
INF05010 – Otimização
combinatória
Notas de aula

Luciana Buriol, Marcus Ritt

com contribuições de
Alysson M. Costa

Versão 5498 de 3 de Novembro de 2014

Universidade Federal do Rio Grande do Sul
Instituto de Informática

Departamento de Informática Teórica

i

Versão 5498 do 2014-11-03, compilada em 3 de Novembro de 2014. Obra
está licenciada sob uma Licença Creative Commons (Atribuição–Uso Não-
Comercial–Não a obras derivadas 3.0 Brasil).

Na parte I, as notas de aula seguem o livro “Linear programming: Foundations
and extensions” do Robert J. Vanderbei, Universidade Princeton, dispońıvel
em http://www.princeton.edu/~rvdb/LPbook.

Fonte das imagens:
George Dantzig (20): INFORMS, Jean Baptiste Joseph Fourier (19): Wikipe-
dia, Xadrez (106): Wikipedia, Mauricio G. C. Resende (170): Página pessoal,
Fred Glover (173): Página pessoal, Pierre Hansen (177): Página pessoal, Pa-
blo Moscato (188): Página pessoal.

iii

http://creativecommons.org/licenses/by-nc-nd/3.0/br
http://www.princeton.edu/~rvdb/LPbook
http://www2.informs.org/Press/GeorgeDantzig.jpg
http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/wiki/Knight_(chess)
http://www.research.att.com/~mgcr
http://www.colorado.edu/law/eesi/Fred_Glover.htm
http://www.hec.ca/profs/pierre.hansen.html
http://livesite.newcastle.edu.au/cibm/People.page

Conteúdo

I. Programação linear 5

1. Introdução 9
1.1. Exemplo . 9
1.2. Formas normais . 15
1.3. Solução por busca exaustiva . 17
1.4. Notas históricas . 19
1.5. Exerćıcios . 20

2. O método Simplex 27
2.1. Um exemplo . 27
2.2. O método resumido . 32
2.3. Sistemas ilimitados . 34
2.4. Encontrar uma solução inicial 35
2.5. Sistemas degenerados . 39
2.6. Complexidade do método Simplex 46
2.7. Exerćıcios . 47

3. Dualidade 51
3.1. Introdução . 51
3.2. Interpretação do dual . 54
3.3. Caracteŕısticas . 56
3.4. Método Simplex dual . 61
3.5. Dualidade em forma não-padrão 64
3.6. Os métodos em forma matricial 66

3.6.1. O dicionário final em função dos dados 67
3.6.2. Simplex em forma matricial 70

3.7. Análise de sensibilidade . 72
3.8. Exerćıcios . 80

4. Tópicos 83
4.1. Centro de Chebyshev . 83
4.2. Função objetivo convexa e linear por segmentos 84

1

Conteúdo

II. Programação inteira 85

5. Introdução 87
5.1. Definições . 87
5.2. Motivação e exemplos . 91
5.3. Aplicações . 93

6. Formulação 105
6.1. Exemplos . 105
6.2. Técnicas para formular programas inteiros 106

6.2.1. Formular restrições lógicas 107
6.2.2. Formular restrições condicionais 109

6.3. Formulações alternativas . 113
6.4. Exerćıcios . 114

7. Técnicas de solução 121
7.1. Introdução . 121
7.2. Problemas com solução eficiente 121
7.3. Desigualdades válidas . 130
7.4. Planos de corte . 136
7.5. Branch-and-bound . 140
7.6. Notas . 146
7.7. Exerćıcios . 146

8. Tópicos 151

III. Heuŕısticas 153

9. Introdução 155

10.Heuŕısticas baseados em Busca local 159
10.1. Busca local . 159
10.2. Metropolis e Simulated Annealing 166
10.3. GRASP . 169
10.4. Busca Tabu . 173
10.5. Variable Neighborhood Search 177

11.Heuŕısticas inspirados da natureza 181
11.1. Algoritmos Genéticos e meméticos 181

2

Conteúdo

IV. Appéndice 191

A. Conceitos matemáticos 193

B. Formatos 195
B.1. CPLEX LP . 195
B.2. AMPL . 197

C. Soluções dos exerćıcios 205

Bibliografia 231

Nomenclatura 233

3

Parte I.

Programação linear

5

Introdução

If one would take statistics about which mathematical problem is
using up most of the computer time in the world, then ... the
answer would probably be linear programming. (Laszlo Lovasz)

7

1. Introdução

1.1. Exemplo

Exemplo 1.1 (No Ildo)
Antes da aula visito o Ildo para tomar um café e comer um Croissant. Ele me
conta: “Estou especializado em Croissants e Strudels. Tenho um lucro de 20
centavos por Croissant e 50 centavos por Strudel. Diariamente até 80 clientes
compram um Croissant e até 60 um Strudel.” Mas infelizmente, o Ildo apenas
disponibiliza de 150 ovos e 6 kg de açúcar por dia. Entre outros ingredientes,
preciso um ovo e 50g de açúcar para cada Croissant e um ovo e meio e 50g de
açúcar para cada Strudel. “Agora, professor, quantas Croissants e Strudels
devo produzir para obter o maior lucro?”

Sejam c o número de Croissants e s o número de Strudels. O lucro do Ildo em
Reais é 0.2c + 0.5s. Seria ótimo produzir todos 80 Croissants e 60 Strudels,
mas uma conta simples mostra que não temos ovos e açúcar suficiente. Para
produzir os Croissants e Strudels precisamos c + 1.5s ovos e 50c + 50sg de
açúcar que não podem ultrapassar 150 ovos e 6000g. Com a condição óbvia
que c ≥ 0 e s ≥ 0 chegamos no seguinte problema de otimização:

maximiza 0.2c+ 0.5s (1.1)

sujeito a c+ 1.5s ≤ 150
50c+ 50s ≤ 6000
c ≤ 80
s ≤ 60
c, s ≥ 0

Como resolver esse problema? Com duas variáveis podemos visualizar a si-
tuação num grafo com c no eixo x e s no eixo y

No Ildo

9

1. Introdução

0 10 20 30 40 50 60 70 80 90 100
c (croissants)

0

10

20

30

40

50

60

70

80

90

100

s
(s

tru
de

ls
)

2/3(150-c)

(6000-50c)/50

s=60

c=80

Soluções viáveis

Otimizando o lucro do bar

10

20

30
40

que nesse caso permite resolver o problema graficamente. Desenhando diversos
conjunto de ńıvel (ingl. level set) com valor da função objetivo 10, 20, 30, 40
é fácil observar que o lucro máximo encontra-se no ponto c = s = 60, e possui
um valor de 42 reais.

♦

A forma geral de um problema de otimização (ou de programação matemática)
é

opt f(x)

sujeito a x ∈ V

com

• um objetivo opt ∈ {max,min},

• uma função objetivo (ou função critério) f : V → R,

• um conjunto de soluções viáveis (ou soluções candidatas) V.

Falamos de um problema de otimização combinatória, caso V é discreto.

10

1.1. Exemplo

Nessa generalidade um problema de otimização é dif́ıcil ou imposśıvel de re-
solver. O exemplo 1.1 é um problema de otimização linear (ou programação
linear):

• as variáveis de decisão são reais: x1, . . . , xn ∈ R

• a função de otimização é linear em x1, . . . , xn:

f(x1, . . . , xn) = c1x1 + · · ·+ cnxn (1.2)

• as soluções viáveis são definidas implicitamente porm restrições lineares

a11x1 + a12x2 + · · ·+ a1nxn ./1 b1 (1.3)

a21x1 + a22x2 + · · ·+ a2nxn ./2 b2 (1.4)

· · · (1.5)

am1x1 + am2x2 + · · ·+ amnxn ./m bm (1.6)

com ./i∈ {≤,=,≥}.

Exemplo 1.2 (O problema da dieta (Dantzig))
Suponha que temos uma tabela de nutrientes de diferentes tipos de alimentos.
Sabendo o valor diário de referência (VDR) de cada nutriente (quantidade de
nutriente que deve ser ingerido) e o preço de cada unidade de alimento, qual a
dieta ótima, i.e. a dieta de menor custo que contém pelo menos o valor diário
de referência?
Com m nutrientes e n alimentos, seja aij a quantidade do nutriente i no
alimento j (em g/g), ri o valor diário de referência do nutriente i (em g) e cj
o preço do alimento j (em R$/g). Queremos saber as quantidades xj de cada
alimento (em g) que

minimiza c1x1 + · · ·+ cnxn, (1.7)

sujeito a a11x1 + · · ·+ a1nxn ≥ r1, (1.8)

· · ·
am1x1 + · · ·+ amnxn ≥ rm, (1.9)

x1, . . . , xn ≥ 0. (1.10)

♦

Exemplo 1.3 (Problema de transporte (Hitchcock))
Uma empresa agrária temm depósitos, cada um com um estoque de ai, i ∈ [m]
toneladas de milho. Ela quer encaminhar bj, j ∈ [n] toneladas de milho para

11

1. Introdução

n clientes diferentes. O transporte de uma tonelada do depósito i para cliente
j custa R$ cij. Qual seria o esquema de transporte de menor custo?
Para formular o problema linearmente, podemos introduzir variáveis xij que
representam o peso dos produtos encaminhados do depósito i ao cliente j, e
queremos resolver

minimiza
∑

i∈[m],j∈[n]

cijxij, (1.11)

sujeito a
∑
j∈[n]

xij ≤ ai, para todo fornecedor i ∈ [m], (1.12)

∑
i∈[m]

xij = bj, para todo cliente j ∈ [n], (1.13)

xij ≥ 0, para todo fornecedor i ∈ [m] e cliente j ∈ [n].

Concretamente, suponha que temos a situação da figura 1.1. A figura mostra

7

3

5

7

5

3

3

4

1

2 3

4

3

Cliente 1

Cliente 2

Cliente 3

Fornecedor 1

Fornecedor 2
Fornecedor 3

7

3

5

7

5

3

5

2

3

2 3

Cliente 1

Cliente 2

Cliente 3

Fornecedor 1

Fornecedor 2
Fornecedor 3

Figura 1.1.: Esquerda: Instância do problema de transporte. Direita: Solução
ótima correspondente.

as toneladas dispońıveis de cada fornecedor, a demanda (em toneladas) de
cada cliente e as distâncias (em km) entre eles. O transporte custa R$ 1000

12

1.1. Exemplo

por km e tonelada. Observe que um transporte do fornecedor 1 para cliente
3 e fornecedor 3 para cliente 1 não é posśıvel. Nós usaremos uma distância
grande de 100 km nesses casos (uma outra possibilidade é usar restrições x13 =
x31 = 0 ou remover as variáveis x13 e x31 do modelo).

minimiza 3x11 + x12 + 100x13 + 4x21 + 2x22

+ 4x23 + 100x31 + 3x32 + 3x33,

sujeito a x11 + x12 + x13 ≤ 5,
x21 + x22 + x23 ≤ 7,
x31 + x32 + x33 ≤ 3,
x11 + x21 + x31 = 7,

x12 + x22 + x32 = 3,

x13 + x23 + x33 = 5,

xij ≥ 0.

Qual seria a solução ótima? A figura 1.1 (direita) mostra o número ótimo de
toneladas transportadas. O custo mı́nimo é 46 (em R$ 1000). ♦

Podemos simplificar a descrição de um programa linear usando notação matri-
cial. Com A := (aij) ∈ Rm×n, b := (bi) ∈ Rm, c := (ci) ∈ Rn e x = (xi) ∈ Rn
o problema 1.2-1.6), pode ser escrito de forma

opt ctx

sujeito a aix ./i bi i ∈ [m]

(Denotamos com ai a i-ésima linha e como aj a j-ésima coluna da matriz A.)
Em caso todas restrições usam a mesma relação ≤, ≥ ou = podemos escrever

opt ctx

sujeito a Ax ≤ b ,

opt ctx

sujeito a Ax ≥ b , ou

opt ctx

sujeito a Ax = b .

Exemplo 1.4 (Problema do Ildo em forma matricial)
O problema 1.1 em forma matricial é

maximiza (0.2 0.5)(c s)t

sujeito a


1 1.5
50 50
1 0
0 1

(cs
)
≤


150
6000
80
60


(c s) ≥ 0.

13

1. Introdução

♦

Observação 1.1 (“Programar” linearmente)
Como explicado na seção histórica 1.4, o termo “programação” em “pro-
gramação linear” se refere a “agendamento” ou “planejamento”. Porém,
formular programas lineares é uma atividade muito similar à programação
de computadores. Um programa linear consiste de declarações de variáveis,
constantes, uma função objetivo e uma série de restrições. Podemos escrever
uma programa linear de forma mais “computacional” para enfatizar a simila-
ridade com programas. No caso do problema de Hitchcock 1.3, por exemplo,
podemos escrever

1 var xij , i ∈ [m], j ∈ [n] { declaração variáveis }
2 const ai , i ∈ [m] { estoques }
3 const bj , j ∈ [n] { demandas }
4 max

∑
i∈[m],j∈[n] cijxij

5 s t
∑
j∈[n] xij ≤ ai , i ∈ [m] { l imite estoque }

6 s t
∑
i∈[m] xij = bj , j ∈ [n] { satisfa ç ão demanda }

Podemos ainda, igual a programação, introduzir nomes para funções lineares
para facilitar a formulação. Por exemplo enviado(i) =

∑
j∈[n] xij é a quanti-

dade total enviado pelo i-ésimo fornecedor. Similarmente, podemos escrever
recebido(j) =

∑
i∈[n] xij para a quantidade total recebida pelo j-ésimo cliente.

Com isso nosso “programa” linear fica

1 var xij , i ∈ [m], j ∈ [n] { declaração variáveis }
2 const ai , i ∈ [m] { estoques }
3 const bj , j ∈ [n] { demandas }
4 func t i on enviado(i) =

∑
j∈[n] xij

5 func t i on recebido(j) =
∑
i∈[m] xij

6 max
∑
i∈[m],j∈[n] cijxij

7 s t enviado(i) ≤ ai , i ∈ [m] { l imite estoque }
8 s t recebido(j) = bj , j ∈ [n] { satisfa ç ão demanda }

Vamos conhecer linguagens reais para especificar programas lineares no parte
prático. Um exemplo é AMPL1 explicado no appéndice B. A nossa especi-
ficação acima pode ser vista como “pseudo-código” de uma linguagem atual
como AMPL. ♦

1A sigla AMPL significa “A mathematical programming language”. O nome também
sugere uma funcionalidade “ampla” (“ample” em inglês).

14

1.2. Formas normais

1.2. Formas normais

Conversões

É posśıvel converter

• um problema de minimização para um problema de maximização

min ctx⇐⇒ −max−ctx

(o sinal − em frente do max é uma lembrança que temos que negar a
solução depois.)

• uma restrição “≥” para uma restrição “≤”

aix ≥ bi ⇐⇒ −aix ≤ −bi

• uma igualdade para desigualdades

aix = bi ⇐⇒ aix ≤ bi ∧ aix ≥ bi

Conversões

• uma desigualdade para uma igualdade

aix ≤ b⇐⇒ aix+ xn+1 = bi ∧ xn+1 ≥ 0
aix ≥ b⇐⇒ aix− xn+1 = bi ∧ xn+1 ≥ 0

usando uma nova variável de folga ou excesso xn+1 (inglês: slack and
surplus variables).

• uma variável xi sem restrições para duas positivas

x+i ≥ 0∧ x
−
i ≥ 0

substituindo xi por x+i − x−i .

Essas transformações permitem descrever cada problema linear em uma forma
padrão.

15

1. Introdução

Forma padrão

maximiza ctx,

sujeito a Ax ≤ b,
x ≥ 0.

As restrições x ≥ 0 se chamam triviais.

Exemplo 1.5
Dado o problema

minimiza 3x1 − 5x2 + x3,

sujeito a x1 − x2 − x3 ≥ 0,
5x1 + 3x2 + x3 ≤ 200,
2x1 + 8x2 + 2x3 ≤ 500,
x1, x2 ≥ 0.

vamos substituir “minimiza” por “maximiza”, converter a primeira desi-
gualdade de ≥ para ≤ e introduzir x3 = x

+
3 − x−3 com duas variáveis positivas

x+3 e x−3 para obter a forma padrão

maximiza − 3x1 + 5x2 − x
+
3 + x−3 ,

sujeito a − x1 + x2 + x
+
3 − x−3 ≤ 0,

5x1 + 3x2 + x
+
3 − x−3 ≤ 200,

2x1 + 8x2 + 2x
+
3 − 2x−3 ≤ 500,

x1, x2, x
+
3 , x

−
3 ≥ 0.

Em notação matricial temos

c =


−3
5
−1
1

 ; b =

 0
200
500

 ; A =

−1 1 1 −1
5 3 1 −1
2 8 2 −2

 .
♦

Definição 1.1 (Soluções viáveis, inviáveis e ótimas)
Para um programa linear P em forma normal, um vetor x ∈ Rn é uma solução
viável, caso Ax ≤ b e x ≥ 0. P é viável caso existe alguma solução viável,
caso contrário P é inviável. Um vetor x∗ ∈ Rn é uma solução ótima caso
ctx∗ = max{ctx | Ax ≤ b, x ≥ 0}.

16

1.3. Solução por busca exaustiva

Definição 1.2 (Programas ilimitados)
Uma programa linear em forma normal é ilimitado caso existe um v ∈ R tal
que para todo w ≥ v existe uma solução viável x com ctx ≥ w.

1.3. Solução por busca exaustiva

Uma observação importante na solução de um programa linear é que a solução
ótima, caso exista, somente ocorra na borda de região das soluções viáveis
(compara com a figura na página 9). Mais espećıfico a solução ótima ocorre
num vértice (ou ponto extremo) dessa região, definido pela interseção de n
restrições linearmente independentes. Isso justifica tratar a programação li-
near como problema de otimização combinatória, porque temos um número
finito de

(
m
n

)
candidatos para solução ótimas. Procurando o melhor entre

todos candidatos nos também fornece um algoritmo (muito ineficiente) para
encontrar uma solução ótima de um programa linear, caso exista.

Definição 1.3
Um conjunto C ⊆ Rn é convexo, caso para todo par de pontos x, y ∈ C a sua
combinação convexa λx+ (1− λ)y para λ ∈ [0, 1] também pertence a C.

Proposição 1.1
A região de soluções viáveis V = {x ∈ Rn | Ax ≤ b} definido por um programa
linear é convexa.

Prova. Sejam x, y ∈ V. Então

A(λx+ (1− λ)y) = λAx+ (1− λ)Ay ≤ λb+ (1− λ)b = b.

�

Definição 1.4
Um ponto x ∈ C de uma região C ⊆ Rn é um vértice ou ponto extremo, caso
não existe um y 6= 0 tal que x+ y ∈ C e x− y ∈ C.

Proposição 1.2
Caso existe uma única solução ótima de max{ctx | x ∈ V} ela é um vértice de
V.

Prova. Supõe que a solução ótima x∗ não é um vértice de V. Então existe
um y tal que x + y ∈ V e x − y ∈ V. Por x∗ ser a única solução ótima
temos ct(x∗ + y) < ctx∗ e ct(x∗ − y) < ctx∗, i.e., cty < 0 e −cty < 0, uma
contradição. �

17

1. Introdução

Proposição 1.3
Um vértice de V = {x ∈ Rn | Ax ≤ b} é a interseção de n restrições linearmente
independentes.

Prova. Para um vértice v ∈ V, seja Av a matriz formado das linhas ai de A
tal que aiv = bi, e bv os lados direitos correspondentes.
Seja v ∈ V a interseção de n restrições linearmente independentes, i.e. posto(Av) =
n. Supõe v não é um vértice. Logo existe um y tal que x + y, x − y ∈ V que
satisfazem Av(x + y) ≤ bv e Av(x − y) ≤ bv. Como Avx = bv obtemos
Avy ≤ 0 e −Avy ≤ 0, i.e. Avy = 0, uma contradição com posto(Av) = n.
Agora seja v ∈ V um vértice e supõe posto(Av) < n, i.e. existe um y tal que
Avy = 0. Para as linhas ai em A com aiv < bi existe um δ > 0 tal que

ai(v+ δy) ≤ bi e ai(v− δy) ≤ bi

e logo

A(v+ δy) ≤ b e A(v− δy) ≤ b,

porque Avy = 0, em contradição com o fato que v é um vértice. �

Proposição 1.4
Caso existem múltiplas soluções ótimas de max{ctx | x ∈ V} e V é limitado,
um vértice de V é uma solução ótima.

Prova. Por indução sobre n − posto(Av). Caso n − posto(Av) = 0, v é
um vértice pela proposição (1.3). Para n − posto(Av) > 0 existe um y com
Avy = 0. Seja µ = max{t | v+ ty ∈ V}. O valor µ existe porque V é limitado
(e compacto). Como ai(v+ µy) ≤ bi para cada linha i temos que

µ = min{(bi − aiv)/aiy | aiy > 0} (+)

Seja i∗ o ı́ndice da linha que satisfaz (+) com igualdade. Define v ′ = v+ µy.
Temos Avv

′ = Avv + µAvy = Avv = bv, logo Av ′ contém as linhas de Av e
pelo menos a linha ai∗ a mais. Ainda, como Avy = 0 mas ai∗y 6= 0 temos que
posto(Av ′) > posto(Av). Logo, pela hipótese da indução, existe um vértice
que é uma solução ótima. �

Observação 1.2
Caso existem multiplas soluções ótimas de max{ctx | x ∈ V}, mas V não é
limitado, é posśıvel que não existe um vértice ótimo. Um exemplo é o sistema
max{x1 | (x1, x2) ∈ R2, 0 ≤ x1 ≤ 1}. ♦

Usando os resultados acima, obtemos um algoritmo (muito ineficiente) para
encontrar uma solução ótima de um programa linear (limitado).

18

1.4. Notas históricas

1 x∗ := null

2 f o r todas
(
m
n

)
s e l e ç õ e s de n r e s t r i ç õ e s l i n . indep .

3 determine a i n t e r s e ç ã o x das n r e s t r i ç õ e s
4 i f Ax ≤ b e ctx ≥ ctx∗ then
5 x∗ := x
6 end i f
7 end f o r
8 i f x∗ 6= null then
9 return ‘ ‘ Solu ç ão ótima é x∗ ou s i s tema i l im i t ado ’ ’

10 else
11 return ‘ ‘ Não pos su i so lu ç ã o ou não pos su i v é r t i c e ’ ’
12 end i f

1.4. Notas históricas

História da programação linear

• Jean Baptiste Joseph Fourier (1826): Método de re-
solver um sistema de desigualdades (eliminação de
Fourier-Motzkin) [15].

• Leonid Kantorovich (1939): Programação linear.

• George Bernard Dantzig (1948): Método Simplex.

• John von Neumann: Dualidade.

• Leonid Khachiyan (1979): Método de ellipsoides.

• Narendra Karmarkar (1984): Métodos de pontos inte-
riores.

Jean Baptiste
Joseph Fourier
(*1768, +1830)

Pesquisa operacional, otimização e “programação”

19

1. Introdução

• “The discipline of applying advanced analytical
methods to help make better decisions” (INFORMS)

• O nome foi criado durante a segunda guerra mundial,
para métodos cient́ıficos de análise e predição de pro-
blemas loǵısticos.

• Hoje se aplica para técnicas que ajudam tomar de-
cisões sobre a execução e coordenação de operações
em organizações.

• Problemas da pesquisa operacional são problemas de
otimização.

• “Programação” 6= “Programação”

– Não se refere à computação: a noção significa
“planejamento” ou “agendamento”.

George Bernard
Dantzig (*1914,
+2005)

Técnicas da pesquisa operacional

• Em geral: Técnicas algoŕıtmicas conhecidas como

– Modelagem matemática (equações, igualdades, desigualdades, mo-
delos probabiĺısticos,...)

– Algoritmos gulosos, randômicos, ...; programação dinâmica, linear,
convexo, ...

– Heuŕısticas e algoritmos de aproximação.

• Algumas dessas técnicas se aplicam para muitos problemas e por isso
são mais comuns:

– Exemplo: Programação linear.

1.5. Exerćıcios

(Soluções a partir da página 205.)

Exerćıcio 1.1
Na definição da programação linear permitimos restrições lineares da forma

ai1x1 + ai2x2 + · · ·+ ainxn ./i bi

com ./i∈ {≤,=,≥}. Por que não permitimos ./i∈ {<,>} também? Discute.

20

http://www-history.mcs.st-andrews.ac.uk/Biographies/Dantzig_George.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Dantzig_George.html

1.5. Exerćıcios

Exerćıcio 1.2
Procura a tabela nutricional de algum restaurante e resolve o problema da
dieta (exemplo 1.2).

Exerćıcio 1.3
Um investidor pode vender ações de suas duas empresas na bolsa de valores,
mas está sujeito a um limite de 10.000 operações diárias (vendas por dia).
Na cotação atual, as ações da empresa A valorizaram-se 10% e agora cada
uma vale R$ 22. Já a empresa B teve valorização de 2% e cada ação vale R$
51. Sabendo-se que o investidor possui 6.000 ações da Empresa A e 7.000 da
empresa B, maximize seu lucro na BOVESPA e diga qual o lucro obtido.

Exerćıcio 1.4
Dona Maria adora ver seus netinhos Marcos, Renato e Vinicius bem alimen-
tados. Sempre na hora de cozinhar ela leva em conta o quanto eles gostam de
cada prato para fazê-los comer o máximo posśıvel. Marcos gosta da lasanha
e comeria 3 pratos dela após um prato de sopa; Renato prefere lanches, e
comeria 5 hambúrgueres, ignorando a sopa; Vinicius gosta muita da massa a
bolonhesa, e comeria 2 pratos após tomar dois pratos de sopa. Para fazer a
sopa, são necessários entre outros ingredientes, 70 gramas de queijo por prato
e 30 gramas de carne. Para cada prato de lasanha, 200 gramas de queijo, e
100 gramas de carne. Para cada hambúrguer são necessários 100 gramas de
carne, e 100 gramas de queijo. Para cada prato de massa a bolonhesa são
necessários 100 gramas de carne e 30 gramas de queijo (ralado para por sobre
a massa). Seus netos vieram visitá-la de surpresa, e tendo ela somente 800
gramas de carne e 1000 gramas de queijo em casa, como ela poderia fazê-los
comer o maior número de pratos, garantindo que cada um deles comerá pelo
menos dois pratos, e usando somente os ingredientes que ela possui?

Exerćıcio 1.5
A empresa “Luz para o mundo” produz dois tipos de lampadas, cada um com
partes metálicos e partes eléctricos. A gerencia quer saber com quantas uni-
dades produzidas por tipo o lucro é maximizado. A produção de uma unidade
de produto 1, precisa uma unidade de partes metálicos e duas unidades de
componentes eléctricos. A produção de uma unidade de produto 2, precisa
três unidades de partes metálicos e duas unidades de componentes eléctricos.
A empresa tem um estoque de 200 unidades de partes metálicos e 300 unida-
des de componentes eléctricos. Cada unidade de produto um tem um lucro
de R$ 1 e cada unidade de produto 2, até um limite de 60 unidades, um lucro
de R$ 2. (Cada unidade acima de 60 no caso do produto 2 não rende nada.)

Exerćıcio 1.6
A empresa “Janela jóia” com três empregados produz dois tipos de janelas:
com molduras de madeira e com molduras de alumı́nio. Eles têm um lucro de

21

1. Introdução

M1 S1

M2 S2

P

R$ 2000/t

30t

R$ 1700/t

30t

R$ 1600/t

50t

R$ 1100/t

50t

R$ 400/t

70t

R$ 800/t

70t

Figura 1.2.: Rede de distribuição de uma empresa de aço.

60 R$ para toda janela de madeira e 30R$ para toda janela de alumı́nio. João
produz as molduras de madeira. Ele consegue produzir até seis molduras por
dia. Sylvana é responsável pelas molduras de alumı́nio, e ela consegue produzir
até quatro por dia. Ricardo corta o vidro e é capaz de produzir até 48 m2 por
dia. Uma janela de madeira precisa 6m2 de vidro, e uma de alumı́nio 8m2.
A empresa quer maximizar o seu lucro.

Exerćıcio 1.7
Uma empresa de aço tem uma rede de distribuição conforme figura 1.2. Duas
minas P1 e P2 produzem 40t e 60t de mineral de ferro, respectivamente, que são
distribúıdos para dois estoques intermediários S1 e S2. A planta de produção
P tem uma demanda dem 100t de mineral de ferro. A vias de transporte tem
limites de toneladas de mineral de ferro que podem ser transportadas e custos
de transporte por tonelada de mineral de ferra (veja figura). A direção da
empresa quer determinar a transportação que minimiza os custos.

Exerćıcio 1.8
Um importador de Whisky tem as seguintes restrições de importação

• no máximo 2000 garrafas de Johnny Ballantine por 70 R$ cada uma,

• no máximo 2500 garrafas de Old Gargantua por 50 R$ cada uma,

• no máximo 1200 garrafas de Misty Deluxe por 40 R$ cada uma.

Dos Whiskies importados ele produz três misturas A, B, C, que ele vende por
68 R$, 57 R$ e 45 R$, respectivamente. As misturas são

• A: no mı́nimo 60% Johnny Ballantine, no máximo 20% Misty Deluxe,

22

1.5. Exerćıcios

• B: no mı́nimo 15% Johnny Ballantine, no máximo 60% Misty Deluxe,

• C: no máximo 50% Misty Deluxe.

Quais seriam as misturas ótimas, e quantas garrafas de cada mistura devem
ser produzidas para maximizar o lucro?

Observações:

• Use como variáveis o número de garrafas xm,i da marca m usadas na
mistura i.

• Desconsidere a integralidade das garrafas.

Exerćıcio 1.9
A empresa de televisão “Boa vista” precisa decidir quantas TVs de 29”e 31”ela
vai produzir. Uma analise do mercado descobriu que podem ser vendidas no
máximo 40 TVs de 29”e 10 de 31”por mês. O trabalho máximo dispońıvel
por mês é 500h. A produção de um TV de 29”precisa 20h de trabalho, e um
TV de 31”precisa 10h. Cada TV de 29”rende um lucro de R$ 120 e cada de
31”um lucro de R$ 80.
Qual a produção ótima média de cada TV por mês?

Exerćıcio 1.10 (da Costa)
Um certo óleo é refinado a partir da mistura de outros óleos, vegetais ou não
vegetais. Temos óleos vegetais V1 e V2 e óleos não vegetais NV1 NV2 NV3.
Por restrições da fábrica, um máximo de 200 ton. de óleos vegetais podem ser
refinados por mês, e um máximo de 250 ton. de óleos não vegetais. A acidez
do óleo desejado deve estar entre 3 e 6 (dada uma unidade de medida) e a
acidez depende linearmente das quantidades/acidez dos óleos brutos usados.
O preço de venda de uma tonelada do óleo é R$ 150. Calcule a mistura que
maximiza o lucro, dado que:

Óleo V1 V2 NV1 NV2 NV3

Custo/ton 110 120 130 110 115
Acidez 8.8 6.1 2.0 4.2 5.0

Exerćıcio 1.11 (Campêlo Neto)
Um estudante, na véspera de seus exames finais, dispõe de 100 horas de estudo
para dedicar às disciplinas A, B e C. Cada um destes exames é formado por
100 questões, e o estudante espera acertar, alternativamente, uma questão
em A, duas em B ou três em C, por cada hora de estudo. Suas notas nas
provas anteriores foram 6, 7 e 10, respectivamente, e sua aprovação depende
de atingir uma média mı́nima de 5 pontos em cada disciplina. O aluno deseja
distribuir seu tempo de forma a ser aprovado com a maior soma total de notas.

23

1. Introdução

Exerćıcio 1.12 ([6])
Moe está decidindo quanta cerveja Duff regular e quanta cerveja Duff Forte
encomendar a cada semana. Duff regular custa a Moe $1 por caneco e ele
a vende por $2 por caneco; Duff Forte custa $1.50 por caneco e ele vendo
por $3 por caneco. Entretanto, como parte de uma complicada fraude de
marketing, a companhia Duff somente vende um caneco de Duff Forte para
cada dois canecos ou mais de Duff regular que Moe compra. Além disso,
devido a eventos passados sobre os quais é melhor nem comentar, Duff não
venderá Moe mais do que 3000 canecos por semana. Moe sabe que ele pode
vender tanta cerveja quanto tiver.
Formule um programa linear em duas variáveis para decidir quanto de Duff
regular e quanto de Duff Forte comprar, para maximizar o lucro de Moe.

Exerćıcio 1.13 ([6])
A companhia de produtos caninos oferece duas comidas para cachorro: Frisky
Pup e Husky Hound, que são feitas de uma mistura de cereais e carne. Um
pacote de Frisky Pup requer 1 quilo de cereal e 1.5 quilo de carne, e é vendido
por $7. Um pacote de Husky Hound usa 2 quilos de cereal e 1 quilo de carne,
e é vendido por $6. O cereal bruto custa $1 por quilo e a carne bruta, $2
por quilo. Há também o custo de $1.40 para empacotar o Frisky Pup e $0.60
para o Husky Hound. Um total de 240000 quilos de cereal e 180000 quilos de
carne estão dispońıveis a cada mês. O único gargalo de produção está no fato
de a fábrica poder empacotar apenas 110000 pacotes de Frisky Pup por mês.
Desnecessário dizer, a gerência gostaria de maximizar o lucro.
Formule o problema como um programa linear em duas variáveis.

Exerćıcio 1.14 ([14])
Formule como problema de otimização linear e resolve graficamente.
Uma empresa de aço produz placas ou canos de ferro. As taxas de produção
são 200t/h para placas e 140t/h para canos. O lucro desses produtos e 25$/t
para placas e 30$/t para canos. Considerando a demanda atual, os limites de
produção são 6000t de placas e 4000t de canos. Na semana atual são 40h de
tempo de produção dispońıvel. Quantas toneladas de placas e canos devem
ser produzidas para maximizar o lucro?

Exerćıcio 1.15 ([14])
Formule como problema de otimização linear.
Uma pequena empresa aérea oferece um vôo de Pelotas, com escala em Porto
Alegre para Torres. Logo tem três tipos de clientes que voam Pelotas–Porto
Alegre, Pelotas–Torres e Porto Alegre–Torres. A linha também oferece três
tipos de bilhetes:

• Tipo A: bilhete regular.

24

1.5. Exerćıcios

• Tipo B: sem cancelamento.

• Tipo C: sem cancelamento, pagamento três semanas antes de viajar.

Os preços (em R$) dos bilhetes são

Pelotas–Porto Alegre Porto Alegre–Torres Pelotas–Torres

A 600 320 720
B 440 260 560
C 200 160 280

Baseado na experiência com esse vôo, o marketing tem a seguinte predição de
passageiros:

Pelotas–Porto Alegre Porto Alegre–Torres Pelotas–Torres

A 4 8 3
B 8 13 10
C 22 20 18

O objetivo da empresa e determinar o número ótimo de bilhetes para vender
de cada tipo, respeitando um limite de 30 passageiros em cada vôo e o limite
dos passageiros previstos em cada categoria, que maximiza o lucro.

