = 0. Logo

x ≤ x̄y,

x ∈ R, y ∈ B,

é suficiente neste caso.
♢

Exemplo
Planejamento de produção (ingl. uncapacitated lot sizing)

• Objetivo: Planejar a futura produção no próximos n semanas.

• Parâmetros: Para cada semana i ∈ [n]

– Custo fixo fi para produzir,

– Custo pi para produzir uma unidade,

– Custo hi por unidade para armazenar,

– Demanda di

Exemplo
Seja

• xi a quantidade produzida,

6.2. Técnicas para formular programas inteiros 109

1

s1

d1

f1/p1

2

s2

d2

f2/p2

3

s3

d3

f3/p3

4

s4

d4

f4/p4

s0

Semana

Estoque

Custos

Figura 6.4.: Planejamento de produção.

• si a quantidade no estoque no final da semana i,

• yi = 1 sem tem produção na semana i, 0 senão.

Problema:

• Função objetivo tem custos fixos, mas xi não tem limite.

• Determina ou estima um valor limite M.

Exemplo

minimiza ∑
i∈[n]

pixi + hisi + fiyi

sujeito a si = si−1 + xi − di, i ∈ [n],

s0 = 0,

xi ≤ Myi, i ∈ [n],

x ∈ Rn, y ∈ Bn.

Disjunção de equações

• Queremos que aplica-se uma das equações

f1 ≤ f2,

g1 ≤ g2.

110 Capítulo 6. Formulação

• Solução, com constante M suficientemente grande

f1 ≤ f2 + Mx,

g1 ≤ g2 + M(1 − x),

x ∈ B.

6.3. Formulações alternativas

Uma problema de programação linear ou inteira geralmente possui mais que
uma formulação. A Figura 6.5 mostra diversas formulações que definem o
mesmo conjunto de soluções inteiras.
Na programação linear existe pouca diferença entre as formulações: a so-
lução é a mesma e o tempo para resolver o problema é comparável, para
um número comparável de restrições e variáveis. Na programação inteira
uma formulação boa é mais importante. Como a solução de programas in-
teiras é NP-completo, frequentemente a relaxação linear é usada para obter
uma aproximação. Diferentes formulação de um programa inteiro possuem
diferentes qualidades da relaxação linear. Uma maneira de quantificar a qua-
lidade de uma formulação é o gap de integralidade(ingl. integrality gap). Para

x1

x2

Figura 6.5.: Diferentes for-
mulações lineares que defi-
nem o mesmo conjunto de
soluções inteiras.

um problema P e uma instância i ∈ P seja OPT(i) a solução ótima inteira e
LP(i) a solução da relaxação linear. O gap de integralidade é

g(P) = sup
i∈P

LP(i)
OPT(i)

(6.8)

(para um problema de maximização.) O gap de integralidade dá uma garan-
tia para qualidade da solução da relaxação linear: caso o gap é g, a solução
não é mais que um fator g maior que a solução integral ótima.

Exemplo 6.6 (Conjunto independente máximo)
Uma formulação do problema de encontrar o conjunto independente má-
ximo num grafo não-direcionado G = (V, A) é

maximiza ∑
v∈V

xv, (CIM)

sujeito a xu + xv ≤ 1, ∀{u, v} ∈ E,

xv ∈ B, ∀v ∈ V.

No grafo completo com n vértices Kn a relaxação linear possui um valor pelo
menos n/2 (porque a solução xv = 1/2, v ∈ V possui valor n/2), enquanto

6.4. Exercícios 111

a solução ótima inteira é 1. Por isso, o programa (CIM) possui um gap de
integralidade ilimitado. ♢

6.4. Exercícios

(Soluções a partir da página 222.)

Exercício 6.1
A empresa “Festa fulminante” organiza festas. Nos próximos n dias, ela
precisa pi pratos, 1 ≤ i ≤ n. No começo de cada dia gerente tem os seguintes
opções:

• Comprar um prato para um preço de c reais.

• Mandar lavar um prato devagarmente em d1 dias, por um preço de l1
reais.

• Mandar lavar um prato rapidamente em d2 < d1 dias, por um preço de
l2 > l1 reais.

O gerente quer minimizar os custos dos pratos. Formule como programa
inteira.

Exercício 6.2
Para os problemas abaixo, encontra uma formulação como programa inteira.

Conjunto independente máximo

Instância Um grafo não-direcionado G = (V, A).

Solução Um conjunto independente I, i.e. I ⊆ V tal que para vértices
v1, v2 ∈ I, {v1, v2} 6∈ A.

Objetivo Maximiza |I|.

Emparelhamento perfeito com peso máximo

Instância Um grafo não-direcionado bi-partido G = (V1
.
∪ V2, A) (a fato

de ser bi-partido significa que A ⊆ V1 × V2) com pesos p : A → R

nos arcos.

Solução Um emparelhamento perfeito, i.e. um conjunto de arcos C ⊆ A tal

112 Capítulo 6. Formulação

que todos nós no sub-grafo G[C] = (V1 ∪ V2, C) tem grau 1.

Objetivo Maximiza o peso total ∑c∈C p(c) do emparelhamento.

Problema de transporte

Instância n depósitos, cada um com um estoque de pi produtos, i ∈ [n],
e m clientes, cada um com uma demanda dj, j ∈ [m] produtos.
Custos de transporte aij de cada depósito i ∈ [n] para cada cliente
j ∈ [m].

Solução Um decisão quantos produtos xij devem ser transportados do
depósito i ∈ [n] ao cliente j ∈ [m], que satisfaz (i) Cada depósito
manda todo seu estoque (ii) Cada cliente recebe exatamente a sua
demanda. (Observe que o número de produtos transportados deve
ser integral.)

Objetivo Minimizar os custos de transporte ∑i∈[n],j∈[m] aijxij.

Conjunto dominante

Instância Um grafo não-direcionado G = (V, A).

Solução Um conjunto dominante, i.e. um conjunto D ⊆ V, tal que ∀v ∈
V : v ∈ D ∨ (∃u ∈ D : {u, v} ∈ A) (cada vértice faz parte do
conjunto dominante ou tem um vizinho no conjunto dominante).

Objetivo Minimizar o tamanho do conjunto dominante |D|.

Exercício 6.3
Acha uma formulação inteira para todos os 21 problemas que o Karp provou
NP-completo (Karp. 1972).

Exercício 6.4
Juliano é fã do programa de auditório Apagando e Ganhando, um programa
no qual os participantes são selecionados atráves de um sorteio e recebem
prêmios em dinheiro por participarem. No programa, o apresentador escreve
um número de N dígitos em uma lousa. O participante então deve apagar
exatamente D dígitos do número que está na lousa; o número formado pelos

6.4. Exercícios 113

dígitos que restaram é então o prêmio do participante. Juliano finalmente
foi selecionado para participar do programa, e pediu que você escrevesse
um programa inteira que, dados o número que o apresentador escreveu na
lousa, e quantos dígitos Juliano tem que apagar, determina o valor do maior
prêmio que Juliano pode ganhar.
(Fonte: Maratona de programação regional 2008, RS)

Exercício 6.5
Set é um jogo jogado com um baralho no qual cada carta pode ter uma,
duas ou três figuras. Todas as figuras em uma carta são iguais, e podem ser
círculos, quadrados ou triângulos. Um set é um conjunto de três cartas em
que, para cada característica (número e figura), u ou as três cartas são iguais,
ou as três cartas são diferentes. Por exemplo, na figura abaixo, (a) é um set
válido, já que todas as cartas têm o mesmo tipo de figura e todas elas têm
números diferentes de figuras. Em (b), tanto as figuras quanto os números
são diferentes para cada carta. Por outro lado, (c) não é um set, já que as
duas ultimas cartas têm a mesma figura, mas esta é diferente da figura da
primeira carta.

(a) (b) (c)

O objetivo do jogo é formar o maior número de sets com as cartas que estão
na mesa; cada vez que um set é formado, as três cartas correspondentes são
removidas de jogo. Quando há poucas cartas na mesa, é fácil determinar o
maior número de sets que podem ser formados; no entanto, quando há mui-
tas cartas há muitas combinações possíveis. Seu colega quer treinar para o
campeonato mundial de Set, e por isso pediu que você fizesse um programa
inteira e que calcula o maior número de sets que podem ser formados com
um determinado conjunto de cartas.
(Fonte: Maratona de programação regional 2008, RS)

114 Capítulo 6. Formulação

Exercício 6.6
Para os problemas abaixo, acha uma formulação como programa inteiro.

Cobertura por arcos

Instância Um grafo não-direcionado G = (V, E) com pesos c : E → Q

nos arcos.

Solução Uma cobertura por arcos, i.e. um subconjunto E′ ⊆ E dos arcos
tal que todo vértice faz parte de ao menos um arco selecionado.

Objetivo Minimiza o custo total dos arcos selecionados em E′.

Conjunto dominante de arcos

Instância Um grafo não-direcionado G = (V, E) com pesos c : E → Q

nos arcos.

Solução Um conjunto dominante de arcos, i.e. um subconjunto E′ ⊆ E
dos arcos tal que todo arco compartilha um vértico com ao menos
um arco em E′.

Objetivo Minimiza o custo total dos arcos selecionados em E′.

Coloração de grafos

Instância Um grafo não-direcionado G = (V, E).

Solução Uma coloração do grafo, i.e. uma atribuição de cores nas vér-
tices c : V → Z tal que cada par de vértices ligando por um arco
recebe uma cor diferente.

Objetivo Minimiza o número de cores diferentes.

Clique mínimo ponderado

Instância Um grafo não-direcionado G = (V, E) com pesos c : V → Q

nos vértices.

Solução Uma clique, i.e. um subconjunto V ′ ⊆ V de vértices tal que

6.4. Exercícios 115

existe um arco entre todo par de vértices em V ′.

Objetivo Minimiza o peso total dos vértices selecionados V ′.

Subgrafo cúbico

Instância Um grafo não-direcionado G = (V, E).

Solução Uma subgrafo cúbico, i.e. uma seleção E′ ⊆ E dos arcos, tal que
cada vértice em G′ = (V, E′) possui grau 0 ou 3.

Objetivo Minimiza o número de arcos selecionados |E′|.

Exercício 6.7
Uma empresa tem que decidir quais de sete investimentos devem ser feitos.
Cada investimento pode ser feito somente uma única vez. Os investimentos
tem lucros (ao longo prazo) e custos iniciais diferentes como segue.

Investimento

1 2 3 4 5 6 7

Lucro estimado [MR$] 17 10 15 19 7 13 9
Custos iniciais [MR$] 43 28 34 48 17 32 23

A empresa tem 100 MR$ capital disponível. Como maximizar o lucro total
(ao longo prazo, não considerando os investimentos atuais), respeitando que
os investimentos 1, 2 e 3, 4 são mutualmente exclusivas, e nem o investimento
3 nem o investimento 4 pode ser feita, sem ao menos um investimento em 1
ou 2 (as outros investimentos não tem restrições).

Exercício 6.8
Um produtor de brinquedos projetou dois novos brinquedos para Natal. A
preparação de uma fábrica para produzir custaria R$ 50000 para a primeiro
brinquedo e R$ 80000 para o segundo. Após esse investimento inicial, o
primeiro brinquedo rende R$ 10 por unidade e o segundo R$ 15.
O produtor tem duas fábricas disponíveis mas pretende usar somente uma,
para evitar custos de preparação duplos. Se a decisão for tomada de produzir
os dois brinquedos, a mesma fábrica seria usada.

116 Capítulo 6. Formulação

Por hora, a fábrica 1 é capaz de produzir 50 unidades do brinquedo 1 ou 40
unidades do brinquedo 2 e tem 500 horas de produção disponível antes de
Natal. A fábrica 2 é capaz de produzir 40 unidades do brinquedo 1 ou 25
unidades do brinquedo 2 por hora, e tem 700 horas de produção disponível
antes de Natal.
Como não sabemos se os brinquedos serão continuados depois Natal, a pro-
blema é determinar quantas unidades de cada brinquedo devem ser produ-
zidas até Natal (incluindo o caso de um brinquedo não sendo produzido) de
forma que maximiza o lucro total.

Exercício 6.9
Uma empresa produz pequenos aviões para gerentes. Os gerentes frequen-
temente precisam um avião com características específicas que gera custos
inicias altos no começo da produção. A empresa recebeu encomendas para
três tipos de aviões de três clientes, mas como ela está com capacidade de
produção limitada, ela tem que decidir quais das três aviões ela vai produzir.
Os seguintes dados são relevantes

Aviões Cliente

produzidas 1 2 3

Custo inicial [MR$] 3 2 0
Lucro [MR$/avião] 2 3 0.8
Capacidade usada [%/avião] 20 40 20
Demanda máxima [aviões] 3 2 5

Os clientes aceitam qualquer número de aviões até a demanda máxima. A
empresa tem quer decidir quais e quantas aviões ela vai produzir. As aviões
serão produzidos em paralelo.

Exercício 6.10 (Winkler)
Uma fechadura de combinação com três discos, cada um com números entre
1 e 8, possui um defeito, tal que precisa-se somente dois números corretos
dos três para abri-la. Qual o número mínimo de combinações (de três núme-
ros) que precisa-se testar, para garantidamente abrir a fechadura?
Formule um programa inteiro e resolva-o.

Exercício 6.11
Formule o problema

6.4. Exercícios 117

MAX-k-SAT

Entrada Uma fórmula em forma normal conjuntiva com m variáveis e n
cláusulas φ(x1, . . . , xm) = C1 ∧ · · · ∧Cn tal que cada cláusula possui
no máximo k literais

Solução Uma atribuição xi 7→ B.

Objetivo Maximizar o número de cláusulas satisfeitas.

(Dica: Usa as desigualdades (6.1)–(6.3). Começa com k = 3.)

Exercício 6.12
A Seção 6.2.1 mostrava como expressar a restrição lógica z = x ∧ y line-
armente. A formulação linear precisava duas restrições lineares. Mostra
que não existe uma única restrição linear que é suficiente para expressar
z = x ∧ y.
(Dica: Supõe que z = ax + by + c (ou z ≥ ax + by + c, ou z ≤ ax + by + c)
com constantes a, b, c e mostra que as restrições que resultam de uma análise
caso a caso levam a uma contradição ou não são suficientes para garantir a
restrição lógica.)

Exercício 6.13
Considere o problema de coloração de grafos:

Coloração de grafos

Instância Um grafo não-direcionado G = (V, E).

Solução Uma coloração do grafo, i.e. uma atribuição de cores às vértices
c : V → Z+ tal que cada par de vértices ligado por uma aresta
recebe uma cor diferente.

Objetivo Minimiza o número de cores diferentes.

Uma formulação possível é introduzir uma variável xvc ∈ B tal que xvc = 1
caso o vértice v ∈ V recebe a cor c. Como nunca tem mais que n = |V| cores,
podemos escolher C = [n]. Temos a condição

∑
c∈C

xvc = 1, ∀v ∈ V. (6.9)

118 Capítulo 6. Formulação

Uma coloração válida ainda tem que satisfazer

xuc + xvc ≤ 1, ∀{u, v} ∈ E, c ∈ C. (6.10)

Para contar o número de cores vamos usar variáveis auxiliares uc ∈ B com
uc = 1 caso a cor c ∈ C foi usada. Eles satisfazem

uc ≥ ∑
v∈V

xvc/n, ∀c ∈ C. (6.11)

Com isso obtemos

(C1) minimiza ∑
c∈C

uc,

sujeito a (6.9), (6.10), (6.11)

xvc ∈ B, uc ∈ B, ∀v ∈ V, c ∈ C.

Um outro modelo é minimizar a soma das cores. Seja fv ∈ Z+ a cor do
vértice v ∈ V, que pode ser definida por

fv = ∑
c∈C

cxvc, ∀v ∈ V. (6.12)

Com isso podemos formular

(C2) minimiza ∑
v∈V

fv,

sujeito a (6.9), (6.10), (6.12),

xvc ∈ B, fc ∈ Z+, ∀v ∈ V, c ∈ C.

Os modelos (C1) e (C2) são equivalentes?

Exercício 6.14
Considere o problema de posicionar os números 1, . . . , 10 nas posições P =

{a, . . . , j} do triângulo

a

b c

d e f

g h i j

.

6.4. Exercícios 119

Um colega afirma que podemos usar variáveis xa, . . . , xj ∈ Z e as restrições

1 ≤ xp ≤ 10, ∀p ∈ P,

∑
p∈P

xp = 55,

∏
p∈P

xp = 10!

Ele tem razão?

Exercício 6.15
Aplica as técnicas da Seção 6.2.1 para derivar uma formulação do problema
MAX-3-SAT discutido no Exemplo 6.4. Compara as duas formulações.

7. Técnicas de solução

7.1. Introdução

Limites

• Exemplo: Problema de maximização.

• Limite inferior (limite primal): Cada solução viável.

– Qualquer técnica construtiva, p.ex. algoritmos gulosos, heurísticas
etc.

• Limite superior (limite dual): Essencialmente usando uma relaxação

– Menos restrições ⇒ conjunto maior de solução viáveis.

– Nova função objetivo que é maior ou igual.

• Importante: Relaxação linear: x ∈ Z ⇒ x ∈ R.

7.2. Problemas com solução eficiente

Observação 7.1 (Regra de Laplace)
Lembrança: A determinante de uma matriz pela regra de Laplace é

det(A) = ∑
i∈[n]

(−1)i+jaij det(Aij) = ∑
j∈[n]

(−1)i+jaij det(Aij)

com j ∈ [n] arbitrário para a primeira variante, e i ∈ [n] arbitrário para a
segunda, e com Aij a submatriz sem linha i e coluna j. ♢

Relaxação linear

• Solução simples: A relaxação linear possui solução ótima inteira.

• Como garantir?

• Com base B temos a solução x = (xB xN)
t = (B−1b, 0)t.

• Observação: Se b ∈ Zm e |det(B)| = 1 para a base ótima, então o PL
resolve o PI.

122 Capítulo 7. Técnicas de solução

Relaxação inteira

• Para ver isso: Regra de Cramer.

• A solução de Ax = b é

xi =
det(Ai)

det(A)

com Ai a matriz resultante da substituição da i-ésima coluna de A por
b.

Prova. Seja Ui a matriz identidade com a i-ésima coluna substituído por x,
i.e. 

1 x1
. . . x2

...

xn−1
. . .

xn 1


Temos que AUi = Ai e com det(Ui) = xi temos

det(Ai) = det(AUi) = det(A)det(Ui) = det(A)xi.

■

Exemplo: Regra de Cramer

3 2 1
5 0 2
2 1 2

x1

x2

x3

 =

1
1
1



Exemplo: Regra de Cramer

7.2. Problemas com solução eficiente 123

∣∣∣∣∣∣
3 2 1
5 0 2
2 1 2

∣∣∣∣∣∣ = −13;

∣∣∣∣∣∣
1 2 1
1 0 2
1 1 2

∣∣∣∣∣∣ = −1

∣∣∣∣∣∣
3 1 1
5 1 2
2 1 2

∣∣∣∣∣∣ = −3;

∣∣∣∣∣∣
3 2 1
5 0 1
2 1 1

∣∣∣∣∣∣ = −4

Logo x1 = 1/13; x2 = 3/13; x3 = 4/13.

Aplicação da regra de Cramer

• Como garantir que x = B−1b é inteiro?

• Cramer:

xi =
det(Bi)

det(B)

• Condição possível: (a) det(Bi) inteiro, (b) det(B) ∈ {−1, 1}.

• Garantir (a): A ∈ Zm×n e b ∈ Zm.

• Garantir (b): Toda submatriz quadrada não-singular de A tem deter-
minante {−1, 1}.

Exemplo 7.1
Observe que essas condições são suficientes, mas não necessárias. É possível
que Bx = b possui solução inteira sem essas condições ser satisfeitas. Por
exemplo

(
2 2
1 0

)(
x1

x2

)
=

(
2
1

)
tem a solução inteira (x1 x2) = (1 0), mesmo que det(A) = −2. ♢

124 Capítulo 7. Técnicas de solução

A relaxação é inteira

Definição 7.1
Uma matriz quadrada inteira A ∈ Rn×n é unimodular se |det(A)| = 1. Uma
matriz arbitrária A é totalmente unimodular (TU) se cada submatriz quadrada
não-singular A′ de A é modular, i.e. det(A′) ∈ {0, 1,−1}.

Uma consequência imediata dessa definição: aij ∈ {−1, 0, 1}.

Exemplo
Quais matrizes são totalmente unimodulares?

