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Introducdo

If one would take statistics about which mathematical problem is using up
most of the computer time in the world, then ... the answer would probably
be linear programming. (Laszlo Lovasz)






1. Introducao

1.1. Exemplo

Exemplo 1.1 (No Ildo)

Antes da aula visito o Ildo! para tomar um café e comer um Croissant. Ele me
conta: “Estou especializado em Croissants e Strudels. Tenho um lucro de 20 centavos
por Croissant e 50 centavos por Strudel. Diariamente até 80 clientes compram um
Croissant e até 60 um Strudel.” Mas infelizmente, o Ildo apenas disponibiliza de
150 ovos e 6 kg de agucar por dia. Entre outros ingredientes, preciso um ovo e 50g de
agucar para cada Croissant e um ovo e meio e 50g de agucar para cada Strudel. “Agora,
professor, quantas Croissants e Strudels devo produzir para obter o maior lucro?”

Sejam ¢ o numero de Croissants e s 0 namero de Strudels. O lucro do Ildo em Reais
é 0.2¢ + 0.5s. Seria 6timo produzir todos 80 Croissants e 60 Strudels, mas uma conta
simples mostra que nao temos ovos e agicar suficiente. Para produzir os Croissants e
Strudels precisamos ¢ + 1.5s ovos e 50c 4 50sg de agticar que nao podem ultrapassar
150 ovos e 6000g. Com a condigdo 6bvia que ¢ > 0 e s > 0 chegamos no seguinte
problema de otimizacao:

maximiza 0.2c + 0.5s, (1.1)
sujeito a ¢+ 1.5s < 150,
50c + 50s < 6000,
¢ < 80,
s <60,
c,s > 0.

Como resolver esse problema? Com duas variaveis podemos visualizar a situagao num
grafo com ¢ no eixo x e s no eixo y

No lldo

1Uma lancheria que existia na Instituto de Informatica até



1. Introdugao
Otimizando o lucro do bar

100
90 - (6000-50¢)/50 N

80 | 2/3(150-) .

70 -

s=60

S (strudels)

c=80 L

0 10 20 30 40 50 60 70 80 90 100
c (croissants)

que nesse caso permite resolver o problema graficamente. Desenhando diversos con-
junto de nivel (ingl. level set) com valor da funcgdo objetivo 10, 20, 30, 40 é facil
observar que o lucro méximo encontra-se no ponto ¢ = s = 60, e possui um valor de
42 reais.

O
A forma geral de um problema de otimizagdo (ou de programac¢do matemdtica) é
opt  f(x],
sujeito a x eV,

com
e um objetivo opt € {max, min},
e uma fungao objetivo (ou fungdo critério) f: V — R,
e um conjunto de solugdes vidveis (ou solugoes candidatas) V.

Falamos de um problema de otimizagao combinatéria, caso V é discreto.
Nessa generalidade um problema de otimizagao é dificil ou impossivel de resolver. O
exemplo 1.1 é um problema de otimizagdo linear (ou programagdo linear):

e as variaveis de decisao sao reais: Xq,...,Xn € R
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1.1. Exemplo

e a funcao de otimizagao é linear em Xj,...,Xn:
f(X1y..0yXn) =C1X1 + -+ -+ CnXn (1.2)
e as solucoes viaveis sao definidas implicitamente por m restricoes lineares

ajixy; +aixz + -+ ainXxa g by,

a1x71 +a2x + -+ -+ azxnXxn X by,

A/_\,.\,.\
—_ = = =
S UL W
= L Z =

Am1X1 + QGm2X2 + -+ + QmnXn DXy bm»
com i€ {<, =, >}

Exemplo 1.2 (O problema da dieta (Dantzig))

Suponha que temos uma tabela de nutrientes de diferentes tipos de alimentos. Sabendo
o valor diario de referéncia (VDR) de cada nutriente (quantidade de nutriente que deve
ser ingerido) e o prego de cada unidade de alimento, qual a dieta 6tima, i.e. a dieta de
menor custo que contém pelo menos o valor diario de referéncia?

Com m nutrientes e n alimentos, seja ai; a quantidade do nutriente i no alimento j
(em g/g), ri o valor diario de referéncia do nutriente i (em g) e ¢; o prego do alimento
j (em R$/g). Queremos saber as quantidades x; de cada alimento (em g) que

minimiza ciXx7;+ -+ CnXn, (L.7)

sujeito a aj1x1 + -+ ajnxn > 171,

AmiX1 + -+ QmnXn > Tm, (1.9)
X1y.eeyXn > 0. (1.10)
O

Exemplo 1.3 (Problema de transporte (Hitchcock))

Uma empresa agraria tem m depositos, cada um com um estoque de a;, i € [m]
toneladas de milho. Ela quer encaminhar bj, j € [n] toneladas de milho para n
clientes diferentes. O transporte de uma tonelada do depdsito i para cliente j custa
RS cyj. Qual seria o esquema de transporte de menor custo?

Para formular o problema linearmente, podemos introduzir varidveis xij que represen-
tam o peso dos produtos encaminhados do depésito i ao cliente j, e queremos resolver

minimiza Z CijXij, (1.11)
ie[ml,jen]
sujeito a Z xij < ai, para todo fornecedor 1 € [m], (1.12)
jen]
Z Xij = by, para todo cliente j € [n], (1.13)
i€[m]
xij > 0, para todo fornecedor 1 € [m] e cliente j € [n].

11



1. Introdugao

Cliente 1 Cliente 1

3 5
\‘Orﬂnecedor 1 Fornecedor 1

1\ Cliente 2 Cliente 2

Fornecedor 3 Fornecedor 3

Fornecedor 2

Cliente 3 Cliente 3

Figura 1.1.: Esquerda: Instancia do problema de transporte. Direita: Solugao 6tima
correspondente.

Concretamente, suponha que temos a situacdo da figura 1.1. A figura mostra as
toneladas disponiveis de cada fornecedor, a demanda (em toneladas) de cada cliente
e as distancias (em km) entre eles. O transporte custa R$ 1000 por km e tonelada.
Observe que um transporte do fornecedor 1 para cliente 3 e fornecedor 3 para cliente
1 néo é possivel. Nos usaremos uma distancia grande de 100 km nesses casos (uma
outra possibilidade é usar restrigoes x13 = x37 = 0 ou remover as variaveis x13 e X31
do modelo).

minimiza 3x71 4+ x12 + 100x13 + 4x21 + 2x22
+4x23 + 100x37 + 3x32 + 3x33,
sujeito a x17 +x12 +%x13 <5,
X21 + %22 +%x23 <7,
X31 +x32 +x33 < 3,
X11 +X21 +X31 =7,
X12 + %22 +x32 =3,
X13 + %23 +x33 =5,
X11yX12,X13y X271, X22, X23, X31, X32, X33 > 0.

Qual seria a solugao 6tima? A figura 1.1 (direita) mostra o ntimero 6timo de toneladas
transportadas. O custo minimo é 46 (em R$ 1000). O

Podemos simplificar a descri¢cdo de um programa linear usando nota¢ao matricial. Com

12
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1.1. Exemplo

A= (ai) € R™™ b= (by) € R™, ¢ = (¢i) € R e x = (xi) € R™ o problema
1.2-1.6), pode ser escrito de forma

opt ctx,

sujeito a aix <y by, i€ [m]

(Denotamos com a; a i-ésima linha e como @ a j-ésima coluna da matriz A.) Em
caso todas restricoes usam a mesma relagdo <, > ou = podemos escrever

opt  c'x, opt  c'x, opt  c'x,

sujeito a Ax < b, sujeito a Ax > b, sujeito a Ax =D.

ou

Exemplo 1.4 (Problema do Ildo em forma matricial)
O problema 1.1 em forma matricial é

maximiza (0.2 0.5)(cs)t

1 15 150
oit 50 50 c) 6000
sujeito a 10 s) = 80
0 1 60
(cs)>0.

Observagdo 1.1 (“Programar” linearmente)

Como explicado na sec¢ao historica 1.4, o termo “programacao’ em “programagao linear”
se refere a “agendamento” ou “planejamento”. Porém, formular programas lineares é
uma atividade muito similar & programagao de computadores. Um programa linear
consiste de declaragoes de variaveis, constantes, uma func¢ao objetivo e uma série de
restrigoes. Podemos escrever um programa linear de forma mais “computacional” para
enfatizar a similaridade com programas. No caso do problema de Hitchcock 1.3, por
exemplo, podemos escrever

var xij, i€ [mljenl { declaragdo variaveis }
const a;, i€ [m] { estoques }

const bj, je&n] { demandas }

max ) icimjemn] CiiXij

st Zje[n] xij<ai, ie[m] { limite estoque 1}

st Zie[m] xij =bj, jen] { satisfagdo demanda }

Podemos ainda, igual a programacao, introduzir nomes para fungoes lineares para faci-
litar a formulacdo. Por exemplo enviado(i) = Zje[n] xij ¢ a quantidade total enviada
pelo i-ésimo fornecedor. Similarmente, podemos escrever recebido(j) = Zie[n] X{j para

a quantidade total recebida pelo j-ésimo cliente. Com isso nosso “programa’” linear fica

var xij, 1€ [ml,jen] { declaragio variaveis 1}

13
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1. Introdugao

const a;, i€ [m] { estoques 1}
const by, j€n] { demandas }
const cij, i€[ml,jeMm] { custos }
function enviado(i) = Zje[n] X4

function recebido(j) = 3 i Xij

maxX D icfmjelm] CXij

st enviado(i) < a;, i€[m] { limite estoque }

st recebido(j) =b;j, je ] { satisfagido demanda 7

Vamos conhecer linguagens reais para especificar programas lineares no parte pratico.
Um exemplo é Julia/JuMP explicado no appéndice B. A nossa especificacao acima
pode ser vista como “pseudo-co6digo” de uma linguagem atual como Julia/JuMP. ¢

1.2. Formas normais

Conversées
E possivel converter

e um problema de minimizac¢ao para um problema de maximizagao
Ct t
minc x < —max—Cc x

(o sinal — em frente do max é uma lembranga que temos que negar a solugao
depois.)

e uma restricao “>” para uma restrigao “<”

aix > by &= —aix < —b;

e uma igualdade para desigualdades

aix = by &= aix <b; Aaix > by

Conversées
e uma desigualdade para uma igualdade

aix <b < aix +xnt1 =bi Axny1 >0
aix > b & aix —Xny1 =bi Axn1 20

usando uma nova varidvel de folga ou excesso xny1 (inglés: slack and surplus
variables).

e uma variavel x; sem restrigoes para duas positivas
X7 >0Ax; >0
substituindo x; por x;" —x; .

Essas transformagoes permitem descrever cada problema linear em uma forma padrao.

14



1.2. Formas normais

Forma padrédo

maximiza c'x,
sujeito a Ax <D,
x> 0.

As restrigdes x > 0 se chamam triviais.

Exemplo 1.5
Dado o problema

minimiza 3x7; — 5%, + x3,
sujeito a x7 —xy —x3 >0,
5x1 4 3x2 + x3 < 200,
2x1 4 8x2 + 2x3 < 500,
X1,%2 > 0.

vamos substituir “minimiza” por “maximiza”, converter a primeira desigualdade de
> para < e introduzir x3 = x; —x3 com duas varidveis positivas x3+ e X3 para obter
a forma padrao

maximiza —3x; +5x2 —x3 +x3,
sujeito a —xj +x2 +x3 —x3 <0,
5x1 4 3x2 +x3 — x5 < 200,
2x71 + 8x2 + 2x§ — 2x5 < 500,

+ —
X1,X2,X3,%x3 > 0.

Em notagao matricial temos

_53 0 111 -
e=| 2|5 v={20); A=(5 31
500 2 08 2 2

Defini¢ao 1.1 (Solugoes viaveis, inviaveis e 6timas)

Para um programa linear P em forma normal, um vetor x € R™ é uma solu¢do vidvel,
caso Ax < b e x > 0. P é vidvel caso existe alguma solucao viavel, caso contrario P é
invidvel. Um vetor x* € R™ é uma solugdo dtima caso ctx* = max{ctx | Ax < b,x > 0}.

Defini¢ao 1.2 (Programas ilimitados)
Uma programa linear em forma normal é ilimitado caso existe um v € R tal que para
todo w > v existe uma solucdo viavel x com ctx > w.

15



1. Introdugao

1.3. Solucao por busca exaustiva

Uma observagao importante na solugao de um programa linear é que a solugao 6tima,
caso exista, somente ocorra na borda de regidao das solugoes viaveis (compara com a
figura na pagina 9). Mais especifico a solugdo 6tima ocorre num vértice (ou ponto ex-
tremo) dessa regiao, definido pela interse¢ao de n restri¢oes linearmente independentes.
Isso justifica tratar a programagao linear como problema de otimizagao combinatoria,
porque temos um numero finito de (':) candidatos para a solugao 6tima. Procurando
o melhor entre todos candidatos nos também fornece um algoritmo (muito ineficiente)
para encontrar uma solucao 6tima de um programa linear, caso exista.

Definicao 1.3
Um conjunto C C R™ é convexo, caso para todo par de pontos x,y € C a sua combi-
nagdo convera Ax + (1 — A)y para A € [0, 1] também pertence a C.

Proposigao 1.1
A regido de solugoes viaveis V = {x € R™ | Ax < b} definido por um programa linear
é convexa.

Prova. Sejam x,y € V. Entao
AM+ (1 —A)y) =AAx+ (1 —A)Ay <Ab+ (1 —-A)b=b.

Definicao 1.4
Um ponto x € C de uma regiao C C R™ é um vértice ou ponto extremo, caso nao existe
umy #0talquex+yeCex—yeC.

Proposigao 1.2
Caso existe uma tnica solucao 6tima de max{ctx | x € V} ela é um vértice de V.

Prova. Supoe que a solucao 6tima x* nao é um vértice de V. Entao existe um y tal
que x+y € Vex—y e V. Por x* ser a tinica solucio 6tima temos ct(x* +y) < ctx*
ect(x* —y) < c'x*, ie., cty <0 e —cty < 0, uma contradicao. [ |

Proposigao 1.3
Um vértice de V = {x € R™ | Ax < b} é a intersecdo de m restrigdes linearmente
independentes.

Prova. Para um vértice v € V, seja A, a matriz formado das linhas a; de A tal que
a;v = by, e b, os lados direitos correspondentes.

Seja v € V a interse¢ao de n restrigoes linearmente independentes, i.e. posto(A,) = n.
Supode v nao é um vértice. Logo existe um y tal que x +y,x —y € V que satisfazem
Ayv(x+y) <b, e Ay(x —y) < b,. Como A,x = b, obtemos A,y < 0e —A,y <0,
i.e. A,y =0, uma contradigdo com posto(A,) =n.

Agora seja v € V um vértice e supoe posto(A,) < n, i.e. existe um y tal que A,y =0.
Para as linhas a; em A com a;v < b; existe um & > 0 tal que

ai(v+oy) <bjeai(v—>5y) <b;

16
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1.4. Notas histéricas

e logo
Av+8y) <beA(v—oy) <b,

porque A,y = 0, em contradigdo com o fato que v é um vértice. |

Proposicao 1.4
Caso existem multiplas solugoes 6timas de max{ctx | x € V} e V ¢ limitado, um vértice
de V é uma solugao 6tima.

Prova. Por inducao sobre n — posto(A,). Caso n — posto(A,) = 0, v é um vértice
pela proposicao (1.3). Para n — posto(A,) > 0 existe um y com A,y = 0. Seja
p = max{t | v+ ty € V}. O valor p existe porque V é limitado (e compacto). Como
ai(v+ ny) < b; para cada linha 1 temos que

u = min{(b; — a;v)/ay | ayy > 0} (+)

Seja i* o indice da linha que satisfaz (+) com igualdade. Define v/ =v + pny. Temos
AWV =Av+uA,y = A,v =Db,, logo A, contém as linhas de A, e pelo menos a linha
ai~ a mais. Ainda, como A,y = 0 mas a;-y # 0 temos que posto(A,) > posto(A,).
Logo, pela hipétese da inducao, existe um vértice que é uma solugao 6tima. |

Observagao 1.2

Caso existem multiplas solucoes 6timas de max{ctx | x € V}, mas V nao é limitado, é
possivel que nédo existe um vértice 6timo. Um exemplo é o sistema max{x; | (x1,x2) €
R2,0<x <1} O

Usando os resultados acima, obtemos um algoritmo (muito ineficiente) para encontrar
uma solugao 6tima de um programa linear (limitado).

x* :=null
for todas (:) selecdes de n restrigdes lin. indep.

determine a intersec8o x das n restrigdes

if Ax<b e c'x >c'x* then

X" i=x

end if
end for
if x* #null then

return ‘‘Solugdo o6tima & X' ou sistema ilimitado’’
else

return ¢‘N&o possui solug8o ou n&o possui vértice?’’
end if

1.4. Notas histdricas

Histdria da programacao linear

17



1. Introdugao

e Jean Baptiste Joseph Fourier (1826): Método de resolver um sistema de desi-
gualdades (eliminagao de Fourier-Motzkin) Williams 1986.

e Leonid Kantorovich (1939): Programacao linear.
e George Bernard Dantzig (1948): Método Simplex.
e John von Neumann: Dualidade.

e Leonid Khachiyan (1979): Método de ellipsoides.

e Narendra Karmarkar (1984): Métodos de pontos interiores.

Pesquisa operacional, otimizacdo e “programacao”

Figura 1.2.: Jean Baptiste Jo- e “The discipline of applying advanced analytical methods to help make better
seph Fourier (*1768, +1830) decisions” (INFORMS)

e O nome foi criado durante a segunda guerra mundial, para métodos cientificos
de analise e predicao de problemas logisticos.

e Hoje se aplica para técnicas que ajudam tomar decisoes sobre a execucao e
coordenacao de operacoes em organizagoes.

e Problemas da pesquisa operacional sao problemas de otimizacao.

e “Programacao”’ # “Programacao”

— Nao se refere & computacdo: a nocao significa “planejamento” ou “agenda-
mento”.

Técnicas da pesquisa operacional

e Em geral: Técnicas algoritmicas conhecidas como

Figura 1.3.: George Bernard

Dantzig (*1914, +2005) — Modelagem matemaética (equagoes, igualdades, desigualdades, modelos pro-

babilisticos,...)

— Algoritmos gulosos, randémicos, ...; programacao dindmica, linear, convexo,

— Heuristicas e algoritmos de aproximagao.

e Algumas dessas técnicas se aplicam para muitos problemas e por isso sao mais
comuns:

— Exemplo: Programacao linear.
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1.5. Exercicios

1.5. Exercicios

(Solugoes a partir da pagina 183.)

Exercicio 1.1
Na defini¢ao da programacao linear permitimos restri¢oes lineares da forma

ai1X1 + @i2X2 4 -+ + AinXn > by
com ;€ {<, =, >}. Por que nao permitimos <; € {<, >} também? Discute.

Exercicio 1.2
Procura a tabela nutricional de algum restaurante e resolve o problema da dieta (exem-
plo 1.2).

Exercicio 1.3

Um investidor pode vender acoes de suas duas empresas na bolsa de valores, mas esta
sujeito a um limite de 10.000 operagoes diarias (vendas por dia). Na cotacdo atual, as
agoes da empresa A valorizaram-se 10% e agora cada uma vale R$ 22. J4 a empresa
B teve valorizagao de 2% e cada acao vale R$ 51. Sabendo-se que o investidor possui
6.000 agoes da Empresa A e 7.000 da empresa B, maximize seu lucro na BOVESPA e
diga qual o lucro obtido.

Exercicio 1.4

Dona Maria adora ver seus netinhos Marcos, Renato e Vinicius bem alimentados.
Sempre na hora de cozinhar ela leva em conta o quanto eles gostam de cada prato para
fazé-los comer o méaximo possivel. Marcos gosta da lasanha e comeria 3 pratos dela
ap0s um prato de sopa; Renato prefere lanches, e comeria 5 hamburgueres, ignorando
a sopa; Vinicius gosta muita da massa a bolonhesa, e comeria 2 pratos ap6s tomar dois
pratos de sopa. Para fazer a sopa, sao necessarios entre outros ingredientes, 70 gramas
de queijo por prato e 30 gramas de carne. Para cada prato de lasanha, 200 gramas de
queijo, e 100 gramas de carne. Para cada hamburguer sao necessarios 100 gramas de
carne, e 100 gramas de queijo. Para cada prato de massa a bolonhesa sao necessarios
100 gramas de carne e 30 gramas de queijo (ralado para por sobre a massa). Seus
netos vieram visité-la de surpresa, e tendo ela somente 800 gramas de carne e 1000
gramas de queijo em casa, como ela poderia fazé-los comer o maior niimero de pratos,
garantindo que cada um deles comera pelo menos dois pratos, e usando somente os
ingredientes que ela possui?

Exercicio 1.5

A empresa “Luz para o mundo” produz dois tipos de lampadas, cada um com partes
metalicos e partes eléctricos. A gerencia quer saber com quantas unidades produzidas
por tipo o lucro é maximizado. A produc¢ao de uma unidade de produto 1, precisa uma
unidade de partes metalicos e duas unidades de componentes eléctricos. A producao de
uma unidade de produto 2, precisa trés unidades de partes metalicos e duas unidades
de componentes eléctricos. A empresa tem um estoque de 200 unidades de partes
metalicos e 300 unidades de componentes eléctricos. Cada unidade de produto um
tem um lucro de R$ 1 e cada unidade de produto 2, até um limite de 60 unidades, um
lucro de R$ 2. (Cada unidade acima de 60 no caso do produto 2 nao rende nada.)
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1. Introdugao

Figura 1.4.: Rede de distribuicdo de uma empresa de ago.

Exercicio 1.6

A empresa “Janela joia” com trés empregados produz dois tipos de janelas: com mol-
duras de madeira e com molduras de aluminio. Eles tém um lucro de 60 R$ para toda
janela de madeira e 30R$ para toda janela de aluminio. Jodo produz as molduras de
madeira. Ele consegue produzir até seis molduras por dia. Sylvana é responsavel pelas
molduras de aluminio, e ela consegue produzir até quatro por dia. Ricardo corta o
vidro e é capaz de produzir até 48 m? por dia. Uma janela de madeira precisa 6m?
de vidro, e uma de aluminio 8m?. A empresa quer maximizar o seu lucro.

Exercicio 1.7

Uma empresa de aco tem uma rede de distribuicao conforme figura 1.4. Duas minas
P1 e P, produzem 40t e 60t de mineral de ferro, respectivamente, que sao distribuidos
para dois estoques intermediarios S1 e S2. A planta de producao P tem uma demanda
dem 100t de mineral de ferro. A vias de transporte tem limites de toneladas de mineral
de ferro que podem ser transportadas e custos de transporte por tonelada de mineral
de ferra (veja figura). A diregdo da empresa quer determinar a transportagido que
minimiza os custos.

Exercicio 1.8
Um importador de Whisky tem as seguintes restrigoes de importagao

e no méaximo 2000 garrafas de Johnny Ballantine por 70 R$ cada uma,
e no méaximo 2500 garrafas de Old Gargantua por 50 R$ cada uma,
e no maximo 1200 garrafas de Misty Deluze por 40 R$ cada uma.

Dos Whiskies importados ele produz trés misturas A, B, C, que ele vende por 68 R$,
57 R$ e 45 RS, respectivamente. As misturas sao

e A: no minimo 60% Johnny Ballantine, no maximo 20% Misty Deluxe,
e B: no minimo 15% Johnny Ballantine, no méaximo 60% Misty Deluxe,

e C: no maximo 50% Misty Deluxe.
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Quais seriam as misturas 6timas, e quantas garrafas de cada mistura devem ser pro-
duzidas para maximizar o lucro?

Observagoes:
e Use como varidveis o numero de garrafas X, ; da marca m usadas na mistura i.
e Desconsidere a integralidade das garrafas.

Exercicio 1.9

A empresa de televisao “Boa vista’ precisa decidir quantas TVs de 29"e 31"ela vai
produzir. Uma analise do mercado descobriu que podem ser vendidas no méaximo 40
TVs de 29"e 10 de 31"por més. O trabalho maximo disponivel por més é 500h. A
producao de um TV de 29"precisa 20h de trabalho, e um TV de 31"precisa 10h. Cada
TV de 29"rende um lucro de R$ 120 e cada de 31"um lucro de R$ 80.

Qual a produgao 6tima média de cada TV por més?

Exercicio 1.10 (da Costa)

Um certo 6leo é refinado a partir da mistura de outros 6leos, vegetais ou nao vegetais.
Temos 06leos vegetais V1 e V2 e 6leos nao vegetais NV1 NV2 NV3. Por restrigoes
da fabrica, um maximo de 200 ton. de dleos vegetais podem ser refinados por meés,
e um maximo de 250 ton. de 6leos nao vegetais. A acidez do 6leo desejado deve
estar entre 3 e 6 (dada uma unidade de medida) e a acidez depende linearmente das
quantidades/acidez dos 6leos brutos usados. O prego de venda de uma tonelada do
6leo é R$ 150. Calcule a mistura que maximiza o lucro, dado que:

Oleo V1l V2 NV1 NV2 NV3
Custo/ton 110 120 130 110 115
Acidez 88 6.1 20 42 5.0

Exercicio 1.11 (Campélo Neto)

Um estudante, na véspera de seus exames finais, dispoe de 100 horas de estudo para
dedicar as disciplinas A, B e C. Cada um destes exames é formado por 100 questdes,
e o estudante espera acertar, alternativamente, uma questao em A, duas em B ou trés
em C, por cada hora de estudo. Suas notas nas provas anteriores foram 6, 7 e 10,
respectivamente, e sua aprovagao depende de atingir uma média minima de 5 pontos
em cada disciplina. O aluno deseja distribuir seu tempo de forma a ser aprovado com
a maior soma total de notas.

Exercicio 1.12 (Dasgupta et al. 2009)

Moe esté decidindo quanta cerveja Duff regular e quanta cerveja Duff Forte encomendar
a cada semana. Duff regular custa a Moe $1 por caneco e ele a vende por $2 por caneco;
Duff Forte custa $1.50 por caneco e ele vendo por $3 por caneco. Entretanto, como
parte de uma complicada fraude de marketing, a companhia Duff somente vende um
caneco de Duff Forte para cada dois canecos ou mais de Duff regular que Moe compra.
Além disso, devido a eventos passados sobre os quais € melhor nem comentar, Duff ndo
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1. Introdugao

venderd Moe mais do que 3000 canecos por semana. Moe sabe que ele pode vender
tanta cerveja quanto tiver.

Formule um programa linear em duas variaveis para decidir quanto de Duff regular e
quanto de Duff Forte comprar, para maximizar o lucro de Moe.

Exercicio 1.13 (Dasgupta et al. 2009)

A companhia de produtos caninos oferece duas comidas para cachorro: Frisky Pup e
Husky Hound, que sao feitas de uma mistura de cereais e carne. Um pacote de Frisky
Pup requer 1 quilo de cereal e 1.5 quilo de carne, e é vendido por $7. Um pacote de
Husky Hound usa 2 quilos de cereal e 1 quilo de carne, e é vendido por $6. O cereal
bruto custa $1 por quilo e a carne bruta, $2 por quilo. Ha também o custo de $1.40
para empacotar o Frisky Pup e $0.60 para o Husky Hound. Um total de 240000 quilos
de cereal e 180000 quilos de carne estao disponiveis a cada més. O tnico gargalo de
producao esta no fato de a fabrica poder empacotar apenas 110000 pacotes de Frisky
Pup por més. Desnecesséario dizer, a geréncia gostaria de maximizar o lucro.

Formule o problema como um programa linear em duas variaveis.

Exercicio 1.14 (Vanderbei 2001)

Formule como problema de otimizagao linear e resolve graficamente.

Uma empresa de ago produz placas ou canos de ferro. As taxas de produgao sao
200t/h para placas e 140t/h para canos. O lucro desses produtos e 258/t para placas e
30$/t para canos. Considerando a demanda atual, os limites de produgao sao 6000t de
placas e 4000t de canos. Na semana atual sao 40h de tempo de produgao disponivel.
Quantas toneladas de placas e canos devem ser produzidas para maximizar o lucro?

Exercicio 1.15 (Vanderbei 2001)

Formule como problema de otimizacgao linear.

Uma pequena empresa aérea oferece um voo de Pelotas, com escala em Porto Alegre
para Torres. Logo tem trés tipos de clientes que voam Pelotas—Porto Alegre, Pelotas—
Torres e Porto Alegre-Torres. A linha também oferece trés tipos de bilhetes:

e Tipo A: bilhete regular.
e Tipo B: sem cancelamento.
e Tipo C: sem cancelamento, pagamento trés semanas antes de viajar.

Os pregos (em R$) dos bilhetes sao

Pelotas—Porto Alegre Porto Alegre-Torres Pelotas—Torres

A 600 320 720
B 440 260 560
C 200 160 280

Baseado na experiéncia com esse v6o, o marketing tem a seguinte predigao de passa-
geiros:
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Pelotas—Porto Alegre

Porto Alegre-Torres Pelotas—Torres

A 4
B 8
C 22

8 3
13 10
20 18

O objetivo da empresa e determinar o nimero 6timo de bilhetes para vender de cada
tipo, respeitando um limite de 30 passageiros em cada voo e o limite dos passageiros
previstos em cada categoria, que maximiza o lucro.

Exercicio 1.16
Resolva graficamente.

maximiza 4x; + x2,

sujeito a —x7+x3 <2,

(a) Qual a solugao 6tima?
(b) Qual o valor da solugao 6tima?

Exercicio 1.17
Escreve em forma normal.

x1 + 8x2 < 36,
X2 S 4)
x1 <4.25,

X1,X2 2> 0.

minimiza z = —5x; —5x; —5x3,
sujeito a —6x7 —2x2 — 9x3 <0,
— %1 —3x2 + 3x3 = 3,
X1,%2,%x3 > 0.
maximiza z = —6x; —2xy —6x3 + 4x4 + 4x5,
sujeito a —3x7 —8xy; —6x3 — 7x4 —5x5 = 3,

5x1 —7x2 + 7x3 + 7x4 — 6x5 < 6,
Tx7 — 9% + 5%x3 4+ 7x4 — 10x5 = —6,

X1,X2,X3,X4,X5 > 0.
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maximiza z=7x; +4x2 + 8x3 + 7xq4 — 9x5,
sujeito a —4x7; — 1x2 — 7x3 — 8x4 + 6x5 = —2,
X1 +4%x2 + 2x3 + 2x4 — 7x5 > —7,
—8%1 4+ 2x3 + 8x3 — 6X4 — /X5 = —7,
X1,X2,X3,X4,X5 > 0.

minimiza z = —6x; + 5% + 8x3 + 7x4 — 8xs,

sujeito a —5%x;] —2x2 +x3 — x4 —7x5 =9,
7x1 + 7x2 + 5x3 — 3x4 + x5 = =8,
—5%1 —3%x2 —5%x3 + Ix4 + 8x5 < 0,

X1,X2,X3,X4,X5 > 0.



2. O método Simplex

Graficamente, é dificil resolver sistemas com mais que trés variaveis. Portanto é ne-
cessario achar métodos que permitam resolver sistemas grandes. Um dos mais impor-
tantes é o método Simples. Nos vamos estudar esse método primeiramente através da
aplicacao a um exemplo.

2.1. Um exemplo

Comegamos com o seguinte sistema em forma padrao:

Exemplo: Simplex

maximiza z = 6x7+ 8x2 + 5x3 + x4,
sujeito a 2x7; +x2 +x3 +3x4 <5,
X1+ 3x2 +x3 + 2x4 < 3,
X1,X2,X3,Xq > 0.

Introduzimos variaveis de folga e reescrevemos as equagoes:

Exemplo: Com variaveis de folga

maximiza z = 6x1 + 8x, + 5x3 + x4, (2.1)
sujeito a wj; =5—2x7 —x2 — X3 — 3x4,
%% :3—7(1 —3X2—X3—2X4, (2.3

X1yX2,X3, X4, W1, W2 > 0.