Exerćıcio 1.16
Resolva graficamente.

maximiza 4x1 + x2,

sujeito a − x1 + x2 ≤ 2,
x1 + 8x2 ≤ 36,
x2 ≤ 4,
x1 ≤ 4.25,
x1, x2 ≥ 0.

(a) Qual a solução ótima?

(b) Qual o valor da solução ótima?

25

1. Introdução

Exerćıcio 1.17
Escreve em forma normal.

minimiza z = −5x1 − 5x2 − 5x3,

sujeito a − 6x1 − 2x2 − 9x3 ≤ 0,
− 9x1 − 3x2 + 3x3 = 3,

xj ≥ 0.

maximiza z = −6x1 − 2x2 − 6x3 + 4x4 + 4x5,

sujeito a − 3x1 − 8x2 − 6x3 − 7x4 − 5x5 = 3,

5x1 − 7x2 + 7x3 + 7x4 − 6x5 ≤ 6,
1x1 − 9x2 + 5x3 + 7x4 − 10x5 = −6,

xj ≥ 0.

maximiza z = 7x1 + 4x2 + 8x3 + 7x4 − 9x5,

sujeito a − 4x1 − 1x2 − 7x3 − 8x4 + 6x5 = −2,

x1 + 4x2 + 2x3 + 2x4 − 7x5 ≥ −7,

− 8x1 + 2x2 + 8x3 − 6x4 − 7x5 = −7,

xj ≥ 0.

minimiza z = −6x1 + 5x2 + 8x3 + 7x4 − 8x5,

sujeito a − 5x1 − 2x2 + x3 − 9x4 − 7x5 = 9,

7x1 + 7x2 + 5x3 − 3x4 + x5 = −8,

− 5x1 − 3x2 − 5x3 + 9x4 + 8x5 ≤ 0,
xj ≥ 0.

26

2. O método Simplex

Graficamente, é dif́ıcil resolver sistemas com mais que três variáveis. Portanto
é necessário achar métodos que permitam resolver sistemas grandes. Um
dos mais importantes é o método Simples. Nós vamos estudar esse método
primeiramente através da aplicação a um exemplo.

2.1. Um exemplo

Começamos com o seguinte sistema em forma padrão:

Exemplo: Simplex

maximiza z = 6x1 + 8x2 + 5x3 + 9x4,

sujeito a 2x1 + x2 + x3 + 3x4 ≤ 5,
x1 + 3x2 + x3 + 2x4 ≤ 3,
x1, x2, x3, x4 ≥ 0.

Introduzimos variáveis de folga e reescrevemos as equações:

Exemplo: Com variáveis de folga

maximiza z = 6x1 + 8x2 + 5x3 + 9x4, (2.1)

sujeito a w1 = 5− 2x1 − x2 − x3 − 3x4, (2.2)

w2 = 3− x1 − 3x2 − x3 − 2x4, (2.3)

x1, x2, x3, x4, w1, w2 ≥ 0.

Observação 2.1
Nesse exemplo é fácil obter uma solução viável, escolhendo x1 = x2 = x3 =
x4 = 0. Podemos verificar que w1 = 5 e w2 = 3 e todas as restrições são
respeitadas. O valor da função objetivo seria 0. Uma outra solução viável é
x1 = 1, x2 = x3 = x4 = 0, w1 = 3, w2 = 2 com valor z = 6. ♦

27

2. O método Simplex

Com seis variáveis e duas equações lineares independentes o espaço de soluções
do sistema de equações lineares dado pelas restrições tem 6 − 2 = 4 graus de
liberdade. Uma solução viável com esse número de variáveis nulas (igual a
0) se chama uma solução básica viável. Logo nossa primeira solução acima é
uma solução básica viável.
A idéia do método Simplex é percorrer soluções básicas viáveis, aumentando
em cada passo o valor z da função objetivo.
Logo nosso próximo objetivo é aumentar o valor da função objetivo z. Para
esse fim, podemos aumentar o valor das variáveis x1, x2, x3 ou x4, pois o
coeficiente delas é positivo. Escolhemos x4, porque essa variável tem o maior
coeficiente. Não podemos aumentar x4 arbitrariamente: Para respeitar as
restrições w1, w2 ≥ 0 temos os limites

Limites

w1 = 5− 3x4 ≥ 0⇐⇒ x4 ≤ 5/3
w2 = 3− 2x4 ≥ 0⇐⇒ x4 ≤ 3/2

ou seja x4 ≤ 3/2. Aumentando x4 o máximo posśıvel, obtemos x4 = 3/2 e
w2 = 0. Os valores das demais variáveis não mudam. Essa solução respeita
novamente todas as restrições, e portanto é viável. Ainda, como trocamos
uma variável nula (x4) com uma outra não-nula (w2) temos uma nova solução
básica viável

Solução básica viável

x1 = x2 = x3 = 0; x4 = 3/2;w1 = 1/2;w2 = 0

com valor da função objetivo z = 13.5.
O que facilitou esse primeiro passo foi a forma especial do sistema de equações.
Escolhemos quatro variáveis independentes (x1, x2, x3 e x4) e duas variáveis
dependentes (w1 e w2). Essas variáveis são chamadas não-básicas e básicas,
respectivamente. Na nossa solução básica viável todas variáveis não-básicas
são nulas. Logo, pode-se aumentar uma variável não-básica cujo coeficiente
na função objetivo seja positivo (para aumentar o valor da função objetivo).
Inicialmente tem-se as seguintes variáveis básicas e não-básicas

B = {w1, w2}; N = {x1, x2, x3, x4}.

Depois de aumentar x4 (e consequentemente zerar w2) podemos escolher

B = {w1, x4}; N = {x1, x2, x3, w2}.

28

2.1. Um exemplo

A variável x4 se chama variável entrante, porque ela entra no conjunto de
variáveis básicas B. Analogamente w2 se chama variável sainte.

Para continuar, podemos reescrever o sistema atual com essas novas variáveis
básicas e não-básicas. A segunda restrição 2.3 é fácil de reescrever

w2 = 3− x1 − 3x2 − x3 − 2x4 ⇐⇒ 2x4 = 3− x1 − 3x2 − x3 −w2⇐⇒ x4 = 3/2− 1/2x1 − 3/2x2 − 1/2x3 − 1/2w2

Além disso, temos que reescrever a primeira restrição 2.2, porque a variável
básicaw1 depende de x4 que agora é básica também. Nosso objetivo é escrever
todas variáveis básicas em termos de variáveis não-básicas. Para esse fim,
podemos usar combinações lineares da linhas, que eliminam as variáveis não-
básicas. Em nosso exemplo, a combinação (2.2)−3/2(2.3) elimina x4 e resulta
em

w1 − 3/2w2 = 1/2− 1/2x1 + 7/2x2 + 1/2x3

e colocando a variável não-básica w2 no lado direito obtemos

w1 = 1/2− 1/2x1 + 7/2x2 + 1/2x3 + 3/2w2.

Temos que aplicar uma operação semelhante à função objetivo que ainda de-
pende da variável básica x4. Escolhemos (2.1)−9/2(2.3) para obter

z = 27/2+ 3/2x1 − 11/2x2 + 1/2x3 − 9/2w2.

Novo sistema

maximiza z = 27/2+ 3/2x1 − 11/2x2 + 1/2x3 − 9/2w2,

sujeito a w1 = 1/2− 1/2x1 + 7/2x2 + 1/2x3 + 3/2w2,

x4 = 3/2− 1/2x1 − 3/2x2 − 1/2x3 − 1/2w2,

x1, x2, x3, x4, w1, w2 ≥ 0.

que obtemos após uma operação de trocar as variáveis x4 e w2. Essa operação
se chama um pivô. Observe que no novo sistema é fácil recuperar toda
informação atual: zerando as variáveis não-básicas obtemos diretamente a
solução x1 = x2 = x3 = w2 = 0, w1 = 1/2 e x4 = 3/2 com função objetivo
z = 27/2.

Antes de continuar “pivotando” introduzimos uma forma mais simples de
escrever o sistema

29

2. O método Simplex

Dicionário

z = 27/2 +3/2x1 −11/2x2 +1/2x3 −9/2w2
w1 = 1/2 −1/2x1 +7/2x2 +1/2x3 +3/2w2
x4 = 3/2 −1/2x1 −3/2x2 −1/2x3 −1/2w2

que se chama dicionário (inglês: dictionary).

Excurso 2.1
Alguns autores usam um tableau em vez de um dicionário. Para n variáveis e
m restrições, um tableau consiste em n+1 colunas e m+1 linhas. Igual a um
dicionário, a primeira linha corresponde com a função objetivo, e as restantes
linhas com as restrições. Diferente do dicionário a primeira coluna contém os
constantes, e as restantes colunas correspondem com as variáveis, incluindo
as básicas. Nosso exemplo acima em forma de tableau é

base︷ ︸︸ ︷
x1 x2 x3 x4 w1 w2

27/2 3/2 −11/2 1/2 0 0 9/2

1/2 1/2 −7/2 −1/2 0 1 −3/2
3/2 1/2 3/2 1/2 1 0 1/2

♦

No próximo passo podemos aumentar somente x1 ou x3 porque somente elas
têm coeficientes positivos. Aumentado x1 temos que respeitar x1 ≤ 1 (da
primeira restrição) e x1 ≤ 3 (da segunda). Logo a primeira restrição é mais
forte, x1 é a variável entrante, w1 a variável sainte, e depois do pivô obtemos

Segundo passo

z = 15 −3w1 +5x2 +2x3
x1 = 1 −2w1 +7x2 +x3 +3w2
x4 = 1 +w1 −5x2 −x3 −2w2

No próximo pivô x2 entra. A primeira restrição não fornece limite para x2,
porque o coeficiente de x2 é positivo! Mas a segunda x2 ≤ 1/5 e x4 sai da
base. O resultado do pivô é

30

2.1. Um exemplo

Terceiro passo

z = 16 −2w1 −x4 +x3 −2w2
x1 = 12/5 −3/5w1 −7/5x4 −2/5x3 +1/5w2
x2 = 1/5 +1/5w1 −1/5x4 −1/5x3 −2/5w2

O próximo pivô: x3 entra, x2 sai:

Quarto passo

z = 17 −w1 −2x4 −5x2 −4w2
x1 = 2 −w1 −x4 +2x2 +w2
x3 = 1 +w1 −x4 −5x2 −2w2

Agora, todos coeficientes da função objetivo são negativos. Isso significa, que
não podemos mais aumentar nenhuma variável não-básica. Como esse sistema
é equivalente ao sistema original, qualquer solução tem que ter um valor menor
ou igual a 17, pois todas as variáveis são positivas. Logo chegamos no resultado
final: a solução

w1 = x4 = x2 = w2 = 0; x1 = 2; x3 = 1

com valor objetivo 17, é ótima!
Conclúımos esse exemplo com mais uma observação. O número de soluções
básicas viáveis é limitado. Em nosso exemplo, se escolhemos um subconjunto
de quatro variáveis nulas, as duas equações determinam as variáveis restantes.
Logo temos no máximo

(
6
4

)
= 15 soluções básicas viáveis. Em geral, com

m equações e n variáveis, uma solução básica viável possui n −m variáveis
nulas e o número delas é limitado por

(
n

n−m

)
. Portanto, se aumentamos em

cada pivô o valor da função objetivo, o método termina em no máximo
(
n

n−m

)
passos.

Exemplo 2.1 (Solução do problema do Ildo)
Exemplo da solução do problema do Ildo na página 9.

z = 0/1 +1/5c +1/2s
w1 = 150 −c −3/2s
w2 = 6000 −50c −50s
w3 = 80 −c
w4 = 60 −s

Pivô s–w4

31

2. O método Simplex

z = 30 +1/5c −1/2w4
w1 = 60 −c +3/2w4
w2 = 3000 −50c +50w4
w3 = 80 −c
s = 60 −w4

Pivô c–w1

z = 42 −1/5w1 −1/5w4
c = 60 −w1 +3/2w4

w2 = +50w1 −25w4
w3 = 20 +w1 −3/2w4
s = 60 −w4

O resultado é um lucro total de R$ 42, com os seguintes valores de variáveis:
c = 60, s = 60, w1 = 0, w2 = 0, w3 = 20 e w4 = 0. A interpretação das
variáveis de folga é como segue.

• w1: Número de ovos sobrando: 0.

• w2: Quantidade de açúcar sobrando: 0 g.

• w3: Croissants não produzidos (abaixo da demanda): 20.

• w4: Strudels não produzidos: 0.

♦

2.2. O método resumido

Considerando n variáveis e m restrições:

Sistema inicial

maximiza z =
∑
j∈[n]

cjxj,

sujeito a
∑
j∈[n]

aijxj ≤ bi i ∈ [m],

xj ≥ 0 j ∈ [n].

32

2.2. O método resumido

Preparação

Introduzimos variáveis de folga∑
j∈[n]

aijxj + xn+i = bi, i ∈ [m],

e escrevemos as variáveis de folga como dependentes das variáveis restantes

xn+i = bi −
∑
j∈[n]

aijxj, i ∈ [m].

Solução básica viável inicial

Se todos bi ≥ 0 (o caso contrário vamos tratar na próxima seção), temos uma
solução básica inicial

xn+i = bi, i ∈ [m],

xj = 0, j ∈ [n].

Índices das variáveis

Depois do primeiro passo, os conjuntos de variáveis básicas e não-básicas mu-
dam. Seja B o conjunto dos ı́ndices das variáveis básicas (não-nulas) e N o
conjunto das variáveis nulas. No começo temos

B = {n+ 1, n+ 2, . . . , n+m}; N = {1, 2, . . . , n}

A forma geral do sistema muda para

z = z̄+
∑
j∈N

c̄jxj,

xi = b̄i −
∑
j∈N

āijxj, i ∈ B.

As barras em cima dos coeficientes enfatizam que eles mudam ao longo da
aplicação do método. Os coeficientes c̄j são chamados custos reduzidos (ingl. re-
duced costs).

33

2. O método Simplex

Escolher variável entrante (ingl. pricing)
Em cada passo do método Simplex, escolhemos uma variável não-básica xk,
com k ∈ N para aumentar o valor objetivo z. Isso somente é posśıvel para os
ı́ndices j tal que c̄j > 0, i.e.

{j ∈ N | c̄j > 0}.

Escolhemos um k desse conjunto, e xk é a variável entrante. Uma heuŕıstica
simples é a regra do maior coeficiente, que escolhe

k = argmax{c̄j | c̄j > 0, j ∈ N }

Aumentar a variável entrante
Seja xk a variável entrante. Se aumentamos xk para um valor positivo, as
variáveis básicas têm novos valores

xi = b̄i − āikxk i ∈ B.

Temos que respeitar xi ≥ 0 para 1 ≤ i ≤ n. Cada equação com āik > 0
fornece uma cota superior para xk:

xk ≤ b̄i/āik.

Logo podemos aumentar xk ao máximo um valor

α := min
i∈B
āik>0

b̄i

āik
=

(
max
i∈B
āik>0

āik

b̄i

)−1

=

(
max
i∈B

āik

b̄i

)−1

> 0.

Podemos escolher a variável sainte entre os ı́ndices

{i ∈ B | b̄i/āik = α}.

2.3. Sistemas ilimitados

Como pivotar?

• Considere o sistema

z = 24 −x1 +2x2
x3 = 2 −x1 +x2
x4 = 5 +x1 +4x2

34

2.4. Encontrar uma solução inicial

• Qual a próxima solução básica viável?

• A duas equações não restringem o aumento de x2: existem soluções com
valor ilimitado.

2.4. Encontrar uma solução inicial

Solução básica inicial

• Nosso problema inicial é

maximiza z =
∑
j∈[n]

cjxj,

sujeito a
∑
j∈[n]

aijxj ≤ bi, i ∈ [m],

xi ≥ 0, i ∈ [n],

• com dicionário inicial

z = z̄+
∑
j

c̄jxj

xi = b̄i −
∑
j∈N

āijxj, i ∈ B

Solução básica inicial

• A solução básica inicial desse dicionário é

x = (0 · · · 0 b1 · · ·bm)t

• O que acontece se existe um bi < 0?

• A solução básica não é mais viável! Sabe-se disso porque pelo menos
uma variável básica terá valor negativo.

35

2. O método Simplex

Sistema auxiliar

• Um método para resolver o problema: resolver outro programa linear

– cuja solução fornece uma solução básica viável do programa linear
original e

– que tem uma solução básica viável simples, tal que podemos aplicar
o método Simplex.

maximiza z = −x0,

sujeito a
∑
j∈[n]

aijxj − x0 ≤ bi, 0 ≤ i ≤ m,

xi ≥ 0, i ∈ [n].

Resolver o sistema auxiliar

• É fácil encontrar uma solução viável do sistema auxiliar:

– Escolhe xi = 0, para todos i ∈ [n].

– Escolhe x0 suficientemente grande: x0 ≥ maxi∈[m] −bi.

• Isso corresponde com um primeiro pivô com variável entrante x0 após
introduzir as variáveis de folga (“pseudo-pivô”).

– Podemos começar com a solução não-viável x0 = x1 = . . . = xn =
0.

– Depois aumentamos x0 tal que a variável de folga mais negativa
vire positiva.

– x0 e variável sainte xk tal que k = argmaxi∈[m] −bi.

Exemplo: Problema original

maximiza z = −2x1 − x2,

sujeito a − x1 + x2 ≤ −1,

− x1 − 2x2 ≤ −2,

x2 ≤ 1,
x1, x2 ≥ 0.

36

2.4. Encontrar uma solução inicial

Exemplo: Problema auxiliar

maximiza z = −x0,

sujeito a − x1 + x2 − x0 ≤ −1,

− x1 − 2x2 − x0 ≤ −2,

x2 − x0 ≤ 1,
x0, x1, x2 ≥ 0.

Exemplo: Dicionário inicial do problema auxiliar

z = −x0
w1 = −1 +x1 −x2 +x0
w2 = −2 +x1 +2x2 +x0
w3 = 1 −x2 +x0

• Observe que a solução básica não é viável.

• Para achar uma solução básica viável: fazemos um primeiro pivô com
variável entrante x0 e variável sainte w2.

Exemplo: Dicionário inicial viável do sistema auxiliar

z = −2 +x1 +2x2 −w2
w1 = 1 −3x2 +w2
x0 = 2 −x1 −2x2 +w2
w3 = 3 −x1 −3x2 +w2

Primeiro pivô

z = −4/3 +x1 −2/3w1 −1/3w2
x2 = 1/3 −1/3w1 +1/3w2
x0 = 4/3 −x1 +2/3w1 +1/3w2
w3 = 2 −x1 +w1

37

2. O método Simplex

Segundo pivô

z = 0 −x0
x2 = 1/3 −1/3w1 +1/3w2
x1 = 4/3 −x0 +2/3w1 +1/3w2
w3 = 2/3 +x0 +1/3w1 −1/3w2

Solução ótima!

Solução do sistema auxiliar

• O que podemos concluir da solução do sistema auxiliar?

• Obviamente, se o sistema original possui solução, o sistema auxiliar
também possui uma solução com x0 = 0.

• Logo, após aplicar o método Simplex ao sistema auxiliar, temos os casos

– x0 > 0: O sistema original não tem solução.

– x0 = 0: O sistema original tem solução. Podemos descartar x0 e
continuar resolvendo o sistema original com a solução básica viável
obtida.

• A solução do sistema auxiliar se chama fase I, a solução do sistema
original fase II.

Sistema original

Reescreve-se a função objetivo original substituindo as variáveis básicas do
sistema original pelas equações correspondentes do sistema auxiliar, de forma
que a função objetivo z não contenha variáveis básicas. No exemplo, a função
objetivo é rescrita como:

z = −2x1 − x2 = −3−w1 −w2.

z = −3 −w1 −w2
x2 = 1/3 −1/3w1 +1/3w2
x1 = 4/3 +2/3w1 +1/3w2
w3 = 2/3 +1/3w1 −1/3w2

Nesse exemplo, o dicionário original já é ótimo!

38

2.5. Sistemas degenerados

Exemplo 2.2 (Sistema original inviável)
O sistema

maximiza x1 + x2,

sujeito a x1 + x2 ≥ 2,
x1 + x2 ≤ 1,
x1, x2 ≥ 0.

obviamente não possui uma solução viável. O dicionário inicial do sistema
auxiliar (após normalização e introdução das variáveis de folga) é

z = 0 −x0
x3 = −2 +x1 +x2 +x0
x4 = 1 −x1 −x2 +x0

e o pseudo-pivô x0–x3 produz

z = −2 +x1 +x2 −x3
x0 = 2 −x1 −x2 +x3
x4 = 3 −2x1 −2x2 +x3

e o pivô x1–x4 produz o sistema ótimo

z = −1/2 −1/2x4 −1/2x3
x0 = 1/2 +1/2x4 +1/2x3
x1 = 3/2 −1/2x4 −x2 +1/2x3 .

O valor ótimo do sistema auxiliar é −z = x0 = 1/2, confirmando que o sistema
original não possui solução viável. ♦

2.5. Sistemas degenerados

Sistemas, soluções e pivôs degenerados

• Um dicionário é degenerado se existe um i ∈ B tal que b̄i = 0.

• Qual o problema?

• Pode acontecer um pivô que não aumenta a variável entrante, e portanto
não aumenta o valor da função objetivo.

• Tais pivôs são degenerados.

39

2. O método Simplex

Exemplo 1

• Nem sempre é um problema.

z = 5 +x3 −x4
x2 = 5 −2x3 −3x4
x1 = 7 −4x4
w3 = 0 +x4

• x2 é a variável sainte e o valor da função objetivo aumenta.

Exemplo 2

z = 3 −1/2x1 +2x2 −3/2w1
x3 = 1 −1/2x1 −1/2w1
w2 = 0 + x1 −x2 +w1

• Se a variável sainte é determinada pela equação com b̄i = 0, temos um
pivô degenerado.

• Nesse caso, a variável entrante não aumenta: temos a mesma solução
depois do pivô.

Exemplo 2: Primeiro pivô

• Pivô: x2–w2

z = 3 +3/2x1 −2w2 +1/2w1
x3 = 1 −1/2x1 −1/2w1
x2 = 0 +x1 −w2 +w1

• O valor da função objetivo não aumentou!

Exemplo 2: Segundo pivô

• Pivô: x1–x3

z = 6 −3x3 −2w2 −w1
x1 = 2 −2x3 −w1
x2 = 2 −2x3 −w2

• A segunda iteração aumentou o valor da função objetivo!

40

2.5. Sistemas degenerados

Ciclos

• O pior caso seria, se entramos em ciclos.

• É posśıvel? Depende da regra de seleção de variáveis entrantes e saintes.

• Nossas regras

– Escolhe a variável entrante com o maior coeficiente.

– Escolhe a variável sainte mais restrita.

– Em caso de empate, escolhe a variável com o menor ı́ndice.

• Ciclos são posśıveis: O seguinte sistema possui um ciclo de seis pivôs:
x1–w1, x2–w2, x3–x1, x4–x2, w1–x3, w2–x4.

z = 10x1 −57x2 −9x3 −24x4
w1 = 0 −1/2x1 +11/2x2 +5/2x3 −9x4
w2 = 0 −1/2x1 +3/2x2 +1/2x3 −x4
w3 = 1 −x1

Soluções do problema

• Como resolver o problema?

• Três soluções

– Ignorar o problema.

– Método lexicográfico.

– Regra de Bland.

Método lexicográfico

• Idéia: O fato que existe um b̄i = 0 é por acaso.

• Se introduzimos uma pequena perturbação ε� 1

– o problema desaparece

– a solução será (praticamente) a mesma.

41

2. O método Simplex

Método lexicográfico

• Ainda é posśıvel que duas perturbações numéricas se cancelem.

• Para evitar isso: Trabalha-se simbolicamente.

• Introduzimos perturbações simbólicas

0 < ε1 � ε2 � · · · � εm

em cada equação.

• Caracteŕıstica: Todo εi é numa escala diferente dos outros tal que eles
não se cancelam.

Exemplo

Exemplo 2.3
Sistema original degenerado e sistema perturbado

z = 4 +2x1 −x2
w1 = 1/2 −x2
w2 = −2x1 +4x2
w3 = x1 −3x2

z = 4 +2x1 −x2
w1 = 1/2 +ε1 −x2
w2 = ε2 −2x1 +4x2
w3 = ε3 +x1 −3x2

♦

Comparar perturbações

• A linha com o menor limite li = b̄i/aik (com xk entrante) define a
variável sainte.

• A comparação de limites respeita a ordem lexicográfica das perturbações,
i.e. com

li = ei1ε1 + · · ·+ eikεk
lj = fj1ε1 + · · ·+ fik ′ε ′k

temos li < lj se k < k ′ ou k = k ′ e eik < fik.

42

2.5. Sistemas degenerados

Caracteŕısticas

• Depois de chegar no valor ótimo, podemos retirar as perturbações εi.

Teorema 2.1
O método Simplex sempre termina escolhendo as variáveis saintes usando
a regra lexicográfica.

Prova. É suficiente mostrar que o sistema nunca será degenerado. Neste caso
o valor da função objetivo sempre cresce, e o método Simplex não cicla. A
matriz de perturbações 

ε1
ε2

· · ·
εm


inicialmente tem posto m. As operações do método Simplex são operações
lineares que não mudam o posto do matriz. Logo, em cada passo do método
Simplex temos uma matriz de perturbações

e11ε1 e12ε2 · · · e1mεm
e21ε1 e22ε2 · · · e2mεm
· · · · · ·

em1ε1 em2ε2 · · · emmεm


que ainda tem posto m. Portanto, em cada linha i existe pelo menos um eij 6=
0 e assim uma perturbação diferente de zero e o sistema não é degenerado. �

Exemplo 2.4
Solução do exemplo 2.3.
Pivô x1–w2. z = 4 +ε2 −w2 +3x2

w1 = 1/2 +ε1 −x2
x1 1/2ε2 −1/2w2 +2x2
w3 1/2ε2 +ε3 −1/2w2 −x2

Pivô x2–w3. z = 4 +5/2ε2 +3ε3 −5/2w2 −3w3
w1 = 1/2 +ε1 −1/2ε2 −ε3 +1/2w2 +w3
x1 = 3/2ε2 +2ε3 −3/2w2 −2w3
x2 = 1/2ε2 +ε3 −1/2w2 −w3

♦

Regra de Bland

• Outra solução do problema: A regra de Bland.

43

2. O método Simplex

• Escolhe como variável entrante e sainte sempre a variável com o menor
ı́ndice (caso tiver mais que um candidato).

Teorema 2.2
O método Simplex sempre termina se as variáveis entrantes e saintes são
escolhidas através da regra de Bland.

Prova. Prova por contradição: Suponha que exista uma sequência de di-
cionários que entra num ciclo D0, D1, . . . , Dk−1 usando a regra do Bland.
Nesse ciclo algumas variáveis, chamadas instáveis, entram e saem novamente
da base, outras permanecem sempre como básicas, ou como não-básicas. Seja
xt a variável instável com o maior ı́ndice. Sem perda de generalidade, seja xt
a variável sainte do primeiro dicionário D0. Seja xs a variável entrante no D0.
Observe que xs também é instável e portanto s < t. Seja D∗ o dicionário em
que xt entra na base. Temos a situação xs entra

��

xt entra

��
D0,

��

D1, D2, · · · D∗, · · · Dk−1

xt sai
com os sistemas correspondentes

D0 : D∗ :

z = z0 +
∑
j∈N

cjxj z = z∗ +
∑
j∈N∗

c∗jxj

xi = bi −
∑
j∈N

aijxj i ∈ B xi = b
∗
i −
∑
j∈N∗

a∗ijxj i ∈ B∗

Como temos um ciclo, todas variáveis instáveis tem valor 0 e o valor da função
objetivo é constante. Logo z0 = z

∗ e para D∗ temos

z = z∗ +
∑
j∈N∗

c∗jxj = z0 +
∑
j∈N∗

c∗jxj. (2.4)

Se aumentamos em D0 o valor do xs para y, qual é o novo valor da função
objetivo? Os valores das variáveis são

xs = y

xj = 0 j ∈ N \ {s}

xi = bi − aisy i ∈ B
(2.5)

44

2.5. Sistemas degenerados

e temos no sistema D1 o novo valor

z = z0 + csy (2.6)

Vamos substituir os valores das variáveis (2.5) com ı́ndices em N ∗ ∩ B na
equação (2.4). Para facilitar a substituição, vamos definir c∗j := 0 para j 6∈ N ∗,
que permite substituir todas variáveis xj, j ∈ B e assim obtemos

z = z0 +
∑

j∈[1,n+m]

c∗jxj = z0 + c
∗
sy+

∑
j∈B

c∗j (bj − ajsy). (2.7)

Equações (2.6) e (2.7) representam o mesmo valor, portanto(
cs − c

∗
s +
∑
j∈B

c∗jajs

)
y =
∑
j∈B

c∗jbj.

Essa igualdade deve ser correta para qualquer aumento y, portanto os dois
lados são 0, em particular

cs − c
∗
s +
∑
j∈B

c∗jajs = 0.

Como xs entra em D0 temos cs > 0. Em D∗ a variável xt entra, então c∗s ≤ 0
senão pela regra de Bland s < t entraria. Logo,∑

j∈B

c∗jajs = c
∗
s − cs ≤ −cs < 0

e deve existir um r ∈ B tal que c∗rars < 0. Isso tem uma série de consequências:

(i) c∗r 6= 0.

(ii) r ∈ N ∗, porque somente as variáveis nulas satisfazem c∗j 6= 0 em D∗.

(iii) xr é instável, porque ela é básica em D0 (r ∈ B), mas não-básica em D∗

(r ∈ N ∗).

(iv) r ≤ t, porque t foi a variável instável com o maior ı́ndice.

(v) r < t, porque c∗tats > 0: xt entra em D∗, logo c∗t > 0, e xt sai em D0,
logo ats > 0.

(vi) c∗r ≤ 0, senão r e não t entraria em D∗ seguindo a regra de Bland.

(vii) ars > 0.

(viii) br = 0, porque xr é instável, mas todos variáveis instáveis tem valor 0
no ciclo, e xr é básica em D0.

Os últimos dois itens mostram que xr foi candidato ao sair em D0 com ı́ndice
r < t, uma contradição com a regra de Bland. �

45

2. O método Simplex

Teorema fundamental

Teorema 2.3 (Teorema fundamental da programação linear)
Para qualquer programa linear temos:

(i) Se não existe solução ótima, o problema é inviável ou ilimitado.

(ii) Se existe uma solução viável, existe uma solução básica viável.

(iii) Se existe uma solução ótima, existe uma solução ótima básica.

2.6. Complexidade do método Simplex

Usando a regra de Bland o método Simplex nunca repete uma base e o número
de pivôs é limitado pelo número de bases. Com n+m variáveis (de decisão e
de folga) existem no máximo(

n+m

n

)
=

(
n+m

m

)
bases posśıveis. Para n + m constante, essa expressão é maximizada para
n = m. Os limites nesse caso são (exerćıcio 2.3)

1

2n
22n ≤

(
2n

n

)
≤ 22n.

Logo é posśıvel que o método Simplex precisa um número exponencial de
pivôs. A existência de sistemas com um número de pivôs exponencial de-
pende da regra de pivoteamento. Por exemplo, para a regra de maior coefici-
ente, existem sistemas que precisam um número exponencial de pivôs (Klee-
Minty). A pergunta se isso é o caso para qualquer regra de pivoteamento
está em aberto. O melhor algoritmo para a programação linear precisa tempo
O((n3/ logn)L [1], supondo que uma operação aritmética custa O(1) e os da-
dos são inteiros de L bits. Empiricamente o método Simplex precisa O(m+n)
pivôs [14], e cada pivô custa O(mn) operações, logo o tempo emṕırico, nova-
mente supondo que uma operação aritmética custa O(1) do método Simplex
é O((m+ n)mn).

Observação 2.2
Spielman e Teng [13] mostram que o método Simplex possui complexidade su-
avizada polinomial, i.e., o máximo do valor esperado do tempo de execução so-
bre pequenos perturbações (Gaussianas) é polinomial no tamanho da instância
e no inverso da perturbação.
Sem perturbações o problema de encontrar a solução que o método Simplex
encontraria usando a regra de Dantzig é PSPACE-completo [7]. ♦

46

2.7. Exerćıcios

2.7. Exerćıcios

(Soluções a partir da página 213.)

Exerćıcio 2.1 ([12])
Resolve com o método Simplex.

maximiza z = 3x1 + 5x2,

sujeito a x1 ≤ 4,
x2 ≤ 6,
3x1 + 2x2 ≤ 18,
x1, x2 ≥ 0.

Exerćıcio 2.2
Resolve o exerćıcio 1.7 usando o método Simplex.

Exerćıcio 2.3
Prova que

22n

2n
≤
(
2n

n

)
≤ 22n.

Exerćıcio 2.4
Resolve o sistema degenerado

z = 10x1 −57x2 −9x3 −24x4
w1 = −1/2x1 +11/2x2 +5/2x3 −9x4
w2 = −1/2x1 +3/2x2 +1/2x3 −x4
w3 = 1 −x1

usando o método lexicográfico e o regra de Bland.

Exerćıcio 2.5
Dado o problema de otimização

maximiza x1 + x2

sujeito a ax1 + bx2 ≤ 1
x1, x2 ≥ 0

determine condições suficientes e necessárias que a e b tem que satisfazer tal
que

(a) existe pelo menos uma solução ótima,

47

2. O método Simplex

(b) existe exatamente uma solução ótima,

(c) existe nenhuma solução ótima,

(d) o sistema é ilimitado.

ou demonstre que o caso não é posśıvel.

Exerćıcio 2.6
Sabe-se que o dicionário ótimo do problema

maximiza z = 3x1 + x2,

sujeito a − 2x1 + 3x2 ≤ 5,
x1 − x2 ≤ 1,
x1, x2 ≥ 0,

é
z∗ = 31 −11w2 −4w1
x2 = 7 −2w2 −w1
x1 = 8 −3w2 −w1

(a) Se a função objetivo passar a z = x1+ 2x2, a solução continua ótima? No
caso de resposta negativa, determine a nova solução ótima.

(b) Se a função objetivo passar a z = x1 − x2, a solução continua ótima? No
caso de resposta negativa, determine a nova solução ótima.

(c) Se a função objetivo passar a z = 2x1− 2x2, a solução continua ótima?No
caso de resposta negativa, determine a nova solução ótima.

(d) Formular o dual e obter a solução dual ótima.

Exerćıcio 2.7
Prove ou mostre um contra-exemplo.
O problema max{ctx | Ax ≤ b} possui uma solução viável sse min{x0 | Ax −
ex0 ≤ b} possui uma solução viável com x0 = 0. Observação: e é um vetor
com todos compentes igual 1 da mesma dimensão que b.

Exerćıcio 2.8
Prove ou mostre um contra-exemplo.
Se x é a variável sainte em um pivô, x não pode ser variável entrante no pivô
seguinte.

