INF05010 — Otimizacao
combinatodria
Notas de aula

Luciana Buriol, Marcus Ritt

com contribuicoes de
Alysson M. Costa

Versao 5498 de 3 de Novembro de 2014

Universidade Federal do Rio Grande do Sul
Instituto de Informética
Departamento de Informatica Tedrica

Versao 5498 do 2014-11-03, compilada em 3 de Novembro de 2014. Obra
estd licenciada sob uma Licenga Creative Commons (Atribuigdo—Uso Nao-
Comercial-N&o a obras derivadas 3.0 Brasil).

Na parte I, as notas de aula seguem o livro “Linear programming: Foundations
and extensions” do Robert J. Vanderbei, Universidade Princeton, disponivel
em http://www.princeton.edu/~rvdb/LPbook.

Fonte das imagens:

George Dantzig (20): INFORMS, Jean Baptiste Joseph Fourier (19): Wikipe-
dia, Xadrez (106): Wikipedia, Mauricio G. C. Resende (170): Pdgina pessoal,
Fred Glover (173): Pagina pessoal, Pierre Hansen (177): Pégina pessoal, Pa-
blo Moscato (188): Pagina pessoal.

iii

http://creativecommons.org/licenses/by-nc-nd/3.0/br
http://www.princeton.edu/~rvdb/LPbook
http://www2.informs.org/Press/GeorgeDantzig.jpg
http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/wiki/Knight_(chess)
http://www.research.att.com/~mgcr
http://www.colorado.edu/law/eesi/Fred_Glover.htm
http://www.hec.ca/profs/pierre.hansen.html
http://livesite.newcastle.edu.au/cibm/People.page

Conteudo

I. Programacao linear

1. Introducado
1.1. Exemplo
1.2, Formasnormais
1.3. Solugao por busca exaustiva
1.4. Notas histéricas
1.5. Exercicios

2. O método Simplex
2.1. Umexemplo.
2.2. O método resumido
2.3. Sistemas ilimitados L.
2.4. Encontrar uma solugao inicial
2.5. Sistemas degenerados
2.6. Complexidade do método Simplex
2.7. Exercicios oo

3. Dualidade

3.1. Introducao.
3.2. Interpretacao dodual
3.3. Caracteristicas
3.4. Método Simplex dual
3.5. Dualidade em forma nao-padrao
3.6. Os métodos em forma matricial

3.6.1. O dicionario final em funcao dos dados .

3.6.2. Simplex em forma matricial
3.7. Anidlise de sensibilidade
3.8. Exercicios

4. Tépicos
4.1. Centro de Chebyshev
4.2. Funcao objetivo convexa e linear por segmentos

15
17
19
20

27
27
32
34
35
39
46
47

51
51
54
56
61
64
66
67
70
72
80

83
83
84

Contetido

Il. Programacao inteira

5. Introducao

5.1. Definigbes
5.2. Motivagao e exemplos
5.3. Aplicagbes L.

6. Formulacdo

6.1. Exemplos

6.2. Técnicas para formular programas inteiros

6.2.1. Formular restrigoes logicas

6.2.2. Formular restrigoes condicionais

6.3. Formulagoes alternativas
6.4. Exercicios

7. Técnicas de solucao

7.1. Introducao.
7.2. Problemas com solucao eficiente . .
7.3. Desigualdades validas
7.4. Planosdecorte
7.5. Branch-and-bound
7.6. Notas
7.7. Exercicios

8. Topicos

I1l. Heuristicas
9. Introducao

10. Heuristicas baseados em Busca local

10.1. Busca local

10.2. Metropolis e Simulated Annealing

103.GRASP
10.4. Busca Tabu
10.5. Variable Neighborhood Search . . .

11. Heuristicas inspirados da natureza
11.1. Algoritmos Genéticos e meméticos

85

87
87
91
93

105
105
106
107
109
113
114

121
121
121
130
136
140
146
146

151

153
155

159
159
166
169
173
177

181

Contetido

IV. Appéndice 191
A. Conceitos matematicos 193
B. Formatos 195

B.1. CPLEX LP 195

B.2. AMPL o 197
C. Solucodes dos exercicios 205
Bibliografia 231
Nomenclatura 233

Parte |I.

Programacao linear

Introducao

If one would take statistics about which mathematical problem is
using up most of the computer time in the world, then ... the
answer would probably be linear programming. (Laszlo Lovasz)

1. Introducao

1.1. Exemplo

Exemplo 1.1 (No Ildo)

Antes da aula visito o Ildo para tomar um café e comer um Croissant. Ele me
conta: “Estou especializado em Croissants e Strudels. Tenho um lucro de 20
centavos por Croissant e 50 centavos por Strudel. Diariamente até 80 clientes
compram um Croissant e até 60 um Strudel.” Mas infelizmente, o Ildo apenas
disponibiliza de 150 ovos e 6 kg de agicar por dia. Entre outros ingredientes,
preciso um ovo e 50g de agucar para cada Croissant e um ovo e meio e 50g de
agucar para cada Strudel. “Agora, professor, quantas Croissants e Strudels
devo produzir para obter o maior lucro?”

Sejam ¢ o nimero de Croissants e s o nimero de Strudels. O lucro do Ildo em
Reais é 0.2¢ + 0.5s. Seria 6timo produzir todos 80 Croissants e 60 Strudels,
mas uma conta simples mostra que nao temos ovos e agtcar suficiente. Para
produzir os Croissants e Strudels precisamos ¢ + 1.5s ovos e 50c + 50sg de
agucar que nao podem ultrapassar 150 ovos e 6000g. Com a condigdo Gbvia
que ¢ > 0 e s > 0 chegamos no seguinte problema de otimizagao:

maximiza 0.2¢ 4+ 0.5s (1.1)
sujeito a c+ 1.5s < 150
50c + 50s < 6000
c <80
s < 60
c,s>0

Como resolver esse problema? Com duas varidveis podemos visualizar a si-
tuacdo num grafo com ¢ no eixo x e s no eixo y

No lido

1. Introdugao

Otimizando o lucro do bar

100
90 - (6000-50¢)/50 i

80 -| 2/3(150-0) -

70 r

s=60

s (strudels)

0 10 20 30 40 50 60 70 80 90 100
¢ (croissants)

que nesse caso permite resolver o problema graficamente. Desenhando diversos
conjunto de nivel (ingl. level set) com valor da funcao objetivo 10, 20, 30, 40
é facil observar que o lucro méximo encontra-se no ponto ¢ = s = 60, e possui
um valor de 42 reais.

O

A forma geral de um problema de otimizacao (ou de programagdo matemdtica)

7

(S

opt f(x)
sujeito a xeV

com
e um objetivo opt € {max, min},
e uma fun¢ao objetivo (ou fungao critério) f: V — R,
e um conjunto de solugdes vidveis (ou solugdes candidatas) V.

Falamos de um problema de otimizacdo combinatoria, caso V é discreto.

10

1.1. Exemplo

Nessa generalidade um problema de otimizacao ¢é dificil ou impossivel de re-
solver. O exemplo 1.1 é um problema de otimiza¢do linear (ou programagdo
linear):

e as variaveis de decisao sao reais: X1,...,Xn € R
e a funcao de otimizacao é linear em X1,...,Xn:
f(X1yeeeyXn) =C1X7 + -+ CnXn (1.2)

e as solugoes viaveis sao definidas implicitamente por m restri¢des lineares

apx) + ai2x2 + -+ + ainXn X4 by (1.3)
a21X1 + az2x2 + -+ - + ArnXxn Xz b (1.4)
(1.5)

Am1X1 + QGm2X2 + -+ GmnXn XMm bm (1.6)

com b€ {<, =, >}

Exemplo 1.2 (O problema da dieta (Dantzig))

Suponha que temos uma tabela de nutrientes de diferentes tipos de alimentos.
Sabendo o valor didrio de referéncia (VDR) de cada nutriente (quantidade de
nutriente que deve ser ingerido) e o preco de cada unidade de alimento, qual a
dieta étima, i.e. a dieta de menor custo que contém pelo menos o valor diario
de referéncia?

Com m nutrientes e n alimentos, seja ai; a quantidade do nutriente i no
alimento j (em g/g), vy o valor didrio de referéncia do nutriente i (em g) e c;
o prego do alimento j (em R$/g). Queremos saber as quantidades x; de cada
alimento (em g) que

minimiza C1X1 + -+ + CnXn, (1.7)
sujeito a anxy + -+ ainxn > 11, (1.8)
Am1X1 + -+ QmnXn > Tm, (1.9)

XiyeeeyXn > 0. (1.10)

O

Exemplo 1.3 (Problema de transporte (Hitchcock))
Uma empresa agraria tem m depdsitos, cada um com um estoque de a;, i € [m]
toneladas de milho. Ela quer encaminhar bj, j € [n] toneladas de milho para

11

1. Introdugao

n clientes diferentes. O transporte de uma tonelada do depésito i para cliente
j custa R$ cij. Qual seria o esquema de transporte de menor custo?

Para formular o problema linearmente, podemos introduzir varidveis xij que
representam o peso dos produtos encaminhados do depdsito i ao cliente j, e
queremos resolver

minimiza Z CijXij, (1.11)
ie(ml],jen]
sujeito a Z xij < ay, para todo fornecedor i € [m], (1.12)
jem]
Z Xij = by, para todo cliente j € [n], (1.13)
ie[m]
xij > 0, para todo fornecedor 1 € [m] e cliente j € [n].

Concretamente, suponha que temos a situagao da figura 1.1. A figura mostra

Cliente 1 Cliente 1

3 5
Fornecedor 1 Fornecedor 1

\] Cliente 2 Cliente 2
/ 3
2

Fornecedor 3

Fornecedor 3

Cliente 3 Cliente 3

Figura 1.1.: Esquerda: Instancia do problema de transporte. Direita: Solugao
6tima correspondente.

as toneladas disponiveis de cada fornecedor, a demanda (em toneladas) de
cada cliente e as distancias (em km) entre eles. O transporte custa R$ 1000

12

1.1. Exemplo

por km e tonelada. Observe que um transporte do fornecedor 1 para cliente
3 e fornecedor 3 para cliente 1 ndo é possivel. Nos usaremos uma distancia
grande de 100 km nesses casos (uma outra possibilidade é usar restrigoes x13 =
x37 = 0 ou remover as varidveis x13 e x31 do modelo).
minimiza 3x11 +x12 +100%13 + 4x21 + 2x22
+4x33 + 100x37 4+ 3x32 + 3x33,
sujeito a X171 +x12+%13 <5
x21 +x22 +%x23 <7,
x31 + %32 +x33 < 3,
X11 +X21 +Xx31 =7,
X12 +X22 +x32 = 3,
x13 + x23 +x33 =5,
Xij > 0.
Qual seria a solugao 6tima? A figura 1.1 (direita) mostra o nimero 6timo de
toneladas transportadas. O custo minimo é 46 (em R$ 1000). O

Podemos simplificar a descricdo de um programa linear usando notagdo matri-
cial. Com A := (ay;) € R™* ™, b= (b;) € R™, ci=(ci) e R ex = (x;) € R"
o problema 1.2-1.6), pode ser escrito de forma
opt ctx
sujeito a aix ;i by ie[m]

(Denotamos com a; a i-ésima linha e como @ a j-ésima coluna da matriz A.)
Em caso todas restrigoes usam a mesma relagao <, > ou = podemos escrever

opt c'x opt c'x opt c'x

sujeito a Ax=b

sujeito a Ax <b sujeito a Ax>Db ou)

Exemplo 1.4 (Problema do Ildo em forma matricial)
O problema 1.1 em forma matricial é

maximiza (0.20.5)(c s)*
1 15 150
oit 50 50 c) 6000
sujeito a 10)= 80
0 1 60
(cs)>0.

13

S U W N =

O~ O U i Wi+

1. Introdugao

Observagdo 1.1 (“Programar” linearmente)

Como explicado na segao histérica 1.4, o termo “programagao” em “pro-
gramagao linear” se refere a “agendamento” ou “planejamento”. Porém,
formular programas lineares é uma atividade muito similar & programacao
de computadores. Um programa linear consiste de declaracoes de varidveis,
constantes, uma funcao objetivo e uma série de restrigoes. Podemos escrever
uma programa linear de forma mais “computacional” para enfatizar a simila-
ridade com programas. No caso do problema de Hitchcock 1.3, por exemplo,
podemos escrever

var Xy, i€ [mljen] { declaracao varidveis }
const aj, i€ [m] { estoques }

const by, j€] { demandas }

Max 3 icim)jem] SN

st 2icm Xy < ai, i€[m] { limite estoque }

st 2 ierm Xij =bj, j€ Ml { satisfacdo demanda }

Podemos ainda, igual a programagao, introduzir nomes para fungoes lineares
para facilitar a formulacdo. Por exemplo enviado(i) = Zje[n] Xij € a quanti-
dade total enviado pelo i-ésimo fornecedor. Similarmente, podemos escrever
recebido(j) = Zie[n] xij para a quantidade total recebida pelo j-ésimo cliente.
Com isso nosso “programa’ linear fica

var Xy, i€ [mljeMn] { declaracao varidveis }
const ai, i€ [ml { estoques }
const by, je€ M { demandas }

function enviado(i) = Zje[n] Xij

function recebido(j) = 3 ;¢ Xij

max Zie[m],ie[n] CijXij

st enviado(i) < a;, i€ [m] { limite estoque }

st recebido(j) =b;, j € [n] { satisfacao demanda }

Vamos conhecer linguagens reais para especificar programas lineares no parte
pratico. Um exemplo é AMPL! explicado no appéndice B. A nossa especi-
ficagao acima pode ser vista como “pseudo-cédigo” de uma linguagem atual
como AMPL. O

LA sigla AMPL significa “A mathematical programming language”. O nome também
sugere uma funcionalidade “ampla” (“ample” em inglés).

14

1.2. Formas normais

1.2. Formas normais

Conversoes

E possivel converter
e um problema de minimizagao para um problema de maximizagao
Lt t
minc x <= —max—Ccx

(o sinal — em frente do max é uma lembranga que temos que negar a
solugéo depois.)

e uma restricdo “>” para uma restrigao “<”

aix > by &= —aix < —b;

e uma igualdade para desigualdades

aix = by &= a;x < b; A a;x > b;
Conversoes

e uma desigualdade para uma igualdade

aix <b < aix +xn+1 =bi Axny1 >0
aix > b &= aix —xXny1 =bi Axpnq1 >0

usando uma nova varidvel de folga ou excesso xny1 (inglés: slack and
surplus variables).

e uma variavel x; sem restricoes para duas positivas
X7 >0Ax; >0
substituindo x; por x;” —x;

Essas transformagoes permitem descrever cada problema linear em uma forma
padrao.

15

1. Introdugao

Forma padrao

maximiza ctx,

sujeito a Ax <b,

x > 0.
As restrigoes x > 0 se chamam triviais.
Exemplo 1.5
Dado o problema
minimiza 3x1 — 5%3 + x3,

sujeito a X1 —x2 —x3 >0,
5x1 4 3x2 + x3 < 200,
2x1 4 8x2 + 2x3 < 500,
X1,%2 > 0.
vamos substituir “minimiza” por “maximiza”, converter a primeira desi-
gualdade de > para < e introduzir x3 = x; — x5 com duas varidveis positivas
X3 e Xx; para obter a forma padrao
maximiza —3x; +5x2 — X3 +x3,
sujeito a —x1 +x2+x3 —x3 <0,
5%1 4 3x2 +x3 — x5 < 200,
2x7 4 8x2 + 2x3 — 2x5 < 500,
X1,X2,X3,%3 > 0.

Em notacao matricial temos

5 0 111 -1
c=| | b=(20]; A=[5 3 1 -
500 2 08 2 2

Defini¢ao 1.1 (Solugoes vidveis, invidveis e 6timas)
Para um programa linear P em forma normal, um vetor x € R™ é uma solugdo
vidvel, caso Ax < b e x > 0. P é vidvel caso existe alguma solucao viavel,

caso contrario P é invidvel. Um vetor x* € R™ é uma solugao dtima caso
ctx* = max{ctx | Ax < b,x > 0}.

16

1.3. Solugao por busca exaustiva

Definigao 1.2 (Programas ilimitados)
Uma programa linear em forma normal é ilimitado caso existe um v € R tal
que para todo w > v existe uma solucio vidvel x com ctx > w.

1.3. Solucao por busca exaustiva

Uma observagao importante na solucao de um programa linear é que a solugao
Otima, caso exista, somente ocorra na borda de regiao das solugoes vidveis
(compara com a figura na pagina 9). Mais especifico a solu¢do Gtima ocorre
num vértice (ou ponto extremo) dessa regido, definido pela intersecio de n
restrigbes linearmente independentes. Isso justifica tratar a programacao li-
near como problema de otimizagao combinatéria, porque temos um ntmero
finito de (:) candidatos para solugao 6timas. Procurando o melhor entre
todos candidatos nos também fornece um algoritmo (muito ineficiente) para
encontrar uma solugao 6tima de um programa linear, caso exista.

Definigao 1.3
Um conjunto C C R™ é convexo, caso para todo par de pontos x,y € C a sua
combinagdo convexa Ax + (1 — A)y para A € [0, 1] também pertence a C.

Proposigao 1.1
A regifo de solugoes vidveis V = {x € R™ | Ax < b} definido por um programa
linear é convexa.

Prova. Sejam x,y € V. Entao
AMX+(T—A)Yy) =AAx+ (1 —AAYy <Ab+ (1 —-A)b=b.

Definigao 1.4
Um ponto x € C de uma regiao C C R™ é um vértice ou ponto ertremo, caso
nao existe um y #0 tal quex +y € Cex—y € C.

Proposigao 1.2
Caso existe uma tnica solucao étima de max{ctx | x € V} ela é um vértice de
V.

Prova. Supoe que a solugao étima x* nao é um vértice de V. Entao existe
um y tal que x +y € Vex—y € V. Por x* ser a tnica solugao étima
temos ¢t (x* +y) < c¢'x* e ct(x* —y) < ¢'x*, ie., cty < 0e —cty < 0, uma
contradicao. |

17

1. Introdugao

Proposigao 1.3
Um vértice de V = {x € R" | Ax < b} é a intersecao de n restri¢coes linearmente
independentes.

Prova. Para um vértice v € V, seja A, a matriz formado das linhas a; de A

tal que a;v = by, e by, os lados direitos correspondentes.

Sejav € V aintersegao de n restrigdes linearmente independentes, i.e. posto(A,,) =
n. Supde v nado é um vértice. Logo existe um y tal que x +y,x —y € V que
satisfazem A, (x +y) < by, e A,(x —y) < b,. Como A,x = b, obtemos
A,y <0e—A,y <0, ie A,y =0, uma contradicio com posto(A,) = n.

Agora seja v € V um vértice e supde posto(A,) < n, i.e. existe um y tal que
A,y = 0. Para as linhas a; em A com a;v < b; existe um 6 > 0 tal que

ai(v+9dy) < bjeailv—->oy) <b;
e logo
Alv+dy)<beA(v—>5y) <b,

porque A,y = 0, em contradigdo com o fato que v é um vértice. |

Proposicao 1.4
Caso existem muiltiplas solucoes 6timas de max{ctx | x € V} e V é limitado,
um vértice de V é uma solugao étima.

7

Prova. Por indugdo sobre n — posto(A,). Caso n — posto(A,) = 0, v é
um vértice pela proposicao (1.3). Para n — posto(A,) > 0 existe um y com
A,y =0. Seja p = max{t | v+ ty € V}. O valor u existe porque V é limitado
(e compacto). Como a;(v+ py) < by para cada linha i temos que

w = min{(b; — a;v)/ay | ayy > 0} (+)

Seja 1* o indice da linha que satisfaz (+) com igualdade. Define v/ =v + py.
Temos A,V = Ayv+ uA,y = A,v = b,, logo A,/ contém as linhas de A, e
pelo menos a linha a;- a mais. Ainda, como A,y = 0 mas a;-y # 0 temos que
posto(A,/) > posto(A,). Logo, pela hipétese da indugao, existe um vértice
que é uma solugao 6tima. |
Observagao 1.2

Caso existem multiplas solucoes 6timas de max{ctx | x € V}, mas V nao é

limitado, é possivel que nao existe um vértice 6timo. Um exemplo € o sistema
max{x; | (x1,%2) € R%,0 <x; <1} O

Usando os resultados acima, obtemos um algoritmo (muito ineficiente) para
encontrar uma solugdo étima de um programa linear (limitado).

18

0O Ui W

— = =
N = OO

1.4. Notas historicas

x* = null
for todas (’:11) selegboes de n restrigcoes lin. indep.

determine a intersecao x das m restricoes

if Ax<b e ctx>ctx* then

x*i=x

end if
end for
if x* #null then

return ¢ ‘Solucao 6tima é x* ou sistema ilimitado
else

return ‘‘Nao possui solucao ou nao possui vértice
end if

v

A

1.4. Notas histdricas

Histéria da programacao linear

e Jean Baptiste Joseph Fourier (1826): Método de re-
solver um sistema de desigualdades (eliminagao de
Fourier-Motzkin) [15].

e Leonid Kantorovich (1939): Programacao linear.

e George Bernard Dantzig (1948): Método Simplex.

e John von Neumann: Dualidade. Jean Baptiste
Joseph Fourier
e Leonid Khachiyan (1979): Método de ellipsoides. (*1768, +1830)

e Narendra Karmarkar (1984): Métodos de pontos inte-
riores.

Pesquisa operacional, otimizacao e “programacao”

19

1. Introdugao

e “The discipline of applying advanced analytical
methods to help make better decisions” (INFORMS)

e O nome foi criado durante a segunda guerra mundial,
para métodos cientificos de analise e predigao de pro-
blemas logisticos.

e Hoje se aplica para técnicas que ajudam tomar de-
cisoes sobre a execucao e coordenacao de operacoes
em organizacoes.

e Problemas da pesquisa operacional sao problemas de George Bernard
Dantzig (*1914,

otimizacao. +2005)

e “Programacdo” # “Programagao”

— Nao se refere a computagao: a nogao significa
“planejamento” ou “agendamento”.

Técnicas da pesquisa operacional

e Em geral: Técnicas algoritmicas conhecidas como

— Modelagem matemadtica (equagoes, igualdades, desigualdades, mo-
delos probabilisticos,...)

— Algoritmos gulosos, randomicos, ...; programagcao dindamica, linear,
convexo, ...

— Heuristicas e algoritmos de aproximacao.

e Algumas dessas técnicas se aplicam para muitos problemas e por isso
Sa0 mais comuns:

— Exemplo: Programacao linear.
1.5. Exercicios

(Solugoes a partir da pdgina 205.)

Exercicio 1.1
Na definicao da programacao linear permitimos restri¢oes lineares da forma

ai1X1 + ai2X2 + - -+ + QinXn D by

com < € {<, =, >}. Por que ndo permitimos ;€ {<, >} também? Discute.

20

http://www-history.mcs.st-andrews.ac.uk/Biographies/Dantzig_George.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Dantzig_George.html

1.5. Exercicios

Exercicio 1.2
Procura a tabela nutricional de algum restaurante e resolve o problema da
dieta (exemplo 1.2).

Exercicio 1.3

Um investidor pode vender agoes de suas duas empresas na bolsa de valores,
mas estd sujeito a um limite de 10.000 operagoes didrias (vendas por dia).
Na cotacao atual, as acoes da empresa A valorizaram-se 10% e agora cada
uma vale R$ 22. J4 a empresa B teve valorizacao de 2% e cada agdo vale R$
51. Sabendo-se que o investidor possui 6.000 agoes da Empresa A e 7.000 da
empresa B, maximize seu lucro na BOVESPA e diga qual o lucro obtido.

Exercicio 1.4

Dona Maria adora ver seus netinhos Marcos, Renato e Vinicius bem alimen-
tados. Sempre na hora de cozinhar ela leva em conta o quanto eles gostam de
cada prato para fazé-los comer o maximo possivel. Marcos gosta da lasanha
e comeria 3 pratos dela apés um prato de sopa; Renato prefere lanches, e
comeria 5 hamburgueres, ignorando a sopa; Vinicius gosta muita da massa a
bolonhesa, e comeria 2 pratos apds tomar dois pratos de sopa. Para fazer a
sopa, sao necessarios entre outros ingredientes, 70 gramas de queijo por prato
e 30 gramas de carne. Para cada prato de lasanha, 200 gramas de queijo, e
100 gramas de carne. Para cada hamburguer sao necessarios 100 gramas de
carne, e 100 gramas de queijo. Para cada prato de massa a bolonhesa sao
necessdrios 100 gramas de carne e 30 gramas de queijo (ralado para por sobre
a massa). Seus netos vieram visitd-la de surpresa, e tendo ela somente 800
gramas de carne e 1000 gramas de queijo em casa, como ela poderia fazé-los
comer o maior nimero de pratos, garantindo que cada um deles comerd pelo
menos dois pratos, e usando somente os ingredientes que ela possui?

Exercicio 1.5

A empresa “Luz para o mundo” produz dois tipos de lampadas, cada um com
partes metalicos e partes eléctricos. A gerencia quer saber com quantas uni-
dades produzidas por tipo o lucro é maximizado. A producao de uma unidade
de produto 1, precisa uma unidade de partes metélicos e duas unidades de
componentes eléctricos. A produgdo de uma unidade de produto 2, precisa
trés unidades de partes metalicos e duas unidades de componentes eléctricos.
A empresa tem um estoque de 200 unidades de partes metélicos e 300 unida-
des de componentes eléctricos. Cada unidade de produto um tem um lucro
de R$ 1 e cada unidade de produto 2, até um limite de 60 unidades, um lucro
de R$ 2. (Cada unidade acima de 60 no caso do produto 2 ndo rende nada.)

Exercicio 1.6
A empresa “Janela jéia” com trés empregados produz dois tipos de janelas:
com molduras de madeira e com molduras de aluminio. Eles tém um lucro de

21

1. Introdugao

Figura 1.2.: Rede de distribuigao de uma empresa de aco.

60 R$ para toda janela de madeira e 30R$ para toda janela de aluminio. Joao
produz as molduras de madeira. Ele consegue produzir até seis molduras por
dia. Sylvana é responsavel pelas molduras de aluminio, e ela consegue produzir
até quatro por dia. Ricardo corta o vidro e é capaz de produzir até 48 m? por
dia. Uma janela de madeira precisa 6m? de vidro, e uma de aluminio §m?.
A empresa quer maximizar o seu lucro.

Exercicio 1.7

Uma empresa de ago tem uma rede de distribuicao conforme figura 1.2. Duas
minas Py e P, produzem 40t e 60t de mineral de ferro, respectivamente, que séo
distribuidos para dois estoques intermedidrios S1 e S,. A planta de produgao
P tem uma demanda dem 100t de mineral de ferro. A vias de transporte tem
limites de toneladas de mineral de ferro que podem ser transportadas e custos
de transporte por tonelada de mineral de ferra (veja figura). A direcdo da
empresa quer determinar a transportagao que minimiza os custos.

Exercicio 1.8
Um importador de Whisky tem as seguintes restrigoes de importagao

e no méaximo 2000 garrafas de Johnny Ballantine por 70 R$ cada uma,
e no méaximo 2500 garrafas de Old Gargantua por 50 R$ cada uma,
e no maximo 1200 garrafas de Misty Deluze por 40 R$ cada uma.

Dos Whiskies importados ele produz trés misturas A, B, C, que ele vende por
68 R$, 57 RS e 45 RS, respectivamente. As misturas sao

e A: no minimo 60% Johnny Ballantine, no maximo 20% Misty Deluxe,

22

1.5. Exercicios

e B: no minimo 15% Johnny Ballantine, no méximo 60% Misty Deluxe,

e C: no méximo 50% Misty Deluxe.

Quais seriam as misturas étimas, e quantas garrafas de cada mistura devem
ser produzidas para maximizar o lucro?

Observagoes:

e Use como varidveis o nimero de garrafas X ; da marca m usadas na
mistura i.

e Desconsidere a integralidade das garrafas.

Exercicio 1.9

A empresa de televisao “Boa vista” precisa decidir quantas TVs de 297e 317¢la
vai produzir. Uma analise do mercado descobriu que podem ser vendidas no
maximo 40 TVs de 29”e 10 de 31”por més. O trabalho maximo disponivel
por més é 500h. A producao de um TV de 29”precisa 20h de trabalho, e um
TV de 31”precisa 10h. Cada TV de 29”rende um lucro de R$ 120 e cada de
317um lucro de R$ 80.

Qual a producao étima média de cada TV por més?

Exercicio 1.10 (da Costa)

Um certo 6leo é refinado a partir da mistura de outros dleos, vegetais ou nao
vegetais. Temos 6leos vegetais V1 e V2 e dleos nao vegetais NV1 NV2 NV3.
Por restrigoes da fabrica, um méaximo de 200 ton. de éleos vegetais podem ser
refinados por més, e um méaximo de 250 ton. de 6leos nao vegetais. A acidez
do bleo desejado deve estar entre 3 e 6 (dada uma unidade de medida) e a
acidez depende linearmente das quantidades/acidez dos dleos brutos usados.
O prego de venda de uma tonelada do dleo é R$ 150. Calcule a mistura que
maximiza o lucro, dado que:

Oleo Vil V2 NV1I NV2 NV3
Custo/ton 110 120 130 110 115
Acidez 88 6.1 20 42 50

Exercicio 1.11 (Campélo Neto)

Um estudante, na véspera de seus exames finais, dispoe de 100 horas de estudo
para dedicar as disciplinas A, B e C. Cada um destes exames é formado por
100 questoes, e o estudante espera acertar, alternativamente, uma questao
em A, duas em B ou trés em C, por cada hora de estudo. Suas notas nas
provas anteriores foram 6, 7 e 10, respectivamente, e sua aprovagdo depende
de atingir uma média minima de 5 pontos em cada disciplina. O aluno deseja
distribuir seu tempo de forma a ser aprovado com a maior soma total de notas.

23

1. Introdugao

Exercicio 1.12 ([6])

Moe esta decidindo quanta cerveja Duff regular e quanta cerveja Duff Forte
encomendar a cada semana. Duff regular custa a Moe $1 por caneco e ele
a vende por $2 por caneco; Duff Forte custa $1.50 por caneco e ele vendo
por $3 por caneco. Entretanto, como parte de uma complicada fraude de
marketing, a companhia Duff somente vende um caneco de Duff Forte para
cada dois canecos ou mais de Duff regular que Moe compra. Além disso,
devido a eventos passados sobre os quais é melhor nem comentar, Duff nao
venderd Moe mais do que 3000 canecos por semana. Moe sabe que ele pode
vender tanta cerveja quanto tiver.

Formule um programa linear em duas varidveis para decidir quanto de Duff
regular e quanto de Duff Forte comprar, para maximizar o lucro de Moe.

Exercicio 1.13 ([6])

A companhia de produtos caninos oferece duas comidas para cachorro: Frisky
Pup e Husky Hound, que sao feitas de uma mistura de cereais e carne. Um
pacote de Frisky Pup requer 1 quilo de cereal e 1.5 quilo de carne, e é vendido
por $7. Um pacote de Husky Hound usa 2 quilos de cereal e 1 quilo de carne,
e é vendido por $6. O cereal bruto custa $1 por quilo e a carne bruta, $2
por quilo. H4 também o custo de $1.40 para empacotar o Frisky Pup e $0.60
para o Husky Hound. Um total de 240000 quilos de cereal e 180000 quilos de
carne estao disponiveis a cada més. O tUnico gargalo de produgao estd no fato
de a fabrica poder empacotar apenas 110000 pacotes de Frisky Pup por més.
Desnecessario dizer, a geréncia gostaria de maximizar o lucro.

Formule o problema como um programa linear em duas variaveis.

Exercicio 1.14 ([14])

Formule como problema de otimizacao linear e resolve graficamente.

Uma empresa de ago produz placas ou canos de ferro. As taxas de produgao
sdo 200t/h para placas e 140t/h para canos. O lucro desses produtos e 25%/t
para placas e 308/t para canos. Considerando a demanda atual, os limites de
producao sao 6000t de placas e 4000t de canos. Na semana atual sao 40h de
tempo de producao disponivel. Quantas toneladas de placas e canos devem
ser produzidas para maximizar o lucro?

Exercicio 1.15 ([14])

Formule como problema de otimizagao linear.

Uma pequena empresa aérea oferece um voo de Pelotas, com escala em Porto
Alegre para Torres. Logo tem trés tipos de clientes que voam Pelotas—Porto
Alegre, Pelotas—Torres e Porto Alegre—Torres. A linha também oferece trés
tipos de bilhetes:

e Tipo A: bilhete regular.

24

e Tipo B: sem cancelamento.

1.5. Exercicios

e Tipo C: sem cancelamento, pagamento trés semanas antes de viajar.

Os pregos (em R$) dos bilhetes sao

Pelotas—Porto Alegre

Porto Alegre—Torres

Pelotas—Torres

A 600
B 440
C 200

320 720
260 560
160 280

Baseado na experiéncia com esse v60, o marketing tem a seguinte predicao de

passageiros:

Pelotas—Porto Alegre

Porto Alegre—Torres

Pelotas—Torres

A 4
B 8
C 22

8 3
13 10
20 18

O objetivo da empresa e determinar o namero 6timo de bilhetes para vender
de cada tipo, respeitando um limite de 30 passageiros em cada voo e o limite
dos passageiros previstos em cada categoria, que maximiza o lucro.