Observagao 2.1

Nesse exemplo é facil obter uma solucao viavel, escolhendo x; = x2 = x3 = x4 = 0.
Podemos verificar que wy =5 e wy = 3 e todas as restrigoes sao respeitadas. O valor
da funcao objetivo seria 0. Uma outra soluc¢do viavel é x;1 = 1, xo = x3 = x4 = 0,
wi =3, wy = 2 com valor z = 6. O

Com seis variaveis e duas equagoOes lineares independentes o espago de solugoes do
sistema de equagoes lineares dado pelas restrigoes tem 6 — 2 = 4 graus de liberdade.
Uma solugdo viavel com esse nimero de wvaridveis nulas (igual a 0) se chama uma
solugao bdsica vidvel. Logo nossa primeira solugao acima é uma solugao basica viavel.
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2. O método Simplex

A idéia do método Simplex é percorrer solugbes basicas vidveis, aumentando em cada
passo o valor z da fungéo objetivo.

Logo nosso proximo objetivo é aumentar o valor da funcao objetivo z. Para esse fim,
podemos aumentar o valor das variaveis xj, X2, X3 ou X4, pois o coeficiente delas é
positivo. Escolhemos x4, porque essa varidvel tem o maior coeficiente. Nao podemos

aumentar x4 arbitrariamente: Para respeitar as restrigoes wi,w, > 0 temos os limites

Limites

W1 =5—-3x4 >0 &= x4 <5/3
wy =3—2%x4 >0 x4 <3/2

ou seja x4 < 3/2. Aumentando x4 o maximo possivel, obtemos x4 = 3/2 e wy, = 0.
Os valores das demais varidveis nao mudam. Essa solucao respeita novamente todas
as restrigoes, e portanto é vidvel. Ainda, como trocamos uma variavel nula (x4) com
uma outra nao-nula (w;) temos uma nova solugao béasica viavel

Solucdo basica viavel

X1 =X2 =X3 = 0;X4 23/2;W1 = 1/2;W2 =0

com valor da fungao objetivo z = 13.5.

O que facilitou esse primeiro passo foi a forma especial do sistema de equagdes. Esco-
lhemos quatro variaveis independentes (x1, X2, X3 € X4) e duas variaveis dependentes
(w1 e wy). Essas variaveis sdo chamadas nao-bdsicas e bdsicas, respectivamente. Na
nossa solucao basica viavel todas variaveis nao-bésicas sao nulas. Logo, pode-se au-
mentar uma variavel nao-bésica cujo coeficiente na func¢ao objetivo seja positivo (para
aumentar o valor da fungéo objetivo). Inicialmente tem-se as seguintes variaveis bési-
cas e nao-bésicas

B ={wi,wz}; N ={x1,x2,X3,Xa}.

Depois de aumentar x4 (e consequentemente zerar w;) podemos escolher
B={wi,xaly N ={x1,x2,x3, W2}

A variavel x4 se chama varidvel entrante, porque ela entra no conjunto de variaveis
bésicas B. Analogamente w; se chama varidvel sainte.

Para continuar, podemos reescrever o sistema atual com essas novas varidveis basicas
e ndo-basicas. A segunda restrigdo 2.3 é facil de reescrever

Wy =3—%x] —3X2— X3 —2x4 &= 2x4 =3 —%x7] —3x2 — X3 — W3
— X4 :3/271/2)(1 73/2X271/2X37]/2W2

Além disso, temos que reescrever a primeira restricao 2.2, porque a variavel bésica wy
depende de x4 que agora é basica também. Nosso objetivo é escrever todas variaveis
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béasicas em termos de varidveis nao-bésicas. Para esse fim, podemos usar combina-
coes lineares da linhas, que eliminam as variaveis nao-basicas. Em nosso exemplo, a
combinagao (2.2)—3/2(2.3) elimina x4 e resulta em

w1 —3/2wy; =1/2—1/2x1 +7/2x2 + 1/2x3
e colocando a variavel nao-béasica w, no lado direito obtemos
wy =1/2—1/2x1 +7/2x2 +1/2x3 + 3/2w,.

Temos que aplicar uma operagao semelhante & funcao objetivo que ainda depende da
variavel basica x4. Escolhemos (2.1)—9/2(2.3) para obter

2=27/243/2x1 —11/2x5 + 1/2x3 — 9/2w».

Novo sistema

maximiza z = 27/2+3/2x; —11/2x2 +1/2x3 — 9/2w3,
sujeito a w1 =1/2—1/2x1 +7/2x2 +1/2x3 + 3/2w3,
X4 = 3/2— 1/2X1 —3/2X2 — ]/2X3 — ]/ZWZ,

X1,X2,X3,Xq, W1, W2 > 0.

que obtemos ap6s uma operagao de trocar as varidveis x4 € wy. Essa operacao se
chama um pivé. Observe que no novo sistema é facil recuperar toda informacao atual:
zerando as variaveis nao-béasicas obtemos diretamente a solugao x;1 =x; =x3 =w, =
0, w; =1/2 e x4 =3/2 com fungdo objetivo z = 27/2.
Antes de continuar “pivotando” introduzimos uma forma mais simples de escrever o
sistema

Dicionario
z =27/2 +3/2x7 —11/2x2 +1/2x3 —9/2w;

wy =1/2  —1/2x17 +7/2x; +1/2x3  +3/2w;
X4 :3/2 *1/27(1 73/27(2 71/27(3 7]/2W2

que se chama diciondrio (inglés: dictionary).

Excurso 2.1

Alguns autores usam um tableau em vez de um dicionario. Para n variaveis e m res-
trigoes, um tableau consiste em n 4 1 colunas e m 4 1 linhas. Igual a um dicionério,
a primeira linha corresponde com a fungao objetivo, e as restantes linhas com as res-
trigoes. Diferente do dicionario a primeira coluna contém os constantes, e as restantes
colunas correspondem com as variaveis, incluindo as basicas. Nosso exemplo acima em
forma de tableau é
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base
X1 X2 X3 X4 w1 W
27/213/2 —11/2 12 0 0 972
1/211/2 =7/2 —-1/2 0 1 =3/2
3/2 1 1/2 3/2 1/2 1 0 1/2

¢

No préximo passo podemos aumentar somente X ou X3 porque somente elas tém co-
eficientes positivos. Aumentado x; temos que respeitar x; < 1 (da primeira restrigao)
e x1 < 3 (da segunda). Logo a primeira restrigdo é mais forte, x; é a variavel entrante,
w1 a varidvel sainte, e depois do pivé obtemos

Segundo passo

z =15 —3w; +45xo +2x3
x; =1 —2wi  +7x2  +x3 +3w,
xXqg =1 +wq —5x2 —x3 —2w;

No proximo pivo x, entra. A primeira restricao nao fornece limite para x;, porque o
coeficiente de x; é positivo!l Mas a segunda x; < 1/5 e x4 sai da base. O resultado do
pivo é

Terceiro passo
z =16 —2w1 —X4 +x3 —2w;

X1 :]2/5 —3/5W] —7/5X4 —2/5X3 +1/5W2
x2 =1/5  +1/5w; —1/5x4 —1/5x3 —2/5w;

O préximo pivo: x3 entra, x, sai:

Quarto passo

z =17 —wi; —2x4 —5xp —4w,
X1 =2 —wWi —X4 +2x2  +wy
x3 =1 +wip  —Xa —5x; —2w;

Agora, todos coeficientes da funcgao objetivo sdao negativos. Isso significa, que nao
podemos mais aumentar nenhuma variavel nao-bésica. Como esse sistema é equivalente
ao sistema original, qualquer solugao tem que ter um valor menor ou igual a 17, pois
todas as varidveis sao positivas. Logo chegamos no resultado final: a solugao

Wi =%X4 =%X2 =Wy =0;x1 =2;x3 =1

com valor objetivo 17, é 6timal
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Concluimos esse exemplo com mais uma observagao. O namero de solugoes bésicas
vidveis é limitado. Em nosso exemplo, se escolhemos um subconjunto de quatro varia-
veis nulas, as duas equagoes determinam as variaveis restantes. Logo temos no maximo
(i) = 15 solugoes basicas viaveis. Em geral, com m equagoes e n variaveis, uma solu-
¢ao basica viavel possui n —m varidveis nulas e o nimero delas é limitado por (nfm).
Portanto, se aumentamos em cada pivo o valor da fungao objetivo, o método termina

em no méximo (") passos.

Exemplo 2.1 (Solugao do problema do Ildo)
Exemplo da solugao do problema do Ildo na pagina 9.

0/1  +1/5¢ +1/2s
wi; = 150 —C —3/2s
wy; = 6000 —50c —50s

n
|

w3 = 80 —C
wy = 60 —s
Pivo s—wy
z= 30 +1/5¢ —1/2wy
w1 = 60 —C +3/2W4
wy = 3000 —50c 450wy
W3 = 80 —C
s= 60 —Wy
Pivo c-w,

z= 42 —1/51/\)1 —1/5W4
c= 60 —W; +3/2wy

Wy = +50w, —25wWy
w3z = 20 +WwWh —3/2wy
s= 60 —Wy

O resultado é um lucro total de R$ 42, com os seguintes valores de variaveis: ¢ = 60,
s =60, w; =0, w, =0, ws =20 e wg =0. A interpretagao das variaveis de folga é
como segue.

e wi: Numero de ovos sobrando: 0.
e w,: Quantidade de agtcar sobrando: 0 g.
e wj: Croissants nio produzidos (abaixo da demanda): 20.

e wy: Strudels nao produzidos: 0.

2.2. O método resumido

Considerando n variaveis e m restrigoes:
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2. O método Simplex

Sistema inicial

maximiza z= E CjXj,

jem]
sujeito a Z aijxj < by, ie [m],
jem]
x;j > 0, j € nl.

Preparacao
Introduzimos variaveis de folga
E QijXj + Xnti = by, i€ [m],
jeml]
e escrevemos as variaveis de folga como dependentes das varidveis restantes

Xn+i = by — Z aijXj, ie [ml].
jem]

Solucio basica viavel inicial
Se todos by > 0 (o caso contrario vamos tratar na proxima se¢ao), temos uma solucao
bésica inicial

indices das variaveis
Depois do primeiro passo, os conjuntos de varidveis basicas e nao-bésicas mudam. Seja
B o conjunto dos indices das variaveis basicas (ndo-nulas) e N o conjunto das variaveis
nulas. No comego temos
B={n+1n+2,...,n+m} N={1,2,...,n}
A forma geral do sistema muda para
z=2z+ Z CiXj,
JEN
Xi:bi_Zainj) ieB.
jeEN
As barras em cima dos coeficientes enfatizam que eles mudam ao longo da aplicagao
do método. Os coeficientes ¢j sao chamados custos reduzidos (ingl. reduced costs).
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2.3. Sistemas ilimitados

Escolher variavel entrante (ingl. pricing)
Em cada passo do método Simplex, escolhemos uma varidvel nao-basica xy, com k € A/
para aumentar o valor objetivo z. Isso somente é possivel para os indices j tal que
Ej >0, i.e.

{] eN | ¢ > 0}
Escolhemos um k desse conjunto, e xy € a variavel entrante. Uma heuristica simples é
a regra do maior coeficiente, que escolhe

k = argmax{c; | ¢; > 0,j € N}

Aumentar a variavel entrante
Seja xi a variavel entrante. Se aumentamos X, para um valor positivo, as varidveis
bésicas tém novos valores

Xi = by — QixXxk ieB.

Temos que respeitar x; > 0 para 1 <1 < n. Cada equagao com ai, > 0 fornece uma
cota superior para Xy: ~

xx < bi/dixk.
Logo podemos aumentar xi ao maximo um valor

—1

—1
o« := min bj/aijx = | max aj/bi = | max aji /by > 0. (24)
jeBO ’ieio ieB
Aik > Aik

Podemos escolher a varidvel sainte entre os indices

{ie Blbi/aix = o

2.3. Sistemas ilimitados
Como pivotar?

e Considere o sistema
z =24 —x7 +2x3

X3 =2 —x1 +x2
X4 =5 +x1 +4x2

e Qual a proxima solugao bésica viavel?

e A duas equagbes ndo restringem o aumento de xz: existem solugbes com valor
ilimitado.
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2. O método Simplex

2.4. Encontrar uma solucio inicial: o método de duas fases
Solucdo basica inicial
e Nosso problema inicial é

maximiza z= E CjX;,

j€n]
sujeito a Z aijx; < by, ie [m],
jeml]
xi > 0, ie ],

e com dicionario inicial

I
[\

z

+ Z Eij
jeN

i*ZElinj, ieB.
jeN

Il
[onll

Xi

Solucio basica inicial
e A solugdo basica inicial desse dicionério é

x=(0---0by---by)t

e O que acontece se existe um by < 07

e A solugao basica ndo é mais viavell Sabe-se disso porque pelo menos uma variavel
bésica terd valor negativo.

Sistema auxiliar

e Um método para resolver o problema: resolver outro programa linear

— cuja solugao fornece uma solucao basica viavel do programa linear original
e

— que tem uma solugao bésica viavel simples, tal que podemos aplicar o mé-
todo Simplex.

maximiza z = —xo,
sujeito a Z Cli)'X]' — X0 S bi, 0 S i § m,
jem]
xi > 0, ieMnl.
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2.4. Encontrar uma solucao inicial: o método de duas fases

Resolver o sistema auxiliar

e E facil encontrar uma solucao viavel do sistema auxiliar:
— Escolhe x; = 0, para todos 1 € [n].
— Escolhe x¢ suficientemente grande: xp > max;c[m] —bi.
e Isso corresponde com um primeiro pivd com variavel entrante x¢ apds introduzir
as variaveis de folga (“pseudo-pivd”).
— Podemos comegar com a solugao nao-viavel xo =x; =...=x, =0.

— Depois aumentamos x¢ tal que a variavel de folga mais negativa vire posi-
tiva.

— Xp e varidvel sainte xy tal que k = argmax; () —bi.

Exemplo: Problema original

maximiza z=—2x7 — Xy,
sujeito a —x7+x2 < —1,
—x1 —2x2 < =2,
x2 <1,
x1,%2 > 0.

Exemplo: Problema auxiliar

maximiza z = —xg,
sujeitoa —x;+x2 —%0 <1,
— X1 —2x2 — %0 < —2,
X2 —x%0 <1,

X0,X1,%X2 > 0.

Exemplo: Dicionario inicial do problema auxiliar

z = —X0
w; =—1 4+x1 —x2 +Xo
wy =-2 +x7 +2x2 +Xo
wiy =1 —X2 +Xo0

e Observe que a solugdo bésica nao é viavel.

e Para achar uma solucao bésica viavel: fazemos um primeiro pivdé com variavel
entrante xg e variavel sainte w;.
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2. O método Simplex

Exemplo: Dicionario inicial viavel do sistema auxiliar

z =—2 +x1 +2x2 -w;
w; =1 —3x2 4wy
xo =2 —X1 —2X2 4wy
wy =3 X1 —3x2 4w
Primeiro pivd
z =-4/3 +x1 —2/3w; —1/3w>
x2 =1/3 —1/3w; +1/3w;
xo =4/3 —x1  +2/3wq;  +1/3w,
wy =2 —X1 +WwWq
Segundo pivd
z =0 —X0
X2 = ]/3 —1/3W] +1/3W2
X1 =4/3 —xo +2/3w; +1/3w;

wy =2/3 4xo +1/3wi; —1/3w;

Solugao 6timal

Solucdo do sistema auxiliar

e O que podemos concluir da solugao do sistema auxiliar?

e Obviamente, se o sistema original possui solugao, o sistema auxiliar também
possui uma solugao com xg = 0.
e Logo, apos aplicar o método Simplex ao sistema auxiliar, temos os casos
— xo > 0: O sistema original ndo tem solugao.
— xo = 0: O sistema original tem solugao. Podemos descartar xo e continuar

resolvendo o sistema original com a solucao basica viavel obtida.

e A solugao do sistema auxiliar se chama fase I, a solugao do sistema original fase
1L
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2.4. Encontrar uma solucao inicial: o método de duas fases

Sistema original

Reescreve-se a fungao objetivo original substituindo as varidveis basicas do sistema
original pelas equagbes correspondentes do sistema auxiliar, de forma que a fungao
objetivo z nao contenha varidveis basicas. No exemplo, a fungao objetivo é rescrita
como:

z=—2X1 —X2 = —3—wW; —ws.

z = — —W1 —W»

x2 =1/3 —=1/3w; +1/3w;
x1 =4/3 +2/3w; +1/3w,
ws =2/3 +1/3w; —1/3w,

Nesse exemplo, o dicionério original ja é 6timo!

Exemplo 2.2 (Sistema original inviavel)
O sistema

maximiza x7 + X2,
sujeito a x7 +x3 > 2,
x1+x2 <1,
X1,X2 > 0.

obviamente nao possui uma solugao viavel. O dicionario inicial do sistema auxiliar
(ap06s normalizagao e introdugdo das variaveis de folga) é

z= 0 —X0
X3 = -2 +X1 +x2 +Xo
xsa= 1 —x1 —x2 +X0

e o pseudo-pivd xo—x3 produz

z -2 +xq +X2  —X3
Xo= 2 X1 X2 +x3
X4 3 —=2x7 —2x2 +x3

e 0 pivd x1—x4 produz o sistema 6timo

z= —1/2 —1/2x4 —1/2x3
X0 = 1/2 +1/2X4 +1/2X3
x1= 3/2 —1/2x4 —x2 +1/2x3

O valor 6timo do sistema auxiliar ¢ —z = xo = 1/2, confirmando que o sistema original
nao possui solugao viavel. O
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2. O método Simplex

2.4.1. Resumo do método de duas fases

Fase | necessaria? Caso b; > 0 para todo 1 € [m]: continua com a fase II.
Dicionario inicial Cria o dicionario inicial do sistema auxiliar

z = min{xg | Ax < b + xe}.

Pseudo-piv6 Pivota xo—xi, sendo k = argmin;,,,; bx o indice do lado direito mais
negativo.

Solucdo fase | Aplica o método no dicionario obtido no passo anterior.

Fase Il necessaria? Caso a solugdo 6tima da fase I possui valor xo > 0: o sistema
original nao possui solugao. Para.

Prepara fase Il Caso x( ¢ uma variavel basica: pivota xo—xy sendo xy alguma variavel
nula tal que apx # 0. Remove a coluna xp. Remove a fungao objetivo do sistema
auxiliar e introduz a fungao objetivo do sistema original (escrita em fungao das
variaveis nulas).

Fase Il Aplica o método Simplex no dicionario inicial da fase II.

2.5. Sistemas degenerados

Sistemas, solucdes e pivos degenerados
e Um dicionario é degenerado se existe um i € B tal que b; = 0.
e Qual o problema?

e Pode acontecer um pivé que nao aumenta a variavel entrante, e portanto nao
aumenta o valor da fungao objetivo.

e Tais pivos sao degenerados.

Exemplo 1

e Nem sempre é um problema.

z =5 +x3 —Xxq
X2 =5 —2x3 —3x4
x1 =7 —4x4
wsz =0 +x4

e X, é a variavel sainte e o valor da fungdo objetivo aumenta.
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2.5. Sistemas degenerados

Exemplo 2

z =3 —1/2x1 +2x; —3/2w;
X3 =1 —1/2X1 —1/2W1
wy, =0 +x1 —x2 +w1

e Se a variavel sainte é determinada pela equac¢do com b; = 0, temos um pivd

degenerado.

e Nesse caso, a varidvel entrante nao aumenta: temos a mesma solugao depois do

pivo.

Exemplo 2: Primeiro pivo
e Pivo: X2-W3
z =3 43/2x9 2wy +1/2w;

X3 = 1 —]/2)(1 —]/2W1
X2 +Xq —W» +wq

e O valor da fungdo objetivo ndo aumentou!

Exemplo 2: Segundo pivd

e Pivd: x1—x3

z =6 *3X3 72W2 —Wj
X1 =2 —2X3 —W1
X2 = 2 —2X3 —W)

e A segunda iteracao aumentou o valor da fungao objetivo!

Ciclos

e O pior caso seria, se entramos em ciclos.
e E possivel? Depende da regra de selegao de variaveis entrantes e saintes.

e Nossas regras
— Escolhe a varidvel entrante com o maior coeficiente.
— Escolhe a varidvel sainte mais restrita.
— Em caso de empate, escolhe a varidvel com o menor indice.

e Ciclos sao possiveis: O seguinte sistema possui um ciclo de seis pivos:
X1-W1, X2=W32, X37X1, X4—X2, W1—X3, Wr—Xg.

37



2. O método Simplex

z = 10x4 —57x2 —9%3 —24x4
wi =0 —1/2x7 +11/2x; +5/2x3 —9%4
Wy = 0 —1/2X] +3/2X2 +1/2X3 —X4
w3 =1 —xg

Solucgdes do problema

e Como resolver o problema?

e Trés solugoes
— Ignorar o problema.
— Método lexicografico.

— Regra de Bland.

Método lexicografico

e Idéia: O fato que existe um bi=0¢ por acaso.

e Se introduzimos uma pequena perturbagao € < 1
— o problema desaparece

— a solugao sera (praticamente) a mesma.

Método lexicografico

e Ainda é possivel que duas perturbagoes numéricas se cancelem.
e Para evitar isso: Trabalha-se simbolicamente.
e Introduzimos perturbagoes simbolicas
<K - <Ken
em cada equagao.

e Caracteristica: Todo €; é numa escala diferente dos outros tal que eles nao se
cancelam.
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2.5. Sistemas degenerados

Exemplo

Exemplo 2.3
Sistema original degenerado e sistema perturbado

z =4 +2x1  —x2 z =4 +2x1 —x2
wy =1/2 —X2 w; =1/2 +¢ —X2
wy = —2x1  +4x; wy = €2 —2x1  +4x;
w3 = X1 —3x%7 w3 = €3 +Xq —3x3

Comparar perturbacoes

e A linha com o menor limite l; = b;/aijx (com xx entrante) define a variavel
sainte.

e A comparacdo de limites respeita a ordem lexicografica das perturbagdes, i.e.
com

L =eper + -+ ejex
L =fjrer + -+ ey

temos l; < 1j se k <k’ ou k =k’ e ejx < fix.

Caracteristicas

e Depois de chegar no valor 6timo, podemos retirar as perturbagoes €;.

Teorema 2.1
O método Simplex sempre termina escolhendo as variaveis saintes usando a regra
lexicografica.

Prova. E suficiente mostrar que o sistema nunca sera degenerado. Neste caso o
valor da funcao objetivo sempre cresce, e o0 método Simplex nao cicla. A matriz de
perturbagoes

€1

€m
inicialmente tem posto m. As operacgoes do método Simplex sdo operagoes lineares
que nao mudam o posto do matriz. Logo, em cada passo do método Simplex temos
uma matriz de perturbagoes

€11€q €12€2 -+ €1m€Em
€21€q €22€2 -+ €2m€Em
emi1€1 €m2€2 o emm€m
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2. O método Simplex

que ainda tem posto m. Portanto, em cada linha i existe pelo menos um ej; # 0 e

assim uma perturbagao diferente de zero e o sistema néo é degenerado.

Exemplo 2.4

Solugao do exemplo 2.3.

Pivd x1-wy. z =4 +€2 —W) +3x2
w; =1/2 +e¢ —X2
X1 1/262 71/2W2 +2x5
w3 1/2e5 +e3 —1/2wy —x2

Pivo xo-ws3. z =4 +5/2¢2 +3e3 —5/2wy,  —3ws
wy =1/2 +e1 —1/2¢; —e3 +1/2wy  +ws
X1 = 3/2¢; +2e3 —3/2wy —2ws
Xy = 1/2¢5 +e3  —1/2wy; —ws3

Regra de Bland

e Outra solucéo do problema: A regra de Bland.

e Escolhe como variavel entrante e sainte sempre a varidvel com o menor indice
(caso tiver mais que um candidato).

Teorema 2.2

O método Simplex sempre termina se as variaveis entrantes e saintes sdo esco-
lhidas através da regra de Bland.

Prova. Prova por contradigdo: Suponha que exista uma sequéncia de dicionéarios
que entra num ciclo Do, D1,...,Dx_1 usando a regra do Bland. Nesse ciclo algumas
variaveis, chamadas instdveis, entram e saem novamente da base, outras permanecem
sempre como basicas, ou como nao-basicas. Seja X a variavel instavel com o maior
indice. Sem perda de generalidade, seja x¢ a variavel sainte do primeiro dicionério Dy.
Seja x5 a variavel entrante no Dg. Observe que xs também é instavel e portanto s < t.
Seja D* o dicionario em que x; entra na base. Temos a situacao
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2.5. Sistemas degenerados

com os sistemas correspondentes

Do : D*:
z:zo+chxj z:z*—i—Zc;‘xj
jJEN jEN*
Xi:bi—zainj ieB Xizbi*— Z Cl%X]' ie B*
jeN jEN™

Como temos um ciclo, todas varidveis instéveis tem valor O e o valor da fungao objetivo
é constante. Logo zp = z* e para D* temos

z=2z"+ Z X =20 + Z CiXj. (2.5)
jEN* jeEN*
Se aumentamos em Dy o valor do xs para y, qual é o novo valor da fungao objetivo?
Os valores das variaveis sao
Xs =Y
xj =0 j e N\ {s} (2.6)
xi:bi—aisy ieB
e temos no sistema D7 o novo valor
z=12z0+CsYy (2.7)

Vamos substituir os valores das variaveis (2.6) com indices em N'* N B na equagao (2.5).
Para facilitar a substituicao, vamos definir ¢ = 0 para j € N*, que permite substituir
todas varidveis xj,j € B e assim obtemos

z=2z0+ Z i X :zo+c:y+ch*(b]-—ajsy). (2.8)
jell,n+m] jeB
Equagoes (2.7) e (2.8) representam o mesmo valor, portanto
(cs —ci+ Z c;‘ajs)y = Z cibj.
jeB jeB

Essa igualdade deve ser correta para qualquer aumento y, portanto os dois lados sao
0, em particular

cs—c§+Zc;a]~s =0.
jeB
Como xg entra em Dy temos cs > 0. Em D* a varidvel x¢ entra, entdo c; < 0 sendo
pela regra de Bland s < t entraria. Logo,

E cj*ajs:c:—csg—cs<0
jeB

e deve existir um r € B tal que cla,s < 0. Isso tem uma série de consequéncias:
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2. O método Simplex
ct #0.
r € N*, porque somente as variaveis nulas satisfazem [ # 0 em D*.

)
)
(iii) x, & instavel, porque ela é basica em Dy (r € B), mas nao-basica em D* (r € N'*).
) T < t, porque t foi a variavel instavel com o maior indice.

)

T < t, porque ciats > 0: x¢ entra em D*, logo ¢ > 0, e x¢ sai em Dy, logo
Qs > 0.

(vi) ¢¥ <0, sendo r e ndo t entraria em D* seguindo a regra de Bland.
(vii) a,s > 0.

(viii) by =0, porque x, é instavel, mas todos varidveis instaveis tem valor 0 no ciclo,
e X, é basica em Dy.

Os ultimos dois itens mostram que x, foi candidato ao sair em Dy com indice r < t,
uma contradicao com a regra de Bland. |

Teorema fundamental

Teorema 2.3 (Teorema fundamental da programacao linear)
Para qualquer programa linear temos:

(i) Se néo existe solugdo 6tima, o problema é inviavel ou ilimitado.
(if) Se existe uma solugao viavel, existe uma solugao bésica viavel.

(iii) Se existe uma solucdo o6tima, existe uma solucdo 6tima bésica.

2.6. Complexidade do método Simplex

Usando a regra de Bland o método Simplex nunca repete uma base e o niimero de
pivds é limitado pelo ntimero de bases. Com n + m variaveis (de decisdo e de folga)

existem no maximo
n+my /n+m
n T\ m

bases possiveis. Para n + m constante, essa expressao é maximizada para n = m. Os
limites nesse caso s@o (exercicio 2.3)

Lzzn < (2n> < ZZn.
2n n

Logo ¢é possivel que o método Simplex precisa um nimero exponencial de pivos. A
existéncia de sistemas com um ntmero de pivos exponencial depende da regra de
pivoteamento. Por exemplo, para a regra de maior coeficiente, existem sistemas que
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precisam um ntmero exponencial de pivos (Klee-Minty). A pergunta se isso é o caso
para qualquer regra de pivoteamento estd em aberto. O melhor algoritmo para a
programacao linear precisa tempo O((n3/logn)L (Anstreicher 1999), supondo que
uma operagao aritmética custa O(1) e os dados sdo inteiros de L bits. Empiricamente
o método Simplex precisa O(m+n) pivos (Vanderbei 2001), e cada pivo custa O(mn)
operagoes, logo o tempo empirico, novamente supondo que uma operagao aritmética
custa O(1) do método Simplex ¢ O((m + n)mn).

Observagao 2.2

Spielman e Teng (2004) mostram que o método Simplex possui complezidade suavizada
polinomial, i.e., o0 méximo do valor esperado do tempo de execugao sobre pequenos
perturbagoes (Gaussianas) é polinomial no tamanho da instancia e no inverso da per-
turbacao.

Sem perturbacoes o problema de encontrar a solugao que o método Simplex encontraria
usando a regra de Dantzig é PSPACE-completo (Fearnley e Savani 2014). O

2.7. Exercicios

(Solugoes a partir da pagina 190.)

Exercicio 2.1 (Maculan e Fampa 2006)
Resolve com o método Simplex.

maximiza z = 3x; + 5x2,
sujeito a x; <4,
x2 < 6,
3x1 4+ 2x < 18,
X1,%2 > 0.

Exercicio 2.2
Resolve o exercicio 1.7 usando o método Simplex.

Exercicio 2.3
Prova que

2

T (2n) <,
2n n

Exercicio 2.4

Resolve o sistema degenerado

z = 10x4 —57%2 —9%3 —24x4
—1/2x1  +11/2x3 +5/2x3 —9x4
—1/2x17 4+3/2x2  +1/2x3 —x4
w3 = 1 —X1

:z
1l

usando o método lexicogréfico e a regra de Bland.
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2. O método Simplex

Exercicio 2.5
Dado o problema de otimizagao

maximiza x; + x2,
sujeito a ax; +bxy <1,
X1,X2 > 0,
determine condigbes suficientes e necessérias que a e b tem que satisfazer tal que
existe pelo menos uma solucao 6tima,

(a
(

)
b) existe exatamente uma solugao 6tima,
(¢) existe nenhuma solugao 6tima,

(d) o sistema é ilimitado.

ou demonstre que o caso nao é possivel.

Exercicio 2.6
Sabe-se que o dicionério 6timo do problema

maximiza z=3x; + x3,

sujeito a —2x; + 3xy <5,

x1—x2 <1,
X1,%x2 > 0,
é
z¢ =31 —1 1W2 —4W1
X2 = 7 —2W2 — W1
X1 =8 —3W2 —W1

(a) Se a funcao objetivo passar a z = xq + 2x2, a solucao continua 6tima? No caso de
resposta negativa, determine a nova solugao 6tima.

(b) Se a funcdo objetivo passar a z = x; — X2, a solugdo continua 6tima? No caso de
resposta negativa, determine a nova solucao 6tima.

(c) Se a fungao objetivo passar a z = 2x7 — 2x3, a soluc¢do continua 6tima?No caso de
resposta negativa, determine a nova solucao 6tima.

(d) Formular o dual e obter a solugdo dual 6tima.

Exercicio 2.7

Prove ou mostre um contra-exemplo.

O problema max{ctx | Ax < b} possui uma solucao viavel sse min{xg | Ax — exy < b}
possui uma solugao viavel com xp = 0. Observagao: e é um vetor com todos compentes
igual 1 da mesma dimensao que b.
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Exercicio 2.8
Prove ou mostre um contra-exemplo.
Se x é a variavel sainte em um pivd, x ndo pode ser variavel entrante no pivo seguinte.

Exercicio 2.9

Demonstramos na segao 2.5 que existem sistemas em que o método Simplex entra em
ciclos. No exemplo o método Simplex ficou sempre na mesma solugdo, representada
por bases diferentes. Agora supoe que temos solugoes diferentes com o mesmo valor da
funcio objetivo. E possivel que o método Simplex entra num ciclo sempre visitando
solugoes diferentes?