48

2.7. Exerćıcios

Exerćıcio 2.9
Demonstramos na seção 2.5 que existem sistemas em que o método Simplex
entra em ciclos. No exemplo o método Simplex ficou sempre na mesma solução,
representada por bases diferentes. Agora supõe que temos soluções diferentes
com o mesmo valor da função objetivo. É posśıvel que o método Simplex entra
num ciclo sempre visitando soluções diferentes?

Exerćıcio 2.10
Supõe que temos um dicionário com uma base infact́ıvel, com um candidato
para a variável entrante xe (i.e. ce > 0) tal que todos coeficientes na coluna
correspondente são negativos (i.e. aie < 0 para todo i ∈ B). Caso a base
fosse viável podemos concluir que o sistema é ilimitado. Podemos concluir
isso também com a base infact́ıvel?

49

3. Dualidade

3.1. Introdução

Visão global

• Dualidade: Cada programa linear (chamada de primal) possui um pro-
grama linear correspondente, chamado de dual.

• A dualidade tem várias aplicações como

– Estimar a qualidade de soluções e a convergência do método Sim-
plex.

– Certificar a otimalidade de um programa linear.

– Analisar a sensibilidade e re-otimizar sistemas.

– Resolver programas lineares mais simples ou eficiente com o Método
Simplex dual.

• O programa dual as vezes possui uma interpretação relevante.

Introdução

• Considere o programa linear

maximiza z = 4x1 + x2 + 3x3 (3.1)

sujeito a x1 + 4x2 ≤ 1
3x1 − x2 + x3 ≤ 3
x1, x2, x3 ≥ 0

• Cada solução viável fornece um limite inferior para o valor máximo.

x1 = x2 = x3 = 0⇒ z = 0

x1 = 3, x2 = x3 = 0⇒ z = 4

• Qual a qualidade da solução atual?

• Não sabemos, sem limite superior.

51

3. Dualidade

Limites superiores

• Como obter um limite superior?

Observe: z = 4x1 + x2 + 3x3 ≤ 10x1 + x2 + 3x3 ≤ 10

• Podemos construir uma combinação linear das desigualdades, tal que o
coeficiente de cada xj ultrapasse o coeficiente da função objetivo.

• Nosso exemplo:

(x1 + 4x2) + 3(3x1 − x2 + x3) ≤ 1+ 3 · 3 = 10⇐⇒10x1 + x2 + 3x3 ≤ 10
• Como obter um limite superior para a função objetivo?

• Qual seria o menor limite superior que esse método fornece?

Exemplo 3.1
Para o sistema (3.1) obtemos:

minimiza y1 + 3y2

sujeito a y1 + 3y2 ≥ 4
4y1 − y2 ≥ 1
y2 ≥ 3
y1, y2, y3 ≥ 0.

♦

O menor limite superior

• Sejam y1, . . . , yn os coeficientes de cada linha. Observação: Eles devem
ser ≥ 0 para manter a direção das desigualdades.

• Então queremos

minimiza
∑
i∈[m]

biyi

sujeito a
∑
i∈[m]

aijyi ≥ cj ∀j ∈ [n]

yi ≥ 0.

• Isto é o problema dual com variáveis duais yi.

52

3.1. Introdução

Dualidade: Caracteŕısticas

• Em notação matricial

maximiza ctx minimiza bty

sujeito a Ax ≤ b sujeito a ytA ≥ ct

x ≥ 0. y ≥ 0.

• O primeiro se chama primal e o segundo dual.

• Eles usam os mesmos parâmetros cj, aij, bi.

O dual do dual

• Observação: O dual do dual é o primal.

• Forma normal do dual:

−maximiza − bty −maximiza − bty

sujeito a − ytA ≤ −ct = sujeito a (−At)y ≤ −c

y ≥ 0. y ≥ 0.

• Dual do dual

−minimiza − ctz maximiza ctz

sujeito a zt(−At) ≥ −bt = sujeito a Az ≤ b
z ≥ 0. z ≥ 0.

Exemplo 3.2
Qual o dual do problema de transporte (1.11)? Com variáveis duais πi, i ∈ [n]
para as das restrições de estoque (1.12) e variáveis duais ρj, j ∈ [m] para as
restrições de demanda (1.13) obtemos

maximiza
∑
i∈[n]

aiπi +
∑
j∈[m]

bjρj (3.2)

sujeito a πi + ρj ≥ cij ∀i ∈ [n], j ∈ [m]

πi, ρj ≥ 0 ∀i ∈ [n], j ∈ [m].

♦

53

3. Dualidade

3.2. Interpretação do dual

Exemplo: Dieta dual

• Problema da dieta: Minimiza custos de uma dieta x que alcance dados
VDR mı́nimos.

minimiza ctx

sujeito a Ax ≥ r
x ≥ 0

• Unidades das variáveis e parâmetros

– x ∈ Rn: Quantidade do alimento [g]

– c ∈ Rn: R$/alimento [R$/g]

– aij ∈ Rm×n: Nutriente/Alimento [g/g]

– r ∈ Rm: Quantidade de nutriente [g].

Exemplo: Dieta dual

• O problema dual é

maximiza ytr

sujeito a ytA ≤ ct

y ≥ 0

• Qual a unidade de y? Preço por nutriente [R$/g].

• Imagine uma empresa, que produz cápsulas que substituem os nutrien-
tes.

• Para vender no mercado, a empresa tem que garantir que uma dieta
baseado em cápsulas custa menos que os alimentos correspondentes:∑

i∈[m]

yiaij ≤ cj ∀j ∈ [m]

• Além disso, ela define preços por nutriente que maximizam o custo de
uma dieta adequada, para maximizar o próprio lucro.

maximiza ytr

54

3.2. Interpretação do dual

Interpretação do dual

• Outra interpretação: o valor de uma variável dual yj é o custo marginal
de adicionar mais uma unidade bj.

Teorema 3.1
Se um sistema possui pelo menos uma solução básica ótima não-degenerada,
existe um ε > 0 tal que, se |tj| ≤ ε para j ∈ [m],

maximiza ctx

sujeito a Ax ≤ b+ t
x ≥ 0

tem uma solução ótima com valor

z = z∗ + y∗tt

(com z∗ o valor ótimo do primal, é y∗ a solução ótima do dual).

Uma outra forma de ver o teorema, é que para uma base não-degenerada, as
variáveis duais representam as derivadas parciais pelos lados direitos

∂z(b)

∂bi
= y∗i .

Observação 3.1
Os custos marginais (ingl. marginal cost) também são chamados preços ou
preços sombra (ingl. price, shadow price). ♦

Exemplo 3.3
Considere uma modificação do sistema do Ildo

maximiza 0.2c+ 0.5c (3.3)

sujeito a c+ 1.5s ≤ 150 (3.4)

50c+ 50s ≤ 6000 (3.5)

c ≤ 80 (3.6)

s ≤ 70 (3.7)

c, s ≥ 0. (3.8)

(O sistema foi modificado para a solução ótima atender as condições do teo-
rema 3.1.) A solução ótima do sistema primal é x∗ = (45 70)t com valor 44, a
solução ótima do dual y∗(1/5 0 0 1/5)t. A figura 3.1 mostra a solução ótima
com as variáveis duais associadas com as restrições. O valor da variável dual
correspondente com uma restrição é o lucro marginal de um aumento do lado
direito da restrição por um.

♦

55

3. Dualidade

(3.4)

(3.5)

(3.6)

(3.7)

y4 = 1/5

y1 = 1/5

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

c (croissants)

s
(s

tr
u

d
el

s)

Figura 3.1.: Solução ótima do sistema (3.3) com variáveis duais.

3.3. Caracteŕısticas

Teorema da dualidade fraca

Teorema 3.2 (Dualidade fraca)
Se x1, . . . , xn é uma solução viável do sistema primal, e y1, . . . , ym uma
solução viável do sistema dual, então∑

i∈[n]

cixi ≤
∑
j∈[m]

bjyj.

Prova.

ctx ≤ (ytA)x = yt(Ax) pela restrição dual (3.9)

≤ ytb pela restrição primal (3.10)

�

Situação

56

3.3. Caracteŕısticas

Soluções primais viáveis Soluções primais viáveis

z

Gap de otimalidade?

• Em aberto: Qual o tamanho desse intervalo em geral?

Teorema da dualidade forte

Teorema 3.3
Se x∗1, . . . , x

∗
n é uma solução ótima do sistema primal, existe uma solução ótima

y∗1, . . . , y
∗
m do sistema dual, e

∑
i∈[n]

cix
∗
i =

∑
j∈[m]

bjy
∗
j .

Prova. Seja x∗ uma solução ótima do sistema primal, que obtemos pelo
método Simplex. No ińıcio introduzimos variáveis de folga

xn+j = bj −
∑
i∈[n]

ajixi ∀j ∈ [m]

e a função objetivo final é

z = z∗ +
∑

i∈[n]+m

c̄ixi

(supondo que c̄i = 0 para variáveis básicas). Temos que construir uma solução
ótima dual y∗. Pela optimalidade, na função objetivo acima, todos ci devem
ser não-positivos. Provaremos que y∗j = −cn+j ≥ 0 para j ∈ [m] é uma
solução dual ótima. Como z∗ o valor ótimo do problema inicial, temos z∗ =∑
i∈[n] cix

∗
i .

57

3. Dualidade

Reescrevendo a função objetivo temos

z =
∑
i∈[n]

cixi sistema inicial

= z∗ +
∑

i∈[n]+m

c̄ixi sistema final

= z∗ +
∑
i∈[n]

c̄ixi +
∑
j∈[m]

cn+jxn+j separando ı́ndices

= z∗ +
∑
i∈[n]

c̄ixi −
∑
j∈[m]

y∗j

(
bj −

∑
i∈[n]

ajixi

)
subst. solução e var. folga

=

(
z∗ −

∑
j∈[m]

y∗jbj

)
+
∑
i∈[n]

(
c̄i +

∑
1≤j≤m

y∗jaji

)
xi agrupando

Essa derivação está válida para qualquer variável xi, porque são duas ex-
pressões para a mesma função objetivo, portanto

z∗ =
∑
j∈[m]

y∗jbj e ci = c̄i +
∑
j∈[m]

y∗jaji, i ∈ [n].

Com isso sabemos que o primal e dual possuem o mesmo valor∑
j∈[m]

y∗jbj = z
∗ =

∑
i∈[n]

cix
∗
i

e como c̄i ≤ 0 sabemos que a solução y∗ satisfaz a restrições duais

ci ≤
∑
j∈[m]

y∗jaji, i ∈ [n],

y∗i ≥ 0, i ∈ [m].

�

Consequências: Soluções primais e duais

• Com o teorema da dualidade forte, temos quatro possibilidades

Sistema primal Sistema dual Intervalo

Ótimo Ótimo Sem
Ilimitado Inviável Sem
Inviável Ilimitado Sem
Inviável Inviável Infinito

58

3.3. Caracteŕısticas

Exemplo 3.4 (Primal e dual inviável)
Pelo teorema da dualidade forte, não podemos concluir, que existe um caso
que tanto o sistema primal quanto o sistema dual são inviáveis. O seguinte
exemplo mostra que isso pode realmente acontecer. O sistema primal

maximiza x1

sujeito a + x1 − x2 ≤ 0
− x1 + x2 ≤ −1

x1, x2 ≥ 0

possui sistema dual correspondente

minimiza − y2

sujeito a + y1 − y2 ≥ 1
− y1 + y2 ≥ 0

Os dois sistemas são inviáveis. ♦

Podemos resumir as possibilidades na seguinte tabela:

Dual

Primal Inviável Ótimo Ilimitado

Inviável
√

×
√

Ótimo ×
√

×
Ilimitado

√
× ×

Consequências

• Dado soluções primais e duais x∗, y∗ tal que ctx∗ = bty∗ podemos con-
cluir que ambas soluções são ótimas (x∗, y∗ é um certificado da optima-
lidade)1.

• A prova mostra: com o valor ótimo do sistema primal, sabemos também
o valor ótima do sistema dual.

• Além disso: Podemos trocar livremente entre o sistema primal e dual.⇒ Método Simplex dual.

1Uma consequência é que o problema de decisão correspondente, determinar se existe uma
solução maior que um dado valor, possui um certificado que pode ser verificado em tempo
polinomial tanto para uma resposta positiva quanto uma resposta negativa. Portanto,
já antes da descoberta de um algoritmo polinomial para esse problema, foi claro que ele
pertence a NP∩ co-NP.

59

3. Dualidade

Outra consequência do Teorema da dualidade forte é o

Teorema 3.4 (Teorema das folgas complementares)
Os vetores x∗, y∗ são soluções ótimas do sistema primal e dual, respectiva-
mente, se e somente se

y∗
t(b−Ax∗) = 0 (3.11)

(y∗tA− ct)x∗ = 0 (3.12)

Prova. Pelo Teorema da dualidade forte as duas desigualdades (3.9) e (3.10)
da prova do Teorema da dualidade fraca se tornam igualdades para soluções
ótimas:

ctx∗ = y∗tAx∗ = y∗tb

Reagrupando termos, o teorema segue. Conversamente, caso (3.11) e (3.12)
são válidos, as a solução primal e dual possuem o mesmo valor e assim tem
que ser soluções ótimas. �
As igualdades 3.11 e 3.12 são ainda válidas em cada componente, porque tanto
as soluções ótimas x∗, y∗ quanto as folgas primas e duais b−Ax e y∗tA− ct

sempre são positivos.

xi > 0⇒ ∑
j∈[m]

yjaji = ci (3.13)

∑
j∈[m]

yjaji > ci ⇒ xi = 0 (3.14)

yj > 0⇒ bj =
∑
i∈[n]

ajixi (3.15)

bj >
∑
i∈[n]

ajixi ⇒ yj = 0 (3.16)

Como consequência podemos ver que, por exemplo, caso uma igualdade primal
não possui folga, a variável dual correspondente é positiva, e, contrariamente,
caso uma igualdade primal possui folga, a variável dual correspondente é zero.
As mesmas relações se aplicam para as desigualdades no sistema dual. Após
a introdução da forma matricial no seção 3.6 vamos analisar a interpretação
das variáveis duais com mais detalha no seção 3.7. O teorema das folgas
complementares pode ser usado ainda para obter a solução dual dado a solução
primal:

60

3.4. Método Simplex dual

Exemplo 3.5
A solução ótima de

maximiza z = 6x1 + 8x2 + 5x3 + 9x4

sujeito a 2x1 + x2 + x3 + 3x4 ≤ 5
x1 + 3x2 + x3 + 2x4 ≤ 3
x1, x2, x3, x4 ≥ 0

é x1 = 2 e x3 = 1 com valor 17. Pela equação (3.13) sabemos que

2y1 + y2 = 6

y1 + y2 = 5.

Portanto a solução dual é y1 = 1 e y2 = 4. ♦

3.4. Método Simplex dual

Método Simplex dual

• Considere

maximiza − x1 − x2

sujeito a − 2x1 − x2 ≤ 4
− 2x1 + 4x2 ≤ −8

− x1 + 3x2 ≤ −7

x1, x2 ≥ 0.

• Qual o dual?

minimiza 4y1 − 8y2 − 7y3

sujeito a − 2y1 − 2y2 − y3 ≥ −1

− y1 + 4y2 + 3y2 ≥ −1

y1, y2, y3 ≥ 0.

Com dicionários

z = −x1 −x2
w1 = 4 +2x1 +x2
w2 = −8 +2x1 −4x2
w3 = −7 +x1 −3x2

−w = −4y1 +8y2 +7y3
z1 = 1 −2y1 −2y2 −y3
z2 = 1 −y1 +4y2 +3y3

61

3. Dualidade

• Observação: O primal não é viável, mas o dual é!

• Correspondência das variáveis:

Variáveis

principais de folga
Primal x1, . . . , xn w1, . . . , wm

Dual z1, . . . , zn, y1, . . . , ym
de folga principais

• Primeiro pivô: y2 entra, z1 sai. No primal: w2 sai, x1 entra.

Primeiro pivô

z = −4 −0.5w2 −3x2
w1 = 12 +w2 +5x2
x1 = 4 +0.5w2 +2x2
w3 = −3 +0.5w2 −x2

−w = 4 −12y1 −4z1 +3y3
y2 = 0.5 −y1 −0.5z1 −0.5y3

z2 = 3 −5y1 −2z1 +y3

• Segundo pivô: y3 entra, y2 sai. No primal: w3 sai, w2 entra.

Segundo pivô

z = −7 −w3 −4x2
w1 = 18 +2w3 +7x2
x1 = 7 +w3 +3x2
w2 = 6 +2w3 +2x2

−w = 7 −18y1 −7z1 −6y2
y3 = 1 −2y1 −z1 −2y2
z2 = 4 −7y1 −3z1 −2y2

• Sistema dual é ótimo, e portanto o sistema primal também.

Método Simplex dual

• Observação: Não é necessário escrever o sistema dual. Ele é sempre o
negativo transposto do sistema primal.

z = z̄+
∑
j∈N

c̄jxj

xi = b̄i −
∑
j∈N

āijxj i ∈ B

• Mas é necessário modificar as regras para resolver o sistema dual.

62

3.4. Método Simplex dual

Método Simplex dual: Viabilidade e otimalidade

• Pré-condição: O dicionário é dualmente viável, i.e. os coeficientes das
variáveis não-básicas na função objetivo tem quer ser não-positivos.

c̄j ≤ 0 para j ∈ N .

• Otimalidade: Todos variáveis básicas primais positivas

∀i ∈ B : b̄i ≥ 0

Método Simplex dual: Pivô

• Caso existe uma variável primal negativa: A solução dual não é ótima.

• Regra do maior coeficiente: A variável básica primal com menor valor
(que é negativo) sai da base primal.

i = argmin
i∈B

b̄i

• A variável primal nula com fração āij/c̄j maior entra.

j = argmin
j∈N
āij<0

c̄j

āij
= argmax

j∈N
āij<0

āij

c̄j
= argmax

j∈N

āij

c̄j

Método Simplex dual
Resumo:

• Dualmente viável: c̄j ≤ 0 para j ∈ N .

• Otimalidade: ∀i ∈ B : b̄i ≥ 0.

• Variável sainte: i = argmini∈B b̄i

• Variável entrante: j = argmaxj∈N
āij
c̄j

.

Exemplo

maximiza z = −2x1 − x2

sujeito a − x1 + x2 ≤ −1

− x1 − 2x2 ≤ −2

x2 ≤ 1
x1, x2 ≥ 0

63

3. Dualidade

Exemplo: Dicionário inicial
z = −2x1 −x2
w1 = −1 +x1 −x2
w2 = −2 +x1 +2x2

w3 = 1 −x2

• O dicionário primal não é viável, mas o dual é.

Exemplo: Primeiro pivô
z = −1 −3/2x1 −1/2w2
w1 = −2 +3/2x1 −1/2w2
x2 = 1 −1/2x1 +1/2w2
w3 = +1/2x1 −1/2w2

Exemplo: Segundo pivô
z = −3 −w1 −w2
x1 = 4/3 +2/3w1 +1/3w2
x2 = 1/3 −1/3w1 +1/3w2
w3 = 2/3 +1/3w1 −1/3w2

3.5. Dualidade em forma não-padrão

Dualidade em forma padrão

maximiza ctx minimiza bty

sujeito a Ax ≤ b sujeito a ytA ≥ ct

x ≥ 0 y ≥ 0

• O que acontece se o sistema não é em forma padrão?

Igualdades

• Caso de igualdades: Substituindo desigualdades..

maximiza ctx maximiza ctx

sujeito a Ax = b sujeito a Ax ≤ b
x ≥ 0 Ax ≥ b

x ≥ 0

64

3.5. Dualidade em forma não-padrão

• ... padronizar novamente, e formar o dual:

maximiza ctx minimiza bty+ − bty−

sujeito a Ax ≤ b sujeito a y+
t
A− y−

t
A ≥ c

−Ax ≤ −b y+ ≥ 0, y− ≥ 0
x ≥ 0 y+ = (y+1 , . . . , y

+
m)t

y− = (y−1 , . . . , y
−
m)t

Igualdades

• Equivalente, usando variáveis não-restritas y = y+ − y−

minimiza bty

sujeito a ytA ≥ c
yt ≶ 0

• Resumo

Primal (max) Dual (min)

Igualdade Variável dual livre
Desigualdade (≤) Variável dual não-negativa
Desigualdade (≥) Variável dual não-positiva
Variável primal livre Igualdade
Variável primal não-negativa Desigualdade (≥)
Variável primal não-positiva Desigualdade (≤)

Exemplo 3.6 (Exemplo dualidade não-padrão)
O dual de

maximiza 3x1 + x2 + 4x3

sujeito a x1 + 5x2 + 9x3 = 2

6x1 + 5x2 + 3x3 ≤ 5
x1, x3 ≥ 0, x2 ≶ 0

65

3. Dualidade

é

minimiza 2y1 + 5y2

sujeito a y1 + 6y2 ≥ 3
5y1 + 5y2 = 1

9y1 + 3y2 ≥ 4
y1 ≶ 0, y2 ≥ 0.

♦

Exemplo 3.7 (Dual do problema de transporte)
O dual do problema de transporte num grafo direcionado G = (V,A) com
custos nas arestas ca, limites inferiores e superiores para o fluxo la e ua em
cada arco, e demandas bv em cada vértice

minimiza
∑
a∈A

caxa

sujeito a
∑

(u,v)∈A

x(u,v) −
∑

(v,u)∈A

x(v,u) = bv ∀v ∈ V

xa ≥ la ∀a ∈ A
xa ≤ ua ∀a ∈ A
xa ≥ 0 ∀a ∈ A

usando variáveis duais πv ≶ 0, v ∈ V, ρa ≥ 0, a ∈ A e σa ≤ 0, a ∈ A para as
três restrições é

maximiza
∑
v∈V

bvπv +
∑
a∈A

laρa + uaσa

sujeito a − πu + πv + ρa + σa ≥ 1 ∀a = (u, v) ∈ A
πv ∈ R ∀v ∈ V
ρa ≥ 0 ∀a ∈ A
σa ≤ 0 ∀a ∈ A.

♦

3.6. Os métodos em forma matricial

A forma matricial permite uma descrição mais sucinta do método Simplex. A
seguir vamos resumir os métodos Simplex primal e dual na forma matricial.

66

3.6. Os métodos em forma matricial

Mais importante, nesse forma é posśıvel expressar o dicionário correspondente
com qualquer base em termos das dados inicias (A, c, b). Na próxima seção va-
mos usar essa forma para analisar a sensibilidade de uma solução ao pequenas
perturbações dos dados (i.e. os coeficientes A,b, e c).

3.6.1. O dicionário final em função dos dados

Sistema padrão

• O sistema padrão é

maximiza ctx

sujeito a Ax ≤ b
x ≥ 0

• Com variáveis de folga xn+1, . . . , xn+m e A,c,x novo (definição segue
abaixo)

maximiza ctx

sujeito a Ax = b

x ≥ 0

Matrizes

A =


a11 a12 · · · a1n 1
a21 a22 · · · a2n 1

...
...

...
. . .

am1 am2 . . . amn 1

 ;

b =


b1
b2
...
bm

 ; c =



c1
c2
...
cn
0
...
0


; x =



x1
x2
...
xn
xn+1

...
xn+m



67

3. Dualidade

Separação das variáveis

• Em cada iteração as variáveis estão separados em básicas e não-básicas.

• Conjuntos de ı́ndices correspondentes: B
.
∪ N = [1, n+m].

• A componente i de Ax pode ser separado como∑
j∈[n+m]

aijxj =
∑
j∈B

aijxj +
∑
j∈N

aijxj

Separação das variáveis

• Para obter a mesma separação na forma matricial: Reordenamos as
colunas e separamos as matrizes e vetores:

A = (BN) ; x =

(
xB
xN

)
; c =

(
cB
cN

)
• com B ∈ Rm×m, N ∈ Rm×n, c ∈ Rn+m.

Forma matricial das equações

• Agora, Ax = b é equivalente com

(BN)

(
xB
xN

)
= BxB +NxN = b

• Numa solução básica, a matriz B tem posto m tal que as colunas de B
formam uma base do Rm. Logo B possui inversa e

xB = B−1(b−NxN) = B
−1b− B−1NxN

Forma matricial da função objetivo

• A função objetivo é

z = ctx = (ctB c
t
N)

(
xB
xN

)
= ctBxB + ctNxN

• e usando xB = B−1b− B−1NxN obtemos

z = ctB(B
−1b− B−1NxN) + c

t
NxN

= ctBB
−1b− (ctBB

−1N− ctN)xN

= ctBB
−1b− ((B−1N)tcB − cN)

txN

68

3.6. Os métodos em forma matricial

Dicionário em forma matricial

• Logo, o dicionário em forma matricial é

z = ctBB
−1b− ((B−1N)tcB − cN)

txN

xB = B−1b− B−1NxN

• Compare com a forma em componentes:

z = z̄+
∑
j∈N

c̄jxj z = z̄+ c̄txN

xi = b̄i −
∑
j∈N

āijxj i ∈ B xB = b̄− ĀxN

Dicionário em forma matricial

• Portanto, vamos identificar

z̄ = ctBB
−1b; c̄ = −((B−1N)tcB − cN)

b̄ = B−1b; Ā = (āij) = B
−1N

• para obter o dicionário

z = z̄+ c̄txN

xB = b̄− ĀxN

Sistema dual

• As variáveis primais são

x = (x1 . . . xn︸ ︷︷ ︸
original

xn+1 . . . xn+m︸ ︷︷ ︸
folga

)t

• Para manter ı́ndices correspondentes, escolhemos variáveis duais da forma

y = (y1 . . . yn︸ ︷︷ ︸
folga

yn+1 . . . yn+m︸ ︷︷ ︸
dual

)t

• O dicionário do dual correspondente então é

Primal Dual

z = z̄+ c̄txN −w = −z̄− b̄tyB

xB = b̄− ĀxN yN = −c̄+ ĀtyB

69

3. Dualidade

Primal e dual

• A solução básica do sistema primal é

x∗N = 0; x∗B = b̄ = B−1b

• A solução dual correspondente é

y∗B = 0; y∗N = −c̄ = (B−1N)tcB − cN

• Com isso temos os dicionários

z = z̄− (y∗N)
txN −w = −z̄− (x∗B)

tyB

xB = x∗B − (B−1N)xN yN = y∗N + (B−1N)tyB

Observação 3.2
A solução dual completa é y = ctBB

−1A − ct (isso pode ser visto como?), ou

yi = c
t
BB

−1ai − ci para cada ı́ndice i ∈ [n +m]. As variáveis duais originais
com ı́ndice i ∈ [n + 1,m] correspondem com as colunas ai = ei das variáveis
de folga e possuem coeficientes ci = 0. Logo y = ctBB

−1 é a solução dual do
sistema dual sem as variáveis de folga. ♦

3.6.2. Simplex em forma matricial

Método Simplex em forma matricial

• Começamos com uma partição B
.
∪ N = [1, n+m].

• Em cada iteração selecionamos uma variável sainte i ∈ B e entrante
j ∈ N .

• Fazemos o pivô xi com xj.

• Depois a nova base é B \ {i} ∪ {j}.

Método Simplex em forma matricial

S1: Verifique solução ótima Se y∗N ≥ 0 a solução atual é ótima. Pare.

S2: Escolhe variável entrante Escolhe j ∈ N com y∗j < 0. xj é a variável
entrante.

70

3.6. Os métodos em forma matricial

S3: Determine passo básico Aumentando xj uma unidade temos novas variáveis
não-básicas xN = x∗N + ∆xN com ∆xN = (0 · · · 010 · · · 0)t = ej e ej o
vetor nulo com somente 1 na posição correspondente com ı́ndice j. Como

xB = x∗B − B−1NxN

a diminuição correspondente das variáveis básicas é ∆xB = B−1Nej.

Método Simplex em forma matricial

S4: Determine aumento máximo O aumento máximo de xj é limitado por
xB ≥ 0, i.e.

xB = x∗B − t∆xB ≥ 0⇐⇒ x∗B ≥ t∆xB.

Com t, x∗B ≥ 0 temos

t ≤ t∗ = min
i∈B
∆xi>0

x∗i
∆xi

S5: Escolhe variável sainte Escolhe um i ∈ B com x∗i = t
∗∆xi.

Método Simplex em forma matricial

S5: Determine passo dual A variável entrante dual é yi. Aumentando uma
unidade, as variáveis yN diminuem ∆yN = −(B−1N)tei.

S6: Determina aumento máximo Com variável sainte yj, sabemos que yi
pode aumentar ao máximo

s =
y∗j

∆yj
.

S7: Atualiza solução

x∗j := t y∗i := s

x∗B := x∗B − t∆xB y∗N := y∗N − s∆yN

B := B \ {i} ∪ {j}

71

3. Dualidade

3.7. Análise de sensibilidade

Motivação

• Na solução da programas lineares tratamos os parâmetros como ser fi-
xados.

• Qual o efeito de uma perturbação

c := c+ ∆c; b := b+ ∆b; A := A+ ∆A?

(Imagina erros de medida, pequenas flutuações, etc.)

Análise de sensibilidade

• Após a solução de um sistema linear, temos o dicionário ótimo

z = z∗ − (y∗N)
txN

xB = x∗B − B−1NxN

• com

x∗B = B−1b

y∗N = (B−1N)tcB − cN

z∗ = ctBB
−1b

Modificar c

• Mudarmos c para ĉ, mantendo a base B.

• x∗B não muda, mas temos que reavaliar y∗N e z∗.

• Depois, x∗B ainda é uma solução básica viável do sistema primal.

• Logo, podemos continuar aplicando o método Simplex primal.

Modificar b

• Da mesma forma, modificamos b para b̂ (mantendo a base).

• y∗N não muda, mas temos que reavaliar x∗B e z∗.

• Depois, y∗N ainda é uma solução básica viável do sistema dual.

• Logo, podemos continuar aplicando o método Simplex dual.

72

3.7. Análise de sensibilidade

Vantagem dessa abordagem

• Nos dois casos, esperamos que a solução inicial já é perto da solução
ótima.

• Experiência prática confirma isso.

• O que acontece se queremos modificar tanto b quanto c ou ainda A?

• A solução atual não necessariamente é viável no sistema primal ou dual.

• Mas: Mesmo assim, a convergência na prática é mais rápido.

Estimar intervalos

• Pergunta estendida: Qual o intervalo de t ∈ R tal que o sistema com
ĉ = c+ t∆c permanece ótimo?

• Para t = 1: y∗N = (B−1N)tcB−cN aumenta ∆yN := (B−1N)t∆cB−∆cN.

• Em geral: Aumento t∆yN.

• Condição para manter a viabilidade dual:

y∗N + t∆yN ≥ 0

• Para t > 0 temos

t ≤ min
j∈N
∆yj<0

−
y∗j

∆yj

• Para t < 0 temos

max
j∈N
∆yj>0

−
y∗j

∆yj
≤ t

Estimar intervalos

• Agora seja b̂ = b+ t∆b.

• Para t = 1: x∗B = B−1b aumenta ∆xB := B−1∆b.

• Em geral: Aumento t∆b.

• Condição para manter a viabilidade primal:

x∗B + t∆xB ≥ 0

73

3. Dualidade

• Para t > 0 temos

t ≤ min
i∈B
∆xi<0

−
x∗i
∆xi

• Para t < 0 temos

max
i∈B
∆xi>0

−
x∗i
∆xi

≤ t

Observação 3.3
A matriz B−1 é formado pelas colunas do dicionário final que correspondem
com as variáveis de folga. ♦

Exemplo 3.8
Considere o problema da empresa de aço (vista na aula prática, veja também
exećıcio 1.7).

maximiza 25p+ 30c

sujeito a 7p+ 10c ≤ 56000
p ≤ 6000
c ≤ 4000

Qual o intervalo em que o valor do lucro das placas de 25R $ pode variar sem
alterar a solução ótima?

Exemplo: Empresa de aço

• Sistema ótimo

• Base B = {p,w3, c}, variáveis não-básicas N = {w1, w2}. (Observe:
Usamos conjuntos de variáveis, ao invés de conjuntos de ı́ndices).

74

3.7. Análise de sensibilidade

Exemplo: Variáveis

• Vetores c e ∆c. Observe que reordenamos os dados do sistema inicial de
forma correspondente com a ordem das variáveis do sistema final.

c =


25
0
30
0
0

 ; cB =

250
30

 ; cN =

(
0
0

)
;

∆c =


1
0
0
0
0

 ;∆cB =

10
0

 ;∆cN =

(
0
0

)

Exemplo: Aumentos

• Aumento das variáveis duais

∆yN = (B−1N)t∆cB − ∆cN = (B−1N)t∆cB

• com

B−1N =

 0 1
−1/10 7/10
1/10 −7/10


• temos

∆yN =

(
0
1

)
Exemplo: Limites

• Limites em geral

max
j∈N
∆yj>0

−
y∗j

∆yj
≤ t ≤ min

j∈N
∆yj<0

−
y∗j

∆yj

• Logo
−4 ≤ t ≤∞.

• Uma variação do preço entre 25+ [−4,∞] = [21,∞] preserve a otimali-
dade da solução atual.

75

3. Dualidade

• O novo valor da função objetivo é

z == ĉtBB
−1b =

(
25+ t 0 30

)60002600
1400

 = 192000+ 6000t

e os valores das variáveis p e c permanecem os mesmos.

♦

Exemplo 3.9
Qual o intervalo em que o lucro das placas (R$ 25) e dos canos (R$ 30) podem
variar sem que a solução ótima seja alterada?

Exemplo: Variação do lucro dos placas e canos

• Neste caso, os vetores c, cB, cN e ∆cN permanecem os mesmos do
exemplo anterior. Enquanto que:

∆c =


1
0
1
0
0

 ;∆cB =

10
1

 ;

• Neste caso, o valor de ∆yN é

∆yN = (B−1N)t∆cB =

(
0 −1/10 1/10
1 7/10 −7/10

)10
1

 =

(
1/10
3/10

)
;

• Logo −40/3 ≤ t ≤∞
• Ou seja, uma variação do lucro das placas entre R$ 11.67 e∞, e do lucro

dos canos entre R$ 16.67 e ∞, não altera a solução ótima do sistema.

♦

Exemplo: Modificação

• Qual o intervalo em que o lucro dos canos (R$ 30) podem variar sem
que a solução ótima seja alterada?

76

3.7. Análise de sensibilidade

• Neste caso, os vetores c, cB, cN e ∆cN permanecem os mesmos do
exemplo anterior. Enquanto que:

∆c =


0
0
1
0
0

 ;∆cB =

00
1

 ;

• Neste caso, o valor de ∆yN é:

∆cB =

(
1/10
−7/10

)
;

• Logo −30 ≤ t ≤ 40/7

• Ou seja, uma variação do lucro dos canos entre R$ 0 e R$ 35.71, não
altera a solução ótima do sistema.

Exemplo 3.10
O que acontece se mudarmos o lucro das placas para R$ 20?