Exercicio 1.16
Resolva graficamente.

maximiza

sujeito a

(a) Qual a solugao 6tima?

(b) Qual o valor da solugao 6tima?

4x1 + %2,
—x1+%x2 <2,
x7 + 8x2 < 36,
x2 <4,

x1 <4.25,
x1,%2 > 0.

25

1. Introdugao

Exercicio 1.17
Escreve em forma normal.

minimiza z = —5x71 — 5% — 5x3,
sujeito a —6x7 —2x2 — 9x3 <0,
— %1 —3x2 + 3x3 = 3,
Xj > 0.
maximiza z = —6x7 — 2x2 — 6x3 + 4x4 + 4xs,
sujeito a —3x1 — 8x2 — 6X3 — /X4 — 5Xx5 = 3,

5x1 —7x2 + 7x3 + 7x4 — 6x5 < 6,
1x1 — 9%2 + 5x3 + 7x4 — 10x5 = —6,
Xj Z 0.

maximiza z=7x1 +4x2 + 8x3 + 7x4 — 9xs,
sujeito a —4x7 —Ixg —7x3 — 8x4 + 6x5 = —2,
X1 +4x2 + 2x3 + 2x4 — 7X5 > —7,
—8x1 + 2% + 8x3 — 6x4 — /X5 = —7,
xj > 0.

minimiza z = —6x1 + 5x2 4+ 8x3 + 7x4 — 8xs,

sujeito a —5x7 —2x2 +x3 — Ixq4 — 7x5 = 9,
7x1 + 7x2 + 5x3 — 3x4 + x5 = =8,
—5x7 —3%x2 —5%x3 + x4 + 8x5 < 0,
xj > 0.

26

2. O método Simplex

Graficamente, é dificil resolver sistemas com mais que trés varidveis. Portanto
¢é necessario achar métodos que permitam resolver sistemas grandes. Um
dos mais importantes é o método Simples. Nés vamos estudar esse método
primeiramente através da aplicagao a um exemplo.

2.1. Um exemplo

Comegamos com o seguinte sistema em forma padrao:

Exemplo: Simplex

maximiza z = 6X1 + 8x2 + 5x3 + Ix4,
sujeito a 2x1 +x2 +x3 + 3x4 <5,
X1+ 3x2 + X3 + 2x4 < 3,
X1,X2,X3,%X4 > 0.

Introduzimos variaveis de folga e reescrevemos as equagoes:

Exemplo: Com variaveis de folga

maximiza z = 6x7 + 8x2 + 5x3 + 9x4, (2.1)
sujeito a w1 =5—2x1 — X2 — X3 — 3x4,
%) 23*7(] *3)(2*)(3 *2X4, (2.3)

X1,X2yX3, X4, W1, W) > 0.

Observagao 2.1

Nesse exemplo é facil obter uma solugao viavel, escolhendo x1 = x2 = x3 =
x4 = 0. Podemos verificar que w; = 5 e wy = 3 e todas as restrigoes sao
respeitadas. O valor da funcao objetivo seria 0. Uma outra solucao vidvel é
x1=1,%x2 =x3 =x4 =0, w; =3, w, =2 com valor z = 6. O

27

2. O método Simplex

Com seis variaveis e duas equacoes lineares independentes o espago de solugoes
do sistema de equagoes lineares dado pelas restricoes tem 6 — 2 = 4 graus de
liberdade. Uma solugdo vidvel com esse nimero de varidveis nulas (igual a
0) se chama uma solugao bdsica vidvel. Logo nossa primeira solugao acima é
uma solugao bésica viavel.

A idéia do método Simplex é percorrer solucoes bésicas vidveis, aumentando
em cada passo o valor z da funcao objetivo.

Logo nosso proximo objetivo é aumentar o valor da fungao objetivo z. Para
esse fim, podemos aumentar o valor das varidveis xi, X2, X3 ou X4, pois o
coeficiente delas é positivo. Escolhemos x4, porque essa variavel tem o maior
coeficiente. Nao podemos aumentar x4 arbitrariamente: Para respeitar as
restricoes wi, w2 > 0 temos os limites

Limites

w1 =5—-3x4 >0 x4 <5/3
wy=3—-2x4 >0 &= x4 <3/2

ou seja x4 < 3/2. Aumentando x4 o maximo possivel, obtemos x4 = 3/2 e
wy = 0. Os valores das demais varidveis nao mudam. Essa solugao respeita
novamente todas as restrigoes, e portanto é wvidvel. Ainda, como trocamos
uma varigvel nula (x4) com uma outra nao-nula (w;) temos uma nova solugao
bésica viavel

Solucao basica viavel

X1 =%x2=x3=0;x4 =3/2,w; =1/2;w; =0

com valor da fungao objetivo z = 13.5.

O que facilitou esse primeiro passo foi a forma especial do sistema de equagoes.
Escolhemos quatro varidveis independentes (x7, X2, X3 e x4) e duas varidveis
dependentes (Wq e wy). Essas varidveis sdo chamadas ndo-bdsicas e bdsicas,
respectivamente. Na nossa solugao béasica vidvel todas varidveis nao-basicas
sao nulas. Logo, pode-se aumentar uma variavel nao-bésica cujo coeficiente
na fungéo objetivo seja positivo (para aumentar o valor da func¢do objetivo).
Inicialmente tem-se as seguintes variaveis béasicas e nao-bésicas

B={wi,wal N ={x1,%x2,x3,x4}.
Depois de aumentar x4 (e consequentemente zerar wy) podemos escolher

B ={w1,x4}; N = {x1,%2,x3, W2 }.

28

2.1. Um exemplo

A variavel x4 se chama varidvel entrante, porque ela entra no conjunto de
varidveis basicas B. Analogamente w, se chama varidvel sainte.

Para continuar, podemos reescrever o sistema atual com essas novas variaveis
basicas e ndo-bésicas. A segunda restrigdo 2.3 é facil de reescrever

Wy =3—%x1] —3X2—X3—2x4 &= 2x4 =3 —%x7] —3x2 — X3 — W3
— X4 :3/271/2)(1 73/2X271/2X37]/2W2

Além disso, temos que reescrever a primeira restricao 2.2, porque a varidvel
bésica wi depende de x4 que agora é basica também. Nosso objetivo é escrever
todas varidveis bésicas em termos de varidveis nao-basicas. Para esse fim,
podemos usar combinacoes lineares da linhas, que eliminam as variaveis nao-
bésicas. Em nosso exemplo, a combinacao (2.2)—3/2(2.3) elimina x4 e resulta
em

w1 —3/2wy =1/2—1/2x1 +7/2x2 +1/2x3

e colocando a variavel nao-basica w; no lado direito obtemos
wy =1/2—1/2x1 +7/2x2 + 1/2x3 + 3/2w3.

Temos que aplicar uma operacao semelhante a funcao objetivo que ainda de-
pende da varidvel bésica x4. Escolhemos (2.1)—9/2(2.3) para obter

z=27/2+3/2x7 —11/2x2 +1/2x3 — 9/2w;.

Novo sistema

maximiza z2=27/2+3/2x1 —11/2x2 +1/2x3 — 9/2w3,
sujeito a wi =1/2—1/2x1 +7/2x2 + 1/2x3 + 3/2w3,
X4 =3/2—1/2x1 —3/2x5 — 1/2x3 — 1/2w3,

X1yX2,X3, X4, W1, W2 > 0.

que obtemos apds uma operacao de trocar as variaveis x4 e w. Essa operagao
se chama um pive. Observe que no novo sistema é facil recuperar toda
informacao atual: zerando as varidveis nao-béasicas obtemos diretamente a
solucdo x1 =x2 =x3 =wy =0, wy =1/2 e x4 = 3/2 com fungao objetivo
z=27/2.

Antes de continuar “pivotando” introduzimos uma forma mais simples de
escrever o sistema

29

2. O método Simplex
Dicionario

z =27/2 +3/2x7 —11/2x; +1/2x3 —9/2w>
wy =1/2 —=1/2x¢ +7/2x; +1/2x3 +3/2w,
xg =3/2 —1/2x7 —-3/2x2 —1/2x3 —1/2w,

que se chama diciondrio (inglés: dictionary).

Excurso 2.1

Alguns autores usam um tableau em vez de um diciondrio. Para n varidveis e
m restri¢gdes, um tableau consiste em n+ 1 colunas e m+ 1 linhas. Igual a um
diciondrio, a primeira linha corresponde com a fungao objetivo, e as restantes
linhas com as restrigoes. Diferente do dicionario a primeira coluna contém os
constantes, e as restantes colunas correspondem com as variaveis, incluindo
as basicas. Nosso exemplo acima em forma de tableau é

base

X1 X2 X3 X4 W1 W)
27/2[3/2 =112 12 0 0 92
1/211/2 =7/2 —-1/2 0 1 =3/2
3/2 112 32 12 1 0 12

¢

No proximo passo podemos aumentar somente x; ou x3 porque somente elas
tém coeficientes positivos. Aumentado x; temos que respeitar x; < 1 (da
primeira restrigdo) e x; < 3 (da segunda). Logo a primeira restri¢do é mais
forte, x1 é a variavel entrante, wy a variavel sainte, e depois do pivo obtemos

Segundo passo

z =15 —3w; +5xo +2x3
x; =1 2wy +7x2 +Xx3 +3w>
x4 =1 +wq —5x%5 —X3 —ZWZ

No préximo pivo x, entra. A primeira restricdo néo fornece limite para xo,
porque o coeficiente de x, é positivol Mas a segunda x, < 1/5 e x4 sai da
base. O resultado do pivo é

30

2.1. Um exemplo

Terceiro passo

z =16 —2wq —X4 +Xx3 —2w>
x1 =12/5 —-3/5w; —7/5x4 —2/5x3 +1/5w>
x, =1/5 +1/5w7 —1/5x4 —1/5x3 —2/5w;

O proximo pivo: x3 entra, X, sai:

Quarto passo

z =17 —w; —2x4 —-bxo —4w,
X] =2 —w; —x4 +2x2 +ws
x3 =1 4w —x4 —=5x; —2w,

Agora, todos coeficientes da func@o objetivo sao negativos. Isso significa, que
nao podemos mais aumentar nenhuma variavel nao-béasica. Como esse sistema
é equivalente ao sistema original, qualquer solugao tem que ter um valor menor
ouigual a 17, pois todas as varidveis sao positivas. Logo chegamos no resultado
final: a solugao

Wy =x4 =%X2=wy =0;x1 =2;x3 =1

com valor objetivo 17, é étimal

Concluimos esse exemplo com mais uma observagdo. O numero de solugdes
bésicas vidveis é limitado. Em nosso exemplo, se escolhemos um subconjunto
de quatro varidveis nulas, as duas equacoes determinam as variaveis restantes.
Logo temos no méximo (§) = 15 solucdes bésicas vidveis. Em geral, com
m equagoes e n variaveis, uma solugao bésica vidvel possui n — m varidveis
nulas e o nimero delas é limitado por (nfm). Portanto, se aumentamos em
cada pivo o valor da fungao objetivo, o método termina em no maximo (nfm)
passos.

Exemplo 2.1 (Solugao do problema do Ildo)
Exemplo da solugao do problema do Ildo na pagina 9.

0/1 +1/5¢ +1/2s
wy = 150 —c —3/2s
wy; = 6000 —50c —50s
w3z = 80 —C

60 —s

N
|

Z
I

Pivo s—wy

31

2. O método Simplex

z= 30 +1/5¢ —1/2wy

w1 = 60 —C +3/2W4
wy = 3000 —50c 450wy
w3z = 80 —C

s= 60 —Wy

Pivo c-w,

z= 42 —1/5w; —1/5wy
c= 60 —W1 +3/2wy

wy = +50w; —25wy
w3z = 20 +w; —3/2wy
s= 60 —Wgy

O resultado é um lucro total de R$ 42, com os seguintes valores de varidveis:
c=60,s =60, w; =0, w, =0, w3 =20ewy =0. A interpretagao das
variaveis de folga é como segue.

e wi: Numero de ovos sobrando: 0.
e wy: Quantidade de agucar sobrando: 0 g.
e w3: Croissants ndo produzidos (abaixo da demanda): 20.

e wy: Strudels nao produzidos: 0.

2.2. O método resumido

Considerando n varidveis e m restrigoes:

Sistema inicial

maximiza z= Z CjXj,
j€Mm]
sujeito a D aix; < by i€ m],
j€m]
xj >0 jeml

32

2.2. O método resumido

Preparacao
Introduzimos variaveis de folga

Z aijX; + Xnti = bi, ie [m],
jem]

e escrevemos as variaveis de folga como dependentes das varidveis restantes

Xn4i = by — Z aijXj, ie [m].
jem]

Solucao basica viavel inicial
Se todos b; > 0 (o caso contrério vamos tratar na préxima se¢ao), temos uma
solucao bésica inicial

Xn+i = bi) ie [m]»
x; =0, j €Ml

Indices das variaveis

Depois do primeiro passo, os conjuntos de varidveis béasicas e nao-basicas mu-
dam. Seja B o conjunto dos indices das varidveis bésicas (ndo-nulas) e N o
conjunto das variaveis nulas. No comeco temos

B={n+1,n+2,...,n+m} N={1,2,...,n}

A forma geral do sistema muda para
z=z+) Gy,
jeEN
XiZBi*Zainj) ieB.
JEN

As barras em cima dos coeficientes enfatizam que eles mudam ao longo da
aplicacdo do método. Os coeficientes ¢; sao chamados custos reduzidos (ingl. re-
duced costs).

33

2. O método Simplex

Escolher variavel entrante (ingl. pricing)

Em cada passo do método Simplex, escolhemos uma varidvel ndo-bésica xy,
com k € N para aumentar o valor objetivo z. Isso somente é possivel para os
indices j tal que ¢; > 0, i.e.

{j€N|éj>0}.

Escolhemos um k desse conjunto, e xy é a variavel entrante. Uma heuristica
simples é a regra do maior coeficiente, que escolhe

k = argmax{c; | ¢; > 0,j € N}

Aumentar a variavel entrante
Seja xi a varidvel entrante. Se aumentamos Xy para um valor positivo, as
variaveis basicas tém novos valores

Xi = 61 — ik Xk ieB.

Temos que respeitar x; > 0 para 1 < i < n. Cada equacdo com aj, > 0
fornece uma cota superior para xy:

xk < bi/Qix.
Logo podemos aumentar xx ao maximo um valor

—1

= _ _ -1
. by Qix Qix
o= min — = | max — = [max —= > 0.
JEB @ik _ieB by ieB by
ik > “Lk>0

Podemos escolher a varidvel sainte entre os indices

{ie Blbi/ax = ol

2.3. Sistemas ilimitados

Como pivotar?

e Considere o sistema
z =24 —x1 +2x
X3 =2 —x1 +x2
Xqg =5 +x1 +4x2

34

2.4. Encontrar uma solugao inicial

e Qual a préxima solucao basica viavel?

e A duas equagOes nao restringem o aumento de x,: existem solucoes com
valor ilimitado.

2.4. Encontrar uma solucao inicial
Solucao basica inicial
e Nosso problema inicial é

maximiza z= E CjXj,
]

jen
sujeito a Z aijx; < by, i€ [ml],
jem]
xi > 0, i€ [n],

e com diciondrio inicial
z=Z+ E CjXj
j

XiZBi_Zdi)’Xj) ieB
jeN

Solucao basica inicial
e A solucgao bésica inicial desse dicionario é

x=(0---0by---by)t

e O que acontece se existe um by < 07

e A solugdo bésica nao é mais vidvel! Sabe-se disso porque pelo menos
uma varidavel bésica tera valor negativo.

35

2. O método Simplex

Sistema auxiliar

e Um método para resolver o problema: resolver outro programa linear
— cuja solugao fornece uma solugao bésica viavel do programa linear
original e

— que tem uma solugao bésica viavel simples, tal que podemos aplicar
o método Simplex.

maximiza zZ = —Xg,
sujeito a Z aijxj; —xo < by, 0<i<m,
j€n]
Xi > 0, ie [Tl]

Resolver o sistema auxiliar

e E facil encontrar uma solugao viavel do sistema auxiliar:
— Escolhe x; = 0, para todos i € [n].
— Escolhe % suficientemente grande: xo > maxie[m] —bi.
e Isso corresponde com um primeiro pivé com varidvel entrante xo apods
introduzir as varidveis de folga (“pseudo-pivd”).
— Podemos comegar com a solugao nao-viavel xo = X1 = ... =xp =
0.
— Depois aumentamos xo tal que a variavel de folga mais negativa
vire positiva.

— Xp e varidvel sainte x tal que k = argmax; ¢, —bs.

Exemplo: Problema original

maximiza z=—2x1 — X2,
sujeito a —x1 +x2 < -1,
—x1 —2x < =2,
x2 <1,
X1,%x2 > 0.

36

2.4. Encontrar uma solugao inicial

Exemplo: Problema auxiliar

maximiza Z = —Xg,
sujeito a —X1+x2—%0 < —1,
— X1 —ZXZ — X0 S —2,
x2—%x0 <1,

X0,X1,X2 2 0.

Exemplo: Dicionario inicial do problema auxiliar

z = —X0
w; =—1 +x7 —x2 +Xo0
wy =-=2 4x71 +2x2 +Xo
w3z =1 —X2 +Xo

e Observe que a solugao bésica nao é viavel.

e Para achar uma solucdo bésica vidvel: fazemos um primeiro pivé com
variavel entrante xo e varidvel sainte w.

Exemplo: Dicionario inicial viavel do sistema auxiliar

z =—2 +x1 +2x2 —w;

w; =1 —3xy 4w

Xo =2 —Xx7 —2x2 +w3

ws =3 —X1 —3x2 4wy

Primeiro pivo

z = 74/3 +X1 72/3W1 71/3W2
x2 =1/3 —1/3wq; +1/3w>
xo =4/3 —x1 +2/3wq; +1/3w>
wy =2 —X1 +WwWq

37

2. O método Simplex

Segundo pivo

z =0 —X0

x2 =1/3 —1/3wy; +1/3w;
x1 =4/3 —xo +2/3w; +1/3w;
wsy =2/3 +xo +1/3w; —1/3w,

Solugao étimal

Solucao do sistema auxiliar

e O que podemos concluir da solugao do sistema auxiliar?

e Obviamente, se o sistema original possui solu¢do, o sistema auxiliar
também possui uma solucao com xg = 0.

e Logo, apos aplicar o método Simplex ao sistema auxiliar, temos os casos
— %0 > 0: O sistema original nao tem solucao.

— xp = 0: O sistema original tem solucao. Podemos descartar x¢ e
continuar resolvendo o sistema original com a solucao basica vidvel
obtida.

e A solucao do sistema auxiliar se chama fase I, a solucdo do sistema
original fase II.

Sistema original

Reescreve-se a funcao objetivo original substituindo as varidveis bésicas do
sistema original pelas equacoes correspondentes do sistema auxiliar, de forma
que a fungao objetivo z nao contenha varidveis basicas. No exemplo, a fungao
objetivo é rescrita como:

Z:—2X1 — X2 :—3—W1 — W3.

z =-3 —w —Wy

x2 =1/3 —=1/3w; +1/3w,
x1 =4/3 +2/3w; +1/3w,
ws =2/3 +1/3w; —1/3w>

Nesse exemplo, o diciondrio original ji é 6timo!

38

2.5. Sistemas degenerados

Exemplo 2.2 (Sistema original inviavel)
O sistema

maximiza X1 + %2,
sujeito a X1 +x2 > 2,
x1+x2 <1,
x1,%2 > 0.

obviamente nao possui uma solugao vidvel. O dicionério inicial do sistema
auxiliar (apds normalizacdo e introducao das varidveis de folga) é

z= 0 —Xo
x3= —2 4+x1 +xX2 +Xo
x4 = 1 —X1 —X2 +Xp

e o pseudo-pivo xp—x3 produz

z= —2 +x1 +xX2 —Xx3
Xo= 2 —X1 —X2 +X3
X4 = 3 —ZX] —2X2 +x3

e 0 pivo x1—x4 produz o sistema 6timo

z= —1/2 —1/2x4 —1/2x3
xo= 1/2 +1/2x4 +1/2x3
x1= 3/2 —1/2xq4 —x2 +1/2x3

O valor 6timo do sistema auxiliar é —z = xo = 1/2, confirmando que o sistema
original nao possui solucao viavel. %

2.5. Sistemas degenerados
Sistemas, solucdes e pivos degenerados

e Um diciondrio é degenerado se existe um i € B tal que b; = 0.

Qual o problema?

Pode acontecer um pivo que nao aumenta a variavel entrante, e portanto
nao aumenta o valor da fun¢ao objetivo.

e Tais pivos sao degenerados.

39

2. O método Simplex

Exemplo 1

e Nem sempre é um problema.

z =5 +x3 —Xxq
X2 =5 —2x3 —3x4
x1 =7 —4xy
wz =0 +X4

e X, é a variavel sainte e o valor da fun¢ao objetivo aumenta.

Exemplo 2

z =3 —1/2x7 +2xp —3/2w;
X3 =1 71/27(] 71/2W1
wy, =0 +x1 —Xx2 4w

e Se a varidvel sainte é determinada pela equagao com b; = 0, temos um
piwd degenerado.

e Nesse caso, a varidvel entrante nao aumenta: temos a mesma solugao
depois do pivo.

Exemplo 2: Primeiro pivo
e Pivo: X2—W3
z =3 +3/2x7 2wy +1/2w,

X3 = 1 71/2)(1 71/2W1
x2 =0 —+x —wWz +W

e O valor da fungao objetivo nao aumentou!

Exemplo 2: Segundo pivd

e Pivo: x1-x3

z =6 —3x3 —2w; —Ww;
X1 =2 —2X3 —W1
X2 = 2 —2X3 —W>

e A segunda iteracao aumentou o valor da fungao objetivo!

40

2.5. Sistemas degenerados

Ciclos

e O pior caso seria, se entramos em ciclos.

E possivel? Depende da regra de selecao de varidveis entrantes e saintes.

Nossas regras
— Escolhe a varidvel entrante com o maior coeficiente.
— Escolhe a variavel sainte mais restrita.
— Em caso de empate, escolhe a varidvel com o menor indice.

Ciclos sao possiveis: O seguinte sistema possui um ciclo de seis pivos:
X1= W1, X2=W2, X37X1, X4—X2, W1—X3, W2—X4.

z = 10%x4 —57%2 —9%3 —24x4
0 —1/2x7 +11/2x2 +5/2x3 —9x4
Wy = 0 —]/2X1 +3/2X2 +1/2X3 —X4

1 —X1

Solucoes do problema

e Como resolver o problema?

e Trés solugoes
— Ignorar o problema.
— Método lexicogréfico.

— Regra de Bland.

Método lexicografico

e Idéia: O fato que existe um b; = 0 é por acaso.

e Se introduzimos uma pequena perturbacgao € < 1
— o problema desaparece

— a solugao serd (praticamente) a mesma.

41

2. O método Simplex

Método lexicografico

e Ainda é possivel que duas perturbagoes numéricas se cancelem.
e Para evitar isso: Trabalha-se simbolicamente.
e Introduzimos perturbacoes simbdlicas
< KK <K enm
em cada equagao.

e Caracteristica: Todo €; é numa escala diferente dos outros tal que eles
nao se cancelam.

Exemplo

Exemplo 2.3

Sistema original degenerado e sistema perturbado
z =4 +2x1 —Xx2 z =1 +2x7 —X2
w1 = 1/2 —X2 w1 =]/2 +€7 —X2
Wy = —2x1 +4x3 Wy = €7 —2x71 +4x2
w3z = X1 —3x2 wy = €3 +xq —3xy

Comparar perturbacoes

e A linha com o menor limite 1 = bj/aix (com xi entrante) define a
variavel sainte.

e A comparacao de limites respeita a ordem lexicografica das perturbagoes,
i.e. com

li =eirer + -+ eiex

L =fjrer + -+ fuey

temos l; < 1j se k <k’ ou k =k’ e ejx < fix.

42

2.5. Sistemas degenerados

Caracteristicas

e Depois de chegar no valor étimo, podemos retirar as perturbagoes €.

Teorema 2.1
O método Simplex sempre termina escolhendo as variaveis saintes usando
a regra lexicogréfica.

Prova. E suficiente mostrar que o sistema nunca serd degenerado. Neste caso
o valor da fungdo objetivo sempre cresce, e o0 método Simplex néo cicla. A
matriz de perturbagoes
€1
€2

€m

inicialmente tem posto m. As operagdes do método Simplex sdo operagdes
lineares que nao mudam o posto do matriz. Logo, em cada passo do método
Simplex temos uma matriz de perturbagoes

€11€7 €12€2 -+ €1m€m
€21€7 €22€2 -+ €2m€m
em1€1 €m2€2 - emm€Em

que ainda tem posto m. Portanto, em cada linha i existe pelo menos um ey; #
0 e assim uma perturbacgao diferente de zero e o sistema nao é degenerado. W

Exemplo 2.4

Solugao do exemplo 2.3.

Pivo x;-wy. z =1 +€2 —W) +3x2
wr =1/2 +e¢ —X2
X1]/262 —1/2W2 +2X2
w3 1/2e; +4e3 —1/2wy —x2

Pivo x;-ws. z =4 +5/2¢2 +3e3 —5/2w, —3ws
wy =1/2 +e7 —1/2¢; —e3 +1/2wy +w3
X1 = 3/2¢; +2e3 —3/2wy; —2ws
X; = 1/2¢; +e3 —1/2w; —ws

Regra de Bland

e Outra solugao do problema: A regra de Bland.

43

2. O método Simplex

e Escolhe como variavel entrante e sainte sempre a varidvel com o menor
indice (caso tiver mais que um candidato).

Teorema 2.2
O método Simplex sempre termina se as varidveis entrantes e saintes sao
escolhidas através da regra de Bland.

Prova. Prova por contradigao: Suponha que exista uma sequéncia de di-
cionarios que entra num ciclo Dy, D1,...,Dx_1 usando a regra do Bland.
Nesse ciclo algumas varidveis, chamadas instdveis, entram e saem novamente
da base, outras permanecem sempre como béasicas, ou como nao-basicas. Seja
Xt a variavel instavel com o maior indice. Sem perda de generalidade, seja x¢
a varidvel sainte do primeiro dicionario Dy. Seja x4 a varidvel entrante no Dy.
Observe que xs também ¢é instavel e portanto s < t. Seja D* o dicionério em
que x¢ entra na base. Temos a situagao xs entra

Do, D1, Dy,
X¢ sai
com os sistemas correspondentes

Do: D*:
Z:ZO+ZCij z:z*+Zc;‘xj
jeN jEN™
Xi:bifZaijxj ieB xi:bi*fZai*jxj ie B*
JEN jEN*

Como temos um ciclo, todas varidveis instaveis tem valor 0 e o valor da fungao
objetivo é constante. Logo zp = z* e para D* temos

z=2z"+ Z Xy =20 + Z i Xj- (2.4)

JEN™* JEN™*

Se aumentamos em Dy o valor do xs para y, qual é o novo valor da fungao
objetivo? Os valores das variaveis sao

Xs =y
;=0 jeN\{s} (2.5)
xi:bi—aisy ieB

44

2.5. Sistemas degenerados

e temos no sistema D7 o novo valor
zZ =2z + Csy (2.6)

Vamos substituir os valores das varidveis (2.5) com indices em AN* N B na
equagio (2.4). Para facilitar a substitui¢ao, vamos definir ¢} := 0 paraj ¢ N,
que permite substituir todas varidveis x;,j € B e assim obtemos

z=12z0+ Z 5% :zo+c§y+Zc}‘(bj—ajsy). (2.7)
jell,n+m] jeB
Equacoes (2.6) e (2.7) representam o mesmo valor, portanto
<cs —ci+ Zc;‘a]-s>g = Z c;bj.
jeB jeB
Essa igualdade deve ser correta para qualquer aumento y, portanto os dois
lados sao 0, em particular

cs—c’s‘—l—Zc}‘ajs =0.
jeB
Como x¢ entra em Dy temos cs > 0. Em D* a varidvel x; entra, entao c} <0
senao pela regra de Bland s < t entraria. Logo,

Zc}‘ais =c;—cs <—cs <0
jeB
e deve existir um r € B tal que cia,s < 0. Isso tem uma série de consequéncias:
(i) c; #0.
(ii) r € N™*, porque somente as varidveis nulas satisfazem cf # 0 em D*.

(iil) x, é instdvel, porque ela é bésica em Dy (r € B), mas nao-basica em D*

(re N¥).
(iv) r <t, porque t foi a varidvel instdvel com o maior indice.

(v) r < t, porque ciats > 0: x¢ entra em D*, logo ¢ > 0, e x¢ sai em Dy,
logo ats > 0.

(vi) ¢ <0, sendo 1 e ndo t entraria em D* seguindo a regra de Bland.
(vil) ars > 0.

(viii)) b, = 0, porque x, é instavel, mas todos varidveis instdveis tem valor 0
no ciclo, e x, é béasica em Dy.

Os ultimos dois itens mostram que x, foi candidato ao sair em Dy com indice
T < t, uma contradicao com a regra de Bland. |

45

2. O método Simplex

Teorema fundamental

Teorema 2.3 (Teorema fundamental da programacao linear)
Para qualquer programa linear temos:

(i) Se ndo existe solugdo 6tima, o problema é invidvel ou ilimitado.
(if) Se existe uma solugao vidvel, existe uma solucao basica vigvel.

(ili) Se existe uma solucdo 6tima, existe uma solucdo Gtima bésica.

2.6. Complexidade do método Simplex

Usando a regra de Bland o método Simplex nunca repete uma base e o nimero
de pivos é limitado pelo ntimero de bases. Com n 4+ m varidveis (de decisao e
de folga) existem no maximo

(-2

bases possiveis. Para m + m constante, essa expressao é maximizada para
n =m. Os limites nesse caso sao (exercicio 2.3)

2n n

Logo é possivel que o método Simplex precisa um ndmero exponencial de
pivos. A existéncia de sistemas com um numero de pivos exponencial de-
pende da regra de pivoteamento. Por exemplo, para a regra de maior coefici-
ente, existem sistemas que precisam um ndmero exponencial de pivos (Klee-
Minty). A pergunta se isso é o caso para qualquer regra de pivoteamento
estd em aberto. O melhor algoritmo para a programagao linear precisa tempo
O((n3/logn)L [1], supondo que uma operacao aritmética custa O(1) e os da-
dos sdo inteiros de L bits. Empiricamente o método Simplex precisa O(m-+mn)
pivds [14], e cada pivo custa O(mmn) operagoes, logo o tempo empirico, nova-
mente supondo que uma operacio aritmética custa O(1) do método Simplex
é O((m+n)mn).

Observagao 2.2

Spielman e Teng [13] mostram que o método Simplex possui complexidade su-
avizada polinomial, i.e., o méximo do valor esperado do tempo de execugao so-
bre pequenos perturbagoes (Gaussianas) é polinomial no tamanho da instéancia
e no inverso da perturbagao.

Sem perturbagoes o problema de encontrar a solugao que o método Simplex
encontraria usando a regra de Dantzig é PSPACE-completo [7]. O

46

2.7. Exercicios

2.7. Exercicios

(Solugoes a partir da pdgina 213.)

Exercicio 2.1 ([12])
Resolve com o método Simplex.

maximiza z = 3x1 + 5x2,
sujeito a x1 <4,
x2 <6,
3x1 + 2x2 <18,
X1,%2 > 0.

Exercicio 2.2
Resolve o exercicio 1.7 usando o método Simplex.

Exercicio 2.3
Prova que

2n
2»2n < <Zn> <,
2n n

Exercicio 2.4
Resolve o sistema degenerado

z = 10x1 —57%x; —9%3 —24x4
w; = —1/2x7 +11/2x5 +5/2x3 —9x4
wy; = —]/2)(1 +3/2X2 +1/2X3 —X4
W3 = 1 —X1

usando o método lexicografico e o regra de Bland.

Exercicio 2.5
Dado o problema de otimizacao

maximiza X1 + X2
sujeito a axy +bxy <1
X1,x2 >0

determine condigoes suficientes e necessarias que a e b tem que satisfazer tal
que

(a) existe pelo menos uma solugéo étima,

47

2. O método Simplex

(b) existe exatamente uma solugéo Gtima,
(¢) existe nenhuma solugao Gtima,

(d) o sistema é ilimitado.

ou demonstre que o caso nao é possivel.

Exercicio 2.6
Sabe-se que o dicionério 6timo do problema

maximiza z = 3x1 + X2,
sujeito a —2x1 + 3%, <5,
X1 —x2 <1,
X1,X2 2> 0)
é
z¢ =31 —1lwy; —4w,
X2 = 7 —ZWZ — W1
X1 =8 —3W2 — W1

(a) Se a fungao objetivo passar a z = x7 + 2x2, a solucao continua 6tima? No
caso de resposta negativa, determine a nova solugao 6tima.

(b) Se a funcdo objetivo passar a z = x7 — X2, a solugao continua étima? No
caso de resposta negativa, determine a nova solucao 6tima.

(¢) Se a funcdo objetivo passar a z = 2x7 — 2x2, a solugdo continua 6tima?No
caso de resposta negativa, determine a nova solucao 6tima.

(d) Formular o dual e obter a soluc¢ao dual 6tima.

Exercicio 2.7

Prove ou mostre um contra-exemplo.