Exercicio 2.10

Supode que temos um dicionario com uma base infactivel, com um candidato para a
variavel entrante x. (i.e. c. > 0) tal que todos coeficientes na coluna correspondente
sao negativos (i.e. aie < 0 para todo i € B). Caso a base fosse viavel podemos concluir
que o sistema é ilimitado. Podemos concluir isso também com a base infactivel?
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3. Dualidade

3.1. Introducao
Visdo global

e Dualidade: Cada programa linear (chamada de primal) possui um programa
linear correspondente, chamado de dual.

e A dualidade tem varias aplicagbes como

— Estimar a qualidade de solugoes e a convergéncia do método Simplex.

Certificar a otimalidade de um programa linear.
— Analisar a sensibilidade e re-otimizar sistemas.

— Resolver programas lineares mais eficiente com o Método Simplex dual.

e O programa linear dual possui uma interpretacao relevante.

Introducdo
e Considere o programa linear

maximiza z =4x7 + x2 + 3x3, (3.1)
sujeito a x7 +4xy <1,
3x1 —x2 +x3 <3,
X1,%X2,%x3 > 0.

e Cada solucao viavel fornece um limite inferior para o valor maximo.

X1 =x2=x3=0=2z=0
x1=3,x2=x3=0=2z=4

e Qual a qualidade da solugao atual?

e Nao sabemos, sem limite superior.

Limites superiores

e Como obter um limite superior?

Observe: z =4x7 +x2 +3x3 < 10x7 +x2 +3x3 < 10
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3. Dualidade

e Podemos construir uma combinacgao linear das desigualdades, tal que o coeficiente
de cada x; ultrapasse o coeficiente da funcao objetivo.

e Nosso exemplo:
(x1 +4x2) +303%1 —x2+x3)<14+3-3=10
E=10x7 +x2 +3x3 <10
e Como obter um limite superior para a fungao objetivo?

e Qual seria o menor limite superior que esse método fornece?

Exemplo 3.1
Para o sistema (3.1) obtemos:

minimiza y; + 3y2,

sujeito a yi + 3y >4,

dy1 —y2 2 1,
Y2 > 3,
Y1,Y2,Y3 > 0.
O
O menor limite superior
e Sejam yi,...,Yn 0s coeficientes de cada linha. Observagao: Eles devem ser > 0

para manter a direcao das desigualdades.
e Entao queremos
minimiza Z biyi,
ie[m]

sujeito a Z aijyi = ¢j, Vj € [nl,
ie[m]

y; > 0.

e Isto é o problema dual com varidveis duais ou multiplicadores duais yi.

Dualidade: Caracteristicas

e Em notacao matricial

maximiza c'x, minimiza by,
sujeito a Ax <b. sujeito a y'A > ch.
x> 0. y > 0.

e O primeiro se chama primal e o segundo dual.

e Eles usam os mesmos parametros cj, aij, by.
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3.2. Caracteristicas

O dual do dual
e Observagao: O dual do dual é o primal.

e Forma normal do dual:

—maximiza —b'y, —maximiza — bly,
sujeito a —y'A < —ct, = sujeito a (—A')y < —c,
y=>0. y>0.

e Dual do dual

—minimiza —c'z, maximiza c'z,
sujeito a z'(—A') > —b', = sujeitoa Az <b,
z > 0. z>0.
Exemplo 3.2

Qual o dual do problema de transporte (1.11)? Com variaveis duais 7t;, 1 € [n] para
as das restri¢oes de estoque (1.12) e variaveis duais pj, j € [m] para as restrigoes de
demanda (1.13) obtemos

maximiza Z aim + Z bjpj, (3.2)
ien] jelm]
sujeito a m; + pj > cyj, Vi€ [nl],j € [ml],
i, pj > 0, Vie n],j € m).
O

3.2. Caracteristicas

Teorema da dualidade fraca

Teorema 3.1 (Dualidade fraca)
Se x1,...,Xn € uma solucao viavel do sistema primal, e y1, ...,y uma solugao viavel

do sistema dual, entao
< ) by
ien] jelm]

Prova.

c'x < (y*A)x = y*(Ax) pela restrigdo dual (3.3)
<y'b pela restrigdo primal (3.4)
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3. Dualidade

Situacdo

Gap de otimalidade?

S N -

Solugoes primais viaveis Solugoes duais viaveis
e Em aberto: Qual o tamanho desse intervalo em geral?

Teorema da dualidade forte

Teorema 3.2
Se xj,...,x5 é uma solucao 6tima do sistema primal, existe uma solucao 6tima
Y7,...,Y¥, do sistema dual com

Z cix{ Z bjyj.

i€n] jelml]

Prova. Seja x* uma solugdo 6tima do sistema primal. Considere um dicionério inicial
do método Simplex com variaveis de folga

Xn+j = b]' — Z aiXi, V] € [m]

i€[n]

e a fungado objetivo de um dicionario que corresponde com a solugao 6tima

(com €; = 0 para variaveis béasicas). Temos que construir uma solugdo 6tima dual
y*. Pela optimalidade, na fun¢ao objetivo acima, todos c¢; devem ser nao-positivos.
Provaremos que y;‘ = —Cn4j > 0 para j € [m] é uma solucdo dual 6tima. Como z* é
o valor 6timo do problema, temos z* = 3 ;. CiX{

Reescrevendo a funcao objetivo temos

z= Z CiX{ sistema inicial
=z"+ Z CiXi sistema final
i€m+m]
=z"+ Z cixi + Z cn+]xn+) separando indices
ien] jelm]
=z + Z CiXi — Z y] ( Z (ljiXi> subst. solugao e var. folga
ien] jelm] ieMn]
= (z* _ Z y;‘bj> + Z < Z Yj (111> Xi agrupando
jelm] ien] jelm]
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3.2. Caracteristicas

Essa derivagao esté valida para qualquer valor das variaveis x;, portanto
¥ = Z yib; e ci=ci+ Z Y5 Qji, ienl.
jelm] jelm]
Logo o primal e dual possuem o mesmo valor
Y sin-r- ¥ o
je[m] i€n]
e como ¢; < 0 sabemos que a solugdo y* satisfaz as restrigoes duais
ci < Z y;k(lji, ie [Tl],
jelm]
y; >0, j € ml.

Consequéncias: Solucées primais e duais

e Com o teorema da dualidade forte, temos quatro possibilidades

Sistema primal Sistema dual Intervalo

Otimo Otimo Sem
Ilimitado Inviavel Sem
Inviavel Ilimitado Sem
Invidvel Inviavel Infinito

Exemplo 3.3 (Primal e dual inviavel)

Nao segue do teorema da dualidade forte que existe um caso em que tanto o sistema
primal quanto o sistema dual sdo inviaveis. O seguinte exemplo mostra que isso pode
acontecer. O sistema primal

maximiza xi,

sujeitoa +x7 —x2 <0,

—x1+x2 < -1,
x1,%2 > 0,
possui sistema dual correspondente
minimiza —y,

sujeitoa +y;—yx>1,
—y1+yz2>0.

Ambos os sistemas sao inviaveis. O
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3. Dualidade

Podemos resumir as possibilidades na seguinte tabela:

Dual
Primal Invidgvel Otimo Ilimitado
Inviavel vV X vV
Otimo X Vv X
Nimitado Vv X X

Consequéncias

e Dado solugoes primais e duais x*,y* tal que c¢'x* = b'y* podemos concluir que
ambas solucdes sdo 6timas (x*,y* é um certificado da optimalidade)®.

e A prova mostra: com o valor 6timo do sistema primal, sabemos também o valor
otimo do sistema dual.

e Além disso: Podemos trocar livremente entre o sistema primal e dual.
= Método Simplex dual.

Outra consequéncia do Teorema da dualidade forte é o

Teorema 3.3 (Teorema das folgas complementares)
Os vetores x*,y* sao solugdes 6timas do sistema primal e dual, respectivamente, se e
somente se

y*t(b —Ax") =0

YA —chx* =0 (3.6)
Prova. Pelo Teorema da dualidade forte as duas desigualdades (3.3) e (3.4) da prova
do Teorema da dualidade fraca se tornam igualdades para solucoes 6timas:

Ctx* — y*tAX* — y*tb

Reagrupando termos, o teorema segue. Conversamente, caso (3.5) e (3.6) estao satis-
feitos, as solugoes primais e duais possuem o mesmo valor e assim tem que ser 6timas.
|

Asigualdades 3.5 e 3.6 sdo ainda vélidas em cada componente, porque tanto as solugoes
6timas x*,y* quanto as folgas primas e duais b—Ax e y**A — ¢t sempre sio positivos.

1Uma consequéncia é que o problema de decisdo correspondente, determinar se existe uma solucgio
maior que um dado valor, possui um certificado que pode ser verificado em tempo polinomial tanto
para uma resposta positiva quanto uma resposta negativa. Portanto, j4 antes da descoberta de
um algoritmo polinomial para esse problema, foi claro que ele pertence a NP N co-NP.
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3.3. Dualidade em forma nao-padrao

xi>0= Z Yjaji = C4q (37)
jelm]

> yigi>ci=x=0 (3.8)
jelm]

yj; > 0= b]' = Z ajiXi (39)

ie[n]
bj > Z ajiXi = Yj = 0 (310)
ien]

Como consequéncia podemos ver que, por exemplo, caso uma igualdade primal nao
possui folga, a variavel dual correspondente é positiva, e, contrariamente, caso uma
igualdade primal possui folga, a variavel dual correspondente é zero. As mesmas
relagbes se aplicam para as desigualdades no sistema dual. Apods a introducdo da
forma matricial no se¢do 3.6 vamos analisar a interpretagao das variaveis duais com
mais detalha no secao 3.7. O teorema das folgas complementares pode ser usado ainda
para obter a solugao dual dado a solucao primal:

Exemplo 3.4
A solugao otima de
maximiza z = 6x7 + 8x2 + 5x3 + x4,
sujeito a  2x7 +x2 +x3 +3x4 <5,
X1+ 3x2 + x3 + 2x4 < 3,

X1,X2,X3,X4 > O)

éx1 =2ex3 =1 com valor 17. Pela equagao (3.7) sabemos que

2y1+y2=6
Y1 +yY2 =5.
Portanto a solucao dual é y; =1ey; =4. o

3.3. Dualidade em forma n3o-padrdo

Dualidade em forma padrao

maximiza c'x, minimiza b'y,
sujeito a Ax <D, sujeito a y'A > ct,
x > 0. y > 0.

e O que acontece se o sistema nao é em forma padrao?
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3. Dualidade

Igualdades

e Caso de igualdades: Substituindo desigualdades..

maximiza c'x, maximiza c'x,
sujeito a Ax =D, sujeito a Ax < b,
x > 0. Ax > b,
x > 0.

e ... padronizar novamente, e formar o dual:

maximiza c'x, minimiza byt —bty~,
sujeito a Ax < b, sujeitoa yT'A—y ‘A >c,
— Ax < —b, y >0,y >0,
x > 0. yt =7, u)5
Y=y ym)”

Igualdades
e Equivalente, usando variveis irrestritas y =y* —y~
)
minimiza by,

sujeito a y'A >,

y'so.
e Resumo
Primal (max) Dual (min)
Igualdade Variavel dual livre
Desigualdade (<) Variavel dual nao-negativa
Desigualdade (>) Variavel dual nao-positiva
Variavel primal livre Igualdade

Variavel primal ndo-negativa Desigualdade (>)
Variavel primal ndo-positiva  Desigualdade (<)

Exemplo 3.5 (Exemplo dualidade nao-padrao)
O dual de
maximiza 3x7 + xy + 4x3,
sujeito a x7 + 5% + 9x3 =2,
6x1 + 5x2 + 3x3 <5,
x1,x3 > 0,%x2 S0,
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3.4. Interpretagao do dual

minimiza 2y; + 5yz,

sujeito a y; + 6y, > 3,
Sy1 +5y2 =1,
9y1 +3y2 >4,
y1s0,y2 20.

O

Exemplo 3.6 (Dual do problema de transporte)

O dual do problema de transporte num grafo direcionado G = (V; A) com custos nas
arestas ¢, limites inferiores e superiores para o fluxo 14 e U, em cada arco, e demandas
b, em cada vértice

minimiza E CaXay

aeA
sujeito a Z X(uv) — Z X(vu) = Dv, Vv ey,

(u,v)eA (v;u)eA

Xaq > lq, YaeA,

Xa < Ug, Va e A,

Xq > 0, Va e A,

usando varidveis duais m, S 0, v eV, pqg >0, a€ Ae o, <0, a € A para as trés
restrigoes é

maximiza Z by, + Z laPa +Uq0q,

vev acA
sujeito a — 7, + 7, + pg + 04 > 1, Va = (u,v) €A,
M, € R, Ywey
Pa = 0, Va € A,
0q <0, Va e A.

3.4. Interpretacdo do dual

Exemplo: Dieta dual

e Problema da dieta: Minimiza custos de uma dieta x que alcance dados VDR
minimos.

minimiza c'x,
sujeitoa Ax >,
x > 0.
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3. Dualidade

e Unidades das varidveis e parametros
— x € R™: Quantidade do alimento [g]
c € R™: R$/alimento [R$/g]
— ayj € R™*™: Nutriente/Alimento [g/g]
r € R™: Quantidade de nutriente [g].

Exemplo: Dieta dual
e O problema dual é

maximiza y'r,
sujeito a y'A < ct,
y > 0.

Qual a unidade de y? Prego por nutriente [R$/g].

e Imagine uma empresa, que produz capsulas que substituem os nutrientes.

Para vender no mercado, a empresa tem que garantir que uma dieta baseado em
cépsulas custa menos que os alimentos correspondentes:

Z yiay < ¢y, Vj € [m]

ie[m]

e Além disso, ela define precos por nutriente que maximizam o custo de uma dieta
adequada, para maximizar o proprio lucro.

maximiza y'r
Interpretacdo do dual

e Outra interpretagao: o valor de uma varidvel dual y; ¢ o custo marginal de
adicionar mais uma unidade bj.

Teorema 3.4
Se um sistema possui pelo menos uma solugdo basica 6tima nao-degenerada,
existe um e > 0 tal que, se [tj| < € para j € [m],

maximiza c'x,
sujeito a Ax <b+1t,
x > 0,

tem uma solugao 6tima com valor
t
z=z"4+y"t

(com z* o valor 6timo do primal, é y* a solugao 6tima do dual).
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3.5. Método Simplex dual
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Figura 3.1.: Solugao 6tima do sistema (3.11) com variaveis duais.

Exemplo 3.7
Considere uma modifica¢ao do sistema do Ildo

maximiza 0.2c + 0.5c¢, (3.11)
sujeito a ¢+ 1.5s <150, (3.12)
50c + 50s < 6000, (3.13)

¢ < 80, (3.14)

s < 70, (3.15)

c,s > 0. (3.16)

(O sistema foi modificado para a solugao 6tima atender as condigdes do teorema 3.4.)
A solucao 6tima do sistema primal é x* = (4570)* com valor 44, a solucao 6tima do dual
y*(1/5001/5)*. A figura 3.1 mostra a solugido 6tima com as varisveis duais associadas
com as restrigées. O valor da variavel dual correspondente com uma restri¢do é o lucro
marginal de um aumento do lado direito da restricao por um.

¢

3.5. Método Simplex dual

Método Simplex dual
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3. Dualidade

e Considere

maximiza —x; — X2,
sujeito a —2x; —xy <4,
—2x1 +4x < =8,
—x1+3x < —7,
X1,%2 > 0.

e Qual o dual?
minimiza 4y; — 8y, — 7y3,
sujeito a —2y; —2y; —y3 > —1,
—y1 +4y2 +3y2 > -1,

Y1,Yy2,ys > 0.
Com dicionarios
z = —X1 —X2 —-w = —4y; +8y» +7ys
wr =4 +2x1  +x2 z1 =1 2y1 —2y2 —Y3
wy =-—8 +2x1 —4x, z2 =1 —y; +4y2 +3ys

wy =—7 +x7 —3%x2
e Observagao: O primal néo é viavel, mas o dual é!

e Correspondéncia das variaveis:

Variaveis
principais de folga
Primal  Xx1,...,Xn Wiy, Wi

Dual zy,...,zn, Y1ye++yYm
de folga principais

e Primeiro pivo: y; entra, z; sai. No primal: w; sai, x; entra.

Primeiro pivd

z =—4 —05w, —3x; -w =4 —12y; —4z; +3y3
w; =12 +w;,  +5%x; Y2 =0.5 —y1 —0.5z1 —0.5ys
X1 =4 405w, +2x; z) =3 —Sy; —224 +ys3
ws =-3 405w, —x2

e Segundo pivd: y3 entra, Yy, sai. No primal: w3 sai, wy entra.
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3.5. Método Simplex dual

Segundo pivo

z =—7 —w3 —4x; —w =7 —18y; —7z1 —6y2
wy =18 +2ws +7x2 Y3 =1 -2y —2Z1 —2yz
X1 =7 +ws  +3x3 V) =4 —7y1 —3z1 —Zyz
W =6 42wz +2x»

e Sistema dual é 6timo, e portanto o sistema primal também.

Método Simplex dual

e Observagao: Nao é necessario escrever o sistema dual. Ele é sempre o negativo

transposto do sistema primal.
z=z+ Z CjXj,
JEN

xi:l_)i—Zdijx,-, ieB
JEN

e Mas é necesséario modificar as regras para resolver o sistema dual.

Método Simplex dual: Viabilidade e otimalidade

e Pré-condigao: O dicionério é dualmente vidvel, i.e. os coeficientes das variaveis

nao-basicas na fungao objetivo tem quer ser nao-positivos.
¢; <0 para jeN.
e Otimalidade: Todos variaveis basicas primais positivas
VieB:iby >0

Método Simplex dual: Pivd

e Caso existe uma variavel primal negativa: A solugao dual nao é 6tima.

e Regra do maior coeficiente: A variavel bésica primal de menor valor (que

negativo) sai da base primal.

i = argmin b;
ieB

e A variavel primal nula com fracdo aij/c; maior entra.

. . G aij aij

) = argmin —— = argmax —- = argmax ——
JenN Qg JEN Cj jeN Cj
aij <0 aij <0
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3. Dualidade

Método Simplex dual
Resumo:

e Dualmente viavel: ¢; < 0 para j € N.
e Otimalidade: Vi € B:b; > 0.
e Variavel sainte: 1 = argmin; g by

sz Cor aij
e Varidvel entrante: j = argmax;c s =

Exemplo

maximiza z=—2x7 — Xy,
sujeito a —x7+x2 < -1,
—x1 —2x3 < =2,
x2 < 1»

x1,%2 > 0.

Exemplo: Dicionario inicial

z = —2xq —X2
w; ==1 +xq —X2
wy, =-2 +Xx1  +2xo
W3 =1 —X2

e O dicionario primal nao é viavel, mas o dual é.

Exemplo: Primeiro pivd

z =—1 =3/2x¢ —1/2w,
w; =-2 +43/2x;y —1/2w;
X2 =1 —=1/2x1 +1/2w;
A% = +1/2X] —]/ZWZ

Exemplo: Segundo pivo
z =-3 —Wj —W»
x1 =4/3 +2/3w; +1/3w,
x2 =1/3 —=1/3w; +1/3w,
wsy =2/3 +1/3w; —1/3w,
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3.6. Os métodos em forma matricial
3.6. Os métodos em forma matricial

A forma matricial permite uma descri¢do mais sucinta do método Simplex. A seguir
vamos resumir os métodos Simplex primal e dual na forma matricial. Mais importante,
nessa forma é possivel expressar o dicionéario correspondente com qualquer base em
termos dos dados inicias (A,c,b). Na proxima segdo vamos usar essa forma para

analisar a sensibilidade de uma solu¢ao & pequenas perturbagoes dos dados (i.e. os
coeficientes A,b, e c).

3.6.1. O dicionario final em funcdo dos dados
Sistema padrdo
e O sistema padrao é

maximiza c'x,
sujeito a Ax <D,
x > 0.

e Com variaveis de folga X 41,...,Xntm € A,c,x novo (defini¢io segue abaixo)

maximiza c'x,

sujeito a Ax =D,

x > 0.
Matrizes
apr ajz - A 1
azi 42 -+ Q2n 1
A= ;
Am1 Am2 ... Qmn 1
C1 X1
C2 X2
by .
b, :
b= . ic=lcn|;x= Xn
’ 0 Xn+1
bm
0 Xn+m
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3. Dualidade

Separacao das variaveis
e Em cada iteragao as variaveis estao separados em basicas e nao-basicas.
e Conjuntos de indices correspondentes: BU N = [1,n + m].

e A componente i de Ax pode ser separado como

Z aiyxj = Z aijx; + Z aijXy.

jen+m] jeB jEN

Separacao das variaveis

e Para obter a mesma separagao na forma matricial: Reordenamos as colunas e
separamos as matrizes e vetores:

A =(BN); x:<XB>; c:(cP’)
XN CN
e com B € R™*™ N ¢ R™*™ ¢ e RM™M,

Forma matricial das equacées

e Agora, Ax =b é equivalente com
XB
(BN) ( ) =Bxg+Nxny =D
XN

e Numa solucdo bésica, a matriz B tem posto m tal que as colunas de B formam
uma base do R™. Logo B possui inversa e

xg =B (b—Nxn) =B 'b— B "Nxn

Forma matricial da funcdo objetivo

e A funcao objetivo é
oty (At oot XB\ _ .t t
z=cx=(cgcy) = CpXB + CRXN
N

e e usando xg = B~ 'b — B~ "Nxpn obtemos

z=cL(B7"b — B "Nxn) + cixn
=cEB b — (c5BTIN — ek )xn
=ckB b — ((B""N)tcp —en)txn
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3.6. Os métodos em forma matricial

Dicionario em forma matricial

e Logo, o dicionario em forma matricial é
z=cE5B b — ((B""N)tcg —cn)txn

XB = B~ 'b— Bi1NXN

o Compare com a forma em componentes:

z:i—l—Zéjxj z=z+CXN
jeN

Xi:Bi*Zainj ieB XBZB*AXN
jeN

Dicionario em forma matricial
e Portanto, vamos identificar
z=c5B 'b;
b=B"b;

=—((B""N)*cg —cn)
= (dij) =B 'N

2 e

e para obter o dicionério

Sistema dual

e As variaveis primais sao
X=(X1+e X0 X041+ Xntm)
~—
original folga

e Para manter indices correspondentes, escolhemos varidveis duais da forma

Yy=(U1---YnYnsi---Ynsm)"

folga dual

e O dicionario do dual correspondente entao é

Primal Dual
z=7z+ctxn —w=—z—blyg
yn = —c+Alyg
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3. Dualidade

Primal e dual

e A solugao basica do sistema primal é

e Com isso temos os dicionarios

z=z— (yx)'xn —-w=—z— (x})'ys

XB = Xp — (B~ "N)xn yn =yyN + (B_1N)tyg

Observagao 3.1

A solugdo dual completa é y* = c5B~TA — ¢t (isso pode ser visto como?), ou y; =
ctB~'al — ¢; para cada indice i € n + m]. As varidveis duais originais com indice
i€ [n+ 1, m] correspondem com as colunas a* = e; das variaveis de folga e possuem
coeficientes ¢; = 0. Logo yt = c’ng*1 é a solucao do sistema dual sem as varidveis
de folga, e podemos escrever y = (YL A —c')' = Ay, — ¢ e para os custos reduzidos
c=c—Aly,. O

3.6.2. Simplex em forma matricial

Método Simplex em forma matricial
e Comecamos com uma particdo BUN = [1,n + m].
e Em cada iteragdo selecionamos uma variavel sainte i € BB e entrante j € N.
e Fazemos o pivo x; com X;.

e Depois a nova base é B\ {i}U{j}.

Método Simplex em forma matricial

S1: Verifique solugdo 6tima Se yy, > 0 a solugdo atual é 6tima. Pare.
S2: Escolhe variavel entrante Escolhe j € N com yj < 0. A variavel entrante € x;.

S$3: Determine passo basico Aumentando x; uma unidade temos novas variéveis nao-
basicas xn = X% + Axn com Axy = (0---010---0)* = ej e ej o vetor nulo com
somente 1 na posigdo correspondente com indice j. Como

* —1
XB :XB—B NXN,

a diminuicdo correspondente das variaveis basicas é Axg = B~! Ne;.
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3.7. Anaélise de sensibilidade

Método Simplex em forma matricial

S4: Determine aumento maximo O aumento maximo de x; ¢ limitado por xg > 0,
i.e.
xp = Xp — tAxg > 0 & xj > tAxp.

Com t,xg > 0 temos

x¥
t<t*= min -
ieB Axi

Ax;>0

S5: Escolhe variavel sainte Escolhe um i € B com xj = t*Ax;.

Método Simplex em forma matricial

S5: Determine passo dual A variavel entrante dual é y;. Aumentando uma unidade,
as variaveis yn diminuem Ayn = —(B7'N)te;.

$6: Determina aumento maximo Com variavel sainte yj, sabemos que y; pode au-
mentar ao maximo

AY;
S7: Atualiza solucdo
X =t yi=s
Xp = Xp — tAxp yN = YN — SAYN

B:=B\{i}U{j}

3.7. Analise de sensibilidade
Motivacio
e Na solugao da programas lineares os parametros sao fixos.
e Qual o efeito de uma perturbagao
c:=c+Ac; b:=b+Ab; A=A+ AA?

(Imagina erros de medida, pequenas flutuagoes, etc.)

Analise de sensibilidade

e Apos a solucao de um sistema linear, temos o dicionério 6timo

z=2"— (Y ) xn

Xp = Xp — B~ 'Nxn
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3. Dualidade

e com
x5 =B 'b
UTV = (Bi1N)tCB —CN
2" =c5B7'b
Modificar ¢

e Mudarmos c para ¢, mantendo a base B.
* ~ 3 * *
e Xj nao muda, mas temos que reavaliar yy, e z*.
e Depois, x}; ainda é uma solucao basica vidvel do sistema primal.

e Logo, podemos continuar aplicando o método Simplex primal.

Modificar b
e Da mesma forma, modificamos b para b (mantendo a base).
* = 1 * *
e Yy, nao muda, mas temos que reavaliar xj e z*.
e Depois, y}, ainda é uma solugao basica viavel do sistema dual.

e Logo, podemos continuar aplicando o método Simplex dual.

Vantagem dessa abordagem
e Nos dois casos, esperamos que a solugao inicial ja é perto da solugao 6tima.
e Experiéncia pratica confirma isso.

e O que acontece se queremos modificar tanto b quanto ¢ ou ainda A?

A solugao atual ndo necessariamente é viavel no sistema primal ou dual.

e Mas: Mesmo assim, a convergéncia na pratica é mais rapido.

Estimar intervalos

e Pergunta estendida: Qual o intervalo de t € R tal que o sistema com € = ¢+ tAc
permanece 6timo?

e Parat=1: y§ = (B~"N)tcg — cn aumenta Ayn = (B~"N)'Acg — Acn.
o Em geral: Aumento tAyn.

e Condigao para manter a viabilidade dual:

yn +tAyn >0
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e Para t > 0 temos

e Para t < 0 temos

Estimar intervalos

e Agora seja b = b + tAb.

3.7. Anaélise de sensibilidade

. Y;
t < m%l _ 2
1 -
A]yj<0 y)
*
y?
max — <
e .
A]yj>0 Yj

e Parat=1: xj; = B~'b aumenta Axp := B! Ab.

Para t > 0 temos

Para t < 0 temos

Observagao 3.2

Em geral: Aumento tAb.

Condigao para manter a viabilidade primal:

xg + tAxg >0

*
i

t < min —

ieB Axi
Ax; <0

*

i
max — <t
ieB Axi -
Ax;>0

A matriz B~! ¢ formada pelas colunas do dicionario final que correspondem com as

variaveis de folga.

Exemplo 3.8

¢

Considere o problema da empresa de ago (visto na aula pratica, veja também execi-

cio 1.7).

maximiza 25p + 30c,
sujeito a 7p + 10c < 56000,

p < 6000,
¢ <4000,
p,c > 0.

Qual o intervalo em que o valor do lucro das placas de 25R$ pode variar sem alterar

a solucao 6tima?
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3. Dualidade

Exemplo: Empresa de aco

e Sistema 6timo

=5
_7/10’0‘.)2

e Base B = {p,ws,c}, variaveis nao-basicas N' = {wj,w;}. (Observe: usamos
conjuntos de variaveis, ao invés de conjuntos de indices).

Exemplo: Variaveis

e Vetores ¢ e Ac. Observe que reordenamos os dados do sistema inicial de forma
correspondente com a ordem das variaveis do sistema final.

25

0 25 0
c=130];cg=| 0 ;cN:<O>;

0 30

0

1

0 1
Ac=|0|;Acg =10 ;ACN—<O>

0 0

0

Exemplo: Aumentos

e Aumento das varidveis duais

Ayn = (B"'"N)*'Acg — Acy = (B""N)*Acg

e com
0 1
B-'N=|[-1/10 7/10
1/10  —=7/10
e temos

o)
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3.7. Anaélise de sensibilidade

Exemplo: Limites

e Limites em geral

* *

X Tayy <SR Tay
Alye)->0 y) A]yej<0 y]
e Logo
—4 <t< .

e Uma variacao do preco entre 25 + [—4, 0o] = [21, c0] preserve a otimalidade da
solugao atual.

e O novo valor da fungao objetivo é

6000
z=—¢5B b= (25+t 0 30) (2600 | = 192000 + 6000t
1400

e os valores das varidveis p e ¢ permanecem 0s mesmos.

O

Exemplo 3.9
Qual o intervalo em que o lucro das placas (R$ 25) e dos canos (R$ 30) podem variar
sem que a solucao Otima seja alterada?

Exemplo: Variacdo do lucro dos placas e canos

e Neste caso, os vetores ¢, ¢g, cN € Acy permanecem os mesmos do exemplo
anterior. Enquanto que:

Ac = ;ACB =10

S O = O =
—_

e Neste caso, o valor de Ayy é
1

o iaia. (0 1710 1/10 (110
Al~4N“(B1’\”A“‘3—(1 7/10 —Nw> : —<ym>'

e Logo —40/3 <t<

e Ou seja, uma variagao do lucro das placas entre R$ 11.67 e co, e do lucro dos
canos entre R$ 16.67 e co, nao altera a solucao 6tima do sistema.
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3. Dualidade
Exemplo: Modificacdo

e Qual o intervalo em que o lucro dos canos (R$ 30) podem variar sem que a
solugao 6tima seja alterada?

e Neste caso, os vetores ¢, cg, cn € Acn permanecem os mesmos do exemplo
anterior. Enquanto que:

Ac =

oo —=0o
>
o
w
\
o

e Neste caso, o valor de Ay é:
_(1/10 ) .
Acy = (—7/10) ’
e Logo —30 <t <40/7

e Ou seja, uma variacao do lucro dos canos entre R$ 0 e R$ 35.71, nao altera a
solugao 6tima do sistema.

Exemplo 3.10
O que acontece se mudarmos o lucro das placas para R$ 207

Exemplo: Placas com lucro R$ 20

e Novos vetores

20

0 20 0
c=130[;cg=1]0 ,6N—<O)

0 30

0

e Aumento

g3 = (B7'N)'eg —en = (B7'N) "¢
20

_ (0 =110 /10N () (3
7100 —7/10) | 5] T\
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3.7. Anaélise de sensibilidade

Novas variaveis

e Com

6000
B 'b = | 2600
1400

e Novo valor da funcéo objetivo

6000
2*—¢tB b= (20 0 30) [2600 | = 162000
1400

Exemplo: Novo dicionario

e Novo sistema primal viavel, mas nao 6timo:

z = 162000 —3w, +w;
p  =6000 —W»
wsz = 2600 +1/10w;  —7/10wo
c = 1400 —1/10wy +7/10w;

e Depois um pivd: Sistema 6timo.