(
1 −1
1 1

)
;

1 1 0
0 1 1
1 0 1


 1 −1 −1 0
−1 0 0 1
0 1 0 −1

 ;


0 1 0 0 0
0 1 1 1 1
1 0 1 1 1
1 0 0 1 0
1 0 0 0 0



Exemplo

A =

(
1 −1
1 1

)
TU? Não: det(A) = 2.

A =

1 1 0
0 1 1
1 0 1


TU? Não: det(A) = 2.

7.2. Problemas com solução eficiente 125

7.2.1. Critérios para soluções inteiras

Critérios
Proposição 7.1
Se A é TU então

(i) At é TU.

(ii) (A I) com matriz de identidade I é TU.

(iii) Uma matriz B que é uma permutação das linhas ou colunas de A é TU.

(iv) Multiplicando uma linha ou coluna por −1 produz uma matriz TU.

Prova. (i) Qualquer submatriz quadrada Bt de At e uma submatriz B de A
também. Com det(B) = det(Bt), segue que At é totalmente unimodular. (ii)
Qualquer submatriz de (AI) tem a forma (A′ I′) com A′ submatriz de A e
I′ submatriz de I. Com |det(A′ I′)| = |det(A′)| segue que (AI) é TU. (iii)
Cada submatriz de B é uma submatriz de A. (iv) A determinante troca no
máximo o sinal. ■
Exercício 7.1 pede generalizar a proposição 7.1.

Critérios
Proposição 7.2 (Critério de partição de linhas)
Uma matriz A é totalmente unimodular caso

(i) aij ∈ {+1,−1, 0}

(ii) Cada coluna contém no máximo dois coeficientes não-nulos.

(iii) Existe uma partição de linhas M1
.
∪ M2 = [1, m] tal que cada coluna

com dois coeficientes não-nulos satisfaz

∑
i∈M1

aij − ∑
i∈M2

aij = 0

Prova. (da proposição 7.2). Prova por contradição. Seja A uma matriz que
satisfaz os critérios da proposição 7.2, e B a menor submatriz quadrada de
A tal que det(B) 6∈ {0,+1,−1}. B não contém uma coluna com um único
coeficiente não-nulo: seria uma contradição com a minimalidade do B (re-
movendo a linha e a coluna que contém esse coeficiente, obtemos uma matriz

126 Capítulo 7. Técnicas de solução

quadrada menor B∗, que ainda satisfaz det(B∗) 6∈ {0,+1,−1}). Logo, B con-
tém dois coeficientes não-nulos em cada coluna. Aplicando a condição (3)
acima, subtraindo as linhas com índice em M1 das linhas com índice em M2

podemos ver as linhas do B são linearmente dependentes e portanto temos
det(B) = 0, uma contradição. ■
Observação 7.2
O critério de partição da linhas é suficiente, mas não necessário. A matriz1 1 1

1 1 1
1 1 1

 ,

por exemplo, é totalmente unimodular, mas o critério não se aplica. ♢
Exemplo 7.2
A matriz  1 −1 −1 0

−1 0 0 1
0 1 0 −1


claramente satisfaz os critérios i) e ii) e todas partições possíveis das suas
m = 3 linhas são

M1 M2 M1 M2

∅ {1, 2, 3} {1, 2} {3}
{1} {2, 3} {1, 3} {2}
{2} {1, 3} {2, 3} {1}
{3} {1, 2} ∅ {1, 2, 3}

Obviamente, por simetria, temos que considerar somente a primeira metade
das possibilidades. Logo em geral um teste exaustivo do critério iii) tem que
considerar 2m−1 partições. ♢
Observação 7.3
O critério ii) permite somente 6 tipos de colunas, caracterizados pelos coe-
ficientes diferentes de 0: dois coeficientes 1, ou dois coeficientes −1, ou um
coeficiente 1 e outro −1, ou somente um coeficiente 1, ou −1, ou completa-
mente 0. 1 −1 1 1 −1 0

...
...

...
...

...
...

1 −1 −1 0 0 0



7.2. Problemas com solução eficiente 127

Os coeficientes podem ocorrer em qualquer linha. Somente os primeiros três
tipos precisam satisfazer o critério iii). Eles restringem as partições possíveis:
as linhas dos coeficientes de uma coluna do tipo

(
1
1

)
ou

(−1
−1

)
tem que ficar

em partes diferentes, aqueles de uma coluna do tipo
(−1

1

)
no mesmo parte.

♢
Exemplo 7.3 (Matriz TU pelo critério de linhas)
A matriz  1 −1 −1 0

−1 0 0 1
0 1 0 −1


satisfaz o critério i), porque tem coeficientes em {−1, 0, 1}, o critério ii) por-
que cada coluna tem no máximo dois coeficientes não-nulos, e o critério iii)
com M1 = [1, 3], M2 = ∅. ♢

Exemplo 7.4 (Matriz TU, mas o critério de partição de linhas não se aplica)
A matriz 

0 1 0 0 0
0 1 1 1 1
1 0 1 1 1
1 0 0 1 0
1 0 0 0 0


é TU (ver exemplo 7.5) mas a regra de partição de linhas não se aplica! ♢

Uma caracterização (i.e. um critério necessário e suficiente) das matrizes to-
talmente unimodulares é
Teorema 7.1 (Ghouila-Houri (1962))
Um matriz A ∈ Zm×n é TU sse para todo subconjunto R ⊆ [m] de linhas
existe uma partição R1

.
∪ R2 tal que∣∣∣∣ ∑

i∈R1

aij − ∑
i∈R2

aij

∣∣∣∣ ≤ 1 (7.1)

para todas colunas j ∈ [n].

Observe que a proposição 7.2 implica o critério acima: dado uma partição das
linhas de acordo com 7.2, para todo R ⊆ [m], a partição (M1 ∩ R)

.
∪ (M2 ∩ R)

satisfaz (7.1).

128 Capítulo 7. Técnicas de solução

Definição 7.2
Uma matriz A ∈ Bm×n possui a propriedade de uns consecutivos se para cada
coluna j ∈ [n], aij = 1 e ai′ j = 1 com i < i′ implica akj = 1 para k ∈ [i, i′].

Uma aplicação do critério de Ghouila-Houri é a

Proposição 7.3
Uma matriz que satisfaz a propriedade de uns consecutivos é totalmente
unimodular.

Prova. A matriz formada por um subconjunto de linhas R ⊆ [m] também
possui a propriedade de uns consecutivos. Seja R = {i1, . . . , ik} com i1 ≤
· · · ≤ ik. A partição em M1 = {i1, i3, . . .} e M2 = {i2, i4, . . .} satisfaz (7.1). ■
Exemplo 7.5
A matriz 

0 1 0 0 0
0 1 1 1 1
1 0 1 1 1
1 0 0 1 0
1 0 0 0 0


do exemplo 7.4 satisfaz a propriedade de uns consecutivos. Logo ela é TU. ♢

Exemplo 7.6
Para um universo U = {u1, . . . , um}, e uma família de conjuntos C1, . . . , Cn ⊆
U com pesos p1, . . . , pn uma cobertura é uma seleção de conjuntos S ⊆ [n]
tal que cada elemento do universo é coberto, i.e. para todo u ∈ U existe um
i ∈ S com u ∈ Ci. O problema de encontrar a cobertura de menor peso total
pode ser formulado por

minimiza ∑
i∈[n]

pixi

sujeito a Ax ≥ 1,

x ∈ Bn.

com aij = 1 sse ui ∈ Cj. (Figura 7.1 mostra um exemplo de uma instância
e a matriz A correspondente.) Este problema em geral é NP-completo. Pela
propriedade de uns consecutivos, podemos ver que no caso de um universo
U = [m] com subconjuntos que são intervalos o problema pode ser resolvido
em tempo polinomial. ♢

u1

u2

u3

u4 u5

u6

u7

u8

C1

C2 C3

C4

C5 C6

C7



1 1 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 1
0 0 0 0 1 1 0
0 0 0 0 0 1 1


Figura 7.1.: Exemplo de
uma instância do problema
de cobertura por conjuntos
e a matriz A da formulação
inteira correspondente.

7.2. Problemas com solução eficiente 129

Consequências

Teorema 7.2 (Hoffman e Kruskal (1956))
Se a matriz A de um programa linear é totalmente unimodular e o vetor b é
inteiro, todas soluções básicas são inteiras. Em particular as regiões

{x ∈ Rn | Ax ≤ b}
{x ∈ Rn | Ax ≥ b}
{x ∈ Rn | Ax ≤ b, x ≥ 0}
{x ∈ Rn | Ax = b, x ≥ 0}

possuem pontos extremos inteiros.

Prova. Considerações acima. ■
Exemplo 7.7 (Caminhos mais curtos)

Exemplo: Caminhos mais curtos

• Dado um grafo direcionado G = (V, A) com custos c : A → Z nos
arcos.

• Qual o caminho mais curto entre dois nós s, t ∈ V?

Exemplo: Caminhos mais curtos

minimiza ∑
a∈A

caxa

sujeito a ∑
a∈N+(s)

xa − ∑
a∈N−(s)

xa = 1,

∑
a∈N+(v)

xa − ∑
a∈N−(v)

xa = 0, ∀v ∈ V \ {s, t},

∑
a∈N+(t)

xa − ∑
a∈N−(t)

xa = −1,

xa ∈ B, ∀a ∈ A.

A matriz do sistema acima de forma explicita:

130 Capítulo 7. Técnicas de solução

s

...

t


1 · · · · · · −1

1
...

−1 1
−1 · · ·




xa1

...

xam

 =


1
0
...
0
−1


Como cada arco é incidente a dois vértices, cada coluna contém um coefi-
ciente 1 e −1, e a Proposição 7.2 é satisfeito pela partição trivial ∅

.
∪ V.

♢

Exemplo 7.8 (Fluxo em redes)

Exemplo: Fluxo em redes

• Dado: Um grafo direcionado G = (V, A)

– com arcos de capacidade limitada l : A → Z+,

– demandas d : V → Z dos vértices,

– (com dv < 0 para destino e dv > 0 nos fonte)

– e custos c : A → R por unidade de fluxo nos arcos.

• Qual o fluxo com custo mínimo?
1

2 3

4 5

6

0 0

5

42

3

Figura 7.2.: Exemplo de
uma instância de um pro-
blema de fluxo.

Exemplo: Fluxo em redes

minimiza ∑
a∈A

caxa

sujeito a ∑
a∈N+(v)

xa − ∑
a∈N−(v)

xa = dv, ∀v ∈ V

0 ≤ xa ≤ la, ∀a ∈ A.

com conjunto de arcos entrantes N−(v) e arcos saintes N+(v).

7.3. Desigualdades válidas 131

Exemplo: Fluxo

• A matriz que define um problema de fluxo é totalmente unimodular.

• Consequências

– Cada ponto extremo da região víavel é inteira.

– A relaxação PL resolve o problema.

• Existem vários subproblemas de fluxo mínimo que podem ser resolvi-
dos também, p.ex. fluxo máximo entre dois vértices.

♢

Exemplo 7.9 (Emparelhamentos)

Emparelhamento máximo (EM)

Entrada Um grafo G = (V, E) não-direcionado.

Solução Um emparelhamento M ⊆ E, i.e. um conjunto de arcos, tal que
para todos vértices v temos |N(v) ∩ M| ≤ 1.

Objetivo Maximiza |M|.

Uma formulação é

maximiza ∑
e∈E

cexe (7.2)

sujeito a ∑
u∈N(v)

xuv ≤ 1, ∀v ∈ V, (7.3)

xe ∈ B.

A matriz de coeficientes dessa formulação é TU para grafos bipartidos. Por
quê? Isso ainda é válido para grafos não-bipartidos? ♢

7.3. Desigualdades válidas

Desigualdades válidas

132 Capítulo 7. Técnicas de solução

• Problema inteiro
max{ctx | Ax ≤ b, x ∈ Zn

+}

x1

x2

Figura 7.3.: Diferentes for-
mulações dos mesmo PI.

• Relaxação linear
max{ctx | Ax ≤ b, x ∈ Rn

+}

Desigualdades válidas

Definição 7.3
Uma desigualdade πx ≤ π0 é válida para um conjunto P, se ∀x ∈ P : πx ≤
π0.

• Como encontrar desigualdades (restrições) válidas para o conjunto da
soluções viáveis {x | Ax ≤ b, x ∈ Zn

+} de um problema inteiro?

– Técnicas de construção (p.ex. método de Chvátal-Gomory)

– Observar e formalizar características específicas do problema.

– “The determination of families of strong valid inequalities is more
of an art than a formal methodology” Nemhauser e Wolsey (1999,
p. 259)

Exemplo 7.10 (Localização de facilidades não-capacitado)
Temos um conjunto de cidades C = [n] em que podemos abrir facilidades
para um custo fixo f j, j ∈ C. Em cada cidade i existe um demanda que pode
ser satisfeito por uma facilidade na cidade j com custo cij, caso existe um
facilidade na cidade j. Com xij ∈ B indicando que a demanda da cidade i é
satisfeito pela facilidade na cidade j podemos formular

minimiza ∑
j∈[n]

f jyj + ∑
i∈[n],j∈[n]

cijxij (7.4)

sujeito a ∑
j∈[n]

xij = 1, ∀i ∈ [n], (7.5)

xij ≤ yj, ∀i ∈ [n], j ∈ [n], (7.6)

xij ∈ B, ∀i ∈ [n], j ∈ [n], (7.7)

yj ∈ B, ∀j ∈ [n]. (7.8)

7.3. Desigualdades válidas 133

Ao invés de
xij ≤ yj (7.9)

podemos formular
∑

i∈[n]
xij ≤ nyj. (7.10)

Essa formulação ainda é correta, mas usa n restrições ao invés de n2. Entre-
tanto, a qualidade da relação linear é diferente. É simples ver que podemos
obter (7.10) somando (7.9) sobre todos i. Portanto, qualquer solução que
satisfaz (7.9) satisfaz (7.10) também, e dizemos que (7.9) domina (7.10).
O seguinte exemplo mostra que o contrário não é verdadeiro. Com custos
de instalação f j = 1, de transporte cij = 5 para i 6= j e cii = 0, duas cidades e
uma fábrica obtemos as duas formulações (sem restrições de integralidade)

minimiza y1 + y2 + 5x12 + 5x21, y1 + y2 + 5x12 + 5x21

sujeito a x11 + x12 = 1, x11 + x12 = 1,

x21 + x22 = 1, x21 + x22 = 1,

y1 + y2 ≤ 1, y1 + y2 ≤ 1,

x11 ≤ y1, x11 + x21 ≤ 2y1,

x12 ≤ y2,

x21 ≤ y1, x21 + x22 ≤ 2y2.

x22 ≤ y2.

A solução ótima do primeiro sistema é y1 = 1, x11 = x21 = 1 com valor 6,
que é a solução ótima inteira. Do outro lado, a solução ótima da segunda
formulação é y1 = y2 = 0.5 com x11 = x22 = 1, com valor 1, i.e. ficam
instaladas duas “meia-fábricas” nas duas cidades! ♢
Exemplo 7.11 (Problema do caixeiro viajante)
Na introdução discutimos a formulação básica do PCV

minimiza ∑
i,j∈N

cijxij,

sujeito a ∑
j∈N

xij = 1, ∀i ∈ N, (7.11)

∑
j∈N

xji = 1, ∀i ∈ N, (7.12)

xij ∈ B, ∀i, j ∈ N, (7.13)

+ restrições de eliminação de subciclos!

134 Capítulo 7. Técnicas de solução

Uma ideia de eliminar subciclos é a seguinte: considere um subconjunto
S ⊂ N de cidades: entre cidades em S não podemos selecionar mais que
|S| − 1 arestas, senão vai formar um subciclo. Logo uma forma de eliminar
subciclos é pelas restrições

∑
i,j∈S

xij ≤ |S| − 1, ∀S ⊆ N, S 6= ∅, S 6= N. (S1)

Uma outra forma pode ser obtida como segue: associa um “potencial” (uma
altura) pi a cada cidade i ∈ N e força o sucessor de i na rota ter um potencial
pelo menos pi + 1. Isso não tem como satisfazer em ciclos. Para permitir um
ciclo global, vamos excluir uma cidade fixa s ∈ S dessa restrição. Logo, as
restrições

pi + n(xij − 1) + 1 ≤ pj, ∀i, j ∈ N \ {s}, (S2)

também eliminam os subciclos.
Quais restrições são melhores? Considere as soluções

PS1 = {x | x satisfaz (7.11), (7.12), (7.13), (S1)}

da primeira formulação e as soluções

PS2 = {x | existem valores p tal que x satisfaz (7.11), (7.12), (7.13), (S2)}

da segunda. Não é difícil de ver que existem soluções fracionárias x ∈ PS2

que não pertencem a PS1 : um exemplo é dado na Figura 7.4.

2/3 2/3
1/3

1/3

2/3 2/3

1/3

1/3

Figura 7.4.: Uma solução
fracionária de uma instân-
cia do PCV com 4 cidades
da formulação PS2 que não
é válida na formulação PS1 .
O valor pi = 0 para todos
i ∈ N.

É possível mostrar que PS1 ⊂ PS2 . Logo a formulação (S1) domina a formu-
lação (S2).

♢

Exemplo: 0-1-Mochila

maximiza ∑
i∈[n]

vixi

sujeito a ∑
i∈[n]

pixi ≤ P,

xi ∈ B.

Exemplo: 79x1 + 53x2 + 53x3 + 45x4 + 45x5 ≤ 178.

Exemplo 7.12 (Problema da mochila)

7.3. Desigualdades válidas 135

Exemplo: 0-1-Mochila

• Observação: Para um subconjunto S ⊂ [1, n]:
Se ∑i∈S pi > P então ∑S xi ≤ |S| − 1.

• Exemplos:

x1 + x2 + x3 ≤ 2,

x1 + x2 + x4 + x5 ≤ 3,

x1 + x3 + x4 + x5 ≤ 3,

x2 + x3 + x4 + x5 ≤ 3.

Um conjunto S tal ∑i∈S pi > P se chama uma cobertura e a desigualdades
obtidos por tais conjuntos desigualdades de cobertura (ingl. cover inequalities).

♢

Exemplo 7.13 (Emparelhamentos)
Continuando exemplo 7.9.

Exemplo: Emparelhamentos

• Escolhe um subconjunto arbitrário de vértices U ⊆ V.

• Observação: O número de arestas internas é ≤ b|U|/2c.

• Portanto:

∑
a∈U2∩A

xa ≤ b|U|/2c (7.14)

é uma desigualdade válida.

♢

Observação 7.4
A envoltória convexa do problema de emparelhamentos é dado pelas restri-
ções (7.3) e (7.14) para todo conjunto U de cardinalidade impar maior que 1.

♢

136 Capítulo 7. Técnicas de solução

Método de Chvátal-Gomory
Dado uma restrição

∑
i∈[n]

aixi ≤ b

também temos, para u ∈ R, u > 0 as restrições válidas

∑
i∈[n]

uaixi ≤ ub (multiplicação com u)

∑
i∈[n]

buaic xi ≤ ub porque byc ≤ y e 0 ≤ xi

∑
i∈[n]

buaic xi ≤ bubc porque o lado da esquerda é inteira

O método de Chvátal-Gomory funciona igualmente para combinações line-
ares de colunas. Com A = (a1 a2 · · · an) e u ∈ Rm obtemos

∑
i∈[n]

⌊
utai

⌋
xi ≤

⌊
utb

⌋
(7.15)

Teorema 7.3
Cada desigualdade válida pode ser construída através de um número finito
de aplicações do método de Chvátal-Gomory (7.15).

(Uma prova do teorema encontra-se, por exemplo, em Nemhauser e Wolsey
(1999, p. II.1.2) ou, para o caso de variáveis 0-1, em Wolsey (1998, Th. 8.4).)

Observação 7.5
Para desigualdades ∑i∈[n] aixi ≥ b obtemos similarmente

∑
i∈[n]

⌈
utai

⌉
xi ≥

⌈
utb

⌉
♢

Exemplo 7.14 (Problema da mochila)
A relaxação linear do problema da mochila acima possui as restrições

79x1 +53x2 +53x3 +45x4 +45x5 ≤ 178,
x1 ≤ 1,

x2 ≤ 1,
x3 ≤ 1,

x4 ≤ 1,
x5 ≤ 1,

7.4. Planos de corte 137

Com u = (1/79 0 26/79 26/79 0 0)t obtemos a desigualdade válida

x1 + x2 + x3 ≤ 2.