O problema max{c'x | Ax < b} possui uma solucao vidvel sse min{xg | Ax —
exo < b} possui uma soluc¢do vidvel com xo = 0. Observagdo: e é um vetor
com todos compentes igual 1 da mesma dimensao que b.

Exercicio 2.8

Prove ou mostre um contra-exemplo.

Se x é a varidvel sainte em um pivo, x nao pode ser variavel entrante no pivo
seguinte.

48

2.7. Exercicios

Exercicio 2.9

Demonstramos na segao 2.5 que existem sistemas em que o método Simplex
entra em ciclos. No exemplo o método Simplex ficou sempre na mesma solugao,
representada por bases diferentes. Agora supoe que temos solugoes diferentes
com o mesmo valor da fungao objetivo. E possivel que o método Simplex entra
num ciclo sempre visitando solugoes diferentes?

Exercicio 2.10

Supde que temos um diciondrio com uma base infactivel, com um candidato
para a varidvel entrante x. (i.e. ce > 0) tal que todos coeficientes na coluna
correspondente sdo negativos (i.e. aie < 0 para todo i € B). Caso a base
fosse vidavel podemos concluir que o sistema ¢é ilimitado. Podemos concluir
isso também com a base infactivel?

49

3. Dualidade

3.1. Introducao
Visao global

e Dualidade: Cada programa linear (chamada de primal) possui um pro-
grama linear correspondente, chamado de dual.

e A dualidade tem vérias aplicagoes como

— Estimar a qualidade de solugoes e a convergéncia do método Sim-
plex.

— Certificar a otimalidade de um programa linear.
— Analisar a sensibilidade e re-otimizar sistemas.

— Resolver programas lineares mais simples ou eficiente com o Método
Simplex dual.

e O programa dual as vezes possui uma interpretagdo relevante.

Introducao
e Considere o programa linear

maximiza z=4x7 +x2 + 3x3 (3.1)
sujeito a X1 +4%x; <1
3x1 —x2+x3 <3
X1,X2,X3 2 0
e Cada solucao viavel fornece um limite inferior para o valor maximo.
X1=x2=x3=0=2z=0
Xx1=3,x2=x3=0=>2z=4
e Qual a qualidade da solugao atual?

e Nao sabemos, sem limite superior.

o1

3. Dualidade

Limites superiores

e Como obter um limite superior?

Observe: z =4x7 +x2 +3x3 < 10x7 +x2 +3x3 < 10

e Podemos construir uma combinagao linear das desigualdades, tal que o
coeficiente de cada x; ultrapasse o coeficiente da funcao objetivo.

e Nosso exemplo:
(x1 +4%2)+3(3%x1 —x2+x3)<1+3-3=10
&=10x7 +x2 +3x3 <10
e Como obter um limite superior para a fungao objetivo?
e Qual seria 0 menor limite superior que esse método fornece?

Exemplo 3.1
Para o sistema (3.1) obtemos:

minimiza Y1 +3y2

sujeito a Yy +3y, >4

dyr —y2 21
Yz >3
Yy1,Y2,Y3 = 0.
O
O menor limite superior
e Sejam yj,...,Yn 0s coeficientes de cada linha. Observacao: Eles devem

ser > 0 para manter a direcao das desigualdades.
e Entao queremos
minimiza Z biyi
ie[m]
sujeito a Z aijyi > ¢j Vi e nl
i€[m]

yi > 0.

e Isto é o problema dual com varidveis duais y;.

52

3.1. Introducao

Dualidade: Caracteristicas

e Em notagao matricial

maximiza c'x minimiza b'y
sujeitoa Ax<b sujeito a gtA > ct
x > 0. y > 0.

e O primeiro se chama primal e o segundo dual.
e Eles usam os mesmos parametros cj, aij, bi.

O dual do dual

e Observagao: O dual do dual é o primal.

e Forma normal do dual:

—maximiza —b'y —maximiza —b'y
sujeitoa —y'A<-—c' = sujeito a (—A')y < —c
y > 0. y > 0.

e Dual do dual

—minimiza —c'z maximiza c'z
sujeito a z'(—A') > —b* sujeitoa Az <b
z>0. z>0.

Exemplo 3.2

Qual o dual do problema de transporte (1.11)? Com varidveis duais 73, i € [n]
para as das restricoes de estoque (1.12) e varidveis duais pj, j € [m] para as
restricoes de demanda (1.13) obtemos

maximiza Z a7y + Z b]’ Pj (32)
ie[n] je(m]
sujeito a T+ P > Cij Vi€ [nl,j € [m]
Tty Pj >0 ViE[TLL].G[TTL}.
O

93

3. Dualidade

3.2. Interpretacao do dual
Exemplo: Dieta dual

e Problema da dieta: Minimiza custos de uma dieta x que alcance dados
VDR minimos.
minimiza c'x

sujeito a Ax >

e Unidades das varidveis e parametros

— x € R™: Quantidade do alimento [g]

— ¢ € R™: R$/alimento [R$/g]

— ajj € R™*™: Nutriente/Alimento [g/g]
r € R™: Quantidade de nutriente [g].

Exemplo: Dieta dual
e O problema dual é

maximiza y'r
sujeito a ytA <ct
y >0

Qual a unidade de y? Prego por nutriente [R$/g].

e Imagine uma empresa, que produz capsulas que substituem os nutrien-
tes.

e Para vender no mercado, a empresa tem que garantir que uma dieta
baseado em capsulas custa menos que os alimentos correspondentes:

Z yiaij < ¢ Vj € [m]
]

ie[m

e Além disso, ela define precos por nutriente que maximizam o custo de
uma dieta adequada, para maximizar o préprio lucro.

maximiza y'r

o4

3.2. Interpretacgao do dual

Interpretacao do dual

e Outra interpretacao: o valor de uma varidvel dual y; é o custo marginal
de adicionar mais uma unidade bj.

Teorema 3.1
Se um sistema possui pelo menos uma solugao bésica 6tima nao-degenerada,
existe um € > 0 tal que, se [tj| < € para j € [m],

maximiza ctx
sujeito a Ax<b+t
x>0

tem uma solugao 6tima com valor
7z =z* + y*tt
(com z* o valor étimo do primal, é y* a solugdo 6tima do dual).

Uma outra forma de ver o teorema, é que para uma base nao-degenerada, as
varidveis duais representam as derivadas parciais pelos lados direitos
oz(b)
ob; t

Observagao 3.1
Os custos marginais (ingl. marginal cost) também sdo chamados pre¢os ou

pregos sombra (ingl. price, shadow price). O
Exemplo 3.3

Considere uma modificagao do sistema do Ildo

maximiza 0.2c +0.5¢ (3.3)

sujeito a c+1.5s <150 (3.4)

50c + 50s < 6000 (3.5)

c <80 (3.6)

s <70 (3.7)

c,s > 0. (3.8)

(O sistema foi modificado para a solucao 6tima atender as condigoes do teo-
rema 3.1.) A solugao étima do sistema primal é x* = (4570)" com valor 44, a
solugao 6tima do dual y*(1/5001/5)t. A figura 3.1 mostra a solucao étima
com as varidveis duais associadas com as restrigoes. O valor da varidvel dual
correspondente com uma restrigao € o lucro marginal de um aumento do lado
direito da restrigao por um.

O

55

3. Dualidade

100
90 oy,
80
70

%\60

£50

=40
30

20
10
3.6
0

0 10 20 30 40 50 60 70 80 90 100
¢ (croissants)

Qo
=

i

~
e
Il
_—
J1

T~

Figura 3.1.: Solugao étima do sistema (3.3) com varidveis duais.

3.3. Caracteristicas

Teorema da dualidade fraca

Teorema 3.2 (Dualidade fraca)
Se x1,...,xn é uma solugao vidvel do sistema primal, e yj,...,ym,m uma
solugao viavel do sistema dual, entao

Z CiXi S Z bjyj.
ien

] jelm]

Prova.
c'x < (Yy*A)x =yt (Ax) pela restrigao dual (3.9)
<y' pela restri¢do primal (3.10)
|
Situacao

o6

3.3. Caracteristicas

Gap de otimalidade?

S N -

Solugoes primais vidveis Solugoes primais vidveis

e Em aberto: Qual o tamanho desse intervalo em geral?

Teorema da dualidade forte

Teorema 3.3

SexJ,...,x; é uma solugdo 6tima do sistema primal, existe uma solucao 6tima
Y7,.--,Ys, do sistema dual, e
E cixi = Z bjy;.
ie[n] jelm]

Prova. Seja x* uma solugdo 6tima do sistema primal, que obtemos pelo
método Simplex. No inicio introduzimos varidveis de folga

Xn4j = b]' — Z ajiXi V] € [m]

i€n]

e a funcgao objetivo final é

(supondo que ¢; = 0 para varidveis bdsicas). Temos que construir uma solugao
6tima dual y*. Pela optimalidade, na funcao objetivo acima, todos ¢; devem
ser nao-positivos. Provaremos que y;‘ = —Cntj > 0 para j € [m] é uma
solucao dual 6tima. Como z* o valor 6timo do problema inicial, temos z* =

2ic (n] CiX{-

o7

3. Dualidade

Reescrevendo a fungao objetivo temos

z= Z CiX{ sistema inicial

=z"+ Z CiXi sistema final
i€nl+m

=z"+ Z Cixi + Z CntjXn+j separando indices
ien] jelm]

=z"+ Z CiXi — Z y) (Z a]-ixi> subst. solugdo e var. folga
i€n] jelm] i€n]

- (Z ~ Yy,))3 (a Y y;aﬁ)xi agrupando

jelm] ien] 1<5<m

Essa derivagao estd valida para qualquer varidvel xi, porque sao duas ex-
pressoes para a mesma fungao objetivo, portanto

:Zy;kbj e Ci:C_i+Zy;<(lji, ie [n].
jelm]

jelm]

Com isso sabemos que o primal e dual possuem o mesmo valor
* * *
E yjbj:z = E CiXj
jelm] ien]
e como ¢; < 0 sabemos que a solugdo y* satisfaz a restrigoes duais

ci < Z y}*aﬁ, ie [TL],
jelm]
yi >0, ie [ml.

Consequéncias: Solucoes primais e duais

e Com o teorema da dualidade forte, temos quatro possibilidades

Sistema primal Sistema dual Intervalo

Otimo Otimo Sem
Ilimitado Invidvel Sem
Inviavel Ilimitado Sem
Invidvel Invidvel Infinito

o8

3.3. Caracteristicas

Exemplo 3.4 (Primal e dual invidvel)

Pelo teorema da dualidade forte, ndo podemos concluir, que existe um caso
que tanto o sistema primal quanto o sistema dual sao invidveis. O seguinte
exemplo mostra que isso pode realmente acontecer. O sistema primal

maximiza X1
sujeito a +x7—%x2 <0
—x7+x2 < —1
X1,%x2 >0

possui sistema dual correspondente
minimiza -2
sujeito a +yr—y2 >1
—yYyr+yz>0

Os dois sistemas sao inviaveis. O

Podemos resumir as possibilidades na seguinte tabela:

Dual
Primal Invidvel Otimo Ilimitado
Invidvel v X Vv
Otimo X Vv X
Himitado vV X x

Consequéncias

e Dado solugdes primais e duais x*,y* tal que c¢*x* = b'y* podemos con-
cluir que ambas solugdes sao 6timas (x*,y* é um certificado da optima-
lidade)®.

e A prova mostra: com o valor 6timo do sistema primal, sabemos também
o valor 6tima do sistema dual.

e Além disso: Podemos trocar livremente entre o sistema primal e dual.
= Método Simplex dual.

1Uma consequéncia é que o problema de decisdo correspondente, determinar se existe uma
solucdo maior que um dado valor, possui um certificado que pode ser verificado em tempo
polinomial tanto para uma resposta positiva quanto uma resposta negativa. Portanto,
ja antes da descoberta de um algoritmo polinomial para esse problema, foi claro que ele
pertence a NP N co-NP.

59

3. Dualidade

Outra consequéncia do Teorema da dualidade forte é o

Teorema 3.4 (Teorema das folgas complementares)
Os vetores x*,y* sao solugoes 6timas do sistema primal e dual, respectiva-
mente, se e somente se

y*'(b—Ax*) =0 (3.11)
(YA —chx* =0 (3.12)

Prova. Pelo Teorema da dualidade forte as duas desigualdades (3.9) e (3.10)
da prova do Teorema da dualidade fraca se tornam igualdades para solugoes
otimas:

CtX* _ y*tAX* — y*tb

Reagrupando termos, o teorema segue. Conversamente, caso (3.11) e (3.12)
sao validos, as a solugao primal e dual possuem o mesmo valor e assim tem
que ser solugoes 6timas. |
As igualdades 3.11 e 3.12 sdao ainda vélidas em cada componente, porque tanto
as solucdes 6timas x*,y* quanto as folgas primas e duais b — Ax e y**A — ¢!
sempre sao positivos.

xi >0= Z Yjaji = € (313)
jelm]

> Y > =xi =0 (3.14)
jelm]

Yy >0=b;= Z ajiXq (3.15)

ie[n]
bj > Z ajiXi = Yj = 0 (316)
i€n]

Como consequéncia podemos ver que, por exemplo, caso uma igualdade primal
nao possui folga, a varidvel dual correspondente é positiva, e, contrariamente,
caso uma igualdade primal possui folga, a varidvel dual correspondente é zero.
As mesmas relacoes se aplicam para as desigualdades no sistema dual. Apds
a introducao da forma matricial no secao 3.6 vamos analisar a interpretagao
das varidveis duais com mais detalha no se¢ao 3.7. O teorema das folgas
complementares pode ser usado ainda para obter a solugao dual dado a solugao
primal:

60

3.4. Método Simplex dual

Exemplo 3.5
A solucao 6tima de
maximiza z=6X1 + 8x2 +5%x3 + Ix4
sujeito a 2x1 +%x2 +x3+3x4 <5
X1 +3x2+x3+2x4 <3
X1,X2,X3,X4 > 0

é x1 =2 ex3 =1 com valor 17. Pela equagao (3.13) sabemos que

2y1 +y2 =6
Y1 +y2 =5.
Portanto a solucao dual é y; =1e vy, =4. O

3.4. Método Simplex dual

Método Simplex dual

e Considere

maximiza — X1 —X2
sujeito a —2x1—%x2 <4
—2x1 +4x; < -8
—x1+3x2 <7
x1,%x2 > 0.

e Qual o dual?

minimiza 4y —8y2 —7y3

sujeito a —2y; —2ys —ysz > —1
—y1 +4y2 + 3y > -1
Y1,Y2,Yy3 > 0.
Com dicionarios

z = —x] —X2 —w = —4y; +8yr +7y3
Wi =4 +2x; +Xx2 Z1 =1 -2y -2y —Ys3
wy; =-8 +2x1 —4x z;, =1 —y; 44y +3y3
wy =-—7 +x1 —3x2

61

3. Dualidade

e Observagao: O primal néo é vidvel, mas o dual é!

e Correspondéncia das varidveis:

Varidveis
principais de folga
Primal x1,...,Xn Wiy..., Wy
Dual z1,...yz2n, Yi,.---yYm
de folga principais

e Primeiro pivo: y; entra, z¢ sai. No primal: w; sai, x; entra.

Primeiro pivo

z =—4 —05w; —3x; —-w =4 —12y; —4z, +3ys3
w; =12 +wy +5%x2 Y2 =0.5 —y1 —0.5z;7 —0.5y3
X1 =4 405w, +2x; z =3 -5y —2z4 +y3
wy =-3 +0.5w, —X2

e Segundo pivo: ys entra, Yy sai. No primal: w3 sai, w; entra.

Segundo pivo

z =—7 —W3 —4X2 —-w =7 —18y1 —72,] —6y2
w; =18 42wz +7x; ys =1 -2y —27 -2y,
X1 =7 +ws3 +3x; V%) =4 *71:]1 —3z1 —Zyz
A5%)] =6 42wz +2xy

e Sistema dual é 6timo, e portanto o sistema primal também.

Método Simplex dual

e Observagao: Nao é necessario escrever o sistema dual. Ele é sempre o
negativo transposto do sistema primal.

z=2z+) Gy
JEN

Xi:Bi*Zainj ieB
jeN

e Mas é necessario modificar as regras para resolver o sistema dual.

62

3.4. Método Simplex dual

Método Simplex dual: Viabilidade e otimalidade

e Pré-condicao: O dicionério é dualmente vidvel, i.e. os coeficientes das
variaveis nao-basicas na fungao objetivo tem quer ser nao-positivos.

¢; <0 para jeN.
e Otimalidade: Todos varidveis basicas primais positivas
YieB:b; >0
Método Simplex dual: Pivo
e Caso existe uma varidvel primal negativa: A solu¢ao dual néo é étima.

e Regra do maior coeficiente: A varidvel basica primal com menor valor
(que é negativo) sai da base primal.

i = argmin by
ieB

e A varidvel primal nula com fracdo aij/c; maior entra.

. .G aij ayj

J = argmin —— = argmax —— = argmax ——
JeN Q4 JeN Cj jeN G
aij< 0 agj< 0

Método Simplex dual
Resumo:

e Dualmente vidvel: ¢; <0 paraj € N.
e Otimalidade: Vi € B: b; > 0.

e Varidvel sainte: i = argmin; .z b;

e Varidvel entrante: j = argmax;c s ac_—‘)l

Exemplo

maximiza z=—2x1 —X%X2
sujeito a —x7 +x2 < —1
—x7 —2x < -2
x; <1
X1,X2 >0

63

3. Dualidade

Exemplo: Dicionario inicial

z = —2xq —X2
w; =-=1 +x5 —X2
wy; =-2 +Xx1 +2xo
W3 =1 —X2

e O dicionario primal nao é vidvel, mas o dual é.

Exemplo: Primeiro pivo

z =—1 -3/2x7 —1/2w;
w; =-2 +3/2X1 7]/2W2
X2 =1 —1/2X] +]/2W2
w3 = +1/2x7 —1/2w;

Exemplo: Segundo pivo
z =-3 —W1q —W»
x1 =4/3 +2/3w; +1/3w,
x2 =1/3 —=1/3w; +1/3w,
wsy =2/3 +1/3w; —1/3w>

3.5. Dualidade em forma nao-padrao

Dualidade em forma padrao

maximiza c'x minimiza b'y
sujeitoa Ax <D sujeito a ytA >ct
x>0 y>0

e O que acontece se o sistema nao é em forma padrao?

Igualdades

e Caso de igualdades: Substituindo desigualdades..

maximiza c'x maximiza c'x
sujeitoa Ax =D sujeitoa Ax <D
x>0 Ax>Db
x>0

64

3.5. Dualidade em forma nao-padrao

e ... padronizar novamente, e formar o dual:

maximiza c'x minimiza b'y"t — by~
sujeitoa Ax <D sujeito a y*tA —y*tA >c
—Ax < -b y" >0,y >0
x>0 Yy =1y
Y =y Ym)
Igualdades

e Equivalente, usando varidveis nao-restritas y =y* —y~

minimiza bty

sujeito a y'A>c¢

y'so
e Resumo
Primal (max) Dual (min)
Igualdade Variavel dual livre
Desigualdade (<) Varidvel dual ndo-negativa
Desigualdade (>) Varidvel dual nao-positiva
Varidvel primal livre Igualdade

Varidvel primal ndo-negativa Desigualdade (>)
Varidvel primal ndo-positiva Desigualdade (<)

Exemplo 3.6 (Exemplo dualidade ndo-padrao)
O dual de

maximiza 3x7 +x%x2 +4%x3
sujeito a X1 +5% +9%3 =2
6x71 + 5%y +3x3 <5
X1,%x3 > 0,%2 § 0

65

3. Dualidade

minimiza 2yy + 5y

sujeito a Y1 +6yz >3
5y +5y2 =1
Py +3y, >4
Y150,y >0.

Exemplo 3.7 (Dual do problema de transporte)

O dual do problema de transporte num grafo direcionado G = (V, A) com
custos nas arestas cq, limites inferiores e superiores para o fluxo 1, e uq em
cada arco, e demandas b,, em cada vértice

minimiza Z CaXa
acA

sujeito a Z X(uv) — Z X(v,u) = by YwvevVv
(u,v)EA (vyu)eA
Xq > la VaeA
Xa <uq VaeA
Xq >0 Vae A

usando varidveis duais m, S0, veV, pq >0, a € Aeoq <0, a €A para as
trés restrigoes é

maximiza Z by, + Z lapa +Uq0q

vev acA

sujeito a — Ty + Ty + Pa+0q > 1 Va=(u,v) €A
T, € R Ywev
Pa >0 YVae A
0, <0 Va e A.

3.6. Os métodos em forma matricial

A forma matricial permite uma descrigdo mais sucinta do método Simplex. A
seguir vamos resumir os métodos Simplex primal e dual na forma matricial.

66

3.6. Os métodos em forma matricial

Mais importante, nesse forma é possivel expressar o dicionario correspondente
com qualquer base em termos das dados inicias (A, ¢, b). Na proxima segao va-

mos usar essa forma para analisar a sensibilidade de uma solugao ao pequenas
perturbagoes dos dados (i.e. os coeficientes A,b, e c).

3.6.1. O dicionario final em fungcao dos dados

Sistema padrao
e O sistema padrao é

maximiza c'x

sujeito a Ax <D

x>0
e Com varidveis de folga Xn41y...yXn+m € A,c,x novo (definigdo segue
abaixo)
maximiza ctx
sujeito a Ax =D
x>0
Matrizes
ann a2 - a1
ax axp o+ QAan 1
A= ;
Omi1 Am2 ... Qmn 1
C1 X1
C2 X2
by .
bz :
b= . lice=1cn|x= Xn
’ 0 Xn+1
bm .
0

Xn+m

67

3. Dualidade

Separacao das variaveis
e Em cada iteragao as varidveis estao separados em bésicas e nao-basicas.
e Conjuntos de indices correspondentes: BU N = [1,n + m].

e A componente i de Ax pode ser separado como

2 aijX; :z aijxj+§ aijX;

jemn+m] jeB JEN

Separacao das variaveis

e Para obter a mesma separacao na forma matricial: Reordenamos as
colunas e separamos as matrizes e vetores:

A= (BN); x:(:z>; CZ(;E)

e com B € R™*™M N ¢ R™*™ ¢ e RM™,

Forma matricial das equacoes

e Agora, Ax = b é equivalente com
(BN) (XB> —Bxg +Nxn =b
XN

e Numa solucao bésica, a matriz B tem posto m tal que as colunas de B
formam uma base do R™. Logo B possui inversa e

xg =B7'(b—Nxn) =B 'b— B "Nxn
Forma matricial da funcao objetivo

e A fungdo objetivo é

X
z=c'x = (c§ ck) <XB) = chxB + ChXN
N

e e usando xg = B~ 'b — B~ "Nxpn obtemos

z=c5(B "o — B Nxn) + chxn
=cEB b — (c§BTTN — e)xn
=cEB7'b— ((B7"N)tcp —en)txn

68

3.6. Os métodos em forma matricial

Dicionario em forma matricial
e Logo, o dicionario em forma matricial é
z=c5B'b—((B""N)tcp —cn)txn

xg =B 'b — B 'Nxn

e Compare com a forma em componentes:

z:i+ZE]~x)~ Zz=Z+C XN
jeN

X—i:Bi_Zdijxj ieB XB:B—AXN
jeN

Dicionario em forma matricial

e Portanto, vamos identificar
=c5B by c=—((B""N)tcg —cn)
B:B b; A =(a;) =B 'N

e para obter o diciondrio

Sistema dual
e As varidveis primais sao

X = (X7 .0 Xn Xng] o v Xngem)®
—_———

original folga

e Para manter indices correspondentes, escolhemos varidveis duais da forma

y=(Yr...YnYn+i .. -Un+m)t
R e
folga dual

e O dicionario do dual correspondente entdo é

Primal Dual
z=7Z+ctxn —w=—-z—b'yg
xg = b — Axn yn =—C+ Alyp

69

3. Dualidade

Primal e dual

e A solugao bésica do sistema primal é
X =0, x3=b=B""b

e A solugdo dual correspondente é

e Com isso temos os dicionérios

z=2z— (yn)"xn -w=—z— (x})'ys

XB = Xp — (B~ "N)xn yn =yyN + (B*1N)ty3

Observagao 3.2

A solugdo dual completa é y = cEB~TA — ¢! (isso pode ser visto como?), ou
Yyi = c,%B‘1 a' — ¢; para cada indice i € [n 4+ m]. As varidveis duais originais
com indice i € n + 1, m] correspondem com as colunas a* = e; das varidveis
de folga e possuem coeficientes ¢; = 0. Logo y = c5B~! é a solugdo dual do
sistema dual sem as variaveis de folga. O

3.6.2. Simplex em forma matricial
Método Simplex em forma matricial
e Comecamos com uma particdo BUN = [1,n + m].

e Fm cada iteracdo selecionamos uma varidvel sainte i € B e entrante

jeN.
e Fazemos o pivo xi com X;.
e Depois a nova base é B\ {i} U {j}.
Método Simplex em forma matricial

S1: Verifique solucdo é6tima Se yy, > 0 a solucdo atual é 6tima. Pare.

S2: Escolhe variavel entrante Escolhe j € N com y; < 0. xj € a varidvel
entrante.

70

3.6. Os métodos em forma matricial

S3: Determine passo basico Aumentando x; uma unidade temos novas varidveis
nao-bdsicas xn = x} + Axn com Axy = (0---010---0)" =ej e e 0
vetor nulo com somente 1 na posigdo correspondente com indice j. Como

XB = Xp — B~ 'Nxn

a diminuicdo correspondente das varidveis bésicas é Axg = B! Ne;.

Método Simplex em forma matricial

S4: Determine aumento maximo O aumento maximo de x; ¢ limitado por
xg > 0, i.e.

xp = Xp — tAxg > 0 & xp > tAxp.

Com t,x§ > 0 temos

* X'I.
t<t"= min
ieB Axi
Ax; >0

$5: Escolhe varidvel sainte Escolhe um i € B com x] = t"Ax;.

Método Simplex em forma matricial

S5: Determine passo dual A varidvel entrante dual é y;. Aumentando uma
unidade, as varidveis yn diminuem Ayn = —(B7'N)te;.

S$6: Determina aumento maximo Com varidvel sainte yj, sabemos que y;
pode aumentar ao maximo

Y
Ay
S7: Atualiza solucao
X =t Yy =s
Xp = Xxg — tAxp YN = yN — SAyn

B:=B\{i}U{j}

71

3. Dualidade

3.7. Analise de sensibilidade
Motivacao

e Na solugdo da programas lineares tratamos os parametros como ser fi-
xados.

e Qual o efeito de uma perturbacao
c:=c+Ac; b:=b+Ab; A:=A+AA?

(Imagina erros de medida, pequenas flutuagoes, etc.)
Andlise de sensibilidade

e Apés a solugdo de um sistema linear, temos o dicionario étimo

z=2z"—(y})xn

XB = XE — BilNXN

e com
x5 =B 'b
y = (B"N)tcg —en
2" =ctB b
Modificar ¢

e Mudarmos ¢ para €, mantendo a base B.
* =z . * *
e xj nao muda, mas temos que reavaliar yy, e z*.
e Depois, xj ainda é uma solucao bésica vidvel do sistema primal.

e Logo, podemos continuar aplicando o método Simplex primal.
Modificar b

e Da mesma forma, modificamos b para b (mantendo a base).

e y§, nao muda, mas temos que reavaliar x5 e z*.

e Depois, y}, ainda é uma solugao basica viavel do sistema dual.

e Logo, podemos continuar aplicando o método Simplex dual.

72

3.7. Analise de sensibilidade

Vantagem dessa abordagem

e Nos dois casos, esperamos que a solugao inicial ja é perto da solugao
otima.

e Experiéncia prética confirma isso.
e O que acontece se queremos modificar tanto b quanto ¢ ou ainda A7
e A solugao atual nao necessariamente é viavel no sistema primal ou dual.

e Mas: Mesmo assim, a convergéncia na pratica é mais rdapido.

Estimar intervalos

e Pergunta estendida: Qual o intervalo de t € R tal que o sistema com
€ = ¢ + tAc permanece 6timo?

e Parat=1: y} = (B"'N)tcg—cn aumenta Ay := (B7'N)'Acg—Acn.
e Em geral: Aumento tAyy.

e Condigao para manter a viabilidade dual:

yn +tAyn >0

e Para t > 0 temos

. Y;
t < m%l _
A’yej<0 y)
e Para t < 0 temos .
max —-=- <t
Alyej>0 y)

Estimar intervalos

Agora seja b = b+ tAb.

Parat=1: xj = B~ 'b aumenta Axg := B~ 'Ab.

Em geral: Aumento tAb.

Condigao para manter a viabilidade primal:

X + tAxg >0

73

3. Dualidade

e Para t > 0 temos

e Para t < 0 temos

. X3
t < min —
ieB Axy
Ax; <0
x¥
1 S t
AXi

Observagao 3.3

A matriz B~' é formado pelas colunas do diciondrio final que correspondem

com as variaveis de folga.

Exemplo 3.8

O

Considere o problema da empresa de ago (vista na aula pritica, veja também

execicio 1.7).

maximiza

sujeito a

25p + 30c

7p + 10¢ < 56000
p < 6000

¢ < 4000

Qual o intervalo em que o valor do lucro das placas de 25R $ pode variar sem

alterar a solucao 6tima?

Exemplo: Empresa de aco

e Sistema 6timo

e Base B = {p,ws,c}, varidveis nao-basicas N' = {wy,w}.

(Observe:

Usamos conjuntos de varidveis, ao invés de conjuntos de indices).

74

3.7. Analise de sensibilidade

Exemplo: Variaveis

e Vetores ¢ e Ac. Observe que reordenamos os dados do sistema inicial de
forma correspondente com a ordem das varidveis do sistema final.

25

0 25 0
c=|30]|;cg=1]0 ;cN—(O>;

0 30

0

1

0 1 0
Ac=|0]|;Acg =[O0 ;ACN—(O>

0 0

0

Exemplo: Aumentos
e Aumento das variaveis duais

Ayn = (B"'"N)*Acg —Acn = (B"'N)*Acp

® COoIm
0 1
B-'N=|-1/10 7/10
110 —=7/10
e temos

o=)

Exemplo: Limites

e Limites em geral

* *

ma ——jgtg min _3
Yo Ay A AY;
e Logo
—4<t< .
e Uma variacdo do prego entre 25 4 [—4, 0o] = [21, 00] preserve a otimali-

dade da solugao atual.

(0]

3. Dualidade

e O novo valor da funcao objetivo é

6000
z==¢5B b= (25+t 0 30) (2600 | = 192000+ 6000t
1400

e os valores das varidveis p e ¢ permanecem 0s mesmos.

Exemplo 3.9

Qual o intervalo em que o lucro das placas (R$ 25) e dos canos (R$ 30) podem
variar sem que a solugao 6tima seja alterada?

Exemplo: Variacao do lucro dos placas e canos

e Neste caso, os vetores c, cg, cN € Acn permanecem os mesmos do
exemplo anterior. Enquanto que:

Ac ;ACB =10

)

I
cCo =0 =

e Neste caso, o valor de Ayy é
1
—_(p—Tnt _ (0 —=1/10 1/10 ~(1/10) .
Ayn = (B N)MBG 710 —7/10) {$] = (3/10)

e Logo —40/3 <t<

e Ou seja, uma variagao do lucro das placas entre R$ 11.67 e co, e do lucro
dos canos entre R$ 16.67 e oo, nao altera a solugdo dtima do sistema.

%
Exemplo: Modificacao

e Qual o intervalo em que o lucro dos canos (R$ 30) podem variar sem
que a solugao Otima seja alterada?

76

3.7. Analise de sensibilidade

e Neste caso, os vetores c, cg, cNn € Acn permanecem os mesmos do
exemplo anterior. Enquanto que:

Ac

[
co -0 o
>
o
o8]
Il
o

e Neste caso, o valor de Ayy ¢é:
_(1/10 .
Acs = (—7/10) >

e Logo —30 <t <40/7

e Ou seja, uma variacdo do lucro dos canos entre R$ 0 e R$ 35.71, ndo
altera a solucao 6tima do sistema.

Exemplo 3.10
O que acontece se mudarmos o lucro das placas para R$ 207

Exemplo: Placas com lucro R$ 20

e Novos vetores

20

0 20 0
c=|30|;¢e=|0 ‘6N_(O>

0 30

0

e Aumento

g = (B7'N)'ep —&n = (B7'N)'Cs
20

_ (0 =110 110N () (3
7100 —7/10) | 5] T\

7

3. Dualidade

Novas variaveis
e Com
6000
B~ 'b = [2600
1400

e Novo valor da funcao objetivo

6000

1400

2" =¢pB'b=(20 0 30) (2600) = 162000

Exemplo: Novo dicionario

e Novo sistema primal vidvel, mas nao 6timo:

z =162000 —3w; +w;
p =6000 —Wy
ws = 2600 +1/10wy; —7/10w4
c =1400 —1/10w; +7/10w,

e Depois um pivo: Sistema Gtimo.

z =1657142/7 —20/7w7 —10/7w3
P =22855/7 —1/7wy +10/7wj3
wy, =37142/7 +1/7wy —10/7w;
c = 4000 —W3

Exemplo 3.11

O

O que acontece se mudarmos o lucro das placas de R$ 25 para R$ 35 e dos

canos de R$ 30 para R$ 10?7

Exemplo: Placas e canos com lucro R$ 35 e R$ 10

e Novos vetores

35
0 35 0
e=|10l:e6=10 ,éN:<O)
0 10
0

78

3.7. Analise de sensibilidade

e Aumento

35
. et 0 —1/10 1/10 1
ﬁz((B‘N)cc)z() 0 =()
N BT EN 1710 =7/10) {4 28

Novas variaveis e novo dicionario

e Novo valor da funcao objetivo

6000
2" =¢tB b =¢hxp = (35 0 10) 2600 | = 224000
1400
e O novo sistema primal vidvel é

z = 224000 —1w, —28w;

p =6000 —Wsy

wiz = 2600 +1/10wy; —7/10w,

c = 1400 —1/10w; +7/10w,

e O sistema é 6timo.