2 —1657142/7 —20/7wi —10/7w;3
b =22855/7  —1/7wy  +10/7ws
wy =37142/7 +1/7wy —=10/7w>
C = 4000 —wW3

o

Exemplo 3.11

O que acontece se mudarmos o lucro das placas de R$ 25 para R$ 35 e dos canos de
R$ 30 para R$ 107

Exemplo: Placas e canos com lucro R$ 35 e R$ 10

e Novos vetores

35

0 (35) 0
c=110f; ¢eg=10]; 6N:(0>

0 10

0

e Aumento
35
t —1/1 1
- on= (8 500 40 (3) - ()
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3. Dualidade

Novas variaveis e novo dicionario

e Novo valor da funcao objetivo

6000
2* =eLB b =¢hxp = (35 0 10) 2600 | = 224000
1400
e O novo sistema primal viavel é

z = 224000 —Iw, —28w;

p =6000 —W;

ws = 2600 +1/10wy; —7/10w,

c = 1400 —1/10w;  +7/10w>

e O sistema é 6timo.

Exemplo 3.12
Qual o efeito de uma variagao do lado direito 6000 da segunda restrigao? Para estudar
essa variacao escolhemos Ab = (010)%. Temos

7 0 10 0 10 0
B=(1 1 0]; B '=1/10-1 7 10
0 0 1 1T =7 0

e logo Axg =B~ 1Ab =1/10(107 — 7). Obtemos a nova solucao basica

6000 10
R = (2600 | +t/10 | 7
1400 —7

e a condi¢do de otimalidade Xj > 0 nos fornece os limites
—26000/7 <t < 2000
entre quais ela é 6tima. O valor da fungao objetivo dentro desses limites é
6000 +t

2* = cpRpy = (25030)" [ 2600 + 7/10t | = 192000 + 4+.
1400 —7/10t
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3.8. Exercicios

3.8. Exercicios

(Solugoes a partir da pagina 192.)

Exercicio 3.1
Qual o sistema dual de

minimiza 7x; + x2 + 5x3,

sujeito a x7 —x3 + 3x3 > 10,
5x1 4+ 2x3 —x3 > 6,
X1,X2,%x3 > 07

Exercicio 3.2
Considere o problema

COBERTURA POR CONJUNTOS PONDERADOS (WEIGHTED SET COVER)

Instancia Um universo U, uma familia S de subconjuntos do universo, i.e. para
todo S € §, S C U, e custos ¢(S) para cada conjunto S € S.

Solucdo Uma cobertura por conjuntos, i.e. uma sele¢do de conjuntos 7 C S tal
que para cada elemento e € U existe pelo menos um S € 7 com e € S.

Objetivo Minimizar o custo total dos conjuntos selecionados.

Uma formulagao inteira do problema é

minimiza Z c(S)xs,

ses

sujeito a Z xs > 1, ee U,
S:e€S
Xs € {O) ]} Ses.

O problema com restri¢oes de integralidade é NP-completo. Substituindo as restri¢oes
de integralidade xs € {0, 1} por restri¢oes triviais xs > 0 obtemos um programa linear.
Qual o seu dual?

Exercicio 3.3
O sistema

maximiza 2x; —x, + x3,
sujeito a 3x; + x2 + x3 < 60,
X1 —x2 + 2x3 < 10,
X1 +%x2 —x3 < 20,
X1,X2,%3 > 0.
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3. Dualidade

possui dicionario 6timo

z= 25 —=3/2x5 —1/2x¢ —3/2x3
x4 = 10 +X5 +2x¢ —X3
X1 = 15 —]/2X5 —1/2X6 —1/27(3
x2= 5 +1/2x5 —1/2x¢ +3/2x3

a) Em qual intervalo o coeficiente ¢; = 2 pode variar?
b) Em qual intervalo o coeficiente by = 10 pode variar?

¢) Modifique o lado direito de (60 10 20)* para (70 20 10)*: o sistema mantém-se
o6timo? Caso contrério, determina a nova solugao 6tima.

d) Modifique a fungdo objetivo para 3x; — 2x3 4+ 3x3: o sistema mantém-se 6timo?
Caso contrario, determina a nova solucao étima.
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4. Toépicos

4.1. Centro de Chebyshev

Seja B(c,r) = {c +u | [u]| < 1} a esfera com centro c e raio r. Para um poligono
convexo aix < bi, para 1 € [n], queremos encontrar o centro e o raio da maior esfera,
que cabe dentro do poligono, i.e. resolver

maximiza 1,
sujeito a sup aip < by, Vi e [n].
pEB(c,T)
Temos
sup aqip =cay+ sup aiu=caq + [[aiflr
pEB(c,r) [lull<r

porque o segundo supremo ¢é atingido por w = rai/||ail|. Assim obtemos uma formu-
lagao linear

maximiza T,

sujeito a a;ic + rf|ai|| < by, Vi e [n].

Exemplo 4.1
O poligono da Fig. 4.1 possui a descrigao
2x1 +4x, < 24,
dx1 —x2 <12,
—X1 < O)
—x2 < 0.

Portanto o programa linear para encontrar o centro e o raio do maior circulo é

maximiza T,
sujeito a 2cy +4cy + V20r < 24,

4cq —02+ﬁr§ 12,
—c1+1r<0,
—c2+1r<0.

(0]



4. Tépicos

Figura 4.1.: Exemplo do centro de Chebyshev
X2

2 ]

3
1.85,3.01) /

X1

4.2. Funcao objetivo convexa e linear por segmentos

Uma fungéo f é conveza se f(tx + (1 —t)y) < tf(x) + (1 —t)f(y) para qualquer x e y e
0 <t < t. Fungoes convexas sao importantes na otimizacao, porque eles possuem no
méaximo um minimo no interior do dominio deles, e portanto o minimo de uma fungao
convexa pode ser obtido com métodos locais.

Seja fi(x),1 € [n] uma colegao de fungdes lineares. O maximo f(x) = maxiecm fi(x) é
uma funcao convexa linear por segmentos. O problema de otimizagao

minimiza max fi(x)

i€[n]
é equivalente com o programa linear
minimiza X, (4.1)
sujeito a fi(x) < xo, Vi € [n]. (4.2)

Portanto podemos minimizar uma fungao convexa linear por segmentos usando pro-
gramagao linear. De forma similar, f é concava se f(tx+ (1—t)y) > tf(x)+ (1 —1)f(y).
(Observe que uma fungéo convexa e concava ¢é afina.) O sistema

maximiza xp,

sujeito a fi(x) > xo,x Vi€ [n].

maximiza uma funcao concava linear por segmentos.
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Parte II.

Programacao inteira
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5. Introducao

5.1. Definicoes

Problema da dieta

e Problema da dieta
minimiza ctx
sujeitoa Ax>r
x>0

e Uma solugao (laboratério): 5 McDuplos, 3 magas, 2 casquinhas mista para R$
24.31

e Mentira! Solugdo correta: 5.05 McDuplos, 3.21 magas, 2.29 casquinhas mistas.

e Observagao: Correto somente em média sobre varias refei¢oes.

Como resolver?

Com saber o valor 6tima para uma tnica refeigao?

Restringe as varidveis x ao conjunto Z.
e Sera que método Simplex ainda funciona?

e Nao. Pior: O problema torna-se NP-completo.

Problemas de otimizacdo

e Forma geral

optimiza f(x)

sujeito a xeV
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5. Introdugao
Programacao inteira

e Programacao linear (PL)

maximiza c'x
sujeitoa Ax <D
x€eR™ >0

e Programacao inteira pura (PI)

maximiza h'y
sujeitoa Gy <b
yezZ* >0

Programacao inteira

e Programacéio (inteira) mista (PIM)

maximiza c'x + h'y
sujeitoa Ax+ Gy <b
xER">0,yeZ™ >0

e Programacao linear e inteira pura sao casos particulares da programacao mista.
e Outro caso particular: 0-1-PIM e 0-1-PI.

x € B"

Exemplo

maximiza xj +Xx;
sujeito a 2xq + 7x, <49
5%1 + 3x2 <50
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5.1. Defini¢oes

Exemplo
15 I T T N SO N S B
14 -

+ + + + +

. Solugdes viaveis 5x;+3%,< 50

01 2 3 45 6 7 8 9 1011 12 13 14 15
X1

e Sorte: A solugdo 6tima é inteiral x; =7, x2 =5, V =12.

e Observagdo: Se a solucao otima é inteira, um problema de PI(M) pode ser resol-
vido com o método Simplex.

Exemplo
maximiza xj+x2
sujeito a 1.8x7 + 7x2 <49
5x1 + 2.8x, < 50
Exemplo
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5. Introdugao

& & B 3 £

Solucdes viaveis 5x,+2.8x,< 50

01 2 3 45 6 7 8 9 1011 12 13 14 15
X1

e Solucao 6tima agora: x1 =~ 7.10, x2 =~ 5.17, V = 12.28.

e Sera que |x1], |x2] é a solugdo 6tima do PI?

Exemplo
maximiza —x;+7.5%;
sujeito a —x7+7.2x, <504
5% + 2.8x, <62
Exemplo
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5.2. Motivagao e exemplos

-X1+7.2X,< 50.4 ‘ -

X9

01 2 3 45 6 7 8 9 1011 12 13 14 15
X1

Solugao 6tima agora: x; =~ 7.87, x2 ~ 8.09, V = 52.83.
x1] =7, [x2] = 8.

Solugdo 6tima inteira: x1 = 0,x2 = 7!

Infelizmente a solugdo 6tima inteira pode ser arbitrariamente distante!

Métodos para resolver Pl
e Prove que a solugao da relaxagao linear sempre é inteira.
e Insere cortes.

e Branch-and-bound.

5.2. Motivacdo e exemplos
Motivacdo

e Otimizacao combinatoéria é o ramo da ciéncia da computagdo que estuda proble-
mas de otimizagdo em conjuntos (wikipedia).
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5. Introdugao

e “The discipline of applying advanced analytical methods to help make better
decisions” (INFORMS)

e Tais problemas sao extremamente frequentes e importantes.
Maquina de fazer dinheiro

e Imagine uma maquina com 10 botoes, cada botao podendo ser ajustado em um
nimero entre 0 e 9.

Maquina de fazer dinheiro

OO
iooog] — O

e ha uma configuragao que retorna R$ 10.000.
e total de combinacdes: 10'°.
e dez testes por segundo

e em um ano:=> 10 x 60 x 60 x 24 x 365 = 3 x 108

Explosdo combinatdria
Funcoes tipicas:
n  logn n%5 n? AL n!
10 332 316 107 1.02x10° 3.6 x 10°
100 6.64 1000 10* 1.27x103°  9.33 x 10"
1000 9.97  31.62 10° 1.07 x 1037 4,02 x 10%°¢7

Iretirado de Integer Programming - Wolsey (1998)
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“Conclusoées”’

OO
iooog] — O

e Melhor nao aceitar a maquina de dinheiro.

e Problemas combinatoérios sao dificeis.

5.3. Aplicagdes
Apanhado de problemas de otimizagcdo combinatoéria
e Caixeiro viajante

Roteamento

Projeto de redes
e Alocacao de horéarios

e Tabelas esportivas

Gestao da produgao

e etc.

Caixeiro Viajante

5.3. Aplicagoes
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5. Introdugao

Caixeiro Viajante

\

Caixeiro Viajante

e Humanos sao capazes de produzir boas solugoes em pouco tempo!

e Humanos ?

Caixeiro Viajante

F

o

f\ e
Lo~
o iy".l‘ ‘-3.——(.\-_,____/
_Q. § Q
3

Figure 1.40 Chimpanzes towr (Bido),

Caixeiro Viajante

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L. Applegate,
Robert E. Bixby, Vasek Chvatal & William J. Cook. Princeton University Press
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Figure 1.41 Pigeon solving a TSP. Images courtesy of Brett Gibson.

Caixeiro Viajante
Der

Handlungsreifende
wie er fein {oll

und waé ev ju thun bat, um Auftrdge
gu erbalten und eines gludlichen Grfolgs
in feinen Gefdyaften gewiff u fein.

Bon
¢inem alten Commis - Voyageur.

W

Miteinem TitelEupfer.
————
JImenau 1882,

Drud und Verlag von B, Fr. Voigt.

Caixeiro Viajante

5.3. Aplicagoes

e Business leads the traveling salesman here and there, and there is not a good
tour for all occurring cases; but through an expedient choice division of the tour
so much time can be won that we feel compelled to give guidelines about this.
Everyone should use as much of the advice as he thinks useful for his application.
We believe we can ensure as much that it will not be possible to plan the tours
through Germany in consideration of the distances and the traveling back and
fourth, which deserves the traveler’s special attention, with more economy. The
main thing to remember is always to visit as many localities as possible without

having to touch them twice.

“Der Handlungsreisende wie er sein soll und was er zu tun hat, um Auftrége zu erhalten
und eines gliicklichen Erfolgs in seinen Geschéiften gewiss zu sein. Von einem alten

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L. Applegate,
Robert E. Bixby, Vasek Chvatal & William J. Cook. Princeton University Press

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L. Applegate,
Robert E. Bixby, Vasek Chvatal & William J. Cook. Princeton University Press
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5. Introdugao

Commis-Voyageur” (O caixeiro viajante, como ele deve ser e o que ele deve fazer para
obter encomendas e garantir um sucesso feliz dos seus negocios.

viajante experiente).

First brought to the attention of the TSP research community in 1983 by Heiner
Muller-Merbach [410]. The title page of this small book is shown in Figure 1.1. The
Commis-Voyageur [132] explicitly described the need for good tours in the following

passage, translated from the German original by Linda Cook.

Caixeiro Viajante

Caixeiro Viajante

100000

10000

1000

100

el Toody and Moo fnd he shorest round tp
o 33 aatirsshown ot .
A dotscraw connactingstraght s o acation
e e e et e i o

g s, Wi From thae, s show corect
e ar a8 Pennyani Nes. @ 150 801
ot Panani or W, WesVegina? Crack
s o back of B aty Snk o S

T
pla85900
SW24978
usal13s09
pla73 9?/
PR o—

CP
G

Hi M
PR

1850 1960 1970 1980 1980 2000 2010

Figure 1.45 Further progress in the TSF, log scale.

Formulando matematicamente o PCV

e Associar uma variavel a cada possivel deciséo.

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L. Applegate,
Robert E. Bixby, Vasek Chvatal & William J. Cook. Princeton University Press

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L. Applegate,
Robert E. Bixby, Vasek Chvatal & William J. Cook. Princeton University Press
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5.3. Aplicagoes

Formulando matematicamente o PCV

e Associar uma variavel a cada possivel deciséo.

minimiza Z CijYij
ﬁ' eN
sujeito a Z Xij + Z Xji = 2, vie N

jEN jEN
Xij G{O,]}, Vi,jEN.

Formulando matematicamente o PCV

e Associar uma variavel a cada possivel deciséo.

minimiza E CijYij

i,jEN
sujeito a Z Xij + Z Xji = 2, VieN
/ jEN jEN
Xij 6{0)1}) Vl)JEN

+ restrigoes de eliminacao de subciclos!

Problemas de roteamento
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5. Introdugao

@@>

Problemas de roteamento

@@>

oo

Problemas em arvores

Problemas em arvores

90

Etc.

i
%

oo



Problemas em arvores - aplicacdes

e Telecomunicagoes

e Redes de acesso local

e Engenharias elétrica, civil, etc..

Alocacgdo de tripulagbes

Tabelas esportivas

e,

Proximos Adversarios
Fla Vasco
JUVENTUDE Fonle
Guarani CRUZEIRO
GALO Sao Paulo
Botafogo GOIAS
PALMEIRAS  Juventude
Coritiba CORINTHIANS
S. PAULO Furaciio
Cruzeiro SANTOS
Botafogo  Galo
Cruzeiro Criciima

5. PAULO GOIAS
Coxa Fla

FLA PARANA
Guarani FIGUEIRA
JUVENTUDE Paysandu
Corinthians GREMIO
FURACAQ S. Caelano

| Paysandu

Coriiba
PALMEIRAS
Parana
CRICIUMA
Santos
GALO
Guarani
JUVENTUDE

Parana

S.CAETANO
Grémio
PAYSANDU
Galo

Goids
CRICIOMA
Flu

INTER

5.3. Aplicagoes

Criciuma
GALO
Santos
FURACAO
Paysandu
PONTE
Parana
PALMEIRAS
Coxa

|Grémio
Palmeiras
PARANA
Fonte
VITORIA
Furacio
SANTOS

Galo
GUARANI

| Vitéria

CORINTHIANE
Juventude
GUARANI
Grémio

COXA

Sao Paulo
CRUZEIRO
Ponte

Guarani
Goids

FLA

Vitdria
PALMEIRAS
BOTAFOGO
Figueira
PAYSANDU
Grémio
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5. Introdugao

Gestdo da producdo

Etc.
e programacao de projetos
e rotacao de plantacoes
e alocagao de facilidades (escolas, centros de comércio, ambulancias...)
e projeto de circuitos integrados
e portfolio de acoes

e etc, etc, ete, etc...
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6. Formulacao

6.1. Exemplos
“Regras de formulacao”

o Criar (boas) formulacoes é uma arte.

e Algumas diretivas bésicas:
— escolha das variaveis de decisao.
— escolha do objetivo.

— ajuste das restricoes.

Exemplo: 0-1-Knapsack
PROBLEMA DA MOCHILA (KNAPSACK)

Instdncia Um conjunto de n itens com valores v; e pesos pi, 1 € [n]. Um limite
de peso P do mochila.

Solugdo Um conjunto S C [n] de itens que cabe na mochila, i.e. } ;¢ pi < P.

Objetivo Maximizar o valor } ; ¢ Vvi.

e Observagio: Existe uma solugao (pseudo-polinomial) com programagio dindmica
em tempo O(Pn) usando espago O(P).

Formulacdo — Problema da mochila =
maximiza Z ViXi,
ien]

sujeito a Z pixi <P,
ieMm]
x; € B.
Exemplo 6.1 (Maximizar cavalos num tabuleiro de xadrez)

Qual o ntimero maximo de cavalos que cabe num tabuleiro de xadrez, tal que nenhum
ameaca um outro?

L T R T R S
[ T - SRS
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6. Formulagao

Formulacao do problema dos cavalos com varidveis indicadores xi;:

maximiza E Xij,

i,j

sujeito a x4 +xi-2j41 <1, 3<1<8,j€[7],
Xij +Xi—1,542 < 1, 2<1i<8,j e 6],
xij +Xip2511 <1, ielel,j e [7],
Xij +Xip1542 <1, ie[71,j € l6].

Numero de solugoes do problema dos cavalos (A030978)
n|1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

k‘145813182532415061728598113 0
6.2. Técnicas para formular programas inteiros
Um problema recorrente com indicadores xi,...,xn € B e selecionar no méaximo,

exatamente, ou no minimo k dos n itens. As restri¢oes
Y xi<k ) x=k ) x>k
ien] ie[n] ie[n]
conseguem isso.

Exemplo 6.2 (Localizagao de facilidades simples 1)

Em n cidades dadas queremos instalar no méaximo k fabricas (k < n) de modo a
minimizar o custo da instalagao das fabricas. A instalagdo na cidade j € [n] custa fj.
Podemos usar indicadores para y; € B para a instalacao da uma fébrica na cidade j e
formular

minimiza Z fy5,
j€n]

sujeito a Z y; =k,
jE€Mm]

Y; € B, j € nl.

(Obviamente para resolver este problema é suficiente escolher as k cidades de menor
custo. No exemplo 6.3 estenderemos esta formulagao para incluir custos de transporte.)

o

6.2.1. Formular restricoes logicas

Formulagdo: Indicadores

e Variaveis indicadores x,y € B: Sele¢do de um objeto.

94


http://www.research.att.com/~njas/sequences/A030978

6.2. Técnicas para formular programas inteiros

clientes

[ ] l:l fabricas
. . [ ]

[ ]
[
(a) Exemplo de uma instancia  (b) Exemplo de uma solucao

Figura 6.2.: Localizagao de facilidades.

e Implicagao (limitada): Se x for selecionado, entdo y deve ser selecionado

x <y, x,y €B
e Ouw

x+y>1, x,Yy B
e Ou-exlusivo:

x+y=1, x,yecB

Exemplo 6.3 (Localizacao de facilidades nao-capacitado)

Queremos incluir no exemplo 6.2 clientes. Suponha que em cada cidade tem um
cliente, e queremos, junto com os custos das fabricas instaladas, minimizar o custo
de atendimento dos clientes. Entre cada par de cidade, i e j, o custo de transporte é
dado por cyj (ver figura 6.2). Para formulacao escolhemos variaveis de decisao xi; € B,
que indicam se o cliente i for atendido pela fabrica em j. E importante “vincular” as
variaveis de decisao: o cliente i pode ser atendido pela cidade j somente se na cidade
j foi instalada uma fabrica, i.e. xi; — ;.

minimiza Z ijj + Z CijXijy
]

j€] i,jeMm

sujeito a Z xij =1, i€ nl], (s6 uma fabrica atende)
j€]
Z y; <m, (no maximo m fabricas)
j€m]
Xij < Yj, i€ [nl,j € [n], (so fab. existentes atendem)
Xij € B, ie [Tl],j € [nl,
y; € B, j €Ml
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6. Formulagao

Formulacdo: Indicadores
Para x,y,z € B

e Conjungdo x =yz=y/\z

x < (y+2z)/2 (6.1)
x>y+z—1
e Disjuncao x =y Vz
x> (y+z)/2 (6.2)
x<y+z
e Negacao x =y
x=1—y (6.3)
e Implicacao: z=x =y
z<1—x+y (6.4)
z>(1T—x+y)/2 (6.5)

Exemplo 6.4 (Max-3-SAT)

Seja @(X1y...yXn) = /\ie[m] C; uma foérmula em forma normal conjuntiva, com cléau-
sulas da forma C; = li7 V liz V li3. Queremos encontrar uma atribuicao x; € B
maximizando o namero de clausulas satisfeitas.

Seja ¢; € B uma variavel que indica que clausula i é satisfeita. Também vamos
introduzir uma varidvel x; € B para cada variavel x; do problema, e uma varidvel
auxiliar li; para literal li; do problema.

maximiza ci,
sujeito a ¢; < li7 + Lz + Lz,
lij = xi, caso lij = x4,
lj =1 —xq, caso lij # xi,
Ci € B,Xi S B,Iij e B.

6.2.2. Formular restricbes condicionais

Indicadores para igualdades satisfeitas Queremos definir uma variavel y € B que
indica se uma dada restricao é satisfeita.
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6.2. Técnicas para formular programas inteiros

e Para ) i
limite inferior m para Zie[n] aixi — b e uma constante € > 0 pequena.

a;xi < b: Escolhe um limite superior M para Zie[n] aixi — b, um

Y axi <b+M(1—y) (6.6)

ie[n]

Z aixi > b+my—+ (1 —y)e

ie[n]
e Para x > 0: Escolhe um limite superior M para x e uma constante € pequena.

X > ey,
x < My.

Exemplo 6.5 (Custos fixos)
Uma aplicacao para problemas de minimizagao com uma func¢ao objetivo nao-linear.
Queremos minimizar custos, com uma “entrada” fixa ¢ da forma

f(x)_{o caso x =0

c+1l(x) caso0<x <M

e 1(x) uma fungao linear (ver figura 6.3). Com uma y € B indica a positividade de x,
i.e. y =1 sse x > 0 podemos definir a fun¢ao objetivo por

f(x) =cy + l(x)

e a técnica da equagdo (??) resolve o problema. Como o objetivo é minimizar f(x)
a primeira equacao x > €y é redundante: caso y = 1 nao faz sentido escolher uma
solu¢ao com x = 0, porque para x = 0 existe a solugao de menor custo x =y = 0.
Logo

x < My,

x € Ryy € B,

é suficiente neste caso.

Exemplo
Planejamento de produgao (ingl. uncapacitated lot sizing)

e Objetivo: Planejar a futura producao no proximos n semanas.
e Parametros: Para cada semana i € [n]

— Custo fixo f; para produzir,

— Custo pi para produzir uma unidade,

— Custo hy por unidade para armazenar,

— Demanda d;
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6. Formulagao

S | d; 5 d 3 ds A dy
emana T T T T

Estoque So $1 $2 S3 S4
Custos f1/p1 f2/p2 f3/p3 fa/pa

Figura 6.4.: Planejamento de produgao.

Exemplo

Seja
e x; a quantidade produzida,
e s; a quantidade no estoque no final da semana 1,
e y; = 1 sem tem produgao na semana i, 0 senao.

Problema:

e Funcao objetivo tem custos fixos, mas x; nao tem limite.

e Determina ou estima um valor limite M.

Exemplo

minimiza Z pixi + hisy + fiys,

ien]

sujeito a sy =si_1 + x; — di, i€ [n],
so =0,
xi < Myj, ie n],
x € R™y e B™.

Disjuncdo de equagdes
e Queremos que aplica-se uma das equagoes
f1 <12,
g1 < gz2.
e Solucao, com constante M suficientemente grande
f1 < f2 + Mx,
g1 < g2+ M(1—x),
x € B.
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6.3. Formulagoes alternativas

6.3. Formulacoes alternativas

Uma problema de programacao linear ou inteira geralmente possui mais que uma
formulacao. A figura 6.5 mostra diversas formulagoes que definem o mesmo conjunto
de solugoes inteiras.

Na programagao linear existe pouca diferenga entre as formulagoes: a solugao é a
mesma e o tempo para resolver o problema é comparéavel, para um niimero compa-
ravel de restricoes e varidveis. Na programacdo inteira uma formulacdo boa é mais
importante. Como a solucao de programas inteiras é NP-completo, frequentemente a
relaxacao linear é usada para obter uma aproximagao. Diferentes formulagao de um
programa inteiro possuem diferentes qualidades da relaxacao linear. Uma maneira de
quantificar a qualidade de uma formulagéo é o gap de integralidade(ingl. integrality
gap ). Para um problema P e uma instancia i € P seja OPT(i) a solugdo 6tima inteira
e LP(1) a solucdo da relaxagao linear. O gap de integralidade é

B LP(1)
g(P) = ?161113 OPT(1) (6.7)

(para um problema de maximizagdo.) O gap de integralidade d4 uma garantia para
qualidade da solugao da relaxacao linear: caso o gap é g, a solucao nao é mais que um
fator g maior que a solugao integral 6tima.

Exemplo 6.6 (Conjunto independente méaximo)
Uma formulagdo do problema de encontrar o conjunto independente maximo num
grafo nao-direcionado G = (V, A) é

maximiza Z Xv, (CIM)
vev
sujeito a x, +x, <1, V{u,v} € E,
Xy € B, Yve V.

No grafo completo com n vértices K;, a relaxagao linear possui um valor pelo menos
n/2 (porque a solugdo x, = 1/2,v € V possui valor n/2), enquanto a solugdo 6tima
inteira é 1. Por isso, o programa (CIM) possui um gap de integralidade ilimitado. ¢

6.4. Exercicios

(Solugoes a partir da pagina 193.)

Exercicio 6.1
A empresa “Festa fulminante” organiza festas. Nos proximos n dias, ela precisa p;
pratos, 1 <1< n. No comego de cada dia gerente tem os seguintes opgoes:

e Comprar um prato para um prego de c reais.

e Mandar lavar um prato devagarmente em d; dias, por um preco de 1y reais.

99

X2

X1

Figura 6.5.: Diferentes formu-
lagoes lineares que definem o
mesmo conjunto de solugbes
inteiras.



6. Formulagao
e Mandar lavar um prato rapidamente em d; < d; dias, por um prego de 1; > 14
reais.
O gerente quer minimizar os custos dos pratos. Formule como programa inteira.

Exercicio 6.2
Para os problemas abaixo, encontra uma formulagao como programa inteira.

CONJUNTO INDEPENDENTE MAXIMO
Instancia Um grafo ndo-direcionado G = (V, A).

Solucdao Um conjunto independente 1, i.e. I C 'V tal que para vértices vi, vz € I,
{vi,val £ A

Objetivo Maximiza |I|.

EMPARELHAMENTO PERFEITO COM PESO MAXIMO

Instancia Um grafo nio-direcionado bi-partido G = (V7 U V3, A) (a fato de ser
bi-partido significa que A C V; x V) com pesos p : A — R nos arcos.

Solugdo Um emparelhamento perfeito, i.e. um conjunto de arcos C C A tal que
todos nés no sub-grafo G[C] = (V7 U V3, C) tem grau 1.

Objetivo Maximiza o peso total }_..-p(c) do emparelhamento.

PROBLEMA DE TRANSPORTE

Instancia n depésitos, cada um com um estoque de p; produtos, i € [n], e m
clientes, cada um com uma demanda dj, j € [m] produtos. Custos de
transporte aij de cada deposito i € [n] para cada cliente j € [m].

Solugcdo Um decisdio quantos produtos xi; devem ser transportados do deposito
i € [n] ao cliente j € [m], que satisfaz (i) Cada depdsito manda todo seu
estoque (ii) Cada cliente recebe exatamente a sua demanda. (Observe que
o numero de produtos transportados deve ser integral.)

Objetivo Minimizar os custos de transporte Zie[n},je[m] aijX4j-

CONJUNTO DOMINANTE

Instancia Um grafo ndo-direcionado G = (V, A).
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6.4. Exercicios

Solugcdo Um conjunto dominante, i.e. um conjunto D C V, tal que Vv € V:v €
DV (Ju e D : {u,v} € A) (cada vértice faz parte do conjunto dominante ou
tem um vizinho no conjunto dominante).

Objetivo Minimizar o tamanho do conjunto dominante |D].

Exercicio 6.3
Acha uma formulagao inteira para todos os 21 problemas que o Karp provou NP-
completo (Karp. 1972).

Exercicio 6.4

Juliano é fa do programa de auditério Apagando e Ganhando, um programa no qual
os participantes sao selecionados atraves de um sorteio e recebem prémios em dinheiro
por participarem. No programa, o apresentador escreve um numero de N digitos em
uma lousa. O participante entao deve apagar exatamente D digitos do nimero que
estd na lousa; o numero formado pelos digitos que restaram é entao o prémio do
participante. Juliano finalmente foi selecionado para participar do programa, e pediu
que vocé escrevesse um programa inteira que, dados o nimero que o apresentador
escreveu na lousa, e quantos digitos Juliano tem que apagar, determina o valor do
maior prémio que Juliano pode ganhar.

(Fonte: Maratona de programagao regional 2008, RS)

Exercicio 6.5

Set € um jogo jogado com um baralho no qual cada carta pode ter uma, duas ou trés
figuras. Todas as figuras em uma carta sao iguais, e podem ser circulos, quadrados
ou tridngulos. Um set é um conjunto de trés cartas em que, para cada caracteristica
(ntumero e figura), u ou as trés cartas sdo iguais, ou as trés cartas sdo diferentes. Por
exemplo, na figura abaixo, (a) ¢ um set valido, ja que todas as cartas tém o mesmo
tipo de figura e todas elas tém nimeros diferentes de figuras. Em (b), tanto as figuras
quanto os nimeros sao diferentes para cada carta. Por outro lado, (¢) nao é um set,
ja que as duas ultimas cartas tém a mesma figura, mas esta é diferente da figura da

primeira carta.
1|2 | O ]
[ee | |OOO ANN

[see] [e¢] [2A
(a) (b) ()

O objetivo do jogo é formar o maior ntimero de sets com as cartas que estao na mesa;
cada vez que um set é formado, as trés cartas correspondentes sao removidas de jogo.
Quando hé poucas cartas na mesa, é facil determinar o maior nimero de sets que
podem ser formados; no entanto, quando ha muitas cartas ha muitas combinagoes
possiveis. Seu colega quer treinar para o campeonato mundial de Set, e por isso pediu
que vocé fizesse um programa inteira e que calcula o maior namero de sets que podem
ser formados com um determinado conjunto de cartas.

(Fonte: Maratona de programagao regional 2008, RS)
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6. Formulagao

Exercicio 6.6
Para os problemas abaixo, acha uma formulagao como programa inteira.

COBERTURA POR ARCOS
Instancia Um grafo ndo-direcionado G = (V, E) com pesos ¢ : E — Q nos arcos.

Solugdo Uma cobertura por arcos, i.e. um subconjunto E/ C E dos arcos tal que
todo vértice faz parte de pelo menos um arco selecionado.

Objetivo Minimiza o custo total dos arcos selecionados em E’.

CONJUNTO DOMINANTE DE ARCOS
Instancia Um grafo ndo-direcionado G = (V, E) com pesos ¢ : E — Q nos arcos.