♢

Exemplo 7.15 (Emparelhamentos)
Aplicando o método de Chvátal-Gomory para U ⊆ V com u = (1/2 1/2 · · · 1/2)t ∈
R|U| às desigualdades

∑
u∈N(v)

xuv ≤ 1, ∀v ∈ U

para obter

∑
v∈U

1/2 ∑
u∈N(v)

xuv = ∑
a∈U2∩A

xa + ∑
a∈N(U)

1/2xa ≤ |U|/2

e depois aplicar os pisos com ∑a∈N(U) b1/2c xa = 0

∑
a∈U2∩A

xa ≤ b|U|/2c .

♢

7.4. Planos de corte

Como usar restrições válidas?

• Adicionar à formulação antes de resolver.

– Vantagens: Resolução com ferramentas padrão.

– Desvantagens: Número de restrições pode ser muito grande ou
demais.

• Adicionar ao problema se necessário: Algoritmos de plano de corte.

– Vantagens: Somente cortes que ajudam na solução da instância
são usados.

138 Capítulo 7. Técnicas de solução

Planos de corte
Problema inteiro

max{ctx | Ax ≤ b, x ∈ Zn
+}

• O que fazer, caso a relaxação linear não produz soluções ótimas?

• Um método: Introduzir planos de corte.

Definição 7.4
Um plano de corte (ingl. cutting plane) é uma restrição válida (ingl.
valid inequality) que todas soluções inteiras satisfazem.

Algoritmo de planos de corte

Algoritmo 7.1 (Planos de corte)
Entrada Programa inteiro max{ctx | Ax ≤ b, x ∈ Zn

+}.

Saida Solução inteira ótima.

V := {x | Ax ≤ b} { região viável }
x∗ := argmax{ctx | x ∈ V} { resolve relaxação }
while (x∗ 6∈ Zn

+) do
encontra um corte atx ≤ d tal que atx∗ > d
V := V ∩ {x | atx ≤ d} { nova região viável }
x∗ := argmax{ctx | x ∈ V} { nova solução ótima }

end while

Método de Gomory

• Podemos garantir que sempre existe um novo corte na linha 4? Como
achar esse novo corte?

• A solução ótima atual é representado pelo dicionário

z = z̄ + ∑
j

c̄jxj

xi = b̄i − ∑
j∈N

āijxj i ∈ B

• Se a solução não é inteira, existe um índice i tal que xi 6∈ Z+, i.e.
b̄i 6∈ Z+.

7.4. Planos de corte 139

Cortes de Chvátal-Gomory

xi = b̄i − ∑
j∈N

āijxj Linha fracionária (7.16)

xi ≤ b̄i − ∑
j∈N

⌊
āij
⌋

xj Definição de b·c (7.17)

xi ≤
⌊
b̄i
⌋
− ∑

j∈N

⌊
āij
⌋

xj Integralidade de x (7.18)

0 ≥
{

b̄i
}
− ∑

j∈N

{
āij
}

xj (7.16) − (7.18) (7.19)

xn+1 = −
{

b̄i
}
+ ∑

j∈N

{
āij
}

xj Nova variável (7.20)

xn+1 ∈ Z+ (7.21)

Para soluções inteiras, a diferença do lado esquerdo e do lado direito na
equação (7.18) é inteira. Como uma solução inteira também satisfaz a equa-
ção (7.16) podemos concluir que xn+1 também é inteira.

Observação 7.6
Lembra que o parte fracionário de um número é definido por {x} = x −
bxc, sendo o piso bxc o maior número inteiro menor que x. Por exemplo,
{0.25} = 0.25 e {−0.25} = 0.75. (Ver definição A.1 na página 197.) ♢

A solução básica atual não satisfaz (7.19), porque com xj = 0, j ∈ N temos
que satisfazer {

b̄i
}
≤ 0,

uma contradição com a definição de {·} e o fato que b̄i é fracionário. Por-
tanto, provamos

Proposição 7.4
O corte (7.19) satisfaz os critérios da linha 4 do algoritmo Planos de corte.

Exemplo 7.16
Queremos resolver o problema

maximiza x1 + x2

sujeito a − x1 + 3x2 ≤ 9,

10x1 ≤ 27,

x1, x2 ∈ Z+.

140 Capítulo 7. Técnicas de solução

A solução da relaxação linear produz a série de dicionários
(1) z = x1 +x2

w1 = 9 +x1 −3x2

w2 = 27 −10x1

(2) z = 3 +4/3x1 −1/3w1

x2 = 3 +1/3x1 −1/3w1

w2 = 27 −10x1

(3) z = 6.6 −4/30w2 −1/3w1

x2 = 3.9 −1/30w2 −1/3w1

x1 = 2.7 −1/10w2
A solução ótima x1 = 2.7, x2 = 3.9 é fracionária. Correspondendo com a
segunda linha
x2 = 3.9 −1/30w2 −1/3w1

temos o corte
w3 = −0.9 +1/30w2 +1/3w1

e o novo sistema é
(4) z = 6.6 −4/30w2 −1/3w1

x2 = 3.9 −1/30w2 −1/3w1

x1 = 2.7 −1/10w2

w3 = −0.9 +1/30w2 +1/3w1
Substituindo w2 e w1 no corte w3 = −0.9 + 1/30w2 + 1/3w1 ≥ 0 podemos
reescrever o corte sando as variáveis originais do sistema, obtendo x2 ≤ 3.
Esse sistema não é mais ótimo, e temos que re-otimizar. Pior, a solução básica
atual não é viável! Mas como na função objetivo todos coeficientes ainda são
negativos, podemos aplicar o método Simplex dual. Um pivô dual gera a
nova solução ótima
(5) z = 5.7 −1/10w2 −w3

x2 = 3 −w3

x1 = 2.7 −1/10w2

w1 = 2.7 −1/10w2 +3w3
com x2 = 3 inteiro agora, mas x1 ainda fracionário. O próximo corte, que
corresponde com x1 é
(6) z = 5.7 −1/10w2 −w3

x2 = 3 −w3

x1 = 2.7 −1/10w2

w1 = 2.7 −1/10w2 +3w3

w4 = −0.7 +1/10w2

(7) z = 5 −w4 −w3

x2 = 3 −w3

x1 = 2 −w4

w1 = 2 −w4 +3w3

w2 = 7 +10w4
cuja solução é inteira e ótima. (O último corte inserido w4 = −0.7+ 1/10w2 ≥
0 corresponde com x1 ≤ 2.) ♢

7.5. Algoritmos Branch-and-bound 141

x∗0 =

(
2.7
3.9

)

Primeiro corte

x∗1 =

(
2.7
3

)
Segundo corte

x∗2 =

(
2
3

)

x1

x2

1

1

2

2

3

3

4

4

Figura 7.5.: Visualização do exemplo 7.16.

Observação 7.7
Nosso método se aplica somente para sistemas puros (ver página 115) e temos
que garantir que as variáveis de folga são variáveis inteiras. Por isso os
coeficientes de um sistema original em forma normal tem que ser números
inteiros, i.e., A ∈ Zn×m e b ∈ Zm. ♢

Resumo: Algoritmos de planos de corte

• O algoritmo de planos de corte, usando os cortes de Gomory termina
sempre, i.e. é correto.

• O algoritmos pode ser modificado para programas mistos.

• A técnica é considerado inferior ao algoritmos de branch-and-bound.

• Mas: Planos de corte em combinação com branch-and-bound é uma
técnica poderosa: Branch-and-cut.

7.5. Algoritmos Branch-and-bound

Branch-and-bound
Ramifica-e-limite (ingl. branch-and-bound, Land e Doig (1960))

142 Capítulo 7. Técnicas de solução

• Técnica geral para problemas combinatoriais.

Branch and Bound is by far the most widely used tool for
solving large scale NP-hard combinatorial optimization pro-
blems. (Clausen 1999)

• Ideia básica:

– Particiona um problema em subproblemas disjuntos e procura so-
luções recursivamente.

– Evite percorrer toda árvore de busca, calculando limites e cor-
tando sub-árvores.

• Particularmente efetivo para programas inteiras: a relaxação linear for-
nece os limites.

Limitar

• Para cada sub-árvore mantemos um limite inferior e um limite superior.

– Limite inferior: Valor da melhor solução encontrada na sub-árvore.

– Limite superior: Estimativa (p.ex. valor da relaxação linear na PI)

• Observação: A eficiência do método depende crucialmente da quali-
dade do limite superior.

Cortar sub-árvores
Podemos cortar ...

(1) por inviabilidade: Sub-problema é inviável.

(2) por limite: Limite superior da sub-árvore zi menor que limite inferior
global z (o valor da melhor solução encontrada).

(3) por otimalidade: Limite superior zi igual limite inferior zi da sub-
árvore.

Observação: Como os cortes dependem do limite z, uma boa solução inicial
pode reduzir a busca consideravelmente.

7.5. Algoritmos Branch-and-bound 143

Ramificar

• Não tem como cortar mais? Escolhe um nó e particiona.

• Qual a melhor ordem de busca?

• Busca por profundidade

– V: Limite superior encontrado mais rápido.

– V: Pouca memória (O(δd), para δ subproblemas e profundidade
d).

– V: Re-otimização eficiente do pai (método Simplex dual)

– D: Custo alto, se solução ótima encontrada tarde.

• Melhor solução primeiro (“best-bound rule”)

– V: Procura ramos com maior potencial.

– V: Depois encontrar solução ótima, não produz ramificações su-
pérfluas.

• Busca por largura? Demanda de memória é impraticável.

Em resumo: um algoritmo de branch-and-bound consiste de quatro compo-
nentes principais:

• Uma heurística que encontra uma boa solução inicial;

• um limite inferior (no caso de minimização) ou superior (para maximi-
zação) do valor de um subproblema;

• uma estratégia de ramificação, que decompõe um problema em sub-
problemas;

• uma estratégia de seleção, que escolhe o próximo subproblema entre
os subproblemas ativos.

Algoritmos B&B

Algoritmo 7.2 (B&B)
Instância Programa inteiro P = max{ctx | Ax ≤ b, x ∈ Zn

+}.

Saida Solução inteira ótima.

144 Capítulo 7. Técnicas de solução

{ com z(P) um limite superior para problema P }
z:=−∞ { limite inferior }
A:= {(P, z(P))} { ns ativos }
while A 6= ∅ do

Escolhe : (P, z(P)) ∈ A; A := A \ (P, z(P))
Ramifique : Gera subproblemas P1, . . . , Pn.
for all Pi , 1 ≤ i ≤ n do

{ adiciona , se permite melhor soluo }
if z(Pi) > z then

A := A ∪ {(Pi, z(Pi))}
end if
{ atualize melhor soluo }
if (soluo z(Pi) vivel) then

z := z(Pi)
end if

end for
end while

Exemplo 7.17 (Aplicação Branch-and-Bound no PCV)
Considera uma aplicação do PCV no grafo da Figura 7.6.

2

2 3

1

1
1

1

2

3
1

1

2

3 4

5

Figura 7.6.: Exemplo de
uma instância do PCV.

Aplicando somente backtracking obtemos a seguinte árvore de busca:
0
5

2
6

3
6

5
7

6
7

5

4

6
8

4

5

3

3
6

5
7

5

3

4
6

7
8

3

5

4

3
6

6
8

4

3

4
6

6
7

3

4

5

2

2
6

3
6

4
6

5
6

5

4

4
6

4

5

2

4
7

4

5
8

5

3

3
7

2 3 5

4

1
5

2
5

3
5

5
6

4

3

3
5

5
6

3

4

2

4
7

3

2
5

3
5

4
5

3

2

4
6

3

4

5

7.5. Algoritmos Branch-and-bound 145

A árvore de backtracking completa possui 65 vértices (por nível: 1,4,12,24,24).
Usando como limite inferior o custo atual mais o número de arcos que faltam
vezes a distância mínima e aplicando branch-and-bound obtemos os custos
parciais e limites indicados na direita de cada vértice. Com isso podemos
aplicar uma série de cortes: busca da esquerda para direito obtemos

• uma nova solução 7 em 2345;

• um corte por limite em 235;

• um corte por otimalidade em 243;

• um corte por otimalidade em 2453;

• um corte por limite em 253;

• um corte por otimalidade em 2543;

• uma nova solução 6 em 3245;

• um corte por otimalidade em 32;

• um corte por otimalidade em 3;

• um corte por limite em 4;

• um corte por otimalidade em 5234;

• um corte por otimalidade 5243;

• um corte por limite em 53;

• um corte por otimalidade 543.

♢
Exemplo 7.18 (Escalonamento de tarefas)
Considera o problema de escalonamento 1 | rj | Lmax: temos n tarefas a serem
executadas numa única máquina. Cada tarefa possui um tempo de execução
pj e é disponível a partir do tempo rj (release date) e idealmente tem que
terminar antes do prazo dj (due date). Caso a tarefa j termina no tempo Cj
o seu atraso é Lj = max{0, Cj − dj}. Uma tarefa tem que ser executada sem
interrupção. Queremos encontrar uma sequenciamento das tarefas tal que o
atraso máximo é minimizado. (Observe que uma solução é uma permutação
das tarefas.)
Um exemplo de uma instância com quatro tarefas é

146 Capítulo 7. Técnicas de solução

Tarefa 1 2 3 4

pj 4 2 6 5
rj 0 1 3 5
dj 8 12 11 11

Uma abordagem via branch-and-bound é explorar todas permutações pos-
síveis. Um limite inferior bom para a função objetivo pode ser obtido como
segue: o problema sem release dates 1 || Lmax possui uma solução simples
polinomial, conhecida como EDD (earliest due date): ordene as tarefas por
due date. No nosso caso é possível que durante a execução de uma tarefa
passamos o release de uma outra tarefa com due date menor. Para considerar
isso, o nosso limite inferior será o sequenciamento obtido pela regra EDD,
permitindo interrupções. ♢

Branch-and-bound e PI

• Problema PI (puro): {max ctx | x ∈ S, x ∈ Zn
+}.

• Resolve a relaxação linear.

• Solução inteira? Problema resolvido.

• Caso contrário: Escolhe uma variável inteira xi, com valor b̄i fracioná-
rio.

• Heurística: Variável mais fracionária: argmini | {xi} − 0.5|.

• Particione o problema S = S1
.
∪ S2 tal que

S1 = S ∩ {x | xi ≤ bvic}; S2 = S ∩ {x | xi ≥ dvie}

• Em particular com variáveis xi ∈ B:

S1 = S ∩ {x | xi = 0}; S2 = S ∩ {x | xi = 1}

• Preferimos formulações mais “rígidas”.

7.6. Notas 147

7.6. Notas

É possível testar se uma matriz é totalmente unimodular em tempo polino-
mial O((n + m)3) (Truemper 1990)1. Porém decidir se uma matriz possui
uma submatriz que satisfaz a propriedade de uns consecutivos, ou pode ser
particionado em duas matrizes com essa propriedade, bem como encontrar o
menor número de alterações de uma matriz que torna-lá ter essa propriedade
é NP-completo (Garey e Johnson 1979, SR14–16). Clausen (1999) dá uma
boa introdução em algoritmos de branch-and-bound, com mais exemplos e
exercícios. O artigo do Cook (2012) relata a história do método. Concorde
atualmente é o melhor solver exato para o problema do caixeiro viajante.
Exemplos de soluções e código aberto do solver é disponível na sua página
web (Cook 2011). A aplicação do método branch-and-bound para PI segue
Dakin (1965).

7.7. Exercícios

(Soluções a partir da página 231.)

Exercício 7.1 (Matrizes totalmente unimodulares)
Mostra que a seguinte generalização do item 2 da proposição 7.1 é válido:
Para uma matriz arbitrária A ∈ {−1, 0, 1}m×n e uma matriz B ∈ {−1, 0, 1}m×o

com no máximo um coeficiente não-nulo em cada coluna, a matriz (A B) é
totalmente unimodular sse a matriz A é totalmente unimodular.

Exercício 7.2 (Matrizes totalmente unimodulares)
Para cada um dos problemas do exercício 6.2 decide, se a matriz de coefici-
entes é totalmente unimodular.

Exercício 7.3 (Matrizes totalmente unimodulares)
Prove ou mostre um contra-exemplo.

a) Se A é totalmente unimodular, então
(

A 0
0 A

)
também.

b) Se A é totalmente unimodular, então (A At) também.

c) Se A é totalmente unimodular, então
(

A A
A 0

)
também.

1O problema consta como “aberto” em Garey e Johnson (1979, OPEN10).

148 Capítulo 7. Técnicas de solução

Exercício 7.4 (Desigualdades válidas (Nemhauser,Wolsey))
Uma formulação do problema do conjunto independente máximo é

maximiza ∑
v∈V

xv, (7.22)

sujeito a xu + xv ≤ 1, ∀{u, v} ∈ E, (7.23)

xv ∈ B, ∀v ∈ V. (7.24)

1

2

3

4 5

6

7

Figura 7.7.: Instância do
problema do conjunto inde-
pendente máximo.

Considere a instância da Figura 7.7. Mostra que ∑i∈[7] xi ≤ 2 é uma desigual-
dade válida.
Exercício 7.5 (Desigualdades válidas)
O exemplo 7.15 mostra como obter as desigualdades válidas do exemplo 7.13
usando cortes de Gomory. Mostra como obter as desigualdades válidas

∑
i∈S

xi ≤ |S| − 1

para um S ⊆ [n] com ∑i∈S pi > P do problema da mochila usando cortes de
Gomory.

Exercício 7.6 (Desigualdades válidas)
Considere a instância da Figura 7.8 do problema do caixeiro viajante (os
números nas arestas representam os índices das variáveis correspondentes).
Mostra que

x1 + x2 + x5 + x6 + x7 + x9 ≤ 4

é uma desigualdade válida.

6

7

8 9

10

1

2

3

4

5

Figura 7.8.: Exemplo de
uma instância do PCV.

Exercício 7.7 (Desigualdades válidas)
Para cada uma das desigualdades válidas do exemplo 7.12 mostra como ele
pode ser obtida via uma aplicação (um número finito de aplicações) do mé-
todo de Chvátal-Gomory (7.15).

Exercício 7.8 (Planos de corte)
Resolve com o algoritmo de planos de corte using cortes de Chvátal-Gomory.

maximiza x1 + 3x2

sujeito a − x1 ≤ −2,

x2 ≤ 3,

− x1 − x2 ≤ −4,

3x1 + x2 ≤ 12,

xi ∈ Z+,

7.7. Exercícios 149

maximiza x1 − 2x2

sujeito a − 11x1 + 15x2 ≤ 60,

4x1 + 3x2 ≤ 24,

10x1 − 5x2 ≤ 49,

x1, x2 ∈ Z+,

Exercício 7.9 (Desigualdades válidas)
Gera uma desigualdade válida similar com a desigualdade (7.15) para a res-
trição

∑
i∈[n]

aixi ≥ b.

8. Tópicos

Outras técnicas

• Branch-and-cut.

Começa com menos restrições (relaxação) e insere restrições (cortes)
nos sub-problemas da busca com o algoritmo branch-and-bound.

• Branch-and-price.

Começa com menos variáveis e insere variáveis (“geração de colunas”)
nos sub-problemas da busca com o algoritmo branch-and-bound.

Parte III.

Heurísticas

155

(Observação: isto é um capítulo antigo; sugiro consultar a notas de aula da
disciplina “Técnicas de busca heurística”.)

https://www.inf.ufrgs.br/~mrpritt/lib/exe/fetch.php?media=cmp268:notas-11799.pdf
https://www.inf.ufrgs.br/~mrpritt/lib/exe/fetch.php?media=cmp268:notas-11799.pdf

9. Introdução

Resolução de Problemas

• Problemas Polinomiais

1. Programação Dinâmica

2. Divisão e Conquista

3. Algoritmos Gulosos

• Problemas Combinatórios

– Técnicas Exatas: Programação Dinâmica, Divisão e Conquista back-
tracking, branch & bound

– Programação não-linear: Programação semi-definida, etc.

– Algoritmos de aproximação: garantem solução aproximada

– Heurísticas e metaheurísticas: raramente provêem aproximação

Heurísticas

• O que é uma heurística?

Practice is when it works and nobody knows why. Grego heurísko: eu
acho, eu descubro.

• Qualquer procedimento que resolve um problema

– bom em média

– bom na prática (p.ex. Simplex)

– não necessáriamente comprovadamente.

• Nosso foco

– Heurísticas construtivas: Criar soluções.

– Heurísticas de busca: Procurar soluções.