O

Exemplo 3.12
Qual o efeito de uma variagao do lado direito 6000 da segunda restricao? Para
estudar essa variacao escolhemos Ab = (0 10)t. Temos

7 0 10 0 10 0
B=1|1 1 0|; B '=1/10-1 7 10
00 1 1 -7 0

e logo Axg =B TAb =1/10(107 — 7). Obtemos a nova solucio bésica

6000 10
Rp = 12600 | +t/10 7
1400 —7

e a condigdo de otimalidade Xf > 0 nos fornece os limites
—26000/7 < t < 2000
em que ela é 6tima. O valor da fungao objetivo dentro desses limites é

6000 + t
2* = chRE = (25030)" | 2600 +7/10t | = 192000 + 4t.
1400 — 7/10t

79

3. Dualidade

3.8. Exercicios
(Solugoes a partir da pdgina 214.)

Exercicio 3.1
Qual o sistema dual de

minimiza 7x1 + x2 + 5x3
sujeito a X1 —X2 +3x3 > 10
5x1 +2x5 —x3 > 6

X1,X2,X3 = 0.

Exercicio 3.2
Considere o problema

COBERTURA POR CONJUNTOS PONDERADOS (WEIGHTED SET COVER)

Instancia Um universo U, a uma familia § de subconjuntos do uni-
verso,i.e.,para todo S € S, S C U, e custos c¢(S) para cada conjunto.

Solugcao Uma cobertura por conjuntos,i.e.,uma selecao de conjuntos 7 C
S tal que para cada elemento e € U existe pelo menos um S € T
com e € S.

Objetivo Minimizar o custo total dos conjuntos selecionados.

Uma formulacao inteira do problema é

minimiza Z c(S)xs

Ses

sujeito a Z xs > 1 ecl
S:e€S
Xs € {O) 1} Se S

O problema com restricoes de integralidade é NP-completo. Substituindo as
restrigoes de integralidade xs € {0, 1} por restri¢oes trivias xs > 0 obtemos
um programa linear. Qual o seu dual?

80

Exercicio 3.3
O sistema

maximiza 2x1 — X2 + X3
sujeito a 3x1 +x2 +x3 < 60,
X1 —x2 4+ 2x3 < 10,
X1 +x2 —x3 < 20,
X1,X2,%3 > 0.

possui dicionario 6timo

z= 25 —3/2x5s —1/2x¢ —3/2x3
x4 = 10 +Xxs5 +2x¢ —X3
x1= 15 —1/2x5 —1/2x¢ —1/2x3
x> = 5 +4+1/2x5 —1/2x¢ +3/2x3

Em qual intervalo o coeficiente ¢ = 2 pode variar?
Em qual intervalo o coeficiente b, = 10 pode variar?

Modifique o lado direito de (60 10 20)t para (70 20 10)*: o si
se 6timo? Caso contrario, determina a nova solugao 6tima.

3.8. Exercicios

stema mantém-

Modifique a fungao objetivo para 3x; — 2x, + 3x3: o sistema mantém-se

6timo? Caso contrério, determina a nova solugao 6tima.

81

4. Tépicos

4.1. Centro de Chebyshev

Seja B(c,r) = {c +u | [Jul] < 1} a esfera com centro ¢ e raio r. Para um
poligono convexo a;x < by, para i € [n], queremos achar o centro e o raio da
maior esfera, que cabe dentro do poligono, i.e. resolver

maximiza T
sujeito a sup aip < b; Vi€ [n].
pPEB(c,7)
Temos
sup aip =cai+ sup aju=ca; + ||ail|r
peB(c,T) [lull<r

porque o segundo supremo ¢ atingido por u = ra;/||ai||. Assim obtemos uma
formulacao linear

maximiza T
sujeito a aic + 1llail] < by Vi e [n].
Exemplo 4.1

O poligono da Fig. 4.1 possui a descri¢ao
2x1 +4x, < 24
Ix; —x <12
—x1 <0
—x2 <0

Portanto o programa linear para achar a o centro e o raio do maior circulo é
maximiza T
sujeito a 2c1 +4c +VvV20r <24

4eq —cr +V17r < 12
—c1+7<0
—c2+1<0

83

4. Tépicos

Figura 4.1.: Exemplo do centro de Chebyshev
X2

2]

3
1.85,3.01) /

X1

4.2. Funcao objetivo convexa e linear por segmentos

Uma fungéo f é convera se f(tx+ (1—1t)y) < tf(x) + (1 —t)f(y) para qualquer
xeye0<t<t. Fungoes convexas sao importantes na otimizagao, porque
eles possuem no maximo um minimo no interior do dominio deles, e portanto

o minimo de uma funcdo convexa pode ser obtido com métodos locais.

Seja fi(x),1 € [n] uma colegao de fungoes lineares. O maximo f(x) = max;cn) fi(x)
é uma fungao convexa linear por segmentos. O problema de otimizacao

minimiza max f;(x)

ien]
é equivalente com o programa linear
minimiza X0 (4.1)
sujeito a fi(x) < xo Vi e [nl]. (4.2)

Portanto podemos minimizar uma funcao convexa linear por segmentos usando
programagao linear. De forma similar, f é concava se f(tx + (1 —t)y) >
tf(x) 4+ (1 — t)f(y). (Observe que uma fungao convexa e concava ¢ afina.) O
sistema

maximiza X0

sujeito a fi(x) > xo vie [n].

maximiza uma func¢ao concava linear por segmentos.

84

Parte II.

Programacao inteira

85

5. Introducao

5.1. Definicoes
Problema da dieta

e Problema da dieta

minimiza ctx
sujeito a Ax>r
x>0

e Uma solugdo (laboratério): 5 McDuplos, 3 magas, 2 casquinhas mista
para R$ 24.31

e Mentira! Solugao correta: 5.05 McDuplos, 3.21 magas, 2.29 casquinhas
mistas.

e Observagao: Correto somente em média sobre varias refei¢oes.

Como resolver?

e Com saber o valor 6tima para uma unica refeicao?
e Restringe as varidveis x ao conjunto Z.
e Sera que método Simplex ainda funciona?

e Nao. Pior: O problema torna-se NP-completo.

Problemas de otimizacao
e Forma geral

optimiza f(x)

sujeito a x eV

87

5. Introducao

Programacao inteira
e Programacéo linear (PL)

maximiza cx
sujeito a Ax <b
x€eR™>0

e Programacao inteira pura (PI)

maximiza h'y
sujeito a Gy<b
yezr>0

Programacao inteira
e Programacao (inteira) mista (PIM)

maximiza c'x+hly
sujeito a Ax+Gy<b
xeR">0,yeZ™>0

e Programacao linear e inteira pura sao casos particulares da programagao
mista.

e Outro caso particular: 0-1-PIM e 0-1-PI.

x € B™
Exemplo
maximiza X1 + X2
sujeito a 2x71 + 7x2 <49
5%1 4+ 3x <50

88

5.1. Definigoes

Exemplo
15 \
14
13
12
11 -

10 -
9 - L
&% I
7 - L
6 L
5 L
4 L
3 L
2 5%, +3%,< 50 L
1 L
0 N B
01 2 3 45 6 7 8 9 101112 1314 15
X1
e Sorte: A solugdo 6tima é inteiral x; =7, x2 =5,V =12.
e Observagao: Se a solugdo étima é inteira, um problema de PI(M) pode
ser resolvido com o método Simplex.
Exemplo
maximiza X1 +x2
sujeito a 1.8x7 4+ 7x, <49
5x1 + 2.8x, <50
Exemplo

89

5. Introducao

15
14 -
13 -
12 -
11 -
10 -
9 L
2 ° I
7 L
6 L
5 L
4 L
3 -
2 5x,+2.8x,< 50
1 L
0 I B
01 2 3 45 6 7 8 9 101112 13 14 15
Xy
e Solucao 6tima agora: x1 =~ 7.10, x2 =~ 5.17, V = 12.28.
e Serd que |x1],[x2] é a solugdo étima do PI?
Exemplo
maximiza —x71 +7.5%2
sujeito a —x1+7.2x2 <504
5% +2.8x2 <62
Exemplo

90

5.2. Motivacao e exemplos

-X1+7.2X,< 50.4 L

X3

01 2 3 45 6 7 8 9 101112131415

e Solucdo 6tima agora: x1 ~ 7.87, x2 =~ 8.09, V = 52.83.

L] |_X1J = 77 |_X2J =38.

e Solucdo 6tima inteira: x; = 0,x3 = 7!

e Infelizmente a solucdo 6tima inteira pode ser arbitrariamente distante!
Métodos para resolver Pl

e Prove que a solugao da relaxagao linear sempre é inteira.
e Insere cortes.

e Branch-and-bound.

5.2. Motivacao e exemplos

Motivacao

91

5. Introducao

e Otimizacao combinatoria é o ramo da ciéncia da computacao que estuda
problemas de otimizagao em conjuntos (wikipedia).

e “The discipline of applying advanced analytical methods to help make
better decisions” (INFORMS)

e Tais problemas sdo extremamente frequentes e importantes.

Maquina de fazer dinheiro

e Imagine uma méaquina com 10 botoes, cada botao podendo ser ajustado
em um numero entre 0 e 9.

Maquina de fazer dinheiro

Iooon.on| O

e h4 uma configuragdo que retorna R$ 10.000.

total de combinacdes: 10'°.

dez testes por segundo

e em um ano:=> 10 x 60 x 60 x 24 x 365 = 3 x 108

92

Explosao combinatéria
Funcoes tipicas:

n°5 n

5.3. Aplicagées

n log n 2n n!
10 332 316 107 1.02 x 103 3.6 x 10°
100 6.64 10.00 10* 1.27 x103° 9.33 x 1017
1000 9.97 31.62 10° 1.07 x 1037 4.02 x 102567
“Conclusoes”

e Melhor nao aceitar a maquina de dinheiro.

e Problemas combinatérios sdo dificeis.

5.3. Aplicacoes

Apanhado de problemas de otimizacao combinatéria

e (Caixeiro viajante

Roteamento

Projeto de redes

Alocagao de horérios

Tabelas esportivas

Gestao da produgao

e ctc.

Lretirado de Integer Programming - Wolsey (1998)

93

5. Introducao

Caixeiro Viajante

° [J
[]
[]
[J
®
Caixeiro Viajante
[J
.

Caixeiro Viajante

=

e Humanos sao capazes de produzir boas solugdes em pouco tempo!

e Humanos 7

Caixeiro Viajante

94

, 0
— 1/_,:9-'
arO—0, —c)}/
7.
S ~g———O
O]

Figure 1 40 Chimpanzes tour (Bido).

Caixeiro Viajante

Figura 1.41 Pigeon solving a TSP, Images courtesy of Brett Gibson.

Caixeiro Viajante

IRetirado de:

5.3. Aplicagées

“The Traveling Salesman Problem: A Computational Study” David L.

Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University

Press
1Retirado de:

“The Traveling Salesman Problem: A Computational Study” David L.

Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University

Press

95

5. Introducao

Der

Handlungsreifende
wie er fein {oll

und wad ev ju thun Hat, um Auftrdge
3u exhalten und cined gliclidhen Crfolgs
in feinen Gefdaften gewif gu fein.

Bon
¢inem alten Commis - Voyageur.

&

Miteinem Titeltupfer
————

SImenau1882,
Dreud und Verlag vou B, Fr. Voigt.

Caixeiro Viajante

e Business leads the traveling salesman here and there, and there is not a
good tour for all occurring cases; but through an expedient choice divi-
sion of the tour so much time can be won that we feel compelled to give
guidelines about this. Everyone should use as much of the advice as he
thinks useful for his application. We believe we can ensure as much that
it will not be possible to plan the tours through Germany in considera-
tion of the distances and the traveling back and fourth, which deserves
the traveler’s special attention, with more economy. The main thing to
remember is always to visit as many localities as possible without having
to touch them twice.

“Der Handlungsreisende wie er sein soll und was er zu tun hat, um Auftrige
zu erhalten und eines gliicklichen Erfolgs in seinen Geschéften gewiss zu sein.
Von einem alten Commis-Voyageur” (O caixeiro viajante, como ele deve ser
e o que ele deve fazer para obter encomendas e garantir um sucesso feliz dos
seus negdcios. Por um caixeiro viajante experiente).

First brought to the attention of the TSP research community in 1983 by
Heiner Muller-Merbach [410]. The title page of this small book is shown in
Figure 1.1. The Commis-Voyageur [132] explicitly described the need for good
tours in the following passage, translated from the German original by Linda
Cook.

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University
Press

96

5.3. Aplicagées

Caixeiro Viajante

HELP “CAR 54”...AND WIN CASH
54...51,000 PRI)
ONE...510,000 GRAND PRIZE

Holp Toody and Muldoon ind the shartst round .
Too 10 i 1 3 catons Shown o1 o .
Alyou do's drawcscnecting rign e rom ocaton
R o e Shotntroind i ot

»
Caixeiro Viajante
1om [T T T T T]
plagsgon P 3
i sw24978
— usa13509]
pla73a7 E
i PR a—
1000 E E
: cP]
C G
Wepey HKGE E
L 1 1 1 1

1850 1860 1970 1880 1980 2000 2010

Figure | 45 Further progress in the TSP, log scale.

Formulando matematicamente o PCV

e Associar uma varidvel a cada possivel decisao.

IRetirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University
Press

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University
Press

97

5. Introducao

Formulando matematicamente o PCV

e Associar uma variavel a cada possivel decisao.

minimiza Z CijYij
\/ 1jeN
sujeito a Z Xij + Z Xji = 2,

jEN jEN
xij € {0, 1},

Formulando matematicamente o PCV

e Associar uma varidvel a cada possivel decisao.

minimiza E CijYij
1,jEN

sujeito a Z Xij + Z Xji = 2,

jeN jeN
/ xij € {0, 1},

+ restrigoes de eliminacao de subci-
clos!

98

VieN

Vi,j € N.

VieN

vi,j € N.

Apanhado de problemas de otimizacao combinatéria
e Caixeiro viajante

¢ Roteamento

Projeto de redes

Alocacao de horarios
e Tabelas esportivas
e Gestao da produgao

e etc.

Problemas de roteamento

o -

AN

@)

Problemas de roteamento

ool ool

a)

Etc.

5.3. Aplicagées

o

99

5. Introducao

Apanhado de problemas de otimizacao combinatdria

e Caixeiro viajante

e Roteamento

Projeto de redes

Alocacao de horarios

Tabelas esportivas

Gestao da producao

e etc.

Problemas em arvores

Problemas em arvores

100

5.3. Aplicagées

Problemas em arvores - aplicacoes

e Telecomunicagoes
e Redes de acesso local

e Engenharias elétrica, civil, etc..

Apanhado de problemas de otimizacao combinatéria

e Caixeiro viajante

o Roteamento

Projeto de redes

Alocagao de horarios

Tabelas esportivas
e Gestao da produgao

e ctc.

Alocacao de tripulacoes

Apanhado de problemas de otimizacao combinatéria

Caixeiro viajante

Roteamento

Projeto de redes

Alocagao de horarios

101

5. Introducao

e Tabelas esportivas

e Gestao da produgao

e ctc.

Tabelas esportivas

Proximos Adversarios

Fla
JUVENTUDE
Guarani
GALO
Botafogo
PALMEIRAS
Coritiba

5. PAULO
Cruzeiro

Botafogo

Cruzeiro

S. PAULOD
Coxa

FLA

Guarani
JUVENTUDE
Corinthians
FURACAC

| Vasco

Ponte

CRUZEIRO
Sao Paulo

GOIAS

Juventude
CORINTHIANS

Furacfio
SANTOS

Galo
Cricitima
GOIAS
Fla

PARANA
FIGUEIRA
Paysandu
GREMIO
S. Caelano

Paysandu
Coriliba
PALMEIRAS
Parana
CRICIUMA
Santos
GALO
Guarani
JUVENTUDE

Parana

S.CAETANO
Grémio
PAYSANDU
Galo

Goids
CRICIOMA
Flu

INTER

Criciuma

GALO
Santos
FURACAO
Paysandu
PONTE
Parana
PALMEIRAS
Coxa

|Grémio
Palmeiras
PARANA
Fonte
VITORIA
Furacio
SANTOS

Galo
GUARANI

Vitéria

CORINTHIANE
Juventude
GUARANI
Grémio

COXA

Sao Paulo
CRUZEIRO
Fonte

Guarani

Goias

FLA

Vitoria
PALMEIRAS
BOTAFOGO
Figueira
PAYSANDU
Grémio

Apanhado de problemas de otimizacao combinatdria

Caixeiro viajante
Roteamento

Projeto de redes

Alocacao de horarios

Tabelas esportivas

Gestao da producgao

etc.

Gestao da producao

102

5.3. Aplicagées

Etc.

e programacao de projetos

rotagao de plantagoes

alocagao de facilidades (escolas, centros de comércio, ambulancias...)

projeto de circuitos integrados

portfolio de agoes

ete, ete, ete, etc...

103

6. Formulacao

6.1. Exemplos

“Regras de formulacao”
e Criar (boas) formulagoes é uma arte.

e Algumas diretivas bésicas:
— escolha das varidveis de decisao.
— escolha do objetivo.

— ajuste das restrigoes.

Exemplo: 0-1-Knapsack

PROBLEMA DA MOCHILA (KNAPSACK)

Instancia Um conjunto de n itens I = {i1,..., 1} com valores v; e pesos
Pi. Um limite de peso P do mochila.

Solugdao Um conjunto S C I de elementos que cabem na mochila, i.e.
2 icsPi <P

Objetivo Maximizar o valor } ;¢ vi.

e Observagao: Existe uma solugao (pseudo-polinomial) com programagao
dindmica em tempo O(Pn) usando espaco O(P).

Formulacao — Problema da mochila

.. < 7
maximiza ViXi oyl
2 v i,
1
&2 |
sujeito a Z pixi <P ()) ==
ieN s
x; € B.

105

6. Formulacao

koM W e o om - W
oMW b o om -] @

Figura 6.1.: Os campos atacados por um cavalo num tabuleiro de xadrez.

Exemplo 6.1 (Maximizar cavalos num tabuleiro de xadrez)

Qual o nimero maximo de cavalos que cabe num tabuleiro de xadrez, tal que
nenhum ameaga um outro?

Formulagao do problema dos cavalos com varidveis indicadores xi;:

maximiza ZXij
ij
sujeito a xij +Xi—2,j41 <1 3si<gjell]
X +Xi1542 <1 2<1i<8,je 6l
Xij +Xi42,5+1 < 1 ielel,jel7]
Xij + Xit1,j+2 <1 iel7),jelel

Nimero de solugées do problema dos cavalos (A030978)
n|1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

k|1 4 5 8 13 18 25 32 41 50 61 72 8 98 113<>
6.2. Técnicas para formular programas inteiros
Um problema recorrente com indicadores xi,...,Xn € B e selecionar no

méximo, exatamente, ou no minimo k dos n itens. As restrigoes

Y xi<k) x=k) x>k
ien]

i€en] i€n]

conseguem isso.

106

http://www.research.att.com/~njas/sequences/A030978

6.2. Técnicas para formular programas inteiros

Exemplo 6.2 (Localizagao de facilidades simples 1)

Em n cidades dadas queremos instalar no méximo k fabricas (k < n) de modo
a minimizar o custo da instalagio das fabricas. A instalagdo na cidade j € [n]
custa f;. Podemos usar indicadores para y; € B para a instalacao da uma
fabrica na cidade j e formular

minimiza Z fiy;
j€n]

sujeito a Z y; =k
j€n]

Yj S B, J S [Tl]

(Obviamente para resolver este problema é suficiente escolher as k cidades
de menor custo. No exemplo 6.3 estenderemos esta formulagao para incluir
custos de transporte.) O

6.2.1. Formular restricoes logicas

Formulacao: Indicadores

e Variaveis indicadores x,y € B: Selecao de um objeto.

Implicagdo (limitada): Se x for selecionado, entéo y deve ser selecionado

x <y x,y €B

e Ou:
x+y=>1 x,y €B

Ou-exlusivo:

x+y=1 xyeB

Exemplo 6.3 (Localizagao de facilidades nao-capacitado)

Queremos incluir no exemplo 6.2 clientes. Suponha que em cada cidade tem
um cliente, e queremos, junto com os custos das fabricas instaladas, minimizar
o custo de atendimento dos clientes. Entre cada par de cidade, i e j, o custo
de transporte é dado por cij (ver figura 6.2). Para formulacao escolhemos
variaveis de decisao xi; € B, que indicam se o cliente i for atendido pela
fabrica em j. E importante “vincular” as varidveis de decisao: o cliente i pode
ser atendido pela cidade j somente se na cidade j foi instalada uma fabrica,
i.e. Xij — Yj-

107

6. Formulacao

clientes

[] l:l fabricas
. .]

[]
[]
(a) Exemplo de uma instancia (b) Exemplo de uma solugao

Figura 6.2.: Localizagao de facilidades.

minimiza ZnyJJr E CijXij

j€] i,jen]
sujeito a Z xy =1, i€ n] (s6 uma fabrica atende)
j€n]
Z y; <m, (no maximo m fabricas)
jenl]
Xij < Yj, ienl,jen] (s6 fib. existentes atender
Xij € B, ie [T'L],j e nl
Yj € B,] S [TL}
O
Formulacao: Indicadores
Para x,y,z € B
e Conjungdo x =yz=y Az
x < (y+2z)/2 (6.1)
x>y+z—1
e Disjuncao x =y Vz
x> (y+z)/2 (6.2)
x<y-+z

108

6.2. Técnicas para formular programas inteiros

e Negacao x =y

x=1—y (6.3)

e Implicagao: z=x =y
z<1—x4y (6.4)
z>(1—-x+y)/2 (6.5)

Exemplo 6.4 (Max-3-SAT)

Seja @(x1,...y%n) = Ajcpm Ci uma férmula em forma normal conjuntiva,
com cldausulas da forma C; = li1 V li2 V li3. Queremos encontrar uma atri-
buigao x; € B maximizando o niimero de cldusulas satisfeitas.

Seja ¢; € B uma varidvel que indica que cldusula i é satisfeita. Também
vamos introduzir uma variavel x; € B para cada varidvel x; do problema, e
uma varidvel auxiliar li; para literal li; do problema.

maximiza ci
sujeito a ¢; < L7 +lia + i3
Lij = x4 caso lij = x4
lij = 1 — X caso lij 7é Xi

Cci € H‘B,Xi S B,lij € B.

6.2.2. Formular restricées condicionais

Indicadores para igualdades satisfeitas Queremos definir varidvel y € B que
indica se uma dada restrigao é satisfeita.

e Para Zie[n} a;xi < b: Escolhe um limite superior M para Zie[n] aixi—

b, um limite inferior m para)_ aixi — b e uma constante € > 0

ig[n]
pequena.
Y axi <b+M(1—y) (6.6)
ie[n]
Z aixi >b+my+ (1—y)e
ie[n]

109

6. Formulacao

e Para x > 0: Escolhe um limite superior M para x e uma constante €
pequena.

X > ey (6.7)

Exemplo 6.5 (Custos fixos)
Uma aplicacao para problemas de minimizagao com uma funcao objetivo nao-
linear. Queremos minimizar custos, com uma “entrada” fixa ¢ da forma

f(x) =

0 caso x =0
c+1lx) caso0<x <M

e 1(x) uma fungao linear (ver figura 6.3). Com uma y € B indica a positividade
de x, i.e. y =1 sse x > 0 podemos definir a fungdo objetivo por

f(x) =cy + L(x)

e a técnica da equagdo (6.7) resolve o problema. Como o objetivo é minimizar
f(x) a primeira equagdo x > ey é redundante: caso y = 1 nédo faz sentido
escolher uma solugao com x = 0, porque para x = 0 existe a solucao de menor
custo x =y = 0. Logo
x < My
xeRyeB

é suficiente neste caso.

Exemplo
Planejamento de produgao (ingl. uncapacitated lot sizing)

e Objetivo: Planejar a futura produgao no préximos n semanas.

e Parametros: Para cada semana i
— Custo fixo f; para produzir,
— Custo p; para produzir uma unidade,
— Custo hy por unidade para armazenar,

— Demanda d;

110

6.2. Técnicas para formular programas inteiros

¢+ U(x)

s

Figura 6.3.: Funcao objetivo nao-linear

S 1 a 2 d 3 @ 4 da
emana T T T T

Estoque S0 S1 S2 S3 S4

Custos f1/p1 fa/p2 f3/p3 fa/pa

Figura 6.4.: Planejamento de produgao.

111

6. Formulacao

Exemplo
Seja

e x; a quantidade produzida,
e s; a quantidade no estoque no final da semana 1,
e y; = 1 sem tem producdo na semana i, 0 senao.

Problema:

e Funcao objetivo tem custos fixos, mas x; nao tem limite.

e Determina ou estima um valor limite M.

Exemplo

minimiza Z Pixi + Z hisi + Z TiyYi
i i i

sujeito a Si = Si—1 +x¢ — di,
So = 0
xi < My,
x € R™My e B™.

Disjuncao de equacoes
e Queremos que aplica-se uma das equagoes
f1 <1
g1 < ¢gz.
e Solugao, com constante M suficientemente grande

f1 < f;+ Mx
g1 <g2+M(1—x)
x € B.

112

ieMm]

i€ [n]

6.3. Formulacgoes alternativas

X2

X1

Figura 6.5.: Diferentes formulagoes lineares que definem o mesmo conjunto de
solugoes inteiras.

6.3. Formulacoes alternativas

Uma problema de programacao linear ou inteira geralmente possui mais que
uma formulagdo. A figura 6.5 mostra diversas formulagbes que definem o
mesmo conjunto de solugoes inteiras.

Na programacao linear existe pouca diferenca entre as formulagoes: a solugao
é a mesma e o tempo para resolver o problema é comparavel, para um ntmero
comparavel de restrigoes e varidveis. Na programagao inteira uma formulacao
boa é mais importante. Como a solucao de programas inteiras é NP-completo,
frequentemente a relaxacao linear é usada para obter uma aproximagao. Di-
ferentes formulacdo de um programa inteiro possuem diferentes qualidades da
relaxagao linear. Uma maneira de quantificar a qualidade de uma formulacao
é o gap de integralidade(ingl. integrality gap). Para um problema P e uma
instancia i € P seja OPT(i) a solugdo Stima inteira e LP(i) a solu¢do da
relaxacao linear. O gap de integralidade é

LP(i)

g(P) = ?gEOP—T(l) (6.8)

(para um problema de maximizagéo.) O gap de integralidade d4 uma garantia

113

6. Formulacao

para qualidade da solugao da relaxacao linear: caso o gap é g, a solucao nao
é mais que um fator g maior que a solucao integral 6tima.

Exemplo 6.6 (Conjunto independente méximo)
Uma formulacao do problema de encontrar o conjunto independente maximo
num grafo néo-direcionado G = (V,A) é

maximiza Z Xy (CIM)
vev
sujeito a Xu+ Xy <1 viu,v} € E
Xy, €B Vv e V.

No grafo completo com n vértices K, a relaxacao linear possui um valor pelo
menos n/2 (porque a solugao x, = 1/2,v € V possui valor n/2), enquanto
a solugdo 6tima inteira é 1. Por isso, o programa (CIM) possui um gap de
integralidade ilimitado. O

6.4. Exercicios

(Solugoes a partir da pdgina 216.)

Exercicio 6.1

A empresa “Festa fulminante” organiza festas. Nos préximos n dias, ela pre-
cisa p; pratos, I < i < n. No comego de cada dia gerente tem os seguintes
opgoes:

e Comprar um prato para um preco de c reais.

e Mandar lavar um prato devagarmente em d; dias, por um preco de 1y
reais.

e Mandar lavar um prato rapidamente em d,; < d; dias, por um preco de
1, > 1 reais.

O gerente quer minimizar os custos dos pratos. Formule como programa
inteira.

Exercicio 6.2
Para os problemas abaixo, encontra uma formulagdo como programa inteira.

CONJUNTO INDEPENDENTE MAXIMO

Instancia Um grafo nao-direcionado G = (V, A).

114

6.4. Exercicios

Solucao Um conjunto independente 1, i.e. I C V tal que para vértices
vi,v2 € L {vi,v2} € A.

Objetivo Maximiza |I|.

EMPARELHAMENTO PERFEITO COM PESO MAXIMO

Instancia Um grafo nao-direcionado bi-partido G = (V7 U V3, A) (a fato
de ser bi-partido significa que A C V; x V) com pesos p: A — R
NOS arcos.

Solugcao Um emparelhamento perfeito, i.e. um conjunto de arcos C C A
tal que todos nés no sub-grafo G[C] = (V7 U V2, C) tem grau 1.

Objetivo Maximiza o peso total }_...p(c) do emparelhamento.

PROBLEMA DE TRANSPORTE

Instancia n depdsitos, cada um com um estoque de p; (i € [n]) produtos,
e m clientes, cada um com uma demanda de d; (j € [m]) produtos.
Custos de transporte ai; de cada depdsito para cada cliente.

Solugcdo Um decisdo quantos produtos xi; devem ser transportados do
depdsito 1 ao cliente j, que satisfaz (i) Cada depdsito manda todo
seu estoque (ii) Cada cliente recebe exatamente a sua demanda.
(Observe que o nimero de produtos transportados deve ser inte-
gral.)

Objetivo Minimizar os custos de transporte) ; j Qi Xij-
)

CONJUNTO DOMINANTE
Instancia Um grafo ndo-direcionado G = (V, A).

Solugdao Um conjunto dominante, i.e. um conjunto D C V, tal que Vv €
V:veDV(Jue D :{u,v} € A) (cada vértice faz parte do conjunto
dominante ou tem um vizinho no conjunto dominante).

Objetivo Minimizar o tamanho do conjunto dominante |D|.

115

6. Formulacao

Exercicio 6.3
Acha uma formulagao inteira para todos os 21 problemas que o Karp provou
NP-completo [10].

Exercicio 6.4

Juliano é fa do programa de auditério Apagando e Ganhando, um programa
no qual os participantes sao selecionados atrdves de um sorteio e recebem
prémios em dinheiro por participarem. No programa, o apresentador escreve
um numero de N digitos em uma lousa. O participante entao deve apagar
exatamente D digitos do niimero que estd na lousa; o nimero formado pelos
digitos que restaram é entdo o prémio do participante. Juliano finalmente
foi selecionado para participar do programa, e pediu que vocé escrevesse um
programa inteira que, dados o nimero que o apresentador escreveu na lousa,
e quantos digitos Juliano tem que apagar, determina o valor do maior prémio
que Juliano pode ganhar.

(Fonte: Maratona de programagao regional 2008, RS)

Exercicio 6.5

Set é um jogo jogado com um baralho no qual cada carta pode ter uma,
duas ou trés figuras. Todas as figuras em uma carta sao iguais, e podem ser
circulos, quadrados ou triangulos. Um set é um conjunto de trés cartas em
que, para cada caracterfstica (ndmero e figura), u ou as trés cartas sdo iguais,
ou as trés cartas sao diferentes. Por exemplo, na figura abaixo, (a) é um set
valido, ja que todas as cartas tém o mesmo tipo de figura e todas elas tém
numeros diferentes de figuras. Em (b), tanto as figuras quanto os nimeros sao
diferentes para cada carta. Por outro lado, (c) ndo é um set, ji que as duas
ultimas cartas tém a mesma figura, mas esta é diferente da figura da primeira
carta.

12 | o]
[ee | [00O] [AAA
[eee] [oe]

NN
(a) (b) ()

O objetivo do jogo é formar o maior nimero de sets com as cartas que estao
na mesa; cada vez que um set é formado, as trés cartas correspondentes sao
removidas de jogo. Quando h&a poucas cartas na mesa, é ficil determinar
0 maior numero de sets que podem ser formados; no entanto, quando hé
muitas cartas hd muitas combinacoes possiveis. Seu colega quer treinar para
o campeonato mundial de Set, e por isso pediu que vocé fizesse um programa

116

6.4. Exercicios

inteira e que calcula o maior ntiimero de sets que podem ser formados com um
determinado conjunto de cartas.
(Fonte: Maratona de programagao regional 2008, RS)

Exercicio 6.6
Para os problemas abaixo, acha uma formulagao como programa inteira.

COBERTURA POR ARCOS

Instancia Um grafo nao-direcionado G = (V| E) com pesos ¢ : E — Q nos
arcos.

Solucdo Uma cobertura por arcos, i.e. um subconjunto B/ C E dos arcos
tal que todo vértice faz parte de pelo menos um arco selecionado.

Objetivo Minimiza o custo total dos arcos selecionados em E’.

CONJUNTO DOMINANTE DE ARCOS

Instancia Um grafo nao-direcionado G = (V| E) com pesos ¢ : E — Q nos
arcos.