Solucdo Um conjunto dominante de arcos, i.e. um subconjunto E/ C E dos arcos
tal que todo arco compartilha um vértice com pelo menos um arco em E’.

Objetivo Minimiza o custo total dos arcos selecionados em E’.

COLORACAO DE GRAFOS
Instancia Um grafo ndo-direcionado G = (V, E).

Solucdo Uma coloracdo do grafo, i.e. uma atribuigdo de cores as vértices c :
V — Z, tal que cada par de vértices ligado por uma aresta recebe uma cor
diferente.

Objetivo Minimiza o nimero de cores diferentes.

CLIQUE MINIMO PONDERADO
Instancia Um grafo nao-direcionado G = (V, E) com pesos ¢ : V — Q nos vértices.

Solugdo Uma clique, i.e. um subconjunto V' C V de vértices tal que existe um
arco entre todo par de vértices em V'.

Objetivo Maximiza o peso total dos vértices selecionados V.

SUBGRAFO CUBICO
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6.4. Exercicios

Instancia Um grafo nao-direcionado G = (V, E).
Solugdo Uma subgrafo ctbico, i.e. uma selecio E/ C E dos arcos, tal que cada
vértice em G’ = (V, E’) possui grau 0 ou 3.

Objetivo Maximiza o nimero de arcos selecionados [E’|.

Exercicio 6.7

Uma empresa tem que decidir quais de sete investimentos devem ser feitos. Cada
investimento pode ser feito somente uma tnica vez. Os investimentos tem lucros (ao
longo prazo) e custos iniciais diferentes como segue

Investimento
1 2 3 4 5 6 7

Lucro estimado [MR$] 17 10 15 19 7 13 9
Custos iniciais [MR$] 43 28 34 48 17 32 23

A empresa tem 100 MR$ capital disponivel. Como maximizar o lucro total (ao longo
prazo, nao considerando os investimentos atuais), respeitando que os investimentos
1,2 e 3,4 sdo mutualmente exclusivas, e nem o investimento 3 nem o investimento 4
pode ser feita, sem pelo menos um investimento em 1 ou 2 (as outros investimentos
nao tem restrigdes).

Exercicio 6.8

Um produtor de brinquedos projetou dois novos brinquedos para Natal. A preparacao
de uma fabrica para produzir custaria 50000 R$ para a primeiro brinquedo e 80000 R$
para o segundo. Apos esse investimento inicial, o primeiro brinquedo rende 10 R$ por
unidade e o segundo 15RS$.

O produtor tem duas fabricas disponiveis mas pretende usar somente uma, para evitar
custos de preparagao duplos. Se a decisao for tomada de produzir os dois brinquedos,
a mesma fabrica seria usada.

Por hora, a fabrica 1 é capaz de produzir 50 unidades do brinquedo 1 e 40 unidades
do brinquedo 2 e tem 500 horas de producao disponivel antes de Natal. A fabrica 2 é
capaz de produzir 40 unidades do brinquedo 1 e 25 unidades do brinquedo 2 por hora,
e tem 700 horas de producao disponivel antes de Natal.

Como nao sabemos se os brinquedos serao continuados depois Natal, a problema é de-
terminar quantas unidades de cada brinquedo deve ser produzido até Natal (incluindo
o caso que um brinquedo nao é produzido) de forma que maximiza o lucro total.

Exercicio 6.9

Uma empresa produz pequenos avioes para gerentes. Os gerentes frequentemente pre-
cisam um aviao com caracteristicas especificas que gera custos inicias altos no comeco
da producao.
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6. Formulagao

A empresa recebeu encomendas para trés avioes, mas como ela estd com capacidade
de produgao limitada, ela tem que decidir quais das trés avides ela vai produzir. Os
seguintes dados sao relevantes

Avides Cliente
produzidas 1 2 3
Custo inicial [MR$] 3 2 0
Lucro [MR$/aviao| 2 3 0.8
Capacidade usada [%/aviao] 20% 40% 20%
Demanda méaxima [avides] 3 2 5

Os clientes aceitam qualquer nimero de avides até a demanda maxima. A empresa
tem quer decidir quais e quantas avides ela vai produzir. As avides serdo produzidos
em paralelo.

Exercicio 6.10 (Winkler)

Uma fechadura de combinac¢ao com trés discos, cada um com ndmeros entre 1 e §,
possui um defeito, tal que precisa-se somente dois nimeros corretos dos trés para abri-
la. Qual o ntmero minimo de combinagoes (de trés nimeros) que precisa-se testar,
para garantidamente abrir a fechadura?

Formule um programa inteiro e resolva-o.

Exercicio 6.11
Formule o problema

MAX-k-SAT

Entrada Uma férmula em forma normal conjuntiva com m variaveis e n clausulas
©X1y...yxm) = C1 A--- A Cy, tal que cada clausula possui no maximo k
literais

Solugcdo Uma atribuicdo x; — {0, 1}.

Objetivo Maximizar o namero de clausulas satisfeitas.

(Dica: Usa as desigualdades (6.1)-(6.3). Comega com k = 3.)

Exercicio 6.12

A Secdo 6.2.1 mostrava como expressar a restrigdo logica z = x /Ay linearmente. A
formulagao linear precisava duas restri¢oes lineares. Mostra que nao existe uma tnica
restrigao linear que é suficiente para expressar z = x A y.

(Dica: Supoe que z = ax+by+c (ouz > ax+by+c, ouz < ax+ by + ¢) com
constantes a, b, c e mostra que as restricoes que resultam de uma analise caso a caso
levam a uma contradi¢do ou ndo sao suficientes para garantir a restri¢do logica.)
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6.4. Exercicios

Exercicio 6.13
Considere o problema de coloragao de grafos:

COLORACAO DE GRAFOS
Instancia Um grafo nao-direcionado G = (V, E).

Solugdo Uma coloracdo do grafo, i.e. uma atribuicdo de cores as vértices ¢ :
V — Z, tal que cada par de vértices ligado por uma aresta recebe uma cor
diferente.

Objetivo Minimiza o nimero de cores diferentes.

Uma formulagao possivel é introduzir uma variavel x,. € {0, 1} tal que x,. = 1 caso
o vértice v € V recebe a cor ¢. Como nunca tem mais que n = [V| cores, podemos
escolher C = [n]. Temos a condi¢ao

Z Xye =1, Yv eV (6.8)
ceC

Uma coloragao vélida ainda tem que satisfazer
Xue FXve <1, Y{u,v} € E,c € C. (6.9)
1

Para contar o nimero de cores vamos usar variaveis auxiliares u. € {0,1} com u, =
caso a cor ¢ € C foi usada. Eles satisfazem

Ue > Z Xye /M, Vc e C. (6.10)
vev
Com isso obtemos
(C1) minimiza Zuc,
ceC
sujeito a (6.8),(6.9), (6.10)
Xve € {0, 1} ue €{0,1}, YveVceC.

Um outro modelo é minimizar a soma das cores. Seja f, € Z, a cor do vértice v € V,
que pode ser definida por

fu=) CXve, We V. (6.11)
ceC

Com isso podemos formular

(C2) minimiza Z fy,

vev
sujeito a (6.8),(6.9),(6.11),
Xve €{0,1}fc € Z,, Yv e V,ceC.

Os modelos (Cq1) e (C2) sao equivalentes?
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6. Formulagao

Exercicio 6.14
Considere o problema de posicionar os nimeros 1,...,10 nas posi¢oes P = {a,...,j}

WO
WO®
®©
O

Um colega afirma que podemos usar variaveis Xq,...,X;j € Z e as restrigdes
1 <xp <10, Vp € P,
> xp =55,
peP
[x =10
peEP

Ele tem razao?
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7. Técnicas de solucao

7.1. Introducao
Limites
e Exemplo: Problema de maximizagao.

e Limite inferior (limite primal): Cada solucao viavel.

— Qualquer técnica construtiva, p.ex. algoritmos gulosos, heuristicas etc.

e Limite superior (limite dual): Essencialmente usando uma relaxagao
— Menos restricoes = conjunto maior de solugao viaveis.

— Nova fungao objetivo que é maior ou igual.

e Importante: Relaxacao linear: x € Z = x € R.

7.2. Problemas com solucio eficiente

Observagao 7.1 (Regra de Laplace)
Lembranca: A determinante de uma matriz pela regra de Laplace é

det(A) = Y (=" aydet(Ay) = > (—1)" ayj det(Ay)

ie[n] jen]

sendo Ajj a submatriz sem linha 1 e coluna j. O

Relaxacdo inteira

e Solugao simples: A relaxagao linear possui solugao 6tima inteira.
e Como garantir?
e Com base B temos a solucdo x = (xg xn)t' = (B~ 'b,0)t.

e Observacdo: Se b € Z™ e |det(B)| = 1 para a base 6tima, entdo o PL resolve o
PI.
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7. Técnicas de solugao

Relaxacdo inteira

e Para ver isso: Regra de Cramer.

e A solucdo de Ax =b é
. det(Ai)
~ det(A)

Xi
com A; a matriz resultante da substituigao da i-gésima coluna de A por b.

Prova. Seja U; a matriz identidade com a i-gésima coluna substituido por x, i.e.

1 X1

X2

Temos que AU; = A; e com det(U;) = x; temos

det(A;) = det(AUy) = det(A) det(U;) = det(A)x;.

Exemplo: Regra de Cramer

3 21 X1 1
5 0 2 X2 = 1
21 2 X3 1

Exemplo: Regra de Cramer

321 121
50 2 |=-13 10 2|=-1
21 2 11 2
311 321
5 1 2 |=-3 50 1|=-4
21 2 21 1

Logo x1 = 1/13; x2 =3/13; x3=4/13.
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Aplicacdo da regra de Cramer
e Como garantir que x = B~'b ¢ inteiro?
e Cramer:

L det(Bi)
7 Jet(B)

e Condi¢ao possivel: (a) det(B;) inteiro, (b) det(B) € {—1,1}.

Garantir (a): A€Z™*" ebcZ™.

Garantir (b): Toda submatriz quadrada nao-singular de A tem determinante

(—1,1}.

Exemplo 7.1
Observe que essas condig¢oes sao suficientes, mas nao necessérias. E possivel que Bx = b
possui solucao inteira sem essas condicoes ser satisfeitas. Por exemplo

2 2\ (x1\ _ (2
1 0 X2 o 1
tem a solugao inteira (x7 x2) = (1 0), mesmo que det(A) = —2. %

A relaxacdo é inteira

Definicao 7.1

Uma matriz quadrada inteira A € R™*™ ¢ unimodular se |det(A)| = 1. Uma matriz
arbitraria A é totalmente unimodular (TU) se cada submatriz quadrada ndo-singular
A’ de A é modular, i.e. det(A’) € {0,1,—1}.

Uma consequéncia imediata dessa definigao: ay; € {—1,0,1}.

Exemplo
Quais matrizes sao totalmente unimodular?

110
G_]]);O]]
1 0 1
01 0 00
1T -1 =1 0 o1 1 11
-1 0 0 1 |11 0 1 11
o 1 0 -1 10 0 1 0
10 0 00
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7. Técnicas de solugao

Critérios
Proposicao 7.1
Se A ¢ TU entao

(i) At & TU.

(ii) (A I) com matriz de identidade I é TU.
(iii) Uma matriz B que é uma permutagao das linhas ou colunas de A é TU.
(iv) Multiplicando uma linha ou coluna com —1 resulta numa matriz TU.

Prova. (i) Qualquer submatriz quadrada B' de A' e uma submatriz B de A tam-
bém. Com det(B) = det(B'), segue que A' é totalmente unimodular. (ii) Qualquer
submatriz de (AI) tem a forma (A’I’) com A’ submatriz de A e I’ submatriz de I.
Com |det(A'T)| = |det(A’)| segue que (AI) é TU. (iii) Cada submatriz de B é uma
submatriz de A. (iv) A determinante troca no méaximo o sinal. |

Exercicio 7.1 pede generalizar a proposicao 7.1.

Critérios
Proposigao 7.2
Uma matriz A é totalmente unimodular se

(i) ay €{+1,-1,0}
(ii) Cada coluna contém no maximo dois coeficientes nao-nulos.

(iii) Existe uma particao de linhas M7 U M, = [1,m] tal que cada coluna com dois
coeficientes nao-nulos satisfaz

Z aij_ Z (lijzo

ieM; iEM,
Observe que esse critério é suficiente, mas nao necessario.

Exemplo

e Coeficientes € {—1,0,1}: Sim.
e Cada coluna no méaximo dois coeficientes ndo-nulos: Sim.

e Particao M7,M,? Sim, escolhe My = [1, 3], M, = 0.
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7.2. Problemas com solugdo eficiente

Exemplo

TU? Nao: det(A) = 2.

P
|
—_—O —
[ Qg
_—_

TU? Nio: det(A) = 2.

N el =)
CO O = -
o = =0
O = = =0
o= =ao

TU? Sim. Mas nossa regra nao se aplical

Prova. (da proposigio 7.2). Prova por contradigdo. Seja A uma matriz que satisfaz
os critérios da proposigdo 7.2, e B a menor submatriz quadrada de A tal que det(B) ¢
{0,4+1,—1}. B néao contém uma coluna com um tnico coeficiente nado-nula: seria uma
contradi¢do com a minimalidade do B (removendo a linha e a coluna que contém esse
coeficiente, obtemos uma matriz quadrada menor B*, que ainda satisfaz det(B*) &
{0,+1,—1}). Logo, B contém dois coeficientes ndo-nulos em cada coluna. Aplicando
a condi¢do (3) acima, subtraindo as linhas com indice em M; das linhas com indice
em M; podemos ver as linhas do B sao linearmente dependentes e portanto temos
det(B) = 0, uma contradicao. |
Uma caracterizagao (i.e. um critério necessario e suficiente) das matrizes totalmente
unimodulares (sem prova) é

Teorema 7.1 (Ghouila-Houri (1962))
Um matriz A € Z™*™ é TU sse para todo subconjunto R C [m] de linhas existe uma

particdo Ry U R; tal que

1> ay— ) ayl <1 (7.1)

ieR, i€Ry
para todas colunas j € [n].

Observe que a proposigao 7.2 implica o critério acima: dado uma particao das linhas
de acordo com 7.2, para todo R C [m], a particdo (M1 NR) U (M2 N R) satisfaz (7.1).
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7. Técnicas de solugao

Definicao 7.2

Uma matriz A € {0, 1}™*™ possui a propriedade de uns consecutivos se para cada
coluna j € [n], aj; =1 e a5 =1 com i <1’ implica ayj; = 1 para k € [i,1'].

Uma aplicacao do critério de Ghouila-Houri é a

Proposigao 7.3

Uma matriz que satisfaz a propriedade de uns consecutivos é totalmente unimodular.

Prova. A matriz formada por um subconjunto de linhas R C [m] também possui a
propriedade de uns consecutivos. Seja R = {i7,...,1x} com i; < --- < 1i. A particao

em M] = {i] y 1'.3, . } e Mz = {12,14, . } satisfaz (71) |
Exemplo 7.2
A matriz

01 0 00

o1 1 11

T 0 1 1 1

10 0 1 0

10 0 0 O
do exemplo anterior satisfaz a propriedade de uns consecutivos. Logo ela é TU. O
Exemplo 7.3
Para um universo U = {uy,...,u;m}, € uma familia de conjuntos Cq,...,C,, C U
com pesos Pi,...,Pn uma cobertura é uma sele¢do de conjuntos S C [n] tal que cada

elemento do universo é coberto, i.e. para todo u € U existe um i € S com u € C;. A
problema de encontrar a cobertura de menor peso total pode ser formulado por

minimiza Z PiXi,
ien]
sujeito a Ax > 1,
x € B™.
com aij = 1 sse u; € Cj. (Figure 7.1 mostra um exemplo de uma instancia e a matriz
A correspondente.) Este problema em geral é NP-completo. Pela propriedade de uns

consecutivos, podemos ver que no caso de um universo U = [1, m] com subconjuntos
que sao intervalos o problema pode ser resolvido em tempo polinomial. %

Consequéncias
Teorema 7.2 (Hoffman e Kruskal (1956))

Se a matriz A de um programa linear é totalmente unimodular e o vetor b é inteiro,
todas solugbes basicas sao inteiras. Em particular as regioes

{x e R" | Ax < b}
{xeR"| Ax > b}
{xeR™ | Ax < b,x > 0}
{xeR™| Ax =b,x > 0}
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1T 1.0 0 0 00
100 1T 0 00
101 0 0 00
0101 00O
001 1000
00 00 1 01
0000 T1T 1O
0000011

Figura 7.1.: Exemplo de uma instancia do problema de cobertura por conjuntos a
matriz A da formulagao inteira correspondente.

possuem pontos extremos inteiros.

Prova. Consideragoes acima. |

Exemplo 7.4 (Caminhos mais curtos)

Exemplo: Caminhos mais curtos

e Dado um grafo direcionado G = (V, A) com custos ¢ : A — Z nos arcos.

e Qual o caminho mais curto entre dois nés s,t € V?

Exemplo: Caminhos mais curtos
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7. Técnicas de solugao

minimiza E CaXa,

acA
sujeito a Z Xa — Z Xq =1,
aeN+(s) aeN—(s)
Z Xa — Z Xq =0, Vv e V\{s,t},
aeN*(v) aeN—(v)
S o Y xe=,
aeN-+(t) aeN—(t)
Xq € B, Va € A.

A matriz do sistema acima de forma explicita:

t R Xay, —1

Como cada arco € incidente a dois vértices, cada coluna contém um coeficiente 1 e —1,
e a Proposicao 7.2 é satisfeito pela particao trivial § U V. O

Exemplo 7.5 (Fluxo em redes)

Exemplo: Fluxo em redes

e Dado: Um grafo direcionado G = (V, A)
— com arcos de capacidade limitada 1: A — Z™*,
— demandas d : V — Z dos vértices,
— (com d, < 0 para destino e d, > 0 nos fonte)

— e custos ¢ : A — R por unidade de fluxo nos arcos.

e Qual o fluxo com custo minimo?
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N
N

4%5/
s X

7\

Exemplo: Fluxo em redes

minimiza E CaXa,

acA

sujeito a Z Xa — Z Xq = dy, YveVv
aeN*(v) aeN—(v)
0 <xq <l1g, Va e A.

com conjunto de arcos entrantes N~ (v) e arcos saintes Nt (v).

Exemplo: Fluxo

e A matriz que define um problema de fluxo é totalmente unimodular.

e Consequéncias
— Cada ponto extremo da regiao viavel é inteira.

— A relaxacdo PL resolve o problema.

e Existem véarios subproblemas de fluxo minimo que podem ser resolvidos também,
p-ex. fluxo méximo entre dois vértices.

Exemplo 7.6 (Emparelhamentos)

EMPARELHAMENTO MAXIMO (EM)
Entrada Um grafo G = (V, E) nao-direcionado.

Solucdo Um emparelhamento M C E, i.e. um conjunto de arcos, tal que para

115



7. Técnicas de solugao

todos vértices v temos [IN(v) N M| < 1.
Objetivo Maximiza |[M]|.

Uma formulacao é

maximiza Z CeXe, (7.2)
eckE
sujeito a Z Xy < 1, Yv ey, (7.3)
ueN (v)
Xe € B.

A matriz de coeficientes dessa formulacao é TU para grafos bipartidos. Por qué? Isso
ainda é valida para grafos nao-bipartidos? %
7.3. Desigualdades validas

Desigualdades validas

e Problema inteiro
max{c*x | Ax < b,x € Z'}

e Relaxagao linear
max{c'x | Ax < b,x € R}

X2

X1

Desigualdades validas

Definicao 7.3
Uma desigualdade 7ix < 7o é vdlida para um conjunto P, se Vx € P : ix < 7.

e Como achar desigualdades (restrigoes) validas para o conjunto da solugoes viaveis
{x | Ax <b,x € Z} de um problema inteiro?
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7.3. Desigualdades vélidas

— Técnicas de construgao (p.ex. método de Chvatal-Gomory)
— Observar e formalizar caracteristicas especificas do problema.

— “The determination of families of strong valid inequalities is more of an art
than a formal methodology” Wolsey e Nemhauser 1999, p. 259

Exemplo 7.7 (Localizagao de facilidades nao-capacitado)

Temos um conjunto de cidades C = [n] em que podemos abrir facilidades para um
custo fixo fj,j € C. Em cada cidade i existe um demanda que pode ser satisfeito por
uma facilidade na cidade j com custo cij, caso existe um facilidade na cidade j. Com
xij € B indicando que a demanda da cidade i ¢ satisfeito pela facilidade na cidade j
podemos formular

minimiza Z fjy; + Z CijXijy (74)
j€] ie[nl],jemnl]
sujeito a Z Xy =1, Vi € [n], (7.5)
jemn]
Xij < Yj, Vie [Tﬂ,j S [Tl], (76)
xij € B, Vi€ [nl,j € [nl, (7.7)
y; € B, Vj € [nl. (7.8)
Ao invés de
Xij < Yj (7.9)
podemos formular
D xy <nyj. (7.10)
ien]

Essa formulacdo ainda é correto, mas usa n restricdes ao invés de n?. Entretanto,

a qualidade da relacdo linear é diferente. E simples ver que podemos obter (7.10)
somando (7.9) sobre todos i. Portanto, qualquer solugiao que satisfaz (7.9) satisfaz
(7.10) também, e dizemos que (7.9) domina (7.10).

O seguinte exemplo mostra, que o contréario nao é verdadeiro. Com custos de instalagao
f; =1, de transporte cij =5 para i #j e ci; = 0, duas cidades e uma fabrica obtemos
as duas formulagoes (sem restrigoes de integralidade)

minimiza vy +yz2 + 5x12 + 5xz1, Y1 +y2 + 5x12 + 5x21,
sujeito a x711 +x12 =1, x11 +x12 =1,
x21 +x22 =1, X21 +x22 =1,
yr+y2 <1, yrty2 <1,
x11 <Y1, x11 +x21 < 2y,
x12 < Yz,
x21 < Y1, X21 +x22 < 2y;.
x22 < Y.
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7. Técnicas de solugao

A solugdo 6tima do primeiro sistema ¢ y; = 1,x11 = x27 = 1 com valor 6, que é
a solugao Otima inteira. Do outro lado, a solucdo 6tima da segunda formulagao é
Yy = yz = 0.5 com x97 = x22 = 1, com valor 1, i.e. ficam instaladas duas “meia-
fabricas” nas duas cidades!
¢
Exemplo 7.8 (Problema do caixeiro viajante)
Na introdugao discutimos a formulacao basica do PCV
minimiza Z CijYijy
i,jEN
sujeito a Z xij = 1, Vie N, (7.11)
jEN
> xi=1, VieN, (7.12)
jEN
Xij € {O, ]}, Vi,j € N, (713)
-+ restrigdes de eliminacao de subciclos! (7.14)

Uma ideia de eliminar subciclos é a seguinte: considere um subconjunto S C N de
cidades: entre cidades em S ndo podemos selecionar mais que |S| — 1 arestas, sendo vai
formar um subciclo. Logo uma forma de eliminar subciclos é pelas restrigoes

3 xy<Isl-1, VS CN,S#0,S#N. (S1)

i,jes

Uma outra forma pode ser obtido como segue: associa um “potencial” (uma altura)
pi a cada cidade i € N e forga o sucessor de i na rota ter um potencial pelo menos
pi + 1. Isso nao pode ser satisfeito em ciclos. Para permitir um ciclo global, vamos
excluir uma cidade fixa s € S dessa restrigao. Logo, as restrigoes

P1+T1(Xij—1)+1§]3j Vi)j»i#s)j#S (SZ)

também eliminam os subciclos.
Quais restrigoes sao melhores? Considere as solugoes

Ps, ={x | x satisfaz (7.11), (7.12), (7.13), (S1)}
da primeira formulagao e as solugoes
Ps, = {x | existem valores p tal que x satisfaz (7.11), (7.12), (7.13), (S2)}

da segunda. Nao é dificil de ver que existem solugbes fracionarias x € Ps, que nao
pertencem a Ps,: um exemplo é dado na Figura 7.2.
E possivel mostrar que Ps, C Ps,. Logo a formulagao (S1) domina a formulagao (S;).

¢
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23 23 23 2/3

Figura 7.2.: Exemplo de uma solucdo fracionaria de uma instancia do PCV com 4
cidades da formulagdo Ps, que ndo é valida na formulacao Ps,. O valor
pi = 0 para todos 1 € N.

Exemplo: 0-1-Mochila

maximiza E ViXi,
]

i€n
sujeito a Z pixi <P
ie[n]
) = 7
X"L E B- hﬂ 1:5% h?ﬂ
Exemplo: 79%1 + 53x, + 53x3 + 45%x4 + 45x5 < 178. & | .
{ oy
Exemplo 7.9 (Problema da mochila) -
5

Exemplo: 0-1-Mochila

e Observagdo: Para um subconjunto S C [1,n]:
Se ) icsPi>Pentao ) ¢xi <[S|—1.

e Exemplos:

X1 +x2+x3 <2,

X1+ X2 + X4 +x5 <3
X1 +Xx3 + x4 +x5 < 3,
X2 +x3 + x4 + x5 < 3.

Um conjunto S tal ) ;. pi > P se chama uma cobertura e a desigualdades obtidos
por tais conjuntos desigualdades de cobertura (ingl. cover inequalities).

¢

Exemplo 7.10 (Emparelhamentos)
Continuando exemplo 7.6.
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Exemplo: Emparelhamentos

e Escolhe um subconjunto arbitrario de vértices U C V.
e Observagao: O numero de arestas internas ¢ < [[U|/2].

e Portanto:

Y xa < LlUl2)

acUZnNA

é uma desigualdade valida.

Observagao 7.2

(7.15)

A envoltéria convexa do problema de emparelhamentos é dado pelas restrigoes (7.3) e

(7.15) para todo conjunto U de cardinalidade impar maior que 1.

Método de Chvatal-Gomory
Dado uma restrigao

Z aixi < b

ie[n]

também temos, para u € R,u > 0 as restrigoes validas

Z uaixi <ub (multiplica¢do com u)
i€n]
Z [luai] xi < ub porque |y] <ye0<x
ie[n]
Z [luai] xi < [ub] porque o lado da esquerda é inteira
i€[n]

O

O método de Chvatal-Gomory funciona igualmente para combinagdes lineares de

1,42 ..

colunas. Com A = (a' a -a™) e u € R™ obtemos

Z luat|x; < [ub]

ie[n]

Teorema 7.3

(7.16)

Cada desigualdade valida pode ser construida através de um ntimero finito de aplica-

¢oes do método de Chvatal-Gomory (7.16).

(Uma prova do teorema encontra-se, por exemplo, em Wolsey e Nemhauser (1999,

p. I1.1.2) ou, para o caso de variaveis 0-1, em Wolsey (1998, Th. 8.4).)
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Observagao 7.3
Para desigualdades _

ie[n] QiXi = b obtemos similarmente

Z [ua'] xi > [ub]

ien]
O
Exemplo 7.11 (Problema da mochila)
A relaxacdo linear do problema da mochila acima possui as restrigoes
79%1  +53x; +53x3 +45x4 +45x5 < 178,
X1 < 1 )
X2 < 1,
X3 < 1 )
X4 S 1 )
X5 S 1 )
Com u=(1/79026/79 26/79 0 0)* obtemos a desigualdade valida
X1 +x2 +x3 < 2.
O

Exemplo 7.12 (Emparelhamentos)

e Para um U C V podemos aplicar o método de Chvatal-Gomory com u =
(1/21/2---1/2)t € RIY a5 desigualdades

Z Xuv < 1 Yvel
ueEN(v)
para obter
Z1/2 Z Xuv = Z Xa + Z ]/zxag‘u‘/z
veu UueN(v) acUznA aeN((U)

e depois aplicar os pisos com ZaEN(U) [1/2]xq =0

Y xa<LU2

acUZnA
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7.4. Planos de corte

Como usar restricées validas?

e Adicionar & formulagao antes de resolver.
— Vantagens: Resolugao com ferramentas padrao.

— Desvantagens: Numero de restrigoes pode ser muito grande ou demais.

e Adicionar ao problema se necesséario: Algoritmos de plano de corte.

— Vantagens: Somente cortes que ajudam na solugao da instancia sao usados.

Planos de corte

Problema inteiro
max{c'x | Ax < b,x € Z'}

e O que fazer, caso a relaxagao linear nao produz solugoes 6timas?

e Um método: Introduzir planos de corte.

Definigao 7.4
Um plano de corte (ingl. cutting plane) é uma restrigdo valida (ingl. valid ine-
quality) que todas solugdes inteiras satisfazem.

Algoritmo de planos de corte

Algoritmo 7.1 (Planos de corte)
Entrada Programa inteiro max{c'x | Ax < b,x € Z}.

Saida Solugdo inteira 6tima ou “Nao existe corte.”.

1 V:={x|Ax <b} { regiso viavel }
2 x*:=argmax{c'x |x € V} { resolve relaxagdo }

3 while (X" ¢Z%) do

4 if (existe corte a'x <d com a'x* >d) then

5 V:i=Vn{x|a'x<d} { nova regido viavel 1}

6 x* := argmax{c'x | x € V} { nova solugio o6tima 7
7 else

8 return "N&o existe corte."

9 end if

10 end while
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Método de Gomory

e Como achar um novo corte na linha 4 do algoritmo?

e A solucao 6tima atual é representado pelo dicionéario
z=z+) &x
j

Xi:Bi—Zainj ieB
JEN

e Se a solucao nao é inteira, existe um indice i tal que x; € Z,, i.e. by € Z..

Cortes de Chvatal-Gomory

xi = b; — Z aijxj Linha fracionaria (7.17)
JEN
xi < b; — Z laij| x; Definicao de |-] (7.18)
jeN
xy < {BlJ — Z laij] x; Integralidade de x (7.19)
jeN
0> {Bi} - Y {ayhy (7.17) — (7.19) (7.20)
JeEN
Xnpl = — {61} + Z {aylx; Nova variavel (7.21)
jeN
XTL+1 € Z+ (722)

Para solugoes inteiras, a diferenga do lado esquerdo e do lado direito na equagéo (7.19) é
inteira. Como uma solugdo inteira também satisfaz a equagéo (7.17) podemos concluir
que X1 também é inteira.

Observagao 7.4
Lembra que o parte fracionario de um nimero é definido por {x} = x— x|, sendo o piso
|x] o maior nimero inteiro menor que x. Por exemplo, {0.25} = 0.25 e {—0.25} = 0.75.
(Ver definigdo A.1 na pagina 171.) O
A solucao basica atual nao satisfaz (7.20), porque com x; = 0,j € N temos que
satisfazer ~

(5} <o

uma contradicao com a definicao de {-} e o fato que b; é fracionario. Portanto, provamos
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Proposigao 7.4

O corte (7.20) satisfaz os critérios da linha 4 do algoritmo PLANOS DE CORTE. Em
particular, sempre existe um corte e o caso da linha 8 nunca se aplica.
Exemplo 7.13
Queremos resolver o problema
maximiza x; + X2,
sujeito a —x7+3x2 <9,
]OX] S 27,
X1,X2 € Z+.

A solugao da relaxacdo linear produz a série de dicionérios
(1) z = X1 4x2 (2) z =3 +4/3%7 —1/3w;

Wi =9 +x7  —3x9 X2 =3 +1/3x; —1/3w;

W = 27 —10)(1 Wwo = 27 —]OXl
3)z =66 —4/30w, —1/3w,

X2 = 3.9 —1/301/\)2 —1/31/\)1

x1 =27 —=1/10w;
A solugdo 6tima x; = 2.7, xp = 3.9 é fracionaria. Correspondendo com a segunda
linha

X2 = 3.9 —1/30W2 —1/3W1
temos o corte
wsy =-0.9 +1/30w; +1/3w,

€ 0 novo sistema é
4) z =6.6 —4/30w; —1/3w;

X2 =3.9 —1/30w, —1/3w;

X1 =27 —1/101/\)2

wy =-0.9 +1/30wy +1/3w;
Substituindo w2 e w; no corte wz = —0.9 4+ 1/30w;, 4+ 1/3w; > 0 podemos reescrever

o corte sando as varidveis originais do sistema, obtendo x; < 3.