158 Capítulo 9. Introdução

Heurísticas de Construção

• Constróem uma solução, escolhendo um elemento a ser inserido na
solução a cada passo.

• Geralmente são algoritmos gulosos.

• Podem gerar soluções infactíveis.

– Solução infactível: não satisfaz todas as restrições do problema.

– Solução factível: satisfaz todas as restrições do problema, mas não
é necessariamente ótima.

Exemplo: Heurística construtiva

• Problema do Caixeiro Viajante (PCV) – Heurística do vizinho mais pró-
ximo.

Algoritmo 9.1 (Vizinho mais próximo)
Entrada Matriz de distâncias completa D = (dij), número de cidades n.

Saída Uma solução factível do PCV: Ciclo Hamiltoniano C com custo c.

HVizMaisProx (D,n)=
{ cidade inicial aleatória }
u := seleciona uniformemente de [1, n]
w := u
{ representação de caminhos : sequência de vértices }
C := u { ciclo inicial }
c := 0 { custo do ciclo }
repeat n − 1 vezes

seleciona v /∈ C com distância mínima de u
C := C v
c := c + duv
u := v

end repeat
C := C w { fechar ciclo }
c := c + duw
return (C, c)

159

Meta-heurísticas

• Heurísticas genéricas: meta-heurísticas.

Motivação: quando considera-se a possibilidade de usar heurísticas

• Para gerar uma solução factível num tempo pequeno, muito menor que
uma solução exata pudesse ser fornecida.

• Para aumentar o desempenho de métodos exatos. Exemplo: um limi-
tante superior de um Branch-and-Bound pode ser fornecido por uma
heurística.

Desvantagens do uso de heurísticas

• No caso de metaheurísticas, não há como saber o quão distante do
ótimo a solução está.

• Não há garantia de convergência.

• Dependendo do problema e instância, não há como garantir uma solu-
ção ótima.

Problema de otimização em geral

• Um problema de otimização pode ser representado por uma quádrupla

(I, S, f , obj)

– I é o conjunto de possíveis instâncias.

– S(i) é o conjunto de soluções factíveis (espaço de soluções factí-
veis) para a instância i.

– Uma função objetivo (ou fitness) f (·) avalia a qualidade de uma
dada solução.

– Um objetivo obj = min ou max: s∗ ∈ S para o qual f (s∗) seja
mínimo ou máximo.

160 Capítulo 9. Introdução

• Alternativa

optimiza f (x),

sujeito a x ∈ S.

• S discreto: problema combinatorial.

Técnicas de solução

• Resolver o problema nessa geralidade: enumeração.

• Frequentemente: Uma solução x ∈ S possui uma estrutura.

• Exemplo: x é uma tupla, um grafo, etc.

• Permite uma enumeração por componente: branch-and-bound.

10. Heurísticas baseadas em Busca local

10.1. Busca local

Busca Local

• Frequentemente: O espaço de soluções possui uma topologia.

• Exemplo de otimização (contínua): max{x2 + xy | x, y ∈ R}

−10 −5 0 5 10−10

0

100

100

200

x
y

• Espaço Euclidiano de duas dimensões.

• Isso podemos aproveitar: Busca localmente!

Vizinhanças

• O que fazer se não existe uma topologia natural?

• Exemplo: No caso do PCV, qual o vizinho de um ciclo Hamiltoniano?

• Temos que definir uma vizinhança.

162 Capítulo 10. Heurísticas baseadas em Busca local

• Notação: O conjunto de soluções vizinhas de x ∈ S é N (x).

• Uma vizinhança defina a paisagem de otimização (ingl. optimization lands-
cape): Espaço de soluções com valor de cada solução.

Relação de vizinhança entre soluções

• Uma solução s′ é obtida por uma pequena modificação na solução s.

• Enquanto que S e f são fornecidos pela especificação do problema, o
projeto da vizinhança é livre.

Busca Local k-change e inserção

• k-change: mudança de k componentes da solução.

• Cada solução possui vizinhança de tamanho O(nk).

• Exemplo: 2-change, 3-change.

• TSP: 2-change (inversão).

• Inserção/remoção: inserção de um componente da solução, seguido da
factibilização da solução

• Vertex cover: 1-change + remoção.

Exemplo: Vizinhança mais elementar

• Suponha um problema que possue como soluções factíveis S = Bn

(por exemplo, uma instância do problema de particionamento de con-
juntos).

• Então, para n = 3 e s0 = (0, 1, 0), para uma busca local 1-flip, N(s0) =

{(1, 1, 0), (0, 0, 0), (0, 1, 1)}.

Exemplo: Vizinhanças para TSP

• 2-exchange: Para cada par de arcos (u1, v1) e (u2, v2) não consecutivos,
remova-os da rota, e insira os arcos (u1, u2) e (v1, v2).

••
•

•
•
•

•
• •

•
•
•
•

•

••
•

•
•
•

•
• •

•
•
•
•

•

Figura 10.1.: Um movi-
mento na vizinhança 2-
exchange.

• Para uma solução s e uma busca k-exchange |N (s)| ∈ O(nk).

10.1. Busca local 163

Características de vizinhanças
É desejável que uma vizinhança é

• simétrica (ou reversível)

y ∈ N (x) ⇒ x ∈ N (y)

• conectada (ou completa)

∀x, y ∈ S : ∃z1, . . . , zk ∈ S : z1 ∈ N (x),

zi+1 ∈ N (zi), 1 ≤ i < k,

y ∈ N (zk).

Busca Local: Ideia

• Inicia a partir de uma solução s0

• Se move para soluções vizinhas melhores no espaço de busca.

• Para, se não tem soluções melhores na vizinhança.

• Mas: Repetindo uma busca local com soluções inicias randômicas,
achamos o mínimo global com probabilidade 1.

Exemplo 10.1 (Método Simplex)
O método Simplex pode ser visto como busca local no espaço de vértices
com uma vizinhança definido por arestas no politopo. ♢

Busca local – Caso contínuo

Algoritmo 10.1 (Busca local contínua)
Entrada Solução inicial s0 ∈ Rn, tamanho inicial α de um passo.

Saída Solução s ∈ Rn tal que f (s) ≤ f (s0).

Nome Gradient descent.

164 Capítulo 10. Heurísticas baseadas em Busca local

BuscaLocal (s0 ,α)=
s := s0

while ∇ f (s) 6= 0 do
s′ := s − α∇ f (s)
if f (s′) < f (s) then

s := s′

else
diminui α

end if
end while
return s

Busca local – Caso contínuo

• Gradiente

∇ f (x) =
(

δ f
δx1

(x), . . . ,
δ f
δxn

(x)
)t

sempre aponta na direção do crescimento mais alto de f (Cauchy).

• Necessário: A função objetivo f é diferenciável.

• Diversas técnicas para diminuir (aumentar) α.

• Opção: Line search na direção −∇ f (x) para diminuir o número de
gradientes a computar.

Busca Local – Best Improvement

Algoritmo 10.2 (Busca Local BI)
Entrada Solução inicial s0.

Saída Solução s tal que f (s) ≤ f (s0).

Nomes Steepest descent, steepest ascent.

10.1. Busca local 165

BuscaLocal (s0)=
s := s0

while true
s′ := argminy{ f (y) | y ∈ N (s)}
if f (s′) < f (s) then s := s′ else break

end while
return s

Busca Local – First Improvement

Algoritmo 10.3 (Busca Local FI)
Entrada Solução inicial s0.

Saída Solução s′ tal que f (s′) ≤ f (s).

Nomes Hill descent, hill climbing.

BuscaLocal (s0)=
s := s0

repete
seleciona s′ ∈ N (s) no vista ainda
if f (s′) < f (s) then s := s′

at todas solues em N (s) vistas
returna s

Projeto de uma busca local

• Como gerar uma solução inicial? Aleatória, via método construtivo,
etc.

• Quantas soluções inicias devem ser geradas?

• Importante: Definição da função de vizinhança N .

• Vizinhança grande ou pequena? (grande= muito tempo e pequena=menos
vizinhos)

166 Capítulo 10. Heurísticas baseadas em Busca local

• Estratégia de seleção de novas soluções

– examine todas as soluções vizinhas e escolha a melhor

– assim que uma solução melhor for encontrada, reinicie a busca.
Neste caso, qual a sequência de soluções examinar?

• Importante: Método eficiente para avaliar a função objetivo de vizi-
nhos.

Exemplo: 2-change TSP

• Vizinhança: Tamanho O(n2).

• Avaliação de uma solução: O(n) (somar n distâncias).

• Atualizando a valor da solução atual: O(1) (somar 4 distâncias)

• Portanto: Custo por iteração de “best improvement”

– O(n3) sem avaliação diferential.

– O(n2) com avaliação diferential.

Avaliação de buscas locais
Como avaliar a busca local proposta?

• Poucos resultados teóricos.

• Difícil de saber a qualidade da solução resultante.

• Depende de experimentos.

Problema Difícil

• É fácil de gerar uma solução aleatória para o TSP, bem como testar sua
factibilidade.

• Isso não é verdade para todos os problemas.

• Exemplo difícil: Atribuição de pesos a uma rede OSPF.

10.1. Busca local 167

Busca local

• Desvantagem obvia: Podemos parar em mínimos locais.

• Exceto: Função objetivo convexa (caso minimização) ou concava (caso
maximização).

• Técnicas para superar isso baseadas em busca local

– Multi-Start

– Busca Tabu

– Algoritmos Metropolis e Simulated Annealing

– Variable neighborhood search

Solução

Fu
nç

ão
ob

je
ti

vo

Figura 10.2.: Busca local e
mínimos locais é globais.

Multi-Start Metaheuristic

• Gera uma solução aleatória inicial e aplique busca local nesta solução.

• Repita este procedimento por n vezes.

• Retorne a melhor solução encontrada.

• Problema: soluções aleatoriamente geradas em geral possuem baixa
qualidade.

Multi-Start

Algoritmo 10.4 (Multi-Start)
Entrada Número de repetições n.

Saída Solução s.

Multi_Start (n) :=
{ mantm a melhor soluo s∗ }
repete n vezes

gera soluo aleatria s
s := BuscaLocal(s)

end repeat
return s∗

168 Capítulo 10. Heurísticas baseadas em Busca local

Cobrimento de Vértices

• Definição de vizinhança

• grafo sem vértices

• grafo estrela

• clique bipartido Ki,j

• grafo linha

10.2. Metropolis e Simulated Annealing

O algoritmo Metropolis

• Proposto por Metropolis et al. (1953).

• Simula o comportamento de um sistema físico de acordo com a mecâ-
nica estatística.

• Supõe temperatura constante

– Um modelo básico define que a probabilidade de obter um sis-
tema num estado com energia E é proporcional a e−E/kT (distri-
buição de Boltzmann), onde T > 0 é a temperatura, e k > 0 uma
constante.

– A função é monotônica decrescente em E: maior probabilidade de
estar em um sistema de baixa energia.

– Para T pequeno, a probabilidade de um sistema estar num estado
de baixa energia é maior que ele estar num em estado de alta
energia.

– Para T grande, a probabilidade de passar para outra configuração
qualquer do sistema é grande.

10.2. Metropolis e Simulated Annealing 169

A distribuição de Boltzmann

1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

∆

p
e−x/0.1 e−x/2 e−x/10 e−x/20 e−x/500

Algoritmo Metropolis

• Estados do sistema são soluções candidatas.

• A energia do sistema é representada pelo custo da solução.

• Perturba a solução s gerando uma solução s′. Forma mais simples:
seleciona um vizinho aleatório s′ ∈ N (s).

• Se E(s′) ≤ E(s) atualize a nova solução para s′.

• Caso contrário, ∆E = E(s′)− E(s) > 0.

• A solução s′ passa ser a solução atual com probabilidade e−∆E/kT.

• Característica marcante: permite movimentos de melhora e, com baixa
probabilidade, também de piora.

Metropolis

170 Capítulo 10. Heurísticas baseadas em Busca local

Algoritmo 10.5 (Metropolis)
Entrada Uma solução inicial s e uma temperatura T.

Saída Solução s′ com c(s′) ≤ c(s).

Metropolis (s, T, k)=
do

seleciona s′ ∈ N (s) aleatoriamente
seja ∆ := f (s′)− f (s)
if ∆ ≤ 0 then

atualiza s := s′

else
atualiza s := s′ com probabilidade e−∆/T

end if
until critério de parada satisfeito
return s

Observação 10.1
Para T → ∞ o algoritmo executa um passeio aleatório no grafo das soluções
com a vizinhança definida. Para T → 0 o algoritmo se aproxima a uma busca
local. ♢

Simulated Annealing

• Proposto por Cerny (1985) e Kirkpatrick et al. (1983).

• Simula um processo de recozimento.

• Recozimento: processo da física que aquece um material a uma tem-
peratura bem alta e resfria aos poucos, dando tempo para o material
alcançar seu estado de equilíbrio

• Recozimento simulado: parte de uma alta temperatura e baixa gradual-
mente. Para cada temperatura, permite um número máximo de saltos
(dois laços encadeados)

Simulated Annealing

10.3. GRASP 171

Algoritmo 10.6 (Simulated Annealing)
Entrada Solução inicial s, temperatura T, fator de esfriamento r ∈ (0, 1),

número inteiro I.

Saída Solução s′ tal que f (s′) ≤ f (s).

SimulatedAnnealing (s, T, k, r, I) :=
repeat até sistema ``esfriado ''

repeat I vezes
seleciona s′ ∈ N (s) aleatoriamente
seja ∆ := f (s′)− f (s)
if ∆ ≤ 0 then

s := s′

else
s := s′ com probabilidade e−∆/T

end fi
end repeat
T := rT

end repeat
return s

Determinando uma temperatura inicial e final adequada é importante para
não gastar tempo desnecessário com temperaturas em que o algoritmo se
comporta como passeio aleatório ou busca local.

Exemplo 10.2 (Temperatura inicial)
Define uma probabilidade pi. Executa uma versão rápida (I pequeno) do
algoritmo para determinar uma temperatura inicial tal que um movimento é
aceito com probabilidade pi. ♢

Exemplo 10.3 (Temperatura final)
Define uma probabilidade p f . Para cada nível de temperatura em que os
movimentos foram aceitos com probabilidade menos que p f incrementa um
contador. Zera o contador caso uma nova melhor solução é encontrada. Caso
o contador chega em 5, termina. ♢

10.3. GRASP

GRASP

172 Capítulo 10. Heurísticas baseadas em Busca local

• GRASP: greedy randomized adaptive search procedure

• Proposto por Mauricio Resende e Thomas Feo (1989).

• Mauricio Resende: Pesquisador da AT&T, Departamento de Algorit-
mos e Otimização

Figura 10.3.: Mauricio G. C.
Resende

GRASP

• Método multi-start, em cada iteração

1. Gera soluções com um procedimento guloso-randomizado.

2. Otimiza as soluções geradas com busca local.

Algoritmo 10.7 (GRASP)
Entrada Parâmetro α.

Saída A melhor solução encontrada.

GRASP(α, ...)=
{ a busca mantém a melhor solução encontrada s∗ }
do

s := Guloso − Randomizado(α)
s := BuscaLocal(s)
atualiza s∗ caso f (s) < f (s∗)

until critério de parada satisfeito
return s∗

Construção gulosa-randomizada

• Motivação: Um algoritmo guloso gera boas soluções inicias.

• Problema: Um algoritmo determinístico produz sempre a mesma solu-
ção.

• Logo: Aplica um algoritmo guloso, que não escolhe o melhor elemento,
mas escolhe randomicamente entre os α% melhores candidatos.

• O conjunto desses candidatos se chama restricted candidate list (RCL).

10.3. GRASP 173

Construção gulosa-randomizada: Algoritmo guloso

Guloso () :=
S := ()

while S = (s1, . . . , si) com i < n do
entre todos candidatos C para si+1:

escolhe o melhor s ∈ C
S := (s1, . . . , si, s)

end while

Construção gulosa-randomizada: Algoritmo guloso

Guloso - Randomizado (α) :=
S := ()

while S = (s1, . . . , si) com i < n do
entre todos candidatos C para si+1:

forma a RCL com os α\% melhores candidatos em C
escolhe randomicamente um s ∈ RCL

S := (s1, . . . , si, s)
end while

GRASP

Algoritmo 10.8 (GRASP)
Entrada Parâmetro α.

Saída Uma solução s∗.

GRASP(α)=
do

y := Guloso − Randomizado(α)
y := BuscalLocal(y)
atualiza a melhor solução s∗

until critério de parada satisfeito
return s∗

174 Capítulo 10. Heurísticas baseadas em Busca local

GRASP: Variações

• long term memory: hash table (para evitar otimizar soluções já vistas)

• Parâmetros: s0, N (x), α ∈ [0, 1] (para randomização), tamanho das
listas (conj. elite, rcl, hash table), número de iterações,

GRASP com memória

• O GRASP original não havia mecanismo de memória de iterações pas-
sadas

• Atualmente toda implementação de GRASP usa conjunto de soluções
elite e religação por caminhos (path relinking)

• Conjunto de soluções elite: conjunto de soluções diversas e de boa quali-
dade

– uma solução somente é inserida se for melhor que a melhor do
conjunto ou se for melhor que a pior do conjunto e diversa das
demais

– a solução a ser removida é a de pior qualidade

• Religação por Caminhos: a partir de uma solução inicial, modifique um
elemento por vez até que se obtenha uma solução alvo (do conjunto
elite)

• soluções intermediárias podem ser usadas como soluções de partida

Comparação entre as metaheurísticas apresentadas

• Metaheurísticas: Simulated annealing (SA), Multi-Start Search (MS),
GRASP

• SA tem apenas um ponto de partida, enquanto que os outros dois mé-
todos testa diversos

• SA permite movimento de piora, enquanto que os outros dois métodos
não

• SA é baseado em um processo da natureza, enquanto que os outros
dois não

10.4. Busca Tabu 175

10.4. Busca Tabu

Busca Tabu (Tabu Search)

• Proposto por Fred Glover em 1986 (princípios básicos do método foram
propostos por Glover ainda em 1977)

• Professor da Universidade do Colorado, EUA

Figura 10.4.: Fred Glover
(*1937)

Busca Tabu (BT)

• Assim como em simulated annealing (SA) e VNS, TB é baseada inteira-
mente no processo de busca local, movendo-se sempre de uma solução
s para uma solução s′

• Assim com em SA, também permite movimentos de piora

• Diferente de SA que permite movimento de piora por randomização,
tal movimento na BT é determinístico

• A base do funcionamento de Busca Tabu é o uso de memória segundo
algumas regras

• O nome Tabu tem origem na proibição de alguns movimentos durante
a busca

Busca Tabu (BT)

• Mantém uma lista T de movimentos tabu

• A cada iteração se move para o melhor vizinho, desde que não faça
movimentos tabus

• Permite piora da solução: o melhor vizinho pode ser pior que o vizinho
atual!

• São inseridos na lista tabu elementos que provavelmente não direci-
onam a busca para o ótimo local desejado. Ex: último movimento
executado

• o tamanho da lista tabu é um importante parâmetro do algoritmo

• Critérios de parada: quando todos movimentos são tabus ou se x mo-
vimentos foram feitos sem melhora

176 Capítulo 10. Heurísticas baseadas em Busca local

Busca Tabu: Conceitos Básicos e notação

• s: solução atual

• s∗: melhor solução

• f ∗: valor de s*

• N (s): Vizinhança de s.