Exemplo: Placas com lucro R$ 20

• Novos vetores

ĉ =


20
0
30
0
0

 ; ĉB =

200
30

 ; ĉN =

(
0
0

)

• Aumento

ŷ∗N = (B−1N)tĉB − ĉN = (B−1N)tĉB

=

(
0 −1/10 1/10
1 7/10 −7/10

)200
30

 =

(
3
−1

)

77

3. Dualidade

Novas variáveis

• Com

B−1b =

60002600
1400


• Novo valor da função objetivo

ẑ∗ = ĉtBB
−1b =

(
20 0 30

)60002600
1400

 = 162000

Exemplo: Novo dicionário

• Novo sistema primal viável, mas não ótimo:

z = 162000 −3w1 +w2
p = 6000 −w2
w3 = 2600 +1/10w1 −7/10w2

c = 1400 −1/10w1 +7/10w2

• Depois um pivô: Sistema ótimo.

z = 165714 2/7 −20/7w1 −10/7w3
p = 2285 5/7 −1/7w1 +10/7w3
w2 = 3714 2/7 +1/7w1 −10/7w2
c = 4000 −w3

♦

Exemplo 3.11
O que acontece se mudarmos o lucro das placas de R$ 25 para R$ 35 e dos
canos de R$ 30 para R$ 10?

Exemplo: Placas e canos com lucro R$ 35 e R$ 10

• Novos vetores

ĉ =


35
0
10
0
0

 ; ĉB =

350
10

 ; ĉN =

(
0
0

)

78

3.7. Análise de sensibilidade

• Aumento

ŷ∗N = ((B−1N)tcB − cN) =

(
0 −1/10 1/10
1 7/10 −7/10

)350
10

 =

(
1
28

)
Novas variáveis e novo dicionário

• Novo valor da função objetivo

ẑ∗ = ĉtBB
−1b = ĉtBx

∗
B =

(
35 0 10

)60002600
1400

 = 224000

• O novo sistema primal viável é

z = 224000 −1w1 −28w2
p = 6000 −w2
w3 = 2600 +1/10w1 −7/10w2
c = 1400 −1/10w1 +7/10w2

• O sistema é ótimo.

♦

Exemplo 3.12
Qual o efeito de uma variação do lado direito 6000 da segunda restrição? Para
estudar essa variação escolhemos ∆b = (0 1 0)t. Temos

B =

7 0 10
1 1 0
0 0 1

 ; B−1 = 1/10

 0 10 0
−1 7 10
1 −7 0


e logo ∆xB = B−1∆b = 1/10(10 7 − 7)t. Obtemos a nova solução básica

x̂∗B =

60002600
1400

+ t/10

107
−7


e a condição de otimalidade x̂∗B ≥ 0 nos fornece os limites

−26000/7 ≤ t ≤ 2000

em que ela é ótima. O valor da função objetivo dentro desses limites é

ẑ∗ = ctBx̂
∗
B = (25 0 30)t

 6000+ t
2600+ 7/10t
1400− 7/10t

 = 192000+ 4t.

♦

79

3. Dualidade

3.8. Exerćıcios

(Soluções a partir da página 214.)

Exerćıcio 3.1
Qual o sistema dual de

minimiza 7x1 + x2 + 5x3

sujeito a x1 − x2 + 3x3 ≥ 10
5x1 + 2x2 − x3 ≥ 6
x1, x2, x3 ≥ 0.

Exerćıcio 3.2
Considere o problema

Cobertura por conjuntos ponderados (weighted set cover)

Instância Um universo U, a uma familia S de subconjuntos do uni-
verso,i.e.,para todo S ∈ S, S ⊆ U, e custos c(S) para cada conjunto.

Solução Uma cobertura por conjuntos,i.e.,uma seleção de conjuntos T ⊆
S tal que para cada elemento e ∈ U existe pelo menos um S ∈ T
com e ∈ S.

Objetivo Minimizar o custo total dos conjuntos selecionados.

Uma formulação inteira do problema é

minimiza
∑
S∈S

c(S)xS

sujeito a
∑
S:e∈S

xS ≥ 1 e ∈ U

xS ∈ {0, 1} S ∈ S.

O problema com restrições de integralidade é NP-completo. Substituindo as
restrições de integralidade xS ∈ {0, 1} por restrições trivias xS ≥ 0 obtemos
um programa linear. Qual o seu dual?

80

3.8. Exerćıcios

Exerćıcio 3.3
O sistema

maximiza 2x1 − x2 + x3

sujeito a 3x1 + x2 + x3 ≤ 60,
x1 − x2 + 2x3 ≤ 10,
x1 + x2 − x3 ≤ 20,
x1, x2, x3 ≥ 0.

possui dicionário ótimo

z = 25 −3/2x5 −1/2x6 −3/2x3
x4 = 10 +x5 +2x6 −x3
x1 = 15 −1/2x5 −1/2x6 −1/2x3
x2 = 5 +1/2x5 −1/2x6 +3/2x3

a) Em qual intervalo o coeficiente c1 = 2 pode variar?

b) Em qual intervalo o coeficiente b2 = 10 pode variar?

c) Modifique o lado direito de (60 10 20)t para (70 20 10)t: o sistema mantém-
se ótimo? Caso contrário, determina a nova solução ótima.

d) Modifique a função objetivo para 3x1 − 2x2 + 3x3: o sistema mantém-se
ótimo? Caso contrário, determina a nova solução ótima.

81

4. Tópicos

4.1. Centro de Chebyshev

Seja B(c, r) = {c + u | ||u|| ≤ r} a esfera com centro c e raio r. Para um
poĺıgono convexo aix ≤ bi, para i ∈ [n], queremos achar o centro e o raio da
maior esfera, que cabe dentro do poĺıgono, i.e. resolver

maximiza r

sujeito a sup
p∈B(c,r)

aip ≤ bi ∀i ∈ [n].

Temos
sup

p∈B(c,r)
aip = cai + sup

||u||≤r
aiu = cai + ||ai||r

porque o segundo supremo é atingido por u = rai/||ai||. Assim obtemos uma
formulação linear

maximiza r

sujeito a aic+ r||ai|| ≤ bi ∀i ∈ [n].

Exemplo 4.1
O poĺıgono da Fig. 4.1 possui a descrição

2x1 + 4x2 ≤ 24
4x1 − x2 ≤ 12

−x1 ≤ 0
−x2 ≤ 0

Portanto o programa linear para achar a o centro e o raio do maior ćırculo é

maximiza r

sujeito a 2c1 + 4c2 +
√
20r ≤ 24

4c1 − c2 +
√
17r ≤ 12

− c1 + r ≤ 0
− c2 + r ≤ 0

♦

83

4. Tópicos

Figura 4.1.: Exemplo do centro de Chebyshev

1 2 3 4 5

1

2

3

4

5

6

x1

x2

(1.85, 3.01)

r = 1.85

4.2. Função objetivo convexa e linear por segmentos

Uma função f é convexa se f(tx+(1− t)y) ≤ tf(x)+(1− t)f(y) para qualquer
x e y e 0 ≤ t ≤ t. Funções convexas são importantes na otimização, porque
eles possuem no máximo um mı́nimo no interior do domı́nio deles, e portanto
o mı́nimo de uma função convexa pode ser obtido com métodos locais.
Seja fi(x), i ∈ [n] uma coleção de funções lineares. O máximo f(x) = maxi∈[n] fi(x)
é uma função convexa linear por segmentos. O problema de otimização

minimiza max
i∈[n]

fi(x)

é equivalente com o programa linear

minimiza x0 (4.1)

sujeito a fi(x) ≤ x0 ∀i ∈ [n]. (4.2)

Portanto podemos minimizar uma função convexa linear por segmentos usando
programação linear. De forma similar, f é concava se f(tx + (1 − t)y) ≥
tf(x) + (1 − t)f(y). (Observe que uma função convexa e concava é afina.) O
sistema

maximiza x0

sujeito a fi(x) ≥ x0 ∀i ∈ [n].

maximiza uma função concava linear por segmentos.

84

Parte II.

Programação inteira

85

5. Introdução

5.1. Definições

Problema da dieta

• Problema da dieta

minimiza ctx

sujeito a Ax ≥ r
x ≥ 0

• Uma solução (laboratório): 5 McDuplos, 3 maçãs, 2 casquinhas mista
para R$ 24.31

• Mentira! Solução correta: 5.05 McDuplos, 3.21 maças, 2.29 casquinhas
mistas.

• Observação: Correto somente em média sobre várias refeições.

Como resolver?

• Com saber o valor ótima para uma única refeição?

• Restringe as variáveis x ao conjunto Z.

• Será que método Simplex ainda funciona?

• Não. Pior: O problema torna-se NP-completo.

Problemas de otimização

• Forma geral

optimiza f(x)

sujeito a x ∈ V

87

5. Introdução

Programação inteira

• Programação linear (PL)

maximiza ctx

sujeito a Ax ≤ b
x ∈ Rn ≥ 0

• Programação inteira pura (PI)

maximiza hty

sujeito a Gy ≤ b
y ∈ Zn ≥ 0

Programação inteira

• Programação (inteira) mista (PIM)

maximiza ctx+ hty

sujeito a Ax+Gy ≤ b
x ∈ Rn ≥ 0, y ∈ Zm ≥ 0

• Programação linear e inteira pura são casos particulares da programação
mista.

• Outro caso particular: 0-1-PIM e 0-1-PI.

x ∈ Bn

Exemplo

maximiza x1 + x2

sujeito a 2x1 + 7x2 ≤ 49
5x1 + 3x2 ≤ 50

88

5.1. Definições

Exemplo

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x 2 2x1+7x2≤ 49

5x1+3x2≤ 50Soluções viáveis
3

6

9

12

• Sorte: A solução ótima é inteira! x1 = 7, x2 = 5, V = 12.

• Observação: Se a solução ótima é inteira, um problema de PI(M) pode
ser resolvido com o método Simplex.

Exemplo

maximiza x1 + x2

sujeito a 1.8x1 + 7x2 ≤ 49
5x1 + 2.8x2 ≤ 50

Exemplo

89

5. Introdução

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x 2 1.8x1+7x2≤ 49

5x1+2.8x2≤ 50Soluções viáveis
3

6

9

12

• Solução ótima agora: x1 ≈ 7.10, x2 ≈ 5.17, V = 12.28.

• Será que bx1c , bx2c é a solução ótima do PI?

Exemplo

maximiza − x1 + 7.5x2

sujeito a − x1 + 7.2x2 ≤ 50.4
5x1 + 2.8x2 ≤ 62

Exemplo

90

5.2. Motivação e exemplos

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
x 2

-x1+7.2x2≤ 50.4

5x1+2.8x2≤ 62

Soluções viáveis
10

20

30

40

50

• Solução ótima agora: x1 ≈ 7.87, x2 ≈ 8.09, V = 52.83.

• bx1c = 7, bx2c = 8.

• Solução ótima inteira: x1 = 0, x2 = 7!

• Infelizmente a solução ótima inteira pode ser arbitrariamente distante!

Métodos para resolver PI

• Prove que a solução da relaxação linear sempre é inteira.

• Insere cortes.

• Branch-and-bound.

5.2. Motivação e exemplos

Motivação

91

5. Introdução

• Otimização combinatória é o ramo da ciência da computação que estuda
problemas de otimização em conjuntos (wikipedia).

• “The discipline of applying advanced analytical methods to help make
better decisions” (INFORMS)

• Tais problemas são extremamente frequentes e importantes.

Máquina de fazer dinheiro

• Imagine uma máquina com 10 botões, cada botão podendo ser ajustado
em um número entre 0 e 9.

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

Máquina de fazer dinheiro

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

• há uma configuração que retorna R$ 10.000.

• total de combinações: 1010.

• dez testes por segundo

• em um ano:⇒ 10× 60× 60× 24× 365 ∼= 3× 108

92

5.3. Aplicações

Explosão combinatória

Funções t́ıpicas:

n log n n0.5 n2 2n n!
10 3.32 3.16 102 1.02× 103 3.6× 106
100 6.64 10.00 104 1.27× 1030 9.33× 10157
1000 9.97 31.62 106 1.07× 10301 4.02× 102567

“Conclusões”
2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

• Melhor não aceitar a máquina de dinheiro.

• Problemas combinatórios são dif́ıceis.

5.3. Aplicações

Apanhado de problemas de otimização combinatória

• Caixeiro viajante

• Roteamento

• Projeto de redes

• Alocação de horários

• Tabelas esportivas

• Gestão da produção

• etc.

1retirado de Integer Programming - Wolsey (1998)

93

5. Introdução

Caixeiro Viajante

Caixeiro Viajante

Caixeiro Viajante

• Humanos são capazes de produzir boas soluções em pouco tempo!

• Humanos ?

Caixeiro Viajante

94

5.3. Aplicações

Caixeiro Viajante

Caixeiro Viajante

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvátal & William J. Cook. Princeton University
Press

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvátal & William J. Cook. Princeton University
Press

95

5. Introdução

Caixeiro Viajante

• Business leads the traveling salesman here and there, and there is not a
good tour for all occurring cases; but through an expedient choice divi-
sion of the tour so much time can be won that we feel compelled to give
guidelines about this. Everyone should use as much of the advice as he
thinks useful for his application. We believe we can ensure as much that
it will not be possible to plan the tours through Germany in considera-
tion of the distances and the traveling back and fourth, which deserves
the traveler’s special attention, with more economy. The main thing to
remember is always to visit as many localities as possible without having
to touch them twice.

“Der Handlungsreisende wie er sein soll und was er zu tun hat, um Aufträge
zu erhalten und eines glücklichen Erfolgs in seinen Geschäften gewiss zu sein.
Von einem alten Commis-Voyageur” (O caixeiro viajante, como ele deve ser
e o que ele deve fazer para obter encomendas e garantir um sucesso feliz dos
seus negócios. Por um caixeiro viajante experiente).

First brought to the attention of the TSP research community in 1983 by
Heiner Muller-Merbach [410]. The title page of this small book is shown in
Figure 1.1. The Commis-Voyageur [132] explicitly described the need for good
tours in the following passage, translated from the German original by Linda
Cook.

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvátal & William J. Cook. Princeton University
Press

96

5.3. Aplicações

Caixeiro Viajante

Caixeiro Viajante

Formulando matemáticamente o PCV

• Associar uma variável a cada posśıvel decisão.

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvátal & William J. Cook. Princeton University
Press

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvátal & William J. Cook. Princeton University
Press

97

5. Introdução

Formulando matemáticamente o PCV

• Associar uma variável a cada posśıvel decisão.

minimiza
∑
i,j∈N

cijyij

sujeito a
∑
j∈N

xij +
∑
j∈N

xji = 2, ∀i ∈ N

xij ∈ {0, 1}, ∀i, j ∈ N.

Formulando matemáticamente o PCV

• Associar uma variável a cada posśıvel decisão.

minimiza
∑
i,j∈N

cijyij

sujeito a
∑
j∈N

xij +
∑
j∈N

xji = 2, ∀i ∈ N

xij ∈ {0, 1}, ∀i, j ∈ N.

+ restrições de eliminação de subci-
clos!

98

5.3. Aplicações

Apanhado de problemas de otimização combinatória

• Caixeiro viajante

• Roteamento

• Projeto de redes

• Alocação de horários

• Tabelas esportivas

• Gestão da produção

• etc.

Problemas de roteamento

Problemas de roteamento
(10−12)

(10−12)

(Tercas e quintas)

(Tercas e quintas)

(segundas e quartas)

Etc.

99

5. Introdução

Apanhado de problemas de otimização combinatória

• Caixeiro viajante

• Roteamento

• Projeto de redes

• Alocação de horários

• Tabelas esportivas

• Gestão da produção

• etc.

Problemas em árvores

Problemas em árvores

100

5.3. Aplicações

Problemas em árvores - aplicações

• Telecomunicações

• Redes de acesso local

• Engenharias elétrica, civil, etc..

Apanhado de problemas de otimização combinatória

• Caixeiro viajante

• Roteamento

• Projeto de redes

• Alocação de horários

• Tabelas esportivas

• Gestão da produção

• etc.

Alocação de tripulações

Apanhado de problemas de otimização combinatória

• Caixeiro viajante

• Roteamento

• Projeto de redes

• Alocação de horários

101

5. Introdução

• Tabelas esportivas

• Gestão da produção

• etc.

Tabelas esportivas

Apanhado de problemas de otimização combinatória

• Caixeiro viajante

• Roteamento

• Projeto de redes

• Alocação de horários

• Tabelas esportivas

• Gestão da produção

• etc.

Gestão da produção

102

5.3. Aplicações

Etc.

• programação de projetos

• rotação de plantações

• alocação de facilidades (escolas, centros de comércio, ambulâncias...)

• projeto de circuitos integrados

• portfolio de ações

• etc, etc, etc, etc...

103

6. Formulação

6.1. Exemplos

“Regras de formulação”

• Criar (boas) formulações é uma arte.

• Algumas diretivas básicas:

– escolha das variáveis de decisão.

– escolha do objetivo.

– ajuste das restrições.

Exemplo: 0-1-Knapsack

Problema da Mochila (Knapsack)

Instância Um conjunto de n itens I = {i1, . . . , in} com valores vi e pesos
pi. Um limite de peso P do mochila.

Solução Um conjunto S ⊆ I de elementos que cabem na mochila, i.e.∑
i∈S pi ≤ P.

Objetivo Maximizar o valor
∑
i∈S vi.

• Observação: Existe uma solução (pseudo-polinomial) com programação
dinâmica em tempo O(Pn) usando espaço O(P).

Formulação – Problema da mochila

maximiza
∑
i

vixi

sujeito a
∑
i∈N

pixi ≤ P

xi ∈ B.

105

6. Formulação

Figura 6.1.: Os campos atacados por um cavalo num tabuleiro de xadrez.

Exemplo 6.1 (Maximizar cavalos num tabuleiro de xadrez)
Qual o número máximo de cavalos que cabe num tabuleiro de xadrez, tal que
nenhum ameaça um outro?
Formulação do problema dos cavalos com variáveis indicadores xij:

maximiza
∑
i,j

xij

sujeito a xij + xi−2,j+1 ≤ 1 3 ≤ i ≤ 8, j ∈ [7]

xij + xi−1,j+2 ≤ 1 2 ≤ i ≤ 8, j ∈ [6]

xij + xi+2,j+1 ≤ 1 i ∈ [6], j ∈ [7]

xij + xi+1,j+2 ≤ 1 i ∈ [7], j ∈ [6]

Número de soluções do problema dos cavalos (A030978)
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

k 1 4 5 8 13 18 25 32 41 50 61 72 85 98 113
♦

6.2. Técnicas para formular programas inteiros

Um problema recorrente com indicadores x1, . . . , xn ∈ B e selecionar no
máximo, exatamente, ou no mı́nimo k dos n itens. As restrições∑

i∈[n]

xi ≤ k;
∑
i∈[n]

xi = k;
∑
i∈[n]

xi ≥ k

conseguem isso.

106

http://www.research.att.com/~njas/sequences/A030978

6.2. Técnicas para formular programas inteiros

Exemplo 6.2 (Localização de facilidades simples 1)
Em n cidades dadas queremos instalar no máximo k fábricas (k ≤ n) de modo
a minimizar o custo da instalação das fábricas. A instalação na cidade j ∈ [n]
custa fj. Podemos usar indicadores para yj ∈ B para a instalação da uma
fábrica na cidade j e formular

minimiza
∑
j∈[n]

fjyj

sujeito a
∑
j∈[n]

yj = k

yj ∈ B, j ∈ [n].

(Obviamente para resolver este problema é suficiente escolher as k cidades
de menor custo. No exemplo 6.3 estenderemos esta formulação para incluir
custos de transporte.) ♦

6.2.1. Formular restrições lógicas

Formulação: Indicadores

• Variáveis indicadores x, y ∈ B: Seleção de um objeto.

• Implicação (limitada): Se x for selecionado, então y deve ser selecionado

x ≤ y x, y ∈ B

• Ou:
x+ y ≥ 1 x, y ∈ B

• Ou-exlusivo:
x+ y = 1 x, y ∈ B

Exemplo 6.3 (Localização de facilidades não-capacitado)
Queremos incluir no exemplo 6.2 clientes. Suponha que em cada cidade tem
um cliente, e queremos, junto com os custos das fábricas instaladas, minimizar
o custo de atendimento dos clientes. Entre cada par de cidade, i e j, o custo
de transporte é dado por cij (ver figura 6.2). Para formulação escolhemos
variáveis de decisão xij ∈ B, que indicam se o cliente i for atendido pela

fábrica em j. É importante “vincular” as variáveis de decisão: o cliente i pode
ser atendido pela cidade j somente se na cidade j foi instalada uma fábrica,
i.e. xij → yj.

107

6. Formulação

clientes

fabricas

(a) Exemplo de uma instância (b) Exemplo de uma solução

Figura 6.2.: Localização de facilidades.

minimiza
∑
j∈[n]

fjyj +
∑
i,j∈[n]

cijxij

sujeito a
∑
j∈[n]

xij = 1, i ∈ [n] (só uma fábrica atende)

∑
j∈[n]

yj ≤ m, (no máximo m fábricas)

xij ≤ yj, i ∈ [n], j ∈ [n] (só fáb. existentes atendem)

xij ∈ B, i ∈ [n], j ∈ [n]

yj ∈ B, j ∈ [n].

♦

Formulação: Indicadores
Para x, y, z ∈ B

• Conjunção x = yz = y∧ z

x ≤ (y+ z)/2 (6.1)

x ≥ y+ z− 1

• Disjunção x = y∨ z

x ≥ (y+ z)/2 (6.2)

x ≤ y+ z

108

6.2. Técnicas para formular programas inteiros

• Negação x = ¬y

x = 1− y (6.3)

• Implicação: z = x→ y

z ≤ 1− x+ y (6.4)

z ≥ (1− x+ y)/2 (6.5)

Exemplo 6.4 (Max-3-SAT)
Seja ϕ(x1, . . . , xn) =

∧
i∈[m] Ci uma fórmula em forma normal conjuntiva,

com cláusulas da forma Ci = li1 ∨ li2 ∨ li3. Queremos encontrar uma atri-
buição xi ∈ B maximizando o número de cláusulas satisfeitas.
Seja ci ∈ B uma variável que indica que cláusula i é satisfeita. Também
vamos introduzir uma variável xi ∈ B para cada variável xi do problema, e
uma variável auxiliar lij para literal lij do problema.

maximiza ci

sujeito a ci ≤ li1 + li2 + li3
lij = xi caso lij = xi

lij = 1− xi caso lij 6= xi
ci ∈ B, xi ∈ B, lij ∈ B.

♦

6.2.2. Formular restrições condicionais

Indicadores para igualdades satisfeitas Queremos definir variável y ∈ B que
indica se uma dada restrição é satisfeita.

• Para
∑
i∈[n] aixi ≤ b: Escolhe um limite superiorM para

∑
i∈[n] aixi−

b, um limite inferior m para
∑
i∈[n] aixi − b e uma constante ε > 0

pequena. ∑
i∈[n]

aixi ≤ b+M(1− y) (6.6)

∑
i∈[n]

aixi ≥ b+my+ (1− y)ε

109

6. Formulação

• Para x > 0: Escolhe um limite superior M para x e uma constante ε
pequena.

x ≥ εy (6.7)

x ≤My

Exemplo 6.5 (Custos fixos)
Uma aplicação para problemas de minimização com uma função objetivo não-
linear. Queremos minimizar custos, com uma “entrada” fixa c da forma

f(x) =

{
0 caso x = 0

c+ l(x) caso 0 < x ≤M

e l(x) uma função linear (ver figura 6.3). Com uma y ∈ B indica a positividade
de x, i.e. y = 1 sse x > 0 podemos definir a função objetivo por

f(x) = cy+ l(x)

e a técnica da equação (6.7) resolve o problema. Como o objetivo é minimizar
f(x) a primeira equação x ≥ εy é redundante: caso y = 1 não faz sentido
escolher uma solução com x = 0, porque para x = 0 existe a solução de menor
custo x = y = 0. Logo

x ≤My
x ∈ R, y ∈ B

é suficiente neste caso.
♦

Exemplo
Planejamento de produção (ingl. uncapacitated lot sizing)

• Objetivo: Planejar a futura produção no próximos n semanas.

• Parâmetros: Para cada semana i

– Custo fixo fi para produzir,

– Custo pi para produzir uma unidade,

– Custo hi por unidade para armazenar,

– Demanda di

110

6.2. Técnicas para formular programas inteiros

x

f(x)

x̄

c

0

c+ l(x)

Figura 6.3.: Função objetivo não-linear

1

s1

d1

f1/p1

2

s2

d2

f2/p2

3

s3

d3

f3/p3

4

s4

d4

f4/p4

s0

Semana

Estoque

Custos

Figura 6.4.: Planejamento de produção.

111

6. Formulação

Exemplo

Seja

• xi a quantidade produzida,

• si a quantidade no estoque no final da semana i,

• yi = 1 sem tem produção na semana i, 0 senão.

Problema:

• Função objetivo tem custos fixos, mas xi não tem limite.

• Determina ou estima um valor limite M.

Exemplo

minimiza
∑
i

pixi +
∑
i

hisi +
∑
i

fiyi

sujeito a si = si−1 + xi − di, i ∈ [n]

s0 = 0

xi ≤Myi, i ∈ [n]

x ∈ Rn, y ∈ Bn.

Disjunção de equações

• Queremos que aplica-se uma das equações

f1 ≤ f2
g1 ≤ g2.

• Solução, com constante M suficientemente grande

f1 ≤ f2 +Mx
g1 ≤ g2 +M(1− x)

x ∈ B.

112

6.3. Formulações alternativas

x1

x2

Figura 6.5.: Diferentes formulações lineares que definem o mesmo conjunto de
soluções inteiras.

6.3. Formulações alternativas

Uma problema de programação linear ou inteira geralmente possui mais que
uma formulação. A figura 6.5 mostra diversas formulações que definem o
mesmo conjunto de soluções inteiras.
Na programação linear existe pouca diferença entre as formulações: a solução
é a mesma e o tempo para resolver o problema é comparável, para um número
comparável de restrições e variáveis. Na programação inteira uma formulação
boa é mais importante. Como a solução de programas inteiras é NP-completo,
frequentemente a relaxação linear é usada para obter uma aproximação. Di-
ferentes formulação de um programa inteiro possuem diferentes qualidades da
relaxação linear. Uma maneira de quantificar a qualidade de uma formulação
é o gap de integralidade(ingl. integrality gap). Para um problema P e uma
instância i ∈ P seja OPT(i) a solução ótima inteira e LP(i) a solução da
relaxação linear. O gap de integralidade é

g(P) = sup
i∈P

LP(i)

OPT(i)
(6.8)

(para um problema de maximização.) O gap de integralidade dá uma garantia

113

6. Formulação

para qualidade da solução da relaxação linear: caso o gap é g, a solução não
é mais que um fator g maior que a solução integral ótima.

Exemplo 6.6 (Conjunto independente máximo)
Uma formulação do problema de encontrar o conjunto independente máximo
num grafo não-direcionado G = (V,A) é

maximiza
∑
v∈V

xv (CIM)

sujeito a xu + xv ≤ 1 ∀{u, v} ∈ E
xv ∈ B ∀v ∈ V.

No grafo completo com n vértices Kn a relaxação linear possui um valor pelo
menos n/2 (porque a solução xv = 1/2, v ∈ V possui valor n/2), enquanto
a solução ótima inteira é 1. Por isso, o programa (CIM) possui um gap de
integralidade ilimitado. ♦

6.4. Exerćıcios

(Soluções a partir da página 216.)

Exerćıcio 6.1
A empresa “Festa fulminante” organiza festas. Nos próximos n dias, ela pre-
cisa pi pratos, 1 ≤ i ≤ n. No começo de cada dia gerente tem os seguintes
opções:

• Comprar um prato para um preço de c reais.

• Mandar lavar um prato devagarmente em d1 dias, por um preço de l1
reais.

• Mandar lavar um prato rapidamente em d2 < d1 dias, por um preço de
l2 > l1 reais.

O gerente quer minimizar os custos dos pratos. Formule como programa
inteira.

Exerćıcio 6.2
Para os problemas abaixo, encontra uma formulação como programa inteira.

Conjunto independente máximo

Instância Um grafo não-direcionado G = (V,A).

114

6.4. Exerćıcios

Solução Um conjunto independente I, i.e. I ⊆ V tal que para vértices
v1, v2 ∈ I, {v1, v2} 6∈ A.

Objetivo Maximiza |I|.

Emparelhamento perfeito com peso máximo

Instância Um grafo não-direcionado bi-partido G = (V1
.
∪ V2, A) (a fato

de ser bi-partido significa que A ⊆ V1 × V2) com pesos p : A → R
nos arcos.

Solução Um emparelhamento perfeito, i.e. um conjunto de arcos C ⊆ A
tal que todos nós no sub-grafo G[C] = (V1 ∪ V2, C) tem grau 1.

Objetivo Maximiza o peso total
∑
c∈C p(c) do emparelhamento.

Problema de transporte

Instância n depósitos, cada um com um estoque de pi (i ∈ [n]) produtos,
e m clientes, cada um com uma demanda de dj (j ∈ [m]) produtos.
Custos de transporte aij de cada depósito para cada cliente.

Solução Um decisão quantos produtos xij devem ser transportados do
depósito i ao cliente j, que satisfaz (i) Cada depósito manda todo
seu estoque (ii) Cada cliente recebe exatamente a sua demanda.
(Observe que o número de produtos transportados deve ser inte-
gral.)

Objetivo Minimizar os custos de transporte
∑
i,j aijxij.

Conjunto dominante

Instância Um grafo não-direcionado G = (V,A).

Solução Um conjunto dominante, i.e. um conjunto D ⊆ V, tal que ∀v ∈
V : v ∈ D∨(∃u ∈ D : {u, v} ∈ A) (cada vértice faz parte do conjunto
dominante ou tem um vizinho no conjunto dominante).

Objetivo Minimizar o tamanho do conjunto dominante |D|.

115

6. Formulação

Exerćıcio 6.3
Acha uma formulação inteira para todos os 21 problemas que o Karp provou
NP-completo [10].

Exerćıcio 6.4
Juliano é fã do programa de auditório Apagando e Ganhando, um programa
no qual os participantes são selecionados atráves de um sorteio e recebem
prêmios em dinheiro por participarem. No programa, o apresentador escreve
um número de N d́ıgitos em uma lousa. O participante então deve apagar
exatamente D d́ıgitos do número que está na lousa; o número formado pelos
d́ıgitos que restaram é então o prêmio do participante. Juliano finalmente
foi selecionado para participar do programa, e pediu que você escrevesse um
programa inteira que, dados o número que o apresentador escreveu na lousa,
e quantos d́ıgitos Juliano tem que apagar, determina o valor do maior prêmio
que Juliano pode ganhar.
(Fonte: Maratona de programação regional 2008, RS)

Exerćıcio 6.5
Set é um jogo jogado com um baralho no qual cada carta pode ter uma,
duas ou três figuras. Todas as figuras em uma carta são iguais, e podem ser
ćırculos, quadrados ou triângulos. Um set é um conjunto de três cartas em
que, para cada caracteŕıstica (número e figura), u ou as três cartas são iguais,
ou as três cartas são diferentes. Por exemplo, na figura abaixo, (a) é um set
válido, já que todas as cartas têm o mesmo tipo de figura e todas elas têm
números diferentes de figuras. Em (b), tanto as figuras quanto os números são
diferentes para cada carta. Por outro lado, (c) nào é um set, já que as duas
ultimas cartas têm a mesma figura, mas esta é diferente da figura da primeira
carta.

• 4 �

• • ��� 444
• • • •• 44
(a) (b) (c)

O objetivo do jogo é formar o maior número de sets com as cartas que estão
na mesa; cada vez que um set é formado, as três cartas correspondentes são
removidas de jogo. Quando há poucas cartas na mesa, é fácil determinar
o maior número de sets que podem ser formados; no entanto, quando há
muitas cartas há muitas combinações posśıveis. Seu colega quer treinar para
o campeonato mundial de Set, e por isso pediu que você fizesse um programa

116

6.4. Exerćıcios

inteira e que calcula o maior número de sets que podem ser formados com um
determinado conjunto de cartas.
(Fonte: Maratona de programação regional 2008, RS)

Exerćıcio 6.6
Para os problemas abaixo, acha uma formulação como programa inteira.

Cobertura por arcos

Instância Um grafo não-direcionado G = (V, E) com pesos c : E→ Q nos
arcos.

Solução Uma cobertura por arcos, i.e. um subconjunto E ′ ⊆ E dos arcos
tal que todo vértice faz parte de pelo menos um arco selecionado.

Objetivo Minimiza o custo total dos arcos selecionados em E ′.

Conjunto dominante de arcos

Instância Um grafo não-direcionado G = (V, E) com pesos c : E→ Q nos
arcos.

Solução Um conjunto dominante de arcos, i.e. um subconjunto E ′ ⊆ E
dos arcos tal que todo arco compartilha um vértice com pelo menos
um arco em E ′.

Objetivo Minimiza o custo total dos arcos selecionados em E ′.

Coloração de grafos

Instância Um grafo não-direcionado G = (V, E).

Solução Uma coloração do grafo, i.e. uma atribuição de cores nas vértices
c : V → Z] tal que cada par de vértices ligando por um arco recebe
uma cor diferente.

Objetivo Minimiza o número de cores diferentes.

117

6. Formulação

Clique ḿınimo ponderado

Instância Um grafo não-direcionado G = (V, E) com pesos c : V → Q nos
vértices.

Solução Uma clique, i.e. um subconjunto V ′ ⊆ V de vértices tal que
existe um arco entre todo par de vértices em V ′.

Objetivo Maximiza o peso total dos vértices selecionados V ′.

Subgrafo cúbico

Instância Um grafo não-direcionado G = (V, E).

Solução Uma subgrafo cúbico, i.e. uma seleção E ′ ⊆ E dos arcos, tal que
cada vértice em G ′ = (V, E ′) possui grau 0 ou 3.

Objetivo Maximiza o número de arcos selecionados |E ′|.

Exerćıcio 6.7
Uma empresa tem que decidir quais de sete investimentos devem ser feitos.
Cada investimento pode ser feito somente uma única vez. Os investimentos
tem lucros (ao longo prazo) e custos iniciais diferentes como segue

Investimento

1 2 3 4 5 6 7

Lucro estimado [MR$] 17 10 15 19 7 13 9
Custos iniciais [MR$] 43 28 34 48 17 32 23

A empresa tem 100 MR$ capital dispońıvel. Como maximizar o lucro total
(ao longo prazo, não considerando os investimentos atuais), respeitando que
os investimentos 1, 2 e 3, 4 são mutualmente exclusivas, e nem o investimento
3 nem o investimento 4 pode ser feita, sem pelo menos um investimento em 1
ou 2 (as outros investimentos não tem restrições).

