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Introducao

If one would take statistics about which mathematical problem is
using up most of the computer time in the world, then ... the
answer would probably be linear programming. (Laszlo Lovasz)






1. Introducao

1.1. Exemplo

Exemplo 1.1 (No Ildo)

Antes da aula visito o Ildo para tomar um café e comer um Croissant. Ele me
conta: “Estou especializado em Croissants e Strudels. Tenho um lucro de 20
centavos por Croissant e 50 centavos por Strudel. Diariamente até 80 clientes
compram um Croissant e até 60 um Strudel. Mas infelizmente, o Ildo apenas
disponibiliza de 150 ovos e 6 kg de agicar por dia. Entre outros ingredientes,
preciso um ovo e 50g de agicar para cada Croissant e um ovo e meio e 50g
de acicar para cada Strudel. Agora, professor, quantas Croissants e Strudels
devo produzir para obter o maior lucro?”

Sejam c e s o nimero de Croissants e Strudels, respectivamente. O lucro do
Ildo em Reais é 0.2¢+0.5s. Seria 6timo produzir todos 80 Croissants e 60 Stru-
dels, mas uma conta simples mostra que nao temos ovos e agucar suficientes.
Para produzir os Croissants e Strudels precisamos ¢ + 1.5s ovos e 50c + 50sg
de agicar que nao podem ultrapassar 150 ovos e 6000g. Com a condigao ébvia
que ¢ > 0 e s > 0 chegamos no seguinte problema de otimizagao:

maximiza 0.2¢ +0.5s (1.1)
sujeito a ¢+ 1.5s < 150
50c + 50s < 6000
c <80
s < 60
c,s>0

Como resolver esse problema? Com duas varidveis podemos visualizar a si-
tuacao num grafo com ¢ no eixo x e s no eixo y

No lldo



1. Introdugao

Otimizando o lucro do bar

100
90 - (6000-50¢)/50 i

80 -| 2/3(150-0) -

70 r

s=60

s (strudels)

0 10 20 30 40 50 60 70 80 90 100
¢ (croissants)

que nesse caso permite resolver o problema graficamente. Desenhando diversos
conguntos de nivel (ingl. level set) com valor da funcao objetivo 10, 20, 30, 40
é facil observar que o lucro maximo se encontra no ponto ¢ = s = 60, e possui
um valor de 42 reais.

O

Isso é um exemplo de um problema de otimizacao. A forma geral de um
problema de otimizagdo (ou de programacdo matemdtica) é

opt f(x)
sujeito a xeV
com
e um objetivo opt € {max, min},
e uma fun¢ao objetivo (ou fungdo critério) f: V — R,
e um conjunto de solugdes vidveis (ou solugdes candidatas) V.

Falamos de um problema de otimizag¢do combinatoria, se V é discreto.
Nessa generalidade um problema de otimizacao é dificil de resolver. O exem-
plo 1.1 é um problema de otimizagdo linear (ou programagdo linear):

10



1.1. Exemplo

e as varidveis da solugao sao x1,...,xn € R
e a funca@o de otimizacao é linear em Xq1,...,Xn:
f(X1yeeeyXn) =C1X1 + -+ CnXn (1.2)

e as solugoes vidveis sao dadas implicitamente por m restrigées lineares

a11X7] + agzxz + -+ ajnxn X by (1.3)
a21X1 + az2x2 + -+ + AanXn Xz by (1.4)
(1.5)

Am1X1 + Qm2X2 + -+ -+ AmnXn X¥m bm (1.6)

com ;€ {<, =, >}

Exemplo 1.2 (O problema da dieta)

Suponha que temos uma tabela de nutrientes de diferentes tipos de alimentos.
Sabendo o valor didrio de referéncia (VDR) de cada nutriente (quantidade de
nutriente que deve ser ingerido) e o prego de cada unidade de alimento, qual
a dieta 6tima, i.e. que contém ao menos o valor didrio de referéncia, mas de
menor custo?

Com m nutrientes e n alimentos, seja ai; a quantidade do nutriente i no
alimento j (em g/g), vy o valor didrio de referéncia do nutriente i (em g) e c;
o prego do alimento j (em R$/g). Queremos saber as quantidades x; de cada
alimento (em g) que

minimiza C1X1 + -+ CnXn (1.7)
sujeito a apx)+ -+ aQnXn > T (1.8)
(1.9)

Ami1X1 4+ QmnXn > T (1.10)

X1yeeeyXn >0 (1.11)

<

Exemplo 1.3 (Problema de transporte (Hitchcock))

Uma empresa agraria tem m depdsitos, cada um com um estoque de a; (i €
[m]) toneladas de milho. Ela quer encaminhar bj (j € [n]) toneladas de milho
para n clientes diferentes. O transporte de uma tonelada do depédsito i para
cliente j custa R$ cij. Qual seria o esquema de transporte de menor custo?
Como problema de otimizagao linear, podemos introduzir como varidveis xi;
o peso dos produtos encaminhados pelo depdsito i para cliente j, e queremos

11



1. Introdugao

resolver

minimiza Z CijXij (1.12)
ie[nl,jelm]

sujeito a Z xij < ag para todo fornecedor i € [m] (1.13)
jen]
Z Xij = bj para todo cliente j € [n] (1.14)
ien]
xij >0 para todo fornecedor i € [n] e cliente j € [m]

Concretamente, suponha que temos a situagao da figura 1.1. A figura mostra

Cliente 1 Cliente 1

Fornecedor 1 Momﬁedor 1
1
2
liente 2
3
3
Fornec&dor 2
Fornecedor 3
2
Cliente 3 Cliente 3

Figura 1.1.: Esquerda: Instancia do problema de transporte. Direita: Solucao
6tima dessa instancia.

as toneladas disponiveis de cada fornecedor, a demanda (em toneladas) de
cada cliente e as distancias (em km) entre eles. O transporte custa R$ 1000
por km e tonelada. Observe que um transporte do fornecedor 1 para cliente
3 e fornecedor 3 para cliente 1 nao é possivel. N6s usaremos uma distancia
grande de 100 km nesses casos (outra possibilidade seria usar restrigoes x13 =

12



1.1. Exemplo

X31 = 0.

minimiza 3x11 +x12 + 100x13 +4x21 + 2x22
+ 4x23 + 100x37 + 3x32 + 3x33
sujeito a X11 +%12 +%13 <5
X21 + %22 +%x23 <7
x31 +x32+x33 <3
X11 +X21 +x31 =7
X12 +Xx22 +%x32 =3
X13+%x23+%x33 =5
Xij = 0
Qual seria a solucao 6tima? A figura da direita mostra o nimero 6timo de
toneladas transportadas. O custo minimo é 46 (em R$ 1000). O

Podemos simplificar a descri¢do usando notacao matricial. Com A := (ayj) €
R™*M b= (bi) € R™, c:=(ci) € R™ e x = (xi) € R™ o problema 1.2-1.6),
pode ser escrito de forma

opt ctx
sujeito a a;x < by ie[m]

(Denotamos com a; a i-ésima linha e como @ a j-ésima coluna da matriz A.)
Em caso todas restrigoes usam a mesma relagao <, > ou = podemos escrever

opt c'x opt c'x opt c'x

sujeito a Ax=D

sujeito a Ax <b sujeito a Ax>Db ou .

Exemplo 1.4 (Problema do Ildo em forma matricial)
O problema 1.1 em forma matricial é

maximiza (0.20.5)(c s)*
1 15 150
- 50 50 c 6000
sujeito a 1 0 (s) < 30
0 1 60
(cs)>0.

13



1. Introdugao

1.2. Formas normais

Conversoes
E possivel converter

e um problema de minimizacao para um problema de maximizagao
. t t
minc x < —max—C X

(o sinal — em frente do max é uma lembranga que temos que negar a
solugdo depois.)

e uma restricdo > para uma restrigao <

aix > bj &= —aix < —b;

e uma igualdade para desigualdades

aix =b; & aix < bi Aaix > by

Conversoes

e uma desigualdade para uma igualdade

ax <b<&<= aix+xn+1 =bi Axne1 >0
aix > b &= aiXx —Xn41 = bi Axnp1 >0

usando uma nova varidvel de folga ou excesso xn41 (inglés: slack and
surplus variables).

e uma varidvel x; sem restricoes para duas positivas
xi >0Ax; >0
substituindo x; por x;" —x;

Essas transformagoes permitem descrever cada problema linear em uma forma
padrao.

14



1.2. Formas normais

Forma padrao

maximiza c'x

sujeito a Ax <b

x>0
As restricoes x > 0 se chamam triviais.
Exemplo 1.5
Dado o problema
minimiza 3x1 — 5% +x3

sujeito a X1 —%X2—x3 >0
5%7 + 3x2 +x3 < 200
2x71 + 8x2 + 2x3 < 500
X1,%x2 >0
vamos substituir minimiza por maximiza, converter a primeira desigualdade
de > para < e introduzir x3 = x;r — x5 com duas varidveis positivas x3+ e Xy
para obter a forma padrao
maximiza —3x1 + 5% — X3 +x5
sujeito a —x1+x2+x3 —x3 <0
5%1 + 3x2 +x3 —x3 < 200
2x7 + 8%, + 2x3 — 2x3 < 500

+ —
X1yX2,X3,X3 > 0

Em notagao matricial temos

o 0 11 1 -1
c=| 7 |ip=(200);Aa={5 3 1 -
500 2 8 2 2

O

Definicao 1.1

Para um programa linear P em forma normal, um vetor x € R™ é uma solucdo
vidvel, caso Ax < b e x > 0. P é vidvel caso existe alguma solucao viavel,
caso contrario P é invidvel. Um vetor x* € R™ é uma solugcao dtima caso
ctx* = max{ctx | Ax < b,x > 0}.

15



1. Introdugao

Definicao 1.2
Uma programa linear em forma normal é ilimitado caso existe um v € R tal
que para todo w > v existe uma solucio vidvel x tal que ctx > w.

1.3. Notas histéricas

Histéria da programacao linear
e Jean Baptiste Joseph Fourier (1826): Método de re-
solver um sistema de desigualdades (eliminacdo de
Fourier-Motzkin) [9].

e Leonid Kantorovich (1939): Programagao linear.

e George Bernard Dantzig (1948): Método Simplex.

e John von Neumann: Dualidade. Jean Baptiste
Joseph Fourier
e Leonid Khachiyan (1979): Método de ellipsoides. (*1768, +1830)

e Narendra Karmarkar (1984): Métodos de pontos inte-
riores.

Pesquisa operacional, otimizacao e “programacao”
e “The discipline of applying advanced analytical
methods to help make better decisions” (INFORMS)

A nocao foi criada no segunda guerra mundial, para
métodos cientificos de andlise e predigao de problemas
logisticos.

e Hoje se aplica para técnicas que ajudam decisoes de
execucgao e coordenagao de operagoes em organizagoes.

e Os problemas da pesquisa operacional sao problemas George Bernard
de otimizacao. Dantzig (*1914,
¢ +2005)
e “Programacdo” # “Programagao”

— Nao se refere a computagdo: a nogao significa
“planejamento” ou “agendamento”.

Técnicas da pesquisa operacional

e Em geral: Técnicas algoritmicas conhecidas como
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1.4. Exercicios

— Modelagem matemadtica (equagoes, igualdades, desigualdades, mo-
delos probabilisticos,...)

— Algoritmos gulosos, randomicos, ...; programacao dinamica, linear,
cONnvexo, ...

— Heuristicas e algoritmos de aproximagao.

e Algumas dessas técnicas se aplicam para muitos problemas e por isso
sa0 mais comuns:

— Exemplo: Programagao linear.

1.4. Exercicios

(Solugbes a partir da pagina 191.)

Exercicio 1.1
Na definigao da programacao linear permitimos restricoes lineares da forma

ai1X1 + @i2X2 + - - - + AinXn D4 by
com ;€ {<, =, >}. Por que ndo permitimos ;€ {<, >} também? Discute.

Exercicio 1.2
Procura a tabela nutricional de algum restaurante e resolve o problema da
dieta (exemplo 1.2).

Exercicio 1.3

Um investidor pode vender agoes de suas duas empresas na bolsa de valores,
mas estd sujeito a um limite de 10.000 operagoes didrias (vendas por dia).
Na cotacao atual, as agdoes da empresa A valorizaram-se 10% e agora cada
uma vale R$ 22. J4 a empresa B teve valorizacao de 2% e cada agao vale R$
51. Sabendo-se que o investidor possui 6.000 a¢oes da Empresa A e 7.000 da
empresa B, maximize seu lucro na BOVESPA e diga qual o lucro obtido.

Exercicio 1.4

Dona Maria adora ver seus netinhos Marcos, Renato e Vinicius bem alimen-
tados. Sempre na hora de cozinhar ela leva em conta o quanto eles gostam de
cada prato para fazé-los comer o maximo possivel. Marcos gosta da lasanha
e comeria 3 pratos dela apdés um prato de sopa; Renato prefere lanches, e
comeria b hamburgueres, ignorando a sopa; Vinicius gosta muita da massa a
bolonhesa, e comeria 2 pratos apés tomar dois pratos de sopa. Para fazer a
sopa, sao necessarios entre outros ingredientes, 70 gramas de queijo por prato
e 30 gramas de carne. Para cada prato de lasanha, 200 gramas de queijo, e

17



1. Introdugao

100 gramas de carne. Para cada hamburguer sao necessarios 100 gramas de
carne, e 100 gramas de queijo. Para cada prato de massa a bolonhesa sao
necessédrios 100 gramas de carne e 30 gramas de queijo (ralado para por sobre
a massa). Seus netos vieram visitd-la de surpresa, e tendo ela somente 800
gramas de carne e 1000 gramas de queijo em casa, como ela poderia fazé-los
comer o maior nimero de pratos, garantindo que cada um deles comera pelo
menos dois pratos, e usando somente os ingredientes que ela possui?

Exercicio 1.5

A empresa “Luz para o mundo” produz dois tipos de lampadas, cada um com
partes metélicos e partes eléctricos. A gerencia quer saber com quantas uni-
dades produzidas por tipo o lucro é maximizado. A produgao de uma unidade
de produto 1, precisa uma unidade de partes metalicos e duas unidades de
componentes eléctricos. A producdo de uma unidade de produto 2, precisa
trés unidades de partes metdalicos e duas unidades de componentes eléctricos.
A empresa tem um estoque de 200 unidades de partes metélicos e 300 unida-
des de componentes eléctricos. Cada unidade de produto um tem um lucro
de R$ 1 e cada unidade de produto 2, até um limite de 60 unidades, um lucro
de R$ 2. (Cada unidade acima de 60 no caso do produto 2 ndo rende nada.)

Exercicio 1.6

A empresa “Janela jéia” com trés empregados produz dois tipos de janelas:
com molduras de madeira e com molduras de aluminio. Eles tém um lucro de
60 R$ para toda janela de madeira e 30R$ para toda janela de aluminio. Joao
produz as molduras de madeira. Ele consegue produzir até seis molduras por
dia. Sylvana é responsdvel pelas molduras de aluminio, e ela consegue produzir
até quatro por dia. Ricardo corta o vidro e é capaz de produzir até 48 m? por
dia. Uma janela de madeira precisa 6m? de vidro, e uma de aluminio §m?.
A empresa quer maximizar o seu lucro.

Exercicio 1.7

Uma empresa de aco tem uma rede de distribuicao conforme figura 1.2. Duas
minas Py e P2 produzem 40t e 60t de mineral de ferro, respectivamente, que sao
distribuidos para dois estoques intermediarios S; e S;. A planta de produgao
P tem uma demanda dem 100t de mineral de ferro. A vias de transporte tem
limites de toneladas de mineral de ferro que podem ser transportadas e custos
de transporte por tonelada de mineral de ferra (veja figura). A direcdo da
empresa quer determinar a transportagao que minimiza os custos.

Exercicio 1.8
Um importador de Whisky tem as seguintes restricoes de importacao

e no méaximo 2000 garrafas de Johnny Ballantine por 70 R$ cada uma,

18



1.4. Exercicios

R$ 2000/t

R$ 1100/t

Figura 1.2.: Rede de distribui¢ao de uma empresa de ago.

e no méaximo 2500 garrafas de Old Gargantua por 50 R$ cada uma,
e no méaximo 1200 garrafas de Misty Deluxe por 40 R$ cada uma.

Dos Whiskies importados ele produz trés misturas A, B, C, que ele vende por
68 R$, 57 RS e 45 RS, respectivamente. As misturas sao

e A: no minimo 60% Johnny Ballantine, no mdximo 20% Misty Deluxe,
e B: no minimo 15% Johnny Ballantine, no méximo 60% Misty Deluxe,
e C: no méximo 50% Misty Deluxe.

Quais seriam as misturas étimas, e quantas garrafas de cada mistura devem
ser produzidas para maximizar o lucro?

Observagoes:

e Use como varidveis o niimero de garrafas xm, ; da marca m usadas na
mistura i.

e Desconsidere a integralidade das garrafas.

Exercicio 1.9

A empresa de televisao “Boa vista” precisa decidir quantas TVs de 297e 317¢la
vai produzir. Uma analise do mercado descobriu que podem ser vendidas no
maximo 40 TVs de 29”7e 10 de 31”por més. O trabalho maximo disponivel
por més é 500h. A producao de um TV de 29”precisa 20h de trabalho, e um
TV de 317precisa 10h. Cada TV de 29”rende um lucro de R$ 120 e cada de
317um lucro de R$ 80.

Qual a producao étima média de cada TV por més?

19



1. Introdugao

Exercicio 1.10 (da Costa)

Um certo 6leo é refinado a partir da mistura de outros éleos, vegetais ou nao
vegetais. Temos 6leos vegetais V1 e V2 e dleos nao vegetais NV1 NV2 NV3.
Por restrigoes da fabrica, um maximo de 200 ton. de dleos vegetais podem ser
refinados por més, e um méaximo de 250 ton. de dleos nao vegetais. A acidez
do 6leo desejado deve estar entre 3 e 6 (dada uma unidade de medida) e a
acidez depende linearmente das quantidades/acidez dos dleos brutos usados.
O prego de venda de uma tonelada do 6leo é R$ 150. Calcule a mistura que
maximiza o lucro, dado que:

Oleo Vil V2 NV1 NV2 NV3
Custo/ton 110 120 130 110 115
Acidez 8.8 6.1 2.0 4.2 5.0

Exercicio 1.11 (Campélo Neto)

Um estudante, na véspera de seus exames finais, dispoe de 100 horas de estudo
para dedicar as disciplinas A, B e C. Cada um destes exames é formado por
100 questoes, e o estudante espera acertar, alternativamente, uma questao
em A, duas em B ou trés em C, por cada hora de estudo. Suas notas nas
provas anteriores foram 6, 7 e 10, respectivamente, e sua aprovacao depende
de atingir uma média minima de 5 pontos em cada disciplina. O aluno deseja
distribuir seu tempo de forma a ser aprovado com a maior soma total de notas.

Exercicio 1.12 ([2])

Moe esta decidindo quanta cerveja Duff regular e quanta cerveja Duff Forte
encomendar a cada semana. Duff regular custa a Moe $1 por caneco e ele
a vende por $2 por caneco; Duff Forte custa $1.50 por caneco e ele vendo
por $3 por caneco. Entretanto, como parte de uma complicada fraude de
marketing, a companhia Duff somente vende um caneco de Duff Forte para
cada dois canecos ou mais de Duff regular que Moe compra. Além disso,
devido a eventos passados sobre os quais é melhor nem comentar, Duff nao
venderd Moe mais do que 3000 canecos por semana. Moe sabe que ele pode
vender tanta cerveja quanto tiver.

Formule um programa linear em duas varidveis para decidir quanto de Duff
regular e quanto de Duff Forte comprar, para maximizar o lucro de Moe.

Exercicio 1.13 ([2])

A companhia de produtos caninos oferece duas comidas para cachorro: Frisky
Pup e Husky Hound, que sao feitas de uma mistura de cereais e carne. Um
pacote de Frisky Pup requer 1 quilo de cereal e 1.5 quilo de carne, e é vendido
por $7. Um pacote de Husky Hound usa 2 quilos de cereal e 1 quilo de carne,
e é vendido por $6. O cereal bruto custa $1 por quilo e a carne bruta, $2
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1.4. Exercicios

por quilo. H4 também o custo de $1.40 para empacotar o Frisky Pup e $0.60
para o Husky Hound. Um total de 240000 quilos de cereal e 180000 quilos de
carne estao disponiveis a cada més. O tnico gargalo de produgao estd no fato
de a fabrica poder empacotar apenas 110000 pacotes de Frisky Pup por més.
Desnecessario dizer, a geréncia gostaria de maximizar o lucro.

Formule o problema como um programa linear em duas variaveis.

Exercicio 1.14 ([8])

Formule como problema de otimizagao linear e resolve graficamente.

Uma empresa de ago produz placas ou canos de ferro. As taxas de producao
sa20 200t/h para placas e 140t/h para canos. O lucro desses produtos e 25$/t
para placas e 308/t para canos. Considerando a demanda atual, os limites de
produgao sao 6000t de placas e 4000t de canos. Na semana atual sao 40h de
tempo de producao disponivel. Quantas toneladas de placas e canos devem
ser produzidas para maximizar o lucro?

Exercicio 1.15 ([8])

Formule como problema de otimizacao linear.

Uma pequena empresa aérea oferece um voo de Pelotas, com escala em Porto
Alegre para Torres. Logo tem trés tipos de clientes que voam Pelotas—Porto
Alegre, Pelotas—Torres e Porto Alegre—Torres. A linha também oferece trés
tipos de bilhetes:

e Tipo A: bilhete regular.
e Tipo B: sem cancelamento.
e Tipo C: sem cancelamento, pagamento trés semanas antes de viajar.

Os pregos (em R$) dos bilhetes sdo os seguintes
Pelotas—Porto Alegre  Porto Alegre-Torres Pelotas—Torres

A 600 320 720
B 440 260 560
C 200 160 280

Baseado em experiéncia com esse voo, o marketing tem a seguinte predicao
de passageiros:
Pelotas—Porto Alegre Porto Alegre—Torres Pelotas—Torres

A 4 8 3
B 8 13 10
C 22 20 18

O objetivo da empresa e determinar o nimero étimo de bilhetes para vender
de cada tipo, respeitando um limite de 30 passageiros em cada voo e o limite
dos passageiros previstos em cada categoria, que maximiza o lucro.
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1. Introdugao

Exercicio 1.16
Resolva graficamente.

maximiza Axq + %2
sujeito a —X1+x2<2
X1+ 8%, < 36
x; <4
x1 <4.25
X1,%X2 >0

(a) Qual a solugao 6tima?
(b) Qual o valor da solugao 6tima?

Exercicio 1.17
Escreve em forma normal.

minimiza z = —5%x7 —5%x2 — 5x3
sujeito a —6x7 — 2% —9%3 <0
— 9% —3%x24+3x3 =3
x5 >0
maximiza z = —6x7 —2x3 — 6X3 + 4x4 + 4x5
sujeito a —3x7] —8xy —6x3 —7x4 —5x5 =3

5x1 —7x2 +7x3 + 7x4 —6x5 < 6
Tx1 — 9% + 5x3 + 7x4 — 10x5 = —6
Xj ZO

maximiza z=7x1+4x2 + 8x3 + 7x4 — x5
sujeito a —4x7 — Ixy —7x3 — 8x4 + 6xX5 = —2
X1 +4%xy + 2x3 + 2x4 — 7x5 > —7
—8x1 + 2x2 + 8x3 — 6X4 — 7X5 = —7
x; >0
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1.4. Exercicios

minimiza z = —6x7 + 5%x2 + 8x3 + 7x4 — 8x5

sujeito a —5%1 — 2% +x3 — %4 —7x5 =9
7X1 + 7x2 +5%x3 —3x4 + x5 = —8
—5x7 —3x2 —5x3 + x4 +8x5 <0
x5 >0
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2. O método Simplex

Graficamente, é dificil resolver sistemas com mais de trés varidveis. Por-
tanto é necessario achar métodos que permitam resolver sistemas grandes.
Um método importante se chama Simplex. N6s vamos estudar esse método
primeiramente através da aplicacao a um exemplo.

2.1. Um exemplo

Comegamos com o seguinte sistema em forma padrao:

Exemplo: Simplex

maximiza z=06x7 + 8x2 +5x3 +9x4
sujeito a 2x1 +%x2 +x3+3x4 <5
X1 +3x2 +x3+2x4 <3

X1yX2yX3,X4 > 0

Introduzimos varidveis de folga e reescrevemos as equagoes:

Exemplo: Com variaveis de folga

maximiza z =6X1 + 8x2 + 5%x3 + Ix4 (2.1)
sujeito a Wi =5—2x7 —x2 —x3 —3x4
W3 :3—X] —3X2 — X3 —2X4 (23)

X1yX2,X3y X4, W1, W2 > 0

Observagao 2.1

Nesse exemplo é facil obter uma solugao viavel, escolhendo x1 = x2 = x3 =
x4 = 0. Podemos verificar que w; = 5 e wy = 3 e todas as restrigoes sao
respeitadas. O valor da funcao objetivo seria 0. Uma outra solucao vidvel é
x1=1,%x2 =x3 =x4 =0, w; =3, w, =2 com valor z = 6. O
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2. O método Simplex

Com seis variaveis e duas equacoes lineares independentes o espago de solugoes
do sistema de equagoes lineares dado pelas restricoes tem 6 — 2 = 4 graus de
liberdade. Uma solugdo vidvel com esse nimero de varidveis nulas (igual a
0) se chama uma solug¢ao bdsica vidvel. Logo nossa primeira solugao acima é
uma solugao bésica viavel.

A idéia do método Simplex é percorrer solucoes bésicas vidveis, aumentando
em cada passo o valor z da funcao objetivo.

Logo nosso proximo objetivo é aumentar o valor da fungao objetivo z. Para
esse fim, podemos aumentar o valor das varidveis xi, X2, X3 ou X4, pois o
coeficiente delas é positivo. Escolhemos x4, porque essa variavel tem o maior
coeficiente. Nao podemos aumentar x4 arbitrariamente: Para respeitar as
restricoes wi, w2 > 0 temos os limites

Limites

w1 =5—-3x4 > 0= x4 <5/3
wy=3-2x4 >0 &= x4 <3/2

ou seja x4 < 3/2. Aumentando x4 o maximo possivel, obtemos x4 = 3/2 e
wy = 0. Os valores das demais varidveis nao mudam. Essa solucao respeita
novamente todas as restrigoes, e portanto é wvidvel. Ainda, como trocamos
uma varigvel nula (x4) com uma outra nao-nula (w;) temos uma nova solugao
bésica viavel

Solucao basica viavel

X1 =%x2=x3=0;x%4 =3/2,w; =1/2;w; =0

com valor da fungao objetivo z = 13.5.

O que facilitou esse primeiro passo foi a forma especial do sistema de equagoes.
Escolhemos quatro varidveis independentes (x7, X2, X3 e x4) e duas varidveis
dependentes (Wq e wy). Essas varidveis sdo chamadas ndo-bdsicas e bdsicas,
respectivamente. Na nossa solugao béasica vidvel todas varidveis nao-basicas
sao nulas. Logo, pode-se aumentar uma variavel nao-bésica cujo coeficiente
na fungéo objetivo seja positivo (para aumentar o valor da func¢do objetivo).
Inicialmente tem-se as seguintes variaveis béasicas e nao-bésicas

B={wi,wal N ={x1,%x2,x3,x4}.
Depois de aumentar x4 (e consequentemente zerar wy) podemos escolher

B = {w1,x4}; N = {x1,%2,x3, W2}
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2.1. Um exemplo

A variavel x4 se chama varidvel entrante, porque ela entra no conjunto de
varidveis basicas B. Analogamente w, se chama varidvel sainte.

Para continuar, podemos reescrever o sistema atual com essas novas variaveis
basicas e ndo-bdsicas. A segunda restrigdo 2.3 é facil de reescrever

W2:3*X1 *3X2*X3*2X4<:>2X4:3*X1 *3X2*X37W2
& X4 :3/2—1/27(1 —3/2X2—1/2X3—]/2W2

Além disso, temos que reescrever a primeira restrigdo 2.2, porque a variavel
béasica wi depende de x4 que agora é basica também. Nosso objetivo é escrever
todas varidveis bédsicas em termos de varidveis nao-basicas. Para esse fim,
podemos usar combinacgoes lineares da linhas, que eliminam as varidaveis nao-
bésicas. Em nosso exemplo, a combinagao (2.2)—3/2(2.3) elimina x4 e resulta
em

w1 —3/2wy; =1/2—1/2x1 +7/2x2 +1/2x3

e colocando a varidvel nao-béasica w; no lado direito obtemos
wy =1/2—1/2x1 +7/2x2 +1/2x3 + 3/2w3.