• Ñ (s) ⊂ N (s): possíveis (não tabu) soluções vizinhas a serem visitadas

• Soluções: inicial, atual e melhor

• Movimentos: atributos, valor

• Vizinhança: original, modificada (reduzida ou expandida)

Movimentos Tabu

• Um movimento é classificado como tabu ou não tabu pelas regras de
ativação tabu

• em geral, as regras de ativação tabu classificam um movimento como
tabu se o movimento foi recentemente realizado

• Memória de curta duração (MCD) - também chamada de lista tabu: usada
para armazenar os movimentos tabu

• duração tabu (tabu tenure) é o número de iterações em que o movimento
permanecerá tabu

• dependendo do tamanho da MCD um movimento pode deixar de ser
tabu antes da duração tabu estabelecida

• A MCD em geral é implementada como uma lista circular

• O objetivo principal da MCD é evitar ciclagem e retorno a soluções já
visitadas

• os movimentos tabu também colaboram para a busca se mover para
outra parte do espaço de soluções, em direção a um outro mínimo
local

10.4. Busca Tabu 177

Busca Tabu

Algoritmo 10.9 (BuscaTabu)
Entrada uma solução s

Saída uma solução s′ : f (s′) ≤ f (s)

BuscaTabu (s)=
{ mantém a melhor solução s∗ }
Inicialização :

T := ∅
while critério de parada não satisfeito

s := seleciona s′ ∈ Ñ (s) com min f (s′)
insira movimento em T (a lista tabu)

end while
return s∗

Busca Tabu (BT)

• critérios de parada:

– número de iterações (Nmax)

– número interações sem melhora

– quando s∗ atinge um certo valor mínimo (máximo) estabelecido

• Um movimento não é executado se for tabu, ou seja, se possuir um ou
mais atributos tabu-ativos

• Pode ser estabelecida uma regra de uso de um movimento tabu (critério
de aspiração)

– Critério de aspiração por objetivo: se o movimento gerar uma solução
melhor que s∗, permite uso do movimento tabu

– Critério de aspiração por direção: o movimento tabu é liberado se for
na direção da busca (de melhora ou piora)

Busca Tabu: mecanismos auxiliares

• intensificação: a idéia é gastar mais “esforço” em regiões do espaço de
busca que parece mais promissores. Isso pode ser feito de diversas

178 Capítulo 10. Heurísticas baseadas em Busca local

maneiras (exemplo, guardar o número de interações com melhora con-
secutiva). Nem sempre este a intensificação traz benefícios.

• Diversificação: recursos algorítmicos que forçam a busca para um espaço
de soluções ainda não explorados.

– uso de memória de longo prazo (exemplo, número de vezes que a
inserção de um elemento provocou melhora da solução)

– Estratégia básica: forçar a inserção de alguns poucos movimentos
pouco executados e reiniciar a busca daquele ponto

– Estratégia usada para alguns problemas: permitir soluções infac-
tíveis durante algumas interações

Busca Tabu: variações

• Várias listas tabus podem ser utilizadas (com tamanhos, duração, e
regras diferentes)

• BT probabilístico: os movimentos são avaliados para um conjunto se-
lecionado aleatoriamente N′(s) ∈ Ñ(s). Permite usar uma lista tabu
menor, acontece menos ciclagem.

• A duração tabu pode variar durante a execução

Comparação entre as metaheurísticas apresentadas até então

• Metaheurísticas: Simulated annealing (SA), Multi-Start Search (MSS),
GRASP, BT

• SA e BT têm apenas um ponto de partida, enquanto que os outros dois
métodos testa diversos

• SA e BT permitem movimentos de piora, enquanto que os outros dois
métodos não

• SA é baseado em um processo da natureza, enquanto que os outros
métodos não

10.5. Variable Neighborhood Search 179

Parâmetros e decisões das metaheurísticas

• SA:

– Parâmetros: temperatura inicial, critério de parada, variável de res-
friamento

– Decisões: vizinhança, solução inicial

• GRASP:

– Parâmetros: s0, N(x), α ∈[0,1] (para randomização), tamanho das
listas (conj. elite, rcl, hash table), critério de parada

– Decisões: vizinhança, solução inicial (s0), randomização da s0, atu-
alizações do conjunto elite

• BT:

– Parâmetros: tamanho da lista tabu, critério de parada

– Decisões: vizinhaça, critérios para classificar movimento tabu

10.5. Variable Neighborhood Search

Variable Neighborhood Search

• Proposto por Hansen e Mladenović (1997).

Figura 10.5.: Pierre Hansen

• Método que explora mais que uma vizinhança.

• Explora sistematicamente as seguintes propriedades:

– O mínimo local de uma vizinhança não é necessariamente mínimo
para outra vizinhança

– Um mínimo global é um mínimo local com respeito a todas as
vizinhanças

– Para muitos problemas, os mínimos locais estão localizados relati-
vamente próximos no espaço de busca para todas as vizinhanças

Os métodos usando k vizinhanças N1, . . . ,Nk sempre voltam a usar a pri-
meira vizinhança, caso um movimento melhora a solução atual. Caso contrá-
rio eles passam para próxima vizinhança. Isso é o movimento básico:

180 Capítulo 10. Heurísticas baseadas em Busca local

Algoritmo 10.10 (Movimento)
Entrada Solução atual s, nova solução s′, vizinhança atual k.

Saída Uma nova solução s e uma nova vizinhança k.

GRASP(α, ...)=
{ a busca mantém a melhor solução encontrada s∗ }
do

s := Guloso − Randomizado(α)
s := BuscaLocal(s)
atualiza s∗ caso f (s) < f (s∗)

until critério de parada satisfeito
return s∗

Com isso podemos definir uma estratégia simples, chamada Variable Neigh-
borhood Descent (VND).

Algoritmo 10.11 (VND)
Entrada Solução inicial s, conjunto de vizinhanças Ni, i ∈ [m].

Saída Solução s.

VND(s,{Ni})=
k := 1
// até chegar num mínimo local
// para todas vizinhanças
while k ≤ m

encontra o melhor vizinho s′ ∈ Nk(s)
(s, k) := Movimento(s, s′, k)

end while
return s

Uma versão randomizada é o reduced variable neighborhood search.

Algoritmo 10.12 (rVNS)
Entrada Solução inicial s, conjunto de vizinhanças Ni, i ∈ [m].

Saída Solução s.

10.6. Algoritmo Guloso Iterado 181

rVNS(s,{Ni})=
until critério de parada satisfeito

k := 1
while k ≤ m do

seleciona vizinho aleatório s′ ∈ Nk(s) { shake }
(s, k) := Movimento(s, s′, k)

end while
end until
return s

Uma combinação do rVNS com uma busca local é o Variable Neighborhood
Search (VNS) básico.

Algoritmo 10.13 (VNS)
Entrada Solução inicial s, um conjunto de vizinhanças Ni, i ∈ [m].

Saída Solução s.

VNS(s,{Ni})=
until critério de parada satisfeito

k := 1
while k ≤ m do

seleciona vizinho aleatório s′ ∈ Nk(s) { shake }
s′′ := BuscaLocal (s′)
(s, k) := Movimento(s, s′′, k)

end until
return s

Observação 10.2
A busca local em VNS pode usar uma vizinhança diferente das vizinhanças
que perturbam a solução atual. Também é possível usar o VND no lugar da
busca local. ♢

10.6. Algoritmo Guloso Iterado

Algoritmos de construção repetida independente como GRASP e Multi-Start
criam diversas soluções durante a execução, mas não utilizam a informação
obtida por iterações anteriores para ajudar na composição de novas soluções.
O algoritmo guloso iterado proposto por Ruiz e Stützle (2007) utiliza parte

182 Capítulo 10. Heurísticas baseadas em Busca local

da solução encontrada anteriormente para tentar achar uma nova solução
melhor.
O algoritmo guloso iterado cria uma solução inicial e iterativamente destrói
e reconstrói soluções de forma a gerar soluções novas. A cada etapa parte da
solução é removida. tornando a solução parcial, então o algoritmo gera uma
nova solução completa de forma gulosa à partir dessa solução parcial. Uma
vez gerada a solução nova verificamos se a solução será aceita ou descartada.
Caso ela seja melhor que a solução atual ela é aceita, caso seja pior é aceita
com chance dada pela perda de qualidade utilizando o critério de Metropolis.
O pseudo-código está no Algoritmo 10.14.

Algoritmo 10.14 (Busca Gulosa Iterada)
Entrada: Número de repetições n, temperatura T, uma solução
inicial s. Saída: Melhor solução encontrada s∗.

IG(s):=
{ manter melhor solução s∗ }
for n vezes

s′ = s
Destrói parte de s′

Reconstrói s′ gulosamente .
∆ = f (s′)− f (s)
s = s′ com probabilidade min{1, e−∆/T}

end for
return s∗

No algoritmo utilizamos um número fixo de iterações mas podemos utilizar
a qualidade da solução ou o tempo de execução como critério de parada.
Note que utilizamos o a mesma estratégia que o algoritmo de Metropolis
para permitir soluções a transição para soluções qualidade pior que a an-
terior, entretanto não utilizamos resfriamento (como utilizado na Têmpera
Simulada). A destruição e reconstrução em sequencia podem ser considera-
das uma perturbação da solução atual, pois podemos ter uma solução nova
de qualidade melhor ou pior, portanto pode ser útil colocar algum método
de melhoria, como uma busca local, após a reconstrução.
No caso do caixeiro viajante podemos fazer a destruição removendo um nú-
mero constante de arestas aleatórias do ciclo hamiltoniano, e a reconstrução
com a heurística do vizinho mais próximo. No caso da max-SAT podemos

10.6. Algoritmo Guloso Iterado 183

tornar alguns bits aleatórios não definidos para destruir parte da solução,
então construímos uma nova solução completa re-definindo estes bit em (or-
dem aleatória), cada vez maximizando o número de cláusulas satisfeitas.

11. Heurísticas inspirados da natureza

11.1. Algoritmos Genéticos e meméticos

Algoritmos Genéticos

• Proposto na década de 60 por Henry Holland.

• Professor da Faculdade de Engenharia Elétrica e de Computação da
Universidade de Michigan/EUA.

• Seu livro: Adaptation in Natural and Artificial Systems (1975).

Figura 11.1.: John Henry
Holland (*1929,+2015)

Algoritmos genéticos

• Foi proposto com o objetivo de projetar software de sistemas artificiais
que reproduzem processos naturais.

• Baseados na evolução natural das espécies.

• Por Darwin: indivíduos mais aptos têm mais chances de perpetuar a
espécie.

• Mantém uma população de soluções e não uma única solução por vez.

• Usa regras de transição probabilísticas, e não determinísticas.

• Procedimentos: avaliação, seleção, geração de novos indivíduos (re-
combinação), mutação.

• Parada: número x de gerações total, número y de gerações sem me-
lhora.

Algoritmos genéticos: Características

• Varias soluções (“população”).

• Operações novas: Recombinação e mutação.

• Separação da representação (“genótipo”) e formulação “natural” (fenó-
tipo).

186 Capítulo 11. Heurísticas inspirados da natureza

Algoritmos Genéticos: Noções

• Genes: Representação de um elemento (binário, inteiro, real, arco, etc)
que determine uma característica da solução.

• Alelo: Instância de uma gene.

• Cromossomo: Uma string de genes que compõem uma solução.

• Genótipo: Representação genética da solução (cromossomos).

• Fenótipo: Representação “física” da solução.

• População: Conjunto de cromossomos.

Algorítmos genéticos: Representação e Solução

Representao Al Soluo S

1 0 1 0 1 0 1 0 1 0 1 0 1 0
Mapeamento

cromossomo

gene com alelos 0,1

Algoritmos Genéticos: exemplos

• Problema de partição de conjuntos

Alelos: 0 ou 1

Cromossomo: 0001101010101011110110

• Problema do Caixeiro viajante

Alelos: valores inteiros entre 1 e n

Cromossomo: 1 5 3 6 8 2 4 7

11.1. Algoritmos Genéticos e meméticos 187

Procedimentos dos Algoritmos Genéticos

• Codificação: genes e cromossomos.

• Initialização: geração da população inicial.

• Função de Avaliação (fitness): função que avalia a qualidade de uma so-
lução.

• Seleção de pais: seleção dos indivíduos para crossover.

• Operadores genéticos: crossover, mutação

• Parâmetros: tamanho da população, percentagem de mutação, critério
de parada

Algoritmos Genéticos

Algoritmo 11.1 (AlgoritmoGenético)
Entrada Parâmetros do algoritmo.

Saída Melhor solução encontrada para o problema.

Inicialização e avaliação inicial
while (critério de parada não satisfeito) do

repeat
if (critério para recombinação) then

selecione pais
recombina e gera um filho

end if
if (critério para mutação) then

aplica mutação
end if

until (descendentes suficientes)
selecione nova população

end while

População Inicial: geração

• Soluções aleatórias.

188 Capítulo 11. Heurísticas inspirados da natureza

• Método construtivo (ex: vizinho mais próximo com diferentes cidades
de partida).

• Heurística construtiva com perturbações da solução.

• Pode ser uma mistura das opções acima.

População inicial: tamanho

• População maior: Custo alto por iteração.

• Populaçao menor: Cobertura baixa do espaço de busca.

• Critério de Reeves: Para alfabeto binário, população randômica:
Cada ponto do espaço de busca deve ser alcancável através de recom-
binações.

• Consequencia: Probabilidade que cada alelo é presente no gene i: 1 −
21−n.

• Probabilidade que alelo é presente em todos gene: (1 − 21−n)l .

• Exemplo: Com l = 50, para garantir cobertura com probabilidade
0.999:

n ≥ 1 − log2

(
1 − 50

√
0.999

)
≈ 16.61

Terminação

• Tempo.

• Número de avaliações.

• Diversidade. Exemplo: Cada gene é dominado por um alelo, i.e. 90%
dos indivíduos tem o mesmo alelo.

Próxima Geração

• Gerada por recombinação e mutação (soluções aleatórias ou da popu-
lação anterior podem fazer parte da próxima geração).

• Estratégias:

11.1. Algoritmos Genéticos e meméticos 189

– Recombinação e mutação.

– Recombinação ou mutação.

• Regras podem ser randomizadas.

• Exemplo: Taxa de recombinação e taxa de mutação.

• Exemplo: Número de genes mutados.

Mutação

• Objetivo: Introduzir elementos diversificados na população e com isso
possibilitar a exploração de uma outra parte do espaçõ de busca.

• Exemplo para representação binária: flip de k bits.

• Exemplo para o PCV: troca de posição entre duas cidades.

Recombinação

• Recombinação (ingl. crossover): combinar características de duas solu-
ções para prover uma nova solução potencialmente com melhor fitness.

• Explora o espaço entre soluções.

• Crossover clássicos: one-point recombinação e two-points recombina-
ção.

One-point crossover
Escolha um número aleatório k entre 1 e n. Gere um filho com os primeiros
k bits do pai A e com os últimos n − k bits do pai B

• Problema de particação: aplicação direta do conceito

• Problema do Caixeiro Viajante: copie os primeiros k elementos do pai A e
as demais n − k posições preenche com as cidades faltantes, segundo a
ordem em que elas aparecem no pai B

Figura 11.2.: Recombinação
de um ponto.

Recombinação de dois pontos

Figura 11.3.: Recombinação
de dois pontos.

190 Capítulo 11. Heurísticas inspirados da natureza

Exemplo: Strategic Arc Crossover

• Selecione todos os pedaçõs de rotas (string) com 2 ou mais cidades que
são iguais nas duas soluções

• Forme uma rota através do algoritmo de vizinho mais próximo entre
os pontos extremos dos strings

Recombinação: Seleção dos pais

• A probabilidade de uma solução ser pai num processo de crossover
deve depender do seu fitness.

• Variações:

– Probabilidade proporcional com fitness.

– Probabilidade proporcional com ordem.

Estratégia adotada pelos operadores
Inúmeros operadores podem ser propostos para cada problema. O ideal é
combinar características do operador usado, com outros operadores (muta-
ção, busca local) usados no GA. Basicamente um crossover é projetado da
seguinte forma:

• Encontre similaridades entre A e B e insira S = A ∩ B no filho.

• Defina conjuntos Sin e Sout de características desejáveis e não desejáveis.

• Projete um operador que mantenha ao máximo elementos de S e Sin,
minimizando o uso de elementos de Sout.

Nova População

• Todos os elementos podem ser novos.

• Alguns elementos podem ser herdados da população anterior.

• Elementos novos podem ser gerados.

• Exemplos, com população de tamanho λ que gera µ filhos.
(λ, µ) Seleciona os λ melhores dos filhos.
(λ + µ) Seleciona os λ melhores em toda população.

11.1. Algoritmos Genéticos e meméticos 191

Estrutura da População
Em geral, população estruturada garante melhores resultados. A estrutura
da população permite selecionar pais para crossover de forma mais criteri-
osa. Algumas estruturas conhecidas

• Divisão em Castas: 3 partições A, B e C (com tamanhos diferentes), sendo
que os melhores indivíduos estão em A e os piores em C.

• Ilhas: a população é particionada em subpopulações que evoluem em
separado, mas trocam indivíduos a cada período de número de gera-
ções.

• População organizada como uma árvore.

Exemplo: População em castas

• Recombinação: Somente entre indivíduos da casta A e B ou C para
manter diversidade.

• Nova população: Manter casta ”elite” A, re-popular casta B com filhos,
substituir casta C com soluções randômicas.

Exemplo: População em árvore

• Considere uma árvore ternária completa, em que cada nó possui duas
soluções (pocket e current).

• A solução current é a solução atual armazenada naquela posição da
árvore.

• A solução pocket é a melhor já tida naquela posição desde a primeira
geração.

• A cada solução aplique exchange (se a solução current for melhor que a
pocket, troque-as de posição)

• Se a solução pocket de um filho for melhor que a do seu pai, troque o
nó de posição.

192 Capítulo 11. Heurísticas inspirados da natureza

Algoritmos Meméticos

• Proposto por Pablo Moscato, Newcastle, Austrália.

• Ideía: Informação “cultural” pode ser adicionada a um indivíduo, ge-
rando um algoritmo memético.

• Meme: unidade de informação cultural.

Figura 11.4.: Pablo Moscato

Algoritmos Meméticos

• Um procedimento de busca local pode inserir informação de boa qua-
lidade, e não genética (memes).

• Faz uso de um procedimento de busca local (em geral aplicado à solu-
ção gerada pelo procedimento de recombinação).

• Geralmente trabalha com populações menores.

Comparação entre as Metaheurísticas Apresentadas

• Quais que dependem de randomização? SA, GRASP, GA

• Quais que geram apenas uma solução inicial em todo processo? BT, SA

• Quais mantêm um conjunto de soluções, em vez de considerar apenas
uma? GA

• Quais são inspiradas em processos da natureza? GA, BT

• Qual gera os melhores resultados?

Existem outras Metaheurísticas
Handbook of Metaheuristics, por Fred W. Glover (Editor), Gary A. Kochen-
berger (Editor) Kluwer 2002.

11.1. Algoritmos Genéticos e meméticos 193

Considerações Finais

• O desempenho de uma metaheurística depende muito de cada imple-
mentação

• As metaheurísticas podem ser usadas de forma hibridizada

• Técnicas de otimização multiobjetivo tratam os casos de problemas com
mais de um objetivo (Curva de Pareto)

Exercício

• Problema de alocação: atender n clientes por m postos de atendimento
(um posto é instalado no local onde se encontra um cliente)

• Entrada: distâncias entre cada par de clientes

• Problema: Determinar em que locais instalar os postos, de forma a
minimizar a soma das distâncias de cada cliente a um ponto de atendi-
mento

• Propor uma heurística construtiva e uma busca local.

Comparação entre as Metaheurísticas

• Quais que permitem movimento de piora? BT, SA

• Quais que não dependem de randomização? BT

• Quais que geram apenas uma solução inicial em todo processo? BT, SA

• Quais mantêm um conjunto de soluções, em vez de considerar apenas
uma?

• Qual gera os melhores resultados?

Parte IV.

Appéndice

A. Conceitos matemáticos

N, Z, Q e R denotam os conjuntos dos números naturais sem 0, inteiros,
racionais e reais, respectivamente. Escrevemos também N0 = N ∪ {0}, para
qualquer conjunto C, C+ = {x ∈ C|x ≥ 0} e C− = {x ∈ C | x ≤ 0}. Por
exemplo

R+ = {x ∈ R | x ≥ 0}.1

Para um conjunto finito S, P(S) denota o conjunto de todos subconjuntos de
S.
Denotamos por A = (aij) ∈ Fm×n uma matriz de m linhas e n colunas com
elementos em F. A i-ésima linha é ai, com at

i ∈ Fn e a j-ésima coluna de A é
aj ∈ Fm.

Definição A.1 (Pisos e tetos)
Para x ∈ R o piso bxc é o maior número inteiro menor que x e o teto dxe é o
menor número inteiro maior que x. Formalmente

bxc = max{y ∈ Z | y ≤ x}
dxe = min{y ∈ Z | y ≥ x}

O parte fracionário de x é {x} = x − bxc.

Observe que o parte fracionário sempre é positivo, por exemplo {−0.3} =

0.7.

Proposição A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem

x ≤ dxe < x + 1 (A.1)

x − 1 < bxc ≤ x (A.2)

1Alguns autores usam R+.