Esse sistema nao é mais 6timo, e temos que re-otimizar. Pior, a solugao basica atual
nao é viavell Mas como na fungao objetivo todos coeficientes ainda s@ao negativos,
podemos aplicar o método Simplex dual. Um pivo dual gera a nova solugao 6tima

(5) z =57 —=1/10w, —w;3
X2 =3 —W3
X1 =27 -1 /1 OWZ

w; =27 —1/10w, +3ws

com x; = 3 inteiro agora, mas x7 ainda fracionario. O préximo corte, que corresponde

com X7 é

(6) z =57 —=1/10w, —ws (7) z =5 —wWg  —W3
X2 =3 —W3 X2 =3 —W3
X1 =27 —1 /10W2 X1 =2 —Wy
w1 =27 —1/10w, +3ws w, =2 —wg  +3ws
wg =-—0.7 +1/10wy wy =7 410wy
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7.5. Branch-and-bound
X2

4 Segundo corte, X5 = <2-7)
3.9

Primeiro corte

X1
1 2 3 4

Figura 7.3.: Visualizacao do exemplo 7.13.

cuja solugao ¢é inteira e 6tima. (O ultimo corte inserido wqy = —0.7 + 1/10w, > 0
corresponde com x; < 2.) O

Observagao 7.5

Nosso método se aplica somente para sistemas puros (ver pagina 115) e temos que
garantir que as variaveis de folga sdo variaveis inteiras. Por isso os coeficientes de um
sistema original em forma normal tem que ser ndmeros inteiros, i.e., A € Z™*™ e
bezZ™. %

Resumo: Algoritmos de planos de corte

e O algoritmo de planos de corte, usando os cortes de Gomory termina sempre,
i.e. é correto.

e O algoritmos pode ser modificado para programas mistos.
e A técnica é considerado inferior ao algoritmos de branch-and-bound.
e Mas: Planos de corte em combinagao com branch-and-bound é uma técnica

poderosa: Branch-and-cut.

7.5. Branch-and-bound
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7. Técnicas de solugao
Branch-and-bound
Ramifica-e-limite (ingl. branch-and-bound, Land e Doig (1960))
e Técnica geral para problemas combinatoriais.
Branch and Bound is by far the most widely used tool for solving large
scale NP-hard combinatorial optimization problems. (Clausen 1999)

e Ideia bésica:

— Particiona um problema em subproblemas disjuntos e procura solugoes re-
cursivamente.

— Evite percorrer toda arvore de busca, calculando limites e cortando sub-
arvores.

e Particularmente efetivo para programas inteiras: a relaxag@o linear fornece os
limites.

Limitar

e Para cada sub-arvore mantemos um limite inferior e um limite superior.
— Limite inferior: Valor da melhor solugdo encontrada na sub-arvore.

— Limite superior: Estimativa (p.ex. valor da relaxagao linear na PI)

e Observagao: A eficiéncia do método depende crucialmente da qualidade do limite
superior.

Cortar sub-arvores
Podemos cortar ...

(1) por inviabilidade: Sub-problema ¢ inviavel.

(2) por limite: Limite superior da sub-arvore z; menor que limite inferior global z (o
valor da melhor solugdo encontrada).

(3) por otimalidade: Limite superior Z; igual limite inferior z; da sub-arvore.

Observagao: Como os cortes dependem do limite z, uma boa solugao inicial pode
reduzir a busca consideravelmente.

Ramificar

e Nao tem como cortar mais? Escolhe um né e particiona.
e Qual a melhor ordem de busca?

e Busca por profundidade
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7.5. Branch-and-bound

— V: Limite superior encontrado mais rapido.
— V: Pouca memoria (O(8d), para & subproblemas e profundidade d).
— V: Re-otimizagao eficiente do pai (método Simplex dual)

— D: Custo alto, se solugao 6tima encontrada tarde.

e Melhor solugao primeiro (“best-bound rule”)
— V: Procura ramos com maior potencial.

— V: Depois encontrar solugao 6tima, nao produz ramifica¢oes supérfluas.

e Busca por largura? Demanda de memoria é impraticavel.

Em resumo: um algoritmo de branch-and-bound consiste de quatro componentes prin-
cipais:

e Uma heurfstica que encontra uma boa solucao inicial;

e um limite inferior (no caso de minimizagéo) ou superior (para maximizacao) do
valor de um subproblema,

e uma estratégia de ramificagao, que decompoe um problema em subproblemas;

e uma estratégia de selegao, que escolhe o proximo subproblema entre os subpro-
blemas ativos.

Algoritmos B&B

Algoritmo 7.2 (B&B)
Instancia Programa inteiro P = max{c'x | Ax < b,x € Z}.

Saida Solucao inteira 6tima.

1 { usando fung8o zZ para estimar limite superior }
2 z:=— { limite inferior }

3 A:= {(P,g(P))} { nés ativos }

4 while A#0 do

5 Escolhe: (P,g(P)e A; A:=A\(Pg(P))

6 Ramifique: Gera subproblemas Pq,...,Pn.

7 for all Py, 1<i<n do

8 { adiciona, se permite melhor solugdo 1}

9 if Z(Pi) >z then

10 A = AU{(Pi,z(Pi))}

11 end if

12 { atualize melhor solug8o }

13 if (solugdo z(Pi) & viavel) then
14 ;2:Z(Pi)

15 end if

16 end for
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7. Técnicas de solugao

17 end while

Exemplo 7.14 (Aplicagdo Branch&Bound no PCV)
Considera uma aplicagdo do PCV no grafo

A arvore de backtracking completa possui 65 vértices (por nivel: 1,4,12,24,24). Usando
como limite inferior o custo atual mais o ntimero de arcos que faltam vezes a distancia
minima e aplicando branch&bound obtemos os custos parciais e limites indicados na
direita de cada vértice. Com isso podemos aplicar uma séria de cortes: busca da
esquerda para direito obtemos

e uma nova solugao 7 em 2345;
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7.5. Branch-and-bound

e um corte por limite em 235;

e um corte por otimalidade em 243;
e um corte por otimalidade em 2453;
e um corte por limite em 253;

e um corte por otimalidade em 2543;
e uma nova solucao 6 em 3245;

e um corte por otimalidade em 32;

e um corte por otimalidade em 3;

e um corte por limite em 4;

e um corte por otimalidade em 5234;
e um corte por otimalidade 5243;

e um corte por limite em 53;

e um corte por otimalidade 543.

O

Exemplo 7.15 (Escalonamento de tarefas)

Considera o problema de escalonamento 1|7 | Lax: temos n tarefas a serem executa-
das numa tnica méaquina. Cada tarefa possui um tempo de execucao p; e é disponivel
a partir do tempo 1; (release date) e idealmente tem que terminar antes do prazo d;
(due date). Caso a tarefa j termina no tempo Cj o seu atraso ¢ L = max{0, Cj — d;}.
Uma tarefa tem que ser executada sem interrup¢ao. Queremos encontrar uma sequen-
ciamento das tarefas tal que o atraso maximo é minimizado. (Observe que uma solugao
é uma permutacao das tarefas.)

Um exemplo de uma instancia com quatro tarefas é

Tarefa 1 2 3 4
Pj 4 2 6 5
Tj 0 1 3 5
d; 8 12 11 11

Uma abordagem via branch-and-bound é explorar todas permutacoes possiveis. Um
limite inferior bom para a funcao objetivo pode ser obtido como segue: o problema
sem release dates 1 || Liax possui uma solugdo simples polinomial, conhecida como
EDD (earliest due date): ordene as tarefas por due date. No nosso caso é possivel que
durante a execugdao de uma tarefa passamos o release de uma outra tarefa com due
date menor. Para considerar isso, o nosso limite inferior seré o sequenciamento obtido
pela regra EDD, permitindo interrupgoes. %
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7. Técnicas de solugao

Branch-and-bound e PI

e Problema PI (puro): {maxc'x |x € S,x € ZT}}.

e Resolve a relaxacao linear.

e Solugao inteira? Problema resolvido.

e Caso contrario: Escolhe uma variavel inteira xi, com valor b; fracionario.
e Heuristica: Variavel mais fracionaria: argmin; [{x;} — 0.5].

e Particione o problema S =S; U S, tal que

S1=Sn{xIx <|vi], S2=Sn{xIxi>[w]}

e Em particular com varidveis x; € B:

Si=Sn{x|x;=0} S;=Sn{x|xi=1}

e Preferimos formulagoes mais “rigidas”.

7.6. Notas

Clausen (1999) da uma boa introdugao em algoritmos de branch-and-bound, com mais
exemplos e exercicios. O artigo do Cook (2012) relata a historia do método. Concorde
atualmente é o melhor solver exato para o problema do caixeiro viajante. Exemplos
de solugbes e codigo aberto do solver é disponivel na sua pagina web (Cook 2011).

7.7. Exercicios

(Solugoes a partir da pagina 201.)

Exercicio 7.1 (Matrizes totalmente unimodulares)

Mostra que a seguinte generalizagao do item 2 da proposicao 7.1 é valido: Para uma
matriz arbitraria A € {—1,0,1}™*™ e uma matriz B € {—1,0,1}™*° com no méximo
um coeficiente nao-nulo em cada coluna, a matriz (A B) é TU sse a matriz A é
totalmente unimodular.

Exercicio 7.2 (Matrizes totalmente unimodulares)
Para cada um dos problemas do exercicio 6.2 decide, se a matriz de coeficientes é
totalmente unimodular.

Exercicio 7.3 (Matrizes totalmente unimodulares)
Prove ou mostre um contra-exemplo.

a) Se A ¢ totalmente unimodular, entdo (7 ) também.
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b) Se A é totalmente unimodular, entdo (A At) também.

c) Se A ¢é totalmente unimodular, entdo (7 4 ) também.

Exercicio 7.4 (Desigualdades validas (Nemhauser,Wolsey))
Uma formulacao do problema do conjunto independente maximo é

maximiza E Xy,

vev
sujeito a x +x, <1, V{u,v} € E,
Xy € B, Vv eV

Considere a instancia

Mostra que Ziem xi < 2 é uma desigualdade valida.

Exercicio 7.5 (Desigualdades validas)

7.7. Exercicios

O exemplo 7.12 mostra como obter as desigualdades validas do exemplo 7.10 usando

cortes de Gomory. Mostra como obter as desigualdades validas

ZXiS IS|—1

ies

para um S C [n] com } ;s pi > P do problema da mochila usando cortes de Gomory.

Exercicio 7.6 (Desigualdades validas)
Considere a instancia
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7. Técnicas de solugao

do problema do caixeiro viajante (os nimeros nas arestas representam os indices das
variaveis correspondentes). Mostra que

X1 +X2+X5+Xg+X7+%x0 <4

é uma desigualdade valida.

Exercicio 7.7 (Desigualdades validas)

Para cada uma das desigualdades validas do exemplo 7.9 mostra como ele pode ser
obtida via uma aplicagdo (um ndmero finito de aplica¢oes) do método de Chvatal-
Gomory (7.16).

Exercicio 7.8 (Planos de corte)

Resolve
maximiza x; + 3x2,
sujeito a —x; < -2,
x2 < 3)
—x1 —x2 < —4,
3x1 +x2 <12,
Xi S ZJr,
e

maximiza x; — 2x;,
sujeito a — 11x7 4 15x, < 60,
4x1 4 3x, < 24,
10x7 — 5% < 49,

X1,X2 € Ly,

com o algoritmo de planos de corte using cortes de Chvatal-Gomory.

Exercicio 7.9 (Desigualdades validas)
Gera uma desigualdade valida similar com a desigualdade (7.16) para a restri¢ao

Z aiXi > b.
]

ien
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8. Topicos

Outras técnicas

e Branch-and-cut.

Comega com menos restrigoes (relaxagao) e insere restrigoes (cortes) nos sub-
problemas da busca com branch-and-bound.

e Branch-and-price.

Comega com menos variaveis e insere variaveis (“geragdo de colunas”’) nos sub-
problemas da busca com branch-and-bound.
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Parte IlI.

Heuristicas
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9. Introducao

Resolucdo de Problemas

e Problemas Polinomiais
1. Programagao Din&mica
2. Divisao e Conquista

3. Algoritmos Gulosos

e Problemas Combinatoérios

— Técnicas Exatas: Programacao Din&mica, Divisao e Conquista backtrac-
king, branch & bound

— Programagao nao-linear: Programacao semi-definida, etc.
— Algoritmos de aproximacao: garantem solucao aproximada

— Heuristicas e metaheuristicas: raramente provéem aproximacao

Heuristicas

e O que é uma heuristica?

Practice is when it works and nobody knows why. Grego heurisko: eu acho,

e Qualquer procedimento que resolve um problema eu descubro.

— bom em média
— bom na pratica (p.ex. Simplex)

— nao necessariamente comprovadamente.

e Nosso foco
— Heuristicas construtivas: Criar solugoes.

— Heuristicas de busca: Procurar solugoes.

Heuristicas de Construcdo

e Constréoem uma solugdo, escolhendo um elemento a ser inserido na solugao a
cada passo.

e Geralmente sao algoritmos gulosos.

e Podem gerar solugoes infactiveis.
— Solugao infactivel: nao satisfaz todas as restricoes do problema.

— Solugao factivel: satisfaz todas as restri¢goes do problema, mas nao é neces-
sariamente 6tima.
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9. Introdugao

Exemplo: Heuristica construtiva

e Problema do Caixeiro Viajante (PCV) — Heuristica do vizinho mais préximo.

Algoritmo 9.1 (Vizinho mais préximo)
Entrada Matriz de distancias completa D = (di;), nimero de cidades n.

Saida Uma solucéo factivel do PCV: Ciclo Hamiltaneo C com custo c.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

HVizMaisProx(D,n)=

{ cidade inicial randémica }

u:= seleciona uniformemente de [I,n]

wi=u

{ representagdo de caminhos: sequéncia de vértices }
C:=u { ciclo inicial }

c:=0 { custo do ciclo }

repeat n—1 vezes
seleciona v¢ C com distlncia minima de u

C:=Cv
c:=c+ du
u=v

end repeat

C:=Cw { fechar ciclo }
c:=c+ duw

return (C,c)

Meta-heuristicas

e Heuristicas genéricas: meta-heuristicas.

Motivacdo: quando considera-se a possibilidade de usar heuristicas

e Para gerar uma solugao factivel num tempo pequeno, muito menor que uma
solugao exata pudesse ser fornecida.

e Para aumentar o desempenho de métodos exatos. Exemplo: um limitante supe-
rior de um Branch-and-Bound pode ser fornecido por uma heuristica.

Desvantagens do uso de heuristicas

e No caso de metaheuristicas, nao ha como saber o quao distante do 6timo a
solugao esta.

e Nao hé garantia de convergéncia.

e Dependendo do problema e instancia, nao ha como garantir uma solugao 6tima.

138



Problema de otimizacdo em geral
e Um problema de otimizagao pode ser representado por uma quadrupla
(L, S, f, obj)

— I é o conjunto de possiveis instancias.

S(1) é o conjunto de solugoes factiveis (espago de solugoes factiveis) para a
instancia 1i.

— Uma fungao objetivo (ou fitness) f(-) avalia a qualidade de uma dada solu-
Gao.

— Um objetivo obj = min ou max: s* € S para o qual f(s*) seja minimo ou
maximo.

e Alternativa
optimiza f(x),

sujeitoa x € S.

e S discreto: problema combinatorial.

Técnicas de solucdo
e Resolver o problema nessa geralidade: enumeracgao.
e Frequentemente: Uma solugao x € S possui uma estrutura.
e Exemplo: x é uma tupla, um grafo, etc.

e Permite uma enumeragao por componente: branch-and-bound.

139






10. Heuristicas baseadas em Busca local

10.1. Busca local
Busca Local

e Frequentemente: O espago de solugdes possui uma topologia.

e Exemplo da otimizagdo (continua): max{x? +xy | x,y € R}

XFX+XRY

e Espaco euclidiano de duas dimensoes.

e Isso podemos aproveitar: Busca localmente!

Vizinhancas
e O que fazer se nao existe uma topologia natural?
e Exemplo: No caso do PCV, qual o vizinho de um ciclo Hamiltaneo?
e Temos que definir uma vizinhanca.

Notacao: Para x € S, escrevemos N (x) para o conjunto de solucoes vizinhas.

Uma vizinhanca defina a paisagem de otimizagao (ingl. optimization landscape):
Espaco de solugoes com valor de cada solugao.
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Relacdo de vizinhanca entre solugcdes

e Uma solucao s’ é obtida por uma pequena modificacao na solucgao s.
e Enquanto que S e f sao fornecidos pela especificagao do problema, o projeto da

vizinhanga ¢é livre.

Busca Local k-change e insercao

e k-change: mudancga de k componentes da solugao.

e Cada solucio possui vizinhanca de tamanho O(nk).
e Exemplo: 2-change, 3-change.

e TSP: 2-change (inversio).

e Inser¢do/remocao: insergdo de um componente da solugao, seguido da factibili-
zagao da solucao

e Vertex cover: 1-change + remocao.

Exemplo: Vizinhanca mais elementar

e Suponha um problema que possue como solugoes factiveis S = B™ (por exemplo,
uma instancia do problema de particionamento de conjuntos).

e Entdo, paran = 3 e so={0,1,0}, para uma busca local 1-flip, N(so) = {(1,1,0), (0,0,0), (0,1,1)}.

Exemplo: Vizinhancas para TSP

e 2-opt: Para cada par de arcos (uq,vq) e (u2,Vv2) ndo consecutivos, remova-os da
rota, e insira os arcos (wy,uz) e (v1,v2).

e Para uma solugdo s e uma busca k-opt [N (s)| € O(n¥).

Caracteristicas de vizinhancas
E desejavel que uma vizinhanca é

o simétrica (ou reversivel)

yeNkx)=xeNy)

e conectada (ou completa)

Vx,y € S: Jz1,...,zk €S: z1 € N(x),
ziy1 € N(zy), 1<i<k,
y € N(zy).
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10.1. Busca local

Busca Local: ldeia

e Inicia a partir de uma solugao sg
e Se move para solugoes vizinhas melhores no espago de busca.
e Para, se nao tem solugoes melhores na vizinhanga.

e Mas: Repetindo uma busca local com solugoes inicias randoémicas, achamos o
minimo global com probabilidade 1.

Exemplo 10.1 (Método Simplex)
O método Simplex pode ser visto como busca local no espago de vértices com uma
vizinhanca definido por arestas no politopo. %

Busca local — Caso continuo

Algoritmo 10.1 (Busca local continua)
Entrada Solugdo inicial so € R™, tamanho inicial &« de um passo.

Saida Solugdo s € R™ tal que f(s) < f(so).
Nome Gradient descent.

1 BuscalLocal(sg,a)=
S =980
while Vf(s)#0 do
s’ :=s— aVIf(s)
if f(s’) < f(s) then
s:=s’
else
diminui «
end if
end while
return s

O © 00O Uik Wi

—_ =

Busca local — Caso continuo

Ve(x) = ( of (x),...,“(x)>

o Gradiente

E OXn

sempre aponta na dire¢do do crescimento mais alto de f (Cauchy).

e Necessario: A funcao objetivo f é diferenciavel.
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10. Heuristicas baseadas em Busca local

e Diversas técnicas para diminuir (aumentar) o.

e Opgao: Line search na diregdo —Vf(x) para diminuir o ntimero de gradientes a
computar.

Busca Local — Best Improvement

Algoritmo 10.2 (Busca Local BI)
Entrada Solugéo inicial sg.

Saida Solugao s tal que f(s) < f(sp).
Nomes Steepest descent, steepest ascent.

1 Buscalocal (sg)=

$:=S8p

while true
s’ = argmin,{f(y) |y € N(s)}
if f(s’) < f(s) then s:=s’
else break

end while

return s

0 O U W

Busca Local — First Improvement

Algoritmo 10.3 (Busca Local FI)
Entrada Solugéo inicial sg.

Saida Solucgao s’ tal que f(s’) < f(s).
Nomes Hill descent, hill climbing.

1 BuscalLocal(sg)=

2 $:=Sp

3 repeat

4 Select any s’ €MN(s) not yet visited

5 if f(s’) < f(s) then s:=s’

6 until all solutiomns in MN(s) have been visited
7 return s
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10.1. Busca local

Projeto de uma busca local

e Como gerar uma solugao inicial? Aleatoria, via método construtivo, etc.

e Quantas solugoes inicias devem ser geradas?

Importante: Definicao da funcao de vizinhanca N.

Vizinhanga grande ou pequena? (grande= muito tempo e pequena—menos vizi-
nhos)

Estratégia de selecao de novas solugoes
— examine todas as solugoes vizinhas e escolha a melhor

— assim que uma solugao melhor for encontrada, reinicie a busca. Neste caso,
qual a sequéncia de solucbes examinar?

Importante: Método eficiente para avaliar a funcao objetivo de vizinhos.

Exemplo: 2-change TSP
e Vizinhanca: Tamanho O(n?).
e Avaliagdo de uma solugao: O(n) (somar n distancias).
e Atualizando a valor da solugao atual: O(1) (somar 4 distancias)

e Portanto: Custo por iteracao de “best improvement”
— O(n?) sem avaliaco diferential.

— O(n?) com avaliacao diferential.

Avaliacdo de buscas locais
Como avaliar a busca local proposta?

e Poucos resultados teéricos.
e Dificil de saber a qualidade da solugdo resultante.

e Depende de experimentos.

Problema Dificil

e E facil de gerar uma solucio aleatoria para o TSP, bem como testar sua factibi-
lidade

e Isso nao é verdade para todos os problemas

e Exemplo dificil: Atribuigdo de pesos a uma rede OSPF
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10. Heuristicas baseadas em Busca local

Busca local

e Desvantagem obvia: Podemos parar em minimos locais.

e Exceto: Fungdo objetivo convexa (caso minimizagao) ou concava (caso maximi-
zagao).
e Técnicas para superar isso baseadas em busca local
— Multi-Start

Busca Tabu

Valor

Algoritmos Metropolis e Simlated Annealing
/ — Variable neighborhood search

Multi-Start Metaheuristic

Solucéo

Gera uma solugao aleatoria inicial e aplique busca local nesta solugao.

e Repita este procedimento por n vezes.

Retorne a melhor solugao encontrada.

Problema: solugoes aleatoriamente geradas em geral possuem baixa qualidade.

Multi-Start
Algoritmo 10.4 (Multi-Start)
Entrada Numero de repetigoes n.

Saida Solucao s.

1 Multi_Start(n) :=

2 s*:=10

3 f* 1 =00

4 repeat m vezes

5 gera solugdo randdmica s
6 s := Buscal.ocal(s)
7 if f(s) <f* then
8 s*i=s

9 f* = f(s)

10 end if

11 end repeat

12 return s*

146



10.2. Metropolis e Simulated Annealing

Cobrimento de Vértices

Definicao de vizinhanga

e grafo sem vértices

grafo estrela

clique bipartido Kj ;

grafo linha

10.2. Metropolis e Simulated Annealing

O algoritmo Metropolis

e Proposto em 1953 por Metropolis, Rosenbluth, Rosenbluth, Teller e Teller

e Simula o comportamento de um sistema fisico de acordo com a mecéanica esta-
tistica
e SupoOe temperatura constante

— Um modelo basico define que a probabilidade de obter um sistema num
estado com energia E é proporcional a funcao e~ ®/%T de Gibbs-Boltzmann,
onde T > 0 é a temperatura, e k > 0 uma constante

— a funcdo é monotoénica decrescente em E: maior probabilidade de estar em
um sistema de baixa energia

— para T pequeno, a probabilidade de um sistema estar num estado de baixa
energia é maior que ele estar num em estado de alta energia

— para T grande, a probabilidade de passar para outra configuragao qualquer
do sistema é grande

A distribuicdo de Boltzmann
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1.2 T
exp(-x/0.1) ——
exp(-x/2) ——
1 exp(-x/10) —— |
exp(-x/20) ——
exp(-x/500) ——
0.8 —
0.6 .
0.4 —
0.2 - —
0
0 2 4 6 8 10

Algoritmo Metropolis

Estados do sistema sao solugoes candidatas

A energia do sistema é representada pelo custo da solugao

Gere uma perturbagao na solugao s gerando uma solugao s’.

Se E(s’) < E(s) atualize a nova solugao para s’.

Caso contrario, AE = E(s’) — E(s) > 0.

—AE/KT

A solugao s’ passa ser a solugao atual com probabilidade e

Caracteristica marcante: permite movimentos de melhora e, com baixa probabi-
lidade, também de piora

Metropolis

Algoritmo 10.5 (Metropolis)
Entrada Uma solugdo inicial s e uma temperatura T.

Saida Solugao s’ com c(s’) < c(s)
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1 Metropolis(s, T, k)=

2 do
3 seleciona s’ € N(s) aleatoriamente
4 seja A:=c(s’)—c(s)



10.2. Metropolis e Simulated Annealing

5 if A<O0 then

6 atualiza s:=s’

7 else

8 atualiza s:=s’ com probabilidade e T
9 end if

10 until critério de parada satisfeito

11 return s

Observagao 10.1
Para T — oo o algoritmo executa um passeio aleatério no grafo das solugbes com a
vizinhanga definida. Para T — 0 o algoritmo se aproxima a uma busca local. O

Simulated Annealing

e Simula um processo de recozimento.

e Recozimento: processo da fisica que aquece um material a uma temperatura bem
alta e resfria aos poucos, dando tempo para o material alcangar seu estado de
equilibrio

e Recozimento simulado: parte de uma alta temperatura e baixa gradualmente.
Para cada temperatura, permite um namero méaximo de saltos (dois lagos enca-
deados)

Simulated Annealing

Algoritmo 10.6 (Simulated Annealing)
Entrada Solugdo inicial s, temperatura T, fator de esfriamento r € (0, 1), namero
inteiro 1.

Saida Solucao s’ tal que f(s’) < f(s).

1 SimulatedAnnealing(s, T, k, v, ID :=

2 repeat sistema ‘‘esfriado’’

3 repeat [ vezes

4 seleciona s’ € N(s) aleatoriamente
5 seja A:=c(s’)—c(s)

6 if A<O0 then

7 s:=s’

8 else

9 s:=s' com probabilidade e 4/T:
10 end fi

11 end repeat
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Figura 10.1.: Mauricio G. C.
Resende

10. Heuristicas baseadas em Busca local

12 T:=1T
13 end repeat
14 return s

Determinando uma temperatura inicial e final adequada é importante para nao gastar
tempo desnecessario com temperaturas em que o algoritmo se comporta como passeio
aleatorio ou busca local.

Exemplo 10.2 (Temperatura inicial)
Define uma probabilidade p;. Executa uma versao rapida (I pequeno) do algoritmo
para determinar uma temperatura inicial tal que um movimento é aceito com proba-

bilidade p;. O

Exemplo 10.3 (Temperatura final)

Define uma probabilidade p¢. Para cada nivel de temperatura em que os movimen-
tos foram aceitos com probabilidade menos que ps incrementa um contador. Zera o
contador caso uma nova melhor solugao é encontrada. Caso o contador chega em 5,
termina. O

10.3. GRASP
GRASP

e GRASP: greedy randomized adaptive search procedure
e Proposto por Mauricio Resende ¢ Thomas Feo (1989).

e Mauricio Resende: Pesquisador da AT&T, Departamento de Algoritmos e Oti-
mizacao

GRASP

e Método multi-start, em cada iteragao
1. Gera solugbes com um procedimento guloso-randomizado.

2. Otimiza as solugoes geradas com busca local.

Algoritmo 10.7 (GRASP)
Entrada Parametro «.

Saida A melhor solu¢do encontrada.

1 GRASP(«x, ...)=
2 s & alguma solugéo
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10.3. GRASP

do

s’ := Guloso — Randomizado( )

s’ := BuscalLocal(s’)

s:=s’ if f(s’) < f(s)
until critério de parada satisfeito
return s

0O Ut W

Construcado gulosa-randomizada

e Motivacao: Um algoritmo guloso gera boas solugoes inicias.
e Problema: Um algoritmo deterministico produz sempre a mesma solucao.

e Logo: Aplica um algoritmo guloso, que nao escolhe o melhor elemento, mas
escolhe randomicamente entre os % melhores candidatos.

e O conjunto desses candidatos se chama restricted candidate list (RCL).

Construcao gulosa-randomizada: Algoritmo guloso

Guloso () :=
S:=()

while S =(s7,...,8i) com i<n do
entre todos candidatos C para sj;7:
escolhe o melhor s C
S:=(s71,...,8i,8)
end while

Construcao gulosa-randomizada: Algoritmo guloso

Guloso-Randomizado () :=

S=0

while S =(s7,...,8i) com i<n do
entre todos candidatos C para sj;7:
forma a RCL com os «\)% melhores candidatos em C
escolhe randomicamente um s &€ RCL
S:=(s71,...,8i,8)
end while

GRASP
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Algoritmo 10.8 (GRASP)
Entrada Parametro «.

Saida Uma solugao s*.

1 GRASP(«x)=

2 do

3 y := Guloso — Randomizado(«)

4 Yy := BuscalLocal(y)

5 atualiza a melhor solug8o s*

6 until critério de parada satisfeito
7 return s*

GRASP: Variacoes
e long term memory: hash table (para evitar otimizar solugdes ja vistas)
e Parametros: so, N (x), o € [0,1] (para randomizagio), tamanho das listas (conj.
elite, rcl, hash table), ntumero de iteragoes,
GRASP com memodria
e O GRASP original ndo havia mecanismo de memoria de iteragoes passadas

e Atualmente toda implementacao de GRASP usa conjunto de solugoes elite e
religagdo por caminhos (path relinking)

Conjunto de solucoes elite: conjunto de solugoes diversas e de boa qualidade

— uma solugao somente é inserida se for melhor que a melhor do conjunto ou
se for melhor que a pior do conjunto e diversa das demais

— a solucgao a ser removida é a de pior qualidade

Religagao por Caminhos: a partir de uma solucao inicial, modifique um elemento
por vez até que se obtenha uma solugao alvo (do conjunto elite)

e solugoes intermediarias podem ser usadas como solugoes de partida

Comparacdo entre as metaheuristicas apresentadas
e Metaheuristicas: Simulated annealing (SA), Multi-Start Search (MS), GRASP

e SA tem apenas um ponto de partida, enquanto que os outros dois métodos testa
diversos

e SA permite movimento de piora, enquanto que os outros dois métodos nao

e SA ¢é baseado em um processo da natureza, enquanto que os outros dois nao
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10.4. Busca Tabu

Busca Tabu (Tabu Search)

e Proposto por Fred Glover em 1986 (principios basicos do método foram propostos
por Glover ainda em 1977)

e Professor da Universidade do Colorado, EUA

Busca Tabu (BT)

. . . , . . Fi 10.2.:  Fred Gl
e Assim como em simulated annealing (SA) e VNS, TB é baseada inteiramente no (;%1;?) ¢ over

processo de busca local, movendo-se sempre de uma solugao s para uma solugao

Sl

e Assim com em SA, também permite movimentos de piora

e Diferente de SA que permite movimento de piora por randomizagao, tal movi-
mento na BT é deterministico

e A base do funcionamento de Busca Tabu é o uso de memoéria segundo algumas
regras

e O nome Tabu tem origem na proibigao de alguns movimentos durante a busca

Busca Tabu (BT)

e Mantém uma lista T de movimentos tabu

e A cada iteracdo se move para o melhor vizinho, desde que nao faga movimentos
tabus

e Permite piora da solu¢do: o melhor vizinho pode ser pior que o vizinho atual!

e Sao inseridos na lista tabu elementos que provavelmente nao direcionam a busca
para o 6timo local desejado. Ex: dltimo movimento executado

e o tamanho da lista tabu é um importante pardmetro do algoritmo

e Critérios de parada: quando todos movimentos sao tabus ou se x movimentos
foram feitos sem melhora
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Busca Tabu: Conceitos Basicos e notacao

e s: solugao atual

s*: melhor solugao

e f*: valor de s*

e N (s): Vizinhanca de s.