Temos que aplicar uma operacao semelhante a funcao objetivo que ainda de-
pende da varigvel bésica x4. Escolhemos (2.1)—9/2(2.3) para obter

2=27/2+3/2x1 —11/2%x, +1/2x3 — 9/2w,.

Novo sistema

maximiza z2=27/2+3/2x1 —11/2x2 +1/2x3 — 9/2w;
sujeito a w1 =1/2—1/2x1 +7/2x2 + 1/2x3 + 3/2w;
x4 =3/2—1/2x1 —3/2x2 — 1/2x3 — 1/2w>
X1, X2, X3, X4, W1, W2 > 0

que obtemos apds uma operacao de trocar as variaveis x4 e w. Essa operacao
se chama um pive. Observe que no novo sistema é facil recuperar toda
informacao atual: zerando as varidveis nao-béasicas obtemos diretamente a
solugdo x1 = x2 =x3 =wy =0, wy = 1/2 e x4 = 3/2 com fungao objetivo
z=27/2.

Antes de continuar “pivotando” introduzimos uma forma mais simples de
escrever o sistema
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2. O método Simplex
Dicionario
z  =27/2 +3/2x¢ —11/2xy +1/2x3 —9/2w>

wy =1/2  =1/2x7 +7/2x;  +1/2x3 +3/2w;
X4 23/2 —1/2)(1 —3/27(,2 —1/2763 —]/ZWZ

que se chama diciondrio (inglés: dictionary).

Excurso 2.1

Alguns autores usam um tableau em vez de um dicionario. Para n varidveis e
m restrigoes, um tableau consiste em n+1 colunas e m+1 linhas. Igual a um
dicionério, a primeira linha corresponde com a funcao objetivo, e as restantes
linhas com as restrigoes. Diferente do diciondrio a primeira coluna contém os
constantes, e as restantes colunas correspondem com as variaveis, incluindo
as béasicas. Nosso exemplo acima em forma de tableau é

base
X1 X2 X3 X4 W1 24%)
27/213/2 —11/2 12 0 o0 972
1/211/2 =7/2 —=-1/2 0 1 —=3/2
3/2 1,2 32 12 1 0 12

O

No préximo passo podemos aumentar somente x; ou X3 porque somente elas
tém coeficientes positivos. Aumentado x; temos que respeitar x;1 < 1 (da
primeira restri¢ao) e x; < 3 (da segunda). Logo a primeira restri¢do é mais
forte, x1 é a variavel entrante, w; a varidvel sainte, e depois do pivé obtemos

Segundo passo

z =15 —3w; +5xy +2x3
x7 =1 —2w1  +7x2  +x3 +3w;
x4 =1 4w —5x; —x3 —2w»

No préximo pivo x, entra. A primeira restricdo néo fornece limite para x,
porque o coeficiente de x, é positivol Mas a segunda x2 < 1/5 e x4 sai da
base. O resultado do pivo é
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2.1. Um exemplo

Terceiro passo

z =16 —2wq —X4 +x3 —2w>
x1 =12/5 =3/5w; —7/5x4 —2/5x3 +1/5w;
x> =1/5 +1/5w7 —1/5x4 —1/5x3 —2/5w;

O préoximo pivo: x3 entra, x; sai:

Quarto passo

z =17 —w; —2x4 —-5xo —4w,
X] =2 —w; —x4 +2x2  +ws
x3 =1 +wi1  —X4 —5%x; —2w;

Agora, todos coeficientes da funcao objetivo sdo negativos. Isso significa, que
nao podemos mais aumentar nenhuma variavel nao-basica. Como esse sistema
é equivalente ao sistema original, qualquer solugao tem que ter um valor menor
ouigual a 17, pois todas as varidveis sao positivas. Logo chegamos no resultado
final: a solugao

Wy =x4 =X2=wr =0;x1 =2;x3 =1

com valor objetivo 17, é 6timal

Concluimos esse exemplo com mais uma observagao. O numero de solugoes
basicas vidveis é limitado. Em nosso exemplo, se escolhemos um subconjunto
de quatro varidveis nulas, as duas equagcoes determinam as varidveis restantes.
Logo temos no méximo (i) = 15 solugbes béasicas viaveis. Em geral, com
m equagoes e N variaveis, uma solucao bésica vidvel possui n — m varidveis
nulas e o nimero delas é limitado por (nfm). Portanto, se aumentamos em
cada pivo o valor da fungao objetivo, o método termina em no méximo (n’jm)
passos.

Exemplo 2.1 (Solugao do problema do Ildo)
Exemplo da solugao do problema do Ildo na pagina 9.

0/1 +1/5¢ +1/2s
wy = 150 —C —3/2s
wy; = 6000 —50c —50s
w3z = 80 —C

60 —s

N
|

Z
I

Pivo s—wy
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2. O método Simplex

z= 30 +1/5¢ —1/2wy

w1 = 60 —C +3/2W4
wy = 3000 —50c 450wy
w3z = 80 —C

s= 60 —Wy

Pivo c-w,

z= 42 —1/5w; —1/5wy
c= 60 —W1 +3/2wy

Wy = +50W1 —25W4
W3 = 20 +wWq —3/2W4
s= 60 —Wgy

O resultado é um lucro total de R$ 42, com os seguintes valores de varidveis:
c=60,s =60, w; =0, w, =0, w3 =20ewy =0. A interpretagao das
variaveis de folga é como segue.

e wi: Numero de ovos sobrando: 0.

e wy: Quantidade de agucar sobrando: 0 g.

e wj3: Croissants nao produzidos (abaixo da demanda): 20.

e wy: Strudels nao produzidos: 0.

2.2. O método resumido

Considerando n varidveis e m restrigoes:

Sistema inicial

maximiza z= E CjXj

jen]
sujeito a Z aijxj < by ie[m]
jen]
x; >0 jeml
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2.2. O método resumido

Preparacao
Introduzimos variaveis de folga

Z aijXj +Xnti = b ie [m]
jeml

e escrevemos as variaveis de folga como dependentes das varidveis restantes

Xn+i = by — Z aijX; ie[m]
jemn]

Solucao basica viavel inicial
Se todos b; > 0 (o caso contrario vamos tratar na préxima se¢do), temos uma
solugao bésica inicial

Xnti = bi i€ [m]
x; =0 j € [n]

indices das variaveis

Depois do primeiro passo, os conjuntos de varidveis béasicas e nao-basicas mu-
dam. Seja B o conjunto dos indices das varidveis bésicas (ndo-nulas) e N o
conjunto das variaveis nulas. No comeco temos

B=n+1n+2,...,n+m} N={1,2,...,n}
A forma geral do sistema muda para
z=2+ ) X
jeN

XiZBi_Zaijxj ieB
JEN

As barras em cima dos coeficientes enfatizam que eles mudam ao longo da
aplicacdo do método. Os coeficientes C; sao chamados precos reduzidos ou
custos reduzidos (ingl. reduced prices, reduced costs).
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2. O método Simplex

Escolher variavel entrante (pricing)

Em cada passo do método Simplex, escolhemos uma varidvel ndo-bésica xy,
com k € N para aumentar o valor objetivo z. Isso somente é possivel para os
indices j tal que ¢; > 0, i.e.

{jEJ\/|Ej>O}.

Escolhemos um k desse conjunto, e xy é a variavel entrante. Uma heuristica
simples é a regra do maior coeficiente, que escolhe

k = argmax{c; | ¢; > 0,j € N}

Aumentar a variavel entrante
Seja xi a varidvel entrante. Se aumentamos xji para um valor positivo, as
variaveis basicas tém novos valores

Xi = 61 — Qik Xk ieB.

Temos que respeitar x; > 0 para 1 < i < n. Cada equacdo com aj, > 0
fornece uma cota superior para xy:

xk < bi/Qix.
Logo podemos aumentar xx ao maximo um valor

—1

= _ _ -1
. by Qix Qix
o= min — = | max — = | max = > 0.
_i€B Qi _ieB bi ieB bi
“ik>° ”ik>0

Podemos escolher a varidvel sainte entre os indices

{ie Blbi/ax = ol

2.3. Sistemas ilimitados

Como pivotar?

e Considere o sistema
z =24 —x1 +2x2
X3 =2 —x1 +x2
Xqg =5 +x1 +4x2
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2.4. Encontrar uma solugao inicial
e Qual a préxima solucao basica viavel?

e A duas equagbes nao restringem o aumento de x;: existem solugdes com
valor ilimitado.

2.4. Encontrar uma solucao inicial
Solucido basica inicial
e Nosso problema inicial é

maximiza z= E CjXj

jEMm]
sujeito a Z aijxj; < by i€ [m]
j€m]
xi >0 ien]

e com diciondrio inicial

Z:i+Z(_1ij
j

XiZEi_Zainj ieB
JeEN

Solucao basica inicial
e A solugao basica inicial desse dicionario é

x=(0---0by-- b))t

e O que acontece se existe um b; < 07

e A solugdo bésica nado é mais vidvell Sabe-se disso porque pelo menos
uma variavel béasica terd valor negativo.
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2. O método Simplex

Sistema auxiliar

e Um método para resolver o problema: resolver outro programa linear
— cuja solugao fornece uma solugao bésica viavel do programa linear
original e

— que tem uma solugao bésica viavel simples, tal que podemos aplicar
o método Simplex.

maximiza Z = —Xo
sujeito a Z aijxj —xo < by 0<i<m
jen]
xi >0 ie [Tl}

Resolver o sistema auxiliar

e E facil achar uma solugao viavel do sistema auxiliar:
— Escolhe x; = 0, para todos i € [n].
— Escolhe %o suficientemente grande: xo > maxie[m] —bi.
e Isso corresponde com um primeiro pivé com varidvel entrante xo apods
introduzir as variaveis de folga
— Podemos comegar com a solugao nao-viavel xo = X1 = ... =xXp =
0.
— Depois aumentamos xo tal que a variavel de folga mais negativa
vire positiva.

— Xp e varidvel sainte x tal que k = argmax; ¢, —bs.

Exemplo: Problema original

maximiza z=—2x1 — X2
sujeito a — X7 +x2 < -1
—x1 —2x2 <2
x2 <1
X1,%X2 >0

34



2.4. Encontrar uma solugao inicial

Exemplo: Problema auxiliar

maximiza z=—Xg
sujeito a —X7+%x2 —%x0 < —1
— X1 —2X2 — X9 < =2
X2 —xo <1

X0yX1,%2 > 0

Exemplo: Dicionario inicial do problema auxiliar

z = —X0
wi; =—1 4x7 —Xx2 +Xo
wy =-2 +x1 +2x2 +Xo
w3y =1 —X2 +X0

e Observe que a solugao bésica nao é viavel.

e Para achar uma solugao bésica vidvel: fazemos um primeiro pivd com
varidvel entrante xo e varidvel sainte w>.

Exemplo: Dicionario inicial viavel do sistema auxiliar

z =—2 +x1 +2x2 —wy

w; =1 —3x2 4w

Xo =2 —Xx7 —2x2 +w3

wy =3 —X1 —3x2 4w,

Primeiro pivo

z =-4/3 +x7 —2/3w; —1/3w;
x2 =1/3 —1/3wy; +1/3w;
xo =4/3 —x1 +2/3w; +1/3w,
wy =2 —X1 +WwWq
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2. O método Simplex

Segundo pivo

z =0 —Xo

x> =1/3 —1/3w;  +1/3w;
x1 =4/3 —xo +2/3w; +1/3w;
wy =2/3 +4+xo +1/3w; —1/3w;

Solugao 6timal

Solucdo do sistema auxiliar

e O que vale a solucao do sistema auxiliar?

e Obviamente, se o sistema original tem solugao, o sistema auxiliar também
tem uma solucao com xp = 0.

e Logo, apos aplicar o método Simplex ao sistema auxiliar, temos os casos
— xo > 0: O sistema original ndo tem solugao.

— xp = 0: O sistema original tem solucao. Podemos descartar xq e
continuar resolvendo o sistema original com a solucao bésica viavel
obtida.

e A solucdo do sistema auxiliar se chama fase I, a solugdo do sistema
original fase II.

Sistema original

Reescreve-se a fungao objetivo original substituindo as varidveis bésicas do
sistema original pelas equacoes correspondentes do sistema auxiliar, de forma
que a funga@o objetivo z nao contenha varidveis basicas. No exemplo, a fungao
objetivo é rescrita como:

z=—2X1] — X2 =—3—wW7; —ws.

z =—-3 —w —W;

x, =1/3 —=1/3w; +1/3w>
X1 =4/3 423w +1/3w,
ws =2/3 +1/3w; —1/3w,

Nesse exemplo, o diciondrio original ji é 6timo!
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2.5. Solugoes degeneradas

2.5. Solucoes degeneradas
Solucao degenerada
e Um diciondrio é degenerado se existe pelo menos um by = 0.

e Qual o problema?

e Pode acontecer um pivo que nao aumenta a variavel entrante, e portanto
nao aumenta o valor da fungao objetivo.

Exemplo 1

e Nem sempre é um problema.

z =5 +x3 —X4
X =5 —-2x3 —3x4
X1 =7 —4X4
w3 = +X4

e X, é a varidvel sainte e o valor da funcao objetivo aumenta.

Exemplo 2
z =3 —1/2x1 +2x2 —3/2w;
X3 =1 —1/27(1 —1/2W1
wy = X1 —X2 +wWq

e Se a varidvel sainte é determinada pela equagao com b; = 0, temos um
pivé degenerado.

e Nesse caso, a varidvel entrante nao aumenta: temos a mesma solugao
depois do pivo.

Exemplo 2: Primeiro pivd
e Pivo: x-ws

z =3 +3/2x1 —2wy +1/2w;
X3 = 1 —1/27(1 —1/2W1
Xy = X1 —wWy +Wwh

e O valor da fungao objetivo nao aumentou!
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2. O método Simplex

Exemplo 2: Segundo pivd

e Pivo: X1-X3

z =6 —3X3 —2W2 —W1
X1 =2 —2x3 —W1
X2 = 2 —2X3 —W>

e A segunda iteragdo aumentou o valor da fungao objetivo!

Ciclos

e O pior caso seria, se entramos em ciclos.

e E possivel? Depende da regra de selecao de varidveis entrantes e saintes.

e Nossas regras

— Escolha a varidvel entrante com o maior coeficiente.

— Escolha a varidvel sainte mais restrita.

— Em caso de empate, escolha a varidvel com o menor indice.

e Ciclos sao possiveis: O seguinte sistema possui

X1-W1, X2=W2, X37X1, X4=X2, W1—X3, Wr—Xgq.

um ciclo de 6 pivos:

z = 10X] —57X2 —9X3 —24X4
w; = —1/2x7  +11/2xy +5/2x3 —9x4
wy; = —1/2x7  +3/2x3 +1/2x3 —x4
w3 = 1 —X1

Solucées do problema

e Como resolver o problema?

e Trés solugoes
— Ignorar o problema.
— Método lexicografico.

— Regra de Bland.
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2.5. Solugoes degeneradas

Método lexicografico

e Idéia: O fato que existe um b; = 0 é por acaso.

e Se introduzimos uma pequena perturbacgao € < 1
— o problema desaparece

— a solugao serd (praticamente) a mesma.

Método lexicografico
e Ainda é possivel que duas perturbagoes numéricas se cancelem.
e Para evitar isso: Trabalha-se simbolicamente.
e Introduzimos perturbacoes simbdlicas
I<eg€erK <K €en
em cada equagao.

e Caracteristica: Todo €; é numa escala diferente dos outros tal que eles
nao se cancelam.

Exemplo
Exemplo 2.2
Sistema original degenerado e sistema perturbado
z =4 +2x7 —X2 z =4 +2x1 —X2
w =1/2 —X2 wy =1/2 +e€; —X2
Wy = —2x1  +4x, Wy = € —2x1  +4xy
w3 = X1 —3x2 w3 = €3 +X71 —3x%2
O

Comparar perturbacoes

e A linha com o menor limite 1l = b;j/aix (com xi entrante) define a
varidvel sainte.
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2. O método Simplex

e A comparacdo de limites respeita a ordem lexicografica das perturbagoes,
i.e. com

li =eirer + -+ eiex
L =fj1eq +"'+fik'€{<

temos l; < 1j se k <k’ ouk =k’ e ejx < fix.

Caracteristicas

e Depois de chegar no valor étimo, podemos retirar as perturbagoes €;.

Teorema 2.1
O método Simplex sempre termina escolhendo as variaveis saintes usando
a regra lexicografica.

Prova. E suficiente mostrar que o sistema nunca ser4 degenerado. Neste caso
o valor da fung@o objetivo sempre cresce, e o método Simplex nao cicla. A
matriz de perturbagoes
€1
€2

€m

inicialmente tem posto m. As operagoes do método Simplex sdo operagoes
lineares que nao mudam o posto do matriz. Logo, em cada passo do método
Simplex temos uma matriz de perturbagoes

€11€q €12€2 -+ €1m€Em
€21€1 €22€2 -+ €2m€m
€mi1€1 €m2€2 " Cemm€Em

que ainda tem posto m. Portanto, em cada linha i existe pelo menos um e;; #
0 e assim uma perturbacao diferente de zero e o sistema nao é degenerado. W

Exemplo 2.3

Solugao do exemplo 2.2.

Pivo x1-wy. z =4 +e€3 —W» +3x;
wy =1/2 +e —X2
X1 1/2¢5 —1/2w,  +2x;
w3 1/2¢; +e3 —1/2wy  —x2
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2.5. Solugoes degeneradas

Pivo x-ws. z =4 +5/2¢5 +3e3 —5/2w, —3ws
wy =1/2 +e;7 —1/2¢; —e3 +1/2w,  +ws
X1 = 3/2¢; +2e3 —3/2w,; —2ws
X2 = 1/2¢5 +e€3 —1/2wy  —w;3

Regra de Bland

e QOutra solucdo do problema: A regra de Bland.

e Escolhe como varidvel entrante e sainte sempre a variavel com o menor
indice (caso tiver mais que um candidato).

Teorema 2.2

O método Simplex sempre termina se as variaveis entrantes e saintes sao

escolhidas através da regra de Bland.

Prova. Prova por contradicdo: Suponha que exista uma sequéncia de di-
ciondrios que entra num ciclo Dy, D1y,...,Dx_7 usando a regra do Bland.
Nesse ciclo algumas varidveis, chamadas inconstantes, entram e saem no-
vamente da base, outras permanecem sempre como bdasicas, ou como nao-
basicas. Seja x¢ a variavel inconstante com o maior indice. Sem perda de
generalidade, seja x¢ a varidvel sainte do primeiro diciondrio Dy. Seja x5 a
varidavel entrante no Dy. Observe que xs também é inconstante e portanto

s < t. Seja D* o diciondrio em que X entra na base.

Xs entra

v

Do, D1, Dy,
Xt sai
com os sistemas correspondentes

|

D~

Do : D*:
zZ=12Zy+ chxj
jEN
xi:bi—Zaﬁxj ieB
jeEN

Xt entra

z=2z"+ Z X

JEN™*

jEN ™

Temos a situagao

D1

¥ * L . *
xi—bi—g ajgx; 1€B
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2. O método Simplex

Como temos um ciclo, todas varidveis inconstantes tem valor 0 e o valor da
fungéo objetivo é constante. Logo zo = z* e para D* temos

z=2z"+ ZN X =20 + ZN i Xj- (2.4)
JeEN™ JeN™

Se aumentamos em Dy o valor do xs para y, qual é o novo valor da funcao
objetivo? Os valores das varidveis sdo

Xs =Yy
=0 jeN\{s} (2.5)
xi:bi—aisy ieB

e temos no sistema D7 o novo valor
z =20+ Csy (2.6)

Vamos substituir os valores das varidveis (2.5) com {ndices em N* N B na
equagcao (2.4). Para facilitar a substitui¢do, vamos definir ¢j :==0paraj ¢ N*,
que permite substituir todas varidveis x;,j € B e assim obtemos

z=1z0+ Z cix; :zo—i—c:y—i—Zc;*(bj — ajsy). (2.7)

Equagoes (2.6) e (2.7) representam o mesmo valor, portanto
(cs —cC; +ch*ajs)y = Zc;‘bj.
jeB jeB

Essa igualdade deve ser correta para qualquer aumento y, portanto os dois
lados sao 0, em particular

cs—Ci+ E c}‘ais =0.
jeB

Como x¢ entra em Dy temos cg > 0. Em D* a varidvel x¢ entra, entao ci <0
senao pela regra de Bland s < t entraria. Logo,

E c}*ajszc:—cs < —cs <0
jeB

e deve existir um r € B tal que cfa,s < 0. Isso tem uma série de consequéncias:

(i) ¢ #0.
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2.6. Complexidade do método Simplex

(ii) r € N'*, porque somente as varidveis nulas satisfazem ¢ # 0 em D*.

(iii) x, é inconstante, porque ela é basica em Dy (r € B), mas nao-basica em

D* (r e N*).
(iv) T <t, porque t foi a varidvel inconstante com o maior {ndice.

(v) T < t, porque cjais > 0: x¢ entra em D*, logo ¢ > 0, e x¢ sai em Dy,
logo ats > 0.

(vi) ¢* <0, sendo 1 e ndo t entraria em D* seguindo a regra de Bland.
(vil) ars > 0.

(viii)) b, = 0, porque x, é inconstante, mas todos varidveis inconstantes tem
valor 0 no ciclo, e x, é basica em Dy.

Os 1ltimos dois itens mostram que X, foi candidato ao sair em Dy com indice
T < t, uma contradi¢ao a regra de Bland. |

Teorema fundamental

Teorema 2.3 (Teorema fundamental da programacao linear)
Para qualquer programa linear temos:

(i) Se nao existe solugdo 6tima, o problema é invidvel ou ilimitado.
(ii) Se existe uma solugdo viavel, existe uma solucdo basica vidvel.

(iii) Se existe uma solugdo étima, existe uma solugéo étima bésica.

2.6. Complexidade do método Simplex
Complexidade pessimista

e Com a regra de Bland o método Simplex sempre termina.
e Com 1 + m varidveis (de decisdo e de folga) existem
n+m n+m
()=
solugoes basicas possiveis.

e Logo: No pior caso o método Simplex termina depois desse nimero de
pivos.
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2. O método Simplex

Complexidade pessimista

e Para n 4+ m constante, obtemos o maior valor de
n+m
m
e Os limites nesse caso sdo (exercicio 2.3)

i22“ < (2n> <22,

para m = m.

n n

e Logo, o nimero de passos no pior caso pode ser exponencial no tamanho
da entrada.

Complexidade pessimista
e Se o nimero de passos é exponencial depende da regra de pivo aplicada.

e Exemplo: Com a regra de maior coeficiente, existem sistemas que pre-
cisam um nimero exponencial de pivos (Klee-Minty).

e Pergunta em aberto: Isso é o caso para qualquer regra de pivo?

Observagao 2.2

Spielman e Teng [7] mostram que o método Simplex possui complezidade sua-
vizada polinomial, i.e., o maximo do valor esperado do tempo de execugao so-
bre pequenos perturbagoes (Gaussianas) é polinomial no tamanho da instancia
e no inverso da perturbacao. O

2.7. Exercicios

(Solugoes a partir da pdgina 199.)

Exercicio 2.1 ([6])
Resolve com o método Simplex.

maximiza z=3x1 + 5%,
sujeito a x1 <4
x2 <6
3x1 +2x2, <18
x; >0
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Exercicio 2.2
Resolve o exercicio 1.7 usando o método Simplex.

Exercicio 2.3

2.7. Exercicios

Prova que
2n n

Exercicio 2.4

Resolve o sistema degenerado
z = 10x1 —57%x2 —9%3 —24x4
wp = —]/ZX] +11/2X2 +5/2X3 —9X4
wy; = —1/2x7  +3/2x2  +1/2x3 —x4
w3 = 1 —X1

usando o método lexicografico e o regra de Bland.

Exercicio 2.5
Dado o problema de otimizagao

maximiza X1 + %2
sujeito a axj +bxy; <1
X1,X2 Z 0

determine condigoes suficientes e necessarias que a e b tem que satisfazer tal

que
(a) existe pelo menos uma solugéo étima,
(b) existe exatamente uma solugdo Gtima,
(¢) existe nenhuma solucao étima,

(d) o sistema ¢ ilimitado.

ou demonstre que o caso nao é possivel.

Exercicio 2.6
Sabe-se que o dicionério 6timo do problema

maximiza z=23x1 +x2
sujeito a —2x1 +3x2 <5
X7 —x2 <1
X1,x2 >0
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2. O método Simplex

€
z¢ =31 —1lwy, —4w;
X2 = 7 —2W2 — W1
X1 =38 *3W2 —W1

(a) Se a fungao objetivo passar a z = x7 4+ 2x2, a solucdo continua 6tima? No
caso de resposta negativa, determine a nova solugao 6tima.

(b) Se a funcdo objetivo passar a z = x7 — X2, a solugdo continua étima? No
caso de resposta negativa, determine a nova solugao étima.

(c) Se a funcdo objetivo passar a z = 2x1 — 2x2, a solugdo continua 6tima?No
caso de resposta negativa, determine a nova solucao étima.

(d) Formular o dual e obter a solu¢ao dual 6tima.

Exercicio 2.7

Prove ou mostre um contra-exemplo.

O problema max{c'x | Ax < b} possui uma solucao vidvel sse min{xg | Ax —
exo < b} possui uma soluc¢do vidvel com xo = 0. Observagdo: e é um vetor
com todos compentes igual 1 da mesma dimensao que b.

Exercicio 2.8

Prove ou mostre um contra-exemplo.

Se x é a varidvel sainte em um pivo, x nao pode ser variavel entrante no pivo
seguinte.
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3. Dualidade

3.1. Introducao
Visao global

e Dualidade: Cada programa linear (chamada de primal) possui um pro-
grama linear correspondente, chamado de dual.

e A dualidade tem véarias aplicagoes como

— Estimar a qualidade de solugoes e a convergéncia do método Sim-
plex.

— Certificar a otimalidade de um programa linear.
— Analisar a sensibilidade e re-otimizar sistemas.

— Resolver programas lineares mais simples ou eficiente com o Método
Simplex dual.

e O programa dual as vezes possui uma interpretagdo relevante.

Introducao
e Considere o programa linear

maximiza z=4x7 +x2 + 3x3 (3.1)
sujeito a X1 +4%x; <1
3x1 —x2+x3 <3
X1,X2,X3 2 0
e Cada solugao viavel fornece um limite inferior para o valor maximo.
X1=x2=x3=0=2z=0
Xx1=3x2=x3=0=>z=4
e Qual a qualidade da solugao atual?

e Nao sabemos, sem limite superior.
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3. Dualidade

Limites superiores

e Como obter um limite superior?

Observe: z =4x1 +x2 +3x3 < 10x7 +x2 +3x3 < 10

e Podemos construir uma combinagao linear das desigualdades, tal que o
coeficiente de cada x; ultrapasse o coeficiente da funcao objetivo.

e Nosso exemplo:
(x1 +4%2)+3(3x1 —x2+x3)<1+3-3=10
&=10x7 +x2 +3x3 <10
e Como obter um limite superior para a fungao objetivo?
e Qual seria 0 menor limite superior que esse método fornece?

Exemplo 3.1
Para o sistema (3.1) obtemos:

minimiza Y1 +3y2

sujeito a Yy +3y, >4

dyr —y2 21
Yz >3
Yy1,Y2,Y3 = 0.
O
O menor limite superior
e Sejam yi,...,Yn os coeficientes de cada linha. Observacao: Eles devem

ser > 0 para manter a direcao das desigualdades.
e Entao queremos
minimiza Z biyi
ie[m]
sujeito a Z aijyi > ¢j Vi e nl
i€[m]

yi > 0.

e Isto é o problema dual com varidveis duais yi.
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3.1. Introducao

Dualidade: Caracteristicas

e Em notagao matricial

maximiza c'x minimiza b'y
sujeitoa Ax<Db sujeito a gtA > ct
x > 0. y > 0.

e O primeiro se chama primal e o segundo dual.
e Eles usam os mesmos parametros cj, aij, bi.