Exerćıcio 6.8
Um produtor de brinquedos projetou dois novos brinquedos para Natal. A
preparação de uma fábrica para produzir custaria 50000R$ para a primeiro

118

6.4. Exerćıcios

brinquedo e 80000R$ para o segundo. Após esse investimento inicial, o pri-
meiro brinquedo rende 10R$ por unidade e o segundo 15R$.
O produtor tem duas fábricas dispońıveis mas pretende usar somente uma,
para evitar custos de preparação duplos. Se a decisão for tomada de produzir
os dois brinquedos, a mesma fábrica seria usada.
Por hora, a fábrica 1 é capaz de produzir 50 unidades do brinquedo 1 e 40
unidades do brinquedo 2 e tem 500 horas de produção dispońıvel antes de
Natal. A fábrica 2 é capaz de produzir 40 unidades do brinquedo 1 e 25
unidades do brinquedo 2 por hora, e tem 700 horas de produção dispońıvel
antes de Natal.
Como não sabemos se os brinquedos serão continuados depois Natal, a pro-
blema é determinar quantas unidades de cada brinquedo deve ser produzido
até Natal (incluindo o caso que um brinquedo não é produzido) de forma que
maximiza o lucro total.

Exerćıcio 6.9
Uma empresa produz pequenos aviões para gerentes. Os gerentes frequen-
temente precisam um avião com caracteŕısticas espećıficas que gera custos
inicias altos no começo da produção.
A empresa recebeu encomendas para três aviões, mas como ela está com ca-
pacidade de produção limitada, ela tem que decidir quais das três aviões ela
vai produzir. Os seguintes dados são relevantes

Aviões Cliente

produzidas 1 2 3

Custo inicial [MR$] 3 2 0
Lucro [MR$/avião] 2 3 0.8
Capacidade usada [%/avião] 20% 40% 20%
Demanda máxima [aviões] 3 2 5

Os clientes aceitam qualquer número de aviões até a demanda máxima. A
empresa tem quer decidir quais e quantas aviões ela vai produzir. As aviões
serão produzidos em paralelo.

Exerćıcio 6.10 (Winkler)
Uma fechadura de combinação com três discos, cada um com números entre
1 e 8, possui um defeito, tal que precisa-se somente dois números corretos dos
três para abri-la. Qual o número mı́nimo de combinações (de três números)
que precisa-se testar, para garantidamente abrir a fechadura?
Formule um programa inteiro e resolve-o.

119

6. Formulação

Exerćıcio 6.11
Formule o problema

MAX-k-SAT

Entrada Uma fórmula em forma normal conjuntiva com m variáveis e
n cláusulas ϕ(x1, . . . , xm) = C1 ∧ · · · ∧ Cn tal que cada cláusula
possui no máximo k literais

Solução Uma atribuição xi 7→ {0, 1}.

Objetivo Maximizar o número de cláusulas satisfeitas.

(Dica: Usa as desigualdades (6.1)-(6.3). Começa com k = 3.)

120

7. Técnicas de solução

7.1. Introdução

Limites

• Exemplo: Problema de maximização.

• Limite inferior (limite primal): Cada solução viável.

– Qualquer técnica construtiva, p.ex. algoritmos gulosos, heuŕısticas
etc.

• Limite superior (limite dual): Essencialmente usando uma relaxação

– Menos restrições ⇒ conjunto maior de solução viáveis.

– Nova função objetivo que é maior ou igual.

• Importante: Relaxação linear: x ∈ Z⇒ x ∈ R.

7.2. Problemas com solução eficiente

Observação 7.1 (Regra de Laplace)
Lembrança: A determinante de uma matriz pela regra de Laplace é

det(A) =
∑
i∈[n]

(−1)i+jaij det(Aij) =
∑
j∈[n]

(−1)i+jaij det(Aij)

sendo Aij a submatriz sem linha i e coluna j. ♦

Relaxação inteira

• Solução simples: A relaxação linear possui solução ótima inteira.

• Como garantir?

• Com base B temos a solução x = (xB xN)
t = (B−1b, 0)t.

• Observação: Se b ∈ Zm e |det(B)| = 1 para a base ótima, então o PL
resolve o PI.

121

7. Técnicas de solução

Relaxação inteira

• Para ver isso: Regra de Cramer.

• A solução de Ax = b é

xi =
det(Ai)

det(A)

com Ai a matriz resultante da substituição da i-gésima coluna de A por
b.

Prova. Seja Ui a matriz identidade com a i-gésima coluna substitúıdo por x,
i.e. 

1 x1
. . . x2

...

xn−1
. . .

xn 1


Temos que AUi = Ai e com det(Ui) = xi e det(A)det(Ui) = det(Ai) temos
o resultado. �

Exemplo: Regra de Cramer

3 2 1
5 0 2
2 1 2

x1x2
x3

 =

11
1



Exemplo: Regra de Cramer

∣∣∣∣∣∣
3 2 1
5 0 2
2 1 2

∣∣∣∣∣∣ = −13;

∣∣∣∣∣∣
1 2 1
1 0 2
1 1 2

∣∣∣∣∣∣ = −1

∣∣∣∣∣∣
3 1 1
5 1 2
2 1 2

∣∣∣∣∣∣ = −3;

∣∣∣∣∣∣
3 2 1
5 0 1
2 1 1

∣∣∣∣∣∣ = −4

Logo x1 = 1/13; x2 = 3/13; x3 = 4/13.

122

7.2. Problemas com solução eficiente

Aplicação da regra de Cramer

• Como garantir que x = B−1b é inteiro?

• Cramer:

xi =
det(Bi)

det(B)

• Condição posśıvel: (a) det(Bi) inteiro, (b) det(B) ∈ {−1, 1}.

• Garantir (a): A ∈ Zm×n e b ∈ Zm.

• Garantir (b): Toda submatriz quadrada não-singular de A tem determi-
nante {−1, 1}.

Exemplo 7.1
Observe que essas condições são suficientes, mas não necessárias. É posśıvel
que Bx = b possui solução inteira sem essas condições ser satisfeitas. Por
exemplo

(
2 2
1 0

)(
x1
x2

)
=

(
2
1

)
tem a solução inteira (x1 x2) = (1 0), mesmo que det(A) = −2. ♦

A relaxação é inteira

Definição 7.1
Uma matriz quadrada inteira A ∈ Rn×n é unimodular se |det(A)| = 1. Uma
matriz arbitráriaA é totalmente unimodular (TU) se cada submatriz quadrada
não-singular A ′ de A é modular, i.e. det(A ′) ∈ {0, 1,−1}.

Uma consequência imediata dessa definição: aij ∈ {−1, 0, 1}.

Exemplo
Quais matrizes são totalmente unimodular?

(
1 −1
1 1

)
;

1 1 0
0 1 1
1 0 1


 1 −1 −1 0
−1 0 0 1
0 1 0 −1

 ;


0 1 0 0 0
0 1 1 1 1
1 0 1 1 1
1 0 0 1 0
1 0 0 0 0



123

7. Técnicas de solução

Critérios

Proposição 7.1
Se A é TU então

(i) At é TU.

(ii) (A I) com matriz de identidade I é TU.

(iii) Uma matriz B que é uma permutação das linhas ou colunas de A é TU.

(iv) Multiplicando uma linha ou coluna com −1 resulta numa matriz TU.

Prova. (i) Qualquer submatriz quadrada Bt de At e uma submatriz B de A
também. Com det(B) = det(Bt), segue que At é totalmente unimodular. (ii)
Qualquer submatriz de (AI) tem a forma (A ′I ′) com A ′ submatriz de A e I ′

submatriz de I. Com |det(A ′I ′)| = |det(A ′)| segue que (AI) é TU. (iii) Cada
submatriz de B é uma submatriz de A. (iv) A determinante troca no máximo
o sinal. �

Exerćıcio 7.1 pede generalizar a proposição 7.1.

Critérios

Proposição 7.2
Uma matriz A é totalmente unimodular se

(i) aij ∈ {+1,−1, 0}

(ii) Cada coluna contém no máximo dois coeficientes não-nulos.

(iii) Existe uma partição de linhas M1

.
∪ M2 = [1,m] tal que cada coluna

com dois coeficientes não-nulos satisfaz∑
i∈M1

aij −
∑
i∈M2

aij = 0

Observe que esse critério é suficiente, mas não necessário.

124

7.2. Problemas com solução eficiente

Exemplo

 1 −1 −1 0
−1 0 0 1
0 1 0 −1


• Coeficientes ∈ {−1, 0, 1}: Sim.

• Cada coluna no máximo dois coeficientes não-nulos: Sim.

• Partição M1,M2? Sim, escolhe M1 = [1, 3],M2 = ∅.

Exemplo

A =

(
1 −1
1 1

)
TU? Não: det(A) = 2.

A =

1 1 0
0 1 1
1 0 1


TU? Não: det(A) = 2.


0 1 0 0 0
0 1 1 1 1
1 0 1 1 1
1 0 0 1 0
1 0 0 0 0


TU? Sim. Mas nossa regra não se aplica!

Prova. (da proposição 7.2). Prova por contradição. Seja A uma matriz que
satisfaz os critérios da proposição 7.2, e B a menor submatriz quadrada de A
tal que det(B) 6∈ {0,+1,−1}. B não contém uma coluna com um único coefi-
ciente não-nula: seria uma contradição com a minimalidade do B (removendo
a linha e a coluna que contém esse coeficiente, obtemos uma matriz quadrada
menor B∗, que ainda satisfaz det(B∗) 6∈ {0,+1,−1}). Logo, B contém dois

125

7. Técnicas de solução

coeficientes não-nulos em cada coluna. Aplicando a condição (3) acima, sub-
traindo as linhas com ı́ndice em M1 das linhas com ı́ndice em M2 podemos
ver as linhas do B são linearmente dependentes e portanto temos det(B) = 0,
uma contradição. �
Uma caracterização (i.e. um critério necessário e suficiente) das matrizes to-
talmente unimodulares (sem prova) é

Teorema 7.1 (Ghouila-Houri [8])
Um matriz A ∈ Zm×n é TU sse para todo subconjunto R ⊆ [m] de linhas

existe uma partição R1
.
∪ R2 tal que∣∣∑

i∈R1

aij −
∑
i∈R2

aij
∣∣ ≤ 1 (7.1)

para todas colunas j ∈ [n].

Observe que a proposição 7.2 implica o critério acima: dado uma partição das
linhas de acordo com 7.2, para todo R ⊆ [m], a partição (M1 ∩R)

.
∪ (M2 ∩R)

satisfaz (7.1).

Definição 7.2
Uma matriz A ∈ {0, 1}m×n possui a propriedade de uns consecutivos se para
cada coluna j ∈ [n], aij = 1 e ai ′j = 1 com i < i ′ implica akj = 1 para
k ∈ [i, i ′].

Uma aplicação do critério de Ghouila-Houri é a

Proposição 7.3
Uma matriz que satisfaz a propriedade de uns consecutivos é totalmente uni-
modular.

Prova. A matriz formada por um subconjunto de linhas R ⊆ [m] também
possui a propriedade de uns consecutivos. Seja R = {i1, . . . , ik} com i1 ≤ · · · ≤
ik. A partição em M1 = {i1, i3, . . .} e M2 = {i2, i4, . . .} satisfaz (7.1). �

Exemplo 7.2
Para um universo U = {u1, . . . , um}, e uma famı́lia de conjuntos C1, . . . , Cn ⊆
U com pesos p1, . . . , pn uma cobertura é uma seleção de conjuntos S ⊆ [n]
tal que cada elemento do universo é coberto, i.e. para todo u ∈ U existe um
i ∈ S com u ∈ Ci. A problema de encontrar a cobertura de menor peso total
pode ser formulado por

minimiza
∑
i∈[n]

pixi

sujeito a Ax ≥ 1
x ∈ Bn.

126

7.2. Problemas com solução eficiente

com aij = 1 sse ui ∈ Cj. Este problema em geral é NP-completo. Pela
propriedade de uns consecutivos, podemos ver que no caso de um universo
U = [1,m] com subconjuntos que são intervalos o problema pode ser resolvido
em tempo polinomial. ♦

Consequências

Teorema 7.2 (Hoffman e Kruskal [9])
Se a matriz A de um programa linear é totalmente unimodular e o vetor b é
inteiro, todas soluções básicas são inteiras. Em particular as regiões

{x ∈ Rn | Ax ≤ b}
{x ∈ Rn | Ax ≥ b}
{x ∈ Rn | Ax ≤ b, x ≥ 0}
{x ∈ Rn | Ax = b, x ≥ 0}

possuem pontos extremos inteiros.

Prova. Considerações acima. �

Exemplo 7.3 (Caminhos mais curtos)

Exemplo: Caminhos mais curtos

• Dado um grafo direcionado G = (V,A) com custos c : A→ Z nos arcos.

• Qual o caminho mais curto entre dois nós s, t ∈ V?

Exemplo: Caminhos mais curtos

minimiza
∑
a∈A

caxa

sujeito a
∑

a∈N+(s)

xa −
∑

a∈N−(s)

xa = 1

∑
a∈N+(v)

xa −
∑

a∈N−(v)

xa = 0, ∀v ∈ V \ {s, t}

∑
a∈N+(t)

xa −
∑

a∈N−(t)

xa = −1

xa ∈ B, ∀a ∈ A.

127

7. Técnicas de solução

A matriz do sistema acima de forma explicita:

s

...

t


1 · · · · · · −1

1
...

−1 1
−1 · · ·




xa1

...

xam

 =


1
0
...
0
−1


Como cada arco é incidente a dois vértices, cada coluna contém um coeficiente
1 e −1, e a Proposição 7.2 é satisfeito pela partição trivial ∅

.
∪ V. ♦

Exemplo 7.4 (Fluxo em redes)

Exemplo: Fluxo em redes

• Dado: Um grafo direcionado G = (V,A)

– com arcos de capacidade limitada l : A→ Z+,

– demandas d : V → Z dos vértices,

– (com dv < 0 para destino e dv > 0 nos fonte)

– e custos c : A→ R por unidade de fluxo nos arcos.

• Qual o fluxo com custo mı́nimo?

0

 0~~
2 // 3

��

��ww3 // 1

@@

��

6
5 //

��
4 //

2
~~

5

OO

gg

4

``

128

7.2. Problemas com solução eficiente

Exemplo: Fluxo em redes

minimiza
∑
a∈A

caxa

sujeito a
∑

a∈N+(v)

xa −
∑

a∈N−(v)

xa = dv, ∀v ∈ V

0 ≤ xa ≤ la, ∀a ∈ A.

com conjunto de arcos entrantes N−(v) e arcos saintes N+(v).

Exemplo: Fluxo

• A matriz que define um problema de fluxo é totalmente unimodular.

• Consequências

– Cada ponto extremo da região v́ıavel é inteira.

– A relaxação PL resolve o problema.

• Existem vários subproblemas de fluxo mı́nimo que podem ser resolvidos
também, p.ex. fluxo máximo entre dois vértices.

♦

Exemplo 7.5 (Emparelhamentos)

Emparelhamento máximo (EM)

Entrada Um grafo G = (V, E) não-direcionado.

Solução Um emparelhamento M ⊆ E, i.e. um conjunto de arcos, tal que
para todos vértices v temos |N(v) ∩M| ≤ 1.

Objetivo Maximiza |M|.

Uma formulação é

maximiza
∑
e∈E

cexe (7.2)

sujeito a
∑

u∈N(v)

xuv ≤ 1, ∀v ∈ V (7.3)

xe ∈ B.

129

7. Técnicas de solução

A matriz de coeficientes dessa formulação é TU para grafos bipartidos. Por
quê? Isso ainda é válida para grafos não-bipartidos? ♦

7.3. Desigualdades válidas

Desigualdades válidas

• Problema inteiro

max{ctx | Ax ≤ b, x ∈ Zn+}

• Relaxação linear

max{ctx | Ax ≤ b, x ∈ Rn+}

x1

x2

Desigualdades válidas

Definição 7.3
Uma desigualdade πx ≤ π0 é válida para um conjunto P, se ∀x ∈ P : πx ≤ π0.

• Como achar desigualdades (restrições) válidas para o conjunto da soluções
viáveis {x | Ax ≤ b, x ∈ Zn+} de um problema inteiro?

– Técnicas de construção (p.ex. método de Chvátal-Gomory)

– Observar e formalizar caracteŕısticas espećıficas do problema.

– “The determination of families of strong valid inequalities is more
of an art than a formal methodology” [17, p. 259]

130

7.3. Desigualdades válidas

Exemplo 7.6 (Localização de facilidades não-capacitado)
Temos um conjunto de cidades C = [n] em que podemos abrir facilidades
para um custo fixo fj, j ∈ C. Em cada cidade i existe um demanda que pode
ser satisfeito por uma facilidade na cidade j com custo cij, caso existe um
facilidade na cidade j. Com xij ∈ B indicando que a demanda da cidade i é
satisfeito pela facilidade na cidade j podemos formular

minimiza
∑
j∈[n]

fjyj +
∑

i∈[n],j∈[n]

cijxij (7.4)

sujeito a
∑
j∈[n]

xij = 1, ∀i ∈ [n] (7.5)

xij ≤ yj, ∀i ∈ [n], j ∈ [n] (7.6)

xij ∈ B, ∀i ∈ [n], j ∈ [n] (7.7)

yj ∈ B, ∀j ∈ [n]. (7.8)

Ao invés de
xij ≤ yj (7.9)

podemos formular ∑
i∈[n]

xij ≤ nyj. (7.10)

Essa formulação ainda é correto, mas usa n restrições ao invés de n2. Entre-
tanto, a qualidade da relação linear é diferente. É simples ver que podemos
obter (7.10) somando (7.9) sobre todos i. Portanto, qualquer solução que
satisfaz (7.9) satisfaz (7.10) também, e dizemos que (7.9) domina (7.10).
O seguinte exemplo mostra, que o contrário não é verdadeiro. Com custos de
instalação fj = 1, de transporte cij = 5 para i 6= j e cii = 0, duas cidades e
uma fábrica obtemos as duas formulações (sem restrições de integralidade)

minimiza y1 + y2 + 5x12 + 5x21 y1 + y2 + 5x12 + 5x21

sujeito a x11 + x12 = 1 x11 + x12 = 1

x21 + x22 = 1 x21 + x22 = 1

y1 + y2 ≤ 1 y1 + y2 ≤ 1
x11 ≤ y1 x11 + x21 ≤ 2y1
x12 ≤ y2
x21 ≤ y1 x21 + x22 ≤ 2y2
x22 ≤ y2

131

7. Técnicas de solução

A solução ótima do primeiro sistema é y1 = 1, x11 = x21 = 1 com valor 6,
que é a solução ótima inteira. Do outro lado, a solução ótima da segunda
formulação é y1 = y2 = 0.5 com x11 = x22 = 1, com valor 1, i.e. ficam
instaladas duas “meia-fábricas” nas duas cidades!

♦

Exemplo 7.7 (Problema do caixeiro viajante)
Na introdução discutimos a formulação básica do PCV

minimiza
∑
i,j∈N

cijyij

sujeito a
∑
j∈N

xij = 1, ∀i ∈ N (7.11)

∑
j∈N

xji = 1, ∀i ∈ N (7.12)

xij ∈ {0, 1}, ∀i, j ∈ N. (7.13)

+ restrições de eliminação de subciclos! (7.14)

Uma ideia de eliminar subciclos é a seguinte: considere um subconjunto S ⊂ N
de cidades: entre cidades em S não podemos selecionar mais que |S|−1 arestas,
senão vai formar um subciclo. Logo uma forma de eliminar subciclos é pelas
restrições ∑

i,j∈S

xij ≤ |S|− 1 ∀S ⊆ N, S 6= ∅, S 6= N. (S1)

Uma outra forma pode ser obtido como segue: associa um “potencial” (uma
altura) pi a cada cidade i ∈ N e força o sucessor de i na rota ter um potencial
pelo menos pi + 1. Isso não pode ser satisfeito em ciclos. Para permitir um
ciclo global, vamos excluir uma cidade fixa s ∈ S dessa restrição. Logo, as
restrições

pi + n(xij − 1) + 1 ≤ pj ∀i, j, i 6= s, j 6= s (S2)

também eliminam os subciclos.
Quais restrições são melhores? Considere as soluções

PS1 = {x | x satisfaz (7.11), (7.12), (7.13), (S1)}

da primeira formulação e as soluções

PS2 = {x | existem valores p tal que x satisfaz (7.11), (7.12), (7.13), (S2)}

132

7.3. Desigualdades válidas

2/3 2/3

1/3

1/3

2/3 2/3

1/3

1/3

Figura 7.1.: Exemplo de uma solução fracionária de uma instância do PCV
com 4 cidades da formulação PS2 que não é válida na formulação
PS1 . O valor pi = 0 para todos i ∈ N.

da segunda. Não é dif́ıcil de ver que existem soluções fracionárias x ∈ PS2 que
não pertencem a PS1 : um exemplo é dado na Figura 7.1.

É posśıvel mostrar que PS1 ⊂ PS2 . Logo a formulação (S1) domina a for-
mulação (S2).

♦

Exemplo: 0-1-Mochila

maximiza
∑
i∈[n]

vixi

sujeito a
∑
i∈[n]

pixi ≤ P

xi ∈ B

Exemplo: 79x1 + 53x2 + 53x3 + 45x4 + 45x5 ≤ 178.

Exemplo 7.8 (Problema da mochila)

133

7. Técnicas de solução

Exemplo: 0-1-Mochila

• Observação: Para um subconjunto S ⊂ [1, n]: Se
∑
i∈S pi > P então∑

S xi ≤ |S|− 1.

• Exemplos:

x1 + x2 + x3 ≤ 2
x1 + x2 + x4 + x5 ≤ 3
x1 + x3 + x4 + x5 ≤ 3
x2 + x3 + x4 + x5 ≤ 3

Um conjunto S tal
∑
i∈S pi > P se chama uma cobertura e a desigualdades

obtidos por tais conjuntos desigualdades de cobertura (ingl. cover inequalities).

♦

Exemplo 7.9 (Emparelhamentos)
Continuando exemplo 7.5.

Exemplo: Emparelhamentos

• Escolhe um subconjunto arbitrário de vértices U ⊆ V.

• Observação: O número de arestas internas é ≤ b|U|/2c.

• Portanto: ∑
a∈U2∩A

xa ≤ b|U|/2c (7.15)

é uma desigualdade válida.

♦

Observação 7.2
A envoltória convexa do problema de emparelhamentos é dado pelas res-
trições (7.3) e (7.15) para todo conjunto U de cardinalidade impar maior
que 1. ♦

134

7.3. Desigualdades válidas

Método de Chvátal-Gomory
Dado uma restrição ∑

i∈[n]

aixi ≤ b

também temos, para u ∈ R, u > 0 as restrições válidas∑
i∈[n]

uaixi ≤ ub (multiplicação com u)

∑
i∈[n]

buaic xi ≤ ub porque byc ≤ y e 0 ≤ xi

∑
i∈[n]

buaic xi ≤ bubc porque o lado da esquerda é inteira

O método de Chvátal-Gomory funciona igualmente para combinações lineares
de colunas. Com A = (a1 a2 · · ·an) e u ∈ Rm obtemos∑

i∈[n]

⌊
uai

⌋
xi ≤ bubc (7.16)

Teorema 7.3
Cada desigualdade válida pode ser constrúıda através de um número finito de
aplicações do método de Chvátal-Gomory (7.16).

(Uma prova do teorema encontra-se, por exemplo, em Wolsey e Nemhauser
[17, p. II.1.2] ou, para o caso de variáveis 0-1, em Wolsey [16, Th. 8.4].)

Observação 7.3
Para desigualdades

∑
i∈[n] aixi ≥ b obtemos similarmente∑

i∈[n]

⌈
uai

⌉
xi ≥ dube

♦

Exemplo 7.10 (Problema da mochila)
A relaxação linear do problema da mochila acima possui as restrições

79x1 +53x2 +53x3 +45x4 +45x5 ≤ 178
x1 ≤ 1

x2 ≤ 1
x3 ≤ 1

x4 ≤ 1
x5 ≤ 1

135

7. Técnicas de solução

Com u = (1/79 0 26/79 26/79 0 0)t obtemos a desigualdade válida

x1 + x2 + x3 ≤ 2.

♦

Exemplo 7.11 (Emparelhamentos)

• Para um U ⊆ V podemos aplicar o método de Chvátal-Gomory com
u = (1/2 1/2 · · · 1/2)t ∈ R|U| às desigualdades∑

u∈N(v)

xuv ≤ 1 ∀v ∈ U

para obter∑
v∈U

1/2
∑

u∈N(v)

xuv =
∑

a∈U2∩A

xa +
∑

a∈N(U)

1/2xa ≤ |U|/2

e depois aplicar os pisos com
∑
a∈N(U) b1/2c xa = 0

∑
a∈U2∩A

xa ≤ b|U|/2c

♦

7.4. Planos de corte

Como usar restrições válidas?

• Adicionar à formulação antes de resolver.

– Vantagens: Resolução com ferramentas padrão.

– Desvantagens: Número de restrições pode ser muito grande ou de-
mais.

• Adicionar ao problema se necessário: Algoritmos de plano de corte.

– Vantagens: Somente cortes que ajudam na solução da instância são
usados.

136

7.4. Planos de corte

Planos de corte
Problema inteiro

max{ctx | Ax ≤ b, x ∈ Zn+}

• O que fazer, caso a relaxação linear não produz soluções ótimas?

• Um método: Introduzir planos de corte.

Definição 7.4
Um plano de corte (ingl. cutting plane) é uma restrição válida (ingl.
valid inequality) que todas soluções inteiras satisfazem.

Algoritmo de planos de corte

Algoritmo 7.1 (Planos de corte)
Entrada Programa inteiro max{ctx | Ax ≤ b, x ∈ Zn+}.
Saida Solução inteira ótima ou “Não existe corte.”.

1 V := {x | Ax ≤ b} { região viável }
2 x∗ := argmax{ctx | x ∈ V} { resolve relaxação }
3 while (x∗ 6∈ Zn+) do
4 i f (e x i s t e co r t e atx ≤ d com atx∗ > d) then
5 V := V ∩ {x | atx ≤ d} { nova região viável }
6 x∗ := argmax{ctx | x ∈ V} { nova solução ótima }
7 else
8 return ”Não e x i s t e c o r t e . ”
9 end i f

10 end while

Método de Gomory

• Como achar um novo corte na linha 4 do algoritmo?

• A solução ótima atual é representado pelo dicionário

z = z̄+
∑
j

c̄jxj

xi = b̄i −
∑
j∈N

āijxj i ∈ B

• Se a solução não é inteira, existe um ı́ndice i tal que xi 6∈ Z+, i.e.
b̄i 6∈ Z+.

137

7. Técnicas de solução

Cortes de Chvátal-Gomory

xi = b̄i −
∑
j∈N

āijxj Linha fracionária (7.17)

xi ≤ b̄i −
∑
j∈N

bāijc xj Definição de b·c (7.18)

xi ≤
⌊
b̄i
⌋
−
∑
j∈N

bāijc xj Integralidade de x (7.19)

0 ≥
{
b̄i
}
−
∑
j∈N

{āij} xj (7.17) − (7.19) (7.20)

xn+1 = −
{
b̄i
}
+
∑
j∈N

{āij} xj Nova variável (7.21)

xn+1 ∈ Z+ (7.22)

Para soluções inteiras, a diferença do lado esquerdo e do lado direito na
equação (7.19) é inteira. Como uma solução inteira também satisfaz a equação
(7.17) podemos concluir que xn+1 também é inteira.

Observação 7.4
Lembra que o parte fracionário de um número é definido por {x} = x − bxc,
sendo o piso bxc o maior número inteiro menor que x. Por exemplo, {0.25} =
0.25 e {−0.25} = 0.75. (Ver definição A.1 na página 193.) ♦

A solução básica atual não satisfaz (7.20), porque com xj = 0, j ∈ N temos
que satisfazer {

b̄i
}
≤ 0,

uma contradição com a definição de {·} e o fato que b̄i é fracionário. Portanto,
provamos

Proposição 7.4
O corte (7.20) satisfaz os critérios da linha 4 do algoritmo Planos de corte.
Em particular, sempre existe um corte e o caso da linha 8 nunca se aplica.

Exemplo 7.12
Queremos resolver o problema

maximiza x1 + x2

sujeito a − x1 + 3x2 ≤ 9
10x1 ≤ 27
x1, x2 ∈ Z+

138

7.4. Planos de corte

A solução da relaxação linear produz a série de dicionários
(1) z = x1 +x2

w1 = 9 +x1 −3x2

w2 = 27 −10x1

(2) z = 3 +4/3x1 −1/3w1
x2 = 3 +1/3x1 −1/3w1
w2 = 27 −10x1

(3) z = 6.6 −4/30w2 −1/3w1
x2 = 3.9 −1/30w2 −1/3w1
x1 = 2.7 −1/10w2

A solução ótima x1 = 2.7, x2 = 3.9 é fracionária. Correspondendo com a
segunda linha
x2 = 3.9 −1/30w2 −1/3w1

temos o corte
w3 = −0.9 +1/30w2 +1/3w1

e o novo sistema é
(4) z = 6.6 −4/30w2 −1/3w1

x2 = 3.9 −1/30w2 −1/3w1
x1 = 2.7 −1/10w2
w3 = −0.9 +1/30w2 +1/3w1

Substituindo w2 e w1 no corte w3 = −0.9 + 1/30w2 + 1/3w1 ≥ 0 podemos
reescrever o corte sando as variáveis originais do sistema, obtendo x2 ≤ 3.
Esse sistema não é mais ótimo, e temos que re-otimizar. Pior, a solução básica
atual não é viável! Mas como na função objetivo todos coeficientes ainda são
negativos, podemos aplicar o método Simplex dual. Um pivô dual gera a nova
solução ótima
(5) z = 5.7 −1/10w2 −w3

x2 = 3 −w3
x1 = 2.7 −1/10w2
w1 = 2.7 −1/10w2 +3w3

com x2 = 3 inteiro agora, mas x1 ainda fracionário. O próximo corte, que
corresponde com x1 é
(6) z = 5.7 −1/10w2 −w3

x2 = 3 −w3
x1 = 2.7 −1/10w2
w1 = 2.7 −1/10w2 +3w3
w4 = −0.7 +1/10w2

(7) z = 5 −w4 −w3
x2 = 3 −w3
x1 = 2 −w4
w1 = 2 −w4 +3w3
w2 = 7 +10w4

cuja solução é inteira e ótima. (O último corte inserido w4 = −0.7+1/10w2 ≥
0 corresponde com x1 ≤ 2.) ♦

Observação 7.5
Nosso método se aplica somente para sistemas puros (ver página 115) e temos
que garantir que as variáveis de folga são variáveis inteiras. Por isso os coefi-

139

7. Técnicas de solução

x∗0 =

(
2.7

3.9

)

Primeiro corte

x∗1 =

(
2.7

3

)

Segundo corte

x∗2 =

(
2

3

)

x1

x2

1

1

2

2

3

3

4

4

Figura 7.2.: Visualização do exemplo 7.12.

cientes de um sistema original em forma normal tem que ser números inteiros,
i.e., A ∈ Zn×m e b ∈ Zm. ♦

Resumo: Algoritmos de planos de corte

• O algoritmo de planos de corte, usando os cortes de Gomory termina
sempre, i.e. é correto.

• O algoritmos pode ser modificado para programas mistos.

• A técnica é considerado inferior ao algoritmos de branch-and-bound.

• Mas: Planos de corte em combinação com branch-and-bound é uma
técnica poderosa: Branch-and-cut.

7.5. Branch-and-bound

140

7.5. Branch-and-bound

Branch-and-bound

Ramifica-e-limite (ingl. branch-and-bound, [11])

• Técnica geral para problemas combinatoriais.

Branch and Bound is by far the most widely used tool for
solving large scale NP-hard combinatorial optimization pro-
blems. [3]

• Ideia básica:

– Particiona um problema em subproblemas disjuntos e procura soluções
recursivamente.

– Evite percorrer toda árvore de busca, calculando limites e cortando
sub-árvores.

• Particularmente efetivo para programas inteiras: a relaxação linear for-
nece os limites.

Limitar

• Para cada sub-árvore mantemos um limite inferior e um limite superior.

– Limite inferior: Valor da melhor solução encontrada na sub-árvore.

– Limite superior: Estimativa (p.ex. valor da relaxação linear na PI)

• Observação: A eficiência do método depende crucialmente da qualidade
do limite superior.

Cortar sub-árvores

Podemos cortar ...

(1) por inviabilidade: Sub-problema é inviável.

(2) por limite: Limite superior da sub-árvore zi menor que limite inferior
global z (o valor da melhor solução encontrada).

(3) por otimalidade: Limite superior zi igual limite inferior zi da sub-árvore.

Observação: Como os cortes dependem do limite z, uma boa solução inicial
pode reduzir a busca consideravelmente.

141

7. Técnicas de solução

Ramificar

• Não tem como cortar mais? Escolhe um nó e particiona.

• Qual a melhor ordem de busca?

• Busca por profundidade

– V: Limite superior encontrado mais rápido.

– V: Pouca memória (O(δd), para δ subproblemas e profundidade
d).

– V: Re-otimização eficiente do pai (método Simplex dual)

– D: Custo alto, se solução ótima encontrada tarde.

• Melhor solução primeiro (“best-bound rule”)

– V: Procura ramos com maior potencial.

– V: Depois encontrar solução ótima, não produz ramificações supérfluas.

• Busca por largura? Demanda de memória é impraticável.

Em resumo: um algoritmo de branch-and-bound consiste de quatro compo-
nentes principais:

• Uma heuŕıstica que encontra uma boa solução inicial;

• um limite inferior (no caso de minimização) ou superior (para maxi-
mização) do valor de um subproblema;

• uma estratégia de ramificação, que decompõe um problema em subpro-
blemas;

• uma estratégia de seleção, que escolhe o próximo subproblema entre os
subproblemas ativos.

Algoritmos B&B

Algoritmo 7.2 (B&B)
Instância Programa inteiro P = max{ctx | Ax ≤ b, x ∈ Zn+}.
Saida Solução inteira ótima.

1 { usando função z para estimar limite superior }
2 z:=−∞ { l imite infer ior }
3 A:= {(P, g(P))} { nós ativos }

142

7.5. Branch-and-bound

4 while A 6= ∅ do
5 Escolhe : (P, g(P) ∈ A ; A := A \ (P, g(P))
6 Ramifique : Gera subproblemas P1, . . . , Pn .
7 for a l l Pi , 1 ≤ i ≤ n do
8 { adiciona , se permite melhor solução }
9 i f z(Pi) > z then

10 A := A ∪ {(Pi, z(Pi))}
11 end i f
12 { atualize melhor solução }
13 i f (so lu ç ã o z(Pi) é v i á v e l) then
14 z := z(Pi)
15 end i f
16 end for
17 end while

Exemplo 7.13 (Aplicação Branch&Bound no PCV)
Considera uma aplicação do PCV no grafo

2

2 3

1

1
1

1

2

3
1

1

2

3 4

5

Aplicando somente backtracking obtemos a seguinte árvore de busca:

143

7. Técnicas de solução

0

5

2

6

3

6

5

7

6

7

5

4

6

8

4

5

3

3

6

5

7

5

3

4

6

7

8

3

5

4

3

6

6

8

4

3

4

6

6

7

3

4

5

2

2

6

3

6

4

6

5

6

5

4

4

6

4

5

2

4

7

4

5

8

5

3

3

7

2 3 5

4

1

5

2

5

3

5

5

6

4

3

3

5

5

6

3

4

2

4

7

3

2

5

3

5

4

5

3

2

4

6

3

4

5

A árvore de backtracking completa possui 65 vértices (por ńıvel: 1,4,12,24,24).
Usando como limite inferior o custo atual mais o número de arcos que faltam
vezes a distância mı́nima e aplicando branch&bound obtemos os custos par-
ciais e limites indicados na direita de cada vértice. Com isso podemos aplicar
uma séria de cortes: busca da esquerda para direito obtemos

• uma nova solução 7 em 2345;

• um corte por limite em 235;

• um corte por otimalidade em 243;

• um corte por otimalidade em 2453;

• um corte por limite em 253;

• um corte por otimalidade em 2543;

• uma nova solução 6 em 3245;

• um corte por otimalidade em 32;

• um corte por otimalidade em 3;

144

7.5. Branch-and-bound

• um corte por limite em 4;

• um corte por otimalidade em 5234;

• um corte por otimalidade 5243;

• um corte por limite em 53;

• um corte por otimalidade 543.