Solug¢do Um conjunto dominante de arcos, i.e. um subconjunto £/ C E
dos arcos tal que todo arco compartilha um vértice com pelo menos
um arco em E’.

Objetivo Minimiza o custo total dos arcos selecionados em E’.

COLORACAO DE GRAFOS
Instancia Um grafo ndo-direcionado G = (V, E).

Solugdao Uma coloragao do grafo, i.e. uma atribuicao de cores nas vértices
¢ :V — Z] tal que cada par de vértices ligando por um arco recebe
uma cor diferente.

Objetivo Minimiza o nimero de cores diferentes.

117

6. Formulacao

CLIQUE MINIMO PONDERADO

Instancia Um grafo ndo-direcionado G = (V, E) com pesos ¢ : V — Q nos
vértices.

Solugdo Uma clique, i.e. um subconjunto V' C V de vértices tal que
existe um arco entre todo par de vértices em V’.

Objetivo Maximiza o peso total dos vértices selecionados V'.

SUBGRAFO CUBICO
Instancia Um grafo nao-direcionado G = (V, E).

Solugcdo Uma subgrafo ctibico, i.e. uma selegao E/ C E dos arcos, tal que
cada vértice em G’ = (V,E’) possui grau 0 ou 3.

Objetivo Maximiza o nimero de arcos selecionados |E’]|.

Exercicio 6.7

Uma empresa tem que decidir quais de sete investimentos devem ser feitos.
Cada investimento pode ser feito somente uma unica vez. Os investimentos
tem lucros (ao longo prazo) e custos iniciais diferentes como segue

Investimento
1 2 3 4 5 6 7

Lucro estimado [MR$] 17 10 15 19 7 13 9
Custos iniciais [MR$] 43 28 34 48 17 32 23

A empresa tem 100 MRS$ capital disponivel. Como maximizar o lucro total
(ao longo prazo, nao considerando os investimentos atuais), respeitando que
os investimentos 1,2 e 3,4 s@o mutualmente exclusivas, e nem o investimento
3 nem o investimento 4 pode ser feita, sem pelo menos um investimento em 1
ou 2 (as outros investimentos ndo tem restrigoes).

Exercicio 6.8
Um produtor de brinquedos projetou dois novos brinquedos para Natal. A
preparacao de uma fibrica para produzir custaria 50000 R$ para a primeiro

118

6.4. Exercicios

brinquedo e 80000 R$ para o segundo. Apds esse investimento inicial, o pri-
meiro brinquedo rende 10 R$ por unidade e o segundo 15R$.

O produtor tem duas fédbricas disponiveis mas pretende usar somente uma,
para evitar custos de preparagao duplos. Se a decisao for tomada de produzir
os dois brinquedos, a mesma fabrica seria usada.

Por hora, a fabrica 1 é capaz de produzir 50 unidades do brinquedo 1 e 40
unidades do brinquedo 2 e tem 500 horas de producdo disponivel antes de
Natal. A fébrica 2 é capaz de produzir 40 unidades do brinquedo 1 e 25
unidades do brinquedo 2 por hora, e tem 700 horas de producao disponivel
antes de Natal.

Como nao sabemos se os brinquedos serao continuados depois Natal, a pro-
blema é determinar quantas unidades de cada brinquedo deve ser produzido
até Natal (incluindo o caso que um brinquedo néo é produzido) de forma que
maximiza o lucro total.

Exercicio 6.9

Uma empresa produz pequenos avioes para gerentes. Os gerentes frequen-
temente precisam um avido com caracteristicas especificas que gera custos
inicias altos no comeco da producao.

A empresa recebeu encomendas para trés avides, mas como ela estd com ca-
pacidade de producgao limitada, ela tem que decidir quais das trés avioes ela
vai produzir. Os seguintes dados sao relevantes

Avides Cliente
produzidas 1 2 3
Custo inicial [MR$] 3 2 0
Lucro [MR$/aviao] 2 3 0.8
Capacidade usada [%/avido] 20% 40% 20%
Demanda méxima [avides] 3 2 5

Os clientes aceitam qualquer nimero de avides até a demanda méaxima. A
empresa tem quer decidir quais e quantas avides ela vai produzir. As avioes
serao produzidos em paralelo.

Exercicio 6.10 (Winkler)

Uma fechadura de combinagao com trés discos, cada um com ntmeros entre
1 e 8, possui um defeito, tal que precisa-se somente dois niimeros corretos dos
trés para abri-la. Qual o nimero minimo de combinagdes (de trés nimeros)
que precisa-se testar, para garantidamente abrir a fechadura?

Formule um programa inteiro e resolve-o.

119

6. Formulacao

Exercicio 6.11
Formule o problema

MAX-k-SAT

Entrada Uma férmula em forma normal conjuntiva com m varidveis e
n cldusulas @(x1,...,xm) = C; A --- A Cy, tal que cada cldusula
possui no méaximo k literais

Solugcdo Uma atribuicao x; — {0, 1}.

Objetivo Maximizar o nimero de cldusulas satisfeitas.

(Dica: Usa as desigualdades (6.1)-(6.3). Comega com k = 3.)

120

7. Técnicas de solucao

7.1. Introducao
Limites
e Exemplo: Problema de maximizacao.

e Limite inferior (limite primal): Cada solucao vidvel.

— Qualquer técnica construtiva, p.ex. algoritmos gulosos, heuristicas

etc.

e Limite superior (limite dual): Essencialmente usando uma relaxagao

— Menos restrigoes = conjunto maior de solugao vidveis.

— Nova fungao objetivo que é maior ou igual.

e Importante: Relaxagao linear: x € Z = x € R.

7.2. Problemas com solucao eficiente

Observagao 7.1 (Regra de Laplace)
Lembranga: A determinante de uma matriz pela regra de Laplace é

det(A) = Y (=) aydet(Ay) = > (—1)"ay det(Ay)

i€n] jen]

sendo Ajj a submatriz sem linha i e coluna j.

Relaxacao inteira

e Solucao simples: A relaxagao linear possui solugao 6tima inteira.

e Como garantir?

e Com base B temos a solucao x = (xg xn)t = (B~ 'b,0)t.

e Observacao: Se b € Z™ e |det(B)| = 1 para a base 6tima, entdao o PL

resolve o PI.

121

7. Técnicas de solucao

Relaxacao inteira
e Para ver isso: Regra de Cramer.

e A solugdo de Ax=Db é

det(Ai)
Xi =
Y det(A)
com A; a matriz resultante da substituicao da i-gésima coluna de A por
b.
Prova. Seja U; a matriz identidade com a i-gésima coluna substituido por x,
ie.
1 X1
X2
Xn—1
Xn 1

Temos que AU; = A; e com det(U;) = x; e det(A) det(U;) = det(A;) temos
o resultado. |

Exemplo: Regra de Cramer

3 21 X1 1
5 0 2 X2 = 1
21 2 X3 1
Exemplo: Regra de Cramer
3 21 1 2 1
5 0 2 |=-13 10 2 |=-1
21 2 11 2
31 1 3 21
21 2 2 11

Logo x1 =1/13; x2 =3/13; x3=4/13.

122

7.2. Problemas com solucao eficiente

Aplicacao da regra de Cramer
e Como garantir que x = B~'b é inteiro?

e Cramer:
o det(Bi)

~ det(B)
e Condicao possivel: (a) det(B;) inteiro, (b) det(B) € {—1,1}.
e Garantir (a): A€ Z™* ™ ebecZ™.

Xi

e Garantir (b): Toda submatriz quadrada nao-singular de A tem determi-
nante {—1,1}.
Exemplo 7.1
Observe que essas condigoes sao suficientes, mas nao necesséarias. E possivel
que Bx = b possui solugao inteira sem essas condicoes ser satisfeitas. Por

exemplo
2 2\ (x1\ _ (2
1 0 X2 - 1
tem a solucdo inteira (x7 x2) = (1 0), mesmo que det(A) = —2. O

A relaxagao é inteira

Definigao 7.1

Uma matriz quadrada inteira A € R™*™ é unimodular se |det(A)] = 1. Uma
matriz arbitrdria A é totalmente unimodular (TU) se cada submatriz quadrada
nao-singular A’ de A é modular, i.e. det(A’) €{0,1,—1}.

Uma consequéncia imediata dessa definigao: aj; € {—1,0,1}.

Exemplo
Quais matrizes sao totalmente unimodular?

1T 10
G]]>;o11
10 1

010

T =1 =1 0 011
-1 0 0 1]:;|l1 01
100

100

C —_e—_——_
S O = = O

123

7. Técnicas de solucao

Critérios

Proposicao 7.1
Se A é TU entao

(i) At ¢ TU.
(ii) (A I) com matriz de identidade I é TU.
(iii) Uma matriz B que é uma permutacdo das linhas ou colunas de A é TU.

(iv) Multiplicando uma linha ou coluna com —1 resulta numa matriz TU.

Prova. (i) Qualquer submatriz quadrada B de A' e uma submatriz B de A
também. Com det(B) = det(B"), segue que A' é totalmente unimodular. (ii)
Qualquer submatriz de (AI) tem a forma (A’l’) com A’ submatriz de A e I’
submatriz de I. Com |det(A’l")| =|det(A’)| segue que (AI) é TU. (iii) Cada
submatriz de B é uma submatriz de A. (iv) A determinante troca no maximo
o sinal. |

Exercicio 7.1 pede generalizar a proposicao 7.1.

Critérios

Proposigao 7.2
Uma matriz A é totalmente unimodular se

(i) ay €{+1,-1,0}
(ii) Cada coluna contém no maximo dois coeficientes nao-nulos.

(iii) Existe uma particio de linhas My U M, = [1,m] tal que cada coluna
com dois coeficientes nao-nulos satisfaz

Z Clij— Z (lij:O

ieM;y ieM,

Observe que esse critério é suficiente, mas nao necessério.

124

7.2. Problemas com solucao eficiente

Exemplo

e Coeficientes € {—1,0,1}: Sim.
e Cada coluna no maximo dois coeficientes nao-nulos: Sim.

e Particio M7,M;? Sim, escolhe M7 = [1,3], M, = 0.

Exemplo

TU? Nao: det(A) = 2.

110

A=[(0 1 1

1 0 1

TU? Nao: det(A) = 2.

01 000

o1 1 11
1T 0 1 11
10010
100 00

TU? Sim. Mas nossa regra nao se aplical

Prova. (da proposicao 7.2). Prova por contradi¢ao. Seja A uma matriz que
satisfaz os critérios da proposigao 7.2, e B a menor submatriz quadrada de A
tal que det(B) ¢ {0,+1,—1}. B ndo contém uma coluna com um tnico coefi-
ciente nao-nula: seria uma contradi¢do com a minimalidade do B (removendo
a linha e a coluna que contém esse coeficiente, obtemos uma matriz quadrada
menor B*, que ainda satisfaz det(B*) ¢ {0,+1,—1}). Logo, B contém dois

125

7. Técnicas de solucao

coeficientes ndo-nulos em cada coluna. Aplicando a condigéo (3) acima, sub-
traindo as linhas com indice em M; das linhas com indice em M, podemos
ver as linhas do B s&o linearmente dependentes e portanto temos det(B) = 0,
uma contradigao. |
Uma caracterizagao (i.e. um critério necessdrio e suficiente) das matrizes to-
talmente unimodulares (sem prova) é

Teorema 7.1 (Ghouila-Houri [8])
Um matriz A € Z™*™ é TU sse para todo subconjunto R C [m] de linhas

existe uma particdo R; U R, tal que
’Z aij — Z a| <1 (7.1)
i€Ry i€R;

para todas colunas j € [n].

Observe que a proposicao 7.2 implica o critério acima: dado uma particao das

linhas de acordo com 7.2, para todo R C [m], a particio (M; NR) U (M2 NR)
satisfaz (7.1).

Definicao 7.2

Uma matriz A € {0, T}™*™ possui a propriedade de uns consecutivos se para
cada coluna j € [n], a;;j =1 e ay;j = 1 com i < i’ implica ay; = 1 para
k € [i,i'].

Uma aplicagao do critério de Ghouila-Houri é a

Proposicao 7.3
Uma matriz que satisfaz a propriedade de uns consecutivos é totalmente uni-
modular.

Prova. A matriz formada por um subconjunto de linhas R C [m] também

possui a propriedade de uns consecutivos. Seja R ={i1,...,ix}comi; <--- <
ik. A partigdo em My = {iy,1s,...} e My ={iz,14,...} satisfaz (7.1). |
Exemplo 7.2

Para um universo U ={uy,...,u}, e uma familia de conjuntos Cq,...,Cy,, C
U com pesos pi,...,pn uma cobertura é uma selegdo de conjuntos S C [n]

tal que cada elemento do universo é coberto, i.e. para todo u € U existe um
i€ S com u € Ci. A problema de encontrar a cobertura de menor peso total
pode ser formulado por

minimiza E PiXxi
ie[n]

sujeito a Ax > 1
x € B™.

126

7.2. Problemas com solucao eficiente

com aiy = 1 sse u; € Cj. Este problema em geral é NP-completo. Pela
propriedade de uns consecutivos, podemos ver que no caso de um universo
U = [1, m] com subconjuntos que séo intervalos o problema pode ser resolvido
em tempo polinomial. O

Consequéncias

Teorema 7.2 (Hoffman e Kruskal [9])
Se a matriz A de um programa linear é totalmente unimodular e o vetor b é
inteiro, todas solugoes basicas sao inteiras. Em particular as regioes

{x e R™ | Ax < b}
{x e R™ | Ax > b}
{x e R™ | Ax < b,x > 0}
{x e R" | Ax =b,x > 0}

possuem pontos extremos inteiros.

Prova. Consideragoes acima. |

Exemplo 7.3 (Caminhos mais curtos)

Exemplo: Caminhos mais curtos
e Dado um grafo direcionado G = (V, A) com custos ¢ : A — Z nos arcos.

e Qual o caminho mais curto entre dois nés s,t € V7

Exemplo: Caminhos mais curtos

minimiza Z CaXa
aceA
sujeito a Z Xq — Z Xq =1
aeN*(s) aeN—(s)
> Xa—) Xa=0, W e V\{st}
aeN+(v) aeN—(v)
IRIE e
aeN+(t) aeN—(t)
Xq € B, Va € A.

127

7. Técnicas de solucao

A matriz do sistema acima de forma explicita:

s 1 -1 Xa, 1
1 0
—1 1 0
t -1 - Xaq —1

m

Como cada arco é incidente a dois vértices, cada coluna contém um coeficiente
1 e —1, e a Proposigao 7.2 é satisfeito pela parti¢ao trivial f U V. O

Exemplo 7.4 (Fluxo em redes)

Exemplo: Fluxo em redes

e Dado: Um grafo direcionado G = (V, A)
— com arcos de capacidade limitada 1: A — Z*,
— demandas d : V — Z dos vértices,
— (com d, < 0 para destino e d, > 0 nos fonte)

— e custos ¢ : A — R por unidade de fluxo nos arcos.

e Qual o fluxo com custo minimo?

A
/ \
N
RN

128

7.2. Problemas com solucao eficiente

Exemplo: Fluxo em redes

minimiza Z CaXa
acA

sujeito a Z Xa — Z Xq = dv, YvevVv
aeN*(v) aeN—(v)
0 <xq <lg, Va e A.

com conjunto de arcos entrantes N~ (v) e arcos saintes N (v).

Exemplo: Fluxo
e A matriz que define um problema de fluxo é totalmente unimodular.

e Consequéncias
— Cada ponto extremo da regiao viavel é inteira.
— A relaxacao PL resolve o problema.

e Existem varios subproblemas de fluxo minimo que podem ser resolvidos
também, p.ex. fluxo méximo entre dois vértices.

O
Exemplo 7.5 (Emparelhamentos)

EMPARELHAMENTO MAXIMO (EM)
Entrada Um grafo G = (V, E) nao-direcionado.

Solugdao Um emparelhamento M C E, i.e. um conjunto de arcos, tal que
para todos vértices v temos [N(v) N M| < 1.

Objetivo Maximiza |M]|.

Uma formulacao é
maximiza Z CeXe (7.2)
eckE
sujeito a Z Xy < 1, YweV (7.3)
ueN (v)
Xe € B.

129

7. Técnicas de solucao

A matriz de coeficientes dessa formulacao é TU para grafos bipartidos. Por
qué? Isso ainda é valida para grafos nao-bipartidos? O

7.3. Desigualdades validas
Desigualdades validas

e Problema inteiro
max{c'x | Ax < b,x € Z}}

e Relaxagao linear
max{c*x | Ax < b,x € R}}

X2

X1

Desigualdades validas

Definicao 7.3
Uma desigualdade mix < 71 € vdlida para um conjunto P, se Vx € P : 7ix < 7.

e Como achar desigualdades (restrigoes) vélidas para o conjunto da solugoes
vidveis {x | Ax < b,x € Z1} de um problema inteiro?
— Técnicas de construcao (p.ex. método de Chvatal-Gomory)
— Observar e formalizar caracteristicas especificas do problema.

— “The determination of families of strong valid inequalities is more
of an art than a formal methodology” [17, p. 259]

130

7.3. Desigualdades validas

Exemplo 7.6 (Localizagao de facilidades nao-capacitado)

Temos um conjunto de cidades C = [n] em que podemos abrir facilidades
para um custo fixo fj,j € C. Em cada cidade i existe um demanda que pode
ser satisfeito por uma facilidade na cidade j com custo cij, caso existe um
facilidade na cidade j. Com xi; € B indicando que a demanda da cidade i é
satisfeito pela facilidade na cidade j podemos formular

minimiza Z f;y; + Z CijXij (7.4)
j€m] i€nl,jem]

sujeito a Z xij =1, Vie [n] (7.5)
jem]
Xij < Yj, Vien,jenl (7.6)
xij € B, Vie [nl,j € [n] (7.7)
y; € B, vj € nl. (7.8)

Ao invés de
Xij < Yj (7.9)

podemos formular
D xy <y (7.10)

ie[n]

Essa formulacao ainda é correto, mas usa n restricoes ao invés de n?. Entre-
tanto, a qualidade da relagao linear é diferente. E simples ver que podemos
obter (7.10) somando (7.9) sobre todos i. Portanto, qualquer solugdo que
satisfaz (7.9) satisfaz (7.10) também, e dizemos que (7.9) domina (7.10).

O seguinte exemplo mostra, que o contrdrio nao é verdadeiro. Com custos de
instalacao f; = 1, de transporte cij = 5 para i # j e ¢ii = 0, duas cidades e
uma fdbrica obtemos as duas formulacoes (sem restrigoes de integralidade)

minimiza Y1 +y2 +5%x12 + 5x21 Y1 +y2 +5x12 + 5%x21

sujeito a X711 +%x12 =1 X171 +%x12 =1
x21 +x22 =1 X271 +%x22 =1
yr+yz2 <1 Yyr+yz2 <1
x11 < Yq x11 +x21 < 243
x12 < Y2
x21 < Yq x21 +x22 < 2y»
x22 < Y2

131

7. Técnicas de solucao

A solugdo 6tima do primeiro sistema é y; = 1,x11 = x21 = 1 com valor 6,
que é a solucao 6tima inteira. Do outro lado, a solucao 6tima da segunda
formulacao é y; = y, = 0.5 com x77 = x22 = 1, com valor 1, i.e. ficam
instaladas duas “meia-fabricas” nas duas cidades!

¢
Exemplo 7.7 (Problema do caixeiro viajante)
Na introducao discutimos a formulacao basica do PCV
minimiza Z CijYij
i,jeN
sujeitoa » xy =1, VieN (7.11)
jeN
D xi=1, VieN (7.12)
jEN
xij € {0, 1}, Vi, j € N. (7.13)
+ restri¢oes de eliminagdo de subciclos! (7.14)

Uma ideia de eliminar subciclos é a seguinte: considere um subconjunto S C N
de cidades: entre cidades em S nao podemos selecionar mais que |S|—1 arestas,
senao vai formar um subciclo. Logo uma forma de eliminar subciclos é pelas
restrigoes

Y xi < ISl 1 VS CN,S #0,S #N. (S1)
i,jE€S

Uma outra forma pode ser obtido como segue: associa um “potencial” (uma
altura) p; a cada cidade i € N e for¢a o sucessor de i na rota ter um potencial
pelo menos p; + 1. Isso nao pode ser satisfeito em ciclos. Para permitir um
ciclo global, vamos excluir uma cidade fixa s € S dessa restricao. Logo, as
restrigoes

pi+n(xij_])+1§pj Vij,i# s, #s (SZ)

também eliminam os subciclos.
Quais restrigoes sao melhores? Considere as solugoes

Ps, ={x | x satisfaz (7.11), (7.12), (7.13), (S1)}
da primeira formulagao e as solugoes

Ps, = {x | existem valores p tal que x satisfaz (7.11), (7.12), (7.13), (S2)}

132

7.3. Desigualdades validas

2/3 2/3 2/3 2/3

Figura 7.1.: Exemplo de uma solugao fracionaria de uma instancia do PCV
com 4 cidades da formulag@o Ps, que néo é valida na formulagao

Ps,. O valor p; = 0 para todos i € N.

da segunda. Nao é dificil de ver que existem solugoes fraciondrias x € Ps, que

nao pertencem a Ps,: um exemplo é dado na Figura 7.1.

E possivel mostrar que Ps, C Ps,. Logo a formulacdo (S1) domina a for-

mulagcao (Sz).

Exemplo: 0-1-Mochila

= ?
oo B
= =
'\ | g 7!
s
maximiza Z ViXi
ien]
sujeito a Z pixi <P
i€[n]
xi €B

Exemplo: 79%1 4+ 53x, + 53x3 + 45x4 + 45x5 < 178.

Exemplo 7.8 (Problema da mochila)

O

133

7. Técnicas de solucao
Exemplo: 0-1-Mochila

e Observagao: Para um subconjunto S C [I,n]: Se } ;.spi > P entdo
> oxi <IS[—1.

e Exemplos:

X1 +x2+x3 <2
X1 +X2+x4+%x5 <3
X1 +x3+x4+%x5 <3
X2 +x3+x4+%x5 <3

Um conjunto S tal } ; s pi > P se chama uma cobertura e a desigualdades
obtidos por tais conjuntos desigualdades de cobertura (ingl. cover inequalities).

O

Exemplo 7.9 (Emparelhamentos)
Continuando exemplo 7.5.

Exemplo: Emparelhamentos

e Escolhe um subconjunto arbitrario de vértices U C V.
e Observagao: O numero de arestas internas é < |[U|/2].

e Portanto:

> xa < (U2 (7.15)

acUZnA

é uma desigualdade valida.

Observagao 7.2

A envoltéria convexa do problema de emparelhamentos é dado pelas res-
trigoes (7.3) e (7.15) para todo conjunto U de cardinalidade impar maior
que 1. O

134

7.3. Desigualdades validas

Método de Chvatal-Gomory
Dado uma restrigao

Z aiXi < b
ien]

também temos, para u € R, u > 0 as restrigoes validas

Z uaixi < ub (multiplicacdo com u)
ien]
Z luai] xi <ub porque |y] <ye0 <x
i€[n]
Z luai] xi < [ub] porque o lado da esquerda é inteira
ie[n]

O método de Chvatal-Gomory funciona igualmente para combinacoes lineares

de colunas. Com A = (a' a? ---a™) e u € R™ obtemos

Z |uat|x; < [ub] (7.16)
ie[n]

Teorema 7.3
Cada desigualdade valida pode ser construida através de um nidmero finito de
aplicacoes do método de Chvétal-Gomory (7.16).

(Uma prova do teorema encontra-se, por exemplo, em Wolsey e Nemhauser
[17, p. I1.1.2] ou, para o caso de varidveis 0-1, em Wolsey [16, Th. 8.4].)

Observagao 7.3

Para desigualdades }_ n) GiXi > b obtemos similarmente

Z [ua'] x; > [ub]

i€[n]

iel

Exemplo 7.10 (Problema da mochila)
A relaxacao linear do problema da mochila acima possui as restricoes

79%1 +53xp +53x3 +45x4 +45x5 178

X1

IN

X2
X3
X4

VARVANR VAR VAN VAN

X5

135

7. Técnicas de solucao

Com u=(1/79026/79 26/79 0 0)' obtemos a desigualdade vélida

X1 +x2+x3 <2,

Exemplo 7.11 (Emparelhamentos)

e Para um U C V podemos aplicar o método de Chvétal-Gomory com
u=(1/21/2---1/2)t € RIY as desigualdades

Z Xy <1 Yv e lu
ueN (v)
para obter
212) xw=) Xat) 1/2xasm|/z
veu ueN(v) acUZnA aeN(U

e depois aplicar os pisos com Y_

w 1/2)xa =0

aeN(U

Y xa < LIUl2)

acUZnA

7.4. Planos de corte
Como usar restricoes validas?

e Adicionar & formulacdo antes de resolver.
— Vantagens: Resolugdo com ferramentas padrao.
— Desvantagens: Numero de restrigoes pode ser muito grande ou de-
mais.
e Adicionar ao problema se necessario: Algoritmos de plano de corte.

— Vantagens: Somente cortes que ajudam na solugao da instancia sao
usados.

136

7.4. Planos de corte

Planos de corte
Problema inteiro
max{c'x | Ax < b,x € ZT}

e O que fazer, caso a relaxacao linear nao produz solugoes 6timas?

e Um método: Introduzir planos de corte.

Definigao 7.4
Um plano de corte (ingl. cutting plane) é uma restrigio valida (ingl.
valid inequality) que todas solugoes inteiras satisfazem.

Algoritmo de planos de corte

Algoritmo 7.1 (Planos de corte)
Entrada Programa inteiro max{c*x | Ax < b,x € Z1}.
Saida Solucdo inteira 6tima ou “N&o existe corte.”.
1 Vi={x]Ax <b} { regiao viavel }
2 x*:=argmax{c'x|x € V} { resolve relaxacdo }
3 while (x*"¢Z%}) do
4 if (existe corte a'x <d com a'x* >d) then
5 V:=Vn{x|a'x<d { nova regido viavel }
6 x* = argmax{c*x | x € V} { nova solugdo étima }
7 else
8 return "Nao existe corte.”
9 end if
10 end while

Método de Gomory
e Como achar um novo corte na linha 4 do algoritmo?

e A solugao 6tima atual é representado pelo diciondrio
zZ=2z+ Z CjX;j
j

Xi:Bi_Zdi]’Xj ieB
jeN

e Se a solucdo nao ¢ inteira, existe um indice i tal que x; € Z,, i.e.
bi_ g Z+.

137

7. Técnicas de solucao

Cortes de Chvatal-Gomory

=b; — Z a4jX; Linha fraciondria (7.17)
jeN
<bi—) laylx Definicéo de || (7.18)
jeN
xi < |bi] — Z [aij] x; Integralidade de x (7.19)
jeN
0 > {Bl} — Z {dij}Xj (717) — (719) (720)
jeN
Xn41 = — {61} + Z {(_lij}Xj Nova variavel (7.21)
jeN
Xn4+1 € Z+ (722)

Para solugOes inteiras, a diferenca do lado esquerdo e do lado direito na
equagdo (7.19) é inteira. Como uma solugéo inteira também satisfaz a equagao
(7.17) podemos concluir que X, 11 também é inteira.

Observagao 7.4
Lembra que o parte fraciondrio de um ndmero é definido por {x} = x — |x],

sendo o piso |x| o maior nimero inteiro menor que x. Por exemplo, {0.25} =
0.25 € {—0.25} = 0.75. (Ver defini¢ao A.1 na pégina 193.) ¢

A solucao bésica atual nao satisfaz (7.20), porque com xj = 0,j € N temos
que satisfazer -

{bl} S O)
uma contradicao com a definicdo de {-} e o fato que b; é fraciondrio. Portanto,
provamos

Proposigao 7.4
O corte (7.20) satisfaz os critérios da linha 4 do algoritmo PLANOS DE CORTE.
Em particular, sempre existe um corte e o caso da linha 8 nunca se aplica.

Exemplo 7.12
Queremos resolver o problema

maximiza X1 + X2
sujeito a —x1+3x <9
10x7 <27
X1,%X2 € Z

138

7.4. Planos de corte

A solucao da relaxacdo linear produz a série de dicionarios

(1) z = X1 4x2 (2) z =3 +4/3%1 —1/3w,
w1 =9 +x7 —3xs X2 =3 +1/3x7 —1/3w;
wy =27 —10x wy =27 —10x3

(3) z =6.6 —4/30w, —1/3w,
X2 = 3.9 —1/301/\)2 —1/3W1
X1 =27 —1/1OW2
A solugdo 6tima x1 = 2.7, x = 3.9 é fraciondria. Correspondendo com a
segunda linha
x2 =39 —1/30w, —1/3w;

temos o corte

wy =-0.9 +1/30wy; +1/3w;,
e 0 novo sistema é
(4) z =6.6 —4/30w, —1/3w;
X2 =3.9 —1/301/\/2 —]/3W1
X1 =27 -1 /1 0W2
wy =-0.9 +1/30w, +1/3w;
Substituindo w, e wq no corte w3 = —0.9 + 1/30w> + 1/3w; > 0 podemos

reescrever o corte sando as varidveis originais do sistema, obtendo x; < 3.
Esse sistema nao é mais 6timo, e temos que re-otimizar. Pior, a solugao basica
atual nao é vidvel! Mas como na funcao objetivo todos coeficientes ainda sao
negativos, podemos aplicar o método Simplex dual. Um pivo dual gera a nova
solugao 6tima
(5) z =5.7 7]/1OW2 —W3

X2 =3 —W3

X1 =27 —1/10W2

wy =27 —1/10w, +3ws
com Xx; = 3 inteiro agora, mas xj ainda fraciondrio. O préximo corte, que
corresponde com xq é

(6) z =57 —=1/10w, —w; (7)z =5 —ws —w3

X2 =3 —W3 X2 =3 —w3

X1 =27 —1/10W2 X1 =2 —Wy

w1 =27 —1/10wy +3ws w, =2 —wyg +3ws

wg =-0.7 +1/10w, wy =7 +10wy
cuja solugdo é inteira e 6tima. (O tltimo corte inserido wg = —0.74+1/10w; >
0 corresponde com x7 < 2.) O

Observagao 7.5
Nosso método se aplica somente para sistemas puros (ver pagina 115) e temos
que garantir que as varidveis de folga sao varidveis inteiras. Por isso os coefi-

139

7. Técnicas de solugao
X2

4 Segundo corte, yx _ <2-7
°7 3.9

Primeiro corte

X1
3 4

Figura 7.2.: Visualizacao do exemplo 7.12.

cientes de um sistema original em forma normal tem que ser ntimeros inteiros,
ie, AcZ™™ebcZ™. O

Resumo: Algoritmos de planos de corte

e O algoritmo de planos de corte, usando os cortes de Gomory termina
sempre, i.e. é correto.

e O algoritmos pode ser modificado para programas mistos.
e A técnica é considerado inferior ao algoritmos de branch-and-bound.
e Mas: Planos de corte em combinagao com branch-and-bound é uma

técnica poderosa: Branch-and-cut.

7.5. Branch-and-bound

140

7.5. Branch-and-bound

Branch-and-bound
Ramifica-e-limite (ingl. branch-and-bound, [11])
e Técnica geral para problemas combinatoriais.

Branch and Bound is by far the most widely used tool for

solving large scale NP-hard combinatorial optimization pro-
blems. [3]

e Ideia basica:

— Particiona um problema em subproblemas disjuntos e procura solugoes
recursivamente.

— Evite percorrer toda arvore de busca, calculando limites e cortando
sub-arvores.

e Particularmente efetivo para programas inteiras: a relaxacao linear for-
nece os limites.

Limitar

e Para cada sub-arvore mantemos um limite inferior e um limite superior.
— Limite inferior: Valor da melhor solugao encontrada na sub-arvore.

— Limite superior: Estimativa (p.ex. valor da relaxacao linear na PI)

e Observagao: A eficiéncia do método depende crucialmente da qualidade
do limite superior.

Cortar sub-arvores
Podemos cortar ...

(1) por inviabilidade: Sub-problema ¢ invidvel.

(2) por limite: Limite superior da sub-drvore z; menor que limite inferior
global z (o valor da melhor solucao encontrada).

(3) por otimalidade: Limite superior z; igual limite inferior z; da sub-drvore.

Observagao: Como os cortes dependem do limite z, uma boa solugao inicial
pode reduzir a busca consideravelmente.

141

7. Técnicas de solucao

Ramificar

e Nao tem como cortar mais? Escolhe um né e particiona.
e Qual a melhor ordem de busca?

e Busca por profundidade
— V: Limite superior encontrado mais rapido.

— V: Pouca memoria (O(8d), para & subproblemas e profundidade
d).

— V: Re-otimizagao eficiente do pai (método Simplex dual)

— D: Custo alto, se solugdo 6tima encontrada tarde.

e Melhor solugdo primeiro (“best-bound rule”)
— V: Procura ramos com maior potencial.

— V: Depois encontrar solugao 6tima, nao produz ramificacoes supérfluas.

e Busca por largura? Demanda de memoéria é impraticdvel.

Em resumo: um algoritmo de branch-and-bound consiste de quatro compo-
nentes principais:

e Uma heuristica que encontra uma boa solugao inicial;

e um limite inferior (no caso de minimizagao) ou superior (para maxi-
mizagao) do valor de um subproblema;

e uma estratégia de ramificacdo, que decompoe um problema em subpro-
blemas;

e uma estratégia de selecao, que escolhe o préximo subproblema entre os
subproblemas ativos.