O dual do dual

e Observagao: O dual do dual é o primal.

e Forma normal do dual:

—maximiza —b'y —maximiza —b'y
sujeitoa —y'A<-—c' = sujeito a (—A')y < —c
y > 0. y > 0.

e Dual do dual

—minimiza —c'z maximiza c'z
sujeito a z'(—A') > —b* sujeitoa Az <b
z>0. z>0.

Exemplo 3.2

Qual o dual do problema de transporte (1.12)? Com varidveis duais 73, i € [n]
para as das restricoes de estoque (1.13) e varidveis duais pj, j € [m] para as
restrigdes de demanda (1.14) obtemos

maximiza Z a7y + Z b]’ Pj (32)
ie[n] jelm]
sujeito a T+ pj > Cyj Vi€ [nl,j € [m]
Tty Pj >0 ViE[TLL].G[TTL}.
O
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3. Dualidade

3.2. Interpretacao do dual
Exemplo: Dieta dual

e Problema da dieta: Minimiza custos de uma dieta x que alcance dados
VDR minimos.
minimiza c'x

sujeito a Ax >

e Unidades das varidveis e parametros

— x € R™: Quantidade do alimento [g]

— ¢ € R™: R$/alimento [R$/g]

— aij € R™*™: Nutriente/Alimento [g/g]
r € R™: Quantidade de nutriente [g].

Exemplo: Dieta dual
e O problema dual é

maximiza y'r
sujeito a y'A <ct
y >0

Qual a unidade de y? Prego por nutriente [R$/g].

e Imagine uma empresa, que produz capsulas que substituem os nutrien-
tes.

e Para vender no mercado, a empresa tem que garantir que uma dieta
baseado em capsulas custa menos que os alimentos correspondentes:

Z yiaij < ¢ Vj € [m]
]

ie[m

e Além disso, ela define precos por nutriente que maximizam o custo de
uma dieta adequada, para maximizar o préprio lucro.

maximiza y'r
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3.3. Caracteristicas

Interpretacao do dual

e Outra interpretacao: o valor de uma variavel dual y; é o lucro marginal
de adicionar mais uma unidade bj.

Teorema 3.1
Se um sistema possui pelo menos uma solugao basica 6tima nao-degenerada,
existe um € > 0 tal que, se |tj| < € para j € [m],

maximiza ctx
sujeito a Ax<b+t
x>0

tem uma solugao 6tima com valor
t
z=z"4+y"t

(com z* o valor 6timo do primal, é y* a solugdo 6tima do dual).

Exemplo 3.3
Considere uma modificagao do sistema do Ildo

maximiza 0.2¢ 4+ 0.5¢ (3.3)
sujeito a c+1.5s <150 (3.4)
50c + 50s < 6000 (3.5)

c <80 (3.6)

s <70 (3.7)

c,s > 0. (3.8)

(O sistema foi modificado para a solucao 6tima atender as condicoes do teo-
rema 3.1.) A solugao étima do sistema primal é x* = (4570)" com valor 44, a
solugao 6tima do dual y*(1/5001/5)t. A figura 3.1 mostra a solucao étima
com as varidveis duais associadas com as restrigoes. O valor da varidvel dual
correspondente com uma restrigao € o lucro marginal de um aumento do lado
direito da restricao por um.

O

3.3. Caracteristicas

Teorema da dualidade fraca
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3. Dualidade
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Figura 3.1.: Solugao 6tima do sistema (3.3) com varidveis duais.

Teorema 3.2 (Dualidade fraca)
Se X1y...,Xn € uma solucdo vidvel do sistema primal, e yi,...,Yym uma
solugao viavel do sistema dual, entao

Z CiXi < Z bj‘y]‘.
ie(n]

jelm]
Prova.
ctx
<(y*A)x = y*(Ax) pela restricdo dual (3.9)
<y'b pela restrigdo primal (3.10)
|
Situacao

Gap de otimalidade
e -

Solugoes primais vidveis Solugbes primais vidveis

e Em aberto: Qual o tamanho desse intervalo em geral?
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3.3. Caracteristicas

Teorema da dualidade forte
Teorema 3.3

Se xj,...,x} é uma solugao 6tima do sistema primal, existe uma solucao 6tima
y7,...,Yr, do sistema dual, e

D_exi= ) by

ien] jelm]

Prova. Seja x* uma solugao étima do sistema primal, que obtemos pelo
método Simplex. No inicio introduzimos varidveis de folga

Xn4j = bj — Z ajixi Vj € [m]
ien]
e a fungao objetivo final é
z=2z" + Z CiXi
nj+m

(supondo que ¢; = 0 para varidveis basicas). Temos que construir uma solugao
6tima dual y*. Pela optimalidade, na funcao objetivo acima, todos ¢; devem

ser nao-positivos. Provaremos que yj = —Cnyj = 0 para j € [m] é uma
solugao dual 6tima. Como z* o valor 6timo do problema inicial, temos z* =
*
2 iein) CiXi - }
Reescrevendo a funcao objetivo temos
z = Z CiXi sistema inicial
ien]
=z"+ Z CiXi sistema final
nj+m
=z"+ Z CiXxi + Z Crtj Xm+i separando indices
je€lm]
="+ Z CiXi — Z y;k (b]' — Z ajixi) subst. soluga@o e var. folga
ie[n] jelm] ie[n]
= <Z — Z y] ) Z (Ci + Z y;ka]-i>xi agrupando
jelm] ie[n] 1<5<m

Essa derivacao esta valida para x; qualquer, porque sao duas expressoes para
a mesma funcao objetivo, portanto

Z yib; e ci=ci+ Z Y5 aji ie nl.

jelm] jelm]
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3. Dualidade
Com isso sabemos que o primal e dual possuem o mesmo valor
* * *
E yjb]- =z" = E CiX;]
jelm] ien]
e como ¢; < 0 sabemos que a solugao y* satisfaz a restrigoes duais

ci < Z Y5 aji ien]
jelm]
yi >0 i¢e [m]

Consequéncias: Solucdes primais e duais

e Com o teorema da dualidade forte, temos quatro possibilidades

Sistema primal Sistema dual Intervalo

Otimo Otimo Sem
Ilimitado Invidvel Sem
Invidvel Ilimitado Sem
Inviavel Invidvel Infinito

Exemplo 3.4

Pelo teorema da dualidade forte, nao podemos concluir, que existe um caso
que tanto o sistema primal quanto o sistema dual sdo invidveis. O seguinte
exemplo mostra que isso pode realmente acontecer. O sistema primal

maximiza X1
sujeito a +x1—%x2 <0
—x1 +x2 < -1
X1,%x2 >0

possui sistema dual correspondente

minimiza —Y2
sujeito a +yr—yz2>1
—yr+y2=20

Os dois sistemas sao invidveis. O
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3.3. Caracteristicas

Podemos resumir as possibilidades na seguinte tabela:

Dual
Primal Invidgvel Otimo Ilimitado
Invidvel vV X vV
Otimo X v X
Iimitado vV X X

Consequéncias

e Dado solugdes primais e duais x*,y* tal que ¢*x* = b'y* podemos con-
cluir que ambas solugoes sdo étimas (x*,y* é um certificado da optima-
lidade)®.

e A prova mostra: com o valor 6timo do sistema primal, sabemos também
o valor étima do sistema dual.

e Além disso: Podemos trocar livremente entre o sistema primal e dual.

= Método Simplex dual.

Outra consequéncia do Teorema da dualidade forte é o

Teorema 3.4 (Teorema das folgas complementares)
Se x*,y* sao solugoes dtimas do sistema primal e dual, respectivamente, temos

Y (b —Ax) =
(Y A= =

(3.11)

0
0 (3.12)
Prova. Pelo Teorema da dualidade forte as duas desigualdades (3.9) e (3.10)
da prova do Teorema da dualidade fraca se tornam igualdades para solugoes
Otimas:

Ctx* — y*tAX* — y*tb

Reagrupando termos, o teorema segue. |
Asigualdades 3.11 e 3.12 sdo ainda véalidas em cada componente, porque tanto
as solucdes 6timas x*,y* quanto as folgas primas e duais b — Ax e y**'A — ¢t
sempre sao positivos.

1Uma consequéncia é que o problema de decisdo correspondente, determinar se existe uma
solucdo maior que um dado valor, possui um certificado que pode ser verificado em tempo
polinomial tanto para uma resposta positiva quanto uma resposta negativa. Portanto,
ja antes da descoberta de um algoritmo polinomial para esse problema, foi claro que ele
pertence a NP N co-NP.
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3. Dualidade

xi >0= Z Yjaji = ¢4 (3.13)
j€lm]

Z YjQji > € = Xy = 0 (314)
jelm]

yj >0=b; = Z ajiXi (3.15)

ien]
bj > Z ajiXy = Yj = 0 (316)
ien]

Como consequéncia, podemos ver que, por exemplo, caso uma igualdade pri-
mal nao possui folga, a varidvel dual correspondente é positiva, e, contraria-
mente, caso uma igualdade primal possui folga, a varidvel dual correspondente
é zero. As mesmas relacoes se aplicam para as desigualdades no sistema dual.
Apés a introducdo da forma matricial no se¢do 3.6 vamos analisar a inter-
pretacdo das varidveis duais com mais detalha no se¢do 3.7. O teorema das
folgas complementares pode ser usado ainda para obter a solugao dual dado
a solucao primal:

Exemplo 3.5

A solucao 6tima de

maximiza z=6x1 + 8x2 +5x3 + Ix4
sujeito a 2x1 +x2 +x3+3x4 <5
X1 +3% +x3+2x4 <3
X1,X2,X3,%X4 >0

éx1 =2ex3 =1 com valor 17. Pela equagao (3.13) sabemos que

2y1 +y2 =6
y1 +y2 =5
Portanto a solucao dual é y; =1ey, =4. O

3.4. Método Simplex dual

Método Simplex dual
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e Considere

maximiza
sujeito a
e Qual o dual?
minimiza
sujeito a
Com dicionarios
z = —X1 —X2
Wi =4 +2x +X2
wy, =-—-8 +4+2x7 —4x2
w3 = — +x1 —3x2
-w = —4y; +8y; +7y3
zi =1 =2y; -2y —Ys
zz =1 -y +4y2 +3y3

e Observagao: O primal nao é vidvel, mas o dual é!

e Correspondéncia das varidveis:

3.4. Método Simplex dual

— X1 —X2

—2x1—x2 <4
—2x1 +4x, < -8
—x1+3x <7

x1,%2 > 0.

4y1 — 8y —7y3
—2y1 —2yz —yz > —1
—y1 +4y2+3yz > —1

Y1,Y2,Y3 > 0.

Varidveis
principais de folga
Primal  X7,...,Xn  Wi,..., W
Dual z1,...yzn, Yi1,---,Ym
de folga principais

e Primeiro pivd: y; entra, z; sai. No primal: w; sai, x; entra.

Primeiro pivo

z =—4 05w, —-3x2
w; =12 +wy  +5%x2
X1 =4 405w, +2x;
w3z =-3 405w, —X2
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3. Dualidade

-w =4 —12y; —4z, +3y3
Yy, =05 —y1 —0.5z;7 —0.5y3
z7 =3 -5y —22z4 +ys3

e Segundo pivo: ys entra, Yy, sai. No primal: w3 sai, w;, entra.

Segundo pivo

z =—7 —w3 —4x2
w; =18 +2ws +7x2
X1 =7 +ws3  +3x3
wy =6 42wz +2x»

—-w =7 -1 8y1 —7Z] —6yz
ys =1 -2y1 —z1 -2y
V) =4 *7131 732] —Zyz

e Sistema dual é 6timo, e portanto o sistema primal também.

Método Simplex dual

e Observagao: Nao é necessario escrever o sistema dual. Ele é sempre o
negativo transposto do sistema primal.

z=2z+ E CjXj

jeN
Xi:Bi*Z(_linj ieB
JEN

e Mas é necessario modificar as regras para resolver o sistema dual.

Método Simplex dual: Viabilidade e otimalidade

e Pré-condicao: O diciondrio é dualmente vidvel, i.e. os coeficientes das
varidaveis nao-basicas na fungao objetivo tem quer ser nao-positivos.

¢; <0 para jeN.

e Otimalidade: Todos varidveis basicas primais positivas

VieB:bi >0
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3.4. Método Simplex dual

Método Simplex dual: Pivo

e Caso existe uma varidvel primal negativa: A solucao dual ndo é 6tima.

e Regra do maior coeficiente: A varidvel basica primal com menor valor

(que é negativo) sai da base primal.

i = argmin by
ieB

o A varidvel primal nula com fracdo aij/c; maior entra.

. G ayj aij

) = argmin — = argmax — = argmax —
Jen Ay JeN Gy jeN Gy
aij <0 aij <0

Método Simplex dual
Resumo:

e Dualmente vidvel: ¢; < 0 paraj € N.
e Otimalidade: Vi € B:b; > 0.

e Varidvel sainte: i = argmin;p b;

ij

. . a
e Varidvel entrante: j = argmax;c &

Exemplo

maximiza z=—2X1 — X2
sujeito a —x1 +x2 < -1
—x1 —2x2 <=2
x2 <1
X1,x2 >0

Exemplo: Dicionario inicial

z = —2xq —X2
w; =-=1 +x; —X2
wy =-2  +x1 +2x2
4% =1 —X2

e O dicionario primal nao é vidvel, mas o dual é.
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3. Dualidade

Exemplo: Primeiro pivo

z =—1 =3/2x; —1/2w;
w; =-—2 +3/2X1 7]/2W2
X2 =1 —1/2X] -l—]/ZWz
w3 = +1/2X1 —]/ZWZ

Exemplo: Terceiro privot
z =-3 —Wq —W3y
x1 =4/3 +2/3w; +1/3w,
x2 =1/3 —=1/3w; +1/3w,
ws =2/3 +1/3w; —1/3w,

3.5. Dualidade em forma nao-padrao

Dualidade em forma padrao

maximiza c'x minimiza b'y
sujeitoa Ax<Db sujeito a ytA > ct
x>0 y>0

e O que acontece se o sistema nao é em forma padrao?

Igualdades
e Caso de igualdades: Substituindo desigualdades..

maximiza c'x maximiza cx
sujeitoa Ax =D sujeitoa Ax <D
x>0 Ax>Db
x>0
e ... padronizar novamente, e formar o dual:
maximiza c'x minimiza b'y"t —b'y~
sujeitoa Ax<b sujeitoa yT'A—y "
—Ax < —b y" >0,y >0
x>0 Y=, Um
Yy =1, Unm
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3.5. Dualidade em forma nao-padrao

Igualdades
e Equivalente, usando varidveis nao-restritas y =y —y~

minimiza bty

sujeito a y'A>c¢

y'so
e Resumo
Primal Dual
Tgualdade Varidvel dual livre
Desigualdade (<) Varidvel dual ndo-negativa
Desigualdade (>) Varidvel dual ndo-positiva
Varidvel primal livre Tgualdade

Varidvel primal ndo-negativa Desigualdade (>)
Varidvel primal nao-positiva  Desigualdade (<)

Exemplo 3.6 (Exemplo dualidade ndo-padrao)
O dual de

maximiza 3x1 +x2 +4x3
sujeito a X1 +5%2+9x3 =2
6x1 +5%2 +3x3 <5
x1,%3 > 0,x2 <0

minimiza 2y +5y2

sujeito a y; +6yz >3
Syr +5y2 =1
9y1 +3y2 >4
Y1 s0,y2 > 0.

Exemplo 3.7 (Dual do problema de transporte)
O dual do problema de transporte num grafo direcionado G = (V,A) com
custos nas arestas cq, limites inferiores e superiores para o fluxo lq e Uy em
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3. Dualidade

cada arco, e demandas b,, em cada vértice

minimiza Z CaXa
acA

sujeito a Z X(uv) — Z X(vu) = by weVv
(u,v)EA (vyu)eA
Xa > la Vae A
Xa < Uq Vae A
Xq >0 YaeA

usando variaveis duais m, S0, veV, pg >0, a€ Aeoq <0, a €A para as
trés restrigoes é

maximiza Z b,m, + Z laPa +Uq0q

vev acA

sujeito a — Ty + Ty + Pa + 0q > 1 Va=(u,v) €A
m, € R Ywev
Pa >0 Yac A
0, <0 Va e A.

3.6. Os métodos em forma matricial

A forma matricial permite uma descrigdo mais compacto do método Simplex.
A seguir vamos resumir os métodos Simplex primal e dual na forma matricial.
Mais importante, nesse forma é possivel expressar o dicionario correspondente
com qualquer base em termos das dados inicias (A, ¢, b). Na proxima segao va-
mos usar essa forma para analisar a sensibilidade de uma solugao ao pequenas
perturbagoes dos dados (i.e. os coeficientes A,b, e c).

Sistema padrao
e O sistema padrao é

maximiza ctx
sujeito a Ax <b
x>0
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3.6. Os métodos em forma matricial

e Com varidveis de folga Xn41y...yXn+m € A,c,x novo (definigdo segue
abaixo)
maximiza ctx
sujeito a Ax =D
x>0
Matrizes
ann a2 ain 1
ax  Qaxp c+ Qan 1
A= ;
Am1  Gm2 Amn 1
C1 X1
C2 X2
by .
b>
b= ic=]cn|;x= Xn
) 0 Xn+1
bm : .
0 Xn+m

Separacdo das variaveis

e Em cada iteragao as variaveis estao separados em bésicas e nao-bésicas.
e Conjuntos de indices correspondentes: BU N = [1,n + m].

e A componente i de Ax pode ser separado como

E aijX; = E Cli)'X]‘ + E aijXj

jem]+m jeB jeN

Separacao das variaveis

e Para obter a mesma separacao na forma matricial: Reordenamos as
colunas e separamos as matrizes e vetores:

A=(BN);x= (::) ;= (EE)

e com B € R™*™ N € R™*n ¢ g R,
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3. Dualidade

Forma matricial das equacoes

e Agora, Ax = b é equivalente com

(BN) <XB> —Bxg +Nxn =b
XN

e Numa solucao bésica, a matriz B tem posto m tal que as colunas de B
formam uma base do R™. Logo B tem inversa e

xg =B (b—Nxn) =B 'b— B "Nxn

Forma matricial da funcao objetivo

e A fungdo objetivo é

z=cL(B7"b — B "Nxn) + cixn
=cEB b — (c5BTTN — ¢k )xn
=ckB7'b— ((B7"N)tcp —en)txn

Dicionario em forma matricial

e Logo, o dicionario em forma matricial é

z=c5B b —((B""N)tcpg —cn)txn

XB = B~ 'b—B~! Nxn

e Compare com a forma em componentes:

z=2+ ) X z=Z+C'xy
JEN

:Bi_ZdUXj ieB XBZB—AXN
jeEN
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3.6. Os métodos em forma matricial

Dicionario em forma matricial

e Portanto, vamos identificar
Z=c5B 'b; c=—((B""N)tcg —cn)
b=B"b; A =(a;) =B 'N
e para obter o diciondrio
z=Z+C'xN
Xg = b — Axn

Sistema dual

e As varidveis primais sao
X = (X1 X0 X041« Xntm)
—
original folga

e Para manter indices correspondentes, escolhemos variaveis duais da forma

Y= (91 oo YnYnta -~-yn+m)t
— 7 "

folga dual

e O diciondrio do dual correspondente entao é

Primal Dual
z=7+4CcxN —-w=—-z—b'yp
yn = —C+ Atyg

XB :B—AXN

Primal e dual

e A solucgéo bédsica do sistema primal é
XLy =0; x5j=b=B"Tb

e A solugao dual correspondente é
Cc= (B_lN)tCB —CN

yp =0, yu=-
e Com isso temos os diciondrios
z=2z— (y&)txn —w=—-Z— (x3)'ys
xg = x5 — (B7"N)xn yn =yh + (BN typ
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3. Dualidade
Método Simplex em forma matricial

e Comecamos com uma particao B UN = [1,n +m].

e Em cada iteracao selecionamos uma varidvel sainte i € B e entrante

jeN.
e Fazemos o pivo xi com X;.

e Depois a nova base é B\ {i} U{j}.

Método Simplex em forma matricial

S1: Verifique solucdo 6tima Se yy, > 0 a solucdo atual é 6tima. Pare.

S2: Escolhe varidvel entrante Escolhe j € N com y; < 0. x; ¢ a varidvel
entrante.

S$3: Determine passo basico Aumentando x; uma unidade temos novas varidveis
nao-bésicas xn = x§ + Axn com Axn = (0---010---0)* =ej e g5 0
vetor nulo com somente 1 na posigao correspondente com indice j. Como

XB = XE — BilNXN

a diminuicao correspondente das varidveis bésicas é Axg = B! Ne;.

Método Simplex em forma matricial

S4: Determine aumento maximo O aumento médximo de x; é limitado por
XB > 0, i.e.

xp = xp — tAxg > 0 & x} > tAxp.

Com t,x§ > 0 temos
x¥
t<t"= min &

ieB  Axy
Ax;>0

$5: Escolhe variavel sainte Escolhe um i € B com xj = t*Ax;.
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3.7. Analise de sensibilidade

Método Simplex em forma matricial

S5: Determine passo dual A varidvel entrante dual é y;. Aumentando uma
unidade, as varidveis yyn diminuem Ayn = —(B7'N)te;.

$6: Determina aumento maximo Com varidvel sainte yj, sabemos que y;
pode aumentar ao maximo

s= I
Ay
S7: Atualiza solucao
X =t yi=s
Xp = Xxp — tAxp YN = yN — sAyn

B =B\ {i}U{j}

3.7. Analise de sensibilidade
Motivacao

e Na solugao da programas lineares tratamos os parametros como ser fi-
xados.

e Qual o efeito de uma perturbacao
c:=c+Ac; b:=b+Ab; A:=A+4AA?

(Imagina erros de medida, pequenas flutuagoes, etc.)

Andlise de sensibilidade
e Apés a solugdo de um sistema linear, temos o dicionario 6timo
7 = Z* _ ( * )tx
UNJ XN
* —1
xg =Xxg — B~ 'Nxp
e com
* _ p—1
xg=B"'b
* —1 t
yn = (B 'N)'cp —cn

2" =c5B7'b
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3. Dualidade

Modificar c

e Mudarmos ¢ para €, mantendo a base B.
* ~ M * *
e X} nao muda, mas temos que reavaliar yy, e z*.
e Depois, x}; ainda é uma solucao basica vidvel do sistema primal.

e Logo, podemos continuar aplicando o método Simplex primal.

Modificar b

e Da mesma forma, modificamos b para b (mantendo a base).
* e 7 * *
e Yy} nao muda, mas temos que reavaliar xg e z*.
e Depois, y}, ainda é uma solugao basica viavel do sistema dual.

e Logo, podemos continuar aplicando o método Simplex dual.

Vantagem dessa abordagem

e Nos dois casos, esperamos que a solugao inicial ja é perto da solugao
otima.

e Experiéncia pratica confirma isso.

e O que acontece se queremos modificar tanto b quanto ¢ ou ainda A?

A solugao atual nao necessariamente é viavel no sistema primal ou dual.

e Mas: Mesmo assim, a convergéncia na pratica é mais rapido.

Estimar intervalos

e Pergunta estendida: Qual o intervalo de t € R tal que o sistema com
¢ = ¢ + tAc permanece 6timo?

e Parat=1: y{, = (B~"N)tcg—cn aumenta Ayy := (B7'N)*Acg—Acy.
o Em geral: Aumento tAyn.

e Condigao para manter a viabilidade dual:

yn +tAyn >0
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3.7. Analise de sensibilidade

e Para t > 0 temos

. Y;
t < min 2
A)yej<0 y]
e Para t < 0 temos .
max S <t
A]yej>0 Yj

Estimar intervalos
e Agora seja b = b + tAb.

e Parat=1: xj; = B~ b aumenta Axp := B~'Ab.

Em geral: Aumento tAb.

Condigao para manter a viabilidade primal:

xp + tAxg > 0

Para t > 0 temos

t < min —
ieB Xi
Ax;<0
e Para t < 0 temos .
max ——t <t
ieB Xi.
Ax; >0

Observagao 3.1
A matriz B~' s@o as colunas do dicionério final que correspondem com as
varidveis de folga. O

Exemplo 3.8
Considere o problema da empresa de ago (vista na aula pratica, veja também
execicio 1.7).

maximiza 25p + 30c
sujeito a 7p + 10c < 56000
p < 6000
c <4000

Qual o intervalo em que o valor do lucro das placas de 25R $ pode variar sem
alterar a solugao 6tima?
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3. Dualidade

Exemplo: Empresa de aco

e Sistema 6timo

2
*7/ 10w,

e Base B = {p,ws,c}, varidveis nao-bdsicas N' = {wy,w;}. (Observe:
Usamos conjuntos de varidveis, ao invés de conjuntos de indices).
Exemplo: Variaveis

e Vetores ¢ e Ac. Observe que reordenamos dos dados do sistema inicial
de forma correspondente com a ordem das variaveis do sistema final.

25

0 25 0
c=130];c5=10 ;CN—<O>;

0 30

0

1

0 1 0
Ac=|0]|;Acg = {0 ;ACN:<O>

0 0

0

Exemplo: Aumentos

e Aumento das varidveis duais

Ayn = (B""N)*Acg — Acn = (B7'N)*Acp

® COom
0 1
B 'N=[-1/10 7/10
1/10  —=7/10
e temos

()
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3.7. Analise de sensibilidade

Exemplo: Limites

e Limites em geral

max ) I min —--
A)ij>0 Yj A]yei<0 Yj
e Logo
—4<t< o
e Uma variacdo do prego entre 25 4 [—4, 0o] = [21, 00] preserve a otimali-

dade da solugao atual.
e O novo valor da funcao objetivo é

6000
z==CYB b= (25+t 0 30) (2600 | = 192000 + 6000t
1400

e os valores das varidveis p e ¢ permanecem os mesmos.

O

Exemplo 3.9
Qual o intervalo em que o lucro das placas (R$ 25) e dos canos (R$ 30) podem
variar sem que a solugao Otima seja alterada?

Exemplo: Variacao do lucro dos placas e canos

e Neste caso, os vetores c, cg, cN € Acn permanecem os mesmos do
exemplo anterior. Enquanto que:

Ac Acg = [ 0] ;

Il
©c o —=o =

e Neste caso, o valor de Ayy ¢

]
o /0 1710 1/10 110\
Ayn = (B 1NMCB_(] 7/10 —7/10) (1) —<3/1o>*
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3. Dualidade

e Logo —40/3 <t<

e Ou seja, uma variagao do lucro das placas entre R$ 11.67 e co, e do lucro
dos canos entre R$ 16.67 e oo, nao altera a solugdo dtima do sistema.

O

Exemplo: Modificacao
e Qual o intervalo em que o lucro dos canos (R$ 30) podem variar sem
que a solugao otima seja alterada?

e Neste caso, os vetores c, cg, cn € Acn permanecem os mesmos do
exemplo anterior. Enquanto que:

;Acg = | 0]

Ac =

o O = OO

e Neste caso, o valor de Ayy é:
_(1/10 ).
Acg = (-7/10) ’

o Logo —30 < t < 40/7

e Ou seja, uma variacdo do lucro dos canos entre R$ 0 e R$ 35.71, néo
altera a solucao 6tima do sistema.

Exemplo 3.10
O que acontece se mudarmos o lucro das placas para R$ 207

Exemplo: Placas com lucro R$ 20

e Novos vetores

20

0 20 0
c=130 ,fl\B: 0 ;é\N:(O)

0 30

0
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3.7. Analise de sensibilidade

e Aumento

On = (B 'N)'ep —&n = (B 'N)'es
_ (o —1/10 1/10) N ( 3)
1 7/10 -=7/10 30 —1
Novas variaveis

e Com
6000
B~ 'b = | 2600
1400

e Novo valor da func¢ao objetivo

6000
2 =¢B b =(20 0 30) [ 2600 | = 162000
1400

Exemplo: Novo dicionario

e Novo sistema primal vidvel, mas nao 6timo:

z = 162000 —3w; +wy
P = 6000 —W»
wsz = 2600 +1/10w;  —7/10wo
c = 1400 —1/10wy  +7/10w;

e Depois um pivo: Sistema étimo.