N (s) € N(s): possiveis (ndo tabu) solugoes vizinhas a serem visitadas
Solugoes: inicial, atual e melhor
Movimentos: atributos, valor

Vizinhanga: original, modificada (reduzida ou expandida)

Movimentos Tabu

Um movimento é classificado como tabu ou ndo tabu pelas regras de ativag¢io
tabu

em geral, as regras de ativacao tabu classificam um movimento como tabu se o
movimento foi recentemente realizado

Memoria de curta duragao (MCD) - também chamada de lista tabu: usada para
armazenar os movimentos tabu

duragao tabu (tabu tenure) é o namero de iteragbes em que o movimento per-
maneceréd tabu

dependendo do tamanho da MCD um movimento pode deixar de ser tabu antes
da duracao tabu estabelecida

A MCD em geral é implementada como uma lista circular
O objetivo principal da MCD ¢ evitar ciclagem e retorno a solugdes ja visitadas

os movimentos tabu também colaboram para a busca se mover para outra parte
do espaco de solugoes, em direcao a um outro minimo local

Busca Tabu

Algoritmo 10.9 (BuscaTabu)
Entrada uma solugéo s

Saida uma solugao s’ : f(s’) < f(s)
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10.4. Busca Tabu

Inicializagédo:
s:=Sp; f :i=1f(sp); s :=s0 ; T:=0
while critério de parada ndo satisfeito

s/ := seleciona s’ € N(s) com min f(s)

if f(s)<f* then
f*:=1(s); s*:=s
insira movimento em T (a lista tabu)
end while

© 00 O U W

Busca Tabu (BT)

e critérios de parada:
— namero de iteragoes (Nmax)
— numero interagoes sem melhora
— quando s* atinge um certo valor minimo (méximo) estabelecido

e Um movimento ndo é executado se for tabu, ou seja, se possuir um ou mais
atributos tabu-ativos

e Pode ser estabelecida uma regra de uso de um movimento tabu (critério de
aspiragao)

— Critério de aspiracao por objetivo: se 0 movimento gerar uma solugao me-
lhor que s*, permite uso do movimento tabu

— Critério de aspiracao por dire¢ao: o movimento tabu é liberado se for na
dire¢ao da busca (de melhora ou piora)

Busca Tabu: mecanismos auxiliares

e intensificagao: a idéia é gastar mais “esforco” em regides do espago de busca
que parece mais promissores. Isso pode ser feito de diversas maneiras (exemplo,
guardar o namero de interagoes com melhora consecutiva). Nem sempre este a
intensificacao traz beneficios.

e Diversificagao: recursos algoritmicos que forcam a busca para um espago de
solugoes ainda nao explorados.

— uso de memoria de longo prazo (exemplo, ntimero de vezes que a inserc¢ao
de um elemento provocou melhora da solugao)

— Estratégia basica: forcar a insercao de alguns poucos movimentos pouco
executados e reiniciar a busca daquele ponto

— Estratégia usada para alguns problemas: permitir solugoes infactiveis du-
rante algumas interagoes
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Figura 10.3.: Pierre Hansen

10. Heuristicas baseadas em Busca local

Busca Tabu: variacées

e Virias listas tabus podem ser utilizadas (com tamanhos, duracao, e regras dife-
rentes)

e BT probabilistico: os movimentos sao avaliados para um conjunto selecionado
aleatoriamente N'(s) € N(s). Permite usar uma lista tabu menor, acontece
menos ciclagem.

e A duragao tabu pode variar durante a execugao

Comparacao entre as metaheuristicas apresentadas até entdo

e Metaheuristicas: Simulated annealing (SA), Multi-Start Search (MSS), GRASP,
BT

e SA e BT tém apenas um ponto de partida, enquanto que os outros dois métodos
testa diversos

e SA e BT permitem movimentos de piora, enquanto que os outros dois métodos
nao

e SA é baseado em um processo da natureza, enquanto que os outros métodos nao

Parametros e decisdes das metaheuristicas

e SA:

— Parametros: temperatura inicial, critério de parada, variavel de resfria-
mento

— Decisoes: vizinhanga, solucao inicial
e GRASP:

— Parametros: sp, N(x), o« €[0,1] (para randomizagio), tamanho das listas
(conj. elite, rcl, hash table), critério de parada

— Decisoes: vizinhanga, solugao inicial (s¢), randomizagio da so, atualizagdes
do conjunto elite

e BT:
— Parametros: tamanho da lista tabu, critério de parada
— Decisoes: vizinhaga, critérios para classificar movimento tabu

10.5. Variable Neighborhood Search

Variable Neighborhood Search
e Pierre Hansen e Mladenovié¢, 1997

e Hansen é Professor na HEC Montréal, Canadé
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10.5. Variable Neighborhood Search

Variable Neighborhood Search

e Método que explora mais que uma vizinhanca.

e Explora sistematicamente as seguintes propriedades:

— O minimo local de uma vizinhanga ndo é necessariamente minimo para
outra vizinhanca

— Um minimo global é um minimo local com respeito a todas as vizinhangas

— Para muitos problemas, os minimos locais estao localizados relativamente
proximos no espago de busca para todas as vizinhangas

Os métodos usando k vizinhancas N7,..., N sempre voltam a usar a primeira vizi-
nhanga, caso um movimento melhora a solugao atual. Caso contrario eles passam para
proxima vizinhanca. Isso é o movimento basico:

Algoritmo 10.10 (Movimento)
Entrada Solucao atual s, nova solugéo s’, vizinhanga atual k.

Saida Uma nova solugédo s e uma nova vizinhanga k.

1 Movimento(s,s’,k) :=
if f(s’) < f(s) then
s:=s’
k=1
else
ki=k+1
end if
return (s,k)

0 O UL Wi

Com isso podemos definir uma estratégia simples, chamada Variable Neighborhood
Descent (VND).

Algoritmo 10.11 (VND)
Entrada Solucao inicial s, conjunto de vizinhangas A, i € [m].

Saida Solucao s.

1 VND(s,{NiD=
k=1

encontra o melhor vizinho s’ em Ny(s)

2
3
4
5 while k<m
6
7 (s,k) :== Movimento(s,s’, k)
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8 end while

9 return s

Uma versao randomizada é o reduced variable neighborhood search.

Algoritmo 10.12 (rVNS)
Entrada Solugao inicial s, conjunto de vizinhangas A, i € [m].

Saida Solucao s.

1 rVNS(s,{NMiD)=
2 until critério de parada satisfeito
k:=1
while k<m do
seleciona vizinho aleatério s’ em Ny(s) { shake }
(s, k) := Movimento(s, s’, k)
end while
end until
return S

© 00~ O O W

Uma combinacao do rVNS com uma busca local é o Variable Neighborhood Search
(VNS) basico.

Algoritmo 10.13 (VNS)
Entrada Solugao inicial s, um conjunto de vizinhancas N, 1 € [m].

Saida Solucao s.

1 VNS(s,{NMiD=

2 until critério de parada satisfeito

3 k:=1

4 while k<m do

5 seleciona vizinho aleatério s’ em Ny(s) { shake }
6 s’ := BuscaLocal (s’)

7 (s,k) := Movimento(s, s”, k)

8 end until

9 return s

Observagao 10.2
A busca local em VNS pode usar uma vizinhanga diferente das vizinhangas que per-
turbam a solugao atual. Também é possivel usar o VND no lugar da busca local.

¢
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10.6. Algoritmo Guloso Iterado

Algoritmos de construgao repetida independente como GRASP e Multi-Start criam di-
versas solugoes durante a execucao, mas nao utilizam a informagao obtida por iteragoes
anteriores para ajudar na composi¢ao de novas solugoes. O algoritmo guloso iterado
proposto por Ruiz e Stiitzle (2007) utiliza parte da solugao encontrada anteriormente
para tentar achar uma nova solucao melhor.

O algoritmo guloso iterado cria uma solucao inicial e iterativamente destroi e reconstroi
solugoes de forma a gerar solugoes novas. A cada etapa parte da solugao é removida.
tornando a solugao parcial, entao o algoritmo gera uma nova solugao completa de forma
gulosa & partir dessa solucao parcial. Uma vez gerada a solugao nova verificamos se
a solugdo sera aceita ou descartada. Caso ela seja melhor que a solugdo atual ela é
aceita, caso seja pior é aceita com chance dada pela perda de qualidade utilizando o
critério de Metropolis. O pseudo-codigo esta no Algoritmo 10.14.

Algoritmo 10.14 (Busca Gulosa Iterada)
Entrada: Numero de repeti¢oes n, temperatura T, uma solugao inicial s.

Saida: Melhor solugao encontrada s*.

1 IG(s):=

2 s*=s

3 for n vezes

4 s'=s

5 Destréi parte de s

6 Reconstrdéi s’ gulosamente.
7 A =f(s") —1(s)

8 if A<O0 then

9 s=s

10 if f(s) < f(s*) then

11 s*=s

12 else

13 s=s com probabilidade e T
14 end if

15 end for

16 return s*

No algoritmo utilizamos um niimero fixo de iteragoes mas podemos utilizar a qualidade
da solugao ou o tempo de execugao como critério de parada. Note que utilizamos o a
mesma estratégia que o algoritmo de Metropolis para permitir solugoes a transicao para
solugbes qualidade pior que a anterior, entretanto néo utilizamos resfriamento (como
utilizado na Témpera Simulada). A destruicao e reconstrugao em sequencia podem ser
consideradas uma perturbacao da solucao atual, pois podemos ter uma solu¢ao nova
de qualidade melhor ou pior, portanto pode ser 1til colocar algum método de melhoria,
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como uma busca local, ap6és a reconstrugao.

No caso do caixeiro viajante podemos fazer a destruicdo removendo um ndmero cons-
tante de arestas aleatérias do ciclo hamiltoniano, e a reconstrugao com a heuritica
do vizinho mais préoximo. No caso da max-SAT podemos tornar alguns bits aleato-
rios nao definidos para destruir parte da solugao, entao construimos uma nova solugao
completa re-definindo estes bit em (ordem aleatoria), cada vez maximizando o ntimero
de clausulas satisfeitas.
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11. Heuristicas inspirados da natureza

11.1. Algoritmos Genéticos e meméticos

Algoritmos Genéticos

e Proposto na década de 60 por Henry Holland.

e Professor da Faculdade de Engenharia Elétrica e de Computagao da Universidade
de Michigan/EUA.

e Seu livro: Adaptation in Natural and Artificial Systems (1975).

Algoritmos genéticos

. L. . . . Figura 11.1.: John Henry Hol-
e Foi proposto com o objetivo de projetar software de sistemas artificiais que re-  Janq (*1929,12015)

produzem processos naturais.
e Baseados na evolugao natural das espécies.
e Por Darwin: individuos mais aptos tém mais chances de perpetuar a espécie.
e Mantém uma populagao de solugoes e nao uma tnica solugao por vez.
e Usa regras de transicao probabilisticas, e nao deterministicas.

e Procedimentos: avaliagdo, selegio, geragido de novos individuos (recombinagéo),
mutacao.

e Parada: ntimero x de geracoes total, nimero y de geragoes sem melhora.
Algoritmos genéticos: Caracteristicas

e Varias solugoes (“populagao”).
e Operagoes novas: Recombinagao e mutagao.

e Separagao da representacgao (“genodtipo”) e formulagao “natural” (fendtipo).
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Algoritmos Genéticos: Noc¢oes

e Genes: Representagdo de um elemento (bindrio, inteiro, real, arco, etc) que
determine uma caracteristica da solucao.

Alelo: Instancia de uma gene.

e Cromossomo: Uma string de genes que compoem uma solugao.

Genotipo: Representagao genética da solugdo (cromossomos).

Fenotipo: Representacao “fisica” da solugao.

Populagao: Conjunto de cromossomos.

Algoritmos genéticos: Representacdo e Solucdo

Representacao Solucao
Al S
mapeamento O
[O[1[I[I[I[0[0o[0o[1[0[1[I[o[o] — P _— L
N _ ? \ ©
~” /
cromossomo

gene com alelos 0,1

Algoritmos Genéticos: exemplos

e Problema de partigao de conjuntos
Alelos: Oou 1
Cromossomo: 0001101010101011110110

e Problema do Caixeiro viajante
Alelos: valores inteiros entre 1 e n
Cromossomo: 15368247

Procedimentos dos Algoritmos Genéticos

e Codificacao: genes e cromossomos.

Initializagao: geragao da populagao inicial.

Fungao de Avaliagao (fitness): fungdo que avalia a qualidade de uma solugao.

Selegao de pais: selecao dos individuos para crossover.

Operadores genéticos: crossover, mutagao

Parametros: tamanho da populagao, percentagem de mutacao, critério de parada
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Algoritmos Genéticos

Algoritmo 11.1 (AlgoritmoGenético)
Entrada Parametros do algoritmo.

Saida Melhor solugdo encontrada para o problema.

—_
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Inicializagdo e avaligdo inicial
while (critério de parada n8o satisfeito) do
repeat
if (critério para recombinag8o) then
selecione pais
recombina e gera um filho
end if
if (critério para mutag8o) then
aplica mutacgéo
end if
until (descendentes suficientes)
selecione nova populacgéo
end while

Populacao Inicial: geracao

e Solugoes aleatorias.

e Método construtivo (ex: vizinho mais proximo com diferentes cidades de par-

tida).

e Heuristica construtiva com perturbagoes da solugao.

e Pode ser uma mistura das opgoes acima.

Populacio inicial: tamanho

Populagao maior: Custo alto por iteragao.
Populagao menor: Cobertura baixa do espago de busca.

Critério de Reeves: Para alfabeto binario, populagao randémica:
Cada ponto do espago de busca deve ser alcancavel através de recombinagoes.

Consequencia: Probabilidade que cada alelo é presente no gene i: 1 —21"™.
Probabilidade que alelo é presente em todos gene: (1 —2'-™)L

Exemplo: Com 1 =50, para garantir cobertura com probabilidade 0.999:

n>1-log, (1 _ %Y 0.999) ~16.61
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Figura 11.2.: Recombinagao
em um ponto.

11. Heuristicas inspirados da natureza,

Terminacao
e Tempo.
e Numero de avaliacoes.
e Diversidade. Exemplo: Cada gene é dominado por um alelo, i.e. 90% dos indi-
viduos tem o mesmo alelo.
Préoxima Geracao

e Gerada por recombinagdo e mutagao (solugoes aleatorias ou da populacdo ante-
rior podem fazer parte da proxima geragao).

Estratégias:
— Recombinagao e mutagao.

— Recombinacao ou mutagao.

Regras podem ser randomizadas.

e Exemplo: Taxa de recombinacao e taxa de mutacao.

Exemplo: Numero de genes mutados.

Mutacdo

e Objetivo: Introduzir elementos diversificados na populagao e com isso possibilitar
a exploracao de uma outra parte do espaco de busca.

e Exemplo para representacao binaria: flip de k bits.

e Exemplo para o PCV: troca de posicao entre duas cidades.

Recombinacio

e Recombinagao (ingl. crossover): combinar caracteristicas de duas solugoes para
prover uma nova solugao potencialmente com melhor fitness.

e Explora o espago entre solugoes.
e Crossover classicos: one-point recombinacao e two-points recombinagao.
One-point crossover

Escolha um numero aleatério k entre 1 e n. Gere um filho com os primeiros k bits do
pai A e com os ultimos n — k bits do pai B

e Problema de particagao: aplicacao direta do conceito

e Problema do Caixeiro Viajante: copie os primeiros k elementos do pai A e as
demais n — k posicoes preenche com as cidades faltantes, segundo a ordem em
que elas aparecem no pai B
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11.1. Algoritmos Genéticos e meméticos

Recombinacédo de dois pontos
Exemplo: Strategic Arc Crossover

e Selecione todos os pedagos de rotas (string) com 2 ou mais cidades que sdo iguais

nas duas solugoes
e Forme uma rota através do algoritmo de vizinho mais préximo entre os pontos
extremos dos strings

. - ~ . Figura 11.3.: Recombinagao
Recombinacdo: Selecdo dos pais de dois pontos.

e A probabilidade de uma solugéo ser pai num processo de crossover deve depender
do seu fitness.

e Variacoes:
— Probabilidade proporcional com fitness.

— Probabilidade proporcional com ordem.

Estratégia adotada pelos operadores
Intiimeros operadores podem ser propostos para cada problema. O ideal é combinar ca-
racteristicas do operador usado, com outros operadores (mutagao, busca local) usados
no GA. Basicamente um crossover é projetado da seguinte forma:

e Encontre similaridades entre A e B e insira S = A N B no filho.

e Defina conjuntos Sin e Sout de caracteristicas desejaveis e ndo desejaveis.

e Projete um operador que mantenha ao maximo elementos de S e Si;, minimi-
zando o uso de elementos de Sqy¢.

Nova Populagio

e Todos os elementos podem ser novos.

e Alguns elementos podem ser herdados da populagio anterior.
e Elementos novos podem ser gerados.

e Exemplos, com populagao de tamanho A que gera p filhos.

(A, ) Seleciona os A melhores dos filhos.
A+ Seleciona os A melhores em toda populagao.
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11. Heuristicas inspirados da natureza,

Estrutura da Populacdo

Em geral, populagao estruturada garante melhores resultados. A estrutura da po-
pulagdo permite selecionar pais para crossover de forma mais criteriosa. Algumas
estruturas conhecidas

e Divisao em Castas: 3 partigdes A, B e C (com tamanhos diferentes), sendo que
os melhores individuos estao em A e os piores em C.

e Ilhas: a populacao é particionada em subpopulagoes que evoluem em separado,
mas trocam individuos a cada periodo de nimero de geragoes.

e Populacao organizada como uma arvore.

Exemplo: Populacdo em castas

e Recombinagao: Somente entre individuos da casta A e B ou C para manter
diversidade.

e Nova populagao: Manter casta “elite” A, re-popular casta B com filhos, substituir
casta C com solugoes randdmicas.

Exemplo: Populacdo em arvore

e Considere uma arvore ternaria completa, em que cada n6 possui duas solugoes
(pocket e current).

A solugdo current é a solugdo atual armazenada naquela posi¢ao da arvore.

e A solugao pocket é a melhor ja tida naquela posigdo desde a primeira geragao.

A cada solugao aplique exchange (se a solugao current for melhor que a pocket,
troque-as de posigao)

Se a solugdo pocket de um filho for melhor que a do seu pai, troque o né de
posigao.

Algoritmos Meméticos

e Proposto por Pablo Moscato, Newcastle, Australia.

e Ideia: Informacdo “cultural” pode ser adicionada a um individuo, gerando um
algoritmo memético.

e Meme: unidade de informagao cultural.
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11.1. Algoritmos Genéticos e meméticos

Algoritmos Meméticos

e Um procedimento de busca local pode inserir informacao de boa qualidade, e
nao genética (memes).

e Faz uso de um procedimento de busca local (em geral aplicado a solugéo gerada
pelo procedimento de recombinagao).

e Geralmente trabalha com populagoes menores.

Comparacdo entre as Metaheuristicas Apresentadas
e Quais que dependem de randomizagdo? SA, GRASP, GA
e Quais que geram apenas uma solugao inicial em todo processo? BT, SA
e Quais mantém um conjunto de solugoes, em vez de considerar apenas uma? GA

e Quais sao inspiradas em processos da natureza? GA, BT

Qual gera os melhores resultados?

Existem outras Metaheuristicas
Handbook of Metaheuristics, por Fred W. Glover (Editor), Gary A. Kochenberger
(Editor) Kluwer 2002.

Consideracoes Finais

e O desempenho de uma metaheuristica depende muito de cada implementagao
e As metaheuristicas podem ser usadas de forma hibridizada

e Técnicas de otimizacao multiobjetivo tratam os casos de problemas com mais de
um objetivo (Curva de pareto)

Exercicio

e Problema de alocacdo: atender n clientes por m postos de atendimento (um
posto é instalado no local onde se encontra um cliente)

e Entrada: distancias entre cada par de clientes

e Problema: Determinar em que locais instalar os postos, de forma a minimizar a
soma das distancias de cada cliente a um ponto de atendimento

e Propor uma heuristica construtiva e uma busca local.
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11. Heuristicas inspirados da natureza,

Comparacdo entre as Metaheuristicas

168

Quais que permitem movimento de piora? BT, SA

Quais que nao dependem de randomizagao? BT

Quais que geram apenas uma solugao inicial em todo processo? BT, SA
Quais mantém um conjunto de solugoes, em vez de considerar apenas uma?

Qual gera os melhores resultados?



Parte IV.

Appéndice
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A. Conceitos matematicos

N, Z, Q e R denotam os conjuntos dos ntimeros naturais sem 0O, inteiros, racionais e
reais, respectivamente. Escrevemos também Ny = N U {0}, para qualquer conjunto C,
Ci={xeCx>0}e C_:={x€ C|x <0} Por exemplo

R, ={x€R|x> 0Lt

Para um conjunto finito S, P(S) denota o conjunto de todos subconjuntos de S.
A = (ai;) € F™*™ denota uma matriz de m linhas e n colunas com elementos em F,
ai, com al € F* a i-ésigma linha e @) € F™ a j-ésima coluna de A.

Definicao A.1 (Pisos e tetos)
Para x € R o piso |x] é o maior namero inteiro menor que x e o teto [x] é o menor
nimero inteiro maior que x. Formalmente

[x] =max{y € Z |y < x}
[x] =min{y € Z |y > x}

O parte fraciondrio de x & {x} =x — |x].
Observe que o parte fracionario sempre é positivo, por exemplo {—0.3} = 0.7.

Proposicdo A.1 (Regras para pisos e tetos)

Pisos e tetos satisfazem
x < [x]<x+1 (A1)
x—1<|x] <x (A.2)

L Alguns autores usam R¥.
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B. Formatos

Este capitulo contém um breve resumo dos formatos CPLEX lp, Julia/JuMP e AM-
PL/MathProg usados para especificar problemas de otimizagdo linear. CPLEX LP
¢ um formato simples, AMPL' é uma linguagem completa para definir problemas de
otimizagao, com elementos de programacao, comandos interativos e um interface para
diferentes resolvedores de problemas. Por isso CPLEX LP serve para modelos peque-
nos. Aprender AMPL precisa mais investimento, que rende em aplicagoes maiores.
AMPL tem o apoio da maioria das ferramentas disponiveis.

Virios outros formatos estdao em uso, a maioria deles comerciais. Exemplos sao ZIMPL,
GAMS, LINGO, e MPS (Mathematical programming system).

B.1. CPLEX LP
Uma gramética simplificada® do formato CPLEX LP é

(specification) ::= (objective)

(restrictions)?

(bounds)

(general)?

(binary)?

‘End’
(objective) ::= (goal) (name)? (linear expression)
(goal) ::= ‘MINIMIZE | ‘MAXIMIZE' | ‘MIN’ | ‘MAX’
(restrictions) ::= ‘SUBJECT TOQ’ (restriction)+
(restriction) ::= (name)? (linear expression) (cmp) (number)
<Cmp> = £<’ ‘ L<=7 | ‘=7 ‘ ‘>7 ‘ L>=7
(linear expression) ::= (number) (variable) ( '+ | ’-’) (number) (variable) )*

(bounds) ::= ‘BOUNDS’ (bound)+

LA sigla AMPL significa “A mathematical programming language”. O nome também sugere uma
funcionalidade “ampla” (“ample” em inglés).
2A gramatica ndo contém as especificacdes “semi-continuous” e “SOS”.
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B. Formatos

(bound) ::= (name)? ( {limit) ‘<=" (variable) ‘<=" {limit)
| (limit) ‘<=" (variable)
| (variable) ‘<=" (limit)
| (variable) ‘=" (number)
| (variable) ‘free’)

(limit) = ‘infinity’ | ‘-infinity’ | (number)
(general) ::= ‘GENERAL’ (variable)+
(binary) ::= ‘BINARY’ (variable)+

Todas variaveis x tem a restricdo padrao 0 < x < +oo. Caso outros limites sao
necessarias, eles devem ser informados na se¢do “BOUNDS”. As se¢oes “GENERAL” e
“BINARY” permitem restringir variaveis para Z e {0, 1}, respectivamente.

As palavras-chaves também podem ser escritas com letras minasculas: o formato per-
mite algumas abreviagoes nao listadas acima (por exemplo, escrever “s.t” ou “st” ao
invés de “subject t0”).

Um comentéario até o final da linha inicia com “\”. Uma alternativa sdo comentéarios
entre “\x” e “*\”.

Exemplo B.1 (Problema (1.1) no formato CPLEX LP)

Maximize
lucro: 0.2 ¢c + 0.5 s

Subject To

ovo: c + 1.5 s <= 150 \ um comentario
acucar: 50 ¢ + 50 s <= 6000
clientl:c <= 80
client2:s <= 60
Bounds
0 <= ¢
0 <= s
End
O
Exemplo B.2
Problema de mochila 0-1 com 11 itens em formato CPLEX LP.
max 19x1+87x2+97x3+22x4+47x5+22x6+30x7+5x8+32x9+54x10+75x11
s.t
1x1+96x2+67x3+90x4+13x5+74x6+22x7+86x8+23x9+63x10+89x11<= 624
binary x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
end
o
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B.2. Julia/JuMP

Observagao B.1

CPLEX LP permite constantes como 0.5e6 que representa 0.5 x 10¢. Outra interpre-
tagao dessa expressao é 0.5 vezes a variavel eg. Para evitar essa ambiguidade, variaveis
nao podem comegar com a letra e. O

B.2. Julia/JuMP

Julia é uma linguagem para programacao cientifica e JuMP (Julia for Mathematical
Programming) uma biblioteca que permite embutir programas matematicos direta-
mente em codigo Julia. Isso tem a vantagem de poder ler e processar os dados antes
da solugao, resolver, e continuar trabalhar com o resultado no mesmo programa.

Exemplo B.3 (Problema (1.1) em Julia/JuMP)
#!/usr/bin/env julia

using JuMP
using GLPKMathProgInterface

m = Model(solver=GLPKSolverMIP())

Ovariable(m, c)
Ovariable(m, s)

Qobjective(m, Max, 0.2%c+0.5%s)

Oconstraint(m, c + 1.5%xs <= 150)
@constraint(m, 50*%c + 50*s <= 6000)
O@constraint (m, c <= 80)
Q@constraint (m, s <= 60)

status = solve(m)

if status == :0Optimal

println("A solugdo otima & c=$(getvalue(c)) e s=$(getvalue(s)) de
- valor $(getobjectivevalue(m)).")
end

O

Diferente do CPLEX lp, Julia/JuMP permite expressar um tnico modelo para um
problema e resolver para diferentes instancias.

Exemplo B.4 (Exemplo (1.3) em Julia/JuMP)
#!/usr/bin/env julia

using JuMP
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B. Formatos

using GLPKMathProgInterface

=3

=3

= [5,7,3]

[7,3,5]

= [[3,4,100] [1,2,3] [100,4,3]]

o op B B
|

mm = Model (solver=GLPKSolverMIP())
Ovariable(mm, x[1:m,1:n] >= 0)
Qobjective (mm, Min, sum(c[i,jl*x[i,j] for i=1:m, j=1:n))

Qconstraint (mm, [i=1:m], sum(x[i,j] for j=1:n) <= a[il)
Q@constraint (mm, [j=1:n], sum(x[i,j] for i=1:m) == b[jl)

status = solve (mm)
if status == :0Optimal
println("A solugdo 6tima & x=$(getvalue(x)) de valor

— $(getobjectivevalue(mm)).")
end

B.3. AMPL

Objetos de modelagem

e Um modelo em AMPL consiste em

— parametros,

variaveis,
— restrigoes, e

— objetivos
e AMPL usa conjuntos (ou arrays de multiplas dimensoes)
A:1-D

que mapeiam um conjunto de indices I = I; x --- x I, para valores D.
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Formato

Tipo

Parte do modelo

s1

sn
end;

com s; sendo um comando ou uma declaracao.

Parte de dados

data
d1

dn
end;

com d; sendo uma especificacao de dados.

de dados
Nuameros: 2.0,-4
Strings: ’Comida’

Conjuntos: {2,3,4}

Express6es numéricas

Operagoes basicas: +,-,%,/,div,mod,less, **

Exemplo: x less y

Funcoes: abs,ceil,floor,exp

Exemplo: abs(-3)

Condicional: if x>y then x else y

Express6es sobre strings

AMPL converte niimeros automaticamente em strings

Concatenagao de strings: &

Exemplo: x & ’ unidades’

B.3. AMPL
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B. Formatos
Expressdes para conjuntos de indices

e Uma dimensao
— t in S: variavel “dummy” t, conjunto S
— (t1,...tn) in S: para conjuntos de tuplos

— S: sem nomear a variavel

e Multiplas dimensoes

— {el,...,en} com e; uma dimensado (acima).

e Variaveis “dummy” servem para referenciar e modificar.
Exemplo: (i-1) in S

Conjuntos

e Conjunto béasico: {v1,...,vn}

Valores: Considerados como conjuntos com conjunto de indices de dimensao 0

e Indices: [il,...,in]
e Sequéncias: n1 ... n2 by dounl ... n2
e Construcao: setof I e: {e(i1,...,in) | (11,...,in) €T}

Exemplo: setof {j in A} abs(j)

Operacoes de conjuntos
e X union Y: Unido XUY
e X diff Y: Diferenca X\ Y
e X symdiff Y: Diferenca simétrica (X\Y)U (Y\ X)
e X inter Y: Interseccao XNY

e X cross Y: Produto cartesiano X x Y
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B.3. AMPL

Expressoes logicas

e Interpretagao de ntimeros: n vale “v”, sse n # 0.

e Comparagoes simples: <,<=,= ou ==,>=,>,<> ou !=

Pertinéncia: x in Y, x not in Y, x !'in Y

Subconjunto: X within Y, X !within Y, X not within Y

Operadores logicos: && ou and, || ou or, ! ou not

Quantificagao: com indices I, expressao booleana b

forall T b: A, i jerblin,...yin)

exists I b/, b(ir,...,in)

i1 v---»in)el

Declaracées: Conjuntos
set N I [dimen n] [within S] [default el] [:= e2]

param N I [in S] [<=,>=,!=,... n] [default el] [:= e2]

e Nome N

e Conjunto de indices I (opcional)
e Conjunto de valores S

e Valor default e

e Valor inicial e;

Declaracées: Restricées e objetivos
subject to NI : el = e2 | el <= e2, el >= e2

minimize [I] : e

maximize [I] : e
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Comandos

solve: Resolve o sistema.

check [I] : b: Valida expressao booleana b, erro caso falso.

display [I] : el,...en: Imprime expressoes eq,...,en.

printf [I] : fmt,el,...,en: Imprime expressoes e — 1,...,e, usando for-
mato fmt.

e for T : ¢, for I : {cil ... cn}: Lagos.

Dados: Conjuntos
set N rl,...rn

Com nome N e records r1,...,Th, cada record

e um tuplo: vi,...,v
Exemplo: 12,13,22,27

e a definigdo de uma fatia (vq|*,va|*,...,vn|*): depois basta de listar os elementos
com *.

Exemplo: (1%)23,(2%) 27

e uma matriz

:clc2 ... cn:=
rl all al2 ... aln
r2 a2l a22 ... a2n
rm aml am2 ... amn

com aij “4”/”-” para inclusio/exclusao do par “ri cj” do conjunto.

Dados: Parametros
param N rl,...rn

Com nome N e records 11,...,Tq, cada record
e um valor iy,...,1n,Vv
e a definicdo de uma fatia [i7|*,12]*,...,1in|*): depois basta definir indices com x*.

e uma matriz
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:clc2 ... cn:=
rl all al2 ... aln
r2 a2l a22 ... a2n
rm aml am2 ... amn

com aij o valor do par “ri cj”.

e uma tabela

param default v : s : pl p2 ... pk :=
t11 t12 ... tin all al2 ... alk
t21 t22 ... t2n a21 a22 ... a2k
tml tm2 tmn aml am2 ... amk

para definir simultaneamente o conjunto
set s := (t11 t12 ... tin), ... , (tml tm2 ... tmn);

e os parametros

param pl default v := [t11 t12 ... tin] all, ..., [tml tm2 ...
param p2 default v := [t11l t12 ... tin] al2, ..., [tml tm2 ...
param pk default v := [t1l t12 ... tin] alk, ..., [tml tm2 ...