♦

Exemplo 7.14 (Escalonamento de tarefas)
Considera o problema de escalonamento 1 | rj | Lmax: temos n tarefas a serem
executadas numa única máquina. Cada tarefa possui um tempo de execução
pj e é dispońıvel a partir do tempo rj (release date) e idealmente tem que
terminar antes do prazo dj (due date). Caso a tarefa j termina no tempo Cj
o seu atraso é Lj = max{0, Cj − dj}. Uma tarefa tem que ser executada sem
interrupção. Queremos encontrar uma sequenciamento das tarefas tal que o
atraso máximo é minimizado. (Observe que uma solução é uma permutação
das tarefas.)
Um exemplo de uma instância com quatro tarefas é

Tarefa 1 2 3 4
pj 4 2 6 5
rj 0 1 3 5
dj 8 12 11 11

Uma abordagem via branch-and-bound é explorar todas permutações posśıveis.
Um limite inferior bom para a função objetivo pode ser obtido como segue: o
problema sem release dates 1 || Lmax possui uma solução simples polinomial,
conhecida como EDD (earliest due date): ordene as tarefas por due date. No
nosso caso é posśıvel que durante a execução de uma tarefa passamos o rele-
ase de uma outra tarefa com due date menor. Para considerar isso, o nosso
limite inferior será o sequenciamento obtido pela regra EDD, permitindo in-
terrupções. ♦

145

7. Técnicas de solução

Branch-and-bound e PI

• Problema PI (puro): {max ctx | x ∈ S, x ∈ Zn+}.

• Resolve a relaxação linear.

• Solução inteira? Problema resolvido.

• Caso contrário: Escolhe uma variável inteira xi, com valor b̄i fracionário.

• Heuŕıstica: Variável mais fracionária: argmini | {xi}− 0.5|.

• Particione o problema S = S1
.
∪ S2 tal que

S1 = S ∩ {x | xi ≤ bvic}; S2 = S ∩ {x | xi ≥ dvie}

• Em particular com variáveis xi ∈ B:

S1 = S ∩ {x | xi = 0}; S2 = S ∩ {x | xi = 1}

• Preferimos formulações mais “ŕıgidas”.

7.6. Notas

Clausen [3] dá uma boa introdução em algoritmos de branch-and-bound, com
mais exemplos e exerćıcios. O artigo do Cook [5] relata a história do método.
Concorde atualmente é o melhor solver exato para o problema do caixeiro
viajante. Exemplos de soluções e código aberto do solver é dispońıvel na sua
página web [4].

7.7. Exerćıcios

(Soluções a partir da página 224.)

Exerćıcio 7.1 (Matrizes totalmente unimodulares)
Mostra que a seguinte generalização do item 2 da proposição 7.1 é válido: Para
uma matriz arbitrária A ∈ {−1, 0, 1}m×n e uma matriz B ∈ {−1, 0, 1}m×o com
no máximo um coeficiente não-nulo em cada coluna, a matriz (A B) é TU sse
a matriz A é totalmente unimodular.

Exerćıcio 7.2 (Matrizes totalmente unimodulares)
Para cada um dos problemas do exerćıcio 6.2 decide, se a matriz de coeficientes
é totalmente unimodular.

146

7.7. Exerćıcios

Exerćıcio 7.3 (Matrizes totalmente unimodulares)
Prove ou mostre um contra-exemplo.

a) Se A é totalmente unimodular, então
(
A 0
0 A

)
também.

b) Se A é totalmente unimodular, então (A At) também.

c) Se A é totalmente unimodular, então
(
A A
A 0

)
também.

Exerćıcio 7.4 (Desigualdades válidas (Nemhauser,Wolsey))
Uma formulação do problema do conjunto independente máximo é

maximiza
∑
v∈V

xv (7.23)

sujeito a xu + xv ≤ 1 ∀{u, v} ∈ E (7.24)

xv ∈ B ∀v ∈ V. (7.25)

Considere a instância

1

2

3

4 5

6

7

.

Mostra que
∑
i∈[7] xi ≤ 2 é uma desigualdade válida.

Exerćıcio 7.5 (Desigualdades válidas)
O exemplo 7.11 mostra como obter as desigualdades válidas do exemplo 7.9
usando cortes de Gomory. Mostra como obter as desigualdades válidas∑

i∈S

xi ≤ |S|− 1

para um S ⊆ [n] com
∑
i∈S pi > P do problema da mochila usando cortes de

Gomory.

Exerćıcio 7.6 (Desigualdades válidas)
Considere a instância

147

7. Técnicas de solução

678910

1

2

3

4

5

do problema do caixeiro viajante (os números nas arestas representam os
ı́ndices das variáveis correspondentes). Mostra que

x1 + x2 + x5 + x6 + x7 + x9 ≤ 4

é uma desigualdade válida.

Exerćıcio 7.7 (Desigualdades válidas)
Para cada uma das desigualdades válidas do exemplo 7.8 mostra como ele pode
ser obtida via uma aplicação (um número finito de aplicações) do método de
Chvátal-Gomory (7.16).

Exerćıcio 7.8 (Planos de corte)
Resolve

maximiza x1 + 3x2

sujeito a − x1 ≤ −2

x2 ≤ 3
− x1 − x2 ≤ −4

3x1 + x2 ≤ 12
xi ∈ Z+

e

maximiza x1 − 2x2

sujeito a − 11x1 + 15x2 ≤ 60
4x1 + 3x2 ≤ 24
10x1 − 5x2 ≤ 49
x1, x2 ∈ Z+

com o algoritmo de planos de corte using cortes de Chvátal-Gomory.

148

7.7. Exerćıcios

Exerćıcio 7.9 (Desigualdades válidas)
Gera uma desigualdade válida similar com a desigualdade (7.16) para a res-
trição ∑

i∈[n]

aixi ≥ b.

149

8. Tópicos

Outras técnicas

• Branch-and-cut.

Começa com menos restrições (relaxação) e insere restrições (cortes) nos
sub-problemas da busca com branch-and-bound.

• Branch-and-price.

Começa com menos variáveis e insere variáveis (“geração de colunas”)
nos sub-problemas da busca com branch-and-bound.

151

Parte III.

Heuŕısticas

153

9. Introdução

Resolução de Problemas

• Problemas Polinomiais

1. Programação Dinâmica

2. Divisão e Conquista

3. Algoritmos Gulosos

• Problemas Combinatórios

– Técnicas Exatas: Programação Dinâmica, Divisão e Conquista back-
tracking, branch & bound

– Programação não-linear: Programação semi-definida, etc.

– Algoritmos de aproximação: garantem solução aproximada

– Heuŕısticas e metaheuŕısticas: raramente provêem aproximação

Heuŕısticas

• O que é uma heuŕıstica?
Practice is when it works and nobody knows why.

• Grego heuŕısko: eu acho, eu descubro.

• Qualquer procedimento que resolve um problema

– bom em média

– bom na prática (p.ex. Simplex)

– não necessáriamente comprovadamente.

• Nosso foco

– Heuŕısticas construtivas: Criar soluções.

– Heuŕısticas de busca: Procurar soluções.

155

9. Introdução

Heuŕısticas de Construção

• Constróem uma solução, escolhendo um elemento a ser inserido na solução
a cada passo.

• Geralmente são algoritmos gulosos.

• Podem gerar soluções infact́ıveis.

– Solução infact́ıvel: não satisfaz todas as restrições do problema.

– Solução fact́ıvel: satisfaz todas as restrições do problema, mas não
é necessariamente a ótima.

Exemplo: Heuŕıstica construtiva

• Problema do Caixeiro Viajante (PCV) – Heuŕıstica do vizinho mais
próximo.

Algoritmo 9.1 (HVizMaisProx)
Entrada Matriz de distâncias completa D = (dij), número de cidades n.

Sáıda Uma solução fact́ıvel do PCV: Ciclo Hamiltaneo C com custo c.

1 HVizMaisProx (D ,n)=
2 { cidade in i c i a l randômica }
3 u := s e l e c i o n a uniformemente de [1, n]
4 w := u
5 { representação de caminhos : sequência de vértices }
6 C := u { c ic lo in i c i a l }
7 c := 0 { custo do cic lo }
8 repeat n − 1 vezes
9 s e l e c i o n a v /∈ C com d i s t â n c i a mı́nima de u

10 C := Cv
11 c := c + duv
12 u := v
13 end repeat
14 C := Cw { fechar c ic lo }
15 c := c + duw
16 return (C, c)

Meta-heuŕısticas

• Heuŕısticas genéricas: meta-heuŕısticas.

156

Motivação: quando considera-se a possibilidade de usar heuŕısticas

• Para gerar uma solução fact́ıvel num tempo pequeno, muito menor que
uma solução exata pudesse ser fornecida.

• Para aumentar o desempenho de métodos exatos. Exemplo: um limi-
tante superior de um Branch-and-Bound pode ser fornecido por uma
heuŕıstica.

Desvantagens do uso de heuŕısticas

• No caso de metaheuŕısticas, não há como saber o quão distante do ótimo
a solução está

• Não há garantia de convergência

• Dependendo do problema e instância, não há nem como garantir uma
solução ótima

Problema de otimização em geral

• Um problema de otimização pode ser representado por uma quádrupla

(I, S, f, obj)

– I é o conjunto de posśıveis instâncias.

– S(i) é o conjunto de soluções fact́ıveis (espaço de soluções fact́ıveis)
para a instância i.

– Uma função objetivo (ou fitness) f(·) avalia a qualidade de uma
dada solução.

– Um objetivo obj = min ou max: s∗ ∈ S para o qual f(s∗) seja
mı́nimo ou máximo.

• Alternativa

optimiza f(x)

sujeito a x ∈ S

• S discreto: problema combinatorial.

157

9. Introdução

Técnicas de solução

• Resolver o problema nessa geralidade: enumeração.

• Frequentemente: Uma solução x ∈ S possui uma estrutura.

• Exemplo: x é um tuplo, um grafo, etc.

• Permite uma enumeração por componente: branch-and-bound.

158

10. Heuŕısticas baseados em Busca local

10.1. Busca local

Busca Local

• Frequentemente: O espaço de soluções possui uma topologia.

• Exemplo da otimização (cont́ınua): max{x2 + xy | x, y ∈ R}

-10
-5

 0
 5

 10-10

-5

 0

 5

 10

-50

 0

 50

 100

 150

 200

x*x+x*y

• Espaço euclidiano de duas dimensões.

• Isso podemos aproveitar: Busca localmente!

Vizinhanças

• O que fazer se não existe uma topologia natural?

• Exemplo: No caso do PCV, qual o vizinho de um ciclo Hamiltaneo?

• Temos que definir uma vizinhança.

159

10. Heuŕısticas baseados em Busca local

• Notação: Para x ∈ S
N (x)

denota o conjunto de soluções vizinhos.

• Uma vizinhança defina a paisagem de otimização (ingl. optimization
landscape): Espaço de soluções com valor de cada solução.

Relação de vizinhança entre soluções

• Uma solução s ′ é obtida por uma pequena modificação na solução s.

• Enquanto que S e f são fornecidos pela especificação do problema, o
projeto da vizinhança é livre.

Busca Local k-change e inserção

• k-change: mudança de k componentes da solução.

• Cada solução possui vizinhança de tamanho O(nk).

• Exemplo: 2-change, 3-change.

• TSP: 2-change (inversão).

• Inserção/remoção: inserção de um componente da solução, seguido da
factibilização da solução

• Vertex cover: 1-change + remoção.

Exemplo: Vizinhança mais elementar

• Suponha um problema que possue como soluções fact́ıveis S = Bn (por
exemplo, uma instância do problema de particionamento de conjuntos).

• Então, para n = 3 e s0={0,1,0}, para uma busca local 1-flip, N(s0) =
{(1, 1, 0), (0, 0, 0), (0, 1, 1)}.

160

10.1. Busca local

Exemplo: Vizinhanças para TSP

• 2-opt: Para cada par de arcos (u1, v1) e (u2, v2) não consecutivos,
remova-os da rota, e insira os arcos (u1, u2) e (v1, v2).

• Para uma solução s e uma busca k-opt |N (s)| ∈ O(nk).

Caracteŕısticas de vizinhanças
É desejável que uma vizinhança é

• simétrica (ou reverśıvel)

y ∈ N (x)⇒ x ∈ N (y)

• conectada (ou completa)

∀x, y ∈ S ∃z1, . . . , zk ∈ S z1 ∈ N (x)

zi+1 ∈ N (zi) 1 ≤ i < k
y ∈ N (zk)

Busca Local: Idéıa

• Inicia a partir de uma solução s0

• Se move para soluções vizinhas melhores no espaço de busca.

• Para, se não tem soluções melhores na vizinhança.

• Mas: Repetindo uma busca local com soluções inicias randômicas, acha-
mos o mı́nimo global com probabilidade 1.

Exemplo 10.1 (Método Simplex)
O método Simplex pode ser visto como busca local no espaço de vértices com
uma vizinhança definido por arestas no politopo. ♦

161

10. Heuŕısticas baseados em Busca local

Busca local – Caso cont́ınuo

Algoritmo 10.1 (Busca local cont́ınua)
Entrada Solução inicial s0 ∈ Rn, tamanho inicial α de um passo.

Sáıda Solução s ∈ Rn tal que f(s) ≤ f(s0).

Nome Gradient descent.

1 BuscaLocal (s0 ,α)=
2 s := s0
3 while ∇f(x) 6= 0 do
4 s ′ := s− α∇f(s)
5 i f f(s ′) < f(s) then
6 s := s ′

7 else
8 diminui α
9 end i f

10 end while
11 return s

Busca local – Caso cont́ınuo

• Gradiente

∇f(x) =
(
δf

δx1
(x), . . . ,

δf

δxn
(x)

)t
sempre aponta na direção do crescimento mais alto de f (Cauchy).

• Necessário: A função objetivo f é diferenciável.

• Diversas técnicas para diminuir (aumentar) α.

• Opção: Line search na direção −∇f(x) para diminuir o número de gra-
dientes a computar.

Busca Local – Best Improvement

Algoritmo 10.2 (Busca Local BI)
Entrada Solução inicial s0.

162

10.1. Busca local

Sáıda Solução s tal que f(s) ≤ f(s0).
Nomes Steepest descent, steepest ascent.

1 BuscaLocal (s0)=
2 s := s0
3 while t rue
4 s ′ := argminy{f(y) | y ∈ N (s)}

5 i f f(s ′) < f(s) then s := s ′

6 else break
7 end while
8 return s

Busca Local – First Improvement

Algoritmo 10.3 (Busca Local FI)
Entrada Solução inicial s0.

Sáıda Solução s ′ tal que f(s ′) ≤ f(s).

Nomes Hill descent, hill climbing.

1 BuscaLocal (s0)=
2 s := s0
3 repeat
4 S e l e c t any s ′ ∈ N (s) not yet cons ide r ed
5 i f f(s ′) < f(s) then s := s ′

6 until a l l s o l u t i o n s in N (s) have been v i s i t e d
7 return s

Projeto de uma busca local

• Como gerar uma solução inicial? Aleatória, via método construtivo, etc.

• Quantas soluções inicias devem ser geradas?

• Importante: Definição da função de vizinhança N .

• Vizinhança grande ou pequena? (grande= muito tempo e pequena=menos
vizinhos)

163

10. Heuŕısticas baseados em Busca local

• Estratégia de seleção de novas soluções

– examine todas as soluções vizinhas e escolha a melhor

– assim que uma solução melhor for encontrada, reinicie a busca.
Neste caso, qual a sequência de soluções examinar?

• Importante: Método eficiente para avaliar a função objetivo de vizinhos.

Exemplo: 2-change TSP

• Vizinhança: Tamanho O(n2).

• Avaliação de uma solução: O(n) (somar n distâncias).

• Atualizando a valor da solução atual: O(1) (somar 4 distâncias)

• Portanto: Custo por iteração de “best improvement”

– O(n3) sem avaliação diferential.

– O(n2) com avaliação diferential.

Avaliação de buscas locais

Como avaliar a busca local proposta?

• Poucos resultados teóricos.

• Dif́ıcil de saber a qualidade da solução resultante.

• Depende de experimentos.

Problema Dif́ıcil

• É fácil de gerar uma solução aleatória para o TSP, bem como testar sua
factibilidade

• Isso não é verdade para todos os problemas

• Exemplo dif́ıcil: Atribuição de pesos a uma rede OSPF

164

10.1. Busca local

Busca local

• Desvantagem obvia: Podemos parar em mı́nimos locais.

• Exceto: Função objetivo convexa (caso minimização) ou concava (caso
maximização).

• Técnicas para superar isso baseadas em busca local

– Multi-Start

– Busca Tabu

– Algoritmos Metropolis e Simlated Annealing

– Variable neighborhood search

Multi-Start Metaheuristic

• Gera uma solução aleatória inicial e aplique busca local nesta solução.

• Repita este procedimento por n vezes.

• Retorne a melhor solução encontrada.

• Problema: soluções aleatoriamente geradas em geral possuem baixa qua-
lidade.

Multi-Start

Algoritmo 10.4 (Multi-Start)
Entrada Número de repetições n.

Sáıda Solução s.

165

10. Heuŕısticas baseados em Busca local

1 Multi Start (n) :=
2 s∗ := ∅
3 f∗ :=∞
4 repeat n vezes
5 gera so lu ç ã o randômica s
6 s := BuscaLocal(s)
7 i f f(s) < f∗ then
8 s∗ := s
9 f∗ := f(s)

10 end i f
11 end repeat
12 return s∗

Cobrimento de Vértices

• Definição de vizinhança

• grafo sem vértices

• grafo estrela

• clique bipartido Ki,j

• grafo linha

10.2. Metropolis e Simulated Annealing

O algoritmo Metropolis

• Proposto em 1953 por Metropolis, Rosenbluth, Rosenbluth, Teller e Tel-
ler

• Simula o comportamento de um sistema f́ısico de acordo com a mecânica
estat́ıstica

• Supõe temperatura constante

– Um modelo básico define que a probabilidade de obter um sistema
num estado com energia E é proporcional à função e−

E
kT de Gibbs-

Boltzmann, onde T > 0 é a temperatura, e k > 0 uma constante

– a função é monotônica decrescente em E: maior probabilidade de
estar em um sistema de baixa energia

166

10.2. Metropolis e Simulated Annealing

– para T pequeno, a probabilidade de um sistema estar num estado de
baixa energia é maior que ele estar num em estado de alta energia

– para T grande, a probabilidade de passar para outra configuração
qualquer do sistema é grande

A distribuição de Boltzmann

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

exp(-x/0.1)
exp(-x/2)

exp(-x/10)
exp(-x/20)

exp(-x/500)

Algoritmo Metropolis

• Estados do sistema são soluções candidatas

• A energia do sistema é representada pelo custo da solução

• Gere uma perturbação na solução s gerando uma solução s ′.

• Se E(s ′) ≤ E(s) atualize a nova solução para s ′.

• Caso contrário, 4E = E(s ′) − E(s) > 0.

• A solução s ′ passa ser a solução atual com probabilidade e−
4E
kT

• Caracteŕıstica marcante: permite movimentos de melhora e, com baixa
probabilidade, também de piora

167

10. Heuŕısticas baseados em Busca local

Metropolis

Algoritmo 10.5 (Metropolis)
Entrada Uma solução inicial s e uma temperatura T .

Sáıda Solução s ′ com c(s ′) ≤ c(s)

1 Metropo l i s (s , T , k)=
2 do
3 s e l e c i o n a s ′ ∈ N (s) a l ea to r i amente
4 s e j a ∆ := c(s ′) − c(s)
5 i f ∆ ≤ 0 then
6 a t u a l i z a s := s ′

7 else

8 a t u a l i z a s := s ′ com probab i l i dade e−
∆
T

9 end i f
10 u n t i l c r i t é r i o de para s a t i s f e i t o
11 re turn s

Observação 10.1
Para T → ∞ o algoritmo executa um passeio aleatório no grafo das soluções
com a vizinhança definida. Para T → 0 o algoritmo se aproxima a uma busca
local. ♦

Simulated Annealing

• Simula um processo de recozimento.

• Recozimento: processo da f́ısica que aquece um material a uma tem-
peratura bem alta e resfria aos poucos, dando tempo para o material
alcançar seu estado de equiĺıbrio

• Recozimento simulado: parte de uma alta temperatura e baixa gradual-
mente. Para cada temperatura, permite um número máximo de saltos
(dois laços encadeados)

Simulated Annealing

168

10.3. GRASP

Algoritmo 10.6 (Simulated Annealing)
Entrada Solução inicial s, temperatura T , fator de esfriamento r ∈ (0, 1),

número inteiro I.

Sáıda Solução s ′ tal que f(s ′) ≤ f(s).

1 SimulatedAnneal ing (s , T , k , r , I) :=
2 repeat s i s tema ‘ ‘ e s f r i a d o ’ ’
3 repeat I vezes
4 s e l e c i o n a s ′ ∈ N (s) a l ea to r i amente
5 s e j a ∆ := c(s ′) − c(s)
6 i f ∆ ≤ 0 then
7 s := s ′

8 else

9 s := s ′ com probab i l i dade e−∆/T :
10 end f i
11 end repeat
12 T := rT
13 end repeat
14 return s

Determinando uma temperatura inicial e final adequado é importante para não
gastar tempo desnecessário com temperaturas em que o algoritmo se comporta
como passeio aleatório ou busca local.

Exemplo 10.2 (Temperatura inicial)
Define uma probabilidade pi. Executa uma versão rápida (I pequeno) do
algoritmo para determinar uma temperatura inicial tal que um movimento é
aceito com probabilidade pi. ♦

Exemplo 10.3 (Temperatura final)
Define uma probabilidade pf. Para cada ńıvel de temperatura em que os
movimentos foram aceitos com probabilidade menos que pf incrementa um
contador. Zera o contador caso uma nova melhor solução é encontrada. Caso
o contador chega em 5, termina. ♦

10.3. GRASP

GRASP

169

10. Heuŕısticas baseados em Busca local

• GRASP: greedy randomized adaptive search proce-
dure

• Proposto por Mauricio Resende e Thomas Feo (1989).

• Mauricio Resende: Pesquisador da AT&T, Departa-
mento de Algoritmos e Otimização

Mauricio G. C.
Resende

GRASP

• Método multi-start, em cada iteração

1. Gera soluções com um procedimento guloso-randomizado.

2. Otimiza as soluções geradas com busca local.

Algoritmo 10.7 (GRASP)
Entrada Parâmetro α.

Sáıda A melhor solução encontrada.

1 GRASP(α , . . .) =
2 s é alguma so lu ç ã o
3 do
4 s ′ := Guloso − Randomizado(α)
5 s ′ := BuscaLocal(s ′)
6 s := s ′ i f f(s ′) < f(s)
7 until c r i t é r i o de parada s a t i s f e i t o
8 return s

Construção gulosa-randomizada

• Motivação: Um algoritmo guloso gera boas soluções inicias.

• Problema: Um algoritmo determińıstico produz sempre a mesma solução.

• Logo: Aplica um algoritmo guloso, que não escolhe o melhor elemento,
mas escolhe randomicamente entre os α% melhores candidatos.

• O conjunto desses candidatos se chama restricted candidate list (RCL).

170

10.3. GRASP

Construção gulosa-randomizada: Algoritmo guloso

1 Guloso () :=
2 S := ()
3
4 while S = (s1, . . . , si) com i < n do
5 ent re todos candidatos C para si+1 :
6 e s c o l h e o melhor s ∈ C
7 S := (s1, . . . , si, s)
8 end while

Construção gulosa-randomizada: Algoritmo guloso

1 Guloso−Randomizado (α) :=
2 S := ()
3
4 while S = (s1, . . . , si) com i < n do
5 ent re todos candidatos C para si+1 :
6 forma a RCL com os α\% melhores candidatos em C
7 e s c o l h e randomicamente um s ∈ RCL
8 S := (s1, . . . , si, s)
9 end while

GRASP

Algoritmo 10.8 (GRASP)
Entrada Parâmetro α.

Sáıda Uma solução s∗.

1 GRASP(α)=
2 do
3 y := Guloso − Randomizado(α)
4 y := BuscalLocal(y)
5 a t u a l i z a a melhor so lu ç ã o s∗

6 until c r i t é r i o de parada s a t i s f e i t o
7 return s∗

171

10. Heuŕısticas baseados em Busca local

GRASP: Variações

• long term memory : hash table (para evitar otimizar soluções já vistas)

• Parâmetros: s0, N (x), α ∈ [0, 1] (para randomização), tamanho das
listas (conj. elite, rcl, hash table), número de iterações,

GRASP com memória

• O GRASP original não havia mecanismo de memória de iterações pas-
sadas

• Atualmente toda implementação de GRASP usa conjunto de soluções
elite e religação por caminhos (path relinking)

• Conjunto de soluções elite: conjunto de soluções diversas e de boa qua-
lidade

– uma solução somente é inserida se for melhor que a melhor do
conjunto ou se for melhor que a pior do conjunto e diversa das
demais

– a solução a ser removida é a de pior qualidade

• Religação por Caminhos: a partir de uma solução inicial, modifique um
elemento por vez até que se obtenha uma solução alvo (do conjunto elite)

• soluções intermediárias podem ser usadas como soluções de partida

Comparação entre as metaheuŕısticas apresentadas

• Metaheuŕısticas: Simulated annealing (SA), Multi-Start Search (MS),
GRASP

• SA tem apenas um ponto de partida, enquanto que os outros dois
métodos testa diversos

• SA permite movimento de piora, enquanto que os outros dois métodos
não

• SA é baseado em um processo da natureza, enquanto que os outros dois
não

172

10.4. Busca Tabu

10.4. Busca Tabu

Busca Tabu (Tabu Search)
• Proposto por Fred Glover em 1986 (prinćıpios básicos

do método foram propostos por Glover ainda em 1977)

• Professor da Universidade do Colorado, EUA

Fred Glover

Busca Tabu (BT)

• Assim como em simulated annealing (SA) e VNS, TB é baseada inteira-
mente no processo de busca local, movendo-se sempre de uma solução s
para uma solução s ′

• Assim com em SA, também permite movimentos de piora

• Diferente de SA que permite movimento de piora por randomização, tal
movimento na BT é determińıstico

• A base do funcionamento de Busca Tabu é o uso de memória segundo
algumas regras

• O nome Tabu tem origem na proibição de alguns movimentos durante a
busca

Busca Tabu (BT)

• Mantém uma lista T de movimentos tabu

• A cada iteração se move para o melhor vizinho, desde que não faça
movimentos tabus

• Permite piora da solução: o melhor vizinho pode ser pior que o vizinho
atual!

• São inseridos na lista tabu elementos que provavelmente não direcionam
a busca para o ótimo local desejado. Ex: último movimento executado

• o tamanho da lista tabu é um importante parâmetro do algoritmo

• Critérios de parada: quando todos movimentos são tabus ou se x movi-
mentos foram feitos sem melhora

173

10. Heuŕısticas baseados em Busca local

Busca Tabu: Conceitos Básicos e notação

• s: solução atual

• s∗: melhor solução

• f∗: valor de s*

• N (s): Vizinhança de s.

• Ñ (s) ⊂ N (s): posśıveis (não tabu) soluções vizinhas a serem visitadas

• Soluções: inicial, atual e melhor

• Movimentos: atributos, valor

• Vizinhança: original, modificada (reduzida ou expandida)

Movimentos Tabu

• Um movimento é classificado como tabu ou não tabu pelas regras de
ativação tabu

• em geral, as regras de ativação tabu classificam um movimento como
tabu se o movimento foi recentemente realizado

• Memória de curta duração (MCD) - também chamada de lista tabu:
usada para armazenar os movimentos tabu

• duração tabu (tabu tenure) é o número de iterações em que o movimento
permanecerá tabu

• dependendo do tamanho da MCD um movimento pode deixar de ser
tabu antes da duração tabu estabelecida

• A MCD em geral é implementada como uma lista circular

• O objetivo principal da MCD é evitar ciclagem e retorno a soluções já
visitadas

• os movimentos tabu também colaboram para a busca se mover para
outra parte do espaço de soluções, em direção a um outro mı́nimo local

Busca Tabu

174

10.4. Busca Tabu

Algoritmo 10.9 (BuscaTabu)
Entrada uma solução s

Sáıda uma solução s ′ : f(s ′) ≤ f(s)

1 BuscaTabu()=
2 I n i c i a l i z a ç ã o :
3 s := S0 ; f∗ := f(s0) ; s∗ := s0 ; T := ∅
4 while c r i t é r i o de parada não s a t i s f e i t o

5 s ′ := s e l e c i o n a s ′ ∈ Ñ (s) com min f(s)
6 i f f(s) < f∗ then
7 f∗ := f(s) ; s∗ := s
8 i n s i r a movimento em T (a l i s t a tabu)
9 end while

Busca Tabu (BT)

• critérios de parada:

– número de iterações (Nmax)

– número interações sem melhora

– quando s∗ atinge um certo valor mı́nimo (máximo) estabelecido

• Um movimento não é executado se for tabu, ou seja, se possuir um ou
mais atributos tabu-ativos

• Pode ser estabelecida uma regra de uso de um movimento tabu (critério
de aspiração)

– Critério de aspiração por objetivo: se o movimento gerar uma
solução melhor que s∗, permite uso do movimento tabu

– Critério de aspiração por direção: o movimento tabu é liberado se
for na direção da busca (de melhora ou piora)

Busca Tabu: mecanismos auxiliares

• intensificação: a idéia é gastar mais “esforço” em regiões do espaço de
busca que parece mais promissores. Isso pode ser feito de diversas manei-
ras (exemplo, guardar o número de interações com melhora consecutiva).
Nem sempre este a intensificação traz benef́ıcios.

175

10. Heuŕısticas baseados em Busca local

• Diversificação: recursos algoŕıtmicos que forçam a busca para um espaço
de soluções ainda não explorados.

– uso de memória de longo prazo (exemplo, número de vezes que a
inserção de um elemento provocou melhora da solução)

– Estratégia básica: forçar a inserção de alguns poucos movimentos
pouco executados e reiniciar a busca daquele ponto

– Estratégia usada para alguns problemas: permitir soluções infact́ıveis
durante algumas interações

Busca Tabu: variações

• Várias listas tabus podem ser utilizadas (com tamanhos, duração, e
regras diferentes)

• BT probabiĺıstico: os movimentos são avaliados para um conjunto se-
lecionado aleatoriamente N ′(s) ∈ Ñ(s). Permite usar uma lista tabu
menor, acontece menos ciclagem.

• A duração tabu pode variar durante a execução

Comparação entre as metaheuŕısticas apresentadas até então

• Metaheuŕısticas: Simulated annealing (SA), Multi-Start Search (MSS),
GRASP, BT

• SA e BT têm apenas um ponto de partida, enquanto que os outros dois
métodos testa diversos

• SA e BT permitem movimentos de piora, enquanto que os outros dois
métodos não

• SA é baseado em um processo da natureza, enquanto que os outros
métodos não

Parâmetros e decisões das metaheuŕısticas

• SA:

– Parâmetros: temperatura inicial, critério de parada, variável de
resfriamento

– Decisões: vizinhança, solução inicial

176

10.5. Variable Neighborhood Search

• GRASP:

– Parâmetros: s0, N(x), α ∈[0,1] (para randomização), tamanho das
listas (conj. elite, rcl, hash table), critério de parada

– Decisões: vizinhança, solução inicial (s0), randomização da s0, atu-
alizações do conjunto elite

• BT:

– Parâmetros: tamanho da lista tabu, critério de parada

– Decisões: vizinhaça, critérios para classificar movimento tabu

10.5. Variable Neighborhood Search

Variable Neighborhood Search
• Pierre Hansen e Mladenović, 1997

• Hansen é Professor na HEC Montréal, Canadá

Pierre Hansen

Variable Neighborhood Search

• Método que explora mais que uma vizinhança.

• Explora sistematicamente as seguintes propriedades:

– O mı́nimo local de uma vizinhança não é necessariamente mı́nimo
para outra vizinhança

– Um mı́nimo global é um mı́nimo local com respeito a todas as
vizinhanças

– Para muitos problemas, os mı́nimos locais estão localizados relati-
vamente próximos no espaço de busca para todas as vizinhanças

Os métodos usando k vizinhanças N1, . . . ,Nk sempre voltam a usar a primeira
vizinhança, caso um movimento melhora a solução atual. Caso contrário eles
passam para próxima vizinhança. Isso é o movimento básico:

177

10. Heuŕısticas baseados em Busca local

Algoritmo 10.10 (Movimento)
Entrada Solução atual s, nova solução s ′, vizinhança atual k.

Sáıda Uma nova solução s e uma nova vizinhança k.

1 Movimento (s ,s ′ ,k) :=
2 i f f(s ′) < f(s) then
3 s := s ′

4 k := 1
5 else
6 k := k+ 1
7 end i f
8 return (s, k)

Com isso podemos definir uma estratégia simples, chamada Variable Neigh-
borhood Descent (VND).

Algoritmo 10.11 (VND)
Entrada Solução inicial s, conjunto de vizinhanças Ni, i ∈ [m].

Sáıda Solução s.

1 VND(s , {Ni})=
2 k := 1
3 // at é chegar num mı́nimo l o c a l
4 // para todas v i z i n h a n ç a s
5 while k ≤ m
6 encontra o melhor v i z inho s ′ em Nk(s)
7 (s, k) := Movimento(s, s ′, k)
8 end while
9 return s

Uma versão randomizada é o reduced variable neighborhood search.

Algoritmo 10.12 (rVNS)
Entrada Solução inicial s, conjunto de vizinhanças Ni, i ∈ [m].

Sáıda Solução s.

1 rVNS(s , {Ni})=
2 u n t i l c r i t é r i o de parada s a t i s f e i t o

178

10.5. Variable Neighborhood Search

3 k := 1
4 while k ≤ m do
5 s e l e c i o n a v i z inho a l e a t ó r i o s ′ em Nk(s) { shake }
6 (s, k) := Movimento(s, s ′, k)
7 end while
8 end u n t i l
9 re turn s

Uma combinação do rVNS com uma busca local é o Variable Neighborhood
Search (VNS) básico.