2 =1657142/7 —20/7w; —10/7ws
p =22855/7 —1/7w1  +10/7w3
Wy =37142/7 +1/7w1 —10/7w;
¢ =4000 —ws

Exemplo 3.11

O que acontece se mudarmos o lucro das placas de R$ 25 para R$ 35 e dos

canos de R$ 30 para R$ 10?
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3. Dualidade

Exemplo: Placas e canos com lucro R$ 35 e R$ 10

e Novos vetores

35

0 (35) 0
c=110 ,632 0 ;6N—<O)

0 10

0

e Aumento
35
(o (0 —=1/10 1/10 e
O = (7N en —en) = (1 7/10 —7/10) (1%) B (28>

Novas variaveis e novo dicionario

e Novo valor da funcao objetivo

6000
2*=¢tB 'b=2kxy = (35 0 10) [ 2600 | = 224000
1400

e O novo sistema primal viavel é

z = 224000 —Twy —28w,
p =6000 —Wy
wsz = 2600 +1/10w; —7/10w;
c =1400 —1/10w;  +7/10w;,

e O sistema é 6timo.

Exemplo 3.12
Qual o efeito de uma variagao do lado direito 6000 da segunda restri¢gao? Para
estudar essa variacdo escolhemos Ab = (0 10)t. Temos

7 0 10 0 10 0
B=|1 1 0|; B '=1/10-1 7 10
0 0 1 1T -7 0
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3.8. Exercicios

e logo Axg =B~ TAb =1/10(107 — 7). Obtemos a nova solucio bésica

6000 10
R = [ 2600 | +t/10 [ 7
1400 -7

e a condigdo de otimalidade X§ > 0 nos fornece os limites
—26000/7 < t < 2000

em que ela é 6tima. O valor da fung@o objetivo dentro desses limites é

6000 + t
2* = chRE = (25030)" | 2600 +7/10t | = 192000 + 4t.
1400 — 7/10t
O
3.8. Exercicios
(Solugdes a partir da péagina 200.)
Exercicio 3.1
Qual o sistema dual de
minimiza 7x1 + X2 + 5x3

sujeito a X1 —x2+3x3 > 10
5%1 +2x2 —x3 > 6
X1,X2,X3 Z 0.

Exercicio 3.2
Considere o problema

COBERTURA POR CONJUNTOS PONDERADOS (WEIGHTED SET COVER)

Instancia Um universo U, a uma familia S de subconjuntos do uni-
verso,i.e.,para todo S € §, S C U, e custos c(S) para cada conjunto.

Solucao Uma cobertura por conjuntos,i.e.,uma selecao de conjuntos T C
S tal que para cada elemento e € U existe pelo menos um S € T
com e € S.

Objetivo Minimizar o custo total dos conjuntos selecionados.
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3. Dualidade

Uma formulagao inteira do problema é

minimiza Z c(S)xs
Ses

sujeito a Z xs > 1 ecl
S:e€S
Xs € {O) ]} S S S

O problema com restricoes de integralidade é NP-completo. Substituindo as
restrigdes de integralidade xs € {0, 1} por restri¢oes trivias xs > 0 obtemos
um programa linear. Qual o seu dual?

Exercicio 3.3
O sistema

maximiza 2x1 — X2 + X3
sujeito a 3x1 +x2 + x3 < 60,
X1 —x2 +2x3 < 10,
X1 +x2 —x3 < 20,
X1,%2,%3 > 0.

possui dicionario 6timo

z= 25 —=3/2x5 —1/2x¢ —3/2x3
x4 = 10 +X5 +2x¢g —X3
x1= 15 —1/2x5 —1/2x¢ —1/2x3
x2= 5 +1/2x5 —1/2x¢ +3/2x3

a) Em qual intervalo o coeficiente ¢; = 2 pode variar?
b) Em qual intervalo o coeficiente b, = 10 pode variar?

¢) Modifique o lado direito de (60 10 20)* para (70 20 10)*: o sistema mantém-
se 6timo? Caso contrario, determina a nova solucao étima.

d) Modifique a funcdo objetivo para 3x; — 2x2 + 3x3: o sistema mantém-se
6timo? Caso contrério, determina a nova solugao tima.
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4. Tépicos

4.1. Centro de Chebyshev

Seja B(c,r) = {c +u | [Ju]] < 1} a esfera com centro ¢ e raio r. Para um
poligono convexo a;x < by, para i € [n], queremos achar o centro e o raio da
maior esfera, que cabe dentro do poligono, i.e. resolver

maximiza T
sujeito a sup aip < b; Vi€ [n].
pPEB(c,7)
Temos
sup aip =cai+ sup aiu=ca; + [|ail|r
peB(c,T) [lull<r

porque o segundo supremo ¢ atingido por u = ra;/||ai||. Assim obtemos uma
formulacao linear

maximiza T
sujeito a aic + 1llail] < by Vi e [n].
Exemplo 4.1

O poligono da Fig. 4.1 possui a descri¢ao
2x1 +4x, < 24
Ix1 —x <12
—x1 <0
—x2 <0

Portanto o programa linear para achar a o centro e o raio do maior circulo é
maximiza T
sujeito a 2c1 +4c +VvV20r <24

4eq —cr +V17r < 12
—c1+7<0
—c2+1<0
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4. Tépicos

Figura 4.1.: Exemplo do centro de Chebyshev
X2

2 ]

3
1.85,3.01) /

X1

4.2. Funcao objetivo convexa e linear por segmentos

Uma fungéo f é convera se f(tx+ (1—1t)y) < tf(x) + (1 —1t)f(y) para qualquer
xeye0<t<t. Fungoes convexas sao importantes na otimizagao, porque
eles possuem no maximo um minimo no interior do dominio deles, e portanto

o minimo de uma funcdo convexa pode ser obtido com métodos locais.

Seja fi(x),1 € [n] uma colegao de fungoes lineares. O maximo f(x) = max;cn) fi(x)
é uma fungao convexa linear por segmentos. O problema de otimizacao

minimiza max f;(x)

ien]
é equivalente com o programa linear
minimiza X0 (4.1)
sujeito a fi(x) < xo Vi e [nl]. (4.2)

Portanto podemos minimizar uma funcao convexa linear por segmentos usando
programagao linear. De forma similar, f é concava se f(tx + (1 —t)y) >
tf(x) + (1 — t)f(y). (Observe que uma fungao convexa e concava ¢ afina.) O
sistema

maximiza X0

sujeito a fi(x) > xo vie [n].

maximiza uma func¢ao concava linear por segmentos.
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Parte II.

Programacao inteira
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5. Introducao

5.1. Definicoes
Problema da dieta

e Problema da dieta

minimiza ctx
sujeito a Ax>T
x>0

e Uma solucao (laboratério): 5 McDuplos, 3 magéas, 2 casquinhas mista
para R$ 24.31

e Mentira! Solugao correta: 5.05 McDuplos, 3.21 magas, 2.29 casquinhas
mistas.

e Observagao: Correto somente em média sobre varias refei¢oes.

Como resolver?

e Com saber o valor 6tima para uma unica refeicao?
e Restringe as varidveis x ao conjunto Z.
e Serd que método Simplex ainda funciona?

e Nao. Pior: O problema torna-se NP-completo.

Problemas de otimizacao
e Forma geral

optimiza f(x)

sujeito a xeV
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5. Introducao

Programacao inteira
e Programacao linear (PL)

maximiza c'x
sujeito a Ax <D
xeR™" >0

e Programacio inteira pura (PI)

maximiza h'y
sujeito a Gy<b
yezZt>0

Programacao inteira
e Programacao (inteira) mista (PIM)

maximiza  c'x+h'y
sujeito a Ax+ Gy <b
x ER" >0,y cZ™ >0

e Programacao linear e inteira pura sao casos particulares da programagao
mista.

e Outro caso particular: 0-1-PIM e 0-1-PI.

x € B"
Exemplo
maximiza X1 + X2
sujeito a 2x71 +7x <49
5x1 4+ 3x2 <50
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Exemplo
15

14
13 +
12 -
11 +
10

X3

I
3 45 6 7 8 9 101112131415

X1

5X1+3X,< 50 L

5.1. Definigoes

e Sorte: A solugdo 6tima é inteiral x; =7, x2 =5, V=12.

e Observagao: Se a solugdo étima é inteira, um problema de PI(M) pode
ser resolvido com o método Simplex.

Exemplo

Exemplo

maximiza

sujeito a

X1+ X2
1.8x7 + 7x, <49
5x7 + 2.8x, <50
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5. Introducao

15
14 u
13 u
12 u
11 u

=
o
l

X

5%, +2.8%,< 50

O P N W b O O N 0 ©
T

I I f I I
01 2 3 45 6 7 8 91011121314 15
X1

e Solucédo 6tima agora: x7 =~ 7.10, x2 = 5.17, V = 12.28.

e Serd que |x1], |x2] é a solugao étima do PI?

Exemplo
maximiza —x1 4+ 7.5%2
sujeito a —x7+7.2x2 <504
5% +2.8x2 <62
Exemplo
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5.1. Definigoes

-X1+7.2X,< 50.4 L

X3

01 2 3 45 6 7 8 9 101112131415

e Solucao 6tima agora: x1 ~ 7.87, x2 ~ 8.09, V = 52.83.

L] |_X1J = 77 |_X2J =38.

e Solucao 6tima inteira: x; = 0,x; = 7!

e Infelizmente a solucdo 6tima inteira pode ser arbitrariamente distante!
Métodos para resolver Pl

e Prove que a solugao da relaxacao linear sempre € inteira.
e Insere cortes.

e Branch-and-bound.

Exemplo: 0-1-Knapsack
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5. Introducao

PROBLEMA DA MOCHILA (KNAPSACK)

Instdncia Um conjunto de n itens [ = {i1,...,in} com valores v; e pesos
w;i. Um limite de peso K do mochila.

Solugcdao Um conjunto S C I de elementos que cabem na mochila, i.e.
2iesWwi <K

Objetivo Maximizar o valor } ; ¢ vi.

e Observagao: Existe uma solugdo (pseudo-polinomial) com programagao
dindmica em tempo O(Kn) usando espago O(K).

Exemplo: Maximizar cavalos

e Qual o numero maximo de cavalos que cabe num tabuleiro de xadrez,

tal que nenhum ameaga um outro?
a b o d e £ g h

Exemplo 5.1
Formulagao do problema da mochila, com varidveis indicadores xi, 1 < 1i,j <

86



5.2. Motivacao e exemplos

maximiza E ViXi
sujeito a E wixiy < L
xi € B

Formulacao do problema dos cavalos com varidveis indicadores x;;:

maximiza inj
sujeito a Xij + Xi—2,j41 < 1 3<i1<8,j€e7]
Xij-i-Xif],HzS] 2<l<8,]€[6}
Xij + Xig2,501 <1 e [6l,j € [7]
Xij +Xig1,542 <1 € [7,j € [6]

Numero de soluges do problema dos cavalos (A030978)
n‘12345678910111213141516

k“ 4 5 8 13 18 25 32 41 50 61 72 & 98 113 128
¢

5.2. Motivacao e exemplos
Motivacao

e Otimizacao combinatéria é o ramo da ciéncia da computagao que estuda
problemas de otimizagdo em conjuntos (wikipedia).

e “The discipline of applying advanced analytical methods to help make
better decisions” (INFORMS)

e Tais problemas sao extremamente frequentes e importantes.

Maquina de fazer dinheiro

e Imagine uma maquina com 10 botdes, cada botao podendo ser ajustado
em um numero entre 0 e 9.
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5. Introducao

Maquina de fazer dinheiro

e h4 uma configuragao que retorna R$ 10.000.
e total de combinacoes: 10'°.
e dez testes por segundo

e em um ano:=> 10 x 60 x 60 x 24 x 365 =3 x 108

Explosao combinatéria
Funcoes tipicas:
n  logn n°5 n? n n!
10 332 316 107 1.02x10° 3.6 x 10°
100 6.64 1000 10* 127 x103° 933 x10'%7
1000 9.97  31.62 10° 1.07 x 10307 4,02 x 1025¢7

“Conclusoes”

Iooooon) O

Iretirado de Integer Programming - Wolsey (1998)
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e Melhor nao aceitar a maquina de dinheiro.

e Problemas combinatérios sdo dificeis.

5.3. Aplicacoes
Apanhado de problemas de otimizacao combinatéria

e Caixeiro viajante

Roteamento

Projeto de redes

Alocagao de horarios

Tabelas esportivas

Gestao da produgao

e etc.

Caixeiro Viajante

Caixeiro Viajante

5.3. Aplicagées
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5. Introducao

Caixeiro Viajante

e Humanos sdo capazes de produzir boas solu¢oes em pouco tempo!

e Humanos ?

Caixeiro Viajante
F

. V/::___________——C P
\\ £ l\\O_ il
jg.. {.y_ill. e
\ o
— | a
3

Figure 1.40 Chimpanzes towr (Bido),

Caixeiro Viajante

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University
Press
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5.3. Aplicagées

Figura 1.41 Pigeon solving a TSP, Images courtesy of Brett Gibson.

Caixeiro Viajante
Der

Handlungsreifende

wie er fein {oll

und wad er ju thun Hat, um Auftedge
gu exhalten und cined glidlihen Grfolgs
in feinen Gefddften gewif au fein,

Bon
¢inem alten Commis - Voyageur.

@
Miteinem Titelbupfer
————

Jlmenau 1832,
Drud und Berlag von B, Fr, Voigt.

Caixeiro Viajante

e Business leads the traveling salesman here and there, and there is not a
good tour for all occurring cases; but through an expedient choice divi-
sion of the tour so much time can be won that we feel compelled to give
guidelines about this. Everyone should use as much of the advice as he
thinks useful for his application. We believe we can ensure as much that

IRetirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University
Press

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University
Press
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5. Introducao

it will not be possible to plan the tours through Germany in considera-
tion of the distances and the traveling back and fourth, which deserves
the traveler’s special attention, with more economy. The main thing to
remember is always to visit as many localities as possible without having
to touch them twice.

“Der Handlungsreisende wie er sein soll und was er zu tun hat, um Auftrage
zu erhalten und eines gliicklichen Erfolgs in seinen Geschiften gewiss zu sein.
Von einem alten Commis-Voyageur” (O caixeiro viajante, como ele deve ser
e o que ele deve fazer para obter encomendas e garantir um sucesso feliz dos
seus negdcios. Por um caixeiro viajante experiente).

First brought to the attention of the TSP research community in 1983 by
Heiner Muller-Merbach [410]. The title page of this small book is shown in
Figure 1.1. The Commis-Voyageur [132] explicitly described the need for good
tours in the following passage, translated from the German original by Linda
Cook.

Caixeiro Viajante

HELP “CAR 54”...AND WIN CASH
54...51,000 PRIZES 5
ONE...410.000 GRAND PRIZE »y

Caixeiro Viajante

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University
Press
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Figure |.45 Further progress in the TSP, log scale.

Formulando matematicamente o PCV

e Associar uma varidvel a cada possivel decisao.

Formulando matematicamente o PCV

e Associar uma varidvel a cada possivel decisao.

5.3. Aplicagées

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University

Press
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5. Introducao

K/‘ minimiza CijYij
sujeito a Z Xij + Z Xji = 2,

jEN jEN
xij € {0, 1},

Formulando matematicamente o PCV

e Associar uma variavel a cada possivel decisdo.

\ minimiza CijYij
sujeito a E Xij + E Xji = 2,

jeEN jeEN
/ Xij S {O> 1}»

+ restrigoes de eliminagao de subci-
clos!

Apanhado de problemas de otimizacao combinatdria

e Caixeiro viajante

e Roteamento

Projeto de redes

Alocagao de horérios

Tabelas esportivas

Gestao da producgao

e etc.
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5.3. Aplicagées

Problemas de roteamento

ool ool

Problemas de roteamento

olo oo oo

Etc.

oo

Apanhado de problemas de otimizacao combinatéria
e Caixeiro viajante
e Roteamento

e Projeto de redes

Alocacgao de horarios

Tabelas esportivas

Gestao da produgao

e etc.
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5. Introducao

Problemas em arvores

Problemas em arvores

Problemas em arvores - aplicacoes

e Telecomunicagoes
e Redes de acesso local

e Engenharias elétrica, civil, etc..
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Apanhado de problemas de otimizacao combinatéria
e (Caixeiro viajante
e Roteamento
e Projeto de redes
e Alocacao de horérios
e Tabelas esportivas
e Gestao da produgao

e ctc.

Alocacao de tripulacoes

Apanhado de problemas de otimizacao combinatéria
e Caixeiro viajante
o Roteamento
e Projeto de redes
e Alocagao de horérios
e Tabelas esportivas
e Gestao da produgao

e etc.

5.3. Aplicagées
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5. Introducao

Tabelas esportivas

Proximos Adversarios

Fla Vasco Paysandu Criciuma  Vitdria
JUVENTUDE Ponte Coritiba GALO CORINTHIANE
Guarani CRUZEIRO PALMEIRAS  Sanios Juventude
GALO Sao Paulo Parana FURACAO GUARANI
Botafogo GOIAS CRICIOMA Paysandu Grémio
PALMEIRAS  Juventude Santos PONTE COXA
Coritiba CORINTHIANS GALO Parana Sao Paulo

5. PAULO Furaciio Guarani PALMEIRAS  CRUZEIRO
Cruzeiro SANTOS JUVENTUDE Coxa Ponte
Botafogo  Galo Parana |Grémio Guarani
Cruzeiro Criciima S.CAETANO Falmeiras Goids

S. PAULOD GOIAS Grémio PARANA FLA

Coxa Fla PAYSANDU Ponte Vitoria

FLA PARANA Galo VITORIA PALMEIRAS
Guarani FIGUEIRA Goias Furacéio BOTAFOGO
JUVENTUDE Paysandu CRICIOMA SANTOS Figuaira
Corinthians GREMIO Flu Galo PAYSANDU
FURACAO S. Caelano INTER GUARANI Grémio

Apanhado de problemas de otimizacao combinatéria

e (Caixeiro viajante

e Roteamento

Projeto de redes

Alocacéao de horarios

Tabelas esportivas

Gestao da producao

e etc.

Gestdo da producao
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5.3. Aplicagées

Etc.
e programacao de projetos
e rotagao de plantagoes
e alocagao de facilidades (escolas, centros de comércio, ambuléncias...)
e projeto de circuitos integrados
e portfolio de acoes

e etc, etc, etc, etc...
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6. Formulacao

6.1. Exemplos
“Regras de formulacao”
e Criar (boas) formulacoes é uma arte.

e Algumas diretivas bésicas:
— escolha das varidveis de decisao.
— escolha do objetivo.

— ajuste das restrigoes.

Formulacao - Problema da mochila

== 7
o B
L)
g

itens N ={1,2,..n}

peso de cada item: p;, valor de cada item: v;

e Levar o maior valor possivel, dada a restrigao de peso.

Varidveis de decisao ?

Formulacao - Problema da mochila
> r)
T
g
L)

T
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6. Formulacao

maximiza E X{Vi

3
sujeito a Z pixi <P

ieN
x; € B.
6.2. Técnicas
Um problema recorrente com indicadores x1,...,Xn € B e selecionar no

maximo, exatamente, ou no minimo k dos n itens. As restrigoes

ingk

ien]
> -
ien]
2 xizk
ien]

conseguem isso.

Exemplo 6.1 (Locagao de facilidades simples 1)

Em n cidades dadas queremos instalar no méximo k fébricas (k < n) de modo
a minimizar o custo da instalacdo das fabricas. A instalacdo na cidade j € [n]
custa fj. Podemos usar indicadores para y; € B para a instalacao da uma
fabrica na cidade j e formular

minimiza Z f5y;
jen]

sujeito a Z y; =k
j€MI

Yyj € B, j€ [n].
(Obviamente para resolver este problema é suficiente escolher as k cidades

de menor custo. No exemplo 6.2 estenderemos esta formulagao para incluir
custos de transporte.) O
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6.2. Técnicas

clientes

[ l:l fabricas
. . ]

(a) Exemplo de uma instancia  (b) Exemplo de uma solugao

Figura 6.1.: Locacao de facilidades.

6.2.1. Formular restricoes logicas

Formulacao: Indicadores

e Variaveis indicadores x,y € B: Sele¢do de um objeto.
e Implicagao (limitada): Se x for selecionado, entéo y deve ser selecionado

x <y x,y €B

e Ou:
x+y>1 x,y €B

o Ou-exlusivo:

x+y=1 xy eB

Exemplo 6.2 (Locagao de facilidades nao-capacitado)

Queremos incluir no exemplo 6.1 clientes. Suponha que em cada cidade tem
um cliente, e queremos, junto com os custos das fabricas instaladas, minimizar
o custo de atendimento dos clientes. Entre cada par de cidade, i e j, o custo
de transporte é dado por cij (ver figura 6.1). Para formulacao escolhemos
varidveis de decisao xi; € B, que indicam se o cliente i for atendido pela
fabrica em j. E importante “vincular” as varidveis de decisao: o cliente i pode
ser atendido pela cidade j somente se na cidade j foi instalada uma fabrica,
i.e. Xij — Yj-
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6. Formulacao

minimiza

sujeito a

Formulacgao:

Z ny]+ Z CijXij

jen] i,jeMn]

ZXU—1

jen]

Z Yj <m,
jenl]

Xij < Yj,

xij € B,

y; € B,

Indicadores
Para x,y,z € B

e Conjuncdo x =yz=y Az

e Disjuncao x =y Vz

e Negacao x =y

e Implicagao: z=x —y

104
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x < (y+z)/2
x>y+z—1

x=(y+z)/2
x<y+z

z<T—x+y
2> (1-x+y)/2

(s6 uma fébrica atende)

(no méximo m fébricas)

(s6 fabricas existentes ate



6.2. Técnicas

Exemplo 6.3 (MAX-3-SAT)

Seja @(x1y...y%n) = Ajcpm Ci uma férmula em forma normal conjuntiva,
com clatsulas da forma C; = li1 V li2 V li3. Queremos encontrar uma atri-
buigao x; € B maximizando o niimero de clatsulas satisfeitas.

Seja c¢; € B uma varidvel que indica que clatsula i é satisfeita. Também
vamos introduzir uma variavel x; € B para cada varidvel x; do problema, e
uma varidvel auxiliar li; para literal li; do problema.

maximiza Ci
sujeito a ci <lit+liz+ L3
Lij = x4 caso lyj = x4
Lj=T1—x caso lij; # x4
ci € B,x; € B, j; € B.

6.2.2. Formular restricoes condicionais

Indicadores para igualdades satisfeitas Queremos definir varidvel y € B que
indica se uma dada restrigao é satisfeita.

e Para er[n aixi < b: Escolhe um limite superior M para } ; n GiXi—
b, um limite inferior m para er[n aixi — b e uma constante e >0
pequena.

Z aixi <b+M(1—y) (6.6)
ie[n]

Z aixi >b+my+ (1—yle

ie[n]

e Para x > 0: Escolhe um limite superior M para x e uma constante €
pequena.

X > ey (6.7)

Exemplo 6.4
Uma aplicag@o para problemas de minimiza¢ao com uma funcao objetivo nao-
linear. Queremos minimizar custos, com uma “entrada’ fixa ¢ da forma

0 caso x =0
f(x) =
c+1lx) caso0<x <M
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6. Formulacao

c+(x)

NS i

Figura 6.2.: Fungao objetivo nao-linear

e 1(x) uma fungao linear (ver figura 6.2). Com uma y € B indica a positividade
de x, i.e. y =1 sse x > 0 podemos definir a funcao objetivo por

f(x) =cy + L(x)

e a técnica da equagao (6.7) resolve o problema. Como o objetivo é minimizar
f(x) a primeira equagdo x > ey é redundante: caso y = 1 néo faz sentido
escolher uma solugao com x = 0, porque para x = 0 existe a solugao de menor
custo x =y = 0. Logo

x < My
xeRyeb

é suficiente neste caso.

Exemplo
Planejamento de produgéo (ingl. uncapacitated lot sizing)

e Objetivo: Planejar a futura producao no proximos n semanas.

e Parametros: Para cada semana i

106



6.2. Técnicas

S o d ey
emana T T T T

Estoque So S1 S2 S3 S4
Custos f1/p1 f2/p2 f3/p3 fa/pa

Figura 6.3.: Planejamento de produgao.

Custo fixo f; para produzir,

Custo p; para produzir uma unidade,

— Custo hy por unidade para armazenar,

Demanda d;

Exemplo
Seja

e X; a quantidade produzida,

e s; a quantidade no estoque no final da semana i,

e y; = 1 sem tem produgao na semana i, 0 senao.
Problema:

e Funcao objetivo tem custos fixos, mas x; nao tem limite.

e Determina ou estima um valor limite M.

Exemplo
minimiza Z Pixi + Z hisi + Z fiyi
i i i
sujeito a Si = Si—1 + x4 — di, ie[n]
So = 0
xi < Myy, ien]
x € R,y € B™.
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6. Formulacao

X2

X1

Figura 6.4.: Diferentes formulagoes lineares que definem o mesmo conjunto de
solugoes inteiras.

Disjuncao de equacoes
e Queremos que aplica-se uma das equagoes
f1 <13
g1 < ¢g2.
e Solucao, com constante M suficientemente grande

f1 <fy+ Mx
g1 <g2+M(1—x)
x € B.

6.3. Formulacoes diferentes

Uma problema de programacao linear ou inteira geralmente possui mais que
uma formulacdo. A figura 6.4 mostra diversas formulacoes que definem o
mesmo conjunto de solugoes inteiras.
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6.4. Exercicios

Na programacao linear existe pouca diferenga entre as formulagoes: a solugao
é a mesma e o tempo para resolver o problema é comparavel, para um niimero
comparavel de restrigoes e varidveis. Na programagcao inteira uma formulacao
boa é mais importante. Como a solucao de programas inteiras é NP-completo,
frequentemente a relaxagao linear é usada para obter uma aproximagao. Di-
ferentes formulacao de um programa inteiro possuem diferentes qualidades da
relaxagao linear. Uma maneira de quantificar a qualidade de uma formulacao
é o gap de integralidade(ingl. integrality gap ). Para um problema P e uma
instancia i € P seja OPT(i) a solugdo Stima inteira e LP(i) a solucdo da
relaxacao linear. O gap de integralidade é

B LP(i)
g(P) = ?elg OPiT(l) (6.8)

(para um problema de maximizagéo.) O gap de integralidade d4 uma garantia
para qualidade da solucao da relaxacao linear: caso o gap é g, a solu¢ao nao
¢ mais que um fator g maior que a solugao integral étima.

Exemplo 6.5 (Conjunto independente maximo)
Uma formulacgao do problema de encontrar o conjunto independente maximo
num grafo ndo-direcionado G = (V, A) é

maximiza Z Xy (CIM)
vev
sujeito a Xy +x, <1 viu,v} € E
Xy €B Yv e V.

No grafo completo com n vértices K, a relaxacao linear possui um valor pelo
menos n/2 (porque a solugdo x, = 1/2,v € V possui valor n/2), enquanto
a solucdo 6tima inteira é 1. Por isso, o programa (CIM) possui um gap de
integralidade ilimitado. O

6.4. Exercicios

(Solugoes a partir da pdgina 202.)

Exercicio 6.1

A empresa “Festa fulminante” organiza festas. Nos proximos n dias, ela pre-
cisa p; pratos, 1 <1 < n. No comecgo de cada dia gerente tem os seguintes
opgoes:

e Comprar um prato para um prego de c reais.
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6. Formulacao

e Mandar lavar um prato devagarmente em d; dias, por um preco de 1y
reais.

e Mandar lavar um prato rapidamente em d,; < d; dias, por um preco de
1, > 1 reais.

O gerente quer minimizar os custos dos pratos. Formule como programa
inteira.

Exercicio 6.2
Para os problemas abaixo, encontra uma formulagdo como programa inteira.

CONJUNTO INDEPENDENTE MAXIMO
Instancia Um grafo ndo-direcionado G = (V, A).

Solucdao Um conjunto independente 1, i.e. I C V tal que para vértices
vi,v2 €1, {vi,va} € A

Objetivo Maximiza |I|.

EMPARELHAMENTO PERFEITO COM PESO MAXIMO

Instancia Um grafo nao-direcionado bi-partido G = (V7 U V2, A) (a fato
de ser bi-partido significa que A C V; x V3) com pesos p: A — R
nos arcos.

Solugcao Um emparelhamento perfeito, i.e. um conjunto de arcos C C A
tal que todos nds no sub-grafo G[C] = (V; U V3, C) tem grau 1.

Objetivo Maximiza o peso total } ... p(c) do emparelhamento.

PROBLEMA DE TRANSPORTE

Instancia n depdsitos, cada um com um estoque de p; (i € [n]) produtos,
e m clientes, cada um com uma demanda de dj (j € [m]) produtos.
Custos de transporte ai; de cada depdsito para cada cliente.

Solucdo Um decisao quantos produtos xi; devem ser transportados do
depésito i ao cliente j, que satisfaz (i) Cada depdsito manda todo
seu estoque (i) Cada cliente recebe exatamente a sua demanda.
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(Observe que o ntimero de produtos transportados deve ser inte-
gral.)