B. Formatos

Este capítulo contém um breve resumo dos formatos CPLEX lp, Julia/JuMP
e AMPL/MathProg usados para especificar problemas de otimização linear.
CPLEX LP é um formato simples, AMPL1 é uma linguagem completa para
definir problemas de otimização, com elementos de programação, coman-
dos interativos e um interface para diferentes resolvedores de problemas.
Por isso CPLEX LP serve para modelos pequenos. Aprender AMPL precisa
mais investimento, que rende em aplicações maiores. AMPL tem o apoio da
maioria das ferramentas disponíveis.
Vários outros formatos estão em uso, a maioria deles comerciais. Exemplos
são ZIMPL, GAMS, LINGO, e MPS (Mathematical programming system).

B.1. CPLEX LP

Uma gramática simplificada2 do formato CPLEX LP é

〈specification〉 ::= 〈objective〉
〈restrictions〉?
〈bounds〉
〈general〉?
〈binary〉?
‘End’

〈objective〉 ::= 〈goal〉 〈name〉? 〈linear expression〉

〈goal〉 ::= ‘MINIMIZE’ | ‘MAXIMIZE’ | ‘MIN’ | ‘MAX’

〈restrictions〉 ::= ‘SUBJECT TO’ 〈restriction〉+

〈restriction〉 ::= 〈name〉? 〈linear expression〉 〈cmp〉 〈number〉

1A sigla AMPL significa “A mathematical programming language”. O nome também sugere
uma funcionalidade “ampla” (“ample” em inglês).

2A gramática não contém as especificações “semi-continuous” e “SOS”.

http://www.ampl.com

200 Capítulo B. Formatos

〈cmp〉 ::= ‘<’ | ‘<=’ | ‘=’ | ‘>’ | ‘>=’

〈linear expression〉 ::= 〈number〉 〈variable〉 ((’+’ | ’-’) 〈number〉 〈variable〉)*

〈bounds〉 ::= ‘BOUNDS’ 〈bound〉+

〈bound〉 ::= 〈name〉? (〈limit〉 ‘<=’ 〈variable〉 ‘<=’ 〈limit〉
| 〈limit〉 ‘<=’ 〈variable〉
| 〈variable〉 ‘<=’ 〈limit〉
| 〈variable〉 ‘=’ 〈number〉
| 〈variable〉 ‘free’)

〈limit〉 ::= ‘infinity’ | ‘-infinity’ | 〈number〉

〈general〉 ::= ‘GENERAL’ 〈variable〉+

〈binary〉 ::= ‘BINARY’ 〈variable〉+

Todas variáveis x tem a restrição padrão 0 ≤ x ≤ +∞. Caso outros limites
são necessárias, eles devem ser informados na seção “BOUNDS”. As seções
“GENERAL” e “BINARY” permitem restringir variáveis para Z e B, respec-
tivamente.
As palavras-chaves também podem ser escritas com letras minúsculas: o for-
mato permite algumas abreviações não listadas acima (por exemplo, escrever
“s.t” ou “st” ao invés de “subject to”).
Um comentário até o final da linha inicia com “\”. Uma alternativa são
comentários entre “*” e “*\”.

Exemplo B.1 (Problema (1.1) no formato CPLEX LP)

Maximize
lucro: 0.2 c + 0.5 s

Subject To
ovo: c + 1.5 s <= 150 \ um comentrio
acucar : 50 c + 50 s <= 6000
client1 :c <= 80
client2 :s <= 60

Bounds

B.2. Julia/JuMP 201

0 <= c
0 <= s

End

♢

Exemplo B.2
Problema de mochila 0-1 com 11 itens em formato CPLEX LP.

max 19x1 +87 x2 +97 x3 +22 x4 +47 x5 +22 x6 +30 x7+5x8 +32 x9 +54 x10 +75 x11
s.t
1x1 +96 x2 +67 x3 +90 x4 +13 x5 +74 x6 +22 x7 +86 x8 +23 x9 +63 x10 +89 x11 <= 624
binary x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
end

♢

Observação B.1
CPLEX LP permite constantes como 0.5e6 que representa 0.5 × 106. Ou-
tra interpretação dessa expressão é 0.5 vezes a variável e6. Para evitar essa
ambiguidade, variáveis não podem começar com a letra e. ♢

B.2. Julia/JuMP

Julia é uma linguagem para programação científica e JuMP (Julia for Mathe-
matical Programming) uma biblioteca que permite embutir programas ma-
temáticos diretamente em código Julia. Isso tem a vantagem de poder ler e
processar os dados antes da solução, resolver, e continuar trabalhar com o
resultado no mesmo programa.

Exemplo B.3 (Problema (1.1) em Julia/JuMP)
#!/usr/bin/env julia

using JuMP
using GLPKMathProgInterface

m = Model(solver=GLPKSolverMIP())

@variable(m, c)
@variable(m, s)

@objective(m, Max, 0.2*c+0.5*s)

202 Capítulo B. Formatos

@constraint(m, c + 1.5*s <= 150)
@constraint(m, 50*c + 50*s <= 6000)
@constraint(m, c <= 80)
@constraint(m, s <= 60)

status = solve(m)

if status == :Optimal
println("A soluo tima c=$(getvalue(c)) e s=$(getvalue(s))

de valor $(getobjectivevalue(m)).")↪→

end

♢

Diferente do CPLEX lp, Julia/JuMP permite expressar um único modelo para
um problema e resolver para diferentes instâncias.

Exemplo B.4 (Exemplo (1.3) em Julia/JuMP)
#!/usr/bin/env julia

using JuMP
using GLPKMathProgInterface

n = 3
m = 3
a = [5,7,3]
b = [7,3,5]
c = [[3,4,100] [1,2,3] [100,4,3]]

mm = Model(solver=GLPKSolverMIP())

@variable(mm, x[1:m,1:n] >= 0)

@objective(mm, Min, sum(c[i,j]*x[i,j] for i=1:m, j=1:n))

@constraint(mm, [i=1:m], sum(x[i,j] for j=1:n) <= a[i])
@constraint(mm, [j=1:n], sum(x[i,j] for i=1:m) == b[j])

B.3. AMPL 203

status = solve(mm)

if status == :Optimal
println("A soluo tima x=$(getvalue(x)) de valor

$(getobjectivevalue(mm)).")↪→

end

♢

B.3. AMPL

Objetos de modelagem

• Um modelo em AMPL consiste em

– parâmetros,

– variáveis,

– restrições, e

– objetivos

• AMPL usa conjuntos (ou arrays de múltiplas dimensões)

A : I → D

que mapeiam um conjunto de índices I = I1 × · · · × In para valores D.

Formato

• Parte do modelo

s1
...
sn
end;

com si sendo um comando ou uma declaração.

• Parte de dados

204 Capítulo B. Formatos

data
d1
...
dn
end;

com di sendo uma especificação de dados.

Tipo de dados

• Números: 2.0,-4

• Strings: 'Comida'

• Conjuntos: {2,3,4}

Expressões numéricas

• Operações básicas: +,-,*,/,div,mod,less,**

Exemplo: x less y

• Funções: abs,ceil,floor,exp

Exemplo: abs(-3)

• Condicional: if x>y then x else y

Expressões sobre strings

• AMPL converte números automaticamente em strings

• Concatenação de strings: &

Exemplo: x & ' unidades'

B.3. AMPL 205

Expressões para conjuntos de índices

• Uma dimensão

– t in S: variável “dummy” t, conjunto S

– (t1,...tn) in S: para conjuntos de tuplos

– S: sem nomear a variável

• Multiplas dimensões

– {e1,...,en} com ei uma dimensão (acima).

• Variáveis “dummy” servem para referenciar e modificar.

Exemplo: (i-1) in S

Conjuntos

• Conjunto básico: {v1,...,vn}

• Valores: Considerados como conjuntos com conjunto de índices de di-
mensão 0

• Índices: [i1,...,in]

• Sequências: n1 ... n2 by d ou n1 ... n2

• Construção: setof I e: {e(i1, . . . , in) | (i1, . . . , in) ∈ I}

Exemplo: setof {j in A} abs(j)

Operações de conjuntos

• X union Y: União X ∪ Y

• X diff Y: Diferença X \ Y

• X symdiff Y: Diferença simétrica (X \ Y) ∪ (Y \ X)

• X inter Y: Intersecção X ∩ Y

• X cross Y: Produto cartesiano X × Y

206 Capítulo B. Formatos

Expressões lógicas

• Interpretação de números: n vale “v”, sse n 6= 0.

• Comparações simples: <,<=,= ou ==,>=,>,<> ou !=

• Pertinência: x in Y, x not in Y, x !in Y

• Subconjunto: X within Y, X !within Y, X not within Y

• Operadores lógicos: && ou and, || ou or, ! ou not

• Quantificação: com índices I, expressão booleana b

forall I b:
∧

(i1,...,in)∈I b(i1, . . . , in)

exists I b
∨

(i1,...,in)∈I b(i1, . . . , in)

Declarações: Conjuntos
set N I [dimen n] [within S] [default e1] [:= e2]

param N I [in S] [<=,>=,!=,... n] [default e1] [:= e2]

• Nome N

• Conjunto de índices I (opcional)

• Conjunto de valores S

• Valor default e1

• Valor inicial e2

Declarações: Restrições e objetivos
subject to N I : e1 = e2 | e1 <= e2, e1 >= e2

minimize [I] : e

maximize [I] : e

B.3. AMPL 207

Comandos

• solve: Resolve o sistema.

• check [I] : b: Valida expressão booleana b, erro caso falso.

• display [I] : e1,...en: Imprime expressões e1, . . . , en.

• printf [I] : fmt,e1,...,en: Imprime expressões e− 1, . . . , en usando
formato f mt.

• for I : c, for I : {c1 ... cn}: Laços.

Dados: Conjuntos
set N r1,...rn

Com nome N e records r1, . . . , rn, cada record

• um tuplo: v1, . . . , vn

Exemplo: 1 2, 1 3, 2 2, 2 7

• a definição de uma fatia (v1|∗, v2|∗, . . . , vn|∗): depois basta de listar os
elementos com ∗.
Exemplo: (1 *) 2 3, (2 *) 2 7

• uma matriz

: c1 c2 ... cn :=
r1 a11 a12 ... a1n
r2 a21 a22 ... a2n

...
rm am1 am2 ... amn

com aij “+”/”-” para inclusão/exclusão do par “ri cj” do conjunto.

Dados: Parâmetros
param N r1,...rn

Com nome N e records r1, . . . , rn, cada record

• um valor i1, . . . , in, v

208 Capítulo B. Formatos

• a definição de uma fatia [i1|∗, i2|∗, . . . , in|∗): depois basta definir índices
com ∗.

• uma matriz

: c1 c2 ... cn :=
r1 a11 a12 ... a1n
r2 a21 a22 ... a2n

...
rm am1 am2 ... amn

com aij o valor do par “ri cj”.

• uma tabela

param default v : s : p1 p2 ... pk :=
t11 t12 ... t1n a11 a12 ... a1k
t21 t22 ... t2n a21 a22 ... a2k

...
tm1 tm2 tmn am1 am2 ... amk

para definir simultaneamente o conjunto

set s := (t11 t12 ... t1n), ... , (tm1 tm2 ... tmn);

e os parâmetros

param p1 default v := [t11 t12 ... t1n] a11, ..., [tm1
tm2 ... tmn] am1;↪→

param p2 default v := [t11 t12 ... t1n] a12, ..., [tm1
tm2 ... tmn] am2;↪→

...
param pk default v := [t11 t12 ... t1n] a1k, ..., [tm1

tm2 ... tmn] amk;↪→

Exemplo B.5 (Exemplo (1.1) em AMPL)
var c; # nmero de croissants
var s; # nmero de strudels
param lucro_croissant; # o lucro por croissant
param lucro_strudel; # o lucro por strudel
maximize lucro: lucro_croissant*c+lucro_strudel*s;
subject to ovo: c+1.5*s <= 150;
subject to acucar: 50*c+50*s <= 6000:
subject to croissant: c <= 80;
subject to strudel: s <= 60;

B.3. AMPL 209

♢

Exemplo B.6 (Exemplo (1.3) em AMPL)
param n; # nmero de clientes
param m; # nmero de fornecedores
param a { 1..m }; # estoque
param b { 1..n }; # demanda
param c { 1..m, 1..n }; # custo transporte
var x { 1..m,1..n } >= 0;

minimize custo:
sum { i in 1..m, j in 1..n } c[i,j]*x[i,j];

subject to limiteF { i in 1..m }:
sum { j in 1..n } x[i,j] <= a[i];

subject to limiteC { j in 1..n }:
sum { i in 1..m } x[i,j] = b[j];

data;
param n := 3;
param m := 3;
param a := 1 5, 2 7, 3 3;
param b := 1 7, 2 3, 3 5;
param c : 1 2 3 :=
1 3 1 100
2 4 2 4
3 100 3 3;
end;

♢

C. Soluções dos exercícios

Solução do exercício 1.3.

maximiza 2A + B

sujeito a A ≤ 6000,

B ≤ 7000,

A + B ≤ 10000,

A, B ≥ 0.

Resposta: A = 6000, B = 4000, e Z = 16000.

Solução do exercício 1.4.
São necessárias cinco variáveis:

• x1: número de pratos de lasanha comidos por Marcio

• x2: número de pratos de sopa comidos por Marcio

• x3: número de pratos de hambúrgueres comidos por Renato

• x4: número de pratos de massa comidos por vini

• x5: números de pratos de sopa comidos por vini

Formulação:

maximiza x1 + x2 + x3 + x4 + x5

sujeito a 4 ≥ x1 + x2 ≥ 2,

5 ≥ x3 ≥ 2,

4 ≥ x4 + x5 ≥ 2,

70(x2 + x5) + 200x1 + 100x3 + 30x4 ≤ 1000,

30(x2 + x5) + 100x1 + 100x3 + 100x4 ≤ 800.

212 Capítulo C. Soluções dos exercícios

Solução do exercício 1.5.
Sejam l1 ∈ R e l2 ∈ R o número de lampadas produzidas do tipo 1 e 2,
respectivamente. Com isso podemos formular

maximiza l1 + 2l2
sujeito a l2 ≤ 60,

l1 + 3l2 ≤ 200,

2l1 + 2l2 ≤ 300,

l1, l2 ≥ 0.

Solução do exercício 1.6.
Sejam m ∈ R e a ∈ R o número de janelas de madeira e de alumínio, respec-
tivamente. Com isso podemos formular

maximiza 60m + 30a,

sujeito a m ≤ 6,

a ≤ 4,

6m + 8a ≤ 48,

m, a ≥ 0.

Solução do exercício 1.8.
Com marcas J, O, M (Johnny Ballantine, Old Gargantua, Misty Deluxe) e
misturas A, B, C temos as variáveis

xJ,A, xJ,B, xJ,C, xO,A, xO,B, xO,C, xM,A, xM,B, xM,C

que denotam o número de garrafas usadas por mistura.
Vamos introduzir ainda as variáveis auxiliares para o número de garrafas
usadas de cada marca

xJ = xJ,A + xJ,B + xJ,C, xO = xO,A + xO,B + xO,C, xM = xM,A + xM,B + xM,C

e variáveis auxiliares para o número de garrafas produzidas de cada mistura

xA = xJ,A + xO,A + xM,A, xB = xJ,B + xO,B + xM,B, xC = xJ,C + xO,C + xM,C.

Queremos maximizar o lucro em reais

68xA + 57xB + 45xC − (70xJ + 50xO + 40xM)

213

respeitando os limites de importação

xJ ≤ 2000, xO ≤ 2500, xM ≤ 1200

e os limites de percentagem

xJ,A ≥ 0.6xA, xM,A ≤ 0.2xA,

xJ,B ≥ 0.15xB, xM,B ≤ 0.6xB,

xM,C ≤ 0.5xC.

Portanto, o sistema final é

maximiza 68xA + 57xB + 45xC

− (70xJ + 50xO + 40xM),

sujeito a cxJ ≤ 2000,

xO ≤ 2500,

xM ≤ 1200,

xJ,A ≥ 0.6xA,

xM,A ≤ 0.2xA,

xJ,B ≥ 0.15xB,

xM,B ≤ 0.6xB,

xM,C ≤ 0.5xC,

xm = xm,A + xm,B + xm,C, m ∈ {J, O, M},

xm = xJ,m + xO,m + xM,m, m ∈ {A, B, C},

xm,n ≥ 0, m ∈ {J, O, M}, n ∈ {A, B, C}.

Sem considerar a integralidade a solução ótima é produzir 2544.44 garrafas
da mistura A, 3155.56 garrafas da mistura B e 0 garrafas da mistura C, com
as percentagens

• A: 60% Johnny Ballantine, 20% Old Gargantua, 20% Misty Deluxe

• B: 15% Johnny Ballantine, 63% Old Gargantua, 22% Misty Deluxe

Solução do exercício 1.9.

214 Capítulo C. Soluções dos exercícios

Com t1 o número de TVs de 29" e t2 de 31" temos

maximiza 120t1 + 80t2,

sujeito a t1 ≤ 40,

t2 ≤ 10,

20t1 + 10t2 ≤ 500,

t1, t2 ≥ 0.

Solução do exercício 1.10.
Sejam V = {V1, V2} e NV = {NV1, NV2, NV3} os conjuntos de óleos vegetais
e não vegetais e O = V ∪ NV o conjunto do todos óleos. Seja ainda ci o
custo por tonelada do óleo i ∈ O e ai a acidez do óleo i ∈ O. (Por exemplo
cV1 = 110 e aNV2 = 4.2.) Com variáveis xi (toneladas refinadas do óleo i ∈ O)
e xo (quantidade total de óleo produzido) podemos formular

maximiza 150xo − ∑
i∈O

cixi

sujeito a ∑
i∈V

xi ≤ 200, limite óleos vegetais,

∑
i∈NV

xi ≤ 250, limite óleos não vegetais,

3xo ≤ ∑
i∈O

aixi ≤ 6xo, Intervalo acidez,

∑
i∈O

xi = xo, Óleo total,

xo, xi ≥ 0, ∀i ∈ O.

Solução do exercício 1.11.
Sejam xA, xB e xC o número de horas investidos para cada disciplina. Vamos
usar variáveis auxiliares nA, nB e nC para as notas finais das três disciplinas.

215

Como isso temos o programa linear

maximiza nA + nB + nC,

sujeito a xA + xB + xC = 100, Total de estudo,

nA = (6 + xA/10)/2, Nota final disc. A,

nB = (7 + 2xB/10)/2, Nota final disc. B,

nC = (10 + 3xC/10)/2, Nota final disc. C,

nA ≥ 5, Nota mínima disc. A,

nB ≥ 5, Nota mínima disc. B,

nC ≥ 5, Nota mínima disc. C,

nA ≤ 10, Nota máxima disc. A,

nB ≤ 10, Nota máxima disc. B,

nC ≤ 10, Nota máxima disc. C,

nA, nB, nC ≥ 0.

Solução do exercício 1.12.
Sejam r ∈ R e f ∈ R o número de canecos do Duff regular e do Duff Forte,
respectivamente, encomendados por semana. Com isso podemos formular

maximiza r + 1.5 f ,

sujeito a 2 f ≤ r,

r + f ≤ 3000,

r, f ∈ R+.

Solução do exercício 1.13.
Sejam f ∈ R e h ∈ R o número de pacotes de Frisky Pup e Husky Hound
produzidos, respectivamente. Com isso podemos formular

maximiza 1.6 f + 1.4h,

sujeito a f + 2h ≤ 240000,

1.5 f + h ≤ 180000,

f ≤ 110000,

f , h ∈ R+.

216 Capítulo C. Soluções dos exercícios

Solução do exercício 1.14.
Sejam p e c o número de toneladas de placas e canos produzidos.

maximiza 25p + 30c,

sujeito a p/200 + c/140 ≤ 40,⇐⇒ 7p + 10c ≤ 56000

p ≤ 6000,

c ≤ 4000,

c, p ≥ 0.

0 2,000 4,000 6,000 8,000
0

2,000

4,000

6,000

c = 80

7p + 10c = 56000

c = 4000

Soluções viáveis

50 K

100 K

150 K

192 K

Placas p

C
an

os
c

Produzindo aço

A solução ótima é p = 6000, c = 1400 com valor 192000.

Solução do exercício 1.15.
Usamos índices 1, 2 e 3 para os vôos Pelotas–Porto Alegre, Porto Alegre–
Torres e Pelotas–Torres e variáveis a1, a2, a3 para a categoria A, b1, b2, b3 para
categoria B e c − 1, c2, c3 para categoria C. A função objetivo é maximizar o
lucro

z = 600a1 + 320a2 + 720a3 + 440b1 + 260b2 + 560b3 + 200c1 + 160c2 + 280c3.