Algoritmo 10.13 (VNS)
Entrada Solução inicial s, um conjunto de vizinhanças Ni, i ∈ [m].

Sáıda Solução s.

1 VNS(s , {Ni})=
2 u n t i l c r i t é r i o de parada s a t i s f e i t o
3 k := 1
4 while k ≤ m do
5 s e l e c i o n a v i z inho a l e a t ó r i o s ′ em Nk(s) { shake }
6 s ′′ := BuscaLocal (s ′)
7 (s, k) := Movimento(s, s ′′, k)
8 end u n t i l
9 re turn s

Observação 10.2
A busca local em VNS pode usar uma vizinhança diferente das vizinhanças
que perturbam a solução atual. Também é posśıvel usar o VND no lugar da
busca local. ♦

179

11. Heuŕısticas inspirados da natureza

11.1. Algoritmos Genéticos e meméticos

Algoritmos Genéticos
• Proposto na década de 60 por Henry Holland.

• Professor da Faculdade de Engenharia Elétrica e de
Computação da Universidade de Michigan/EUA.

• Seu livro: Adaptation in Natural and Artificial Sys-
tems (1975).

John Henry
Holland (+1929)

Algoritmos genéticos

• Foi proposto com o objetivo de projetar software de sistemas artificiais
que reproduzem processos naturais.

• Baseados na evolução natural das espécies.

• Por Darwin: indiv́ıduos mais aptos têm mais chances de perpetuar a
espécie.

• Mantém uma população de soluções e não uma única solução por vez.

• Usa regras de transição probabiĺısticas, e não determińısticas.

• Procedimentos: avaliação, seleção, geração de novos indiv́ıduos (recom-
binação), mutação.

• Parada: número x de gerações total, número y de gerações sem melhora.

Algoritmos genéticos: Caracteŕısticas

• Varias soluções (“população”).

• Operações novas: Recombinação e mutação.

• Separação da representação (“genótipo”) e formulação “natural” (fenótipo).

181

11. Heuŕısticas inspirados da natureza

Algoritmos Genéticos: Noções

• Genes: Representação de um elemento (binário, inteiro, real, arco, etc)
que determine uma caracteŕıstica da solução.

• Alelo: Instância de uma gene.

• Cromossomo: Uma string de genes que compõem uma solução.

• Genótipo: Representação genética da solução (cromossomos).

• Fenótipo: Representação “f́ısica” da solução.

• População: Conjunto de cromossomos.

Algoŕıtmos genéticos: Representação e Solução

Algoritmos Genéticos: exemplos

• Problema de partição de conjuntos

Alelos: 0 ou 1

Cromossomo: 0001101010101011110110

• Problema do Caixeiro viajante

Alelos: valores inteiros entre 1 e n

Cromossomo: 1 5 3 6 8 2 4 7

Procedimentos dos Algoritmos Genéticos

• Codificação: genes e cromossomos.

• Initialização: geração da população inicial.

182

11.1. Algoritmos Genéticos e meméticos

• Função de Avaliação (fitness): função que avalia a qualidade de uma
solução.

• Seleção de pais: seleção dos indiv́ıduos para crossover.

• Operadores genéticos: crossover, mutação

• Parâmetros: tamanho da população, percentagem de mutação, critério
de parada

Algoritmos Genéticos

Algoritmo 11.1 (AlgoritmoGenético)
Entrada Parâmetros do algoritmo.

Sáıda Melhor solução encontrada para o problema.

1 I n i c i a l i z a ç ã o e a v a l i ç ã o i n i c i a l
2 while (c r i t é r i o de parada não s a t i s f e i t o) do
3 repeat
4 i f (c r i t é r i o para recombinaç ão) then
5 s e l e c i o n e pa i s
6 recombina e gera um f i l h o
7 end i f
8 i f (c r i t é r i o para mutação) then
9 a p l i c a mutação

10 end i f
11 until (descendentes s u f i c i e n t e s)
12 s e l e c i o n e nova populaç ão
13 end while

População Inicial: geração

• Soluções aleatórias.

• Método construtivo (ex: vizinho mais próximo com diferentes cidades
de partida).

• Heuŕıstica construtiva com perturbações da solução.

• Pode ser uma mistura das opções acima.

183

11. Heuŕısticas inspirados da natureza

População inicial: tamanho

• População maior: Custo alto por iteração.

• Populaçao menor: Cobertura baixa do espaço de busca.

• Critério de Reeves: Para alfabeto binário, população randômica: Cada
ponto do espaço de busca deve ser alcancável através de recombinações.

• Consequencia: Probabilidade que cada alelo é presente no gene i: 1 −
21−n.

• Probabilidade que alelo é presente em todos gene: (1− 21−n)l.

• Exemplo: Com l = 50, para garantir cobertura com probabilidade 0.999:

n ≥ 1− log2

(
1−

50
√
0.999

)
≈ 16.61

Terminação

• Tempo.

• Número de avaliações.

• Diversidade. Exemplo: Cada gene é dominado por um alelo, i.e. 90%
dos indiv́ıduos tem o mesmo alelo.

Próxima Geração

• Gerada por recombinação e mutação (soluções aleatórias ou da po-
pulação anterior podem fazer parte da próxima geração).

• Estratégias:

– Recombinação e mutação.

– Recombinação ou mutação.

• Regras podem ser randomizadas.

• Exemplo: Taxa de recombinação e taxa de mutação.

• Exemplo: Número de genes mutados.

184

11.1. Algoritmos Genéticos e meméticos

Mutação

• Objetivo: Introduzir elementos diversificados na população e com isso
possibilitar a exploração de uma outra parte do espaçõ de busca.

• Exemplo para representação binária: flip de k bits.

• Exemplo para o PCV: troca de posição entre duas cidades.

Recombinação

• Recombinação (ingl. crossover): combinar caracteŕısticas de duas soluções
para prover uma nova solução potencialmente com melhor fitness.

• Explora o espaço entre soluções.

• Crossover clássicos: one-point recombinação e two-points recombinação.

One-point crossover

Escolha um número aleatório k entre 1 e n. Gere um filho com os primeiros
k bits do pai A e com os últimos n− k bits do pai B

• Problema de particação: aplicação direta do conceito

• Problema do Caixeiro Viajante: copie os primeiros k elementos do pai
A e as demais n−k posições preenche com as cidades faltantes, segundo
a ordem em que elas aparecem no pai B

185

11. Heuŕısticas inspirados da natureza

Recombinação de dois pontos

Exemplo: Strategic Arc Crossover

• Selecione todos os pedaçõs de rotas (string) com 2 ou mais cidades que
são iguais nas duas soluções

• Forme uma rota através do algoritmo de vizinho mais próximo entre os
pontos extremos dos strings

Recombinação: Seleção dos pais

• A probabilidade de uma solução ser pai num processo de crossover deve
depender do seu fitness.

• Variações:

– Probabilidade proporcional com fitness.

– Probabilidade proporcional com ordem.

186

11.1. Algoritmos Genéticos e meméticos

Estratégia adotada pelos operadores
Inúmeros operadores podem ser propostos para cada problema. O ideal é
combinar caracteŕısticas do operador usado, com outros operadores (mutação,
busca local) usados no GA. Basicamente um crossover é projetado da seguinte
forma:

• Encontre similaridades entre A e B e insira S = A ∩ B no filho.

• Defina conjuntos Sin e Sout de caracteŕısticas desejáveis e não desejáveis.

• Projete um operador que mantenha ao máximo elementos de S e Sin,
minimizando o uso de elementos de Sout.

Nova População

• Todos os elementos podem ser novos.

• Alguns elementos podem ser herdados da população anterior.

• Elementos novos podem ser gerados.

• Exemplos, com população de tamanho λ que gera µ filhos. (λ, µ)
Seleciona os λ melhores dos filhos. (λ + µ) Seleciona os λ melhores
em toda população.

Estrutura da População
Em geral, população estruturada garante melhores resultados. A estrutura
da população permite selecionar pais para crossover de forma mais criteriosa.
Algumas estruturas conhecidas

• Divisão em Castas: 3 partições A, B e C (com tamanhos diferentes),
sendo que os melhores indiv́ıduos estão em A e os piores em C.

• Ilhas: a população é particionada em subpopulações que evoluem em
separado, mas trocam indiv́ıduos a cada peŕıodo de número de gerações.

• População organizada como uma árvore.

Exemplo: População em castas

• Recombinação: Somente entre indiv́ıduos da casta A e B ou C para
manter diversidade.

• Nova população: Manter casta ”elite” A, re-popular casta B com filhos,
substituir casta C com soluções randômicas.

187

11. Heuŕısticas inspirados da natureza

Exemplo: População em árvore

• Considere uma árvore ternária completa, em que cada nó possui duas
soluções (pocket e current).

• A solução current é a solução atual armazenada naquela posição da
árvore.

• A solução pocket é a melhor já tida naquela posição desde a primeira
geração.

• A cada solução aplique exchange (se a solução current for melhor que a
pocket, troque-as de posição)

• Se a solução pocket de um filho for melhor que a do seu pai, troque o
nó de posição.

Algoritmos Meméticos
• Proposto por Pablo Moscato, Newcastle, Austrália.

• Idéıa: Informação “cultural” pode ser adicionada a um
indiv́ıduo, gerando um algoritmo memético.

• Meme: unidade de informação cultural.

Pablo Moscato

Algoritmos Meméticos

• Um procedimento de busca local pode inserir informação de boa quali-
dade, e não genética (memes).

• Faz uso de um procedimento de busca local (em geral aplicado à solução
gerada pelo procedimento de recombinação).

• Geralmente trabalha com populações menores.

Comparação entre as Metaheuŕısticas Apresentadas

• Quais que dependem de randomização? SA, GRASP, GA

• Quais que geram apenas uma solução inicial em todo processo? BT, SA

188

11.1. Algoritmos Genéticos e meméticos

• Quais mantêm um conjunto de soluções, em vez de considerar apenas
uma? GA

• Quais são inspiradas em processos da natureza? GA, BT

• Qual gera os melhores resultados?

Existem outras Metaheuŕısticas
Handbook of Metaheuristics, por Fred W. Glover (Editor), Gary A. Kochen-
berger (Editor) Kluwer 2002.

Considerações Finais

• O desempenho de uma metaheuŕıstica depende muito de cada imple-
mentação

• As metaheuŕısticas podem ser usadas de forma hibridizada

• Técnicas de otimização multiobjetivo tratam os casos de problemas com
mais de um objetivo (Curva de pareto)

Exerćıcio

• Problema de alocação: atender n clientes por m postos de atendimento
(um posto é instalado no local onde se encontra um cliente)

• Entrada: distâncias entre cada par de clientes

• Problema: Determinar em que locais instalar os postos, de forma a mini-
mizar a soma das distâncias de cada cliente a um ponto de atendimento

189

11. Heuŕısticas inspirados da natureza

• Propor uma heuŕıstica construtiva e uma busca local.

Comparação entre as Metaheuŕısticas

• Quais que permitem movimento de piora? BT, SA

• Quais que não dependem de randomização? BT

• Quais que geram apenas uma solução inicial em todo processo? BT, SA

• Quais mantêm um conjunto de soluções, em vez de considerar apenas
uma?

• Qual gera os melhores resultados?

190

Parte IV.

Appéndice

191

A. Conceitos matemáticos

N, Z, Q e R denotam os conjuntos dos números naturais sem 0, inteiros,
racionais e reais, respectivamente. Escrevemos também N0 = N ∪ {0}, para
qualquer conjunto C, C+ := {x ∈ C|x > 0} e C− := {x ∈ C | x < 0}. Por
exemplo

R+ = {x ∈ R | x > 0}.1

Para um conjunto finito S, P(S) denota o conjunto de todos subconjuntos de
S.
A = (aij) ∈ Fm×n denota uma matriz de m linhas e n colunas com elementos
em F, ai, com ati ∈ Fn a i-ésigma linha e aj ∈ Fm a j-ésima coluna de A.

Definição A.1 (Pisos e tetos)
Para x ∈ R o piso bxc é o maior número inteiro menor que x e o teto dxe é o
menor número inteiro maior que x. Formalmente

bxc = max{y ∈ Z | y ≤ x}
dxe = min{y ∈ Z | y ≥ x}

O parte fracionário de x é {x} = x− bxc.

Observe que o parte fracionário sempre é positivo, por exemplo {−0.3} = 0.7.

Proposição A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem

x ≤ dxe < x+ 1 (A.1)

x− 1 < bxc ≤ x (A.2)

1Alguns autores usam R+.

193

B. Formatos

Este caṕıtulo contém um breve resumo dos formatos CPLEX lp e AMPL/-
MathProg usados para especificar problemas de otimização linear. CPLEX LP
é um formato simples, AMPL (A modeling language for mathematical pro-
gramming) é uma linguagem completa para definir problemas de otimização,
com elementos de programação, comandos interativos e um interface para di-
ferentes “solvers” de problemas. Por isso CPLEX LP serve para modelos pe-
quenos. Aprender AMPL precisa mais investimento, que rende em aplicações
maiores. AMPL tem o apoio da maioria das ferramentas dispońıveis.
Vários outros formatos são em uso, a maioria deles comerciais. Exemplos são
MPS (Mathematical programming system), LINGO, ILOG, GAMS e ZIMPL.

B.1. CPLEX LP

Uma gramática simplificada1 do formato CPLEX LP é

〈specification〉 ::= 〈objective〉
〈restrictions〉?
〈bounds〉
〈general〉?
〈binary〉?
‘End’

〈objective〉 ::= 〈goal〉 〈name〉? 〈linear expression〉

〈goal〉 ::= ‘MINIMIZE’ | ‘MAXIMIZE’ | ‘MIN’ | ‘MAX’

〈restrictions〉 ::= ‘SUBJECT TO’ 〈restriction〉+

〈restriction〉 ::= 〈name〉? 〈linear expression〉 〈cmp〉 〈number〉

〈cmp〉 ::= ‘<’ | ‘<=’ | ‘=’ | ‘>’ | ‘>=’

〈linear expression〉 ::= 〈number〉 〈variable〉 ((’+’ | ’-’) 〈number〉 〈variable〉)*

1A gramática não contém as especificações “semi-continuous” e “SOS”.

195

http://www.ampl.com

B. Formatos

〈bounds〉 ::= ‘BOUNDS’ 〈bound〉+

〈bound〉 ::= 〈name〉? (〈limit〉 ‘<=’ 〈variable〉 ‘<=’ 〈limit〉
| 〈limit〉 ‘<=’ 〈variable〉
| 〈variable〉 ‘<=’ 〈limit〉
| 〈variable〉 ‘=’ 〈number〉
| 〈variable〉 ‘free’)

〈limit〉 ::= ‘infinity’ | ‘-infinity’ | 〈number〉

〈general〉 ::= ‘GENERAL’ 〈variable〉+

〈binary〉 ::= ‘BINARY’ 〈variable〉+

Todas variáveis x tem a restrição padrão 0 ≤ x ≤ +∞. Caso outras limites
são necessárias, eles devem ser informados na seção “BOUNDS”. A seções
“GENERAL” e “BINARY” permitem restringir variáveis para Z e {0, 1}, res-
pectivamente.
As palavras-chaves também podem ser escritos com letras minúsculas: o for-
mato permite algumas abreviações não listadas acima (por exemplo, escrever
“s.t” ao invés de “subject to”).

Exemplo B.1
Problema (1.1) no formato CPLEX LP.

1 Maximize
2 lu c ro : 0 . 2 c + 0 .5 s
3
4 Subject To
5 ovo : c + 1 .5 s <= 150
6 acucar : 50 c + 50 s <= 6000
7 c l i e n t 1 : c <= 80
8 c l i e n t 2 : s <= 60
9

10 Bounds
11 0 <= c
12 0 <= s
13 End

♦

Exemplo B.2
Problema de mochila 0-1 com 11 itens em formato CPLEX LP.

196

B.2. AMPL

1 max 19x1+87x2+97x3+22x4+47x5+22x6+30x7+5x8+32x9+54x10+75x11
2 s . t
3 1x1+96x2+67x3+90x4+13x5+74x6+22x7+86x8+23x9+63x10+89x11<= 624
4 binary x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
5 end

♦

Observação B.1
CPLEX LP permite constantes como 0.5e6 que representa 0.5 × 106. Ou-
tra interpretação dessa expressão é 0.5 vezes a variável e6. Para evitar essa
ambiguidade, variáveis não podem começar com a letra e. ♦

B.2. AMPL

Objetos de modelagem

• Um modelo em AMPL consiste em

– parâmetros,

– variáveis,

– restrições, e

– objetivos

• AMPL usa conjuntos (ou arrays de múltiplas dimensões)

A : I→ D

mapeiam um conjunto de ı́ndices I = I1 × · · · × In para valores D.

Formato

• Parte do modelo

s1

...

sn

end;

com si sendo um comando ou uma declaração.

• Parte de dados

197

B. Formatos

data

d1

...

dn

end;

com di sendo uma especificação de dados.

Tipo de dados

• Números: 2.0,-4

• Strings: ’Comida’

• Conjuntos: {2,3,4}

Expressões numéricas

• Operações básicas: +,−,∗,/,div,mod,less,∗∗
Exemplo: x less y

• Funções: abs, ceil , floor ,exp

Exemplo: abs(−3)

• Condicional: if x>y then x else y

Expressões sobre strings

• AMPL converte números automaticamente em strings

• Concatenação de strings: &

Exemplo: x & ’ unidades’

Expressões para conjuntos de ı́ndices

• Uma dimensão

– t in S: variável “dummy” t, conjunto S

– (t1 ,... tn) in S: para conjuntos de tuplos

– S: sem nomear a variável

• Multiplas dimensões

198

B.2. AMPL

– {e1 ,..., en} com ei uma dimensão (acima).

• Variáveis “dummy” servem para referenciar e modificar.

Exemplo: (i−1) in S

Conjuntos

• Conjunto básico: {v1 ,..., vn}

• Valores: Considerados como conjuntos com conjunto de ı́ndices de di-
mensão 0

• Índices: [i1 ,..., in]

• Sequências: n1 ... n2 by d ou n1 ... n2

• Construção: setof I e: {e(i1, . . . , in) | (i1, . . . , in) ∈ I}
Exemplo: setof {j in A} abs(j)

Operações de conjuntos

• X union Y: União X ∪ Y

• X diff Y: Diferença X \ Y

• X symdiff Y: Diferença simétrica (X \ Y) ∪ (Y \ X)

• X inter Y: Intersecção X ∩ Y

• X cross Y: Produto cartesiano X× Y

Expressões lógicas

• Interpretação de números: n vale “v”, sse n 6= 0.

• Comparações simples: <,<=,= ou ==,>=,>,<> ou !=

• Pertinência: x in Y, x not in Y, x !in Y

• Subconjunto: X within Y, X !within Y, X not within Y

• Operadores lógicos: && ou and, || ou or, ! ou not

• Quantificação: com ı́ndices I, expressão booleana b

forall I b:
∧

(i1,...,in)∈I b(i1, . . . , in)

exists I b
∨

(i1,...,in)∈I b(i1, . . . , in)

199

B. Formatos

Declarações: Conjuntos
set N I [dimen n] [within S] [default e1] [:= e2]
param N I [in S] [<=,>=,!=,... n] [default e1] [:= e2]

• Nome N

• Conjunto de ı́ndices I (opcional)

• Conjunto de valores S

• Valor default e1

• Valor inicial e2

Declarações: Restrições e objetivos
subject to N I : e1 = e2 | e1 <= e2, e1 >= e2
minimize [I] : e
maximize [I] : e

Comandos

• solve: Resolve o sistema.

• check [I] : b: Valida expressão booleana b, erro caso falso.

• display [I] : e1 ,... en: Imprime expressões e1, . . . , en.

• printf [I] : fmt,e1 ,..., en: Imprime expressões e − 1, . . . , en usando
formato fmt.

• for I : c, for I : {c1 ... cn}: Laços.

Dados: Conjuntos
set N r1 ,... rn
Com nome N e records r1, . . . , rn, cada record

• um tuplo: v1, . . . , vn Exemplo: 1 2, 1 3, 2 2, 2 7

• a definição de uma fatia (v1|∗, v2|∗, . . . , vn|∗): depois basta de listar os
elementos com ∗. Exemplo: (1 *) 2 3, (2 *) 2 7

• uma matriz

200

B.2. AMPL

: c1 c2 ... cn :=

r1 a11 a12 ... a1n

r2 a21 a22 ... a2n

...

rm am1 am2 ... amn

com aij “+”/”-” para inclusão/exclusão do par “ri cj” do conjunto.

Dados: Parâmetros

param N r1,...rn

Com nome N e records r1, . . . , rn, cada record

• um valor i1, . . . , in, v

• a definição de uma fatia [i1|∗, i2|∗, . . . , in|∗): depois basta definir ı́ndices
com ∗.

• uma matriz

: c1 c2 ... cn :=

r1 a11 a12 ... a1n

r2 a21 a22 ... a2n

...

rm am1 am2 ... amn

com aij o valor do par “ri cj”.

• uma tabela

param default v : s : p1 p2 ... pk :=

t11 t12 ... t1n a11 a12 ... a1k

t21 t22 ... t2n a21 a22 ... a2k

...

tm1 tm2 tmn am1 am2 ... amk

para definir simultaneamente o conjunto

set s := (t11 t12 ... t1n), ... , (tm1 tm2 ... tmn);

e os parâmetros

201

B. Formatos

param p1 default v := [t11 t12 ... t1n] a11, ..., [tm1 tm2 ... tmn] am1;

param p2 default v := [t11 t12 ... t1n] a12, ..., [tm1 tm2 ... tmn] am2;

...

param pk default v := [t11 t12 ... t1n] a1k, ..., [tm1 tm2 ... tmn] amk;

Exemplo B.3 (Exemplo 1.1 em AMPL)
1 var c ; # número de c r o i s s a n t s
2 var s ; # número de s t r u d e l s
3 param l u c r o c r o i s s a n t ; # o l u c r o por c r o i s s a n t
4 param l u c ro s t rude l ; # o l u c r o por s t r u d e l
5 maximize l u c r o : l u c r o c r o i s s a n t ∗c+luc ro s t rude l ∗ s ;
6 subject to ovo : c +1.5∗ s <= 150 ;
7 subject to acucar : 50∗ c+50∗ s <= 6000 :
8 subject to c r o i s s a n t : c <= 80 ;
9 subject to s t r u d e l : s <= 60 ;

♦

Exemplo B.4 (Exemplo 1.3 em AMPL)
1 param n ; # número de c l i e n t e s
2 param m; # número de f o r n e c e d o r e s
3 param a { 1 . .m } ; # estoque
4 param b { 1 . .n } ; # demanda
5 param c { 1 . .m, 1 . .n } ; # custo t ran spo r t e
6 var x { 1 . .m, 1 . .n } >= 0 ;
7 minimize custo :
8 sum { i in 1 . .m, j in 1 . .n } c [i , j]∗ x [i , j] ;
9 s u b j e c t to l im i t eF { i in 1 . .m } :

10 sum { j in 1 . .n } x [i , j] <= a [i] ;
11 s u b j e c t to l imiteC { j in 1 . .n } :
12 sum { i in 1 . .m } x [i , j] = b [j] ;
13 data ;
14 param n := 3 ;
15 param m := 3 ;
16 param a := 1 5 , 2 7 , 3 3 ;
17 param b := 1 7 , 2 3 , 3 5 ;
18 param c : 1 2 3 :=
19 1 3 1 100
20 2 4 2 4
21 3 100 3 3 ;
22 end ;

202

B.2. AMPL

♦

203

C. Soluções dos exerćıcios

Solução do exerćıcio 1.3.

maximiza 2A+ B

sujeito a A ≤ 6000
B ≤ 7000
A+ B ≤ 10000

Resposta: A=6000 e B=4000 e Z=16000

Solução do exerćıcio 1.4.
São necessárias cinco variáveis:

• x1: número de pratos de lasanha comidos por Marcio

• x2: número de pratos de sopa comidos por Marcio

• x3: número de pratos de hambúrgueres comidos por Renato

• x4: número de pratos de massa comidos por vini

• x5: números de pratos de sopa comidos por vini

Formulação:

maximiza x1 + x2 + x3 + x4 + x5

sujeito a 4 ≥ x1 + x2 ≥ 2
5 ≥ x3 ≥ 2
4 ≥ x4 + x5 ≥ 2
70(x2 + x5) + 200x1 + 100x3 + 30x4 ≤ 1000
30(x2 + x5) + 100x1 + 100x3 + 100x4 ≤ 800

205

C. Soluções dos exerćıcios

Solução do exerćıcio 1.5.

maximiza l1 + 2l2

sujeito a l2 ≤ 60
l1 + 3l2 ≤ 200
2l1 + 2l2 ≤ 300
l1, l2 ≥ 0

Solução do exerćıcio 1.6.

maximiza 60m+ 30a

sujeito a m ≤ 6
a ≤ 4
6m+ 8a ≤ 48
m, a ≥ 0

Solução do exerćıcio 1.8.
Com marcas J,O,M (Johnny Ballantine, Old Gargantua, Misty Deluxe) e
misturas A,B,C temos as variáveis

xJ,A, xJ,B, xJ,C, xO,A, xO,B, xO,C, xM,A, xM,B, xM,C

que denotam o número de garrafas usadas por mistura.
Vamos introduzir ainda as variáveis auxiliares para o número de garrafas usa-
das de cada marca

xJ = xJ,A + xJ,B + xJ,C; xO = xO,A + xO,B + xO,C; xM = xM,A + xM,B + xM,C

e variáveis auxiliares para o número de garrafas produzidas de cada mistura

xA = xJ,A + xO,A + xM,A; xB = xJ,B + xO,B + xM,B; xC = xJ,C + xO,C + xM,C.

Queremos maximizar o lucro em reais

68xA + 57xB + 45xC − (70xJ + 50xO + 40xM)

206

respeitando os limites de importação

xJ ≤ 2000; xO ≤ 2500; xM ≤ 1200

e os limites de percentagem

xJ,A ≥ 0.6xA; xM,A ≤ 0.2xA
xJ,B ≥ 0.15xB; xM,B ≤ 0.6xB

xM,C ≤ 0.5xC.

Portanto, o sistema final é

max 68xA + 57xB + 45xC − (70xJ + 50xO + 40xM)

s.a xJ ≤ 2000
xO ≤ 2500
xM ≤ 1200
xJ,A ≥ 0.6xA
xM,A ≤ 0.2xA
xJ,B ≥ 0.15xB
xM,B ≤ 0.6xB
xM,C ≤ 0.5xC
xm = xm,A + xm,B + xm,C m ∈ {J,O,M}

xm = xJ,m + xO,m + xM,m m ∈ {A,B,C}

xm,n ≥ 0 m ∈ {J,O,M}, n ∈ {A,B,C}

Sem considerar a integralidade a solução ótima é produzir 2544.44 garrafas da
mistura A, 3155.56 garrafas da mistura B e 0 garrafas da mistura C, com as
percentagens

• A: 60% Johnny Ballantine, 20% Old Gargantua, 20% Misty Deluxe

• B: 15% Johnny Ballantine, 63% Old Gargantua, 22% Misty Deluxe

Solução do exerćıcio 1.9.
Com t1 o número de TVs de 29”e t2 de 31”temos

maximiza 120t1 + 80t2

sujeito a t1 ≤ 40
t2 ≤ 10
20t1 + 10t2 ≤ 500
t1, t2 ≥ 0

207

C. Soluções dos exerćıcios

Solução do exerćıcio 1.10.
Seja V = {V1, V2} e NV = {NV1, NV2, NV3} os conjuntos de óleas vegetais e
não vegetais e O = V∪NV o conjunto do todos óleos. Seja ainda ci o custo por
tonelada do óleo i ∈ O e ai a acidez do óleo i ∈ O. (Por exemplo cV1 = 110
e aNV2 = 4.2.) Com variáveis xi (toneladas refinadas do óleo i ∈ O) e xo
(quantidade total de óleo produzido) podemos formular

maximiza 150xo −
∑
i∈O

cixi

sujeito a
∑
i∈V

xi ≤ 200 limite óleos vegetais∑
i∈NV

xi ≤ 250 limite óleos não vegetais

3xo ≤
∑
i∈O

aixi ≤ 6xo Intervalo acidez∑
i∈O

xi = xo Óleo total

xo, xi ≥ 0 ∀i ∈ O.

Solução do exerćıcio 1.11.
Sejam xA, xB e xC o número de horas investidos para cada disciplina. Vamos
usar variáveis auxiliares nA, nB e nC para as notas finais das três disciplinas.

208

Como isso temos o programa linear

maximiza nA + nB + nC

sujeito a xA + xB + xC = 100 Total de estudo

nA = (6+ xA/10)/2 Nota final disc. A

nB = (7+ 2xB/10)/2 Nota final disc. B

nC = (10+ 3xC/10)/2 Nota final disc. C

nA ≥ 5 Nota mı́nima disc. A

nB ≥ 5 Nota mı́nima disc. B

nC ≥ 5 Nota mı́nima disc. C

nA ≤ 10 Nota máxima disc. A

nB ≤ 10 Nota máxima disc. B

nC ≤ 10 Nota máxima disc. C

nA, nB, nC ≥ 0.

Solução do exerćıcio 1.12.
Sejam r ∈ R e f ∈ R o número de canecos do Duff regular e do Duff Forte,
respectivamente, encomendados por semana. Com isso podemos formular

maximiza r+ 1.5f (C.1)

sujeito a 2f ≤ r (C.2)

r+ f ≤ 3000 (C.3)

r, f ∈ R+. (C.4)

Solução do exerćıcio 1.13.
Sejam f ∈ R e h ∈ R o número de pacotes de Frisky Pup e Husku Hound
produzidos, respectivamente. Com isso podemos formular

maximiza 1.6f+ 1.4h (C.5)

sujeito a f+ 2h ≤ 240000 (C.6)

1.5f+ h ≤ 180000 (C.7)

f ≤ 110000 (C.8)

f, h ∈ R+. (C.9)

209

C. Soluções dos exerćıcios

Solução do exerćıcio 1.14.

maximiza 25p+ 30c

sujeito a p/200+ c/140 ≤ 40⇐⇒ 7p+ 10c ≤ 56000
p ≤ 6000
c ≤ 4000
c, p ≥ 0

0 1000 2000 3000 4000 5000 6000 7000 8000
Placas p

0

1000

2000

3000

4000

5000

6000

C
an

os
 c

(56000-7*x)/10

c=4000

c=80

Soluções viáveis

Produzindo aço

192K

50K 100K 150K

A solução ótima é p = 6000, c = 1400 com valor 192000.

Solução do exerćıcio 1.15.
Usamos ı́ndices 1, 2 e 3 para os vôos Pelotas–Porto Alegre, Porto Alegre–
Torres e Pelotas–Torres e variáveis a1, a2, a3 para a categoria A, b1, b2, b3
para categoria B e c−1, c2, c3 para categoria C. A função objetivo é maximizar
o lucro

z = 600a1+ 320a2+ 720a3+ 440b1+ 260b2+ 560b3+ 200c1+ 160c2+ 280c3.

210

Temos que respeitar os limites de capacidade

a1 + b1 + c1 + a3 + b3 + c3 ≤ 30
a2 + b2 + c2 + a3 + b3 + c3 ≤ 30

e os limites da predição

a1 ≤ 4; a2 ≤ 8; a3 ≤ 3
b1 ≤ 8; b2 ≤ 13; b3 ≤ 10
c1 ≤ 22; c2 ≤ 20; c3 ≤ 18

Obviamente, todas variáveis também devem ser positivos.

Solução do exerćıcio 1.16.
A solução gráfica é

0 1 2 3 4 5 6
x1

0

1

2

3

4

5

6

x 2

Soluções viáveis

-x1+x2≤ 2

x1+8x2≤ 36

x2≤ 4

x1≤ 4.25

10

20

(a) A solução ótima é x1 = 4.25, x2 ≈ 4 (valor exato x2 = 3.96875).

(b) O valor da solução ótima é ≈ 21 (valor exato 20.96875).

211

C. Soluções dos exerćıcios

Solução do exerćıcio 1.17.

maximiza z = 5x1 + 5x2 + 5x3

sujeito a − 6x1 − 2x2 − 9x3 ≤ 0
− 9x1 − 3x2 + 3x3 ≤ 3
9x1 + 3x2 − 3x3 ≤ −3

xj ≥ 0

maximiza z = −6x1 − 2x2 − 6x3 + 4x4 + 4x5

sujeito a − 3x1 − 8x2 − 6x3 − 7x4 − 5x5 ≤ 3
3x1 + 8x2 + 6x3 + 7x4 + 5x5 ≤ −3

5x1 − 7x2 + 7x3 + 7x4 − 6x5 ≤ 6
x1 − 9x2 + 5x3 + 7x4 − 10x5 ≤ −6

− x1 + 9x2 − 5x3 − 7x4 + 10x5 ≤ 6
xj ≥ 0

maximiza z = 7x1 + 4x2 + 8x3 + 7x4 − 9x5

sujeito a − 4x1 − 1x2 − 7x3 − 8x4 + 6x5 ≤ −2

4x1 + x2 + 7x3 + 8x4 − 6x5 ≤ 2
− x1 − 4x2 − 2x3 − 2x4 + 7x5 ≤ 7
− 8x1 + 2x2 + 8x3 − 6x4 − 7x5 ≤ −7

8x1 − 2x2 − 8x3 + 6x4 + 7x5 ≤ 7
xj ≥ 0

maximiza z = 6x1 − 5x2 − 8x3 − 7x4 + 8x5

sujeito a − 5x1 − 2x2 + x3 − 9x4 − 7x5 ≤ 9
5x1 + 2x2 − x3 + 9x4 + 7x5 ≤ −9

7x1 + 7x2 + 5x3 − 3x4 + x5 ≤ −8

− 7x1 − 7x2 − 5x3 + 3x4 − x5 ≤ 8
− 5x1 − 3x2 − 5x3 + 9x4 + 8x5 ≤ 0
xj ≥ 0

212

Solução do exerćıcio 2.1.
Solução com método Simplex, escolhendo como variável entrante sempre aquela
com o maior coeficiente positivo (em negrito):

z = 25p +30c
w1 = 56000 −7p −10c
w2 = 6000 −p
w3 = 4000 −c

z = 120000 +25p −30w3
w1 = 16000 −7p +10w3
w2 = 6000 −p
c = 4000 −w3

z = 1240000/7 −25/7p +40/7w3
p = 16000/7 −1/7w1 +10/7w3
w2 = 26000/7 +1/7w1 −10/7w3

c = 4000 −w3

z = 192000 −3w1 −4w2
p = 6000 −w2
w3 = 2600 +1/10w1 −7/10w2
c = 1400 −1/10w1 +7/10w2

Solução do exerćıcio 2.3.
Temos (

2(n+ 1)

n+ 1

)
=

(
2n

n

)
(2n+ 2)(2n+ 1)

(n+ 1)2
=

(
2n

n

)
2(2n+ 1)

n+ 1

e logo
22n

n+ 1

(
2n

n

)
≤
(
2(n+ 1)

n+ 1

)
≤ 22

(
2n

n

)
.