Objetivo Minimizar os custos de transporte ) ; j A4X4j -

CONJUNTO DOMINANTE
Instancia Um grafo ndo-direcionado G = (V, A).

Solugdao Um conjunto dominante, i.e. um conjunto D C V|, tal que Vv €
V:veDV(3ueD:{u,v}e A) (cada vértice faz parte do conjunto
dominante ou tem um vizinho no conjunto dominante).

Objetivo Minimizar o tamanho do conjunto dominante |D|.

Exercicio 6.3
Acha uma formulagéo inteira para todos os 21 problemas que o Karp provou
NP-completo [5].

Exercicio 6.4

Juliano é fa do programa de auditério Apagando e Ganhando, um programa
no qual os participantes sao selecionados atraves de um sorteio e recebem
prémios em dinheiro por participarem. No programa, o apresentador escreve
um numero de N digitos em uma lousa. O participante entao deve apagar
exatamente D digitos do niimero que estd na lousa; o nimero formado pelos
digitos que restaram é entdo o prémio do participante. Juliano finalmente
foi selecionado para participar do programa, e pediu que vocé escrevesse um
programa inteira que, dados o niimero que o apresentador escreveu na lousa,
e quantos digitos Juliano tem que apagar, determina o valor do maior prémio
que Juliano pode ganhar.

(Fonte: Maratona de programagcao regional 2008, RS)

Exercicio 6.5

Set é um jogo jogado com um baralho no qual cada carta pode ter uma,
duas ou trés figuras. Todas as figuras em uma carta sdo iguais, e podem ser
circulos, quadrados ou triangulos. Um set é um conjunto de trés cartas em
que, para cada caracteristica (ndmero e figura), u ou as trés cartas sao iguais,
ou as trés cartas sao diferentes. Por exemplo, na figura abaixo, (a) é um set
valido, ja que todas as cartas tém o mesmo tipo de figura e todas elas tém
numeros diferentes de figuras. Em (b), tanto as figuras quanto os niimeros sao
diferentes para cada carta. Por outro lado, (c) ndo é um set, ja que as duas
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6. Formulacao

ultimas cartas tém a mesma figura, mas esta é diferente da figura da primeira

carta.
12 | B ]
E Qod ANNA
[eee]  [oe]

NN
(a) (b) (c)

O objetivo do jogo é formar o maior nimero de sets com as cartas que estao
na mesa; cada vez que um set é formado, as trés cartas correspondentes sao
removidas de jogo. Quando h&a poucas cartas na mesa, é ficil determinar
o maior nimero de sets que podem ser formados; no entanto, quando ha
muitas cartas hd muitas combinagoes possiveis. Seu colega quer treinar para
o campeonato mundial de Set, e por isso pediu que vocé fizesse um programa
inteira e que calcula o maior ntimero de sets que podem ser formados com um
determinado conjunto de cartas.

(Fonte: Maratona de programagao regional 2008, RS)

Exercicio 6.6
Para os problemas abaixo, acha uma formulagao como programa inteira.

COBERTURA POR ARCOS

Instancia Um grafo ndo-direcionado G = (V, E) com pesos ¢ : E — Q nos
arcos.

Solugdo Uma cobertura por arcos, i.e. um subconjunto E/ C E dos arcos
tal que todo vértice faz parte de pelo menos um arco selecionado.

Objetivo Minimiza o custo total dos arcos selecionados em E’.

CONJUNTO DOMINANTE DE ARCOS

Instancia Um grafo ndo-direcionado G = (V, E) com pesos ¢ : E — Q nos
arcos.

Solugdo Um conjunto dominante de arcos, i.e. um subconjunto E/ C E
dos arcos tal que todo arco compartilha um vértice com pelo menos
um arco em E’.

Objetivo Minimiza o custo total dos arcos selecionados em E’.
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COLORAGAO DE GRAFOS
Instancia Um grafo ndo-direcionado G = (V, E).

Solucao Uma coloragao do grafo, i.e. uma atribuicdo de cores nas vértices
c:V — Z] tal que cada par de vértices ligando por um arco recebe
uma cor diferente.

Objetivo Minimiza o ntimero de cores diferentes.

CLIQUE MINIMO PONDERADO

Instancia Um grafo ndo-direcionado G = (V, E) com pesos ¢ : V — Q nos
vértices.

Solugdo Uma clique, i.e. um subconjunto V' C V de vértices tal que
existe um arco entre todo par de vértices em V’.

Objetivo Maximiza o peso total dos vértices selecionados V.

SUBGRAFO CUBICO
Instancia Um grafo ndo-direcionado G = (V, E).

Solugdo Uma subgrafo ctbico, i.e. uma selegao B’ C E dos arcos, tal que
cada vértice em G’ = (V,E’) possui grau 0 ou 3.

Objetivo Maximiza o nimero de arcos selecionados |E’|.

Exercicio 6.7

Uma empresa tem que decidir quais de sete investimentos devem ser feitos.
Cada investimento pode ser feito somente uma tUnica vez. Os investimentos
tem lucros (ao longo prazo) e custos iniciais diferentes como segue

Investimento
1 2 3 4 5 6 7

Lucro estimado [MR$] 17 10 15 19 7 13 9
Custos iniciais [MRS$] 43 28 34 48 17 32 23
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6. Formulacao

A empresa tem 100 MRS$ capital disponivel. Como maximizar o lucro total
(ao longo prazo, nao considerando os investimentos atuais), respeitando que
os investimentos 1,2 e 3,4 sao mutualmente exclusivas, e nem o investimento
3 nem o investimento 4 pode ser feita, sem pelo menos um investimento em 1
ou 2 (as outros investimentos ndo tem restrigoes).

Exercicio 6.8

Um produtor de brinquedos projetou dois novos brinquedos para Natal. A
preparacao de uma fibrica para produzir custaria 50000 R$ para a primeiro
brinquedo e 80000 R$ para o segundo. Apds esse investimento inicial, o pri-
meiro brinquedo rende 10 R$ por unidade e o segundo 15RS$.

O produtor tem duas fabricas disponiveis mas pretende usar somente uma,
para evitar custos de preparagao duplos. Se a decisao for tomada de produzir
os dois brinquedos, a mesma fabrica seria usada.

Por hora, a fabrica 1 é capaz de produzir 50 unidades do brinquedo 1 e 40
unidades do brinquedo 2 e tem 500 horas de producao disponivel antes de
Natal. A fébrica 2 é capaz de produzir 40 unidades do brinquedo 1 e 25
unidades do brinquedo 2 por hora, e tem 700 horas de producao disponivel
antes de Natal.

Como nao sabemos se os brinquedos serao continuados depois Natal, a pro-
blema é determinar quantas unidades de cada brinquedo deve ser produzido
até Natal (incluindo o caso que um brinquedo nao é produzido) de forma que
maximiza o lucro total.

Exercicio 6.9

Uma empresa produz pequenos avides para gerentes. Os gerentes frequen-
temente precisam um aviao com caracteristicas especificas que gera custos
inicias altos no comeco da produgao.

A empresa recebeu encomendas para trés avides, mas como ela estd com ca-
pacidade de producao limitada, ela tem que decidir quais das trés avices ela
vai produzir. Os seguintes dados sao relevantes

AviGes Cliente
produzidas 1 2 3
Custo inicial [MR$] 3 2 0
Lucro [MR$/avido] 2 3 0.8
Capacidade usada [%/aviao] 20% 40% 20%
Demanda méxima [avides] 3 2 5

Os clientes aceitam qualquer nimero de avides até a demanda maxima. A
empresa tem quer decidir quais e quantas avides ela vai produzir. As avides
serao produzidos em paralelo.
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Exercicio 6.10 (Winkler)

Uma fechadura de combinagao com trés discos, cada um com ntmeros entre
1 e 8, possui um defeito, tal que precisa-se somente dois niimeros corretos dos
trés para abri-la. Qual o ntimero minimo de combinagdes (de trés nimeros)
que precisa-se testar, para garantidamente abrir a fechadura?

Formule um programa inteiro e resolve-o.

Exercicio 6.11
Formule o problema

MAX-k-SAT
Entrada Uma férmula em forma normal conjuntiva sobre varidveis X1, ..., X{n
com n cladsulas @(x1,...,xx) = C;/\---AC, em que cada clatisula

possui no maximo k literais
Solugdo Uma atribuigao x; — {0, 1}.

Objetivo Maximizar o nimero de clatsulas satisfeitas.

(Dica: Usa as desigualdades (6.1)-(6.3). Comega com k = 3.)
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7. Técnicas de solucao

7.1. Introducao
Limites
e Exemplo: Problema de maximizacao.

e Limite inferior (limite primal): Cada solucao vidvel.

— Qualquer técnica construtiva, p.ex. algoritmos gulosos, heuristicas

etc.

e Limite superior (limite dual): Essencialmente usando uma relaxagao

— Menos restrigoes = conjunto maior de solugao viaveis.

— Nova fungao objetivo que é maior ou igual.

e Importante: Relaxagao linear: x € Z = x € R.

7.2. Problemas com solucao eficiente

Observagao 7.1
Lembranga: A determinante de uma matriz pela regra de Laplace é

det(A) = Y (=" aydet(Ay) = > (—1)"ay det(Ay)

ien] jen]

sendo Ajj a submatriz sem linha i e coluna j.

Relaxacao inteira

e Solugao simples: A relaxacdo linear possui solugdo 6tima inteira.

e Como garantir?

e Com base B temos a solucio x = (xg xn)t = (B~ b, 0)*.

e Observagao: Se b € Z™ e |det(B)| = 1 para a base 6tima, entdo o PL

resolve o PI.
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7. Técnicas de solucao

Relaxacao inteira
e Para ver isso: Regra de Cramer.

e A solucdo de Ax =Db é

. det(Ay)
Y det(A)
com A; a matriz resultante da substituicao da i-gésima coluna de A por
b.
Prova. Seja U; a matriz identidade com a i-gésima coluna substituido por x,
ie.
1 X1
1 X2
Xn—1
Xn 1

Temos que AU; = A e com det(U;) = x; e det(A) det(U;) = det(A;) temos
o resultado. |

Exemplo: Regra de Cramer

3 21 X1 1
5 0 2 X2 = 1
2 1 2 X3 1
Exemplo: Regra de Cramer
3 21 1 21
5 0 2 |=-13 10 2 |=-1
21 2 11 2
31 1 3 21
5 1 2 |==3 5 0 1T |=-4
21 2 2 11

Logo x1 = 1/13;%x, = 3/13;x3 =4/13.
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7.2. Problemas com solucao eficiente

Aplicacao da regra de Cramer
e Como garantir que x = B~'b é inteiro?

e Cramer:
o det(Bi)

~ det(B)
e Condicao possivel: (a) det(B;) inteiro, (b) det(B) € {—1,1}.

e Garantir (a): A€ Z™* ™ ebecZ™.

Xi

e Garantir (b): Toda submatriz quadrada nao-singular de A tem determi-
nante {—1,1}.

Exemplo 7.1
Observe que essas condigoes sao suficientes, mas nao necesséarias. E possivel
que Bx = b possui solugao inteira sem essas condicoes ser satisfeitas. Por

exemplo
2 2\ (x1\ _ (2
1 0 X2 - 1
tem a solucdo inteira (x7 x2) = (1 0), mesmo que det(A) = —2. O

A relaxagao é inteira

Definigao 7.1

Uma matriz quadrada inteira A € R™*™ é unimodular se |det(A)] = 1. Uma
matriz arbitrdria A é totalmente unimodular (TU) se cada submatriz quadrada
nao-singular A’ de A é modular, i.e. det(A’) €{0,1,—1}.

Uma consequéncia imediata dessa definigao: aj; € {—1,0,1}.

Exemplo
Quais matrizes sao totalmente unimodular?

()

__—— o0 o =
CO A a O —m-mo

C OO0 — — O — —

C —_—_——_
S O = = O
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Critérios

Proposigao 7.1
Se A é TU entao

(i) At ¢ TU.
(ii) (A I) com matriz de identidade I é TU.
(ili) Uma matriz B que é uma permutacdo das linhas ou colunas de A é TU.

(iv) Multiplicando uma linha ou coluna com —1 resulta numa matriz TU.

Prova. (i) Qualquer submatriz quadrada B de A' e uma submatriz B de A
também. Com det(B) = det(B"), segue que A' é totalmente unimodular. (ii)
Qualquer submatriz de (Al) tem a forma (A’I’) com A’ submatriz de A e I’
submatriz de I. Com |det(A’l")| =|det(A’)| segue que (AI) é TU. (iii) Cada
submatriz de B é uma submatriz de A. (iv) A determinante troca no maximo
o sinal. |
Exercicio 7.1 pede generalizar a proposicao 7.1.

Critérios

Proposigao 7.2
Uma matriz A é totalmente unimodular se

(i) ay €{+1,-1,0}
(ii) Cada coluna contém no maximo dois coeficientes nao-nulos.

(iii) Existe uma particdo de linhas My U M, = [1,m] tal que cada coluna
com dois coeficientes nao-nulos satisfaz

Z aij— Z Clij:o

ieM;y ieM,

Observe que esse critério é suficiente, mas nao necessério.
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Exemplo

e Coeficientes € {—1,0,1}: Sim.
e Cada coluna no méximo dois coeficientes nao-nulos: Sim.

e Particao M;,M>? Sim, escolhe M; = [1,3], M, = 0.

Exemplo

TU? Néo: det(A) = 2.

110

A=10 11

1 0 1

TU? Nao: det(A) = 2.

01 000

o1 1 11

101 11
100 10
100 00

TU? Sim. Mas nossa regra nao se aplical

Prova. (da proposi¢ao 7.2). Prova por contradi¢ao. Seja A uma matriz que
satisfaz os critérios da proposigao 7.2, e B a menor submatriz quadrada de A
tal que det(B) ¢ {0,+1,—1}. B ndo contém uma coluna com um tnico coefi-
ciente nao-nula: seria uma contradi¢do com a minimalidade do B (removendo
a linha e a coluna que contém esse coeficiente, obtemos uma matriz quadrada
menor B*, que ainda satisfaz det(B*) ¢ {0,+1,—1}). Logo, B contém dois
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coeficientes ndo-nulos em cada coluna. Aplicando a condigéo (3) acima, sub-
traindo as linhas com indice em M; das linhas com indice em M, podemos
ver as linhas do B s&o linearmente dependentes e portanto temos det(B) = 0,
uma contradigao. |
Uma caracterizagao (i.e. um critério necessdrio e suficiente) das matrizes to-
talmente unimodulares (sem prova) é

Teorema 7.1 (Ghouila-Houri [3])
Um matriz A € Z™*™ é TU sse para todo subconjunto R C [m] de linhas

existe uma particao R; U R, tal que

) ay— ) ay|<1 (7.1)

ieR, i€R>
para todas colunas j € [n].

Observe que a proposigao 7.2 implica o critério acima: dado uma particao das
linhas de acordo com 7.2, para todo R C [m], a particdo (M7 NR) U (M2 NR)
satisfaz (7.1).

Consequéncias

Teorema 7.2 (Hoffman e Kruskal [4])
Se a matriz A de um programa linear é totalmente unimodular e o vetor b é
inteiro, todas solugoes basicas sao inteiras. Em particular as regioes

{x e R" | Ax < b}
{xeR"| Ax > b}
{xeR™| Ax < b,x > 0}
{xeR™| Ax =b,x > 0}

possuem pontos extremos inteiros.

Prova. Consideracoes acima. |

Exemplo 7.2 (Caminhos mais curtos)

Exemplo: Caminhos mais curtos

e Dado um grafo direcionado G = (V, A) com custos ¢ : A — Z nos arcos.

e Qual o caminho mais curto entre dois nés s,t € V7
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Exemplo: Caminhos mais curtos

minimiza Z CaXa
acA
sujeito a Z Xq — Z Xq =1
aeN*(s) aeN—(s)
> Xa— ) Xa=0, e V\{s, t}
aeN+(v) aeN—(v)
Y e T xe=o
aeN*(t) aeN—(t)
Xq € B, Va € A.

A matriz do sistema acima de forma explicita:

s 1 —1 Xa, 1
1 0
-1 1 0
t -1 - Xa, —1

Como cada arco ¢ incidente a dois vértices, cada coluna contém um coeficiente
1 e —1, e a Proposicao 7.2 é satisfeito pela particao trivial § U V. O

Exemplo 7.3 (Fluxo em redes)

Exemplo: Fluxo em redes

e Dado: Um grafo direcionado G = (V, A)
— com arcos de capacidade limitada 1: A — Z™,
— demandas d : V — Z dos vértices,
— (com d, < 0 para destino e d,, > 0 nos fonte)

— e custos ¢ : A — R por unidade de fluxo nos arcos.

e Qual o fluxo com custo minimo?
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Exemplo: Fluxo em redes

minimiza Z CaXa
acA

sujeito a Z Xa — Z Xq = dy, Yvev
acN~+(v) aeN—(v)
0 <xq <lg, Va e A.

com conjunto de arcos entrantes N~ (v) e arcos saintes Nt (v).

Exemplo: Fluxo

e A matriz que define um problema de fluxo é totalmente unimodular.

e Consequéncias
— Cada ponto extremo da regiao viavel é inteira.

— A relaxacdo PL resolve o problema.

e Existem varios subproblemas de fluxo minimo que podem ser resolvidos
também, p.ex. fluxo maximo entre dois vértices.

Exemplo 7.4 (Emparelhamentos)
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7.3. Desigualdades validas

EMPARELHAMENTO MAXIMO (EM)
Entrada Um grafo G = (V, E) nao-direcionado.

Solucao Um emparelhamento M C E, i.e. um conjunto de arcos, tal que
para todos vértices v temos IN(v) " M| < 1.

Objetivo Maximiza |M|.

Uma formulagao é

maximiza Z CeXe (7.2)
ecE
sujeito a Z Xuy < 1y YweV
ueEN(v)
Xe € B.

A matriz de coeficientes dessa formulacao é TU para grafos bipartidos. Por
qué? Isso ainda é valida para grafos nao-bipartidos? O

7.3. Desigualdades validas

Desigualdades validas

e Problema inteiro
max{c'x | Ax < b,x € ZT}

e Relaxagao linear
max{c'x | Ax < b,x € R}

X2

X1
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7. Técnicas de solucao

Desigualdades validas

Definicao 7.2
Uma desigualdade mix < 71 € vdlida para um conjunto P, se Vx € P : rix < 7.

e Como achar desigualdades (restrigoes) vélidas para o conjunto da solugoes
vidveis {x | Ax < b,x € Z1} de um problema inteiro?

— Técnicas de construcao (p.ex. método de Chvétal-Gomory)
— Observar e formalizar caracteristicas especificas do problema.

— “The determination of families of strong valid inequalities is more
of an art than a formal methodology” [11, p. 259]

Exemplo 7.5 (Locagao de facilidades nao-capacitado)

Temos um conjunto de cidados C = [n] em que podemos abrir facilidades
para um custo fixo fj,j € C. Em cada cidade i existe um demanda que pode
ser satisfeito por uma facilidade na cidade j com custo cyj, caso existe um
facilidade na cidade j. Com xi; € B indicando que a demanda da cidade i é
satisfeito pela facilidade na cidade j podemos formular

minimiza ) fiy;j+ ) o (7.3)
jen] ienl,jen]

sujeito a Z xij =1, Vi€ [n] (7.4)
jen]
xij < Yj, Vi e nl,j € [n] 7.5)
xij € B, Vi€ [nl,j € [n] 7.6)
y; € B, Vj € [nl. (7.7

Ao invés de
Xij < Y (7.8)

podemos pensar em

Z Xij < nyj. (79)
]

ien

Essa formulacio ainda é correto, mas usa n restricoes ao invés de n?. Entre-
tanto, a qualidade da relagao linear é diferente. E simples ver que podemos
obter (7.9) somando (7.8) sobre todos i. Portanto, qualquer solu¢do que sa-
tisfaz (7.8) satisfaz (7.9) também, e dizemos que (7.8) domina (7.9).

Que o contrario nao é verdadeiro, podemos ver no seguinte exemplo: Com
custos de instalacdo f; = 1, de transporte ciyj = 5 para i # j e ¢y = 0,
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duas cidades e uma fabrica obtemos as duas formulacgoes (sem restrigdes de
integralidade)

minimiza Y1 + Y2 +5%x12 + 5x21 Y1 +yz2 +5%x12 + 5%x21
sujeito a X711 +%x12 =1 X171 +%x12 =1
x21 +x22 =1 X271 + %22 =1
yr+y2 <1 yr+y2 <1
x11 < Yq x11 +x21 < 2yq
xX12 < Y2
x21 <Y1 x21 +x22 < 2y2
x22 < Y2
A solucao 6tima do primeiro sistema é y; = 1,x17 = x27 = 1 com valor 6,
que ¢é a solucao Otima inteira. Do outro lado, a solugao 6tima da segunda
formulacdo é y1 = y2 = 0.5 com x11 = %22 = 1, com valor 1, i.e. ficam
instaladas duas “meia-fabricas” nas duas cidades!
O
Exemplo: 0-1-Knapsack
= 7
o B
i
) iy
)
maximiza Z ViXi
i€[n]
sujeito a Z pixi <P
ie[n]
xi €B

Exemplo: 79x7 + 53x2 + 53x3 4+ 45%x4 + 45x5 < 178.
Exemplo 7.6 (Knapsack)

Exemplo: 0-1-Knapsack

e Observagao: Para um subconjunto S C [1,n]: Se } ;.spi > P entao
ZS Xi < ‘S‘ —1.
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7. Técnicas de solucao

e Exemplos:

X1 +x2+x3<2
X1 +X2+x4+%x5 <3
X1 +x3+x4+%x5 <3
X2 +x3+x4+%x5 <3

Um conjunto S tal } ;. ¢ pi > P se chama uma cobertura e a desigualdades
obtidos por tais conjuntos desigualdades de cobertura (ingl. cover inequalities).

Exemplo 7.7 (Emparelhamentos)
Continuando exemplo 7.4.

Exemplo: Emparelhamentos

e Escolhe um subconjunto de nés U C V arbitrario.

e Observacdo: O numero de arestas internas é < |[U[/2].

e Portanto:

Y xa < lUl2)

acUZnA

é uma desigualdade valida.

Método de Chvatal-Gomory
Dado uma restrigao

Z aixi S b
]

ien

também temos, para u € R,u > 0 as restrigoes validas

Z uaix; <ub (multiplicacao com u)
ien]
Z [uai ] xi < ub porque |y] <ye0<x
ien]
Z [uai ] xi < |ub] porque o lado da esquerda é inteira
ien]
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7.3. Desigualdades validas

O método de Chvatal-Gomory funciona igualmente para um combinagoes

lineares de colunas. Com A = (a' a? ---a™) obtemos

> ua']xi < |ub| (7.10)

ie[n]

Teorema 7.3
Cada desigualdade valida pode ser construida através de um nimero finito de
aplicagoes do método de Chvétal-Gomory (7.10).

(Uma prova do teorema pode ser encontrado, por exemplo, em Wolsey e
Nembhauser [11, p. I1.1.2] ou (somente para o caso de varidveis 0-1) em Wolsey
[10, Th. 8.4].)

Exemplo 7.8 (Knapsack)
O problema da mochila acima possui as restrigoes

79%1  +53xy  +53x3  +45x4 +45x5
X1
X2
X3
X4

VARVAN VAN VAIVANRVAN
_— -]

X5
Com u=(1/79026/79 26/79 0 0)* obtemos a desigualdade vélida

X7 +x2+x3 <2,

Exemplo 7.9 (Emparelhamentos)

e Para um U C V podemos somar as desigualdades

Z Xy <1 Yvev
ueN (v)
para obter
2 2w
veVueN(v)
=2 Z Xa + Z xag\U\
acUZnA aeN(U
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7. Técnicas de solucao

e com peso 1/2 temos

Z Xa‘l'* Z Xa_%“f”

acUZnA aeN

e Também temos

2 Z xazo

aeN(U

e Portanto
Z Xa 7|u|
acUZnA
1
Z Xa < {ZIUIJ Lado esquerdo inteiro
acUZnA

7.4. Planos de corte

Como usar restricoes validas?

e Adicionar a formulacdo antes de resolver.
— Vantagens: Resolugao com ferramentas padrao.
— Desvantagens: Numero de restrigoes pode ser muito grande ou de-
mais.
e Adicionar ao problema se necessario: Algoritmos de plano de corte.

— Vantagens: Somente cortes que ajudam na solugao da instancia sao
usados.
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7.4. Planos de corte

Planos de corte
Problema inteiro
max{c'x | Ax < b,x € ZT}

e O que fazer, caso a relaxacao linear nao produz solucoes 6timas?

e Um método: Introduzir planos de corte.

Definicao 7.3
Um plano de corte (ingl. cutting plane) é uma restrigdo vélida (ingl.
valid inequality) que todas solugdes inteiras satisfazem.

Algoritmo de planos de corte

Algoritmo 7.1 (Planos de corte)
Entrada Programa inteiro max{c*x | Ax < b,x € Z}}.
Saida Solucdo inteira 6tima ou “N&o existe corte.”.
1 Vi={x]Ax<b} { regiao viavel }
2 x*:=argmax{c'x|x € V} { resolve relaxacgdo }
3 while (x"¢Z%}) do
4 if (existe corte a'x <d com a'x* >d) then
5 Vi=Vn{x|a'x<d} { nova regido viavel }
6 x* = argmax{c*x | x € V} { nova solugdo é6tima }
7 else
8 return "Nao existe corte.”
9 end if
10 end while

Método de Gomory
e Como achar um novo corte na linha 4 do algoritmo?

e A solugao 6tima atual é representado pelo diciondrio
z=2+) Gjx
j

XiZBi_Zai]’Xj ieB
JEN

e Se a solugdo nao ¢ inteira, existe um indice i tal que x; € Z,, i.e.
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7. Técnicas de solucao

Cortes de Chvatal-Gomory

=b; — Z a4jX; Linha fraciondria (7.11)
jeEN
<b;— Z Lai;] x; Definigéo de |-] (7.12)
jeEN
xi < |bi] — Z Laij] x; Integralidade de x (7.13)
jeEN
0> {b:i} — > {aylx (7.11) — (7.13) (7.14)
jEN
Xnt1 =—{bi} + Z {aij}x Nova variavel (7.15)
jeEN
Xnt1 € Zy (7.16)

Para solugoes inteiras, a diferenca do lado esquerdo e do lado direito na
equagcao (7.13) é inteira. Como uma solugao inteira também satisfaz a equagao
(7.11) podemos concluir que xn 11 também é inteira.

Observagao 7.2

Lembra que o parte fraciondrio de um nimero é definido por {x} = x — |x],
sendo o piso |x] o maior nimero inteiro menor que x. Por exemplo, {0.25} =
0.25 € {—0.25} = 0.75. (Ver defini¢ao A.l na pégina 181.) O

A solugao bésica atual néo satisfaz (7.14), porque com xj = 0,j € N temos
que satisfazer B

{bl} < O)
uma contradicao com a definicdo de {-} e o fato que b; é fraciondrio. Portanto,
provamos

Proposicao 7.3
O corte (7.14) satisfaz os critérios da linha 4 do algoritmo PLANOS DE CORTE.
Em particular, sempre existe um corte e o caso da linha 8 nunca se aplica.