Temos que respeitar os limites de capacidade

a1 + b1 + c1 + a3 + b3 + c3 ≤ 30,

a2 + b2 + c2 + a3 + b3 + c3 ≤ 30,

217

e os limites da predição

a1 ≤ 4, a2 ≤ 8, a3 ≤ 3,

b1 ≤ 8, b2 ≤ 13, b3 ≤ 10,

c1 ≤ 22, c2 ≤ 20, c3 ≤ 18

Obviamente, todas variáveis também devem ser positivos.

Solução do exercício 1.16.
A solução gráfica é

0 2 4 6
0

2

4

6

x1 = 4.25

x2 = 4

−x1 + x2 = 2

x1 + 8x2 = 36

Soluções viáveis

10 20

x1

x 2

(a) A solução ótima é x1 = 4.25, x2 ≈ 4 (valor exato x2 = 3.96875).

(b) O valor da solução ótima é ≈ 21 (valor exato 20.96875).

Solução do exercício 1.17.

maximiza z = 5x1 + 5x2 + 5x3

sujeito a − 6x1 − 2x2 − 9x3 ≤ 0,

− 9x1 − 3x2 + 3x3 ≤ 3,

9x1 + 3x2 − 3x3 ≤ −3,

x1, x2, x3 ≥ 0.

218 Capítulo C. Soluções dos exercícios

maximiza z = −6x1 − 2x2 − 6x3 + 4x4 + 4x5

sujeito a − 3x1 − 8x2 − 6x3 − 7x4 − 5x5 ≤ 3,

3x1 + 8x2 + 6x3 + 7x4 + 5x5 ≤ −3,

5x1 − 7x2 + 7x3 + 7x4 − 6x5 ≤ 6,

x1 − 9x2 + 5x3 + 7x4 − 10x5 ≤ −6,

− x1 + 9x2 − 5x3 − 7x4 + 10x5 ≤ 6,

x1, x2, x3, x4, x5 ≥ 0.

maximiza z = 7x1 + 4x2 + 8x3 + 7x4 − 9x5

sujeito a − 4x1 − 1x2 − 7x3 − 8x4 + 6x5 ≤ −2,

4x1 + x2 + 7x3 + 8x4 − 6x5 ≤ 2,

− x1 − 4x2 − 2x3 − 2x4 + 7x5 ≤ 7,

− 8x1 + 2x2 + 8x3 − 6x4 − 7x5 ≤ −7,

8x1 − 2x2 − 8x3 + 6x4 + 7x5 ≤ 7,

x1, x2, x3, x4, x5 ≥ 0.

maximiza z = 6x1 − 5x2 − 8x3 − 7x4 + 8x5

sujeito a − 5x1 − 2x2 + x3 − 9x4 − 7x5 ≤ 9,

5x1 + 2x2 − x3 + 9x4 + 7x5 ≤ −9,

7x1 + 7x2 + 5x3 − 3x4 + x5 ≤ −8,

− 7x1 − 7x2 − 5x3 + 3x4 − x5 ≤ 8,

− 5x1 − 3x2 − 5x3 + 9x4 + 8x5 ≤ 0,

x1, x2, x3, x4, x5 ≥ 0.

Solução do exercício 2.1.
Solução com método Simplex, escolhendo como variável entrante sempre

219

aquela com o maior coeficiente positivo (em negrito):

z = 25p +30c
w1 = 56000 −7p −10c
w2 = 6000 −p
w3 = 4000 −c

z = 120000 +25p −30w3

w1 = 16000 −7p +10w3

w2 = 6000 −p
c = 4000 −w3

z = 1240000/7 −25/7p +40/7w3

p = 16000/7 −1/7w1 +10/7w3

w2 = 26000/7 +1/7w1 −10/7w3

c = 4000 −w3

z = 192000 −3w1 −4w2

p = 6000 −w2

w3 = 2600 +1/10w1 −7/10w2

c = 1400 −1/10w1 +7/10w2

Solução do exercício 2.3.
Temos (

2(n + 1)
n + 1

)
=

(
2n
n

)
(2n + 2)(2n + 1)

(n + 1)2 =

(
2n
n

)
2(2n + 1)

n + 1

e logo
22n

n + 1

(
2n
n

)
≤

(
2(n + 1)

n + 1

)
≤ 22

(
2n
n

)
.

Logo, por indução (1/2n)22n ≤ (2n
n) ≤ 22n.

Solução do exercício 2.6.

(a) Substituindo x1 e x2 obtemos a nova função objetivo z = x1 + 2x2 =

22− 7w2 − 3w1. Como todos coeficientes são negativos, a solução básica
atual permanece ótima.

(b) A nova função objetivo é 1 − w2 e o sistema mantem-se ótimo.

220 Capítulo C. Soluções dos exercícios

(c) A nova função objetivo é 2 − 2w2 e o sistema mantem-se ótimo.

(d) O dicionário dual é

z∗ = 31 −7z2 −8z1

y2 = 11 +2z2 +3z1

y1 = 4 +z2 +z1

e a solução dual ótima é (y1 y2)t = (4 11)t.

Solução do exercício 2.9.
Não, porque nessa situação o valor da variável entrante aumento para um
valor xe > 0 e por definição de variável entrante temos ce > 0, i.e. o valor da
função objetivo aumenta.

Solução do exercício 2.10.
Sim. Supõe que xs, s ∈ B é a variável básica negativa. Com xs = b̄s − āsexe

e ase < 0 temos xs > 0 caso xe > bs/āse. Logo para xe > maxi∈B,b̄s<0 b̄i/āie a
solução é factível.

Solução do exercício 3.1.

maximiza 10y1 + 6y2

sujeito a y1 + 5y2 ≤ 7,

− y1 + 2y2 ≤ 1,

3y1 − y2 ≤ 5,

y1, y2 ≥ 0.

Solução do exercício 3.2.
Com variáveis duais ye para cada e ∈ U temos

maximiza ∑
e∈U

ye

sujeito a ∑
e:e∈S

ye ≤ c(S), S ∈ S ,

ye ≥ 0, e ∈ U.

Solução do exercício 3.3.

221

(a) Temos B = {4, 1, 2} (variáveis básicas x4, x1 e x2) e N = {5, 6, 3} (va-
riáveis nulas x5, x6 e x3). No que segue, vamos manter essa ordem das
variáveis em todos vetores e matrizes. O vetor de custos nessa ordem é

cB = (0 2 − 1)t; cN = (0 0 1)t

e com

∆c = (0 1 0 0 0 0)t

temos

∆y∗N = (B−1N)t∆cB − ∆cN = (B−1N)t∆cB

=

−1 1/2 −1/2
−2 1/2 1/2
1 1/2 −3/2

0
1
0

 =

1/2
1/2
1/2

 .

Com y∗N = (3/2 1/2 3/2)t obtemos os limites −1 ≤ t ≤ ∞ e 1 ≤ c1 ≤
∞.

(b) Temos ∆xb = B−1∆b e ∆b = (0 1 0)t. Para determinar ∆xB precisamos
calcular B−1 pela inversão de

B =

1 3 1
0 1 −1
0 1 1


(observe que as colunas estão na ordem de B) que é

B−1 =

1 −1 −2
0 1/2 1/2
0 −1/2 1/2


Assim ∆xB = (−1 1/2 − 1/2)t, e com x∗B = (10 15 5)t e pela definição

max
i∈B

∆xi>0

−
x∗i

∆xi
≤ t ≤ min

i∈B
∆xi<0

−
x∗i

∆xi

obtemos os limites −30 ≤ t ≤ 10 e −20 ≤ b2 ≤ 20.

222 Capítulo C. Soluções dos exercícios

(c) Com b̂ = (70 20 10)t temos B−1b̂ = (30 15 − 5)t. Portanto, a solução
básica não é mais víavel e temos que reotimizar. O novo valor da função
objetivo é

ct
B(B−1b̂) =

(
0 2 −1

) 30
15
−5

 = 35

e temos o dicionário

z = 35 −3/2x5 −1/2x6 −3/2x3

x4 = 30 +x5 +2x6 −x3

x1 = 15 −1/2x5 −1/2x6 −1/2x3

x2 = −5 +1/2x5 −1/2x6 +3/2x3

O dicionário é dualmente viável, e após pivô x2–x3 temos o novo sis-
tema ótimo

z = 30 −x5 −x6 −x2

x4 = 80/3 +4/3x5 +5/3x6 −2/3x2

x1 = 40/3 −1/3x5 −2/3x6 −1/3x2

x3 = 10/3 −1/3x5 +1/3x6 +2/3x2

(d) Temos ĉ = (0 3 − 2 0 0 3)t (em ordem B,N) e com isso

ŷ∗N = (B−1N)t ĉB − ĉN =

−1 1/2 −1/2
−2 1/2 1/2
1 1/2 −3/2

 0
3
−2

−

0
0
3

 =

5/2
1/2
3/2



Portanto, a solução ainda é ótima. O novo valor da função objetivo é

ĉt
B(B−1b) =

(
0 3 −2

)10
15
5

 = 35.

Solução do exercício 6.2.

223

Conjunto independente máximo Com variáveis indicadores xv, v ∈ V te-
mos o programa inteiro

maximiza ∑
v∈V

xv,

sujeito a xu + xv ≤ 1, ∀{u, v} ∈ A, (C.1)

xv ∈ B, ∀v ∈ V.

A equação C.1 garante que cada aresta possui no máximo um nó incidente.

Emparelhamento perfeito com peso máximo Sejam xa, a ∈ A variáveis
indicadores para a seleção de cada aresta. Com isso, obtemos o programa
inteiro

maximiza ∑
a∈A

p(a)xa,

sujeito a ∑
u∈N(v)

x{u,v} = 1, ∀v ∈ V, (C.2)

xa ∈ B, ∀v ∈ V.

A equação C.2 garante que cada nó possui exatamente um vizinho.

Problema de transporte Sejam xij variáveis inteiras, que correspondem com
o número de produtos transportados do depósito i para cliente j. Então

minimiza ∑
i∈[n]
j∈[m]

cijxij

sujeito a ∑
j∈[m]

xij = pi, ∀i ∈ [n], cada depósito manda todo estoque

∑
i∈[n]

xij = dj, ∀j ∈ [m], cada cliente recebe a sua demanda

xij ∈ Z+.

224 Capítulo C. Soluções dos exercícios

Conjunto dominante Sejam xv, v ∈ V variáveis indicadores para seleção de
vértices. Temos o programa inteiro

minimiza ∑
v∈V

xv

sujeito a xv + ∑
u∈N(v)

xu ≥ 1, ∀v ∈ V, nó ou vizinho selecionado

xv ∈ B, ∀v ∈ V.

Solução do exercício 6.4.
Seja d1d2 . . . dn a entrada, e o objetivo selecionar m ≤ n dígitos da entrada.
Seja xij ∈ B um indicador que o dígito i ∈ [n] da entrada seria selecionado
como dígito j ∈ [m] da saida. Então

maximiza ∑
i∈[n],j∈[m]

xijdi10m−j,

sujeito a ∑
i∈[n]

xij = 1, ∀j ∈ [m], (C.3)

∑
j∈[m]

xij ≤ 1, ∀i ∈ [n], (C.4)

xij = 0, ∀i ∈ [n], j ∈ [m], j > i, (C.5)

xkl ≤ 1 − xij, ∀i, k ∈ [n], l, j ∈ [m], k > i, l < j. (C.6)

A função das restrições é a seguinte:

• Restrição (C.3) garante que tem exatamente um dígito em cada posição.

• Restrição (C.4) garante que cada dígito é selecionado no máximo uma
vez.

• Restrição (C.5) garante que dígito i aparece somente a partir da posição
j.

• Restrição (C.4) proibe inversões.

Solução do exercício 6.5.
Existem 21 sets diferentes, cada um com consumo diferente das 9 cartas. Seja
AR9×21 uma matriz, que contém em cada das 21 coluna o número de cartas
de cada set. Além disso, seja b ∈ R9 o número de cartas disponíveis. Usando

225

variáveis inteiros x ∈ Z21 que representam o número de sets formandos de
cada tipo de set diferentes, temos a formulação

maximiza ∑
i∈[21]

xi

sujeito a Ax ≤ b,

x ≥ 0.

Solução do exercício 6.6.
Cobertura por arcos

minimiza ∑
e∈E

cexe

sujeito a ∑
u∈N(v)

xuv ≥ 1, ∀v ∈ V,

xe ∈ B.

Conjunto dominante de arcos

maximiza ∑
e∈E

cexe

sujeito a ∑
e′∈E

e∩e′ 6=∅

xe′ ≥ 1, ∀e ∈ E,

xe ∈ B.

Coloração de grafos Seja n = |V|; uma coloração nunca precisa mais que n
cores.

minimiza ∑
j∈[n]

cj

sujeito a ∑
j∈[n]

xvj = 1, ∀v ∈ V, (C.7)

xui + xvi ≤ 1, ∀{u, v} ∈ E, i ∈ [n], (C.8)

ncj ≥ ∑
v∈V

xvj, ∀j ∈ [n], (C.9)

xvi, cj ∈ B.

• Restrição (C.7) garante que todo vértice recebe exatamente uma cor.

226 Capítulo C. Soluções dos exercícios

• Restrição (C.8) garante que vértices adjacentes recebem cores diferen-
tes.

• Restrição (C.9) garante que cj = 1 caso cor j for usada.

Clique mínimo ponderado

minimiza ∑
v∈V

cvxv

sujeito a xu + xv ≤ 1, ∀{u, v} 6∈ E, (C.10)

xv ∈ B.

Restrição C.10 garante que não existe um par de vértices selecionados que
não são vizinhos.

Subgrafo cúbico xe indica a seleção da aresta e ∈ E, e yv indica se o vértice
v ∈ V ele possui grau 0 (caso contrário grau 3).

minimiza ∑
e∈E

xe,

sujeito a ∑
e∈N(v)

xe = 3yv, ∀v ∈ V,

xe ∈ B, ∀e ∈ E,

yv ∈ B, ∀v ∈ V.

Solução do exercício 6.7.
Sejam xi ∈ B, i ∈ [7] variáveis que definem a escolha do projeto i. Então
temos

maximiza 17x1 + 10x2 + 15x3

+ 19x4 + 7x5 + 13x6 + 9x7,

sujeito a 43x1 + 28x2 + 34x3 + 48x4,

+ 17x5 + 32x6 + 23x7 ≤ 100, Limite do capital

x1 + x2 ≤ 1, Projetos 1,2 mutualmente exclusivos

x3 + x4 ≤ 1, Projetos 3,4 mutualmente exclusivos

x3 + x4 ≤ x1 + x2, Projeto 3 ou 4 somente se 1 ou 2

227

Solução do exercício 6.8.
Seja f ∈ B uma variável que determina qual fábrica vai ser usada (fábrica
1, caso f = 0, fábrica 2, caso f = 1), bi ∈ B uma variável binária que
determina, se brinquedo i vai ser produzido e ui ∈ Z as unidades produzidas
de brinquedo i (sempre com i ∈ [2]).

maximiza 10u1 + 15u2

− 50000b1 − 80000b2

sujeito a ui ≤ Mbi, Permitir unidades somente se tem produção

u1/50 + u2/40 ≤ 500 + f M, Limite fábrica 1, se selecionada

u1/40 + u2/25 ≤ 700 + (1 − f)M, Limite fábrica 2, se selecionada

ai ∈ B, ui ∈ Z, i ∈ [3].

A constante M deve ser suficientemente grande tal que ela efetivamente não
restringe as unidades. Dessa forma, se a fábrica 1 está selecionada, a terceira
restrição (da fábrica 2) não se aplica e vice versa.

http://www.inf.ufrgs.br/~mrpritt/e6q3.mod

set brinquedos := 1..2;
var f binary;
var b { brinquedos } binary;
var u { brinquedos } integer, >= 0;
param inicial { brinquedos };
param lucro { brinquedos };
param prodfab1 { brinquedos };
param prodfab2 { brinquedos };
param M := 35000;

maximize Lucro:
sum { i in brinquedos } u[i]*lucro[i]
- (sum { i in brinquedos } inicial[i]*b[i]);

subject to PermitirProducao { i in brinquedos }:
u[i] <= M*b[i];

subject to LimiteFab1 :
sum { i in brinquedos }

u[i]*prodfab1[i] <= 500 + f*M;
subject to LimiteFab2 :

http://www.inf.ufrgs.br/~mrpritt/e6q3.mod

228 Capítulo C. Soluções dos exercícios

sum { i in brinquedos }
u[i]*prodfab2[i] <= 700 + (1-f)*M;

data;
param inicial := 1 50000 2 80000;
param lucro := 1 10 2 15;
param prodfab1 := 1 0.020 2 0.025;
param prodfab2 := 1 0.025 2 0.040;

Solução: Produzir 28000 unidades do brinquedo 1 na fábrica 2, com lucro
230KR$.

Solução do exercício 6.9.
Sejam ai ∈ B uma variável que determina se avião i vai ser produzido e
ui ∈ Z as unidades produzidas.

maximiza 2u1 + 3u2 + 0.2u3

− 3a1 − 2a2

sujeito a 0.2u1 + 0.4u3 + 0.2u3 ≤ 1, Limite de capacidade

ui ≤ 5ai, Permitir unidades somente se for

produzido, limite 5 aviões

u1 ≤ 3, Limite avião 1

u2 ≤ 2, Limite avião 2

u3 ≤ 5, Limite avião 3

ai ∈ B, ui ∈ Z.

http://www.inf.ufrgs.br/~mrpritt/e6q4.mod

set avioes := 1..3;
param custo { avioes };
param lucro { avioes };
param capacidade { avioes };
param demanda { avioes };
var produzir { avioes } binary;
var unidades { avioes } integer, >= 0;

maximize Lucro:

http://www.inf.ufrgs.br/~mrpritt/e6q4.mod

229

sum { i in avioes }
(lucro[i]*unidades[i]-custo[i]*produzir[i]);

subject to LimiteCapacidade:
sum { i in avioes } unidades[i]*capacidade[i] <= 1;

subject to PermitirProducao { i in avioes }:
unidades[i] <= 5*produzir[i];

subject to LimiteDemanda { i in avioes }:
unidades[i] <= demanda[i];

data;
param : custo lucro capacidade demanda :=
1 3 2 0.2 3
2 2 3 0.4 2
3 0 0.8 0.2 5;

Solução: Produzir dois aviões para cliente 2, e um para cliente 3, com lucro
4.8 MR$.

Solução do exercício 6.10.
Seja xijk ∈ B um indicador do teste com a combinação (i, j, k) para 1 ≤
i, j, k ≤ 8. Cada combinação (i, j, k) testada cobre 22 combinações: além
de (i, j, k) mais 7 para cada combinação que difere somente na primeira,
segunda ou terceira posição. Portanto, uma formulação é

minimiza ∑
(i,j,k)∈[8]3

xi,j,k

sujeito a xi,j,k + ∑
i′ 6=i

xi′ jk + ∑
j′ 6=j

xij′k + ∑
k′ 6=k

xijk′ ≥ 1, ∀i, j, k ∈ [8],

xi,j,k ∈ B, ∀i, j, k ∈ [8].

A solução ótima desse sistema é 32, i.e. 32 testes são suficientes para abrir a
fechadura. Uma solução é testar as combinações

(1, 2, 4), (1, 3, 8), (1, 5, 5), (1, 8, 7), (2, 1, 1), (2, 4, 3), (2, 6, 6), (2, 7, 2),

(3, 1, 3), (3, 4, 2), (3, 6, 1), (3, 7, 6), (4, 1, 2), (4, 4, 6), (4, 6, 3), (4, 7, 1),

(5, 1, 6), (5, 4, 1), (5, 6, 2), (5, 7, 3), (6, 2, 7), (6, 3, 5), (6, 5, 4), (6, 8, 8),

(7, 2, 5), (7, 3, 7), (7, 5, 8), (7, 8, 4), (8, 2, 8), (8, 3, 4), (8, 5, 7), (8, 8, 5)

230 Capítulo C. Soluções dos exercícios

Solução do exercício 6.11.
Sejam xi ∈ B, i ∈ [k] as variáveis de entrada, e ci ∈ B, i ∈ [n] variáveis que
indicam se a cláusula ci está satisfeita. Para aplicar a regra (6.2) diretamente,
vamos usar uma variável auxiliar di. i ∈ [n], que representa a disjunção dos
primeiros dois literais da cláusula i.

maximiza ∑
i∈[n]

ci

sujeito a lij =

{
xk literal j na cláusula i é xk,

1 − xk literal j na cláusula i é ¬xk,

di ≥ (li1 + li2)/2,

di ≤ li1 + li2,

ci ≥ (di + li3)/2,

ci ≤ di + li3,

ci, di, xi ∈ B.