Algoritmos B&B

Algoritmo 7.2 (B&B)
Instancia Programa inteiro P = max{c'x | Ax < b,x € Z}}.

Saida Solugdo inteira étima.

1 { usando funcdo Z para estimar limite superior }
2 zi=—00 { limite inferior }
3 A:= {(Pg(P)} { nés ativos }

142

7.5. Branch-and-bound

4 while A#0 do

5 Escolhe: (P,g(P)e A; A:=A\ (P g(P))

6 Ramifique: Gera subproblemas Pq,...,Pn.

7 for all P;, 1<i<n do

8 { adiciona, se permite melhor solucao }

9 if zZ(Pi) >z then

10 A=A U{(Py, Z(P1))}

11 end if

12 { atualize melhor solugao }

13 if (solugao zZ(Pi) é viavel) then
14 z:=2Z(Py)

15 end if

16 end for
17 end while

Exemplo 7.13 (Aplicagdo Branch&Bound no PCV)
Considera uma aplicagao do PCV no grafo

Aplicando somente backtracking obtemos a seguinte arvore de busca:

143

7. Técnicas de solucao

4 2
7)
6 4 6 4 4 3.4
7 T8 678 6 76 575 > 6
6 7 S5 5 .5 4
7 8 6 6 6)

A drvore de backtracking completa possui 65 vértices (por nivel: 1,4,12,24 24).
Usando como limite inferior o custo atual mais o niimero de arcos que faltam
vezes a distancia minima e aplicando branch&bound obtemos os custos par-
ciais e limites indicados na direita de cada vértice. Com isso podemos aplicar
uma séria de cortes: busca da esquerda para direito obtemos

e uma nova solucao 7 em 2345;

e um corte por limite em 235;

e um corte por otimalidade em 243;
e um corte por otimalidade em 2453;
e um corte por limite em 253;

e um corte por otimalidade em 2543;
e uma nova solugdo 6 em 3245;

e um corte por otimalidade em 32;

e um corte por otimalidade em 3;

144

7.5. Branch-and-bound

e um corte por limite em 4;

e um corte por otimalidade em 5234;
e um corte por otimalidade 5243;

e um corte por limite em 53;

e um corte por otimalidade 543.

Exemplo 7.14 (Escalonamento de tarefas)

Considera o problema de escalonamento 1|7 | Lijax: temos 1 tarefas a serem
executadas numa tnica maquina. Cada tarefa possui um tempo de execugao
p; e é disponivel a partir do tempo T; (release date) e idealmente tem que
terminar antes do prazo dj (due date). Caso a tarefa j termina no tempo Cj
o seu atraso é L = max{0, Cj — d;}. Uma tarefa tem que ser executada sem
interrupgcao. Queremos encontrar uma sequenciamento das tarefas tal que o
atraso méximo é minimizado. (Observe que uma solugdo é uma permutagao
das tarefas.)

Um exemplo de uma instancia com quatro tarefas é

Tarefa 1 2 3 4
Pj 4 2 6 5
Tj 0 1 3 5
4 8 12 11 11

Uma abordagem via branch-and-bound é explorar todas permutacoes possiveis.
Um limite inferior bom para a funcao objetivo pode ser obtido como segue: o
problema sem release dates 1 || Lyax possui uma solugdo simples polinomial,
conhecida como EDD (earliest due date): ordene as tarefas por due date. No
nosso caso é possivel que durante a execugao de uma tarefa passamos o rele-
ase de uma outra tarefa com due date menor. Para considerar isso, o nosso
limite inferior serd o sequenciamento obtido pela regra EDD, permitindo in-
terrupgoes. O

145

7. Técnicas de solucao

Branch-and-bound e PI
e Problema PI (puro): {maxc*x |x € S,x € Z}.
e Resolve a relaxacao linear.
e Solugao inteira? Problema resolvido.

Caso contrario: Escolhe uma varidvel inteira xi, com valor b; fracionario.

Heuristica: Varidvel mais fraciondria: argmin; |[{x;} — 0.5|.
e Particione o problema S = S; U S, tal que

Si=Sn{xIxi <|vi]}y Sa=SN{xIxi>[vil]}

Em particular com variaveis x; € B:

Si=Sn{x|xi=0} S;=Sn{x|xi=1}

Preferimos formulagoes mais “rigidas”.

7.6. Notas

Clausen [3] d4 uma boa introdugdo em algoritmos de branch-and-bound, com
mais exemplos e exercicios. O artigo do Cook [5] relata a histéria do método.
Concorde atualmente é o melhor solver exato para o problema do caixeiro
viajante. Exemplos de solugoes e cddigo aberto do solver é disponivel na sua
pagina web [4].

7.7. Exercicios

(Solugoes a partir da pdgina 224.)

Exercicio 7.1 (Matrizes totalmente unimodulares)

Mostra que a seguinte generalizacao do item 2 da proposicao 7.1 é valido: Para
uma matriz arbitraria A € {—1,0,1}™*™ e uma matriz B € {—1,0, 1}™*° com
no méaximo um coeficiente nao-nulo em cada coluna, a matriz (A B) é TU sse
a matriz A é totalmente unimodular.

Exercicio 7.2 (Matrizes totalmente unimodulares)
Para cada um dos problemas do exercicio 6.2 decide, se a matriz de coeficientes
é totalmente unimodular.

146

7.7. Exercicios

Exercicio 7.3 (Matrizes totalmente unimodulares)
Prove ou mostre um contra-exemplo.

a) Se A ¢ totalmente unimodular, entao (4) também.
b) Se A é totalmente unimodular, entdo (A At) também.
¢) Se A é totalmente unimodular, entdo (4 4) também.

Exercicio 7.4 (Desigualdades vilidas (Nemhauser,Wolsey))
Uma formulacao do problema do conjunto independente méaximo é

maximiza Z Xy (7.23)
vev

sujeito a Xu+%xy <1 viu,v} € E (7.24)

xy €B Yv e V. (7.25)

Considere a instancia

Mostra que } ;.71xi < 2 é uma desigualdade vélida.

Exercicio 7.5 (Desigualdades vélidas)
O exemplo 7.11 mostra como obter as desigualdades validas do exemplo 7.9
usando cortes de Gomory. Mostra como obter as desigualdades validas

ZX1§|5|—1

ies

para um S C [n] com Zies pi > P do problema da mochila usando cortes de
Gomory.

Exercicio 7.6 (Desigualdades validas)
Considere a instancia

147

7. Técnicas de solucao

do problema do caixeiro viajante (os nuimeros nas arestas representam os
indices das varidveis correspondentes). Mostra que

X1 +X2+X5+Xg+X7+%x0 <4

é uma desigualdade vélida.

Exercicio 7.7 (Desigualdades validas)

Para cada uma das desigualdades validas do exemplo 7.8 mostra como ele pode
ser obtida via uma aplicagdo (um ndmero finito de aplicagoes) do método de
Chvétal-Gomory (7.16).

Exercicio 7.8 (Planos de corte)
Resolve

maximiza X1 + 3x2
sujeito a —x1 <2
x; <3
—x1—%x2 < —4
3x1+x <12
Xi € Zy

maximiza X1 — 2%2
sujeito a —11x7 + 15%, <60
Ix1 +3x2 <24
10x7 — 5%, <49

X1,X2 € Zy

com o algoritmo de planos de corte using cortes de Chvatal-Gomory.

148

7.7. Exercicios

Exercicio 7.9 (Desigualdades validas)
Gera uma desigualdade vélida similar com a desigualdade (7.16) para a res-
tricao

Z aiXxi > b.

ie[n]

149

8. Topicos

Outras técnicas

e Branch-and-cut.

Comega com menos restrigoes (relaxagao) e insere restrigdes (cortes) nos
sub-problemas da busca com branch-and-bound.

e Branch-and-price.

Comega com menos varidveis e insere varigveis (“geragdo de colunas”)
nos sub-problemas da busca com branch-and-bound.

151

Parte IllI.

Heuristicas

153

9. Introducao

Resolucao de Problemas

e Problemas Polinomiais
1. Programacao Dinamica
2. Divisao e Conquista

3. Algoritmos Gulosos

e Problemas Combinatdrios

— Técnicas Exatas: Programagao Dinamica, Divisao e Conquista back-
tracking, branch & bound

Programacao nao-linear: Programacao semi-definida, etc.

— Algoritmos de aproximacgao: garantem solugao aproximada

Heuristicas e metaheuristicas: raramente provéem aproximacao

Heuristicas

e O que é uma heuristica?
Practice is when it works and nobody knows why.

e Grego heurisko: eu acho, eu descubro.

e Qualquer procedimento que resolve um problema
— bom em média
— bom na prética (p.ex. Simplex)

— nao necessariamente comprovadamente.

e Nosso foco
— Heuristicas construtivas: Criar solugdes.

— Heuristicas de busca: Procurar solugoes.

155

9. Introducao

Heuristicas de Construcao

e Constréem uma solugao, escolhendo um elemento a ser inserido na solugao
a cada passo.

e Geralmente sao algoritmos gulosos.

e Podem gerar solugoes infactiveis.

— Solugao infactivel: nao satisfaz todas as restricoes do problema.

— Solugao factivel: satisfaz todas as restrigoes do problema, mas nao

é necessariamente a 6tima.

Exemplo: Heuristica construtiva

e Problema do Caixeiro Viajante (PCV) — Heuristica do vizinho mais
proximo.

Algoritmo 9.1 (HVizMaisProx)
Entrada Matriz de distancias completa D = (di;), nimero de cidades n.

Saida Uma solucao factivel do PCV: Ciclo Hamiltaneo C com custo c.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

HVizMaisProx (D ,n)=

{ cidade inicial randémica }

u:= seleciona uniformemente de [1,n]

wi=u

{ representacdo de caminhos: sequéncia de vértices }
C=u { ciclo inicial }

c:=0 { custo do ciclo }

repeat n—1 vezes
seleciona v¢ C com distadncia minima de u
C:=Cv
c:=c+ duw
u:=v
end repeat
C:=Cw { fechar ciclo }
c:=c+duw
return (C,c)

Meta-heuristicas

e Heuristicas genéricas: meta-heuristicas.

156

Motivacao: quando considera-se a possibilidade de usar heuristicas

e Para gerar uma solugao factivel num tempo pequeno, muito menor que
uma solucao exata pudesse ser fornecida.

e Para aumentar o desempenho de métodos exatos. Exemplo: um limi-
tante superior de um Branch-and-Bound pode ser fornecido por uma
heuristica.

Desvantagens do uso de heuristicas

e No caso de metaheuristicas, nao ha como saber o quao distante do étimo
a solucao esta

e Nao hd garantia de convergéncia
e Dependendo do problema e instancia, nao hd nem como garantir uma

solugao 6tima

Problema de otimizacdo em geral
e Um problema de otimizagao pode ser representado por uma quadrupla
(I, S, f, 0bj)

— I é o conjunto de possiveis instancias.

— S(i) é o conjunto de solugoes factiveis (espago de solugdes factiveis)
para a instancia i.

Uma fungao objetivo (ou fitness) f(-) avalia a qualidade de uma
dada solugao.

*

Um objetivo obj = min ou max: s* € S para o qual f(s*) seja

minimo ou maximo.
e Alternativa

optimiza f(x)

sujeitoa x €S

e S discreto: problema combinatorial.

157

9. Introducao

Técnicas de solucao
e Resolver o problema nessa geralidade: enumeragao.
e Frequentemente: Uma solugdo x € S possui uma estrutura.
e Exemplo: x é um tuplo, um grafo, etc.

e Permite uma enumeragao por componente: branch-and-bound.

158

10. Heuristicas baseados em Busca local

10.1. Busca local

Busca Local

e Frequentemente: O espaco de solugoes possui uma topologia.

e Exemplo da otimizacdo (continua): max{x? +xy | x,y € R}

X*XHXRY

e Espaco euclidiano de duas dimensoes.
e Isso podemos aproveitar: Busca localmente!
Vizinhancas

e O que fazer se ndo existe uma topologia natural?
e Exemplo: No caso do PCV, qual o vizinho de um ciclo Hamiltaneo?

e Temos que definir uma vizinhanga.

159

10. Heuristicas baseados em Busca local

e Notacao: Parax € S
N(x)

denota o conjunto de solugoes vizinhos.

e Uma vizinhanca defina a paisagem de otimizagao (ingl. optimization
landscape): Espagco de solugdes com valor de cada solucao.

Relacao de vizinhanca entre solucoes

e Uma solugao s’ é obtida por uma pequena modificagdo na solucao s.

e Enquanto que S e f sdo fornecidos pela especificagdo do problema, o
projeto da vizinhanga é livre.

Busca Local k-change e insercao

e k-change: mudanca de k componentes da solugao.

Cada solucdo possui vizinhanca de tamanho O(nk).

e Exemplo: 2-change, 3-change.

TSP: 2-change (inversio).

Insergao/remocao: insergdo de um componente da solugao, seguido da
factibilizagao da solugao

Vertex cover: 1-change + remogao.

Exemplo: Vizinhanca mais elementar

e Suponha um problema que possue como solugoes factiveis S = B™ (por
exemplo, uma instancia do problema de particionamento de conjuntos).

e Entao, para n = 3 e sp={0,1,0}, para uma busca local 1-flip, N(so) =
{(1,1,0),(0,0,0), (0,1, 1)}

160

10.1. Busca local

Exemplo: Vizinhancas para TSP

e 2-0pt: Para cada par de arcos (uj,vq) e (uz,v2) nao consecutivos,
remova-os da rota, e insira os arcos (uy,uz) e (vi,v2).

e Para uma solugdo s e uma busca k-opt [NV (s)| € O(n¥).

Caracteristicas de vizinhancas
E desejavel que uma vizinhanga é

e simétrica (ou reversivel)
yeNx) =xeNy)
e conectada (ou completa)
Y%,y € S3z1,...,zk €S z1 € N(X)
zir1 € N(zy) 1<i<k
y € N(z)
Busca Local: Ideia
e Inicia a partir de uma solugao sg
e Se move para solucoes vizinhas melhores no espaco de busca.
e Para, se nao tem solucoes melhores na vizinhanca.

e Mas: Repetindo uma busca local com solugoes inicias randomicas, acha-
mos o minimo global com probabilidade 1.

Exemplo 10.1 (Método Simplex)
O método Simplex pode ser visto como busca local no espago de vértices com
uma vizinhanga definido por arestas no politopo. %

161

10. Heuristicas baseados em Busca local

Busca local — Caso continuo

Algoritmo 10.1 (Busca local continua)
Entrada Solucao inicial sop € R™, tamanho inicial @« de um passo.

Saida Solucdo s € R™ tal que f(s) < f(so).

Nome Gradient descent.

1 BuscaLocal (so,x)=

2 $:=Sp

3 while Vf(x)#0 do
4 s’ :=s— aVf(s)

5 if f(s’) < f(s) then
6 s:=s’

7 else

8 diminui o

9 end if

10 end while

11 return s

Busca local — Caso continuo

Vi(x) = (of (x),...,f’f(x))

% OxXn

e Gradiente

sempre aponta na dire¢io do crescimento mais alto de f (Cauchy).
e Necessario: A funcao objetivo f é diferencidvel.
e Diversas técnicas para diminuir (aumentar) o.

e Opgéo: Line search na direcao —Vf(x) para diminuir o niimero de gra-
dientes a computar.

Busca Local — Best Improvement

Algoritmo 10.2 (Busca Local BI)
Entrada Solugao inicial sg.

162

10.1. Busca local

Saida Solucéo s tal que f(s) < f(sp).
Nomes Steepest descent, steepest ascent.

1 BuscaLocal (so)=

s :=$g

while true
s':= argmin, {f(y) |y € N (s)}
if f(s’) <f(s) then s:=s’
else break

end while

return s

0 J O U W

Busca Local — First Improvement

Algoritmo 10.3 (Busca Local FI)
Entrada Solucao inicial sg.

Saida Solucao s’ tal que f(s’) < f(s).
Nomes Hill descent, hill climbing.

1 BuscaLocal (so)=
S:=Sp
repeat
Select any s’ € N(s) not yet considered
if f(s’) <f(s) then s:=s’
until all solutions in A(s) have been visited
return s

N O Uk W N

Projeto de uma busca local

e Como gerar uma solucdo inicial? Aleatdria, via método construtivo, etc.
e Quantas solucoes inicias devem ser geradas?
e Importante: Definicao da funcao de vizinhanca N.

e Vizinhanca grande ou pequena? (grande= muito tempo e pequena=menos
vizinhos)

163

10. Heuristicas baseados em Busca local

e Estratégia de selegao de novas solugoes
— examine todas as solugoes vizinhas e escolha a melhor

— assim que uma solucao melhor for encontrada, reinicie a busca.
Neste caso, qual a sequéncia de solugoes examinar?

e Importante: Método eficiente para avaliar a funcao objetivo de vizinhos.

Exemplo: 2-change TSP

e Vizinhanca: Tamanho O(n?).
e Avaliagdo de uma solugao: O(n) (somar n distancias).
e Atualizando a valor da solugao atual: O(1) (somar 4 distancias)

e Portanto: Custo por iteragdo de “best improvement”
— O(n?) sem avaliacao diferential.

— 0(n?) com avaliacdo diferential.

Avaliacao de buscas locais

Como avaliar a busca local proposta?
e Poucos resultados tedricos.
e Dificil de saber a qualidade da solugao resultante.

e Depende de experimentos.

Problema Dificil

o L facil de gerar uma solugao aleatéria para o TSP, bem como testar sua
factibilidade

e Isso nao é verdade para todos os problemas

e Exemplo dificil: Atribuigdo de pesos a uma rede OSPF

164

10.1. Busca local

Busca local

e Desvantagem obvia: Podemos parar em minimos locais.
Valor
A

» Solucao

e Exceto: Funcio objetivo convexa (caso minimizagdo) ou concava (caso
maximizagao).

e Técnicas para superar isso baseadas em busca local
— Multi-Start
— Busca Tabu
— Algoritmos Metropolis e Simlated Annealing

— Variable neighborhood search
Multi-Start Metaheuristic
e Gera uma solugao aleatoria inicial e aplique busca local nesta solugao.
e Repita este procedimento por n vezes.

e Retorne a melhor solugao encontrada.

e Problema: solugoes aleatoriamente geradas em geral possuem baixa qua-
lidade.

Multi-Start

Algoritmo 10.4 (Multi-Start)
Entrada Numero de repetigoes n.

Saida Solucao s.

165

10. Heuristicas baseados em Busca local

1 Multi_Start(n) :=
2 s =10

3 f* =00

4 repeat n vezes

5 gera solucao randomica s
6 s := BuscaLocal(s)
7 if f(s) <f* then
8 s*i=s

9 * :=1(s)
10 end if
11 end repeat
12 return s*

Cobrimento de Vértices
e Definicao de vizinhanga
e grafo sem vértices
e grafo estrela
e clique bipartido Ky ;

e grafo linha

10.2. Metropolis e Simulated Annealing

O algoritmo Metropolis

e Proposto em 1953 por Metropolis, Rosenbluth, Rosenbluth, Teller e Tel-

ler

e Simula o comportamento de um sistema fisico de acordo com a mecanica

estatistica

e Supobe temperatura constante

— Um modelo bésico define que a probabilidade de obter um sistema

166

num estado com energia E é proporcional a funcao e 1 de Gibbs-
Boltzmann, onde T > 0 é a temperatura, e k > 0 uma constante

— a fung@o é monotonica decrescente em E: maior probabilidade de

estar em um sistema de baixa energia

10.2. Metropolis e Simulated Annealing

— para T pequeno, a probabilidade de um sistema estar num estado de
baixa energia é maior que ele estar num em estado de alta energia

— para T grande, a probabilidade de passar para outra configuracao
qualquer do sistema é grande

A distribuicao de Boltzmann

1.2 T
exp(-x/0.1) ——
exp(-x/2)
exp(-x/10) --------
exp(-x/20)
1 exp(-x/500) |
\
0.8 T -
\
\
0.6 J{ A
|
|
0.4 J‘ B
|
|
|
|
|
02| g
|
\
0 \~ Il Il Il Il
0 2 4 6 8 10

Algoritmo Metropolis

e Estados do sistema sao solugoes candidatas
e A energia do sistema é representada pelo custo da solugao
e Gere uma perturbagao na solu¢ao s gerando uma solugao s’.

e Se E(s’) < E(s) atualize a nova solucao para s’.

Caso contrdrio, AE = E(s’) — E(s) > 0.

A solucgao s’ passa ser a solucao atual com probabilidade e T

Caracteristica marcante: permite movimentos de melhora e, com baixa
probabilidade, também de piora

167

10. Heuristicas baseados em Busca local

Metropolis
Algoritmo 10.5 (Metropolis)
Entrada Uma solugao inicial s e uma temperatura T.
Saida Solucao s’ com c(s’) < c(s)
1 Metropolis(s, T, k)=
2 do
3 seleciona s’ € N(s) aleatoriamente
4 seja A:=c(s’)—c(s)
5 if A<0 then
6 atualiza s:=s’
7 else
8 atualiza s:=s’ com probabilidade e T
9 end if
10 until critério de para satisfeito
11 return s

Observagao 10.1

Para T — oo o algoritmo executa um passeio aleatorio no grafo das solugoes
com a vizinhanga definida. Para T — 0 o algoritmo se aproxima a uma busca
local. O

Simulated Annealing

e Simula um processo de recozimento.

e Recozimento: processo da fisica que aquece um material a uma tem-
peratura bem alta e resfria aos poucos, dando tempo para o material
alcancar seu estado de equilibrio

e Recozimento simulado: parte de uma alta temperatura e baixa gradual-
mente. Para cada temperatura, permite um nimero maximo de saltos
(dois lagos encadeados)

Simulated Annealing

168

10.3. GRASP

Algoritmo 10.6 (Simulated Annealing)
Entrada Solugéo inicial s, temperatura T, fator de esfriamento r € (0,1),

nimero inteiro 1.
Saida Solucao s’ tal que f(s’) < f(s).
1 SimulatedAnnealing(s, T, k, r, I) =

2 repeat sistema ‘‘esfriado ’’

3 repeat I vezes

4 seleciona s’ € N(s) aleatoriamente
5 seja A:=c(s’)—c(s)

6 if A<0 then

7 s:=s’

8 else

9 s:=s’ com probabilidade e 2/T:
10 end fi

11 end repeat

12 T:=1T

13 end repeat
14 return s

Determinando uma temperatura inicial e final adequado é importante para nao
gastar tempo desnecessario com temperaturas em que o algoritmo se comporta
como passeio aleatorio ou busca local.

Exemplo 10.2 (Temperatura inicial)

Define uma probabilidade p;. Executa uma versdo rapida (I pequeno) do
algoritmo para determinar uma temperatura inicial tal que um movimento é
aceito com probabilidade p;. O

Exemplo 10.3 (Temperatura final)

Define uma probabilidade p¢. Para cada nivel de temperatura em que os
movimentos foram aceitos com probabilidade menos que ps incrementa um
contador. Zera o contador caso uma nova melhor solugao é encontrada. Caso
o contador chega em 5, termina. O

10.3. GRASP

GRASP

169

10. Heuristicas baseados em Busca local
e GRASP: greedy randomized adaptive search proce-
dure
e Proposto por Mauricio Resende e Thomas Feo (1989).

e Mauricio Resende: Pesquisador da AT&T, Departa-
mento de Algoritmos e Otimizacao

Mauricio G. C.
Resende

GRASP
e Método multi-start, em cada iteragao
1. Gera solugoes com um procedimento guloso-randomizado.

2. Otimiza as solugoes geradas com busca local.

Algoritmo 10.7 (GRASP)
Entrada Parametro «.

Saida A melhor solucao encontrada.

1 GRASP(«a, ...)=
2 s é alguma solucao
do
s’ := Guloso — Randomizado()
s’ := BuscaLocal(s’)
s:=s’ if f(s’) <f(s)
until critério de parada satisfeito
return s

0 ~J O Ut~ W

Construcao gulosa-randomizada
e Motivacao: Um algoritmo guloso gera boas solugoes inicias.
e Problema: Um algoritmo deterministico produz sempre a mesma solugao.

e Logo: Aplica um algoritmo guloso, que nao escolhe o melhor elemento,
mas escolhe randomicamente entre os % melhores candidatos.

e O conjunto desses candidatos se chama restricted candidate list (RCL).

170

0O Ui Wi

10.3. GRASP

Construcao gulosa-randomizada: Algoritmo guloso

Guloso () :=
S=0

while S =(s7,...,8i) com i<n do
entre todos candidatos C para sii7:
escolhe o melhor seC
S:=1(s1,...,8,8)
end while

Construcao gulosa-randomizada: Algoritmo guloso

Guloso—Randomizado («) :=
S=0

while S =(sy,...,81) com i<n do
entre todos candidatos C para siii:
forma a RCL com os o\% melhores candidatos em C
escolhe randomicamente um s € RCL
S:= (51,...,51,3)
end while

GRASP

Algoritmo 10.8 (GRASP)
Entrada Parametro «.

Saida Uma solugao s*.

1 GRASP(«)=

2 do

3 y := Guloso — Randomizado()

4 y := BuscalLocal(y)

5 atualiza a melhor solugao s*

6 until critério de parada satisfeito
7 return s*

171

10. Heuristicas baseados em Busca local

GRASP: Variacoes

e long term memory: hash table (para evitar otimizar solugdes ja vistas)

e Parametros: so, N (x), & € [0,1] (para randomizagio), tamanho das
listas (conj. elite, rcl, hash table), niimero de iteragoes,

GRASP com memoria

e O GRASP original ndo havia mecanismo de memoria de iteragoes pas-
sadas

e Atualmente toda implementagdo de GRASP usa conjunto de solugbes
elite e religagdo por caminhos (path relinking)

e Conjunto de solugoes elite: conjunto de solucoes diversas e de boa qua-
lidade

— uma solucao somente é inserida se for melhor que a melhor do
conjunto ou se for melhor que a pior do conjunto e diversa das
demais

— a solugao a ser removida é a de pior qualidade

e Religacao por Caminhos: a partir de uma solugao inicial, modifique um
elemento por vez até que se obtenha uma solucao alvo (do conjunto elite)

e solugoes intermediarias podem ser usadas como solugoes de partida

Comparacao entre as metaheuristicas apresentadas

e Metaheuristicas: Simulated annealing (SA), Multi-Start Search (MS),
GRASP

e SA tem apenas um ponto de partida, enquanto que os outros dois
métodos testa diversos

e SA permite movimento de piora, enquanto que os outros dois métodos
nao

e SA é baseado em um processo da natureza, enquanto que os outros dois
nao

172

10.4. Busca Tabu

10.4. Busca Tabu

Busca Tabu (Tabu Search)

Proposto por Fred Glover em 1986 (principios bésicos
do método foram propostos por Glover ainda em 1977)

Professor da Universidade do Colorado, EUA

Fred Glover

Busca Tabu (BT)

Assim como em simulated annealing (SA) e VNS, TB é baseada inteira-
mente no processo de busca local, movendo-se sempre de uma solucao s
para uma solucao s’

Assim com em SA, também permite movimentos de piora

Diferente de SA que permite movimento de piora por randomizacao, tal
movimento na BT é deterministico

A base do funcionamento de Busca Tabu é o uso de meméria segundo
algumas regras

O nome Tabu tem origem na proibi¢ao de alguns movimentos durante a
busca

Busca Tabu (BT)

Mantém uma, lista T de movimentos tabu

A cada iteragdo se move para o melhor vizinho, desde que nao faca
movimentos tabus

Permite piora da solugao: o melhor vizinho pode ser pior que o vizinho
atual!

Sao inseridos na lista tabu elementos que provavelmente nao direcionam
a busca para o 6timo local desejado. Ex: 1iltimo movimento executado

o tamanho da lista tabu é um importante parametro do algoritmo

Critérios de parada: quando todos movimentos sao tabus ou se x movi-
mentos foram feitos sem melhora

173

10. Heuristicas baseados em Busca local

Busca Tabu: Conceitos Basicos e notacao

s: solugao atual

s*: melhor solugao

: valor de s

N (s): Vizinhanca de s.

N(s) € N(s): possiveis (nao tabu) solugbes vizinhas a serem visitadas
Solugoes: inicial, atual e melhor

Movimentos: atributos, valor

Vizinhanga: original, modificada (reduzida ou expandida)

Movimentos Tabu

Um movimento é classificado como tabu ou ndo tabu pelas regras de
ativagdo tabu

em geral, as regras de ativacao tabu classificam um movimento como
tabu se o movimento foi recentemente realizado

Memoria de curta duragao (MCD) - também chamada de lista tabu:
usada para armazenar os movimentos tabu

duracao tabu (tabu tenure) é o nimero de iteragoes em que 0 movimento
permanecera tabu

dependendo do tamanho da MCD um movimento pode deixar de ser
tabu antes da duracao tabu estabelecida

A MCD em geral é implementada como uma lista circular

O objetivo principal da MCD ¢é evitar ciclagem e retorno a solugoes jé
visitadas

os movimentos tabu também colaboram para a busca se mover para
outra parte do espago de solugbes, em diregao a um outro minimo local

Busca Tabu

174

10.4. Busca Tabu

Algoritmo 10.9 (BuscaTabu)
Entrada uma solugao s

Saida uma solucao s’ : f(s’) < f(s)

1 BuscaTabu()=
2 Inicializacao:
s:=S0; f*:=1(so); s*:=s0 ; T:=0
while critério de parada nao satisfeito

s’ := seleciona s’ € N(s) com min f(s)

if f(s)<f* then
f*:=1(s); s*:=s
insira movimento em T (a lista tabu)
end while

© 00 O Ut =W

Busca Tabu (BT)

e critérios de parada:
— numero de iteragoes (Nmax)
— numero interagoes sem melhora
— quando s* atinge um certo valor minimo (méximo) estabelecido

e Um movimento nao é executado se for tabu, ou seja, se possuir um ou
mais atributos tabu-ativos

e Pode ser estabelecida uma regra de uso de um movimento tabu (critério
de aspiragao)
— Critério de aspiragdo por objetivo: se o movimento gerar uma
solugao melhor que s*, permite uso do movimento tabu

— Critério de aspiracao por direcdo: o movimento tabu é liberado se
for na dire¢ao da busca (de melhora ou piora)

Busca Tabu: mecanismos auxiliares

e intensificagao: a idéia é gastar mais “esforco” em regices do espago de
busca que parece mais promissores. Isso pode ser feito de diversas manei-
ras (exemplo, guardar o nimero de interagoes com melhora consecutiva).
Nem sempre este a intensificacao traz beneficios.

175

10. Heuristicas baseados em Busca local

e Diversificacao: recursos algoritmicos que forgam a busca para um espaco
de solugoes ainda nao explorados.

— uso de memdria de longo prazo (exemplo, nimero de vezes que a
inser¢ao de um elemento provocou melhora da solugao)

— Estratégia basica: forgar a insercao de alguns poucos movimentos
pouco executados e reiniciar a busca daquele ponto

— Estratégia usada para alguns problemas: permitir solugoes infactiveis
durante algumas interagoes

Busca Tabu: variacoes

e Virias listas tabus podem ser utilizadas (com tamanhos, duragao, e
regras diferentes)

e BT probabilistico: os movimentos sao avaliados para um conjunto se-
lecionado aleatoriamente N’(s) € N(s). Permite usar uma lista tabu
menor, acontece menos ciclagem.

e A duragao tabu pode variar durante a execucao

Comparacao entre as metaheuristicas apresentadas até entao

e Metaheuristicas: Simulated annealing (SA), Multi-Start Search (MSS),
GRASP, BT

e SA e BT tém apenas um ponto de partida, enquanto que os outros dois
métodos testa diversos

e SA e BT permitem movimentos de piora, enquanto que os outros dois
métodos nao

e SA é baseado em um processo da natureza, enquanto que os outros
métodos nao

Parametros e decisoes das metaheuristicas

o SA:

— Parametros: temperatura inicial, critério de parada, varidvel de
resfriamento

— Decisoes: vizinhanga, solugao inicial

176

10.5. Variable Neighborhood Search

e GRASP:

— Parametros: so, N(x), « €[0,1] (para randomizagao), tamanho das
listas (conj. elite, rcl, hash table), critério de parada

— Decisbes: vizinhanga, solugao inicial (so), randomizagao da sg, atu-
alizagoes do conjunto elite

e BT:
— Parametros: tamanho da lista tabu, critério de parada

— Decisoes: vizinhaca, critérios para classificar movimento tabu

10.5. Variable Neighborhood Search

Variable Neighborhood Search
e Pierre Hansen e Mladenovi¢, 1997

e Hansen é Professor na HEC Montréal, Canadé

Pierre Hansen

Variable Neighborhood Search

e Método que explora mais que uma vizinhanca.

e Explora sistematicamente as seguintes propriedades:

— O minimo local de uma vizinhanga ndo é necessariamente minimo
para outra vizinhanca

— Um minimo global é um minimo local com respeito a todas as
vizinhangas

— Para muitos problemas, os minimos locais estao localizados relati-
vamente préximos no espaco de busca para todas as vizinhancas

s métodos usando k vizinhancas N, ..., Nk sempre voltam a usar a primeira
0] tod do k h Ny oy NG 1t

vizinhanga, caso um movimento melhora a solugao atual. Caso contrario eles
passam para préxima vizinhanca. Isso é o movimento basico:

177

10. Heuristicas baseados em Busca local

Algoritmo 10.10 (Movimento)
Entrada Solucao atual s, nova solucao s’, vizinhanca atual k.