Exemplo 7.10
Queremos resolver o problema

maximiza X1 + X2
sujeito a —x1+3x <9
10x7 <27
X1,X2 € Zt
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7.4. Planos de corte

A solucao da relaxacdo linear produz a série de dicionarios

(1) z = X1 +x2 (2) z =3 +4/3%1 —1/3w,
Wi =9 +x7  —3x2 X2 =3 +1/3x%7 —1/3w;
wy, =27 —10x wy, =27 —10x;

(3) z =6.6 —4/30wy —1/3w,
x2 =39 —1/30w, —1/3w;
x; =27 —=1/10w,
A solugdo 6tima x1 = 2.7, x = 3.9 é fraciondria. Correspondendo com a
segunda linha
x2 =39 —1/30w, —1/3w;

temos o corte

wy =-0.9 +1/30w; +1/3w,
e 0 novo sistema, é
(4) z =6.6 —4/30wy —1/3w;
X2 =39 —-1/30w, —1/3w,
X1 =27 -1 /] OW2
wzy =-0.9 +1/30w, +1/3wy
Substituindo w, e wq no corte w3 = —0.9 + 1/30w> + 1/3w; > 0 podemos

reescrever o corte sando as varidveis originais do sistema, obtendo x; < 3.
Esse sistema nao é mais 6timo, e temos que re-otimizar. Pior, a solucao bésica
atual nao é vidvell Mas como na funcao objetivo todos coeficientes ainda sao
negativos, podemos aplicar o método Simplex dual. Um piv6 dual gera a nova
solucao 6tima
(5) z =57 —=1/10w, —w3

X2 =3 —W3

X1 =27 —]/1OW2

wy =27 —1/10wy +3ws
com x; = 3 inteiro agora, mas xj ainda fraciondrio. O préximo corte, que
corresponde com xq é

(6) z =57 —=1/10w, —wsz (7) z =5 —Wg  —W3

X2 =3 —W3 X2 =3 —W3

X1 =27 —1/10W2 X1 =2 —Wy

w1 =27 —1/10wy +3ws w; =2 —wyq  +3ws

wy =-—0.7 +1/10W2 wy =7 +10wy
cuja solugdo é inteira e 6tima. (O tltimo corte inserido wg = —0.74+1/10w; >
0 corresponde com x; < 2.) O

Observagao 7.3
Nosso método se aplica somente para sistemas puros (ver pagina 118) e temos
que garantir que as varidveis de folga sao varidveis inteiras. Por isso os coefi-

133



7. Técnicas de solugao
X2

4 Segundo corte, yx _ <2-7
7 3.9

Primeiro corte

X1
3 4

Figura 7.1.: Visualizacao do exemplo 7.10.

cientes de um sistema original em forma normal tem que ser ntimeros inteiros,
ie, AcZ™™ebcZ™. O

Resumo: Algoritmos de planos de corte

e O algoritmo de planos de corte, usando os cortes de Gomory termina
sempre, i.e. é correto.

e O algoritmos pode ser modificado para programas mistos.
e A técnica é considerado inferior ao algoritmos de branch-and-bound.
e Mas: Planos de corte em combinagao com branch-and-bound é uma

técnica poderosa: Branch-and-cut.

7.5. Branch-and-bound
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7.6. Exercicios

Branch-and-bound e PI
e Problema PI (puro): {maxc®x |x € S,x € ZT}.
e Resolve a relaxacao linear.
e Solucao inteira? Problema resolvido.
e Caso contrario: Escolhe uma varidvel inteira x;, com valor b; fracionério.
e Heuristica: Varidvel mais fraciondria: argmin; [{x;} —0.5].
e Particione o problema S =S; U S, tal que

S1=8Sn{xIxi <[vi], Sa2=SN{x[xi>[vi]}

e Em particular com varidveis x; € B:

S1=Sn{x|xi=0}) S,=Sn{x|xi=1}

e Preferimos formulagoes mais “rigidas”.

7.6. Exercicios

(Solugoes a partir da pédgina 210.)

Exercicio 7.1 (Matrizes totalmente unimodulares)

Mostra que a seguinte generalizacao do item 2 da proposicao 7.1 é valido: Para
uma matriz arbitraria A € {—1,0,1}™*™ ¢ uma matriz B € {—1,0,1}"™*° com
no méaximo um coeficiente ndo-nulo em cada coluna, a matriz (A B) é TU sse
a matriz A é totalmente unimodular.

Exercicio 7.2 (Matrizes totalmente unimodulares)
Para cada um dos problemas do exercicio 6.2 decide, se a matriz de coeficientes
é totalmente unimodular.

Exercicio 7.3 (Matrizes totalmente unimodulares)
Prove ou mostre um contra-exemplo.

a) Se A ¢ totalmente unimodular, entdo (4 ) também.
b) Se A é totalmente unimodular, entdo (A At ) também.
A
0

A
¢) Se A é totalmente unimodular, entdo (Q ) também.
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7. Técnicas de solucao

Exercicio 7.4 (Desigualdades vilidas (Nemhauser,Wolsey))
Uma formulacao do problema do conjunto independente maximo é

maximiza Z Xy (7.17)
vev

sujeito a Xu+% <1 V{u,v} € E (7.18)

xy €B Yv e V. (7.19)

Considere a instancia

Mostra que Zie[ﬂ xi < 2 é uma desigualdade valida.

Exercicio 7.5 (Desigualdades validas)
O exemplo 7.9 mostra como obter as desigualdades validas do exemplo 7.7
usando cortes de Gomory. Mostra como obter as desigualdades validas

D xi<ISI—1
=
para um S C [n] com Zies pi > P do problema da mochila usando cortes de

Gomory.

Exercicio 7.6 (Desigualdades validas)
Considere a instancia
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7.6. Exercicios

do problema do caixeiro viajante (os numeros nas arestas representam os
indices das varidveis correspondentes). Mostra que

X1+ X2 +X5+Xg+X7+%x0 <4

é uma desigualdade vélida.

Exercicio 7.7 (Desigualdades validas)

Para cada uma das desigualdades validas do exemplo 7.6 mostra como ele pode
ser obtida via uma aplicagdo (um ntmero finito de aplicagdes) do método de
Chvétal-Gomory (7.10).

Exercicio 7.8 (Planos de corte)
Resolve

maximiza X1 + 3x2
sujeito a —x1 <=2
x2 <3
—x1—%x2 <4
3x1 +x2 <12
Xi € Zy

maximiza X1 — 2%2
sujeito a —T1xq7 +15%, <60
dxq +3x, <24
10x7 — 5%y <49

X1,X2 € Z

com o algoritmo de planos de corte using cortes de Chvatal-Gomory.

Exercicio 7.9 (Desigualdades validas)
Gera uma desigualdade vélida similar com a desigualdade (7.10) para a res-
tricao

Z aiXi > b.

i€[n]
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8. Topicos

Outras técnicas

e Branch-and-cut.

Comega com menos restrigoes (relaxagao) e insere restrigdes (cortes) nos
sub-problemas da busca com branch-and-bound.

e Branch-and-price.

Comega com menos varidveis e insere varigveis (“geragdo de colunas”)
nos sub-problemas da busca com branch-and-bound.
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Parte IllI.

Heuristicas
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9. Introducao

Resolucao de Problemas

e Problemas Polinomiais
1. Programagao Dinamica
2. Divisao e Conquista

3. Algoritmos Gulosos

e Problemas Combinatdrios

— Técnicas Exatas: Programagao Dinamica, Divisao e Conquista back-
tracking, branch & bound

— Programacao nao-linear: Programacgao semi-definida, etc.

Algoritmos de aproximacao: garantem solugao aproximada

Heuristicas e metaheuristicas: raramente provéem aproximagao

Heuristicas

e O que é uma heuristica?
Practice is when it works and nobody knows why.

e Grego heurisko: eu acho, eu descubro.

e Qualquer procedimento que resolve um problema
— bom em média
— bom na prética (p.ex. Simplex)

— nao necessariamente comprovadamente.

e Nosso foco
— Heuristicas construtivas: Criar solugoes.

— Heuristicas de busca: Procurar solugoes.
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9. Introducao

Heuristicas de Construcao

e Constréem uma solugao, escolhendo um elemento a ser inserido na solugao
a cada passo.

e Geralmente sao algoritmos gulosos.

e Podem gerar solugoes infactiveis.

— Solugao infactivel: nao satisfaz todas as restricoes do problema.

— Solugao factivel: satisfaz todas as restrigoes do problema, mas nao

é necessariamente a 6tima.

Exemplo: Heuristica construtiva

e Problema do Caixeiro Viajante (PCV) — Heuristica do vizinho mais
proximo.

Algoritmo 9.1 (HVizMaisProx)
Entrada Matriz de distancias completa D = (di;), nimero de cidades n.

Saida Uma solucao factivel do PCV: Ciclo Hamiltaneo C com custo c.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

HVizMaisProx (D ,n)=

{ cidade inicial randémica }

u:= seleciona uniformemente de [1,n]

wi=u

{ representacdo de caminhos: sequéncia de vértices }
C=u { ciclo inicial }

c:=0 { custo do ciclo }

repeat n—1 vezes
seleciona v¢ C com distadncia minima de u
C:=Cv
c:=c+ duw
u:=v
end repeat
C:=Cw { fechar ciclo }
c:=c+duw
return (C,c)

Meta-heuristicas

e Heuristicas genéricas: meta-heuristicas.
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Motivacao: quando considera-se a possibilidade de usar heuristicas

e Para gerar uma solugao factivel num tempo pequeno, muito menor que
uma solucgao exata pudesse ser fornecida.

e Para aumentar o desempenho de métodos exatos. Exemplo: um limi-
tante superior de um Branch-and-Bound pode ser fornecido por uma
heuristica.

Desvantagens do uso de heuristicas

e No caso de metaheuristicas, nao ha como saber o quao distante do étimo
a solucao esta

e Nao hé garantia de convergeéncia
e Dependendo do problema e instancia, nao ha nem como garantir uma

solugao 6tima

Problema de otimizacao em geral

e Um problema de otimizacao pode ser representado por uma quadrupla
(I, S, f, obj)

— I é o conjunto de possiveis instancias.

— S(i) é o conjunto de solugoes factiveis (espago de solugdes factiveis)
para a instancia i.

— Uma fungao objetivo (ou fitness) f(-) avalia a qualidade de uma
dada solugao.

— Um objetivo obj = min ou max: s* € S para o qual f(s*) seja
minimo ou maximo.

e Alternativa

optimiza f(x)

sujeitoa x €S

e S discreto: problema combinatorial.
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9. Introducao

Técnicas de solucao
e Resolver o problema nessa geralidade: enumeragao.
e Frequentemente: Uma solugdo x € S possui uma estrutura.
e Exemplo: x é um tuplo, um grafo, etc.

e Permite uma enumeragao por componente: branch-and-bound.
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10. Heuristicas baseados em Busca local

10.1. Busca local

Busca Local

e Frequentemente: O espacgo de solugoes possui uma topologia.

e Exemplo da otimizacdo (continua): max{x? +xy | x,y € R}

XEXEXRY

e Espaco euclidiano de duas dimensoes.

e Isso podemos aproveitar: Busca localmente!

Vizinhancas

e O que fazer se nado existe uma topologia natural?
e Exemplo: No caso do PCV, qual o vizinho de um ciclo Hamiltaneo?

e Temos que definir uma vizinhanga.
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10. Heuristicas baseados em Busca local

e Notacao: Parax € S
N(x)

denota o conjunto de solugoes vizinhos.

e Uma vizinhanca defina a paisagem de otimizagao (ingl. optimization
landscape): Espaco de solugoes com valor de cada solugao.

Relacao de vizinhanca entre solucoes

e Uma solugdo s’ é obtida por uma pequena modificagdo na solugéo s.

e Enquanto que S e f sao fornecidos pela especificagao do problema, o
projeto da vizinhanga é livre.

Busca Local k-change e insercao

e k-change: mudanca de k componentes da solugao.

Cada solucdo possui vizinhanca de tamanho O(nk).

Exemplo: 2-change, 3-change.

TSP: 2-change (inversdo).

Inser¢ao/remogao: inser¢ao de um componente da solugdo, seguido da
factibilizagao da solugao

Vertex cover: 1-change + remogao.

Exemplo: Vizinhanca mais elementar

e Suponha um problema que possue como solugdes factiveis S = B™ (por
exemplo, uma instancia do problema de particionamento de conjuntos).

e Entdo, para n = 3 e sp={0,1,0}, para uma busca local 1-flip, N(so) =
{(1,1,0),(0,0,0), (0,1, 1)}
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10.1. Busca local

Exemplo: Vizinhancas para TSP

e 2-0pt: Para cada par de arcos (uj,vq) e (uz,v2) nao consecutivos,
remova-os da rota, e insira os arcos (uy,uz) e (vi,v2).

e Para uma solugio s e uma busca k-opt [N (s)| € O(n*).

Caracteristicas de vizinhancas
E desejavel que uma vizinhanca é

e simétrica (ou reversivel)
yeNx) =xeNy)

e conectada (ou completa)

Vx,y € S3z1,...,zk €S z1 € N(X)
ziv1 € N(zy) 1<i<k
y € N(z)
Busca Local: Ideia
e Inicia a partir de uma solugao sg
e Se move para solucoes vizinhas melhores no espago de busca.

e Para, se nao tem solucoes melhores na vizinhanga.

Mas: Repetindo uma busca local com solugoes inicias randémicas, acha-
mos o minimo global com probabilidade 1.

Busca local — Caso continuo
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10. Heuristicas baseados em Busca local

Algoritmo 10.1 (Busca local continua)
Entrada Solucao inicial so € R™, tamanho inicial ¢ de um passo.

Saida Solucdo s € R™ tal que f(s) < f(so).

Nome Gradient descent.

1 BuscaLocal (so,x)=

2 $:=5p

3 while Vf(x)#0 do
4 s’ :=s— aVf(s)

5 if f(s’) < f(s) then
6 s:=s'

7 else

8 diminui o

9 end if

10 end while

11 return s

Busca local — Caso continuo

Vi(x) = ( of (x),...,”(x))

% OxXn

e Gradiente

sempre aponta na dire¢do do crescimento mais alto de f (Cauchy).
e Necessario: A funcao objetivo f é diferencidvel.
e Diversas técnicas para diminuir (aumentar) o.

e Opgéo: Line search na direcao —Vf(x) para diminuir o niimero de gra-
dientes a computar.

Busca Local — Best Improvement

Algoritmo 10.2 (Busca Local BI)
Entrada Solugao inicial sg.

Saida Solucéo s tal que f(s) < f(sg).
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10.1. Busca local

Nomes Steepest descent, steepest ascent.

1 BuscaLocal(so)=

S =989

while true
s’ = argmin,{f(y) |y € N(s)}
if f(s’) <f(s) then s:=s’
else break

end while

return s

0 O Ut Wi

Busca Local — First Improvement

Algoritmo 10.3 (Busca Local FI)
Entrada Solucao inicial sg.

Saida Solucao s’ tal que f(s’) < f(s).
Nomes Hill descent, hill climbing.

1 BuscaLocal (so)=
S =989
repeat
Select any s’ € M(s) not yet considered
if f(s’) <f(s) then s:=s’
until all solutions in A(s) have been visited
return s

~N O Uk W N

Projeto de uma busca local

e Como gerar uma solucao inicial? Aleatéria, via método construtivo, etc.

e Quantas solucoes inicias devem ser geradas?

Importante: Definicao da funcao de vizinhanca N

e Vizinhanga grande ou pequena? (grande= muito tempo e pequena=menos
vizinhos)

Estratégia de selecao de novas solugoes
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10. Heuristicas baseados em Busca local

— examine todas as solucoes vizinhas e escolha a melhor

— assim que uma solugao melhor for encontrada, reinicie a busca.
Neste caso, qual a sequéncia de solucbes examinar?

e Importante: Método eficiente para avaliar a funcao objetivo de vizinhos.

Exemplo: 2-change TSP
e Vizinhanca: Tamanho O(n?).
e Avaliagdo de uma solu¢do: O(n) (somar n distancias).
e Atualizando a valor da solugao atual: O(1) (somar 4 distancias)

e Portanto: Custo por iteragdo de “best improvement”
— O(n?) sem avaliacao diferential.

— O(n?) com avaliacao diferential.

Avaliacao de buscas locais
Como avaliar a busca local proposta?

e Poucos resultados tedricos.
e Dificil de saber a qualidade da solucao resultante.

e Depende de experimentos.

Problema Dificil

e E fécil de gerar uma solucio aleatéria para o TSP, bem como testar sua
factibilidade

e Isso nao é verdade para todos os problemas

e Exemplo dificil: Atribuig¢ao de pesos a uma rede OSPF
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10.1. Busca local

Busca local

e Desvantagem obvia: Podemos parar em minimos locais.
Valor
A

» Solucao

e Exceto: Funcio objetivo convexa (caso minimizagdo) ou concava (caso
maximizagao).

e Técnicas para superar isso baseadas em busca local
— Multi-Start
— Busca Tabu
— Algoritmos Metropolis e Simlated Annealing

— Variable neighborhood search
Multi-Start Metaheuristic
e Gera uma solugao aleatoria inicial e aplique busca local nesta solugao.
e Repita este procedimento por n vezes.

e Retorne a melhor solugao encontrada.

e Problema: solugoes aleatoriamente geradas em geral possuem baixa qua-
lidade.

Multi-Start

Algoritmo 10.4 (Multi-Start)
Entrada Numero de repetigoes n.

Saida Solucao s.
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10. Heuristicas baseados em Busca local

1 Multi_Start(n) :=
2 s =10

3 f* =00

4 repeat n vezes

5 gera solucao randomica s
6 s := BuscaLocal(s)
7 if f(s) <f* then
8 s*i=s

9 f* :=1(s)
10 end if
11 end repeat
12 return s*

Cobrimento de Vértices
e Definicao de vizinhanga
e grafo sem vértices
e grafo estrela
e clique bipartido Ky ;

e grafo linha

10.2. Metropolis e Simulated Annealing

O algoritmo Metropolis

e Proposto em 1953 por Metropolis, Rosenbluth, Rosenbluth, Teller e Tel-

ler

e Simula o comportamento de um sistema fisico de acordo com a mecanica

estatistica

e Supobe temperatura constante

— Um modelo bésico define que a probabilidade de obter um sistema
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num estado com energia E é proporcional a funcao e 1 de Gibbs-
Boltzmann, onde T > 0 é a temperatura, e k > 0 uma constante

— a fung@o é monotonica decrescente em E: maior probabilidade de

estar em um sistema de baixa energia



10.2. Metropolis e Simulated Annealing

— para T pequeno, a probabilidade de um sistema estar num estado de
baixa energia é maior que ele estar num em estado de alta energia

— para T grande, a probabilidade de passar para outra configuracao
qualquer do sistema é grande

A distribuicao de Boltzmann
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exp(-x/10) --------
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Algoritmo Metropolis

e Estados do sistema sao solugoes candidatas
e A energia do sistema é representada pelo custo da solugao
e Gere uma perturbagao na solu¢ao s gerando uma solugao s’.

e Se E(s’) < E(s) atualize a nova solucao para s’.

Caso contrdrio, AE = E(s’) — E(s) > 0.

A solucgao s’ passa ser a solucao atual com probabilidade e T

Caracteristica marcante: permite movimentos de melhora e, com baixa
probabilidade, também de piora
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10. Heuristicas baseados em Busca local

Metropolis
Algoritmo 10.5 (Metropolis)
Entrada Uma solugao inicial s e uma temperatura T.
Saida Solucao s’ com c(s’) < c(s)
1 Metropolis(s, T, k)=
2 do
3 seleciona s’ € N(s) aleatoriamente
4 seja A:=c(s’)—c(s)
5 if A<0 then
6 atualiza s:=s’
7 else
8 atualiza s:=s’ com probabilidade e T
9 end if
10 until critério de para satisfeito
11 return s

Observagao 10.1

Para T — oo o algoritmo executa um passeio aleatorio no grafo das solugoes
com a vizinhanga definida. Para T — 0 o algoritmo se aproxima a uma busca
local. O

Simulated Annealing

e Simula um processo de recozimento.

e Recozimento: processo da fisica que aquece um material a uma tem-
peratura bem alta e resfria aos poucos, dando tempo para o material
alcancar seu estado de equilibrio

e Recozimento simulado: parte de uma alta temperatura e baixa gradual-
mente. Para cada temperatura, permite um nimero maximo de saltos
(dois lagos encadeados)

Simulated Annealing
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Algoritmo 10.6 (Simulated Annealing)
Entrada Solugéo inicial s, temperatura T, fator de esfriamento r € (0,1),

nimero inteiro 1.
Saida Solucao s’ tal que f(s’) < f(s).
1 SimulatedAnnealing(s, T, k, r, I) :=

2 repeat sistema ‘‘esfriado ’’

3 repeat I vezes

4 seleciona s’ € N(s) aleatoriamente
5 seja A:=c(s’)—c(s)

6 if A<0 then

7 s:=s’

8 else

9 s:=s’ com probabilidade e 2/T:
10 end fi

11 end repeat

12 T:=7T

13 end repeat
14 return s

Determinando uma temperatura inicial e final adequado é importante para nao
gastar tempo desnecessario com temperaturas em que o algoritmo se comporta
como passeio aleatorio ou busca local.

Exemplo 10.1 (Temperatura inicial)

Define uma probabilidade p;. Executa uma versdo rapida (I pequeno) do
algoritmo para determinar uma temperatura inicial tal que um movimento é
aceito com probabilidade p;. O

Exemplo 10.2 (Temperatura final)

Define uma probabilidade p¢. Para cada nivel de temperatura em que os
movimentos foram aceitos com probabilidade menos que ps incrementa um
contador. Zera o contador caso uma nova melhor solugao é encontrada. Caso
o contador chega em 5, termina. O

10.3. GRASP

GRASP
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10. Heuristicas baseados em Busca local
e GRASP: greedy randomized adaptive search proce-
dure
e Proposto por Mauricio Resende e Thomas Feo (1989).

e Mauricio Resende: Pesquisador da AT&T por 20 anos,
Departamento de Algoritmos e Otimizagao

Mauricio G. C.
Resende

GRASP
e Método multi-start, em cada iteragao
1. Gera solugoes com um procedimento guloso-randomizado.

2. Otimiza as solugoes geradas com busca local.

Algoritmo 10.7 (GRASP)
Entrada Parametro «.

Saida A melhor solucao encontrada.

1 GRASP(«a, ...)=
2 s é alguma solucao
do
s’ := Guloso — Randomizado(«)
s’ := BuscaLocal(s’)
s:=s’ if f(s’) <f(s)
until critério de parada satisfeito
return s

0 ~J O Ut~ W

Construcao gulosa-randomizada
e Motivacao: Um algoritmo guloso gera boas solugoes inicias.
e Problema: Um algoritmo deterministico produz sempre a mesma solugao.

e Logo: Aplica um algoritmo guloso, que nao escolhe o melhor elemento,
mas escolhe randomicamente entre os &% melhores candidatos.

e O conjunto desses candidatos se chama restricted candidate list (RCL).
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Construcao gulosa-randomizada: Algoritmo guloso

Guloso () :=
S=0

while S =(sy,...,81) com i<n do
entre todos candidatos C para sijii:
escolhe o melhor seC
S:=1(s1,...,8,8)
end while

Construcao gulosa-randomizada: Algoritmo guloso

Guloso—Randomizado (&) :=
S=0

while S =(sy,...,81) com i<n do
entre todos candidatos C para sijii:
forma a RCL com os o\% melhores candidatos em C
escolhe randomicamente um s € RCL
S:=1(s1,...,8,8)
end while

GRASP

Algoritmo 10.8 (GRASP)
Entrada Parametro «.

Saida Uma solugao s*.

1 GRASP(wa)=
do

y := Guloso — Randomizado(«)

y := BuscalLocal(y)

atualiza a melhor solugao s*
until critério de parada satisfeito
return s*

N O Uk W N

GRASP: Variacoes
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10. Heuristicas baseados em Busca local

e long term memory: hash table (para evitar otimizar solugdes ja vistas)

e Parametros: so, N (x), & € [0,1] (para randomizagio), tamanho das
listas (conj. elite, rcl, hash table), niimero de iteragoes,

GRASP com meméria

e O GRASP original ndo havia mecanismo de memoria de iteragoes pas-
sadas

e Atualmente toda implementagdo de GRASP usa conjunto de solugoes
elite e religagdo por caminhos (path relinking)

e Conjunto de solugoes elite: conjunto de solucoes diversas e de boa qua-
lidade

— uma solugao somente é inserida se for melhor que a melhor do
conjunto ou se for melhor que a pior do conjunto e diversa das
demais

— a solugao a ser removida é a de pior qualidade

e Religacao por Caminhos: a partir de uma solucao inicial, modifique um
elemento por vez até que se obtenha uma solucao alvo (do conjunto elite)

e solugoes intermediarias podem ser usadas como solugoes de partida

Comparacao entre as metaheuristicas apresentadas

e Metaheuristicas: Simulated annealing (SA), Multi-Start Search (MS),
GRASP

e SA tem apenas um ponto de partida, enquanto que os outros dois
métodos testa diversos

e SA permite movimento de piora, enquanto que os outros dois métodos
nao

e SA é baseado em um processo da natureza, enquanto que os outros dois
nao
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10.4. Busca Tabu

10.4. Busca Tabu

Busca Tabu (Tabu Search)

Proposto por Fred Glover em 1986 (principios bésicos
do método foram propostos por Glover ainda em 1977)

Professor da Universidade do Colorado, EUA

Fred Glover

Busca Tabu (BT)

Assim como em simulated annealing (SA) e VNS, TB é baseada inteira-
mente no processo de busca local, movendo-se sempre de uma solucao s
para uma solucao s’

Assim com em SA, também permite movimentos de piora

Diferente de SA que permite movimento de piora por randomizacao, tal
movimento na BT é deterministico

A base do funcionamento de Busca Tabu é o uso de meméria segundo
algumas regras

O nome Tabu tem origem na proibi¢ao de alguns movimentos durante a
busca

Busca Tabu (BT)

Mantém uma, lista T de movimentos tabu

A cada iteragdo se move para o melhor vizinho, desde que nao faca
movimentos tabus

Permite piora da solugao: o melhor vizinho pode ser pior que o vizinho
atual!

Sao inseridos na lista tabu elementos que provavelmente nao direcionam
a busca para o 6timo local desejado. Ex: 1iltimo movimento executado

o tamanho da lista tabu é um importante parametro do algoritmo

Critérios de parada: quando todos movimentos sao tabus ou se x movi-
mentos foram feitos sem melhora
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10. Heuristicas baseados em Busca local

Busca Tabu: Conceitos Basicos e notacao

s: solugao atual

s*: melhor solugao

f*: valor de s*

N (s): Vizinhanca de s.

N(s) € N(s): possiveis (nao tabu) solugbes vizinhas a serem visitadas
Solugoes: inicial, atual e melhor

Movimentos: atributos, valor

Vizinhanga: original, modificada (reduzida ou expandida)

Movimentos Tabu

Um movimento é classificado como tabu ou ndo tabu pelas regras de
ativagdo tabu

em geral, as regras de ativacao tabu classificam um movimento como
tabu se o movimento foi recentemente realizado

Memoria de curta duragao (MCD) - também chamada de lista tabu:
usada para armazenar os movimentos tabu

duracao tabu (tabu tenure) é o nimero de iteragoes em que 0 movimento
permanecera tabu

dependendo do tamanho da MCD um movimento pode deixar de ser
tabu antes da duracao tabu estabelecida

A MCD em geral é implementada como uma lista circular

O objetivo principal da MCD ¢é evitar ciclagem e retorno a solugoes jé
visitadas

os movimentos tabu também colaboram para a busca se mover para
outra parte do espago de solugbes, em diregao a um outro minimo local

Busca Tabu
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10.4. Busca Tabu

Algoritmo 10.9 (BuscaTabu)
Entrada uma solugao s

Saida uma solucao s’ : f(s’) < f(s)

1 BuscaTabu()=
2 Inicializacao:
s:=S0; f*:=1(so); s*:=s0 ; T:=0
while critério de parada nao satisfeito

s’ := seleciona s’ €N (s) com min f(s)

if f(s)<f* then
f*:=1(s); s*:=s
insira movimento em T (a lista tabu)
end while

© 00 O Ut =W

Busca Tabu (BT)

e critérios de parada:
— numero de iteragoes (Niqax)
— numero interagoes sem melhora
— quando s* atinge um certo valor minimo (méximo) estabelecido

e Um movimento nao é executado se for tabu, ou seja, se possuir um ou
mais atributos tabu-ativos

e Pode ser estabelecida uma regra de uso de um movimento tabu (critério
de aspiragao)
— Critério de aspiracao por objetivo: se o movimento gerar uma
solucao melhor que s*, permite uso do movimento tabu

— Critério de aspiracao por direcdo: o movimento tabu é liberado se
for na direcdo da busca (de melhora ou piora)

Busca Tabu: mecanismos auxiliares

e intensificagao: a idéia é gastar mais “esforco” em regices do espago de
busca que parece mais promissores. Isso pode ser feito de diversas manei-
ras (exemplo, guardar o nimero de interagoes com melhora consecutiva).
Nem sempre este a intensificacao traz beneficios.
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e Diversificacao: recursos algoritmicos que forgam a busca para um espaco
de solugoes ainda nao explorados.