Como é um problema de maximização, pode ser simplificado para

maximiza ∑
i∈[n]

ci

sujeito a lij =

{
xk literal j na cláusula i é xk,

1 − xk literal j na cláusula i é ¬xk,

ci ≤ li1 + li2 + li3,

ci, xi ∈ B.

A segunda formulação possui uma generalização simples para o caso k > 3.

Solução do exercício 6.13.
Não. Uma explicação: http://nbviewer.jupyter.org/url/www.inf.ufrgs.
br/~mrpritt/oc/greedy-independent-set.ipynb.

Solução do exercício 6.15.
Não. Primeiramente, a restrição

∏
p∈P

xp = 10! (C.11)

http://nbviewer.jupyter.org/url/www.inf.ufrgs.br/~mrpritt/oc/greedy-independent-set.ipynb
http://nbviewer.jupyter.org/url/www.inf.ufrgs.br/~mrpritt/oc/greedy-independent-set.ipynb

231

não é linear. Mas mesmo ignorando isso as restrições não definem uma
bijeção entre números e posições. O conjunto completo de soluções é

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

1, 2, 3, 4, 6, 6, 6, 7, 10, 10

1, 2, 4, 4, 4, 5, 7, 9, 9, 10

1, 3, 3, 3, 4, 6, 7, 8, 10, 10

1, 3, 3, 4, 4, 4, 7, 9, 10, 10

2, 2, 2, 3, 4, 6, 7, 9, 10, 10

Solução do exercício 7.1.
Se (A B) é TU, então trivialmente A é TU. Agora caso A é TU, considere
uma submatriz quadrada (A′ B′) de (A B). Como B somente possui um
coeficiente não-nulo por coluna temos det(A′ B′) = ±det(A). Logo (A′ B′)

é TU.

Solução do exercício 7.2.

Conjunto independente máximo A matriz de coeficientes contém dois co-
eficientes igual 1 em cada linha, que correspondem com uma aresta, mas
geralmente não é totalmente unimodular. Por exemplo, o grafo completo
com três vértices K3

1

2 3

gera a matriz de coeficientes 1 1 0
1 0 1
0 1 1


cuja determinante é −2. A solução ótima da relaxação inteira 0 ≤ xi ≤ 1 é
x1 = x2 = x3 = 1/2 com valor 3/2, a Fig. C.1 mostra o polítopo correspon-
dente. (Observação: A transposta dessa matriz satisfaz os critérios (i) e (ii)

232 Capítulo C. Soluções dos exercícios

da nossa proposição, e caso o grafo é bi-partido, também o critério (iii). Por-
tanto Conjunto independente máximo pode ser resolvido em tempo polinomial
em grafos bi-partidos).

Figura C.1.: Polítopo {x ∈
R3 | x1 + x2 ≤ 1, x1 + x3 ≤
1, x2 + x3 ≤ 1, 0 ≤ xi ≤ 1}.
(O visualizador usa os eixos
x = x1, y = x2, z = x3.)

Emparelhamento perfeito com peso máximo A matriz de coeficientes satis-
faz critério (i). Ela tem uma linha para cada vértice e uma coluna para cada
aresta do grafo. Como cada aresta é incidente a exatamente dois vértices, ela
também satisfaz (ii). Finalmente, a bi-partição V1

.
∪ V2 do grafo gera uma

bi-partição das linhas que satisfaz (iii). Portanto, a matriz é TU, e o Empa-
relhamento perfeito com peso máximo pode ser resolvido em tempo polinomial
usando a relaxação linear.

Problema de transporte A matriz de coeficientes satisfaz critério (i). Po-
demos representar o problema como grafo bi-partido completo Kn,m entre os
depósitos e os clientes. Desta forma, com o mesmo argumento que no último
problema, podemos ver, que os critérios (ii) e (iii) são satisfeitos.

Conjunto dominante A matriz de coeficientes satisfaz critério (i), mas não
critério (ii): cada linha e coluna correspondente com vértice v contém |N(v)|+
1 coeficientes não-nulos. Mas, não é obviou se a matriz mesmo assim não é
TU (lembra que o critério é suficiente, mas não necessário). O K3 acima, por
exemplo, gera a matriz 1 1 1

1 1 1
1 1 1


que é TU. Um contra-exemplo seria o grafo bi-partido K1,3

1 2

3 4

que gera a matriz de coeficientes
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1



233

com determinante −2. Isso não prova ainda que a relaxação linear não pro-
duz resultados inteiros ótimos. De fato, nesse exemplo a solução ótima da
relaxação inteira é a solução ótima inteira D = {1}.
Um verdadeiro contra-exemplo é um ciclo com cinco vértices C5

1

2
3

4
5

com matriz 
1 0 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 1 1 0
1 1 0 0 1


(cuja determinante é 3). A relaxação linear desse sistema tem a solução ótima
x1 = x2 = x3 = x4 = x5 = 1/3 com valor 5/3 que não é inteira.

Solução do exercício 7.4.
A formulação possui 14 restrições, correspondendo com as 14 arestas. Como
o grafo é 4-regular, cada vértice ocorre 4 vezes no lado esquerdo de uma
restrição, e somando todas restrições obtemos

4 ∑
i∈[7]

xi ≤ 14

⇒ ∑
i∈[7]

xi ≤ 14/4

⇒ ∑
i∈[7]

xi ≤ b14/4c = 3,

que não é suficiente. Para obter uma desigualdade mais forte, vamos somar
sobre todos triângulos. Somando primeiro as restrições das arestas de cada
triângulo (u, v, w) obtemos

2xu + 2xv + 2xw ≤ 3

⇒xu + xv + xw ≤ b3/2c = 1.

234 Capítulo C. Soluções dos exercícios

Somando agora as restrições obtidas desta forma de todos 14 triângulos do
grafo (cada vértice é parte de 6 triângulos) obtemos a desigualdade desejada

6 ∑
i∈[7]

xi ≤ 14

⇒ ∑
i∈[7]

xi ≤ b14/6c = 2.

(Outra abordagem: Supõe, sem perda de generalidade, que x1 = 1 na solução
ótima. Pelas restrições x1 + xi ≤ 2 temos xi = 0 para i ∈ {3, 4, 5, 6}. Pela
restrição x2 + x7 ≤ 1, portanto ∑1≤i≤7 xi ≤ 2.)

Solução do exercício 7.5.
Seja S̄ = [n] \ S e m = maxi∈S ai e m̄ = maxi∈S̄ ai. A idéia é somar desigualda-
des xi ≤ 1 para i ∈ S até o corte de Gomory obtido pela divisão pelo coefici-
ente máximo em S rende a desigualdade desejada. Seja δ = max{m̄ + 1, m}.
Somando (δ − ai)xi ≤ δ − ai obtemos

∑
i∈S

δxi + ∑
i∈S̄

aixi ≤ b + ∑
i∈S

(δ − ai)xi < δ|S| ≤ δ|S| − 1.

Aplicando o corte de Gomory com multiplicador 1/δ obtemos

∑
i∈S

xi ≤ b|S| − 1/δc = |S| − 1

porque ai ≤ m̄ < max{m̄ + 1, m} = δ e logo bai/δc = 0 para i ∈ S̄.

Solução do exercício 7.6.
x1 + x6 + x7 ≤ 2 porque uma rota não contém subrotas. Portanto x1 + x2 +

x5 + x6 + x7 + x9 ≤ 5. Supõe x1 + x2 + x5 + x6 + x7 + x9 = 5. Temos três
casos: x1 = 0, x6 = 0 ou x7 = 0. Em todos os casos, as restantes variáveis
possuem valor 1, e no grafo resultante sempre existe um vértice de grau
3 (o vértice no centro, da esquerda, de acima, respectivamente), que não é
possível numa solução válida.

Solução do exercício 7.8.
O sistema inicial

z = x1 +3x2

w1 = −2 +x1

w2 = 3 −x2

w3 = −4 +x1 +x2

w4 = 12 −3x1 −x2

235

não é primalmente nem dualmente viável. Aplicando a fase I (pivôs x0–w3,
x0–x1) e depois fase II (pivôs x2–w1, w3–w2, w1–w4) gera o dicionário final

z = 12 −8/3w2 −1/3w4

x2 = 3 −w2

w3 = 2 −2/3w2 −1/3w4

x1 = 3 +1/3w2 −1/3w4

w1 = 1 +1/3w2 −1/3w4

cuja solução x1 = 3, x2 = 3 já é inteira.
No segundo sistema começamos com o dicionário

z = x1 −2x2

w1 = 60 +11x1 −15x2

w2 = 24 −4x1 −3x2

w3 = 59 −10x1 +5x2

e um pivô x1–w3 gera a solução ótima fracionária

z = 4.9 −0.1w3 −1.5x2

w1 = 113.9 −1.1w3 −9.5x2

w2 = 4.4 +0.4w3 −5x2

x1 = 4.9 −0.1w3 +0.5x2

e a linha terceira linha (x1) gera o corte

w4 = −0.9 +0.1w3 +0.5x2

Com o pivô w4–w3 obtemos a solução ótima inteira

z = 4 −w4 −x2

w1 = 104 −11w4 −4x2

w2 = 8 +4w4 −7x2

x1 = 4 −w4 +1x2

w3 = 9 +10w4 −5x2

Bibliografia

Anstreicher, K. M. (1999). “Linear programming in O((n3 log n)L) operati-
ons”. Em: SIAM J. Opt. 9.4, pp. 803–812 (ver p. 47).

Applegate, D. L., R. E. Bixby, V. Chvátal e W. J. Cook (2007). The Traveling
Salesman Problem: A Computational Study. Princeton University Press (ver
pp. 95–97).

Ausiello, G., P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela e
M. Protasi (1999). Complexity and approximation – Combinatorial Optimiza-
tion Problems and their Approximability Properties. INF 510.5 C737. Springer-
Verlag. url: http://www.nada.kth.se/~viggo/approxbook.

Cerny, V. (1985). “Thermodynamical approach to the travelling salesman pro-
blem: An efficient simulation algorithm”. Em: J. Opt. Theor. Appl. 45, pp. 41–
51 (ver p. 170).

Clausen, J. (1999). Branch and Bound Algorithms – Principles and examples (ver
pp. 142, 147).

Cook, W. (dez. de 2011). Concorde TSP solver (ver p. 147).
– (2012). “Markovitz and Manne + Eastman + Land and Doig = Branch and

bound”. Em: Document Mathematica Special volume 21st ISMP, pp. 227–238
(ver p. 147).

Dakin, R. J. (1965). “A tree-search algorithm for mixed integer program-
ming problems”. Em: The Computer Journal 8.3, pp. 250–255. doi: 10.1093/
comjnl/8.3.250 (ver p. 147).

Dasgupta, S., C. Papadimitriou e U. Vazirani (2009). Algoritmos. McGraw-Hill
(ver p. 23).

Fearnley, J. e R. Savani (2014). “The Complexity of the Simplex Method”. Em:
Arxiv (ver p. 48).

Garey, M. R. e D. S. Johnson (1979). Computers and intractability: A guide to the
theory of NP-completeness. Freeman (ver p. 147).

Ghouila-Houri, A. (1962). “Caractérisation des matrices totalement unimo-
dulaires”. Em: Comptes Rendus Hebdomadaires des Séances de l’Académie des
Sciences 254, pp. 1192–1194 (ver p. 127).

http://www.nada.kth.se/~viggo/approxbook
https://doi.org/10.1093/comjnl/8.3.250
https://doi.org/10.1093/comjnl/8.3.250

238 Capítulo C. Bibliografia

Hoffman, A. J. e J. B. Kruskal (1956). “Linear Inequalities and Related Sys-
tems”. Em: ed. por H. W. Kuhn e A. J. Tucker. Princeton University Press.
Cap. Integral boundary points of convex polyhedra, pp. 223–246 (ver p. 129).

Karp., R. M. (1972). “Reducibility Among Combinatorial Problems”. Em:
Complexity of Computer Computations. Ed. por R. E. Miller e J. W. Thatcher.
New York: Plenum, pp. 85–103 (ver p. 112).

Kirkpatrick, S., C. D. Gelatt e M. P. Vecchi (1983). “Optimization by simulated
annealing”. Em: Science 220, pp. 671–680 (ver p. 170).

Land, A. H. e A. G. Doig (1960). “An automatic method of solving dis-
crete programming problems”. Em: Econometrica 28.3, pp. 497–520. doi:
10.2307/1910129 (ver p. 141).

Maculan, N. e M. H. C. Fampa (2006). Otimização linear. INF 65.012.122 M175o.
Editora UnB (ver p. 48).

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller e E. Teller (1953).
“Equation of state calculations by fast computing machines”. Em: Journal
of Chemical Physics 21, pp. 1087–1092 (ver p. 168).

Nemhauser, G. L. e L. A. Wolsey (1999). Integer and Combinatorial Optimiza-
tion. Wiley. doi: 10.1002/9781118627372 (ver pp. 132, 136).

Ruiz, R. e T. Stützle (2007). “A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem”. Em: Eur. J. Oper. Res.
177.3, pp. 2033–2049. doi: 10.1016/j.ejor.2005.12.009 (ver p. 181).

Spielman, D. A. e S. H. Teng (mai. de 2004). “Smoothed analysis of algo-
rithms: Why the simplex algorithm usually takes polynomial time”. Em:
J. ACM 51.3, pp. 385–463. issn: 0004-5411. doi: 10.1145/990308.990310.
url: http://dx.doi.org/10.1145/990308.990310 (ver p. 47).

Truemper, K. (1990). “A decomposition theory for matroids. V. Testing of
matrix total unimodularity”. Em: J. Comb. Theory, Ser. B 49, pp. 241–281
(ver p. 147).

Vanderbei, R. J. (2014). Linear programming: Foundations and Extensions. 4th.
INF 65.012.122 V228l. Kluwer. doi: 10.1007/978-1-4614-7630-6. url:
http://www.princeton.edu/~rvdb/LPbook (ver pp. 23, 24, 47).

Williams, H. P. (1986). “Fourier’s method of linear programming and its
dual”. Em: The American Mathematical Monthly 93.9, pp. 681–695 (ver p. 18).

Wolsey, L. A. (1998). Integer programming. Wiley (ver p. 136).

https://doi.org/10.2307/1910129
https://doi.org/10.1002/9781118627372
https://doi.org/10.1016/j.ejor.2005.12.009
https://doi.org/10.1145/990308.990310
http://dx.doi.org/10.1145/990308.990310
https://doi.org/10.1007/978-1-4614-7630-6
http://www.princeton.edu/~rvdb/LPbook

Índice

0-1-Knapsack, ver 0-1-Mochila, ver
0-1-Mochila, ver 0-1-Mochila

0-1-Mochila, 104, 135, 199

algoritmo de planos de corte, 138
algoritmos Branch-and-bound, 144
AMPL, 201

Bland
regra de, 45

Boltzmann, 169
branch and bound, 141
branch-and-cut, 151
branch-and-price, 151
busca local, 163
busca por melhor solução, 143
busca por profundidade, 143

caixeiro viajante, 94, 148, 158, 184,
187

caminhos mais curtos, 129
certificado, 57
ciclo, 41
combinação convexa, 15
complexidade

do método Simplex, 47
conjunto de nível, 8
conjunto independente máximo, 110
conjuntos de nível, 8
convexo, 15
corte

de Chvátal-Gomory, 136
de Gomory, 138
por inviabilidade, 142
por limite, 142
por otimalidade, 142

cover inequalities, ver desigualda-
des de cobertura

CPLEX LP, 197
custo marginal, 62
custos reduzidos, 34, 71

Dantzig, George Bernard, 17
desigualdade válida, 132
desigualdades de cobertura, 135
dicionário, 30

degenerado, 40
distribuição de Boltzmann, 169
dual

sistema, 56
dualidade, 51

emparelhamento, 137
emparelhamento máximo, 131, 135

fase I, 38
fase II, 38
fitness, 160
fluxo em redes, 130
folgas complementares, 57
forma padrão, 13
Fourier, Jean Baptiste Joseph, 17

240 ÍNDICE

função objetivo, 8
não-linear, 108

gap de integralidade, 110
gradient descent, 164
gradiente, 164

heurística, 157
hill climbing, 165
hill descent, 165
Hoffman, A. J., 129

integrality gap, ver gap de integra-
lidade

Julia, 199
JuMP, 199

Kantorovich, Leonid, 17
Karmarkar, Narendra, 17
Khachiyan, Leonid, 17
Klee-Minty, 47
Kruskal, J. B., 129

level set, 8
limite

inferior, 142
superior, 142

line search, 164
localização de facilidades, 104
locação de facilidades não-capacitado,

106

matriz totalmente unimodular, 124
matriz unimodular, 124, 125
meta-heurística, 159
Metropolis, 168, 170
multi-start, 167
multiplicador dual, 52
método

de Chvátal-Gomory, 136
de duas fases, 38
de Gomory, 138
lexicográfico, 42
Simplex

complexidade, 47
Simplex dual, 63

método Simplex, 27

objetivo, 8
otimização combinatória, 8
otimização linear, 8

passeio aleatório, 170
perturbação, 42
piso, 195
pivô, 29

degenerado, 40, 41
plano de corte, 137
ponto extremo, 14, 15
pricing, 34
problema da dieta, 9, 87

dual, 61
problema da mochila, 134, 136
problema de otimização, 8
problema de transporte, 9
problema dual, 52
problema primal, 52
programação inteira, 88
programação inteira mista, 88
programação inteira pura, 88
programação linear, 7, 8
pseudo-pivô, 36

random walk, 170
reduced costs

custos reduzidos, 34
regra de Bland, 45
regra de Cramer, 122

ÍNDICE 241

relaxação linear, 121
restrição, 8
restrição trivial, 13

shortest paths, 129
sistema auxiliar, 36
sistema dual, 52, 56
sistema ilimitado, 35
sistema primal, 52
solução

básica, 28, 35
básica viável, 28
viável, 8, 28

steepest ascent, 165
steepest descent, 165

tableau, 30
teorema

de Hoffman e Kruskal, 129
teorema da dualidade forte, 54
teorema da dualidade fraca, 54
teorema das folgas complementa-

res, 57
teorema fundamental, 47
teto, 195
totalmente unimodular, 124
transposta

de uma matriz TU, 125

uncapacitated lot sizing, 108
unimodular, 124, 125
uns consecutivos, 128

variáveis de decisão, 8
variável

0-1, 105, 107
booleana, 105
básica, 29
dual, 52

entrante, 29
indicador, 105, 107
nula, 28
não-básica, 29
sainte, 29

von Neumann, John, 17
vértice, 14, 15

	Conteúdo
	Programação linear
	Introdução
	Exemplo
	Formas normais
	Solução por busca exaustiva
	Notas históricas
	Exercícios

	O método Simplex
	Um exemplo
	O método resumido
	Sistemas ilimitados
	Encontrar uma solução inicial: o método de duas fases
	Resumo do método de duas fases

	Sistemas degenerados
	Complexidade do método Simplex
	Exercícios

	Dualidade
	Introdução
	Características
	Dualidade em forma não-padrão
	Interpretação do dual
	Método Simplex dual
	Os métodos em forma matricial
	O dicionário final em função dos dados
	Simplex em forma matricial

	Análise de sensibilidade
	Exercícios

	Tópicos
	Centro de Chebyshev
	Função objetivo convexa e linear por segmentos

	Programação inteira
	Introdução
	Definições
	Motivação e exemplos
	Aplicações

	Formulação
	Exemplos
	Técnicas para formular programas inteiros
	Formular restrições lógicas
	Formular restrições condicionais

	Formulações alternativas
	Exercícios

	Técnicas de solução
	Introdução
	Problemas com solução eficiente
	Critérios para soluções inteiras

	Desigualdades válidas
	Planos de corte
	Algoritmos Branch-and-bound
	Notas
	Exercícios

	Tópicos

	Heurísticas
	Introdução
	Heurísticas baseadas em Busca local
	Busca local
	Metropolis e Simulated Annealing
	GRASP
	Busca Tabu
	Variable Neighborhood Search
	Algoritmo Guloso Iterado

	Heurísticas inspirados da natureza
	Algoritmos Genéticos e meméticos

	Appéndice
	Conceitos matemáticos
	Formatos
	CPLEX LP
	Julia/JuMP
	AMPL

	Soluções dos exercícios

	Bibliografia
	Índice
	Índice