Saida Uma nova solugdo s e uma nova vizinhanga k.

1 Movimento(s,s’ k) =
if f(s’) <f(s) then
si=gs'
k=1
else
k:=k+1
end if
return (s,k)

[\

0 N O Uk W

Com isso podemos definir uma estratégia simples, chamada Variable Neigh-
borhood Descent (VND).

Algoritmo 10.11 (VND)
Entrada Solucao inicial s, conjunto de vizinhancas A;, i € [m].

Saida Solugao s.

1 VND(s ,{Ni})=

2 k:=1

3 // até chegar num minimo local

4 // para todas wvizinhangas

5 while k<m

6 encontra o melhor vizinho s’ em Ny(s)
7 (s,k) := Movimento(s, s’, k)

8 end while

9 return s

Uma versao randomizada é o reduced variable neighborhood search.

Algoritmo 10.12 (rVNS)
Entrada Solucao inicial s, conjunto de vizinhancas A;, i € [m].

Saida Solugao s.

1 rVNS(s {Ni})=

2 until critério de parada satisfeito

178

10.5. Variable Neighborhood Search

k=1
while k<m do
seleciona vizinho aleatdério s’ em Ny(s) { shake }
(s,k) :== Movimento(s, s’, k)
end while
end until
return s

© 00~ O Otk W

Uma combinagao do rVNS com uma busca local é o Variable Neighborhood
Search (VNS) bésico.

Algoritmo 10.13 (VNS)
Entrada Soluc¢ao inicial s, um conjunto de vizinhancas Nj, 1 € [m].

Saida Solucao s.

1 VNS(s,(AG)=
2 until critério de parada satisfeito
k=1
while k<m do
seleciona vizinho aleatdério s’ em Ny(s) { shake }
s” := BuscaLocal(s’)
(s,k) := Movimento(s, s, k)
end until
return s

© 00~ O U W

Observagao 10.2

A busca local em VNS pode usar uma vizinhanca diferente das vizinhancgas
que perturbam a solucao atual. Também é possivel usar o VND no lugar da
busca local. O

179

11. Heuristicas inspirados da natureza

11.1. Algoritmos Genéticos e meméticos

Algoritmos Genéticos
e Proposto na década de 60 por Henry Holland.

e Professor da Faculdade de Engenharia Elétrica e de
Computagao da Universidade de Michigan/EUA.

e Seu livro: Adaptation in Natural and Artificial Sys-
tems (1975).

John Henry
Holland (+1929)

Algoritmos genéticos

e Foi proposto com o objetivo de projetar software de sistemas artificiais
que reproduzem processos naturais.

e Baseados na evolugao natural das espécies.

e Por Darwin: individuos mais aptos tém mais chances de perpetuar a
espécie.

e Mantém uma populagao de solugoes e nao uma unica solucao por vez.
e Usa regras de transicao probabilisticas, e nao deterministicas.

e Procedimentos: avaliagao, sele¢do, geragdo de novos individuos (recom-
binagao), mutagcao.

e Parada: nimero x de geracoes total, nimero y de geracoes sem melhora.

Algoritmos genéticos: Caracteristicas
e Varias solugoes (“populacido”).
e Operagoes novas: Recombinagao e mutagao.

e Separagao da representacao (“gendtipo”) e formulagao “natural” (fendtipo).

181

11. Heuristicas inspirados da natureza

Algoritmos Genéticos: Nocoes

e Genes: Representagdo de um elemento (bindrio, inteiro, real, arco, etc)
que determine uma caracteristica da solugao.

Alelo: Instancia de uma gene.

e Cromossomo: Uma string de genes que compoem uma solugao.

Gendtipo: Representagao genética da solugdo (cromossomos).

Fenotipo: Representacao “fisica” da solugao.

Populagao: Conjunto de cromossomos.

Algoritmos genéticos: Representacao e Solucao

Representagao Solugao
Al S
mapeamento
[of1]aT1[1TofoTo 30 1]1]0[0] N
NI / @)

g /

cromossomo

gene com alelos 0,1

Algoritmos Genéticos: exemplos

e Problema de particao de conjuntos
Alelos: O ou 1
Cromossomo: 0001101010101011110110

e Problema do Caixeiro viajante
Alelos: valores inteiros entre 1 e n

Cromossomo: 15368247

Procedimentos dos Algoritmos Genéticos

e Codificac@o: genes e cromossomos.

e Initializacao: geracao da populagao inicial.

182

11.1. Algoritmos Genéticos e meméticos

solucao.

Selecao de pais: selecao dos individuos para crossover.

Operadores genéticos: crossover, mutacao

de parada

Algoritmos Genéticos

Fungao de Avaliagao (fitness): funcdo que avalia a qualidade de uma

Parametros: tamanho da populagao, percentagem de mutagao, critério

Algoritmo 11.1 (AlgoritmoGenético)
Entrada Parametros do algoritmo.

Saida Melhor solucdo encontrada para o problema.

1 Inicializagao e avaligao inicial

2 while (critério de parada ndo satisfeito) do
3 repeat

4 if (critério para recombinacao) then
5 selecione pais

6 recombina e gera um filho

7 end if

8 if (critério para mutagido) then

9 aplica mutagao

10 end if

11 until (descendentes suficientes)

12 selecione nova populacao

13 end while

Populacao Inicial: geracao

e Solugoes aleatérias.

e Método construtivo (ex: vizinho mais préximo com diferentes cidades

de partida).
e Heuristica construtiva com perturbagoes da solugao.

e Pode ser uma mistura das opgoes acima.

183

11. Heuristicas inspirados da natureza

Populacao inicial: tamanho

e Populacao maior: Custo alto por iteragao.
e Populacao menor: Cobertura baixa do espaco de busca.

e Critério de Reeves: Para alfabeto bindrio, populacao randomica: Cada
ponto do espago de busca deve ser alcancavel através de recombinagoes.

e Consequencia: Probabilidade que cada alelo é presente no gene i: 1 —
21—,

Probabilidade que alelo é presente em todos gene: (1 —2'~™)L

Exemplo: Com | = 50, para garantir cobertura com probabilidade 0.999:

n>1-log, (1 _ %Y 0.999) ~16.61

Terminacao
e Tempo.
e Numero de avaliacoes.

e Diversidade. Exemplo: Cada gene é dominado por um alelo, i.e. 90%
dos individuos tem o mesmo alelo.

Proxima Geracao

e Gerada por recombinacdo e mutacao (solugoes aleatérias ou da po-
pulagdo anterior podem fazer parte da préxima geragao).

Estratégias:
— Recombinacao e mutacao.

— Recombinagao ou mutagao.

Regras podem ser randomizadas.

Exemplo: Taxa de recombinacao e taxa de mutagao.

Exemplo: Numero de genes mutados.

184

11.1. Algoritmos Genéticos e meméticos
Mutacao

e Objetivo: Introduzir elementos diversificados na populagao e com isso
possibilitar a exploragao de uma outra parte do espago de busca.

e Exemplo para representacao bindria: flip de k bits.

e Exemplo para o PCV: troca de posigao entre duas cidades.

Recombinacao

e Recombinagao (ingl. crossover): combinar caracteristicas de duas solugoes
para prover uma nova solucao potencialmente com melhor fitness.

e Explora o espago entre solugoes.

e Crossover classicos: one-point recombinagao e two-points recombinagao.

One-point crossover

Escolha um niimero aleatorio k entre 1 e n. Gere um filho com os primeiros
k bits do pai A e com os ultimos n — k bits do pai B

e Problema de particacao: aplicagao direta do conceito
e Problema do Caixeiro Viajante: copie os primeiros k elementos do pai

A e as demais n —k posigoes preenche com as cidades faltantes, segundo
a ordem em que elas aparecem no pai B

185

11. Heuristicas inspirados da natureza

Recombinacao de dois pontos

OO
ole,

Exemplo: Strategic Arc Crossover

e Selecione todos os pedagos de rotas (string) com 2 ou mais cidades que
sao iguais nas duas solugoes

e Forme uma rota através do algoritmo de vizinho mais proximo entre os
pontos extremos dos strings

Recombinacio: Selecao dos pais

e A probabilidade de uma solucgao ser pai num processo de crossover deve
depender do seu fitness.

e Variagoes:
— Probabilidade proporcional com fitness.

— Probabilidade proporcional com ordem.

186

11.1. Algoritmos Genéticos e meméticos

Estratégia adotada pelos operadores

Intimeros operadores podem ser propostos para cada problema. O ideal é
combinar caracteristicas do operador usado, com outros operadores (mutagao,
busca local) usados no GA. Basicamente um crossover é projetado da seguinte
forma:

e Encontre similaridades entre A e B e insira S = A N B no filho.
e Defina conjuntos Si e Sout de caracteristicas desejaveis e nao desejaveis.
e Projete um operador que mantenha ao maximo elementos de S e Siy,
minimizando o uso de elementos de Sgt.
Nova Populacao
e Todos os elementos podem ser novos.
e Alguns elementos podem ser herdados da populacao anterior.
e Elementos novos podem ser gerados.

e Exemplos, com populagdo de tamanho A que gera p filhos. (A, 1)
Seleciona os A melhores dos filhos. (A +) Seleciona os A melhores
em toda populacao.

Estrutura da Populacao

Em geral, populagao estruturada garante melhores resultados. A estrutura
da populacao permite selecionar pais para crossover de forma mais criteriosa.
Algumas estruturas conhecidas

e Divisao em Castas: 3 particoes A, B e C (com tamanhos diferentes),
sendo que os melhores individuos estao em A e os piores em C.

e [lhas: a populacao é particionada em subpopulacoes que evoluem em
separado, mas trocam individuos a cada periodo de niimero de geracoes.

e Populacao organizada como uma arvore.

Exemplo: Populacdao em castas

e Recombinagao: Somente entre individuos da casta A e B ou C para
manter diversidade.

e Nova populagao: Manter casta ”elite” A, re-popular casta B com filhos,
substituir casta C com solucoes randomicas.

187

11. Heuristicas inspirados da natureza

Exemplo: Populacao em arvore

e Considere uma &arvore ternaria completa, em que cada né possui duas
solugoes (pocket e current).

e A solugdo current é a solugdo atual armazenada naquela posigao da
arvore.

e A solugao pocket é a melhor ja tida naquela posicao desde a primeira
geracao.

e A cada solugao aplique ezchange (se a solugdo current for melhor que a
pocket, troque-as de posigao)

e Se a solucao pocket de um filho for melhor que a do seu pai, troque o
né6 de posicao.
Algoritmos Meméticos

e Proposto por Pablo Moscato, Newcastle, Australia.

e Idefa: Informacao “cultural” pode ser adicionada a um
individuo, gerando um algoritmo memético.

e Meme: unidade de informagao cultural.

Pablo Moscato

Algoritmos Meméticos

e Um procedimento de busca local pode inserir informagao de boa quali-
dade, e nao genética (memes).

e Faz uso de um procedimento de busca local (em geral aplicado & solugao
gerada pelo procedimento de recombinagao).

e Geralmente trabalha com populagoes menores.

Comparacao entre as Metaheuristicas Apresentadas

e Quais que dependem de randomizagao? SA, GRASP, GA

e Quais que geram apenas uma solugao inicial em todo processo? BT, SA

188

11.1. Algoritmos Genéticos e meméticos
e (Quais mantém um conjunto de solucgoes, em vez de considerar apenas
uma? GA
e Quais sdo inspiradas em processos da natureza? GA, BT
e Qual gera os melhores resultados?
Existem outras Metaheuristicas

Handbook of Metaheuristics, por Fred W. Glover (Editor), Gary A. Kochen-
berger (Editor) Kluwer 2002.

HANDBOOK OF
METAHEURISTICS

T
Fomd Cdornin
Lo & Rin hemerge

Consideracgoes Finais

e O desempenho de uma metaheuristica depende muito de cada imple-
mentagao

e As metaheuristicas podem ser usadas de forma hibridizada
e Técnicas de otimizacao multiobjetivo tratam os casos de problemas com
mais de um objetivo (Curva de pareto)
Exercicio

e Problema de alocagao: atender n clientes por m postos de atendimento
(um posto é instalado no local onde se encontra um cliente)

e Entrada: distancias entre cada par de clientes

e Problema: Determinar em que locais instalar os postos, de forma a mini-
mizar a soma das distancias de cada cliente a um ponto de atendimento

189

11. Heuristicas inspirados da natureza

Propor uma heuristica construtiva e uma busca local.

Comparacao entre as Metaheuristicas

190

Quais que permitem movimento de piora? BT, SA
Quais que nao dependem de randomizagao? BT
Quais que geram apenas uma solugao inicial em todo processo? BT, SA

Quais mantém um conjunto de solugoes, em vez de considerar apenas
uma?

Qual gera os melhores resultados?

Parte IV.

Appéndice

191

A. Conceitos matematicos

N, Z, Q e R denotam os conjuntos dos nimeros naturais sem 0, inteiros,
racionais e reais, respectivamente. Escrevemos também Ny = N U {0}, para
qualquer conjunto C, C, :={x € Clx >0} e C_:={x € C| x < 0}. Por
exemplo

Ri={xeR|x>0L

Para um conjunto finito S, P(S) denota o conjunto de todos subconjuntos de
S.

A = (ay;) € F™*™ denota uma matriz de m linhas e n colunas com elementos
em F, ai, com af € F* a i-ésigma linha e @) € F™ a j-ésima coluna de A.

Definicao A.1 (Pisos e tetos)
Para x € R o piso |x] é o maior nimero inteiro menor que x e o teto [x]| é o
menor nimero inteiro maior que x. Formalmente

x| =max{y € Z |y < x}
[x] =min{ly € Z |y >x}

O parte fraciondrio de x é {x} =x — |x].

Observe que o parte fracionédrio sempre é positivo, por exemplo {—0.3} = 0.7.
Proposicao A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem
x < [x] <x+1 (A1)
x—1<[x] <x (A.2)

L Alguns autores usam R+.

193

B. Formatos

Este capitulo contém um breve resumo dos formatos CPLEX lp e AMPL/-
MathProg usados para especificar problemas de otimizacao linear. CPLEX LP
é um formato simples, AMPL (A modeling language for mathematical pro-
gramming) é uma linguagem completa para definir problemas de otimizagao,
com elementos de programagao, comandos interativos e um interface para di-
ferentes “solvers” de problemas. Por isso CPLEX LP serve para modelos pe-
quenos. Aprender AMPL precisa mais investimento, que rende em aplicagbes
maiores. AMPL tem o apoio da maioria das ferramentas disponiveis.

Varios outros formatos sao em uso, a maioria deles comerciais. Exemplos sao
MPS (Mathematical programming system), LINGO, ILOG, GAMS e ZIMPL.

B.1. CPLEX LP
Uma gramética simplificada! do formato CPLEX LP é

(specification) ::= (objective)

(restrictions)?

(bounds)

(general)?

(binary)?

‘End’
(objective) ::= (goal) (name)? (linear expression)
(goal) ::= ‘MINIMIZE’ | ‘MAXIMIZE | ‘MIN’ | ‘MAX’
(restrictions) ::= ‘SUBJECT TQ’ (restriction)+
(restriction) ::= (name)? (linear expression) (cmp) (number)
<cmp> e (<7 | (<=7 | (=’ | (>7 | (>=’
(linear expression) := (number) (variable) (4+’ |’-’) (number) (variable))*

LA gramética ndo contém as especificacdes “semi-continuous” e “SOS”.

195

http://www.ampl.com

OO UL W N+

— =
W= OO

B. Formatos

(bounds) ::= ‘BOUNDS’ (bound)+

(bound) ::= (name)? ((limit) ‘<=" (variable) ‘<=" (limit)

(limit) ‘<=" (variable)
(variable) ‘<= (limit)
(variable) ‘=" (number)
(variable) ‘free’)

|
|
|
|
(limit) ::= ‘infinity’ | ‘~infinity’ | (number)

(general) ::= ‘GENERAL’ (variable)+

(binary) ::= ‘BINARY’ (variable)+

Todas varidveis x tem a restricao padrao 0 < x < 4o00. Caso outras limites
sao necessarias, eles devem ser informados na secao “BOUNDS”. A segoes
“GENERAL” e “BINARY” permitem restringir varidveis para Z e {0, 1}, res-

pectivamente.

As palavras-chaves também podem ser escritos com letras minisculas: o for-
mato permite algumas abreviagoes nao listadas acima (por exemplo, escrever

“s.t” ao invés de “subject t0”).

Exemplo B.1
Problema (1.1) no formato CPLEX LP.

Maximize
lucro: 0.2 ¢ + 0.5 s

Subject To
ovo: c+ 1.5 s <= 150
acucar: 50 c + 50 s <= 6000
clientl:c <= 80
client2:s <= 60
Bounds
0 <=c
0 <= s
End

Exemplo B.2

Problema de mochila 0-1 com 11 itens em formato CPLEX LP.

196

Tt W N =

B.2. AMPL

max 19x1+87x2+4+97x34+22x4+47x5+22x6+30x7+5x8+32x9+54x10+75x11
s.t
1x1496x2467x3+90x4+13x5+74x6+22x74+86x84+23x94+63x10+89x11<= 624
binary x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

end

O

Observagao B.1

CPLEX LP permite constantes como 0.5e6 que representa 0.5 x 10°. Ou-
tra interpretagao dessa expressao é 0.5 vezes a varidvel eg. Para evitar essa
ambiguidade, varidaveis nao podem comecar com a letra e. %

B.2. AMPL
Objetos de modelagem

e Um modelo em AMPL consiste em
— parametros,

— variaveis,

restricoes, e

— objetivos
e AMPL usa conjuntos (ou arrays de multiplas dimensoes)

A:1—-D

mapeiam um conjunto de indices I = Iy x --- x I, para valores D.
Formato
e Parte do modelo
si

sn
end;

com s; sendo um comando ou uma declaracao.

e Parte de dados

197

B. Formatos

data
d1

dn
end;

com d; sendo uma especificagdo de dados.

Tipo de dados
e Numeros: 2.0,-4
e Strings: ’Comida’

e Conjuntos: {2,3,4}

Expressoes numéricas

e Operagoes bdsicas: +,—,%,/,div,mod,less,*x

Exemplo: x less y

e Funcdes: abs, ceil , floor ,exp
Exemplo: abs(—3)

e Condicional: if x>y then x else y

Expressoes sobre strings
e AMPL converte nimeros automaticamente em strings
e Concatenacao de strings: &

Exemplo: x & ’ unidades’

Expressoes para conjuntos de indices

e Uma dimensao
— t in S: varidavel “dummy” t, conjunto S
— (t1,... tn) in S: para conjuntos de tuplos

— S: sem nomear a variavel

e Multiplas dimensoes

198

— {el ..., en} com e; uma dimenséo (acima).

Varidveis “dummy” servem para referenciar e modificar.

Exemplo: (i—1) in S

B.2. AMPL

Conjuntos
e Conjunto bésico: {v1 ,..., vn}
e Valores: Considerados como conjuntos com conjunto de indices de di-
mensao 0
e Indices: [il ,..., in]
e Sequéncias: nl ... n2 by dounl ... n2
e Construcao: setof I e: {e(i1,...,1n) | (11,...,in) €I}

Exemplo: setof {j in A} abs(j)

Operacoes de conjuntos

X union Y: Uniao XUY

X diff Y: Diferenga X\ Y

X symdiff Y: Diferenga simétrica (X \Y) U (Y \ X)
X inter Y: Interseccao XNY

X cross Y: Produto cartesiano X x Y

Expressoes légicas

Interpretacao de nimeros: n vale “v”, sse n # 0.
Comparagoes simples: <,<=,= ou ==,>=,> <> ou !=
Pertinéncia: x in Y, xnot in Y, x lin Y

Subconjunto: X within Y, X !within Y, X not within Y
Operadores 16gicos: && ou and, || ou or, ! ou not

Quantificagao: com indices I, expressao booleana b
forall T b: /\“h_.
exists I b \/

Lin)€l b(ih' . win)

i1,eeyin)€l b(ir,...,in)

199

B. Formatos

Declaracoes: Conjuntos

set N I [dimen n] [within S] [default el] [:= e2]
param N I [in S] [<=,>=,!=,... n] [default el] [:= e2]
e Nome N

Conjunto de indices I (opcional)

Conjunto de valores S

e Valor default e

Valor inicial e;

Declaracoes: Restricoes e objetivos

subject to NT: el =e2 | el <=e2, el >=e2
minimize [I] : e

maximize [I] : e

Comandos

e solve: Resolve o sistema.
e check [I] : b: Valida expressao booleana b, erro caso falso.
e display [I] : el ... en: Imprime expressoes eq,...,en.

e printf [I] : fmt,el ,..., en: Imprime expressoes e — 1,...,e, usando
formato fmt.

e for T : ¢c,for I : {c1l ... cn}: Lagos.

Dados: Conjuntos
set Nrl,..rn
Com nome N e records r1,...,Th, cada record

e um tuplo: vq,...,vy Exemplo: 12,13,22,27

e a definicdo de uma fatia (v1]#,Vval*,...,vu|x): depois basta de listar os
elementos com *. Exemplo: (1 *)23,(2*)27

e uma matriz

200

B.2. AMPL

:clc2 ... cn:=
rl all al2 ... aln
r2 a2l a22 ... a2n
rm aml am2 ... amn

com aij “4+”/”-” para inclusao/exclusdo do par “ri cj” do conjunto.

Dados: Parametros
param N rl,...rn

Com nome N e records 11,...,Ty, cada record
e um valor i1,...,1in,V
e a definigdo de uma fatia [i1|*,1i2]*,...,1in|*): depois basta definir indices
com .

e uma matriz

:clc2 ... cn:=
rl all al2 ... aln
r2 a2l a22 ... a2n
rm aml am2 ... amn

com aij o valor do par “ri cj”.

e uma tabela

param default v : s : pl p2 ... pk :=
t11 t12 ... tin all al2 ... alk
t21 t22 ... t2n a21 a22 ... a2k
tml tm2 tmn aml am2 ... amk

para definir simultaneamente o conjunto
set s := (t11 t12 ... tin), ... , (tml tm2 ... tmn);

e 0s parametros

201

© 00 O Ui W N+

CO J O UL i W N+

NI N I o I e e el e e S S S i
N — O O© 00O Ui W H—OO

B. Formatos

param pl default v := [t1l t12 ... tin] all, ...,
param p2 default v := [t1l t12 ... tin] al2, ...,
param pk default v := [t11l t12 ... tin] alk, ...,
Exemplo B.3 (Exemplo 1.1 em AMPL)
var c¢; # numero de croissants
var s; # numero de strudels
param lucro croissant; # o lucro por croissant
param lucro strudel; # o lucro por strudel
maximize lucro: lucro croissantxct+lucro strudelxs;
subject to ovo: c+1.5%xs <= 150;
subject to acucar: 50xc+50%s <= 6000:
subject to croissant: ¢ <= 80;
subject to strudel: s <= 60;

Exemplo B.4 (Exemplo 1.3 em AMPL)

param n; # numero de clientes

param m; # ndimero de fornecedores

param a { 1. m} # estoque

param b { 1. } # demanda

param ¢ { 1. 1..n } # custo transporte

var x { 1. n } >

minimize custo.
sum { i in 1..m, j in 1..n } c[i,j]*x[i,]j];

subject to limiteF { i in 1..m }:
sum { j in 1..n } x[i,]] <= a[i];

subject to limiteC { j in 1. n}
sum { i in l.m} x[i.j] = blj]:

data;

param n := 3;

param m := 3;

param a := 1 5, 2 7, 3 3;

param b = 1 7, 2 3, 3 b5;

param c 1 2 3 =

1 3 1 100

2 4 2 4

3 100 3 3;

end ;

202

[tml tm2 ...
[tml tm2 ...

[tml tm2 ...

B.2. AMPL

¢

203

C. Solucoes dos exercicios

Solugao do exercicio 1.3.

maximiza 2A+B
sujeito a A <6000
B <7000
A + B < 10000

Resposta: A=6000 e B=4000 e Z=16000

Solugao do exercicio 1.4.
Sd0 necessarias cinco varidveis:

® X71:

® X!

® X3!

® X4

® X5:

namero de pratos de lasanha comidos por Marcio
nimero de pratos de sopa comidos por Marcio

numero de pratos de hamburgueres comidos por Renato
nimero de pratos de massa comidos por vini

numeros de pratos de sopa comidos por vini

Formulagao:

maximiza X1 +%X2 +x3+ X4 + X5

sujeito a 4>x1+x%x>2
5>x%x3>2
4>x4+%x5>2
70(x2 + x5) + 200x7 + 100x3 + 30x4 < 1000
30(x2 + xs5) + 100x7 + 100x3 + 100x4 < 800

205

C. Solugées dos exercicios

Solugao do exercicio 1.5.

maximiza 1 + 21,
sujeito a 1L, <60
1 + 31, <200
21 + 21, <300
L, >0

Solugao do exercicio 1.6.

maximiza 60m + 30a
sujeito a m<6
a<4
6m +8a <48
m,a >0

Solugao do exercicio 1.8.
Com marcas J,0,M (Johnny Ballantine, Old Gargantua, Misty Deluxe) e
misturas A, B, C temos as varidveis

XJ,AyX],ByX],CyX0,AyX0,B)y X0,Cy XM,Ay XM,B)y XM, C

que denotam o numero de garrafas usadas por mistura.
Vamos introduzir ainda as varidveis auxiliares para o nimero de garrafas usa-
das de cada marca

Xj =Xj,A + X5 B +Xj,c; X0 =X0,A +X0,B+X0,c; XM =XM,ATXM,B+XMm,C
e varidveis auxiliares para o nimero de garrafas produzidas de cada mistura

XA = XJ,A +X0,A +XM,A; XB =XJ,B +X0,B+XM,B; Xc =Xj,c+X0o,c+Xm,cC-
Queremos maximizar o lucro em reais

68xa + 57xg + 45xc — (70x) + 50xo + 40xm)

206

respeitando os limites de importagao
x3 <2000; xp <2500; xpm <1200
e os limites de percentagem

Xj,A 2> 0.6xa; xm,A <0.2xa
X]B = 0.15xg; xm,B < 0.6xB
Xm,c < 0.5xc.

Portanto, o sistema final é

max 68xa + 57xg + 45x¢c — (70x5 4+ 50xo + 40xpm)
s.a x5 <2000

xo < 2500

xm < 1200

xj,A = 0.6xA

xm,A < 0.2xa

xj,B = 0.15xp

xm,B < 0.6xp

xm,c < 0.5x%¢

Xm = Xm,A +Xm,B + Xm,C m € U, o, M}
Xm = XJ,m +X0,m + XM,m m € {A,B, C}
Xmn >0 me{J,0,M}n € {A,B,C}

Sem considerar a integralidade a solugdo 6tima é produzir 2544.44 garrafas da
mistura A, 3155.56 garrafas da mistura B e 0 garrafas da mistura C, com as
percentagens

e A: 60% Johnny Ballantine, 20% Old Gargantua, 20% Misty Deluxe
e B: 15% Johnny Ballantine, 63% Old Gargantua, 22% Misty Deluxe
Solugao do exercicio 1.9.
Com t; o ntmero de TVs de 297¢ t, de 31”temos

maximiza 120t7 + 80t,
sujeito a t1 <40
1, <10
20t; + 10t < 500
t1,t2>0

207

C. Solugées dos exercicios

Solugao do exercicio 1.10.

Seja V = {V7,Va} e NV = {NV;,NV,,NV3} os conjuntos de dleas vegetais e
nao vegetais e O = VUNYV o conjunto do todos dleos. Seja ainda c; o custo por
tonelada do éleo i € O e a; a acidez do dleo i € O. (Por exemplo ¢y, =110
e any, = 4.2.) Com varidveis x; (toneladas refinadas do déleo i € O) e x,
(quantidade total de éleo produzido) podemos formular

maximiza 150x, — Z CiXi
icO
sujeito a Z xi < 200 limite dleos vegetais
ieVv
Z x; < 250 limite 6leos nao vegetais
ieNV
3xo < Z aixi < 6X, Intervalo acidez
ieO
Z Xi = Xo Oleo total
i€eO
Xo,Xi > 0 Vie O.

Solugao do exercicio 1.11.
Sejam xa, xg € Xc 0 nimero de horas investidos para cada disciplina. Vamos
usar varidveis auxiliares na, ng e nc para as notas finais das trés disciplinas.

208

Como isso temos o programa linear

maximiza na +ng +nc

sujeito a xa +xg +xc =100 Total de estudo
na = (6+xa/10)/2 Nota final disc. A

ng = (7 + 2xg/10)/2 Nota final disc. B

ne = (10+ 3x¢c/10)/2 Nota final disc. C

na >5 Nota minima disc. A

ng > 5 Nota minima disc. B

nec>5 Nota minima disc. C

A <10 Nota méaxima disc. A

ng <10 Nota maxima disc. B

nc <10 Nota méxima disc. C

Na,Ng,Nc > 0.

Solugao do exercicio 1.12.
Sejam r € R e f € R 0 numero de canecos do Duff regular e do Duff Forte,
respectivamente, encomendados por semana. Com isso podemos formular

maximiza T+ 1.5f (C.1)
sujeito a 2f<r (C.2)
T+ f <3000 (C.3)

r,feR,. (C4)

Solugao do exercicio 1.13.
Sejam f € R e h € R o nimero de pacotes de Frisky Pup e Husku Hound
produzidos, respectivamente. Com isso podemos formular

maximiza 1.6f + 1.4h (C.5)
sujeito a f+ 2h < 240000 (C.6)
1.5f +h < 180000 (C.7)

f < 110000 (C.8)

f,heR,. (C.9)

209

C. Solugoes dos exercicios

Solugao do exercicio 1.14.

maximiza 25p + 30c
sujeito a /200 + ¢c/140 <40 & 7p + 10c < 56000
p <6000
¢ <4000
¢,p=>0

Produzindo ago

6000 -

5000 (56000-7*X)/1 0

4000

3000

Canos ¢

2000 Solugdes viaveis

1000

0 1000 2000 3000 4000 5000 6000 7000 8000
Placas p

A solugdo étima é p = 6000, ¢ = 1400 com valor 192000.

Solucao do exercicio 1.15.

Usamos indices 1, 2 e 3 para os voos Pelotas—Porto Alegre, Porto Alegre—
Torres e Pelotas—Torres e varidveis aj, az, a3 para a categoria A, by, by, b3
para categoria B e c—1, ¢z, c3 para categoria C. A funcao objetivo é maximizar
o lucro

z = 600a; +320a; + 720a3 +440b; + 260b, + 560b3 + 200c + 160c, + 280c3.

210

Temos que respeitar os limites de capacidade

ar+by+cy+az3+bsz+c3 <30
a+by+cry+as+bs+c3 <30

e os limites da predigao

a; <4 a; <§; a3 <3
by <8; by <135 b3 <10
c1 <22 cy <20 c3 <18

Obviamente, todas varidveis também devem ser positivos.

Solugao do exercicio 1.16.
A solucao gréfica é
6

1 Solugbes viaveis

(a) A solugéo 6tima é x1 =4.25, x5 ~ 4 (valor exato xa = 3.96875).

(b) O valor da solugao 6tima é = 21 (valor exato 20.96875).

211

C. Solugées dos exercicios

Solugao do exercicio 1.17.

maximiza z =5x1 + 5x2 4+ 5x3

sujeito a —6x7 —2x —9%3 <0

maximiza

sujeito a

maximiza

sujeito a

maximiza

sujeito a

212

—9%1 —3xy +3x3 <3
9%1 +3x2 —3x3 < -3
XjZO

z = —6x7 — 2x2 — 6x3 + 4x4 + 4x5
—3x7 — 8%y —6x3 —7x4 —5x5 < 3
3x1 4+ 8x2 + 6X3 + 7x4 + 5x5 < —3
5x1 —7x2 +7x3 +7x4 —6x5 < 6
X1 — M2 +5%x3 +7x4 — 10x5 < —6
— X1+ 9% —5x3 —7x4 +10x5 < 6
x; >0

z=7x1 +4x2 + 8x3 + 7x4 — 9x5
—4x7 — Ixo —7x3 — 8x4 + 6X5 < —2
4x1 +x2 +7x3 + 8x4 — 6x5 < 2

— X7 —4x3 —2x3 — 2x4 +7x5 <7
—8%x1 + 2x7 + 8x3 —6x4 — 7x5 < —7
8x1 —2xp —8x3 +6%4 +7x5 <7

x; >0

z =6x7 —5xp — 8x3 — 7x4 + 8x5
—5%1 —2x2 + X3 — x4 —7x5 <9
51 4+ 2x2 —x3 + Ixg + 7x5 < —9
7X1 + 7x2 +5%x3 — 3x4 + x5 < —8
—7x1 —7%2 —5x3 +3x4 — x5 <8
—5%x7 —3x2 —5x3 + x4 + 8x5 <0
x; >0

Solugao do exercicio 2.1.
Solucao com método Simplex, escolhendo como varidvel entrante sempre aquela
com o maior coeficiente positivo (em negrito):

z = 25p +30c
wi; =56000 —7p —10c
wy; =6000 —p

ws =4000 —c

z =120000 +25p —30w;
w; =16000 —7p +10ws;
wy; = 6000 —p

c = 4000 —W3

z =1240000/7 —25/7p +40/7w3
P =16000/7 —1/7wi +10/7w3
wy = 26000/7 +1/7wy —10/7wg
c = 4000 —W3

z = 192000 73W] 74W2

p =6000 —W

ws = 2600 +1/10wy —=7/10w,

c = 1400 —=1/10wy +7/10w,

Solugao do exercicio 2.3.
Temos

2m+1)\ /2n\(2n+2)2n+1) /2n\2(2n+1)
<n+1)(n) (n+1)2 (n) n+1

221 (211) < <Z(n+1)> < 92 (2TL>‘
n+1\n,/ — n+1 - n

Logo, por inducdo (1/2n)2?" < (21?) <22,

e logo

Solugao do exercicio 2.6.