— uso de memdria de longo prazo (exemplo, nimero de vezes que a
inser¢ao de um elemento provocou melhora da solugao)

— Estratégia bésica: forgar a insercao de alguns poucos movimentos
pouco executados e reiniciar a busca daquele ponto

— Estratégia usada para alguns problemas: permitir solugoes infactiveis
durante algumas interagoes

Busca Tabu: variacoes

e Virias listas tabus podem ser utilizadas (com tamanhos, duragao, e
regras diferentes)

e BT probabilistico: os movimentos sao avaliados para um conjunto se-
lecionado aleatoriamente N’(s) € N(s). Permite usar uma lista tabu
menor, acontece menos ciclagem.

e A duragao tabu pode variar durante a execucao

Comparacao entre as metaheuristicas apresentadas até entao

e Metaheuristicas: Simulated annealing (SA), Multi-Start Search (MSS),
GRASP, BT

e SA e BT tém apenas um ponto de partida, enquanto que os outros dois
métodos testa diversos

e SA e BT permitem movimentos de piora, enquanto que os outros dois
métodos nao

e SA é baseado em um processo da natureza, enquanto que os outros

métodos nao

Parametros e decisoes das metaheuristicas

e SA:

— Parametros: temperatura inicial, critério de parada, varidavel de
resfriamento

— Decisoes: vizinhanga, solugao inicial

e GRASP:
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10.5. Variable Neighborhood Search

— Parametros: s, N(x), « €[0,1] (para randomizagao), tamanho das
listas (conj. elite, rcl, hash table), critério de parada

— Decisoes: vizinhanga, solugéo inicial (sg), randomizagao da sg, atu-
alizagoes do conjunto elite

e BT:
— Parametros: tamanho da lista tabu, critério de parada

— Decisoes: vizinhaca, critérios para classificar movimento tabu

10.5. Variable Neighborhood Search

Variable Neighborhood Search
e Pierre Hansen e Mladenovi¢, 1997

e Hansen é Professor na HEC Montréal, Canada

Pierre Hansen

Variable Neighborhood Search

e Método que explora mais que uma vizinhanca.

e Explora sistematicamente as seguintes propriedades:

— O minimo local de uma vizinhanga nao é necessariamente minimo
para outra vizinhanca

— Um minimo global é um minimo local com respeito a todas as
vizinhancas

— Para muitos problemas, os minimos locais estao localizados relati-
vamente préximos no espago de busca para todas as vizinhancas

Os métodos usando k vizinhancas N7, ..., Ny sempre voltam a usar a primeira
vizinhanga, caso um movimento melhora a solucao atual. Caso contrario eles
passam para proxima vizinhanca. Isso é o movimento basico:

\ \
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Algoritmo 10.10 (Movimento)
Entrada Solucao atual s, nova solucao s’, vizinhanca atual k.

Saida Uma nova solugdo s e uma nova vizinhanga k.

1 Movimento(s,s’ k) =
if f(s’) <f(s) then
s:=gs'
k=1
else
k:=k+1
end if
return (s,k)

[\
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Com isso podemos definir uma estratégia simples, chamada Variable Neigh-
borhood Descent (VND).

Algoritmo 10.11 (VND)
Entrada Solucao inicial s, conjunto de vizinhancas A, i € [m].

Saida Solugao s.

1 VND(s ,{Ni})=

2 k:=1

3 // até chegar num minimo local

4 // para todas wvizinhangas

5 while k<m

6 encontra o melhor vizinho s’ em Ny(s)
7 (s,k) := Movimento(s, s’, k)

8 end while

9 return s

Uma versao randomizada é o reduced variable neighborhood search.

Algoritmo 10.12 (rVNS)
Entrada Solucao inicial s, conjunto de vizinhancas A;, i € [m].

Saida Solucéo s.

1 TVNS(s (N D=
2 until critério de parada satisfeito
3 k:==1
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10.5. Variable Neighborhood Search

while k<m do
seleciona vizinho aleatdério s’ em Ny(s) { shake }
(s,k) := Movimento(s,s’, k)
end while
end until
return s

© 00~ O U

Uma combinacao do rVNS com uma busca local é o Variable Neighborhood
Search (VNS) bésico.

Algoritmo 10.13 (VNS)
Entrada Solucao inicial s, um conjunto de vizinhancas N, 1 € [m].

Saida Solucao s.

1 VNS(s {Ni})=
2 until critério de parada satisfeito
k=1
while k<m do
seleciona vizinho aleatdério s’ em Ny(s) { shake }
s” := BuscaLocal(s’)
(s,k) :== Movimento(s, s”, k)
end until
return s

© 00~ O Ok W

Observagao 10.2

A busca local em VNS pode usar uma vizinhanca diferente das vizinhangas
que perturbam a solugao atual. Também é possivel usar o VND no lugar da
busca local. O
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11. Heuristicas inspirados da natureza

11.1. Algoritmos Genéticos e meméticos

Algoritmos Genéticos
e Proposto na década de 60 por Henry Holland.

e Professor da Faculdade de Engenharia Elétrica e de
Computagao da Universidade de Michigan/EUA.

e Seu livro: Adaptation in Natural and Artificial Sys-
tems (1975).

John Henry
Holland (+1929)

Algoritmos genéticos

e Foi proposto com o objetivo de projetar software de sistemas artificiais
que reproduzem processos naturais.

e Baseados na evolugao natural das espécies.

e Por Darwin: individuos mais aptos tém mais chances de perpetuar a
espécie.

e Mantém uma populagao de solugoes e nao uma unica solucao por vez.
e Usa regras de transicao probabilisticas, e nao deterministicas.

e Procedimentos: avaliagao, sele¢do, geragdo de novos individuos (recom-
binagao), mutagcao.

e Parada: nimero x de geracoes total, nimero y de geracoes sem melhora.

Algoritmos genéticos: Caracteristicas
e Varias solugoes (“populacido”).
e Operagoes novas: Recombinagao e mutagao.

e Separagao da representacao (“gendtipo”) e formulagao “natural” (fendtipo).
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Algoritmos Genéticos: Nocoes

e Genes: Representagdo de um elemento (bindrio, inteiro, real, arco, etc)
que determine uma caracteristica da solugao.

Alelo: Instancia de uma gene.

e Cromossomo: Uma string de genes que compdem uma solugao.

Gendtipo: Representagao genética da solugdo (cromossomos).

Fenétipo: Representacao “fisica” da solucao.

Populagao: Conjunto de cromossomos.

Algoritmos genéticos: Representacao e Solucao
Representacao Solugao

Al S
mapeamento
[of1T11[1]0ofoo 1]0[1]1]0]0] > AN
U J /O
WV
cromossomo

gene com alelos 0,1

Algoritmos Genéticos: exemplos

e Problema de partigao de conjuntos
Alelos: Oou 1
Cromossomo: 0001101010101011110110

e Problema do Caixeiro viajante
Alelos: valores inteiros entre 1 e n

Cromossomo: 15368247

Procedimentos dos Algoritmos Genéticos

e Codificacao: genes e cromossomos.

e Initializacao: geracao da populagao inicial.
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11.1. Algoritmos Genéticos e meméticos

solucao.

Selecao de pais: selecao dos individuos para crossover.

Operadores genéticos: crossover, mutacao

de parada

Algoritmos Genéticos

Fungao de Avaliagao (fitness): funcdo que avalia a qualidade de uma

Parametros: tamanho da populagao, percentagem de mutagao, critério

Algoritmo 11.1 (AlgoritmoGenético)
Entrada Parametros do algoritmo.

Saida Melhor solucdo encontrada para o problema.

1 Inicializagao e avaligao inicial

2 while (critério de parada ndo satisfeito) do
3 repeat

4 if (critério para recombinacao) then
5 selecione pais

6 recombina e gera um filho

7 end if

8 if (critério para mutagido) then

9 aplica mutagao

10 end if

11 until (descendentes suficientes)

12 selecione nova populacao

13 end while

Populacao Inicial: geracao

e Solucoes aleatorias.

e Método construtivo (ex: vizinho mais préximo com diferentes cidades

de partida).
e Heuristica construtiva com perturbacoes da solucao.

e Pode ser uma mistura das opgoes acima.
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11. Heuristicas inspirados da natureza

Populacao inicial: tamanho

e Populacao maior: Custo alto por iteragao.
e Populacao menor: Cobertura baixa do espago de busca.

e Critério de Reeves: Para alfabeto bindrio, populacao randomica: Cada
ponto do espago de busca deve ser alcancavel através de recombinagoes.

e Consequencia: Probabilidade que cada alelo é presente no gene i: 1 —
21,

Probabilidade que alelo é presente em todos gene: (1 —2'"™)L

Exemplo: Com | = 50, para garantir cobertura com probabilidade 0.999:

n>1-log, (1 _ %Y 0.999) ~ 16.61

Terminagao
e Tempo.
e Numero de avaliagoes.

e Diversidade. Exemplo: Cada gene é dominado por um alelo, i.e. 90%
dos individuos tem o mesmo alelo.

Préxima Geracao

e Gerada por recombinacdo e mutacao (solugoes aleatérias ou da po-
pulagdo anterior podem fazer parte da préxima geracao).

Estratégias:
— Recombinacao e mutacao.

— Recombinagao ou mutagao.

Regras podem ser randomizadas.

Exemplo: Taxa de recombinacao e taxa de mutagao.

Exemplo: Numero de genes mutados.
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Mutacao

e Objetivo: Introduzir elementos diversificados na populagao e com isso
possibilitar a exploragao de uma outra parte do espago de busca.

e Exemplo para representagao bindria: flip de k bits.

e Exemplo para o PCV: troca de posicao entre duas cidades.

Recombinacao

e Recombinagao (ingl. crossover): combinar caracteristicas de duas solugoes
para prover uma nova solucao potencialmente com melhor fitness.

e Explora o espago entre solugoes.

e Crossover clédssicos: one-point recombinagao e two-points recombinagao.

One-point crossover

Escolha um niimero aleatério k entre 1 e n. Gere um filho com os primeiros
k bits do pai A e com os dltimos n — k bits do pai B

e Problema de particagao: aplicacao direta do conceito

e Problema do Caixeiro Viajante: copie os primeiros k elementos do pai
A e as demais n—k posigoes preenche com as cidades faltantes, segundo
a ordem em que elas aparecem no pai B
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Recombinacao de dois pontos

OO
ole.

Exemplo: Strategic Arc Crossover

e Selecione todos os pedagos de rotas (string) com 2 ou mais cidades que
sao iguais nas duas solugoes

e Forme uma rota através do algoritmo de vizinho mais préoximo entre os
pontos extremos dos strings

Recombinacao: Selecao dos pais

e A probabilidade de uma solugao ser pai num processo de crossover deve
depender do seu fitness.

e Variagoes:
— Probabilidade proporcional com fitness.

— Probabilidade proporcional com ordem.
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Estratégia adotada pelos operadores

Intimeros operadores podem ser propostos para cada problema. O ideal é
combinar caracteristicas do operador usado, com outros operadores (mutagao,
busca local) usados no GA. Basicamente um crossover é projetado da seguinte
forma:

e Encontre similaridades entre A e B e insira S = A N B no filho.
e Defina conjuntos Si e Sout de caracteristicas desejaveis e nao desejaveis.
e Projete um operador que mantenha ao maximo elementos de S e Siy,
minimizando o uso de elementos de Sgt.
Nova Populacao
e Todos os elementos podem ser novos.
e Alguns elementos podem ser herdados da populacao anterior.
e Elementos novos podem ser gerados.

e Exemplos, com populagdo de tamanho A que gera p filhos. (A, 1)
Seleciona os A melhores dos filhos. (A + ) Seleciona os A melhores
em toda populacao.

Estrutura da Populacao

Em geral, populagao estruturada garante melhores resultados. A estrutura
da populacao permite selecionar pais para crossover de forma mais criteriosa.
Algumas estruturas conhecidas

e Divisao em Castas: 3 particoes A, B e C (com tamanhos diferentes),
sendo que os melhores individuos estao em A e os piores em C.

e [lhas: a populacao é particionada em subpopulacoes que evoluem em
separado, mas trocam individuos a cada periodo de niimero de geracoes.

e Populacao organizada como uma arvore.

Exemplo: Populacdao em castas

e Recombinagao: Somente entre individuos da casta A e B ou C para
manter diversidade.

e Nova populagao: Manter casta ”elite” A, re-popular casta B com filhos,
substituir casta C com solucoes randomicas.
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Exemplo: Populacao em arvore

e Considere uma &rvore terndria completa, em que cada né possui duas
solugdes (pocket e current).

e A solucao current é a solucao atual armazenada naquela posicao da
arvore.

e A solugdo pocket é a melhor ja tida naquela posi¢do desde a primeira
geracao.

e A cada solugao aplique ezchange (se a solucdo current for melhor que a
pocket, troque-as de posigao)

e Se a solucao pocket de um filho for melhor que a do seu pai, troque o
né de posicao.
Algoritmos Meméticos

e Proposto por Pablo Moscato, Newcastle, Austrélia.

e Idefa: Informacao “cultural” pode ser adicionada a um
individuo, gerando um algoritmo memético.

e Meme: unidade de informagao cultural.

Pablo Moscato

Algoritmos Meméticos

e Um procedimento de busca local pode inserir informagao de boa quali-
dade, e nado genética (memes).

e Faz uso de um procedimento de busca local (em geral aplicado & solugao
gerada pelo procedimento de recombinagao).

e Geralmente trabalha com populagoes menores.

Comparacao entre as Metaheuristicas Apresentadas

e Quais que dependem de randomizagao? SA, GRASP, GA

e Quais que geram apenas uma solugao inicial em todo processo? BT, SA
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11.1. Algoritmos Genéticos e meméticos
e (Quais mantém um conjunto de solucgoes, em vez de considerar apenas
uma? GA
e Quais sdo inspiradas em processos da natureza? GA, BT
e Qual gera os melhores resultados?
Existem outras Metaheuristicas

Handbook of Metaheuristics, por Fred W. Glover (Editor), Gary A. Kochen-
berger (Editor) Kluwer 2002.

HANDBOOK OF
METAHEURISTICS

T
Fomd Cdornin
Lo & Rin hemerge

Consideracgoes Finais

e O desempenho de uma metaheuristica depende muito de cada imple-
mentagao

e As metaheuristicas podem ser usadas de forma hibridizada
e Técnicas de otimizacao multiobjetivo tratam os casos de problemas com
mais de um objetivo (Curva de pareto)
Exercicio

e Problema de alocagao: atender n clientes por m postos de atendimento
(um posto é instalado no local onde se encontra um cliente)

e Entrada: distancias entre cada par de clientes

e Problema: Determinar em que locais instalar os postos, de forma a mini-
mizar a soma das distancias de cada cliente a um ponto de atendimento
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11. Heuristicas inspirados da natureza

Propor uma heuristica construtiva e uma busca local.

Comparacao entre as Metaheuristicas

178

Quais que permitem movimento de piora? BT, SA
Quais que nao dependem de randomizagao? BT
Quais que geram apenas uma solugao inicial em todo processo? BT, SA

Quais mantém um conjunto de solugoes, em vez de considerar apenas
uma?

Qual gera os melhores resultados?



Parte IV.

Appéndice
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A. Conceitos matematicos

N, Z, Q e R denotam os conjuntos dos nimeros naturais sem 0, inteiros,
racionais e reais, respectivamente. Escrevemos também Ny = N U {0}, para
qualquer conjunto C, C, :={x € Clx >0} e C_:={x € C | x < 0}. Por
exemplo

Ri={xeR|x>0L.

Para um conjunto finito S, P(S) denota o conjunto de todos subconjuntos de
S.

A = (ay;) € F™*™ denota uma matriz de m linhas e n colunas com elementos
em F, ai, com af € F* a i-ésigma linha e @) € F™ a j-ésima coluna de A.

Definicao A.1 (Pisos e tetos)
Para x € R o piso |x] é o maior nimero inteiro menor que x e o teto [x]| é o
menor nimero inteiro maior que x. Formalmente

|x] = max{y € Zly < x}
[x] = min{y € Zly > x}

O parte fraciondrio de x é {x} =x — |x].

Observe que o parte fracionédrio sempre é positivo, por exemplo {—0.3} = 0.7.
Proposicao A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem
x < [x] <x+1 (A1)
x—1<[x] <x (A.2)

L Alguns autores usam R+.
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B. Formatos

Essa capitulo contém um breve resumo de dois formatos usados para descre-
ver problemas de otimizacgao linear. CPLEX LP é um formato simples, en-
quanto AMPL (A modeling language for mathematical programming) é uma
linguagem completa para definir problemas de otimizacao, com elementos de
programacao, comandos interativos e um interface para diferentes “solvers”
de problemas.

CPLEX LP serve bom para experimentos rapidos. Aprender AMPL precisa
mais investimento, que rende em aplicagoes maiores. AMPL tem o apoio da
maioria das ferramentas disponiveis.

Varios outros formatos sdo em uso, a maioria deles comerciais. Exemplos sao
MPS (Mathematical programming system), um formato antigo e pouco usdvel
do IBM), LINGO, ILOG, GAMS e ZIMPL.

B.1. CPLEX LP
Uma gramética simplificada! do formato CPLEX LP é

(specification) ::= (objective)

(restrictions)?

(bounds)

(general)?

(binary)?

‘End’
(objective) ::= (goal) (name)? (linear expression)
(goal) ::= ‘MINIMIZE’ | ‘MAXIMIZE | ‘MIN’ | ‘MAX’
(restrictions) ::= ‘SUBJECT TQ’ (restriction)+
(restriction) = (name)? (linear expression) (cmp) (number)
<Cmp> = (<7 | (<=7 | (=) | (>7 | (>=7

LA gramética ndo contém as especificacdes “semi-continuous” e “SOS”.
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B. Formatos

(linear expression) ::= (number) (variable) ( '+ |’-’) (number) (variable) )*
(bounds) ::= ‘BOUNDS’ (bound)+

(bound) ::= (name)? ( (limit) ‘<=" (variable) ‘<=" (limit)
| (limit) ‘<=" (variable)
| (variable) ‘<=" (limit)
| (variable) ‘=" (number)
| (variable) ‘free’)

(limit) := ‘infinity’ | ‘~infinity’ | (number)
(general) ::= ‘GENERAL’ (variable)—+
(binary) ::= ‘BINARY’ (variable)+

Todas varidveis x tem a restricdo padrao 0 < x < 4o00. Caso outras limites
s80 necessdrias, eles devem ser informados na secdo “BOUNDS”. A secOes
“GENERAL” e “BINARY” permitem restringir varidveis para Z e {0, 1}, res-
pectivamente.

As palavras-chaves também podem ser escritos com letras mintsculas: o for-
mato permite algumas abreviagdes nao listadas acima (por exemplo, escrever
“s.t” ao invés de “subject t0”).

Exemplo B.1
Problema (1.1) no formato CPLEX LP.

Maximize
lucro: 0.2 ¢ + 0.5 s

Subject To
ovo: c+ 1.5 s <= 150
acucar: 50 ¢ + 50 s <= 6000
clientl:c <= 80
client2:s <= 60
Bounds
0 <=c
0 <= s
End
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B.2. AMPL

Exemplo B.2
Problema de mochila 0-1 com 11 itens em formato CPLEX LP.

max 19x1+87x2+97x3+22x4+47x5+22x6+30x7+5x8+32x9+54x10+75x11
s.t

1x14+96x24+67x34+90x4+13x5+74x6+22x7+86x8+23x94+63x10+89x11<= 624
binary x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

end

O

Observagao B.1

CPLEX LP permite constantes como 0.5e6 que representa 0.5 x 10°. Ou-
tra interpretagao dessa expressao é 0.5 vezes a varidvel eg. Para evitar essa
ambiguidade, varidveis nao podem comecar com a letra e. %

B.2. AMPL
Objetos de modelagem

e Um modelo em AMPL consiste em
— parametros,
— variaveis,
— restricoes, e

— objetiovos
e AMPL usa conjuntos (ou arrays de miltiplas dimensoes)

A:1-D
mapeiam um conjunto de indices I =1y x --- x I,; para valores D.
Formato
e Parte do modelo
<s1>
<sn>
end;

com s; € um comando ou uma declaragao.
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B. Formatos

e Parte de dados

data
<d1i>

<dn>
end;

Tipo de dados
e Numeros: 2.0,-4
e Strings: ’Comida’

e Conjuntos: {2,3,4}

Expressées numéricas
e Operagoes bésicas: +,—,%,/,div,mod,less,*x
Exemplo: x less y

e Funcoes: abs, ceil , floor ,exp
Exemplo: abs(—3)

e Condicional: if x>y then x else y

Expressoes sobre strings
e AMPL converte nimeros automaticamente em strings
e Concatenacao de strings: &

Exemplo: x & ’ unidades’

Expressoes para conjuntos de indices

e Unica dimensio
— t in S: varidavel “dummy” t, conjunto S
— (t1 ,... tn) in S: para conjuntos de tuplos

— S: sem nomear a variavel

e Multiplas dimensoes
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— {el ..., en} com e; uma dimenséo (acima).

Varidveis dummy servem para referenciar e modificar.

Exemplo: (i—1) in S

B.2. AMPL

Conjuntos
e Conjunto bésico: {v1 ,..., vn}
e Valores: Considerados como conjuntos com conjunto de indices de di-
mensao 0
e Indices: [il ,..., in]
e Sequéncias: nl ... n2 by dounl ... n2
e Construcao: setof I e: {e(i1,...,1n) | (11,...,in) €I}

Exemplo: setof {j in A} abs(j)

Operacoes de conjuntos

X union Y: Uniao XUY

X diff Y: Diferenga X\ Y

X symdiff Y: Diferenga simétrica (X \Y) U (Y \ X)
X inter Y: Intersecgao XNY

X cross Y: Produto cartesiano X x Y

Expressoes légicas

Interpretacao de nimeros: n vale “v”, sse n # 0.
Comparagoes simples <,<=,= ou ==,>=,>,<> ou !|=
Pertinéncia x in Y, xnot in Y, x lin Y

Subconjunto X within Y, X !within Y, X not within Y
Operadores 16gicos: && ou and, || ou or, ! ou not

Quantificagao: com indices I, expressao booleana b
forall T b: /\“h_.
exists I b\/

Lin )€l b(ih' . win)

i1,eeyin )€l b(ir,...,in)
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B. Formatos

Declaracoes: Conjuntos

set NI [dimen n] [within S] [default el] [:= e2]
param N I [in S] [<=,>=,!=,... n] [default el] [:= e2]
e Nome N

Conjunto de indices I (opcional)

Conjunto de valores S
e Valor default e

e Valor inicial e>

Declaracoes: Restricoes e objetivos

subject to NT1: el =e2 | el <= €2, el >=e2
minimize [I] : e

maximize [I] : e

Comandos

e solve: Resolve o sistema.

e check [I] : b: Valida expressao booleana b, erro caso falso.

display [I] : el ,... en: Imprime expressoes ej,...,en.

printf [I] : fmt,el ,..., en: Imprime expressoes e — 1,..., e, usando
formato fmt.

e for T : ¢c,for I : {c1l ... cn}: Lagos.

Dados: Conjuntos
set Nrl.,..rm
Com nome N e records r1,...,Th, cada record

e um tuplo: vi,...,vjn Exemplo: 12,13,22, 27

e a definicdo de uma fatia (vq]*,Vval*,...,vn|*): depois basta de listar os
elementos com *. Exemplo: (1 *)23,(2*)27

e uma matriz
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B.2. AMPL

Dados: Parametros
param N rl,...rn
Com nome N e records 11,...,Tn, cada record

e um valor i1,...,1in,V

e a definicdo de uma fatia [i7]*,12|*,...,1in|*): depois basta definir indices
com *.

e uma matriz

uma tabela

Exemplo B.3 (Exemplo 1.1 em AMPL)
var c; # numero de croissants

var s; # niumero de strudels
param lucro croissant; # o lucro por croissant
param lucro strudel; # o lucro por strudel

maximize lucro: lucro croissant*xct+lucro strudelxs;
subject to ovo: c+1.5%s <= 150;

subject to acucar: 50xc+50xs <= 6000:

subject to croissant: ¢ <= 80;

subject to strudel: s <= 60;
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C. Solucoes dos exercicios

Solugao do exercicio 1.3.

maximiza 2A+B
sujeito a A <= 6000
B <=7000
A + B <= 10000

Resposta: A=6000 e B=4000 e Z=16000

Solugao do exercicio 1.4.
Sa0 necessarias cinco varidveis:

® X71:

® X!

® X3!

® X4

® X5:

namero de pratos de lasanha comidos por Marcio
nimero de pratos de sopa comidos por Marcio

numero de pratos de hamburgueres comidos por Renato
nimero de pratos de massa comidos por vini

numeros de pratos de sopa comidos por vini

Formulagao:

maximiza X1+ X2 +x3+ X4 + X5

sujeito a 4>x1+x%x>2
5>x%x3>2
4>x4+x5>2
70(x2 + x5) + 200x7 + 100x3 + 30x4 < 1000
30(x2 + xs5) + 100x7 + 100x3 + 100x4 < 800
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C. Solugées dos exercicios

Solugao do exercicio 1.5.

maximiza 1 + 21,
sujeito a 1L, <60
1 + 31, <200
21 + 21, <300
L, >0

Solugao do exercicio 1.6.

maximiza 60m + 30a
sujeito a m<6é6
a<4
6m + 8a <48
m,a >0

Solugao do exercicio 1.8.
Com marcas J,0,M (Johnny Ballantine, Old Gargantua, Misty Deluxe) e
misturas A, B, C temos as varidveis

XJ,AyX],By X],CyX0,Ay X0,B)y X0,Cy XM,Ay XM,By XM, C

que denotam o numero de garrafas usadas por mistura.
Vamos introduzir ainda as varidveis auxiliares para o nimero de garrafas usa-
das de cada marca

Xj] =Xj,A + X5 B +Xj,c; X0 =X0,A +X0,B+X0,c; XM =XM,ATXM,B+XM,C
e varidveis auxiliares para o nimero de garrafas produzidas de cada mistura

XA =XJ,A +X0,A +XM,A; XB =Xj,B +X0,B +XM,B; Xc =Xj,c*+Xo,c+Xm,cC-
Queremos maximizar o lucro em reais

68xa + 57xg + 45xc — (70x) + 50xo + 40xm)

192



respeitando os limites de importagao
x3 <2000; xp <2500; xpm <1200
e os limites de percentagem

Xj,A 2> 0.6xa; xm,A <0.2xa
X]B = 0.15xg; xm,B < 0.6xp
Xm,c < 0.5xc.

Portanto, o sistema final é

max 68xa + 57xg + 45x¢c — (70x5 4+ 50xo + 40xpm)
s.a x5 <2000

xo < 2500

xm < 1200

xj,A = 0.6xA

xm,A < 0.2xa

xj,B = 0.15xp

xm,B < 0.6xp

xm,c < 0.5x¢

Xm = Xm,A +Xm,B +Xm,C m € U, o, M}
Xm = XJ,m +X0,m +XM,m m € {A,B, C}
Xmn >0 me{J,0,M}n e {A,B,C}

Sem considerar a integralidade a solugdo 6tima é produzir 2544.44 garrafas da
mistura A, 3155.56 garrafas da mistura B e 0 garrafas da mistura C, com as
percentagens

e A: 60% Johnny Ballantine, 20% Old Gargantua, 20% Misty Deluxe
e B: 15% Johnny Ballantine, 63% Old Gargantua, 22% Misty Deluxe
Solugao do exercicio 1.9.
Com t; o ntmero de TVs de 297¢ t, de 31" temos

maximiza 120t7 + 80t,
sujeito a t1 <40
1 <10
20t; + 10t < 500
t1,t2>0

193



C. Solugées dos exercicios

Solugao do exercicio 1.10.

Seja V = {V7,Va} e NV = {NV;,NV,,NV3} os conjuntos de dleas vegetais e
nao vegetais e O = VUNYV o conjunto do todos dleos. Seja ainda c; o custo por
tonelada do éleo i € O e a; a acidez do dleo i € O. (Por exemplo ¢y, =110
e any, = 4.2.) Com varidveis x; (toneladas refinadas do déleo i € O) e x,
(quantidade total de éleo produzido) podemos formular

maximiza 150x, — Z CiXi
icO
sujeito a Z xi < 200 limite dleos vegetais
ieVv
Z x; < 250 limite 6leos nao vegetais
ieNV
3xo < Z aixi < 6Xx, Intervalo acidez
ieO
Z Xi = Xo Oleo total
i€eO
Xo,Xi > 0 Vie O.