Logo, por indução (1/2n)22n ≤
(
2n
n

)
≤ 22n.

Solução do exerćıcio 2.6.

(a) Substituindo x1 e x2 obtemos a nova função objetivo z = x1 + 2x2 =
22− 7w2 − 3w1. Como todos coeficientes são negativos, a solução básica
atual permanece ótima.

213

C. Soluções dos exerćıcios

(b) A nova função objetivo é 1−w2 e o sistema mantem-se ótimo.

(c) A nova função objetivo é 2− 2w2 e o sistema mantem-se ótimo.

(d) O dicionário dual é

z∗ = 31 −7z2 −8z1
y2 = 11 +2z2 +3z1
y1 = 4 +z2 +z1

e a solução dual ótima é (y1 y2)
t = (4 11)t.

Solução do exerćıcio 2.9.
Não, porque nessa situação o valor da variável entrante aumento para um
valor xe > 0 e por definição de variável entrante temos ce > 0, i.e. o valor da
função objetivo aumenta.

Solução do exerćıcio 2.10.
Sim. Supõe que xs, s ∈ B é a variável básica negativa. Com xs = b̄s− āsexe e
ase < 0 temos xs > 0 caso xe > bs/āse. Logo para xe > maxi∈B,b̄s<0 b̄i/āie
a solução é fact́ıvel.

Solução do exerćıcio 3.1.

maximiza 10y1 + 6y2

sujeito a y1 + 5y2 ≤ 7
− y1 + 2y2 ≤ 1
3y1 − y2 ≤ 5
y1, y2 ≥ 0.

Solução do exerćıcio 3.2.
Com variáveis duais ye para cada e ∈ U temos

maximiza
∑
e∈U

ye

sujeito a
∑
e:e∈S

ye ≤ c(S) S ∈ S

ye ≥ 0 e ∈ U.

Solução do exerćıcio 3.3.

214

(a) Temos B = {4, 1, 2} (variáveis básicas x4, x1 e x2) e N = {5, 6, 3} (variáveis
nulas x5, x6 e x3). No que segue, vamos manter essa ordem das variáveis
em todos vetores e matrizes. O vetor de custos nessa ordem é

cB = (0 2 − 1)t; cN = (0 0 1)t

e com

∆c = (0 1 0 0 0 0)t

temos

∆y∗N = (B−1N)t∆cB − ∆cN = (B−1N)t∆cB

=

−1 1/2 −1/2
−2 1/2 1/2
1 1/2 −3/2

01
0

 =

1/21/2
1/2

 .
Com y∗N = (3/2 1/2 3/2)t obtemos os limites −1 ≤ t ≤∞ e 1 ≤ c1 ≤∞.

(b) Temos ∆xb = B−1∆b e ∆b = (0 1 0)t. Para determinar ∆xB precisamos
calcular B−1 pela inversão de

B =

1 3 1
0 1 −1
0 1 1


(observe que as colunas estão na ordem de B) que é

B−1 =

1 −1 −2
0 1/2 1/2
0 −1/2 1/2


Assim ∆xB = (−1 1/2 − 1/2)t, e com x∗B = (10 15 5)t e pela definição

max
i∈B
∆xi>0

−
x∗i
∆xi

≤ t ≤ min
i∈B
∆xi<0

−
x∗i
∆xi

obtemos os limites −30 ≤ t ≤ 10 e −20 ≤ b2 ≤ 20.

(c) Com b̂ = (70 20 10)t temos B−1b̂ = (30 15 − 5)t. Portanto, a solução
básica não é mais v́ıavel e temos que reotimizar. O novo valor da função
objetivo é

ctB(B
−1b̂) =

(
0 2 −1

)3015
−5

 = 35

215

C. Soluções dos exerćıcios

e temos o dicionário

z = 35 −3/2x5 −1/2x6 −3/2x3
x4 = 30 +x5 +2x6 −x3
x1 = 15 −1/2x5 −1/2x6 −1/2x3
x2 = −5 +1/2x5 −1/2x6 +3/2x3

O dicionário é dualmente viável, e após pivô x2–x3 temos o novo sistema
ótimo

z = 30 −x5 −x6 −x2
x4 = 80/3 +4/3x5 +5/3x6 −2/3x2
x1 = 40/3 −1/3x5 −2/3x6 −1/3x2
x3 = 10/3 −1/3x5 +1/3x6 +2/3x2

(d) Temos ĉ = (0 3 − 2 0 0 3)t (em ordem B,N) e com isso

ŷ∗N = (B−1N)tĉB − ĉN =

−1 1/2 −1/2
−2 1/2 1/2
1 1/2 −3/2

 0
3
−2

−

00
3

 =

5/21/2
3/2


Portanto, a solução ainda é ótima. O novo valor da função objetivo é

ĉtB(B
−1b) =

(
0 3 −2

)1015
5

 = 35.

Solução do exerćıcio 6.2.

Conjunto independente máximo Com variáveis indicadores xv, v ∈ V temos
o programa inteiro

maximiza
∑
v∈V

xv

sujeito a xu + xv ≤ 1, ∀{u, v} ∈ A (C.10)

xv ∈ B, ∀v ∈ V.

A equação C.10 garante que cada aresta possui no máximo um nó incidente.

216

Emparelhamento perfeito com peso máximo Sejam xa, a ∈ A variáveis
indicadores para a seleção de cada aresta. Com isso, obtemos o programa
inteiro

maximiza
∑
a∈A

p(a)xa

sujeito a
∑

u∈N(v)

x{u,v} = 1, ∀v ∈ V (C.11)

xa ∈ B, ∀v ∈ V.

A equação C.11 garante que cada nó possui exatamente um vizinho.

Problema de transporte Sejam xij variáveis inteiras, que correspondem com
o número de produtos transportados do depósito i para cliente j. Então

minimiza
∑
i∈[n]
j∈[m]

cijxij

sujeito a
∑
j∈[m]

xij = pi, ∀i ∈ [n] cada depósito manda todo estoque

∑
i∈[n]

xij = dj, ∀j ∈ [m] cada cliente recebe a sua demanda

xij ∈ Z+.

Conjunto dominante Sejam xv, v ∈ V variáveis indicadores para seleção de
vértices. Temos o programa inteiro

minimiza
∑
v∈V

xv

sujeito a xv +
∑

u∈N(v)

xu ≥ 1, ∀v ∈ V nó ou vizinho selecionado

xv ∈ B, ∀v ∈ V.

Solução do exerćıcio 6.4.
Seja d1d2 . . . dn a entrada, e o objetivo selecionar m ≤ n d́ıgitos da entrada.
Seja xij ∈ B um indicador que o d́ıgito i da entrada seria selecionado como

217

C. Soluções dos exerćıcios

d́ıgito j da saida, i ∈ [n], 1 ≤ j ≤ m. Então

maximiza
∑
i,j

xijdi10
m−j

sujeito a
∑
i

xij = 1, ∀j (C.12)∑
j

xij ≤ 1, ∀i (C.13)

xij = 0, ∀j > i, (C.14)

xkl ≤ 1− xij, ∀k > i, l < j. (C.15)

A função das equações é a seguinte:

• Equação C.12 garante que tem exatamente um d́ıgito em cada posição.

• Equação C.13 garante que cada d́ıgito é selecionado no máximo uma
vez.

• Equação C.14 garante que d́ıgito i aparece somente a partir da posição
j.

• Equação C.13 proibe inversões.

Solução do exerćıcio 6.5.
Existem 21 sets diferentes, cada um com consumo diferente das 9 cartas. Seja
AR9×21 uma matriz, que contém em cada das 21 coluna o número de cartas
de cada set. Além disso, seja b ∈ R9 o número de cartas dispońıveis. Usando
variáveis inteiros x ∈ Z21 que representam o número de sets formandos de
cada tipo de set diferentes, temos a formulação

maximiza
∑
i∈[21]

xi

sujeito a Ax ≤ b
x ≥ 0.

Solução do exerćıcio 6.6.

218

Cobertura por arcos

minimiza
∑
e∈E

cexe

sujeito a
∑

u∈N(v)

xuv ≥ 1, ∀v ∈ V

xe ∈ B.

Conjunto dominante de arcos

maximiza
∑
e∈E

cexe

sujeito a
∑
e ′∈E
e∩e ′ 6=∅

xe ′ ≥ 1, ∀e ∈ E

xe ∈ B.

Coloração de grafos Seja n = |V |.

minimiza
∑
j∈[n]

cj

sujeito a
∑
j∈[n]

xvj = 1, ∀v ∈ V (C.16)

xui + xvi ≤ 1, ∀{u, v} ∈ E, i ∈ [n] (C.17)

ncj ≥
∑
v∈V

xvj, ∀j ∈ [n] (C.18)

xvi, cj ∈ B.

• Equação C.16 garante que todo vértice recebe exatamente uma cor.

• Equação C.17 garante que vértices adjacentes recebem cores diferentes.

• Equação C.18 garante que cj = 1 caso cor j for usada.

Clique ḿınimo ponderado

minimiza
∑
v∈V

cvxv

sujeito a xu + xv ≤ 1, ∀{u, v} 6∈ E (C.19)

xv ∈ B.

219

C. Soluções dos exerćıcios

Equação C.19 garante que não existe um par de vértices selecionados que não
são vizinhos.

Subgrafo cúbico xe indica se o arco e é selecionado, e ye indica se ele possui
grau 0 (caso contrário grau 3).

minimiza
∑
e∈E

xe

sujeito a
∑

e∈N(v)

xe ≤ 0+ |E|(1− ye)

∑
e∈N(v)

xe ≤ 3+ |E|ye

−
∑

e∈N(v)

xe ≤ −3+ 3ye

Observe que o grau de cada vértice é limitado por |E|.

Solução do exerćıcio 6.7.
Sejam xi ∈ B, i ∈ [7] variáveis que definem a escolha do projeto i. Então
temos

maximiza 17x1 + 10x2 + 15x3

+ 19x4 + 7x5 + 13x6 + 9x7

sujeito a 43x1 + 28x2 + 34x3 + 48x4

+ 17x5 + 32x6 + 23x7 ≤ 100 Limite do capital

x1 + x2 ≤ 1 Projetos 1,2 mutualmente exclusivos

x3 + x4 ≤ 1 Projetos 3,4 mutualmente exclusivos

x3 + x4 ≤ x1 + x2 Projeto 3 ou 4 somente se 1 ou 2

http://www.inf.ufrgs.br/~mrpritt/e6q2.mod

1 set p r o j e t o s := 1 . . 7 ;
2 param l u c r o { p r o j e t o s } ;
3 param custo { p r o j e t o s } ;
4
5 var f a z e r { p r o j e t o s } binary ;
6

220

http://www.inf.ufrgs.br/~mrpritt/e6q2.mod

7 maximize M: sum { i in p r o j e t o s } l u c r o [i]∗ f a z e r [i] ;
8 subject to S1 :
9 sum { i in p r o j e t o s } custo [i]∗ f a z e r [i] <= 100 ;

10 subject to S2 : f a z e r [1]+ f a z e r [2] <= 1 ;
11 subject to S3 : f a z e r [3]+ f a z e r [4] <= 1 ;
12 subject to S4 : f a z e r [3]+ f a z e r [4] <= f a z e r [1]+ f a z e r [2] ;
13
14 data ;
15 param l u c r o := 1 17 2 10 3 15 4 19 5 7 6 13 7 9 ;
16 param custo := 1 43 2 28 3 34 4 48 5 17 6 32 7 23 ;
17 end ;

Solução: Selecionar projetos 1,3,7 com lucro de 41MR$.

Solução do exerćıcio 6.8.
Seja f ∈ B uma variável que determina qual fábrica vai ser usada (fábrica 1,
caso f = 0, fábrica 2, caso f = 1), bi ∈ B uma variável binária que determina,
se brinquedo i vai ser produzido e ui ∈ Z as unidades produzidas de brinquedo
i (sempre com i ∈ [2]).

maximiza 10u1 + 15u2 − 50000b1 − 80000b2

sujeito a ui ≤Mbi Permitir unidades somente se tem produção

u1/50+ u2/40 ≤ 500+ fM Limite fábrica 1, se selecionada

u1/40+ u2/25 ≤ 700+ (1− f)M Limite fábrica 2, se selecionada

A constante M deve ser suficientemente grande tal que ela efetivamente não
restringe as unidades. Dessa forma, se a fábrica 1 está selecionada, a terceira
restrição (da fábrica 2) não se aplica e vice versa.

http://www.inf.ufrgs.br/~mrpritt/e6q3.mod

1 var f b inary ;
2 var b { br inquedos } binary ;
3 var u { br inquedos } i n t ege r , >= 0 ;
4 param i n i c i a l { br inquedos } ;
5 param l u c r o { br inquedos } ;
6 param prodfab1 { br inquedos } ;
7 param prodfab2 { br inquedos } ;
8 param M := 35000 ;
9

221

http://www.inf.ufrgs.br/~mrpritt/e6q3.mod

C. Soluções dos exerćıcios

10 maximize Lucro :

11 sum { i in br inquedos } u [i]∗ l u c r o [i]
12 − (sum { i in br inquedos } i n i c i a l [i]∗b [i]) ;
13 subject to PermitirProducao { i in br inquedos } :
14 u [i] <= M∗b [i] ;
15 subject to LimiteFab1 :
16 sum { i in br inquedos }
17 u [i]∗ prodfab1 [i] <= 500 + f ∗M;
18 subject to LimiteFab2 :
19 sum { i in br inquedos }
20 u [i]∗ prodfab2 [i] <= 700 + (1− f)∗M;
21
22 data ;
23 param i n i c i a l := 1 50000 2 80000 ;
24 param l u c r o := 1 10 2 15 ;
25 param prodfab1 := 1 0 .020 2 0 . 0 2 5 ;
26 param prodfab2 := 1 0 .025 2 0 . 0 4 0 ;

Solução: Produzir 28000 unidades do brinquedo 1 na fábrica 2, com lucro
230KR$.

Solução do exerćıcio 6.9.
Sejam ai ∈ B uma variável que determina se avião i vai ser produzido e ui ∈ Z
as unidades produzidas.

maximiza 2u1 + 3u2 + 0.2u3 − 3a1 − 2a2

sujeito a 0.2u1 + 0.4u3 + 0.2u3 ≤ 1 Limite de capacidade

ui ≤ 5bi Permitir unidades somente se for produzido, limite 5 aviões

u1 ≤ 3 Limite avião 1

u2 ≤ 2 Limite avião 2

u3 ≤ 5 Limite avião 3

http://www.inf.ufrgs.br/~mrpritt/e6q4.mod

27 param custo { av i o e s } ;
28 param l u c r o { av i o e s } ;
29 param capacidade { av i o e s } ;
30 param demanda { av i o e s } ;
31 var produz i r { av i o e s } binary ;
32 var unidades { av i o e s } i n t ege r , >= 0 ;

222

http://www.inf.ufrgs.br/~mrpritt/e6q4.mod

33
34 maximize Lucro :
35 sum { i in av i o e s }
36 (l u c ro [i]∗ unidades [i]− custo [i]∗ produz i r [i]) ;
37 subject to LimiteCapacidade :
38 sum { i in av i o e s } unidades [i]∗ capacidade [i] <= 1 ;
39 subject to PermitirProducao { i in av i o e s } :
40 unidades [i] <= 5∗ produz i r [i] ;
41 subject to LimiteDemanda { i in av i o e s } :
42 unidades [i] <= demanda [i] ;
43
44 data ;
45 param : custo l u c ro capacidade demanda :=
46 1 3 2 0 .2 3
47 2 2 3 0 .4 2
48 3 0 0 .8 0 .2 5
49 ;

Solução: Produzir dois aviões para cliente 2, e um para cliente 3, com lucro
4.8 MR$.

Solução do exerćıcio 6.10.
Seja xijk ∈ B um indicador do teste com a combinação (i, j, k) para 1 ≤
i, j, k ≤ 8. Cada combinação (i, j, k) testada cobre 22 combinações: além de
(i, j, k) mais 7 para cada combinação que difere somente na primeira, segunda
ou terceira posição. Portanto, uma formulação é

minimiza
∑
i,j,k

xi,j,k

sujeito a xi,j,k +
∑
i ′ 6=i

xi ′jk +
∑
j ′ 6=j

xij ′k +
∑
k ′ 6=k

xijk ′ ≥ 1 ∀i, j, k

xi,j,k ∈ B ∀i, j, k.

A solução ótima desse sistema é 32, i.e. 32 testes são suficientes para abrir a
fechadura.

Solução do exerćıcio 6.11.
Sejam xi ∈ B, i ∈ [k] as variáveis de entrada, e ci ∈ B, i ∈ [n] variáveis que
indicam se a cláusula ci está satisfeita. Para aplicar a regra (6.2) diretamente,
vamos usar uma variável auxiliar di. i ∈ [n], que representa a disjunção dos

223

C. Soluções dos exerćıcios

primeiros dois literais da cláusula i.

maximiza
∑
i∈[n]

ci

sujeito a lij =

{
xk literal j na cláusula i é xk

1− xk literal j na cláusula i é ¬xk

di ≥ (li1 + li2)/2

di ≤ li1 + li2
ci ≥ (di + li3)/2

ci ≤ di + li3
ci, di, xi ∈ B.

Como é um problema de maximização, pode ser simplificado para

maximiza
∑
i∈[n]

ci

sujeito a lij =

{
xk literal j na cláusula i é xk

1− xk literal j na cláusula i é ¬xk

ci ≤ li1 + li2 + li3
ci, xi ∈ B.

A segunda formulação possui uma generalização simples para o caso k > 3.

Solução do exerćıcio 7.2.

Conjunto independente máximo A matriz de coeficientes contém dois co-
eficientes igual 1 em cada linha, que correspondem com uma aresta, mas
geralmente não é totalmente unimodular. Por exemplo, o grafo completo com
três vértices K3

1

2 3

gera a matriz de coeficientes 1 1 0
1 0 1
0 1 1



224

Figura C.1.: Poĺıtopo {x ∈ R3 | x1 + x2 ≤ 1, x1 + x3 ≤ 1, x2 + x3 ≤ 1, 0 ≤ xi ≤
1}. (O visualizador usa os eixos x = x1, y = x2, z = x3.)

cuja determinante é −2. A solução ótima da relaxação inteira 0 ≤ xi ≤ 1 é
x1 = x2 = x3 = 1/2 com valor 3/2, a Fig. C.1 mostra o poĺıtopo correspon-
dente. (Observação: A transposta dessa matriz satisfaz os critérios (i) e (ii) da
nossa proposição, e caso o grafo é bi-partido, também o critério (iii). Portanto
Conjunto independente máximo pode ser resolvido em tempo polinomial em
grafos bi-partidos).

Emparelhamento perfeito com peso máximo A matriz de coeficientes sa-
tisfaz critério (i). Ela tem uma linha para cada vértice e uma coluna para cada
aresta do grafo. Como cada aresta é incidente a exatamente dois vértices, ela
também satisfaz (ii). Finalmente, a bi-partição V1

.
∪ V2 do grafo gera uma

bi-partição das linhas que satisfaz (iii). Portanto, a matriz é TU, e o Empare-
lhamento perfeito com peso máximo pode ser resolvido em tempo polinomial
usando a relaxação linear.

Problema de transporte A matriz de coeficientes satisfaz critério (i). Po-
demos representar o problema como grafo bi-partido completo Kn,m entre os
depósitos e os clientes. Desta forma, com o mesmo argumento que no último
problema, podemos ver, que os critérios (ii) e (iii) são satisfeitos.

Conjunto dominante A matriz de coeficientes satisfaz critério (i), mas não
critério (ii): cada linha e coluna correspondente com vértice v contém |N(v)|+1
coeficientes não-nulos. Mas, não é obviou se a matriz mesmo assim não é TU
(lembra que o critério é suficiente, mas não necessário). O K3 acima, por

225

C. Soluções dos exerćıcios

exemplo, gera a matriz 1 1 1
1 1 1
1 1 1


que é TU. Um contra-exemplo seria o grafo bi-partido K1,3

1 2

3 4

que gera a matriz de coeficientes
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1


com determinante −2. Isso não prova ainda que a relaxação linear não pro-
duz resultados inteiros ótimos. De fato, nesse exemplo a solução ótima da
relaxação inteira é a solução ótima inteira D = {1}.

Um verdadeiro contra-exemplo é um ciclo com cinco vértices C5

1

2 5

3 4

com matriz 
1 0 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 1 1 0
1 1 0 0 1


(cuja determinante é 3). A relaxação linear desse sistema tem a solução ótima
x1 = x2 = x3 = x4 = x5 = 1/3 com valor 5/3 que não é inteira.

226

Solução do exerćıcio 7.4.
A formulação possui 14 restrições, correspondendo com as 14 arestas. Como
o grafo é 4-regular, cada vértice ocorre 4 vezes no lado esquerdo de uma
restrição, e somando todas restrições obtemos

4
∑
i∈[7]

xi ≤ 14

⇒∑
i∈[7]

xi ≤ 14/4

⇒∑
i∈[7]

xi ≤ b14/4c = 3,

que não é suficiente. Para obter uma desigualdade mais forte, vamos somar
sobre todos triângulos. Somando primeiro as restrições das arestas de cada
triângulo (u, v,w) obtemos

2xu + 2xv + 2xw ≤ 3⇒xu + xv + xw ≤ b3/2c = 1.

Somando agora as restrições obtidas desta forma de todos 14 triângulos do
grafo (cada vértice é parte de 6 triângulos) obtemos a desigualdade desejada

6
∑
i∈[7]

xi ≤ 14

⇒∑
i∈[7]

xi ≤ b14/6c = 2.

(Outra abordagem: Supõe, sem perda de generalidade, que x1 = 1 na solução
ótima. Pelas restrições x1 + xi ≤ 2 temos xi = 0 para i ∈ {3, 4, 5, 6}. Pela
restrição x2 + x7 ≤ 1, portanto

∑
1≤i≤7 xi ≤ 2.)

Solução do exerćıcio 7.5.
Seja S̄ = [n] \ S e m = maxi∈S ai e m̄ = maxi∈S ai. A idéia é somar desigual-
dades xi ≤ 1 para i ∈ S até o corte de Gomory obtido pela divisão pelo coefi-
ciente máximo em S rende a desigualdade desejada. Seja δ = max{m̄+ 1,m}.
Somando (δ− ai)xi ≤ δ− ai obtemos∑

i∈S

δxi +
∑
i∈S̄

aixi ≤ b+
∑
i∈S

(δ− ai)xi < δ|S| ≤ δ|S|− 1.

227

C. Soluções dos exerćıcios

Aplicando o corte de Gomory com multiplicador 1/δ obtemos∑
i∈S

xi ≤ b|S|− 1/δc = |S|− 1

porque ai ≤ m̄ < max{m̄+ 1,m} = δ e logo bai/δc = 0 para i ∈ S̄.

Solução do exerćıcio 7.6.
x1 + x6 + x7 ≤ 2 porque uma rota não contém subrotas. Portanto x1 + x2 +
x5 + x6 + x7 + x9 ≤ 5. Supõe x1 + x2 + x5 + x6 + x7 + x9 = 5. Temos três
casos: x1 = 0, x6 = 0 ou x7 = 0. Em todos os casos, as restantes variáveis
possuem valor 1, e no grafo resultante sempre existe um vértice de grau 3 (o
vértice no centro, da esquerda, de acima, respectivamente), que não é posśıvel
numa solução válida.

Solução do exerćıcio 7.8.
O sistema inicial

z = x1 +3x2
w1 = −2 +x1
w2 = 3 −x2
w3 = −4 +x1 +x2
w4 = 12 −3x1 −x2

não é primalmente nem dualmente viável. Aplicando a fase I (pivôs x0–w3,
x0–x1) e depois fase II (pivôs x2–w1, w3–w2, w1–w4) gera o dicionário final

z = 12 −8/3w2 −1/3w4
x2 = 3 −w2
w3 = 2 −2/3w2 −1/3w4
x1 = 3 +1/3w2 −1/3w4
w1 = 1 +1/3w2 −1/3w4

cuja solução x1 = 3, x2 = 3 já é inteira.
No segundo sistema começamos com o dicionário

z = x1 −2x2
w1 = 60 +11x1 −15x2
w2 = 24 −4x1 −3x2
w3 = 59 −10x1 +5x2

e um pivô x1–w3 gera a solução ótima fracionária

z = 4.9 −0.1w3 −1.5x2
w1 = 113.9 −1.1w3 −9.5x2
w2 = 4.4 +0.4w3 −5x2
x1 = 4.9 −0.1w3 +0.5x2

228

e a linha terceira linha (x1) gera o corte

w4 = −0.9 +0.1w3 +0.5x2

Com o pivô w4–w3 obtemos a solução ótima inteira

z = 4 −w4 −x2
w1 = 104 −11w4 −4x2
w2 = 8 +4w4 −7x2
x1 = 4 −w4 +1x2
w3 = 9 +10w4 −5x2

229

Bibliografia

[1] Kurt M. Anstreicher. “Linear programming in O((n3 logn)L) operati-
ons”. Em: SIAM J. Opt. 9.4 (1999), pp. 803–812.

[2] G. Ausiello et al. Complexity and approximation – Combinatorial Op-
timization Problems and their Approximability Properties. INF 510.5
C737. Springer-Verlag, 1999. url: http://www.nada.kth.se/~viggo/
approxbook.

[3] Jens Clausen. Branch and Bound Algorithms – Principles and examples.
1999.

[4] William Cook. Concorde TSP solver. Dez. de 2011.

[5] William Cook. “Markovitz and Manne + Eastman + Land and Doig =
Branch and bound”. Em: Document Mathematica Special volume 21st
ISMP (2012), pp. 227–238.

[6] S. Dasgupta, C. Papadimitriou e U. Vazirani. Algoritmos. McGraw-Hill,
2009.

[7] John Fearnley e Rahul Savani. “The Complexity of the Simplex Method”.
Em: Arxiv (2014).

[8] A. Ghouila-Houri. “Caractérisation des matrices totalement unimodu-
laires”. Em: Comptes Rendus Hebdomadaires des Séances de l’Académie
des Sciences 254 (1962), pp. 1192–1194.

[9] A. J. Hoffman e J. B. Kruskal. “Integral boundary points of convex
polyhedra”. Em: Linear inequalities and related systems: Annals of Mathe-
matical Study 38 (1956), pp. 223–246.

[10] Richard M. Karp. “Reducibility Among Combinatorial Problems”. Em:
Complexity of Computer Computations. Ed. por R. E. Miller e J. W.
Thatcher. New York: Plenum, 1972, pp. 85–103.

[11] A. H. Land e A. G. Doig. “An automatic method of solving discrete
programming problems”. Em: Econometrica 28.3 (1960), pp. 497–520.
doi: 10.2307/1910129.

[12] Nelson Maculan e Marcia H. Costa Fampa. Otimização linear. INF
65.012.122 M175o. Editora UnB, 2006.

231

http://www.nada.kth.se/~viggo/approxbook
http://www.nada.kth.se/~viggo/approxbook
http://dx.doi.org/10.2307/1910129

Bibliografia

[13] Daniel A. Spielman e Shang H. Teng. “Smoothed analysis of algorithms:
Why the simplex algorithm usually takes polynomial time”. Em: J.
ACM 51.3 (2004), pp. 385–463. issn: 0004-5411. doi: 10.1145/990308.
990310. url: http://dx.doi.org/10.1145/990308.990310.

[14] Robert J. Vanderbei. Linear programming: Foundations and Extensions.
3rd. INF 65.012.122 V228l. Kluwer, 2001. url: http://www.princeton.
edu/~rvdb/LPbook.

[15] H. P. Williams. “Fourier’s method of linear programming and its dual”.
Em: The American Mathematical Monthly 93.9 (1986), pp. 681–695.

[16] Laurence A. Wolsey. Integer programming. Wiley, 1998.

[17] Laurence A. Wolsey e George L. Nemhauser. Integer and Combinatorial
Optimization. Wiley, 1999.

232

http://dx.doi.org/10.1145/990308.990310
http://dx.doi.org/10.1145/990308.990310
http://dx.doi.org/10.1145/990308.990310
http://www.princeton.edu/~rvdb/LPbook
http://www.princeton.edu/~rvdb/LPbook

Nomenclatura

argmax valor para que uma função atinge o máximo, página 24

argmin valor para que uma função atinge o mı́nimo, página 47

B conjunto booleano {0, 1}, página 76

dxe menor número inteiro maior ou igual a x, página 118

co-NP classe de problemas de decisão com certificados polinomiais para instâncias
negativas, página 44

.
∪ união disjunta, página 50

bxc maior número inteiro menor ou igual a x, página 78

� significadamente menor que, página 30

Z conjunto de números inteiros, página 75

B conjunto de variáveis básicas, página 19

N conjunto de variáveis nulas, página 19

NP classe de problemas de decisão com certificados polinomiais para instâncias
positivas, página 44

R conjunto de números reais, página 10

sup supremo, menor limite superior de um conjunto, página 63

At matriz transposta, página 39

Cn espaço vetorial com vetores de n componentes sobre o campo C, página 13

Cn×m grupo de matrizes de tamanho n×m sobre o campo C, página 13

N(v) conjunto de vértices adjacentes a v, página 112

N+(v) conjunto de arcos saintes de v, página 107

N−(v) conjunto de arcos saintes de v, página 107

Z+ conjunto de números inteiros não-negativos, página 124

233

Índice

0-1-Knapsack, ver 0-1-Mochila, ver
0-1-Mochila, ver 0-1-Mochila

0-1-Mochila, 105, 132, 192

algoritmo de planos de corte, 135
algoritmos Branch-and-bound, 141
AMPL, 193

Bland
regra de, 44

Boltzmann, 163
branch-and-bound, 138
branch-and-cut, 147
branch-and-price, 147
busca local, 157
busca por melhor solução, 140
busca por profundidade, 140

caixeiro viajante, 93, 94, 146, 152,
178, 181

caminhos mais curtos, 127
certificado, 60
ciclo, 41
combinação convexa, 17
complexidade

do método Simplex, 46
conjunto de ńıvel, 10
conjunto independente máximo, 114
conjuntos de ńıvel, 10
convexo, 17
corte

de Chvátal-Gomory, 133
de Gomory, 135
por inviabilidade, 139

por limite, 139
por otimalidade, 139

cover inequalities, ver desigualda-
des de cobertura

CPLEX LP, 191
custo marginal, 55
custos reduzidos, 33

Dantzig, George Bernard, 19, 20
desigualdade válida, 129, 130
desigualdades de cobertura, 132
dicionário, 30

degenerado, 39
distribuição de Boltzmann, 163
dual

interpretação, 55
sistema, 59

dualidade, 51

emparelhamento, 134
emparelhamento máximo, 129, 132

fase I, 38
fase II, 38
fitness, 153
fluxo em redes, 128
folgas complementares, 60
forma padrão, 16
Fourier, Jean Baptiste Joseph, 19
função objetivo, 10

não-linear, 110

gap de integralidade, 113
gradient descent, 158

235

Índice

gradiente, 158

heuŕıstica, 151
hill climbing, 159
hill descent, 159
Hoffman, A. J., 126

integrality gap, ver gap de integra-
lidade

Kantorovich, Leonid, 19
Karmarkar, Narendra, 19
Khachiyan, Leonid, 19
Klee-Minty, 46
Kruskal, J. B., 126

level set, 10
limite

inferior, 139
superior, 139

line search, 158
locação de facilidades não-capacitado,

108
localização de facilidades, 107
lucro marginal, 55

método
de Chvátal-Gomory, 133
de duas fases, 38
de Gomory, 135
lexicográfico, 41
Simplex

complexidade, 46
Simplex dual, 61

método Simples, 27
marginal cost

custo marginal, 55
matriz totalmente unimodular, 123
matriz unimodular, 123, 124
meta-heuŕıstica, 152
Metropolis, 163, 164
multi-start, 161

objetivo, 10
otimização combinatória, 10
otimização linear, 11

passeio aleatório, 164
perturbação, 42
piso, 189
pivô, 29

degenerado, 39, 40
plano de corte, 134
ponto extremo, 17
preço, 55
preço sombra, 55
price

preço, 55
pricing, 34
problema da dieta, 11, 87

dual, 54
problema da mochila, 131, 133
problema de otimização, 10
problema de transporte, 11
problema dual, 52
problema primal, 52
programação inteira, 88
programação inteira mista, 88
programação inteira pura, 88
programação linear, 7, 11
pseudo-pivô, 36

random walk, 164
reduced costs

custos reduzidos, 33
regra de Bland, 44
regra de Cramer, 122
relaxação inteira, 121
restrição, 10, 11
restrição trivial, 16

shadow price
preço sombra, 55

shortest paths, 127

236

Índice

sistema auxiliar, 36
sistema dual, 52, 59
sistema ilimitado, 35
sistema primal, 52
solução

básica, 35
básica viável, 28
viável, 10, 28

steepest ascent, 159
steepest descent, 159

tableau, 30
teorema

de Hoffman e Kruskal, 126
teorema da dualidade forte, 57
teorema da dualidade fraca, 56
teorema das folgas complementa-

res, 60
teorema fundamental, 46
teto, 189
totalmente unimodular, 123
transposta

de uma matriz TU, 124

uncapacitated lot sizing, 110
unimodular, 123, 124

vértice, 17
variáveis de decisão, 11
variável

0-1, 107, 109
básica, 29
booleana, 107
dual, 52
entrante, 29
indicador, 107, 109
não-básica, 29
nula, 28
sainte, 29

von Neumann, John, 19

237

	Conteúdo
	Programação linear
	Introdução
	Exemplo
	Formas normais
	Solução por busca exaustiva
	Notas históricas
	Exercícios

	O método Simplex
	Um exemplo
	O método resumido
	Sistemas ilimitados
	Encontrar uma solução inicial
	Sistemas degenerados
	Complexidade do método Simplex
	Exercícios

	Dualidade
	Introdução
	Interpretação do dual
	Características
	Método Simplex dual
	Dualidade em forma não-padrão
	Os métodos em forma matricial
	O dicionário final em função dos dados
	Simplex em forma matricial

	Análise de sensibilidade
	Exercícios

	Tópicos
	Centro de Chebyshev
	Função objetivo convexa e linear por segmentos

	Programação inteira
	Introdução
	Definições
	Motivação e exemplos
	Aplicações

	Formulação
	Exemplos
	Técnicas para formular programas inteiros
	Formular restrições lógicas
	Formular restrições condicionais

	Formulações alternativas
	Exercícios

	Técnicas de solução
	Introdução
	Problemas com solução eficiente
	Desigualdades válidas
	Planos de corte
	Branch-and-bound
	Notas
	Exercícios

	Tópicos

	Heurísticas
	Introdução
	Heurísticas baseados em Busca local
	Busca local
	Metropolis e Simulated Annealing
	GRASP
	Busca Tabu
	Variable Neighborhood Search

	Heurísticas inspirados da natureza
	Algoritmos Genéticos e meméticos

	Appéndice
	Conceitos matemáticos
	Formatos
	CPLEX LP
	AMPL

	Soluções dos exercícios

	Bibliografia
	Nomenclatura
	Índice