(a) Substituindo x; e x; obtemos a nova fungdo objetivo z = x; + 2x2 =
22 — 7w, — 3wq. Como todos coeficientes sao negativos, a solugdo basica
atual permanece étima.

213

C. Solugées dos exercicios

(b) A nova fungao objetivo é 1 —w; e o sistema mantem-se 6timo.
(¢) A nova fungdo objetivo é 2 — 2w, e o sistema mantem-se étimo.
(d) O diciondrio dual é

z¢ =31 —7z, —8z;
Yy, =11 +2z; +3z
Yy =4 +zz 4z

e a solucao dual 6tima é (y7y2)t = (4 11)%.

Solugao do exercicio 2.9.

Nao, porque nessa situacao o valor da variavel entrante aumento para um
valor x. > 0 e por definicao de variavel entrante temos c. > 0, i.e. o valor da
fungao objetivo aumenta.

Solugao do exercicio 2.10.

Sim. Supde que xs, s € B é a varidvel basica negativa. Com xs = bg — GgeXe €
ase < 0 temos x5 > 0 caso xe > bs/@se. Logo para xe > maxicg 4, <o bi/die
a solucao é factivel.

Solucao do exercicio 3.1.

maximiza 10y + 6y,
sujeito a Yy +5y <7

-y +2y2 <1
3yr—y2 <5
Y1,Yyz2 ZO

Solugao do exercicio 3.2.
Com variaveis duais y. para cada e € U temos

maximiza E Ye

eclu

sujeito a Z Ye < ¢(S) Ses
e:e€S
Ye >0 e c U.

Solugao do exercicio 3.3.

214

(a)

Temos B = {4, 1,2} (varidveis bésicas x4, X1 € x2) e N' = {5, 6,3} (varidveis
nulas x5, Xg € x3). No que segue, vamos manter essa ordem das varidveis
em todos vetores e matrizes. O vetor de custos nessa ordem é

cg =002 -1 en=(00M"
e com
Ac=(010000)"
temos

Ay% = (B7'N)*Acg — Acn = (B7'N)'Acg

—1 1/2 —-1/2\ /0 1/2
(=2 12 12| (1]=]12].
1 12 =372) \o 1)2

Com y}, = (3/21/23/2)* obtemos os limites —1 <t <ooe 1 <c¢; < oco.

Temos Axp = B"'Ab e Ab = (0 1 0)t. Para determinar Axg precisamos
calcular B~ pela inversao de

1 3 1
B=(|0 1T -1
0 1 1

(observe que as colunas estdo na ordem de B) que é

1T -1 =2
B '=10 1/2 12
0o —1/2 172
Assim Axg = (—11/2 —1/2), e com x}; = (10 155)* e pela definigao
max—xi* <t< min — i
ieB Xi ~~ i€B Ax;
A"i>0 A"i<0

obtemos os limites —30 <t <10 e —20 < b, < 20.

Com b = (70 20 10)t temos B~'6 = (30 15 —5)t. Portanto, a solucao
basica ndo é mais viavel e temos que reotimizar. O novo valor da fungao

objetivo é
30
ck(B'B)=(0 2 —1)|15] =35

-5

215

C. Solugées dos exercicios

e temos o dicionéario

z= 35 —=3/2xs —1/2x¢ —3/2x3

x4 = 30 +Xs5 +2x¢ —X3
x;= 15 71/2)(5 71/2)(6 71/27(3
X2 = —5 +1/2X5 —1/2X6 +3/2X3

O dicionério é dualmente viavel, e apds pivo x2—x3 temos o novo sistema
6timo
z= 30 —X5 —X6 —X2
xq = 80/3 +4/3x5 +5/3x¢ —2/3x2
X1 = 40/3 *1/37(5 *2/37(6 *1/3)(2
X3 10/3 —1/3xs +1/3xg +2/3x;

(d) Temos €= (03 —2003)* (em ordem B, N) e com isso

-1 1/2 -1/2 0 0 5/2
9 =B "N)eg—en= -2 1/2 1,2 3)—lo]=1(12
1 1/2 -3/2 -2 3 3/2

Portanto, a solucao ainda é 6tima. O novo valor da funcao objetivo é
10

¢sB ') =(0 3 —2)[15] =35.
5

Solugao do exercicio 6.2.

Conjunto independente maximo Com variaveis indicadores x,,, v € V temos
0 programa inteiro

maximiza Z Xv
vev
sujeito a Xu+ Xy, <1, V{u,v} € A (C.10)
Xy € B, Vv eV

A equagao C.10 garante que cada aresta possui no maximo um né incidente.

216

Emparelhamento perfeito com peso maximo Sejam x,, a € A varidveis
indicadores para a selecdo de cada aresta. Com isso, obtemos o programa

inteiro
maximiza Z pla)xq
acA
sujeito a Z Xuv) = 1, Yvev (C.11)
UeEN(v)
Xq € B, Vv eV

A equagao C.11 garante que cada nd possui exatamente um vizinho

Problema de transporte Sejam xi; varidveis inteiras, que correspondem com
o numero de produtos transportados do depésito i para cliente j. Entao

minimiza Z CijXij

i€n]
jelm]

sujeito a Z Xij =Pi, Vie[n] cada depdsito manda todo estoque
jem
Z xiyj =dj, Vje [m] cada cliente recebe a sua demanda
ie[n]
Xij € VAR

Conjunto dominante Sejam x,, v € V varidveis indicadores para selecao de

vértices. Temos o programa inteiro

minimiza Z Xy
vev
sujeito a Xy + Z Xy > 1, Vv €&V nb ou vizinho selecionado
ueN (v)
Xy € B, Vv e V.

Solugao do exercicio 6.4.
d,, a entrada, e o objetivo selecionar m < n digitos da entrada

Seja d]dz... n
Seja xi; € B um indicador que o digito i da entrada seria selecionado como

217

C. Solugées dos exercicios

digito j da saida, i € [n], 1 <j < m. Entéo

maximiza Z xijdil om—J
)
sujeito a in]- =1, v (C.12)
ixii S], Vi (013)
x:j =0, Y > 1, (C.14)
xkt < 1 —xyj, vk > 1,1 <. (C.15)

A funcao das equagbes é a seguinte:
e Equacgao C.12 garante que tem exatamente um digito em cada posigao.

e Equagao C.13 garante que cada digito é selecionado no maximo uma
VeZ.

e Equacgao C.14 garante que digito i aparece somente a partir da posicao
j.

e Fquacao C.13 proibe inversdes.

Solugao do exercicio 6.5.

Existem 21 sets diferentes, cada um com consumo diferente das 9 cartas. Seja
AR?*21 uma matriz, que contém em cada das 21 coluna o nimero de cartas
de cada set. Além disso, seja b € RY o niimero de cartas disponiveis. Usando
varidveis inteiros x € Z?' que representam o nimero de sets formandos de
cada tipo de set diferentes, temos a formulagao

maximiza E Xi
ie[21]

sujeito a Ax <b
x> 0.

Solugao do exercicio 6.6.

218

Cobertura por arcos

minimiza Z CeXe
ecE

sujeito a Z Xuv > 1, YveV
ueN(v)
Xe € B.

Conjunto dominante de arcos

maximiza E CeXe
ecE
sujeito a E Xer > 1, Ve c E
e’/€E
ene’ #0
Xe € B.

Coloracdo de grafos Sejan =|V|.
minimiza Z Cj
j€n]
sujeito a Z Xvj =1, Yvev (C.16)
jem]

Xui Fxvi <1, Y{u,v} € E,i € n] (C.17)
ne; > Y xu vj € (C.18)

vev
Xviy Cj € B.

e Equacao C.16 garante que todo vértice recebe exatamente uma cor.
e Equacao C.17 garante que vértices adjacentes recebem cores diferentes.

e Equacao C.18 garante que ¢; = 1 caso cor j for usada.

Cligue minimo ponderado

minimiza Z CvXy
vev

sujeito a Xy + %y < 1, V{u,vi¢ E (C.19)
Xy € B.

219

C. Solugées dos exercicios

Equagao C.19 garante que nao existe um par de vértices selecionados que nao
sao vizinhos.

Subgrafo cibico x. indica se o arco e é selecionado, e Yy, indica se ele possui
grau 0 (caso contrario grau 3).

minimiza Z Xe
ecE

sujeito a Z Xe <O+ [E/(1T —ye)
ecN(v)

Z Xe <3 +[Elye
eeN(v)

- Z Xe§—3+3ye
eeN(v)

Observe que o grau de cada vértice é limitado por |E|.

Solugao do exercicio 6.7.
Sejam x; € B,1 € [7] varidveis que definem a escolha do projeto i. Entao
temos

maximiza 17x7 + 10x2 + 15x3
4+ 19x4 + 7x5 + 13x6 + 9%x7
sujeito a 43x1 4 28x7 + 34x3 + 48x%4
4+ 17x5 + 32x¢ + 23x7 < 100 Limite do capital

X1 +x2 <1 Projetos 1,2 mutualmente exclusivos
X3 +x4 <1 Projetos 3,4 mutualmente exclusivos
X3 +x4 <x71+%2 Projeto 3 ou 4 somente se 1 ou 2

http://www.inf .ufrgs.br/~mrpritt/e6q2.mod

set projetos (=1 .. 7;
param lucro { projetos };
param custo { projetos };

var fazer { projetos } binary;

DD O s WO N

220

http://www.inf.ufrgs.br/~mrpritt/e6q2.mod

11 = 1;

12 subject to S4: fazer[3]+fazer <= fazer[l]+fazer [2];
13

14 data;

15 param lucro := 1 17 2 10 3 154 19 57 6 13 7 9;

16 param custo := 1 43 2 28 3 34 4 48 5 17 6 32 7 23;
17 end;

© 00 =1 O U s W N =

7 maximize M: sum { i in projetos } lucro[i]xfazer[i];
8 subject to S1:

9 sum { i in projetos } custo
10 subject to S2: fazer[l]+ fazer

[i]*fazer[i] <= 100;
(2] <= 1;

subject to S3: fazer[3]+ fazer [4] <
[4]

Solucao: Selecionar projetos 1,3,7 com lucro de 4TMRS.

Solugao do exercicio 6.8.

Seja f € B uma varidvel que determina qual fibrica vai ser usada (fdbrica 1,
caso f = 0, fabrica 2, caso f = 1), b; € B uma varidvel bindria que determina,
se brinquedo 1 vai ser produzido e u; € Z as unidades produzidas de brinquedo

i (sempre com 1 € [2]).

maximiza 10u; + 15u, — 50000by — 80000b,

sujeito a u; < Mby Permitir unidades somente se tem pr
w1 /50 +uy /40 < 500 + fM Limite fabrica 1, se selecionada
w1 /40 +uy/25 <7004 (1 —f)M Limite fabrica 2, se selecionada

A constante M deve ser suficientemente grande tal que ela efetivamente nao
restringe as unidades. Dessa forma, se a fabrica 1 esta selecionada, a terceira

restri¢cao (da fébrica 2) nao se aplica e vice versa.

http://www.inf.ufrgs.br/~mrpritt/e6q3.mod

var f binary;

var b { brinquedos } binary;

var u { brinquedos } integer, >= 0;
param inicial { brinquedos };
param lucro { brinquedos };

param prodfabl { brinquedos };
param prodfab2 { brinquedos };
param M := 35000;

221

http://www.inf.ufrgs.br/~mrpritt/e6q3.mod

C. Solugées dos exercicios

maximize Lucro:

—_

sum { i in brinquedos } u[i]*lucro[i]
— (sum { i in brinquedos } inicial[i]*b[i]);
subject to PermitirProducao { i in brinquedos }:
uli] <= Mxb[1i];
subject to LimiteFabl
sum { i in brinquedos }
uli]*prodfabl[i] <= 500 + f«M;
subject to LimiteFab2
sum { i in brinquedos }
u[i]xprodfab2[i] <= 700 + (1—{)=*M;

[y

data;

param inicial := 1 50000 2 80000;
param lucro := 1 10 2 15;

param prodfabl := 1 0.020 2 0.025;
param prodfab2 := 1 0.025 2 0.040;

[I I N N R N R N R R O e e e S O i e S

Solugao: Produzir 28000 unidades do brinquedo T na fabrica 2, com lucro
230KR$.

Solugao do exercicio 6.9.
Sejam a; € B uma varidvel que determina se avido i vai ser produzido e u; € Z
as unidades produzidas.

maximiza 2uy +3uy +0.2uz — 3a; — 2ay

sujeito a 0.2u1 +0.4u3z +0.2u; <1 Limite de capacidade
u; < 5b; Permitir unidades somente se for
u <3 Limite avido 1
u <2 Limite aviao 2
uz; <5 Limite aviao 3
http://www.inf.ufrgs.br/~mrpritt/e6q4.mod
27 param custo { avioes };
28 param lucro { avioes };
29 param capacidade { avioes };
30 param demanda { avioes };
31 var produzir { avioes } binary;
32 var unidades { avioes } integer , >= 0;

222

http://www.inf.ufrgs.br/~mrpritt/e6q4.mod

33

34 maximize Lucro:

35 sum { i in avioes }

36 (lucro[i]*unidades[i]—custo[i]*produzir[i]);
37 subject to LimiteCapacidade:

38 sum { i in avioes } unidades[i]xcapacidade[i] <= 1;
39 subject to PermitirProducao { i in avioes }:

4 unidades[i] <= bxproduzir[i];

41 subject to LimiteDemanda { i in avioes }:

42 unidades [i] <= demandali];

43

44 data;

45 param : custo lucro capacidade demanda :=

46 1 3 2 0.2 3

47 2 2 3 0.4 2

48 3 0 0.8 0.2 5

49

Solucao: Produzir dois avides para cliente 2, e um para cliente 3, com lucro
4.8 MRS.

Solugao do exercicio 6.10.

Seja xijx € B um indicador do teste com a combinacao (i,j,k) para 1 <
i,j,k < 8. Cada combinagao (i,j,k) testada cobre 22 combinagdes: além de
(i,j, k) mais 7 para cada combinacao que difere somente na primeira, segunda
ou terceira posi¢cao. Portanto, uma formulacao é

minimiza Z Xij,k
i,j,k
sujeito a Xi,j,k + Z Xijk + Z Xij + Z Xy =1 Vijk
U i/ 4 K/ Ak
Xi,j,k € B vi,j, k.

A solucao 6tima desse sistema é 32, i.e. 32 testes sdo suficientes para abrir a
fechadura.

Solugao do exercicio 6.11.

Sejam x; € B, 1 € [k] as varidveis de entrada, e ¢; € B, 1 € [n] varidveis que
indicam se a cldusula c; estd satisfeita. Para aplicar a regra (6.2) diretamente,
vamos usar uma varidvel auxiliar d;. 1 € [n], que representa a disjunc¢éo dos

223

C. Solugées dos exercicios

primeiros dois literais da clausula 1.

maximiza E Ci
i€[n]

.. X1 literal j na clausula i é xj
sujeito a lij =

1 —xx literal j na clausula i é —xy
di > (Lin +li2)/2
di <lip +li2
ci > (di +1i3)/2
ci <di+lis
ci,di,xq € B.

Como é um problema de maximizagao, pode ser simplificado para
maximiza E Ci
ien]

L. X1 literal j na clausula i é xj
sujeito a lij = . . B L
1 —xx literal j na clausula i é —xy
ci <lip+liz+lis
ci,Xq € B.
A segunda formulagao possui uma generalizagao simples para o caso k > 3.

Solugao do exercicio 7.2.

Conjunto independente maximo A matriz de coeficientes contém dois co-
eficientes igual 1 em cada linha, que correspondem com uma aresta, mas
geralmente nao é totalmente unimodular. Por exemplo, o grafo completo com
trés vértices K3

gera a matriz de coeficientes

S — -
_ —
—_——_—

224

Figura C.1.: Politopo {x € R3 | x1 +x2 < 1,x1 +x3 < 1,x2+x3 < 1,0 < x; <
1}. (O visualizador usa os eixos X = X1, Yy = X2, Z = X3.)

cuja determinante é —2. A solugao 6tima da relaxacao inteira 0 < x; < 1 é
X1 = X2 = x3 = 1/2 com valor 3/2, a Fig. C.1 mostra o politopo correspon-
dente. (Observagao: A transposta dessa matriz satisfaz os critérios (i) e (ii) da
nossa proposigao, e caso o grafo é bi-partido, também o critério (iii). Portanto
Conjunto independente mdximo pode ser resolvido em tempo polinomial em
grafos bi-partidos).

Emparelhamento perfeito com peso maximo A matriz de coeficientes sa-
tisfaz critério (i). Ela tem uma linha para cada vértice e uma coluna para cada
aresta do grafo. Como cada aresta é incidente a exatamente dois vértices, ela
também satisfaz (ii). Finalmente, a bi-partigdo V; U V, do grafo gera uma
bi-parti¢ao das linhas que satisfaz (iii). Portanto, a matriz é TU, e o Empare-
lhamento perfeito com peso mdaximo pode ser resolvido em tempo polinomial
usando a relaxagao linear.

Problema de transporte A matriz de coeficientes satisfaz critério (i). Po-
demos representar o problema como grafo bi-partido completo K;, m entre os
depdsitos e os clientes. Desta forma, com o mesmo argumento que no ultimo
problema, podemos ver, que os critérios (ii) e (iii) s@o satisfeitos.

Conjunto dominante A matriz de coeficientes satisfaz critério (i), mas nao
critério (ii): cada linha e coluna correspondente com vértice v contém |N(v)[41
coeficientes nao-nulos. Mas, ndo é obviou se a matriz mesmo assim nao é TU
(lembra que o critério é suficiente, mas nao necessdrio). O Ks acima, por

225

C. Solugées dos exercicios

exemplo, gera a matriz
1
1T 11
1T 11

que ¢ TU. Um contra-exemplo seria o grafo bi-partido Kj 3

que gera a matriz de coeficientes

—_— o

1
0
1
0

_ O —

1
1
0
0

com determinante —2. Isso nao prova ainda que a relaxacdo linear nao pro-
duz resultados inteiros étimos. De fato, nesse exemplo a solucao 6tima da
relaxacao inteira é a solugao étima inteira D = {1}.

Um verdadeiro contra-exemplo é um ciclo com cinco vértices Cs

com matriz

—_—0 = =0
O == =0
SRR —
—_— O = -

(cuja determinante é 3). A relaxagao linear desse sistema tem a solugao 6tima
X1 =X2 =X3 =X4 = X5 = 1/3 com valor 5/3 que néo é inteira.

226

Solugao do exercicio 7.4.

A formulagdo possui 14 restrigoes, correspondendo com as 14 arestas. Como
o grafo é 4-regular, cada vértice ocorre 4 vezes no lado esquerdo de uma
restricao, e somando todas restrigoes obtemos

4 Z xi < 14
1€(7]
= Z xi < 14/4

:>le7 |14/4] =

que nao é suficiente. Para obter uma desigualdade mais forte, vamos somar
sobre todos triangulos. Somando primeiro as restricoes das arestas de cada
tridngulo (u, v, w) obtemos

2%y + 2%y + 2%, < 3
SxXy Xy +x < 3/2] =1,

Somando agora as restrigoes obtidas desta forma de todos 14 triangulos do
grafo (cada vértice é parte de 6 tridngulos) obtemos a desigualdade desejada

6) xi <14
iel7]

= ZXiS [14/6] = 2.

iel7]

(Outra abordagem: Supode, sem perda de generalidade, que x; = 1 na solugao
6tima. Pelas restrigoes x1 + x; < 2 temos x; = 0 para i € {3,4,5,6}. Pela
restrigdo x, +x7 < 1, portanto) ;. ;- xi < 2.)

Solugao do exercicio 7.5.

Seja S =[]\ S e m = maxjcs a; e M = maxics a;. A idéia é somar desigual-
dades x; < 1 para i € S até o corte de Gomory obtido pela divisao pelo coefi-
ciente méximo em S rende a desigualdade desejada. Seja 6 = max{m + 1, m}.
Somando (6 — ai)x; < & — a; obtemos

Zéxi+Zaixi < b+Z(5— ai)xi < 8|S| < 8IS|—1.

i€es ieS i€es

227

C. Solugées dos exercicios

Aplicando o corte de Gomory com multiplicador 1/6 obtemos

> xi < [IS|—1/8) =S| -1

i€sS
porque a; < M < max{m + 1,m} =5 e logo |a;/8| =0 paraicS.

Solugao do exercicio 7.6.

X1 + X6 + x7 < 2 porque uma rota nao contém subrotas. Portanto x; + x2 +
X5 + X + X7 +xo < 5. Supoe x1 +x2 + X5 + X¢ + X7 + Xxo = 5. Temos trés
casos: X1 = 0, x¢ = 0 ou xy = 0. Em todos os casos, as restantes variaveis
possuem valor 1, e no grafo resultante sempre existe um vértice de grau 3 (o
vértice no centro, da esquerda, de acima, respectivamente), que nao é possivel
numa solucao valida.

Solucao do exercicio 7.8.
O sistema inicial

z= X1 +3x%2
wr= =2 +x
W = 3 —X2
w3 = —4 4+xq +X2
Wy = 12 *37(1 —X2

nao é primalmente nem dualmente vidvel. Aplicando a fase I (pivos xo—ws,
xo—X1) e depois fase II (pivos xa—w1, w3—wz, wi—wy) gera o diciondrio final

z

X2
w3
X1
Wi

2

— w N W=

—8/3w>
—W»

72/3Wz
+1 /3W2
+1 /31/\)2

cuja solugao x1 = 3, x2 = 3 ja é inteira.
No segundo sistema comegamos com o dicionério

z =

Wi

W =
W3 =

60
24
59

X1

+1]X]
—4x4
f]OX1

—1/3wy4

—1 /3W4
—1 /3W4
—1 /3W4

—ZXZ
—1 5X2
—3X2
+5x%,

e um pivo x1—wj3 gera a solugao 6tima fracionaria

228

4.9
113.9
4.4
4.9

—O]Wg
—1 .]Wg
+04W3
*01W3

—1 .5X2
—9.57(2
—5X2

+0.5%,

e a linha terceira linha (x7) gera o corte

Wy =

—0.9 +O1W3

+0.5X2

Com o pivd wy—w3 obtemos a solugao 6tima inteira

—Wy
—11 Wy
+4W4
—Wy
+10wy

—X2
—4X2
—7X2
+] X2
—5X2

229

Bibliografia

1]
2]

Kurt M. Anstreicher. “Linear programming in O((n3logn)L) operati-
ons”. Em: SIAM J. Opt. 9.4 (1999), pp. 803-812.

G. Ausiello et al. Complexity and approximation — Combinatorial Op-
timization Problems and their Approximability Properties. INF 510.5
C737. Springer-Verlag, 1999. URL: http://www.nada.kth.se/~viggo/
approxbook.

Jens Clausen. Branch and Bound Algorithms — Principles and examples.
1999.

William Cook. Concorde TSP solver. Dez. de 2011.

William Cook. “Markovitz and Manne 4+ Eastman + Land and Doig =
Branch and bound”. Em: Document Mathematica Special volume 21st
ISMP (2012), pp. 227-238.

S. Dasgupta, C. Papadimitriou e U. Vazirani. Algoritmos. McGraw-Hill,
2009.

John Fearnley e Rahul Savani. “The Complexity of the Simplex Method”.
Em: Arziv (2014).

A. Ghouila-Houri. “Caractérisation des matrices totalement unimodu-
laires”. Em: Comptes Rendus Hebdomadaires des Séances de I’Académie
des Sciences 254 (1962), pp. 1192-1194.

A. J. Hoffman e J. B. Kruskal. “Integral boundary points of convex
polyhedra”. Em: Linear inequalities and related systems: Annals of Mathe-
matical Study 38 (1956), pp. 223-246.

Richard M. Karp. “Reducibility Among Combinatorial Problems”. Em:
Complezity of Computer Computations. Ed. por R. E. Miller e J. W.
Thatcher. New York: Plenum, 1972, pp. 85-103.

A. H. Land e A. G. Doig. “An automatic method of solving discrete
programming problems”. Em: Econometrica 28.3 (1960), pp. 497-520.
DOI: 10.2307/1910129.

Nelson Maculan e Marcia H. Costa Fampa. Otimiza¢do linear. INF
65.012.122 M1750. Editora UnB, 2006.

231

http://www.nada.kth.se/~viggo/approxbook
http://www.nada.kth.se/~viggo/approxbook
http://dx.doi.org/10.2307/1910129

Bibliografia

[13] Daniel A. Spielman e Shang H. Teng. “Smoothed analysis of algorithms:
Why the simplex algorithm usually takes polynomial time”. Em: J.
ACM 51.3 (2004), pp. 385-463. 1SSN: 0004-5411. DOI: 10.1145/990308.
990310. URL: http://dx.doi.org/10.1145/990308.990310.

[14] Robert J. Vanderbei. Linear programming: Foundations and Extensions.
3rd. INF 65.012.122 V228]. Kluwer, 2001. URL: http://www.princeton.
edu/~rvdb/LPbook.

[15] H.P. Williams. “Fourier’s method of linear programming and its dual”.
Em: The American Mathematical Monthly 93.9 (1986), pp. 681-695.

[16] Laurence A. Wolsey. Integer programming. Wiley, 1998.

[17] Laurence A. Wolsey e George L. Nemhauser. Integer and Combinatorial
Optimization. Wiley, 1999.

232

http://dx.doi.org/10.1145/990308.990310
http://dx.doi.org/10.1145/990308.990310
http://dx.doi.org/10.1145/990308.990310
http://www.princeton.edu/~rvdb/LPbook
http://www.princeton.edu/~rvdb/LPbook

Nomenclatura

argmax valor para que uma funcgao atinge o maximo, pagina 24

argmin valor para que uma funcao atinge o minimo, pagina 47

B

[x]
co-NP

sup
At

cn
Ccnxm

N(v)

conjunto booleano {0, 1}, pagina 76
menor nimero inteiro maior ou igual a x, pagina 118

classe de problemas de decisao com certificados polinomiais para instancias
negativas, pagina 44

uniao disjunta, pagina 50

maior niimero inteiro menor ou igual a x, pagina 78
significadamente menor que, pagina 30

conjunto de nimeros inteiros, pagina 75

conjunto de variaveis bésicas, pagina 19

conjunto de variaveis nulas, pagina 19

classe de problemas de decisao com certificados polinomiais para instancias
positivas, pagina 44

conjunto de nimeros reais, pagina 10

supremo, menor limite superior de um conjunto, pagina 63

matriz transposta, pagina 39

espaco vetorial com vetores de n componentes sobre o campo C, pagina 13
grupo de matrizes de tamanho n x m sobre o campo C, pagina 13
conjunto de vértices adjacentes a v, pagina 112

conjunto de arcos saintes de v, pagina 107

conjunto de arcos saintes de v, pagina 107

conjunto de niimeros inteiros nao-negativos, pagina 124

233

Indice

0-1-Knapsack, ver 0-1-Mochila, ver

0-1-Mochila, ver 0-1-Mochila

0-1-Mochila, 105, 132, 192

algoritmo de planos de corte, 135
algoritmos Branch-and-bound, 141
AMPL, 193

Bland

regra de, 44
Boltzmann, 163
branch-and-bound, 138
branch-and-cut, 147
branch-and-price, 147
busca local, 157
busca por melhor solugao, 140
busca por profundidade, 140

caixeiro viajante, 93, 94, 146, 152,
178, 181

caminhos mais curtos, 127
certificado, 60
ciclo, 41
combinagao convexa, 17
complexidade

do método Simplex, 46
conjunto de nivel, 10
conjunto independente méaximo, 114
conjuntos de nivel, 10
convexo, 17
corte

de Chvatal-Gomory, 133

de Gomory, 135

por inviabilidade, 139

por limite, 139
por otimalidade, 139
cover inequalities, ver desigualda-
des de cobertura
CPLEX LP, 191
custo marginal, 55
custos reduzidos, 33

Dantzig, George Bernard, 19, 20
desigualdade valida, 129, 130
desigualdades de cobertura, 132
dicionario, 30

degenerado, 39
distribuicao de Boltzmann, 163
dual

interpretacao, 55

sistema, 59

dualidade, 51

emparelhamento, 134
emparelhamento méximo, 129, 132

fase I, 38
fase II, 38
fitness, 153
fluxo em redes, 128
folgas complementares, 60
forma padrao, 16
Fourier, Jean Baptiste Joseph, 19
fungao objetivo, 10
nao-linear, 110

gap de integralidade, 113
gradient descent, 158

235

Indice
gradiente, 158

heuristica, 151

hill climbing, 159
hill descent, 159
Hoffman, A. J., 126

integrality gap, ver gap de integra-
lidade

Kantorovich, Leonid, 19
Karmarkar, Narendra, 19
Khachiyan, Leonid, 19
Klee-Minty, 46

Kruskal, J. B., 126

level set, 10
limite
inferior, 139
superior, 139
line search, 158
locagao de facilidades nao-capacitado,
108
localizacao de facilidades, 107
lucro marginal, 55

método

de Chvatal-Gomory, 133

de duas fases, 38

de Gomory, 135

lexicografico, 41

Simplex

complexidade, 46

Simplex dual, 61
método Simples, 27
marginal cost

custo marginal, 55
matriz totalmente unimodular, 123
matriz unimodular, 123, 124
meta-heuristica, 152
Metropolis, 163, 164
multi-start, 161

236

objetivo, 10
otimizagao combinatoéria, 10
otimizagao linear, 11

passeio aleatério, 164
perturbacao, 42
piso, 189
pivo, 29
degenerado, 39, 40
plano de corte, 134
ponto extremo, 17
prego, 55
prego sombra, 55
price
prego, 55
pricing, 34
problema da dieta, 11, 87
dual, 54
problema da mochila, 131, 133
problema de otimizagao, 10
problema de transporte, 11
problema dual, 52
problema primal, 52
programacao inteira, 88
programacao inteira mista, 88
programacao inteira pura, 88
programacao linear, 7, 11
pseudo-pivo, 36

random walk, 164
reduced costs

custos reduzidos, 33
regra de Bland, 44
regra de Cramer, 122
relaxacao inteira, 121
restricao, 10, 11
restrigao trivial, 16

shadow price
prego sombra, 55
shortest paths, 127

sistema auxiliar, 36
sistema dual, 52, 59
sistema ilimitado, 35
sistema primal, 52
solugao

bésica, 35

basica viavel, 28

viavel, 10, 28
steepest ascent, 159
steepest descent, 159

tableau, 30
teorema

de Hoffman e Kruskal, 126
teorema da dualidade forte, 57
teorema da dualidade fraca, 56
teorema das folgas complementa-

res, 60

teorema fundamental, 46
teto, 189
totalmente unimodular, 123
transposta

de uma matriz TU, 124

uncapacitated lot sizing, 110
unimodular, 123, 124

vértice, 17

variaveis de decisao, 11

varidvel
0-1, 107, 109
bésica, 29
booleana, 107
dual, 52
entrante, 29
indicador, 107, 109
nao-bésica, 29
nula, 28
sainte, 29

von Neumann, John, 19

Indice

237

	Conteúdo
	Programação linear
	Introdução
	Exemplo
	Formas normais
	Solução por busca exaustiva
	Notas históricas
	Exercícios

	O método Simplex
	Um exemplo
	O método resumido
	Sistemas ilimitados
	Encontrar uma solução inicial
	Sistemas degenerados
	Complexidade do método Simplex
	Exercícios

	Dualidade
	Introdução
	Interpretação do dual
	Características
	Método Simplex dual
	Dualidade em forma não-padrão
	Os métodos em forma matricial
	O dicionário final em função dos dados
	Simplex em forma matricial

	Análise de sensibilidade
	Exercícios

	Tópicos
	Centro de Chebyshev
	Função objetivo convexa e linear por segmentos

	Programação inteira
	Introdução
	Definições
	Motivação e exemplos
	Aplicações

	Formulação
	Exemplos
	Técnicas para formular programas inteiros
	Formular restrições lógicas
	Formular restrições condicionais

	Formulações alternativas
	Exercícios

	Técnicas de solução
	Introdução
	Problemas com solução eficiente
	Desigualdades válidas
	Planos de corte
	Branch-and-bound
	Notas
	Exercícios

	Tópicos

	Heurísticas
	Introdução
	Heurísticas baseados em Busca local
	Busca local
	Metropolis e Simulated Annealing
	GRASP
	Busca Tabu
	Variable Neighborhood Search

	Heurísticas inspirados da natureza
	Algoritmos Genéticos e meméticos

	Appéndice
	Conceitos matemáticos
	Formatos
	CPLEX LP
	AMPL

	Soluções dos exercícios

	Bibliografia
	Nomenclatura
	Índice