Solugao do exercicio 1.11.
Sejam xa, xg € Xc 0 nimero de horas investidos para cada disciplina. Vamos
usar varidveis auxiliares na, ng e nc para as notas finais das trés disciplinas.
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Como isso temos o programa linear

maximiza na +ng +nc

sujeito a xa +xg +xc =100 Total de estudo
na = (6+xa/10)/2 Nota final disc. A

ng = (7 + 2xg/10)/2 Nota final disc. B

ne = (10+ 3x¢c/10)/2 Nota final disc. C

na >5 Nota minima disc. A

ng > 5 Nota minima disc. B

nec>5 Nota minima disc. C

A <10 Nota méaxima disc. A

ng <10 Nota maxima disc. B

nc <10 Nota méxima disc. C

Na,Np,Nc > 0.

Solugao do exercicio 1.12.
Sejam v € R e f € R 0 numero de canecos do Duff regular e do Duff Forte,
respectivamente, encomendados por semana. Com isso podemos formular

maximiza T+ 1.5f (C.1)
sujeito a 2f<r (C.2)
T+ f <3000 (C.3)

r,feR,. (C4)

Solugao do exercicio 1.13.
Sejam f € R e h € R o nimero de pacotes de Frisky Pup e Husku Hound
produzidos, respectivamente. Com isso podemos formular

maximiza 1.6f + 1.4h (C.5)
sujeito a f+ 2h < 240000 (C.6)
1.5f +h < 180000 (C.7)

f < 110000 (C.8)

f,heR;. (C.9)
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C. Solugoes dos exercicios

Solugao do exercicio 1.14.

maximiza 25p + 30c
sujeito a /200 + ¢c/140 <40 & 7p + 10c < 56000
p <6000
¢ <4000
¢,p=>0

Produzindo ago

6000 -

5000 (56000-7*X)/1 0

4000

3000

Canos ¢

2000 Solugdes viaveis

1000

0 1000 2000 3000 4000 5000 6000 7000 8000
Placas p

A solugao étima é p = 6000, ¢ = 1400 com valor 192000.

Solucao do exercicio 1.15.

Usamos indices 1, 2 e 3 para os voos Pelotas—Porto Alegre, Porto Alegre—
Torres e Pelotas—Torres e varidveis aj, az, a3 para a categoria A, by, by, b3
para categoria B e c—1, ¢z, c3 para categoria C. A funcao objetivo é maximizar
o lucro

z = 600ay +320a; + 720a3 +440b; + 260b, + 560b3 + 200ct + 160c, + 280c3.
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Temos que respeitar os limites de capacidade

a;+by+cy+as+bs+c3 <30
a+by+cy+as+bs+c3 <30

e os limites da predigao

a; <4 a; <§; a3 <3
by <8; by <135 b3 <10
c1 <22 cy <20 c3 <18

Obviamente, todas varidveis também devem ser positivos.

Solugao do exercicio 1.16.
A solucao gréfica é
6

1 Solugbes viaveis

(a) A solugéo 6tima é x1 =4.25, x2 ~ 4 (valor exato xa = 3.96875).

(b) O valor da solugao 6tima é ~ 21 (valor exato 20.96875).
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C. Solugées dos exercicios

Solugao do exercicio 1.17.

maximiza z =5x1 + 5x2 4+ 5x3
sujeito a —6x7 —2x —9%3 <0
—9%7 —3xy+3x3 <3
9%1 +3x2 —3x3 < -3
x; >0

maximiza z = —6x7 — 2x2 — 6x3 + 4x4 + 4x5
sujeito a —3x7 — 8%y —6x3 —7x4 —5x5 < 3
3x1 4+ 8x2 + 6X3 + 7x4 + 5x5 < —3
5x1 —7x2 +7x3 +7x4 —6x5 < 6
X1 — M2 +5%x3 +7x4 — 10x5 < —6
— X1+ 9% —5x3 —7x4 +10x5 < 6
Xj Z 0
maximiza z=7x1 +4x3 + 8x3 + 7x4 — 9x5
sujeito a —4x7 — Ixy —7x3 — 8%x4 + 6x5 < —2
4x1 +x2 +7x3 + 8x4 — 6x5 < 2
— X7 —4xy —2x3 — 2x4 +7x5 <7
—8%x1 + 2x2 + 8x3 —6x4 — 7x5 < —7
8x1 —2xp —8x3 +6%4 +7x5 <7
X]' Z 0
maximiza z=6x7 —5xy — 8x3 — 7x4 + 8x5
sujeito a

—5x1 —2x2 + X3 — x4 —7x5 <9
51 4+ 2x2 —x3 + Ixg + 7x5 < —9
7X1 + 7x2 +5%x3 —3x4 + x5 < —8
—7x1 —7%2 —5x3 +3x4 — x5 <8

—5%x7 —3x2 —5x3 + x4 + 8x5 <0
XjZO
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Solugao do exercicio 2.1.
Solucao com método Simplex, escolhendo como varidvel entrante sempre aquela
com o maior coeficiente positivo (em negrito):

z = 25p  +30c
wi; =56000 —7p —10c
wy; =6000 —p

ws  =4000 —c

z =120000 +25p —30w;
w; =16000 —7p +10ws;
wy; = 6000 —p

c = 4000 —W3

z = 1240000/7 —25/7p +40/7w3
P =16000/7 —1/7wi  +10/7w3
wy = 26000/7 +1/7wy —10/7wg
c = 4000 —WwW3

z = 192000 73W] 74W2

p =6000 —W

ws = 2600 +1/10wy; —7/10w,

c = 1400 —1/10wy  +7/10w,

Solugao do exercicio 2.3.
Temos

2m+1)\  /2n\(2n+2)(2n+1)  /2n\2(2n+1)
<n+1 )(n) (n+1)2 (n) n+1

221 (211) < <Z(n+1)> < 92 (211)‘
n+1\n,/ — n+1 - n

Logo, por inducdo (1/2n)2?" < (2111) <22,

e logo

Solugao do exercicio 2.6.

(a) Substituindo x; e x; obtemos a nova fungdo objetivo z = x; + 2x2 =
22 — 7wy — 3wq. Como todos coeficientes sao negativos, a solugdo basica
atual permanece étima.
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C. Solugées dos exercicios

(b) A nova fungao objetivo é 1 —w; e o sistema mantem-se 6timo.
(¢) A nova fungao objetivo é 2 — 2w, e o sistema mantem-se 6timo.
(d) O dicionario dual é

z¢ =31 -7z, —8z
Yy, =11 42z, 43z
yr =4 H4zx  +z

e a solucdo dual 6tima é (y7y2)t = (4 11)%.

Solugao do exercicio 3.1.

maximiza 10y; + 6y>

sujeito a Yy +5y2 <7
—y1+2y2 <1
3yr —yz2 <5
yi,yz2 =2 0.

Solugao do exercicio 3.2.
Com varidveis duais y. para cada e € U temos

maximiza E Ye

ecu

sujeito a Z Ye < ¢(S) Ses
e:ecS
Ye >0 ec .

Solugao do exercicio 3.3.

(a) Temos B = {4,1,2} (varidveis bésicas x4, x1 € x2) e N = {5, 6,3} (varidveis
nulas xs, x¢ € x3). No que segue, vamos manter essa ordem das varidveis
em todos vetores e matrizes. O vetor de custos nessa ordem é

cg =02 —1% cn=(00MN"
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e com
Ac=(01 OOOO)t
temos

Ay = (BT'N)*Acg — Acny = (B7'N)'Acg

-1 12 =12\ /0 12
=2 12 12 ]|[1])=]1/2].
1 172 =3/2) \o 1/2

Com y%, = (3/21/23/2)" obtemos os limites —1 <t <ooe 1 <¢; < 0.

Temos Axpy = B~TAb e Ab = (0 1 0)!. Para determinar Axg precisamos
calcular B~ pela inversao de

13 1
B=[|0 1 -1
o1 1
(observe que as colunas estao na ordem de B) que é
1T -1 —2
B '=(0 12 12
0 —1/2 12
Assim Axg = (—11/2 —1/2)% e com xj; = (10 155)* e pela defini¢ao

x¥ *
max ———— < t< min —
1 1

obtemos os limites —30 <t <10 e —20 < b, < 20.

Com b = (70 20 10)* temos B~'6 = (30 15 —5)t. Portanto, a solugio
bésica nao é mais viavel e temos que reotimizar. O novo valor da funcao
objetivo é
30
ck(B'B)=(0 2 -1)[15] =35
-5
e temos o dicionério

z= 35 —=3/2xs5 —1/2x¢ —3/2x3

x4 = 30 +X5 +2x¢ —X3
x1= 15 —=1/2xs5 —1/2x¢ —1/2x3
x2 = —5 +1/2x5 —1/2x¢ +3/2x3
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C. Solugées dos exercicios

O dicionério é dualmente viavel, e apds pivo x2—x3 temos o novo sistema
6timo
z= 30 —X5 —Xg —X2
xq = 80/3 +4/3x5 +5/3x¢ —2/3x2
X1 = 40/3 —1/3X5 —2/3X6 —1/3X2
x3 = 10/3 —1/3x5 +1/3x¢ +2/3x2

(d) Temos € =(03 —2003)* (em ordem B,N) e com isso

-1 1/2 —-1/2 0 0 5/2
g =B"N)teg—en=|-2 12 12 |3 |-(o]=[12
112 =3/2) \ 2 3 3/2

Portanto, a solucao ainda é 6tima. O novo valor da funcao objetivo é

10
¢sB ') =(0 3 —2)(15] =35.
5

Solucao do exercicio 6.2.

Conjunto independente maximo Com varidveis indicadores x,,, v € V temos
0 programa inteiro

maximiza Z Xv
vev
sujeito a Xu+xy <1, V{u,v} € A (C.10)
Xy € B, Yv eV

A equagdo C.10 garante que cada aresta possui no méximo um né incidente.

Emparelhamento perfeito com peso maximo Sejam x4, a € A varidveis
indicadores para a selecao de cada aresta. Com isso, obtemos o programa
inteiro

maximiza Z pla)xq
acA
sujeito a Z X} = 1, WweV (C.11)
ueN(v)
Xq € B, Vv € V.

A equagao C.11 garante que cada nd possui exatamente um vizinho.
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Problema de transporte Sejam xi; varidveis inteiras, que correspondem com
o numero de produtos transportados do depésito i para cliente j. Entao

minimiza Z CijXij
i€n]
jelm]
sujeito a Z Xij =Pi, Vie[n] cada depdsito manda todo estoque

Z xij =dj, Vje [m] cada cliente recebe a sua demanda
ie[n]
Xij € VAR

Conjunto dominante Sejam x,, v € V varidveis indicadores para selecao de
vértices. Temos o programa inteiro

minimiza Z Xy
vev
sujeito a Xy + Z Xy > 1, ¥Yv eV nb ou vizinho selecionado
ueN (v)
Xy € B, Vv eV

Solugao do exercicio 6.4.
Seja d1dy...d, a entrada, e o objetivo selecionar m < n digitos da entrada.

Seja xi; € B um indicador que o digito i da entrada seria selecionado como
digito j da saida, i € [n], 1 <j < m. Entéo

maximiza Z xi;di10™

sujeito a ZXU =1, vj (C.12)
inj <1, Vi (C.13)
Xij = 0, V] > 1, (C.14)
X < 1 — Xij, Vk>l,1<] (015)

A fungao das equacgoes € a seguinte:

e Equacao C.12 garante que tem exatamente um digito em cada posicao.

203



C. Solugées dos exercicios

e Equagao C.13 garante que cada digito é selecionado no maximo uma
vez.

e Equacgao C.14 garante que digito i aparece somente a partir da posigao
j.

e Equacao C.13 proibe inversoes.

Solugao do exercicio 6.5.

Existem 21 sets diferentes, cada um com consumo diferente das 9 cartas. Seja
AR?*2! uma matriz, que contém em cada das 21 coluna o ntimero de cartas
de cada set. Além disso, seja b € RY o niimero de cartas disponiveis. Usando
varidveis inteiros x € Z?' que representam o nimero de sets formandos de
cada tipo de set diferentes, temos a formulagao

maximiza E Xi
ie(21]

sujeito a Ax <D

x > 0.
Solucao do exercicio 6.6.
Cobertura por arcos
minimiza Z CeXe
eckE
sujeito a Z Xuy > 1, Yvev
UEN(v)
Xe € B.
Conjunto dominante de arcos
maximiza Z CeXe
eckE
sujeito a Z Xer > 1, VeecE
e/€E
ene’#0
Xe € B.
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Coloracdo de grafos Sejan =1V|.

minimiza Z Cj
jen]

sujeito a Z Xvj =1, Ywev (C.16)
jen]
Xui +X%vi < 1, V{u,v} € E,1 € [n] (C.17)
ne > Y X, Vj € (C.18)

vev

Xviy € € B.

e Equacao C.16 garante que todo vértice recebe exatamente uma cor.
e Equacao C.17 garante que vértices adjacentes recebem cores diferentes.

e Equacao C.18 garante que ¢; = 1 caso cor j for usada.

Cligue minimo ponderado

minimiza Z CvXy
vev

sujeito a Xu+xy <1, V{u,v} € E (C.19)
X, € B.

Equacao C.19 garante que nao existe um par de vértices selecionados que nao
sao vizinhos.

Subgrafo cubico x. indica se o arco e é selecionado, e Yy, indica se ele possui
)
grau 0 (Caso contrario grau 3).

minimiza g Xe
eckt

sujeito a Z Xe <0+ [EI(T —ye)
eeN(v)

Z Xe < 3+|E|ye

eeN(v)

— Z Xe < =3+ 3y,
eeN(v)
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C. Solugées dos exercicios

Observe que o grau de cada vértice é limitado por |E|.

Solucao do exercicio 6.7.

Sejam x; € B,1 € [7] varidveis que definem a escolha do projeto i. Entao

temos
maximiza 17x7 + 10x2 + 15x3
+ 19x4 + 7x5 + 13x6 + 9%x7
sujeito a 43x7 + 28%2 + 34x3 + 48x4

+ 17x5 + 32x¢ + 23x7 < 100 Limite do capital

x1 +x2 <1
x3+xq4 <1

X3 +Xxq4 <X1+%2

Projetos 1,2 mutualmente exclusivos
Projetos 3,4 mutualmente exclusivos

Projeto 3 ou 4 somente se 1 ou 2

O 0 =1 O U s O DN =

12
13
14
15
16
17

http://www.inf .ufrgs.br/~mrpritt/e6q2.mod

set projetos = 1 7;
param lucro { projetos };
param custo { projetos };
var fazer { projetos } binary;
maximize M: sum { i in projetos } lucro[i]*xfazer[i];
subject to Sl1:

sum { i in projetos } custo[i]xfazer[i] <= 100;
subject to S2: fazer[l]+ fazer[2] <= 1;
subject to S3: fazer[3]+ fazer [4] <= 1;
subject to S4: fazer[3]+fazer [4] <= fazer[l]+ fazer [2];
data;
param lucro := 1 17 2 10 3 15 4 19 57 6 13 7 9;
param custo := 1 43 2 28 3 34 4 48 5 17 6 32 7 23;

end;

Solucao: Selecionar projetos 1,3,7 com lucro de 4TMRS.

Solugao do exercicio 6.8.

Seja f € B uma varidvel que determina qual fabrica vai ser usada (fabrica 1,
caso f =0, fabrica 2, caso f = 1), b; € B uma varidvel binéria que determina,
se brinquedo 1 vai ser produzido e u; € Z as unidades produzidas de brinquedo
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O 00 =1 O U s W N =

11

13
14
15
16
17
18
19
20
21
22
23
24
25

i (sempre com 1 € [2]).

maximiza 10u; + 15u; — 50000b; — 80000b,
sujeito a u; < Mb;
w1 /50 + u, /40 < 500 + fM

/40 +u,/25 <700+ (1 —f)M  Limite fabrica 2, se selecionada

Permitir unidades somente se tem pr

Limite fabrica 1, se selecionada

A constante M deve ser suficientemente grande tal que ela efetivamente nao
restringe as unidades. Dessa forma, se a fabrica 1 esta selecionada, a terceira

restrigdo (da fabrica 2) nao se aplica e vice versa.

http://www.inf.ufrgs.br/~mrpritt/e6q3.mod

var f binary;

var b { brinquedos } binary;

var u { brinquedos } integer , >= 0;
param inicial { brinquedos };
param lucro { brinquedos };

param prodfabl { brinquedos };
param prodfab2 { brinquedos };
param M := 35000;

maximize Lucro:
sum { i in brinquedos } u[i]*xlucro[i]
— (sum { i in brinquedos } inicial[i]*b[i]
subject to PermitirProducao { i in brinquedos
ul[i] <= Mxb[i];
subject to LimiteFabl
sum { i in brinquedos }
uli]*prodfabl[i] <= 500 + f=M;
subject to LimiteFab2
sum { i in brinquedos }
ul[i]*prodfab2[i] <= 700 + (1—f)*M;

data;

param inicial := 1 50000 2 80000;
param lucro := 1 10 2 15;

param prodfabl := 1 0.020 2 0.025;
param prodfab2 := 1 0.025 2 0.040;
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27
28
29
30
31
32
33
34
35
36
37
38

41
42
43
44
45
46
47
48

C. Solugées dos exercicios

Solugéo: Produzir 28000 unidades do brinquedo 1 na fibrica 2, com lucro
230KRS$.

Solugao do exercicio 6.9.
Sejam a; € B uma variavel que determina se avido i vai ser produzido e u; € Z
as unidades produzidas.

maximiza 2u1 +3uy; +0.2u3 — 3a7 — 2a;

sujeito a 0.2u7 +0.4u3 +0.2u; <1 Limite de capacidade
u; < 5b; Permitir unidades somente se for
u <3 Limite aviao 1
u <2 Limite avidao 2
us; <5 Limite aviao 3

http://www.inf.ufrgs.br/~mrpritt/e6q4.mod

param custo { avioes };
param lucro { avioes };
param capacidade { avioes };

param demanda { avioes };

var produzir { avioes } binary;

var unidades { avioes } integer, >= 0;

maximize Lucro:
sum { i in avioes }

(lucro[i]*unidades[i]—custo[i]*produzir[i]);

subject to LimiteCapacidade:
sum { i in avioes } unidades[i]*capacidade[i] <= 1;

subject to PermitirProducao { i in avioes }:
unidades [i] <= bxproduzir[i];

subject to LimiteDemanda { i in avioes }:
unidades [i] <= demanda[i];

data;

param : custo lucro capacidade demanda :=

13 2 0.2 3

2 2 3 0.4 2

30 0.8 0.25
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Solucao: Produzir dois avides para cliente 2, e um para cliente 3, com lucro
4.8 MRS$.

Solugao do exercicio 6.10.

Seja xijx € B um indicador do teste com a combinacao (i,j,k) para T <
i,j,k < 8. Cada combinagao (i,j,k) testada cobre 22 combinagoes: além de
(1,j, k) mais 7 para cada combinacio que difere somente na primeira, segunda
ou terceira posicao. Portanto, uma formulacao é

minimiza Z Xij,k
1,5,k
sujeito a  xijk + Z Xi/jk + Z Xij/k + Z xije =1 Vij,k
U 7 K7k
Xi,j,k € B vi,j, k.

A solugao otima desse sistema é 32, i.e. 32 testes sao suficientes para abrir a
fechadura.

Solugao do exercicio 6.11.

Sejam x; € B, i € [k] as varidveis de entrada, e ¢; € B, i € [n] varidveis que
indicam se a cladsula c; estd satisfeita. Para aplicar a regra (6.2) diretamente,
vamos usar uma varidvel auxiliar d;. i € [n], que representa a disjungao dos
primeiros dois literais da claisula 1i.

maximiza E Ci
ie[n]
. Xk literal j na claisula i é x
sujeito a L = . A i L
1 —xy literal j na clatisula i é —xj

di > (L1 +1i2)/2
di <lip + iz
ci > (di +1i3)/2
ci <di+1li3
ci,di,xqy € B.
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C. Solugées dos exercicios

Como é um problema de maximizacao, pode ser simplificado para
maximiza E Ci
ien]

L. X1 literal j na clatisula 1 é xj
sujeito a L = . . B .
1 —xx literal j na clatisula i é —xy
ci <l +liz2+ L3

ci,Xq € B.

A segunda formulagao possui uma generalizacdao simples para o caso k > 3.

Solugao do exercicio 7.2.

Conjunto independente maximo A matriz de coeficientes contém dois co-
eficientes igual 1 em cada linha, que correspondem com uma aresta, mas
geralmente nao é totalmente unimodular. Por exemplo, o grafo completo com

trés vértices K3

/N

@&

gera a matriz de coeficientes

110
1T 0 1
0 11

cuja determinante é —2. A solugao 6tima da relaxacao inteira 0 < x; < 1 ¢é
X1 =x2 = x3 = 1/2 com valor 3/2, a Fig. C.1 mostra o politopo correspon-
dente. (Observagao: A transposta dessa matriz satisfaz os critérios (i) e (ii) da
nossa proposicao, e caso o grafo é bi-partido, também o critério (iii). Portanto
Conjunto independente mdximo pode ser resolvido em tempo polinomial em
grafos bi-partidos).

Emparelhamento perfeito com peso maximo A matriz de coeficientes sa-
tisfaz critério (i). Ela tem uma linha para cada vértice e uma coluna para cada
aresta do grafo. Como cada aresta é incidente a exatamente dois vértices, ela
também satisfaz (ii). Finalmente, a bi-partigdo V; U V, do grafo gera uma

210



Figura C.1.: Politopo {x € R3 | x1 +x2 < T,x1 +x3 < 1,x2 +x3 < 1,0 < x; <
1}. (O visualizador usa os eixos x = X1, Yy = X2, Z = X3.)

bi-particao das linhas que satisfaz (iii). Portanto, a matriz é TU, e o Empare-
lhamento perfeito com peso mdximo pode ser resolvido em tempo polinomial
usando a relaxacgao linear.

Problema de transporte A matriz de coeficientes satisfaz critério (i). Po-
demos representar o problema como grafo bi-partido completo Ky, m entre os
depdsitos e os clientes. Desta forma, com o mesmo argumento que no tltimo
problema, podemos ver, que os critérios (ii) e (iii) s@o satisfeitos.

Conjunto dominante A matriz de coeficientes satisfaz critério (i), mas néao
critério (ii): cada linha e coluna correspondente com vértice v contém [N (v)|+1
coeficientes nao-nulos. Mas, nao é obviou se a matriz mesmo assim nao é TU
(lembra que o critério é suficiente, mas nao necessario). O K3 acima, por
exemplo, gera a matriz

1T 11
1T 11
1T 11

que € TU. Um contra-exemplo seria o grafo bi-partido Ky 3

O—@

N\

ORNO
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C. Solugées dos exercicios

que gera a matriz de coeficientes

—_— o o —

1
0
1
0

—_ O —

1
1
0
0

com determinante —2. Isso nao prova ainda que a relaxacao linear nao pro-
duz resultados inteiros étimos. De fato, nesse exemplo a solucao 6tima da
relaxacao inteira é a solucao étima inteira D = {1}.

Um verdadeiro contra-exemplo é um ciclo com cinco vértices Cs

@
@/ \@

H—®

com matriz

—_— O = =0
[
(SRR -
—_ o = -

(cuja determinante é 3). A relaxagao linear desse sistema tem a solugao Gtima
X1 =X2 =X3 =X4 = X5 = 1/3 com valor 5/3 que nao ¢ inteira.

Solugao do exercicio 7.4.

A formulag@o possui 14 restrigoes, correspondendo com as 14 arestas. Como
o grafo é 4-regular, cada vértice ocorre 4 vezes no lado esquerdo de uma
restricao, e somando todas restricoes obtemos

4% x <14

ie(7]
= Z xi < 14/4
ie(7]
= ) xi < [14/4] =3,
iel7]
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que nao é suficiente. Para obter uma desigualdade mais forte, vamos somar
sobre todos tridngulos. Somando primeiro as restricbes das arestas de cada
tridngulo (u, v, w) obtemos

2xy + 2%y + 2%, <3
SxXu + Xy +x0 < [3/2] =1,

Somando agora as restrigoes obtidas desta forma de todos 14 tridangulos do
grafo (cada vértice é parte de 6 tridngulos) obtemos a desigualdade desejada

6 Z x; < 14
iel7]

= Y xi < [14/6] = 2.

iel7]

(Outra abordagem: Supde, sem perda de generalidade, que x; = 1 na solugao
6tima. Pelas restrigoes x1 + x; < 2 temos x; = 0 para i € {3,4,5,6}. Pela
restricao x +x7 < 1, portanto ) ;_;.,xi <2.)

Solugao do exercicio 7.5.

Seja S =[]\ S e m = maxjcs a; e M = maxics a;. A idéia é somar desigual-
dades x; < 1 para i€ S até o corte de Gomory obtido pela divisdo pelo coefi-
ciente méximo em S rende a desigualdade desejada. Seja 6 = max{m + 1, m}.
Somando (6 — ai)xi; < d — a; obtemos

D i+ ) axi <b+) (5—ai)x <8IS|<3IS|—1.

ies ieS ies
Aplicando o corte de Gomory com multiplicador 1/6 obtemos

> xi < [ISI—-1/8) =8| -1

ies
porque a; < M < max{m + 1,m} =& e logo |a;/8] =0 paraicS.

Solugao do exercicio 7.6.

X1 + xg + x7 < 2 porque uma rota nao contém subrotas. Portanto x7 + x, +
X5 + X6 + X7 + X9 < 5. Supoe x7 + X2 + x5 + X + X7 + Xo = 5. Temos trés
casos: X1 = 0, xg = 0 ou x; = 0. Em todos os casos, as restantes varidveis
possuem valor 1, e no grafo resultante sempre existe um vértice de grau 3 (o
vértice no centro, da esquerda, de acima, respectivamente), que nao é possivel
numa solucao valida.
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Solugao do exercicio 7.8.
O sistema inicial

z= X1 +3x2
wy = —2 +xq
W = 3 —X2
wiy = —4 +x +X2
Wy = 12 —3X] —X2

nao é primalmente nem dualmente vidvel. Aplicando a fase I (pivos xo—w3,
xo0—x1) e depois fase IT (pivds x2-w1, W3—wa, wi—-Wy) gera o diciondrio final

z= 12 —8/3W2 —1/3W4
X2 = 3 —W3
w3 = 2 —2/31/\)2 —]/3W4
x1= 3 +1/3wy  —1/3wy
wi= 1  +1/3wy; —1/3wy

cuja solugao x1 = 3, x2 = 3 ja é inteira.
No segundo sistema comecamos com o dicionério

X1 —2%7
wy; = 60 +11x; —15%x,
Wo = 24 —4X1 —3X2
w3z = 59 —10x7 +5x%x;

n
Il

e um pivo x1—w3 gera a solugao étima fraciondria

z= 4.9 —0.1lwz  —1.5x,
w; = 113.9 —1.1wz —9.5x;
wy = 44 +0.4w3  —5xy
x; = 4.9 —0.1wz  4+0.5x;

e a linha terceira linha (x;) gera o corte
wy = —0.9 +0.Twz +0.5x,

Com o pivdo wy—w3 obtemos a solugao 6tima inteira

z= 4 —Wy —X2
w1 = 104 —11W4 —4X2
wy, = 8 +4wy —7%x2
x1= 4 —Wy +1x2
wy= 9 +10ws  —5xy
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Nomenclatura

argmax valor para que uma funcgao atinge o maximo, pagina 24

argmin valor para que uma funcao atinge o minimo, pagina 47

B

[x]
co-NP

sup
At

cn
Ccnxm

N(v)

conjunto booleano {0, 1}, pagina 76
menor nimero inteiro maior ou igual a x, pagina 118

classe de problemas de decisao com certificados polinomiais para instancias
negativas, pagina 44

uniao disjunta, pagina 50

maior niimero inteiro menor ou igual a x, pagina 78
significadamente menor que, pagina 30

conjunto de nimeros inteiros, pagina 75

conjunto de variaveis bésicas, pagina 19

conjunto de variaveis nulas, pagina 19

classe de problemas de decisao com certificados polinomiais para instancias
positivas, pagina 44

conjunto de nimeros reais, pagina 10

supremo, menor limite superior de um conjunto, pagina 63

matriz transposta, pagina 39

espaco vetorial com vetores de n componentes sobre o campo C, pagina 13
grupo de matrizes de tamanho n x m sobre o campo C, pagina 13
conjunto de vértices adjacentes a v, pagina 112

conjunto de arcos saintes de v, pagina 107

conjunto de arcos saintes de v, pagina 107

conjunto de niimeros inteiros nao-negativos, pagina 124
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