Exemplo B.5 (Exemplo (1.1) em AMPL)

var c; # numero de crotssants

var s; # numero de strudels

param lucro_croissant; # o lucro por croissant
param lucro_strudel; # o lucro por strudel
maximize lucro: lucro_croissant*c+lucro_strudelx*s;
subject to ovo: c+1.5%s <= 150;

subject to acucar: 50*c+50%s <= 6000:

subject to croissant: c <= 80;

subject to strudel: s <= 60;

Exemplo B.6 (Exemplo (1.3) em AMPL)
param n; # numero de clientes

param m; # numero de fornecedores

param a { 1..m }; # estoque

param b { 1..n }; # demanda

param ¢ { 1..m, 1..n }; # custo transporte

tmn] ami;
tmn] am2;

tmn] amk;
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var x { 1..m,1..n } >= 0;

minimize custo:

sum { 1 in 1..m, j in 1..n } c[i,jl*x[1,j];
subject to limiteF { i in 1..m }:

sum { j in 1..n } x[i,j] <= alil;
subject to limiteC { j in 1..n }:

sum { i in 1..m } x[i,j] = b[jl;

data;
param
param
param
param
param : 1
1 3
2 4
3 100
end;

o op BB
Il
w N
w w

WNE=DNDNDDN
[
o
o w
o w

w o
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C. Solucoes dos exercicios

Solucao do exercicio 1.3.

maximiza 2A + B,
sujeito a A < 6000,
B <7000,
A + B < 10000,
A,B >0.

Resposta: A = 6000, B =4000, e Z = 16000.

Solugao do exercicio 1.4.
Sao necessarias cinco variaveis:

e x1: numero de pratos de lasanha comidos por Marcio

e x;: numero de pratos de sopa comidos por Marcio

e x3: nimero de pratos de hambirgueres comidos por Renato

e Xx4: nimero de pratos de massa comidos por vini

e x5: numeros de pratos de sopa comidos por vini
Formulagao:

maximiza x7 + X2 + X3 + X4 + X5,
sujeito a 4 >x; +x2 > 2,
5>x3 > 2,
4> x4 +x5 > 2,
70(x2 + x5) + 200x7 + 100x3 + 30x4 < 1000,
30(x2 4+ x5) + 100x7 + 100x3 + 100x4 < 800.

Solugao do exercicio 1.5.
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C. Solugées dos exercicios

maximiza 1y + 21,

sujeito a 1, <60,

L + 31, < 200,
21 + 21, < 300,
11 ) 1Z > 0.

Solucao do exercicio 1.6.

maximiza 60m + 30q,
sujeito a m <6,
a <4,
6m + 8a < 48,
m,a > 0.

Solucao do exercicio 1.8.
Com marcas J,0,M (Johnny Ballantine, Old Gargantua, Misty Deluxe) e misturas
A, B, C temos as variaveis

XJ,AyX],ByX],CyX0,AyX0,ByX0,Cy XM,AyXM,B)y XM, C

que denotam o ntmero de garrafas usadas por mistura.
Vamos introduzir ainda as variaveis auxiliares para o ntumero de garrafas usadas de
cada marca

X] =Xj,A +X1,B +X],05
X0 =X0,A +X0,B +X0,C,

XM = XM,A +XM,B +XM,C
e variaveis auxiliares para o ntumero de garrafas produzidas de cada mistura

XA = XJ,A +X0,A T+ XM A,
XB = XJ,B T X0,B + XM,B)

Xc =Xj,c +Xo,c +xXm,cC-
Queremos maximizar o lucro em reais

68xa + 57xp + 45xc — (70xy 4 50x0 + 40xpMm )
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respeitando os limites de importagao

x5 < 2000,
xo < 2500,
xm < 1200

e os limites de percentagem

xj,A = 0.6x4,

xm,A < 0.2xa,
xj,B > 0.15xg,
xm,B < 0.6xg,
xm,c < 0.5xc.

Portanto, o sistema final é

maximiza 68xa + 57xp + 45xc — (70x) + 50x0 + 40xpm ),
sujeito a cxj < 2000,
xo < 2500,
xm < 1200,
xj,A = 0.6xA,
xm,A < 0.2xa,
xj,B > 0.15%xg,
xm,B < 0.6xp,

xm,c < 0.5xc,

Xm = Xm,A + Xm,B + Xm,C m e U) O, M}»
Xm =X, m +Xo,m +XMm me {A»B)C}H
Xmn >0 m e {J,0,M},n € {A,B,C}.

Sem considerar a integralidade a solu¢ao 6tima é produzir 2544.44 garrafas da mistura
A, 3155.56 garrafas da mistura B e 0 garrafas da mistura C, com as percentagens

e A: 60% Johnny Ballantine, 20% Old Gargantua, 20% Misty Deluxe
e B: 15% Johnny Ballantine, 63% Old Gargantua, 22% Misty Deluxe

Solugao do exercicio 1.9.
Com t; o nimero de TVs de 29" e t; de 31" temos
maximiza 120t; + 80t,,
sujeito a t; <40,
t; <10,
20ty + 10t; < 500,
t1,t2 > 0.
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C. Solugées dos exercicios

Solugao do exercicio 1.10.
Seja V. = {V1,V2} e NV = {NV;,NV,,NV3} os conjuntos de Oleas vegetais e nao
vegetais e O = VU NV o conjunto do todos 6leos. Seja ainda c; o custo por tonelada
do 6leo i € O e a; a acidez do 6leo i € O. (Por exemplo cy, = 110 e anv, = 4.2.)
Com variaveis x; (toneladas refinadas do 6leo i € O) e x, (quantidade total de éleo
produzido) podemos formular

maximiza 150x0—E CiXi,

ieO
sujeito a Z xi < 200, limite 6leos vegetais
iev
Z xi < 250, limite 6leos nao vegetais
ieENV
3xo < Z aixqy < 6Xo, Intervalo acidez
ieO
Z Xi = Xo, Oleo total
i€0
Xo,Xi > 0, Vie 0.

Solugao do exercicio 1.11.

Sejam xa, X € Xc o numero de horas investidos para cada disciplina. Vamos usar
varidveis auxiliares na, np e N¢ para as notas finais das trés disciplinas. Como isso
temos o programa linear

maximiza na +ng + nc,

sujeito a xa +xg +xc = 100, Total de estudo
na = (6+xa/10)/2, Nota final disc. A
ng = (7 + 2xg/10)/2, Nota final disc. B
ne = (104 3x¢/10)/2, Nota final disc. C
na > 5, Nota minima disc. A
ng > 5, Nota minima disc. B
ne > 5, Nota minima disc. C
na <10, Nota méaxima disc. A
ng < 10, Nota maxima disc. B
ne < 10, Nota méaxima disc. C

Na,NB,N¢C > 0.
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Solugao do exercicio 1.12.
Sejam r € R e f € R o ntimero de canecos do Duff regular e do Duff Forte, respectiva-
mente, encomendados por semana. Com isso podemos formular

maximiza 1+ 1.5f, (C.1)
sujeito a 2f <1, (C.2)
T+ f < 3000, (C.3)

rnfeR,. (C.4)

Solugao do exercicio 1.13.
Sejam f € R e h € R o nimero de pacotes de Frisky Pup e Husku Hound produzidos,
respectivamente. Com isso podemos formular

maximiza 1.6f + 1.4h, (C.5)
sujeito a -+ 2h < 240000, (C.6)
1.5f + h < 180000, (C.7)

£ < 110000, (C.8)

f,heR,. (C.9)

Solugao do exercicio 1.14.

maximiza 25p + 30c,
sujeito a p/200 + ¢/140 < 40 < 7p + 10c < 56000,
p < 6000,
¢ <4000,
c,p>0.
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Produzindo ago

6000

5000 — (56000-7*X)/1 0 L

4000

3000

Canos ¢

2000 eS ViéVeiS -

1000

c=80

0

0 1000 2000 3000 4000 5000 6000 7000 8000
Placas p

A solugéo 6tima é p = 6000, ¢ = 1400 com valor 192000.

Solucao do exercicio 1.15.

Usamos indices 1, 2 e 3 para os voos Pelotas—Porto Alegre, Porto Alegre—Torres e
Pelotas—Torres e variaveis aj, az, az para a categoria A, by, by, bz para categoria B e
¢ — 1,c3,c3 para categoria C. A fungao objetivo é maximizar o lucro

z =600a; + 320a; + 720a3 + 440b; + 260b; + 560b3 + 200cq + 160c; + 280c3.
Temos que respeitar os limites de capacidade

a;+by+cy+asz+bz+c3 <30,
a; +by+c2+az+bz+c3 <30,

e os limites da predigao

(e8] §4) GZSS, a3§3)
by <8, by <13, b3 <10,
c1 <22, ¢y <20, c3 <18

Obviamente, todas variaveis também devem ser positivos.

Solucao do exercicio 1.16.
A solucao grafica é
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Solucdes viaveis

(a) A solugdo otima é x1 =4.25, x; ~ 4 (valor exato x; = 3.96875).

(b) O valor da solugdo 6tima é ~ 21 (valor exato 20.96875).

Solugao do exercicio 1.17.

maximiza z = 5x; 4+ 5x, + 5x3,
sujeito a —6x7 —2x2 —9x3 <0,
— 9% —3x2 +3x3 < 3,
%1 + 3x2 — 3x3 < =3,
X1,X2,%3 > 0.

maximiza z = —6x; —2x; — 6Xx3 + 4x4 + 4xs,
sujeito a —3x; — 8xy —6x3 — 7x4 — 5x5 < 3,
3x1 + 8% + 6%3 + 7x4 4+ 5x5 < =3,
5x1 — 7x2 + 7x3 + 7x4 — 6X5 < 6,
X1 — %2 +5x3 + 7xq4 — 10x5 < —6,
— %7+ 9x2 —5x3 — 7x4 + 10x5 < 6,
X1,X2,X3,X4,X5 > 0.
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C. Solugées dos exercicios

maximiza z=7x7 +4x2 + 8x3 + 7x4 — Vx5,
sujeito a —4x; —Ixy —7x3 — 8x4 + 6x5 < —2,
4x1 +x2 + 7x3 + 8xq4 — 6x5 < 2,
— X1 —4xy —2x3 — 2x4 + 7x5 < 7,
—8x7 + 2x2 + 8x3 — 6%x4 — 7x5 < —7,
8x1 —2x2 —8x3 + 6X4 + 7x5 < 7,

X1,X2,X3,X4,X5 > 0.

maximiza z=6x; —5x; —8x3 — 7x4 + 8xs,
sujeito a —5x7 —2x2 +x3 —Ix4 —7x5 < 9,
5%1 4+ 2x2 —x3 + Ixq + 7x5 < =9,
7x1 + 7x2 +5x3 — 3xq + x5 < =8,
—7x7 —7%x2 —5%x3 4+ 3x4 — x5 < §,
—5x7 —3%x2 —5x3 + x4 + 8x5 < 0,

X1,X2,X3,X4,X5 > 0.

Solucao do exercicio 2.1.
Solugao com método Simplex, escolhendo como varidvel entrante sempre aquela com
o maior coeficiente positivo (em negrito):

z = 25p +30c
w; =56000 —7p —10c
wy; =6000 —p

w3z =4000 —c

z =120000 +25p —30ws3
w; =16000 —7p +10w;3
wy = 6000 —p

c = 4000 —W3

z =1240000/7 —25/7p +40/7wj3
p =16000/7 —1/7w;  +10/7w3
wy = 26000/7 +1/7w; —10/7w3
c = 4000 —W3

z = 192000 —3w; —4w,

P = 6000 —W3

ws = 2600 +1/10wy —7/10w,

c = 1400 —1/10wy  +7/10w,
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Solucao do exercicio 2.3.
Temos
2(n+1)
n+1

-7
il ) (o) =2(3)

2n < 22n

(2n+ 2)( 2n+1)_ 2n\ 2(2n+1)
(n+1)2 S \n/) n+1

e logo

Logo, por indugao (1/2n)2<"

Solucao do exercicio 2.6.

(a) Substituindo x1 e x2 obtemos a nova fungdo objetivo z = x1+2x; = 22—7wy—3wy.
Como todos coeficientes sao negativos, a solugao bésica atual permanece 6tima.

b) A nova funcio objetivo é T — w5 e o sistema mantem-se 6timo.
¢ J
(¢) A nova fungao objetivo é 2 — 2w, e o sistema mantem-se 6timo.

(d) O dicionario dual é
z¢ =31 -7z, -8z
Yy, =11 +2z; +3z
Yy =4 +zx 4z

e a solucao dual 6tima é (y7y2)t = (4 11)%.

Solugao do exercicio 2.9.

Nao, porque nessa situagao o valor da variavel entrante aumento para um valor x, > 0
e por definicao de variavel entrante temos c. > 0, i.e. o valor da funcao objetivo
aumenta.

Solugao do exercicio 2.10. ~

Sim. Supoe que X, s € B é a varidvel basica negativa. Com x5 = bg —dseXe € age <0
temos xs > 0 caso Xe > bs/ase. Logo para xe > max; gz b.<0 bi/aie a solugao é
factivel.

Solugao do exercicio 3.1.

maximiza 10y; + 6yy,
sujeito a y; +5yz <7,

—y1+2y> <1,
Y1h,Yy2 > 0.
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C. Solugées dos exercicios

Solugao do exercicio 3.2.
Com variaveis duais y. para cada e € U temos

maximiza E Ye,

eclu

sujeito a Z Ye < ¢(S), Ses,
e:e€S
ye 2 0) e 6 U

Solugao do exercicio 3.3.

(a) Temos B = {4,1,2} (variaveis basicas x4, x1 e x2) e N = {5,6, 3} (variaveis nulas
X5, X¢ € X3). No que segue, vamos manter essa ordem das variaveis em todos
vetores e matrizes. O vetor de custos nessa ordem é

cg=(02 -1 en=(001"
e com
Ac=(010000)"
temos

Ay\ = (B_lN)tACB —Acn = (B_1N)tAcB

1 1/2 —1/2\ /0 172
=2 12 12])[1]=]12
1 12 =3/2) \o 12

Com yx = (3/21/23/2)" obtemos os limites —1 <t < oo e 1 < ¢y < o0.

(b) Temos Ax, = B~'Ab e Ab = (0 1 0)*. Para determinar Axg precisamos calcular
B~ pela inversao de

1 3 1
B=(0 1 -1
01 1

(observe que as colunas estdo na ordem de B) que é

1T -1 =2
B '=10 1/2 12
0 —1/2 1,2
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Assim Axg = (—11/2 —1/2)', e com x}j = (10 155)" e pela definigao

X; . x§
max — <t< min —
Aie-io AX-L A;E-io AXi‘

1 1

obtemos os limites —30 <t <10 e —20 < b, < 20.

(¢) Com b = (7020 10)* temos B~'6 = (30 15 —5). Portanto, a solucio basica nio
é mais viavel e temos que reotimizar. O novo valor da fungao objetivo é

30
ck(B'B)=(0 2 -1)[15] =35
-5
e temos o dicionéario

z= 35 —=3/2x5 —1/2x¢ —3/2x3

x4 = 30 +X5 +2x¢g —X3
x1= 15 —=1/2x5 —1/2x¢ —1/2x3
X2 = —5 +1/2xs5 —1/2x¢ +3/2x3

O dicionéario é dualmente viavel, e apos pivo x;—x3 temos o novo sistema 6timo

z= 30 —X5 —Xe6 —X2
x4 = 80/3 +4/3x5 +5/3x¢ —2/3x2
X1 = 40/3 *1/3)(5 *2/37(6 *]/3)(2
x3= 10/3 —1/3xs +1/3x¢ +2/3%2

(d) Temos ¢ =(03 —2003)" (em ordem B,N) e com isso

1 12 =12\ [0 0 5/2
Iy =0B""N)eg—en=1{-2 1/2 12 3—(o]l=112
112 =3/2) \ 2 3 3/2

Portanto, a solugao ainda é 6tima. O novo valor da fungao objetivo é

10
¢xB ') =(0 3 —2) (15| =35.

5

Solugao do exercicio 6.2.
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C. Solugées dos exercicios

Conjunto independente maximo Com varidveis indicadores x,,, v € V temos o pro-
grama inteiro

maximiza E Xy,

veV
sujeito a  x, +x, <1, Y{u,v} € A, (C.10)
Xy € B, Vv e V.

A equagao C.10 garante que cada aresta possui no maximo um né incidente.

Emparelhamento perfeito com peso maximo Sejam x,, a € A varidveis indicadores
para a selecao de cada aresta. Com isso, obtemos o programa inteiro

maximiza Z pla)xa,

acA

sujeito a Z X} = 1, Yv ey, (C.11)
ueN(v)
Xq € B, Yv eV

A equagao C.11 garante que cada nd possui exatamente um vizinho.

Problema de transporte Sejam xi; varidveis inteiras, que correspondem com o ni-
mero de produtos transportados do depésito i para cliente j. Entao

minimiza E CijXij,
ie[n]

jelm]

sujeito a Z Xij =Ppi, Viem], cada deposito manda todo estoque
jelm]
Z xij = dj, Vj € [m], cada cliente recebe a sua demanda
i€n]
Xij € AR

Conjunto dominante Sejam x,,, v € V variaveis indicadores para sele¢do de vértices.
Temos o programa inteiro

minimiza E Xy

vev
sujeito a x, + Z Xy > 1, Yv eV, no6 ou vizinho selecionado
ueN (v)
xy € B, Yv e V.
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Solugao do exercicio 6.4.

Seja didy...dn a entrada, e o objetivo selecionar m < m digitos da entrada. Seja
Xiyj € B um indicador que o digito 1 € [n] da entrada seria selecionado como digito
j € [m] da saida. Entao

maximiza Z xi;d 10™ 7
ienl,jelm]
sujeito a Z xy =1, Yj € [m], (C.12)
ie[n]
> xy <, Vi e [nl, (C.13)
jelm]
Xij = 0, Vie [Tl],j S [m},) > 1, (014)
XK <1 — Xij, Vi, k € [Tl],l,j S [m},k>i,l<j. (C15>

A fungao das restrigoes é a seguinte:

e Restricao (C.12) garante que tem exatamente um digito em cada posicao.
e Restricao (C.13) garante que cada digito é selecionado no maximo uma vez.
e Restricao (C.14) garante que digito i aparece somente a partir da posigao j.

e Restrigao (C.13) proibe inversoes.

Solugao do exercicio 6.5.

Existem 21 sets diferentes, cada um com consumo diferente das 9 cartas. Seja A
uma matriz, que contém em cada das 21 coluna o namero de cartas de cada set. Além
disso, seja b € R? o ntimero de cartas disponiveis. Usando variaveis inteiros x € Z?!
que representam o nimero de sets formandos de cada tipo de set diferentes, temos a
formulagao

R‘?XZ]

maximiza Z Xi,
ie21]

sujeito a Ax < b,
x > 0.

Solugao do exercicio 6.6.
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C. Solugées dos exercicios

Cobertura por arcos
minimiza E CeXe,
eckE
sujeito a E Xuv > 1,
ueN (v)
Xe € B.

Conjunto dominante de arcos
maximiza E CeXe,
eckt
sujeito a E Xer > 1,

e/cE
ene’#0

Xe € B.
Coloracdo de grafos Sejan =|V]|.
minimiza Z Cj,
jeMm]
sujeito a Z Xyj =1,
jeMml]
Xui + Xvi S 1;

nej = E Xvi,

vev
Xviy € € B.

Ywey

VecE
Yv eV, (C.16)
Y{u,v} € E,i € [n], (C.17)
Vj € [n], (C.18)

e Restrigao C.16 garante que todo vértice recebe exatamente uma cor.

e Restrigao C.17 garante que vértices adjacentes recebem cores diferentes.

e Restricao C.18 garante que ¢; = 1 caso cor j for usada.

Clique minimo ponderado

minimiza E Cv Xy,
vev

sujeito a x, +x, <1,
Xy € B.

V{u,v} ¢ E, (C.19)

Restricao C.19 garante que nao existe um par de vértices selecionados que nao sao

vizinhos.
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Subgrafo cibico x. indica se o arco e é selecionado, e y, indica se ele possui grau 0
(caso contrario grau 3).

minimiza E Xe,

eckE
sujeito a Z Xe <0+ [EI(T —ye),
eeN(v)
Z Xe <3+ |E|ye>
eeN(v)
— ) xe < —3+3ye.
eeN(v)

Observe que o grau de cada vértice é limitado por [E|.

Solugao do exercicio 6.7.
Sejam x; € B,1i € [7] variaveis que definem a escolha do projeto i. Entao temos

maximiza 17x7 + 10x; + 15x3
4+ 19%4 + 7x5 + 13x6 + 9x7,
sujeito a 43x7 + 28x, + 34x3 + 48x4,
+ 17x5 + 32x6 + 23x7 < 100, Limite do capital

X1 +x2 <1, Projetos 1,2 mutualmente exclusivos
X3 +x4 <1, Projetos 3,4 mutualmente exclusivos
x3 + x4 < X1 + %2, Projeto 3 ou 4 somente se 1 ou 2

http://www.inf.ufrgs.br/ mrpritt/e6q2.mod

set projetos := 1 .. 7;
param lucro { projetos };
param custo { projetos };

var fazer { projetos } binary;

maximize M:

sum { i in projetos } lucrol[il*fazer[i];
subject to S1:

sum { i in projetos } custol[i]l*fazer[i] <= 100;
subject to S2:

fazer[1]+fazer[2] <= 1;
subject to S3:

fazer[3]+fazer[4] <= 1;
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C. Solugées dos exercicios

subject to S4:
fazer[3]+fazer[4] <= fazer[1]+fazer[2];

data;
param lucro :
param custo :
end;

117 2 10 3 1564 1957 6 13 7 9;
143 2 28 3 34 4 48 5 17 6 32 7 23;

Solugao: Selecionar projetos 1,3,7 com lucro de MRS 41.

Solugao do exercicio 6.8.
Seja f € B uma variavel que determina qual fabrica vai ser usada (fabrica 1, caso f = 0,
fabrica 2, caso f = 1), by € B uma variavel binaria que determina, se brinquedo i vai
ser produzido e u; € Z as unidades produzidas de brinquedo i (sempre com i € [2]).

maximiza 10u; + 15u; —50000b; — 80000b3,

sujeito a u; < Mby, Permitir unidades somente se tem produgao

w1 /50 +uy /40 < 500 + fM, Limite fabrica 1, se selecionada
w1 /40 +uy/25 <700+ (1 —f)M,  Limite fabrica 2, se selecionada
a; € B,u; € Z,1 € [3].

A constante M deve ser suficientemente grande tal que ela efetivamente néo restringe
as unidades. Dessa forma, se a fabrica 1 esta selecionada, a terceira restri¢ao (da
fabrica 2) néo se aplica e vice versa.

http://www.inf .ufrgs.br/ mrpritt/e6q3.mod

set brinquedos := 1..2;

var f binary;

var b { brinquedos } binary;

var u { brinquedos } integer, >= 0;
param inicial { brinquedos };
param lucro { brinquedos 7};

param prodfabl { brinquedos };
param prodfab2 { brinquedos };
param M := 35000;

maximize Lucro:
sum { i in brinquedos } uli]*lucrol[il
- ( sum { i in brinquedos } iniciall[i]lx*b[i] );
subject to PermitirProducao { i in brinquedos }:
uli] <= M*b[i];
subject to LimiteFabl
sum { i in brinquedos }
ulil*prodfabl[i] <= 500 + fx*M;
subject to LimiteFab2 :
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sum { i in brinquedos }
ul[i]l*prodfab2[i] <= 700 + (1-f)*M;

data;

param inicial := 1 50000 2 80000;
param lucro := 1 10 2 15;

param prodfabl := 1 0.020 2 0.025;
param prodfab2 := 1 0.025 2 0.040;

Solugao: Produzir 28000 unidades do brinquedo T na fabrica 2, com Iucro 230KRS.

Solugao do exercicio 6.9.

Sejam a; € B uma variavel que determina se avido i vai ser produzido e w; € Z as

unidades produzidas.

maximiza 2u; + 3uy + 0.2uz — 3a; — 2ay,

sujeito a 0.2uq + 0.4u3z +0.2u3z <1, Limite de capacidade
u; < 5b;, Permitir unidades somente se for produzido, limite 5 avioes
u; <3, Limite aviao 1
u; < 2, Limite aviao 2
us <5, Limite aviao 3

http://www.inf .ufrgs.br/ mrpritt/e6q4.mod

set avioes := 1..3;

param custo { avioes };

param lucro { avioes };

param capacidade { avioes };

param demanda { avioes };

var produzir { avioes } binary;

var unidades { avioes } integer, >= 0;

maximize Lucro:

sum { i in avioes }

(lucro[i] *unidades[i] -custo[i] *produzir[i]);

subject to LimiteCapacidade:

sum { i in avioes } unidades[i]*capacidade[i] <= 1;
subject to PermitirProducao { i in avioes }:

unidades[i] <= 5*produzir[i];
subject to LimiteDemanda { i in avioes }:

unidades[i] <= demandali];

data;
param : custo lucro capacidade demanda :=
132 0.23
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223 0.4 2
300.80.25;

Solugao: Produzir dois avides para cliente 2, e um para cliente 3, com lucro 4.8 MRS$.

Solugao do exercicio 6.10.

Seja xijx € B um indicador do teste com a combinagdo (i,j,k) para 1 < i,j,k <
8. Cada combinagao (i,j,k) testada cobre 22 combinagoes: além de (i,j,k) mais 7
para cada combinagao que difere somente na primeira, segunda ou terceira posigao.

Portanto, uma formulacao é

minimiza g X4,k

i‘j)k
sujeito a xijx + Z Xijk + Z Xij’k + Z Xijkr > 1, Vi, K,
VAL J'# k’#k
Xijk € B, Vi, k.

A solucgao 6tima desse sistema é 32, i.e. 32 testes sdo suficientes para abrir a fechadura.
Uma solucao é testar as combinagoes

(1,2,4),(1,3,8),(1,5,5),(1,8,7),(2,1,1),(2,4,3), (2,6,6),(2,7,2),
(3,1,3),(3,4,2),(3,6,1),(3,7,6),(4,1,2), (4,4,6), (4,6,3),(4,7,1),
(5,1,6),(5,4,1),(5,6,2),(5,7,3),(6,2,7), (6,3,5), (6,5,4), (6,8, 8),
(7,2,5),(7,3,7),(7,5,8),(7,8,4),(8,2,8),(8,3,4),(8,5,7), (8,8,5)

Solugao do exercicio 6.11.

Sejam x; € B, i € [k] as variaveis de entrada, e ¢; € B, 1 € [n] variaveis que indicam se
a clausula c; esta satisfeita. Para aplicar a regra (6.2) diretamente, vamos usar uma
variavel auxiliar di. 1 € [n], que representa a disjun¢ao dos primeiros dois literais da

clausula 1i.
maximiza E Ci,
ien]
Xk literal j na clausula i é xy,

sujeito a 1;; =
J Y {1 —xk literal j na clausula i & —xy,

di > (L1 +12)/2,
di <Lt + Lz,
ci > (di +liz)/2,
ci < di + lis,
ci, di, x4 € B.
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Como é um problema de maximizagao, pode ser simplificado para

maximiza E Ci,
ie[n]
X1 literal j na clausula i é xy,

sujeito a 1;; =
J Y {1 —xy literal j na clausula i & —xy,

ci < L1+ Lz + L,
Ci,Xi € B.

A segunda formulagao possui uma generalizagdo simples para o caso k > 3.

Solugao do exercicio 6.13.
Nao. Uma explicacao: http://nbviewer. jupyter.org/url/www.inf.ufrgs.br/ mrpritt/
oc/greedy-independent-set.ipynb.

Solugao do exercicio 6.14.
Nao. Primeiramente, a restri¢ao

[x =10 (C.20)

peP

nao é linear. Mas mesmo ignorando isso as restri¢oes nao definem uma bijecao entre
numeros e posigoes. O conjunto completo de solugoes é

1,2,3,4,5,6,7,8,9,10
1,2,3,4,6,6,6,7,10,10
1,2,4,4,4,5,7,9,9,10
1,3,3,3,4,6,7,8,10,10
1,3,3,4,4,4,7,9,10,10
2,2,2,3,4,6,7,9,10,10

Solugao do exercicio 7.2.

Conjunto independente maximo A matriz de coeficientes contém dois coeficientes
igual 1 em cada linha, que correspondem com uma aresta, mas geralmente nao é
totalmente unimodular. Por exemplo, o grafo completo com trés vértices K3
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Figura C.1.: Politopo {x € R3 |
x1 +x2 < T,xy+x3 < 1,x2 +
x3 < 1,0 < x; <1} (O visu-
alizador usa os eixos x = X1,
y=x2,2=x3.)

C. Solugées dos exercicios

gera a matriz de coeficientes

110
1T 0 1
0 11

cuja determinante ¢ —2. A solugdo 6tima da relaxacdo inteira 0 < x; <1 éx3 =% =
x3 = 1/2 com valor 3/2, a Fig. C.1 mostra o politopo correspondente. (Observagao:
A transposta dessa matriz satisfaz os critérios (i) e (ii) da nossa proposigao, e caso o
grafo é bi-partido, também o critério (iii). Portanto Conjunto independente mdzimo
pode ser resolvido em tempo polinomial em grafos bi-partidos).

Emparelhamento perfeito com peso maximo A matriz de coeficientes satisfaz cri-
tério (i). Ela tem uma linha para cada vértice e uma coluna para cada aresta do
grafo. Como cada aresta é incidente a exatamente dois vértices, ela também satisfaz
(ii). Finalmente, a bi-partigdo V; UV, do grafo gera uma bi-particdo das linhas que
satisfaz (iii). Portanto, a matriz é TU, e o Emparelhamento perfeito com peso mdximo
pode ser resolvido em tempo polinomial usando a relaxacao linear.

Problema de transporte A matriz de coeficientes satisfaz critério (i). Podemos re-
presentar o problema como grafo bi-partido completo K,, . entre os depdsitos e os
clientes. Desta forma, com o mesmo argumento que no ultimo problema, podemos
ver, que os critérios (ii) e (iii) s@o satisfeitos.

Conjunto dominante A matriz de coeficientes satisfaz critério (i), mas nao critério
(ii): cada linha e coluna correspondente com vértice v contém |[N(v)| 4+ 1 coeficientes
nao-nulos. Mas, néo é obviou se a matriz mesmo assim néo é TU (lembra que o critério
é suficiente, mas nao necessario). O K3 acima, por exemplo, gera a matriz

1T 11
1T 11
1T 11

que € TU. Um contra-exemplo seria o grafo bi-partido Ky 3

que gera a matriz de coeficientes

—_—
©C O ==
o = O =
—_o O —
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com determinante —2. Isso nao prova ainda que a relaxacao linear nao produz resul-
tados inteiros otimos. De fato, nesse exemplo a solugao otima da relaxagao inteira é a
solucdo 6tima inteira D = {1}.

Um verdadeiro contra-exemplo é um ciclo com cinco vértices Cs

i

com matriz

_—_—_e O —
—_—c = =0
o == a0
o= =0 =
—_e O - .

(cuja determinante é 3). A relaxagio linear desse sistema tem a solucgdo Otima x; =
X2 = X3 = X4 = X5 = 1/3 com valor 5/3 que nao é inteira.

Solugao do exercicio 7.4.

A formulagao possui 14 restrigdes, correspondendo com as 14 arestas. Como o grafo é
4-regular, cada vértice ocorre 4 vezes no lado esquerdo de uma restrigao, e somando
todas restricoes obtemos

4 Z xi < 14
ie[7]

= Y xi<14/4

ie(7]

= > < [14/4) =3,

iel7]
que nao é suficiente. Para obter uma desigualdade mais forte, vamos somar sobre todos
tridngulos. Somando primeiro as restrigdes das arestas de cada tridngulo (u,v,w)

obtemos

2%y + 2%y + 2%, < 3
Sxu + Xy Fx0 < |3/2] = 1.

Somando agora as restri¢oes obtidas desta forma de todos 14 triangulos do grafo (cada
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C. Solugées dos exercicios

vértice é parte de 6 triangulos) obtemos a desigualdade desejada

6in§14
]

iel7
=) xi < [14/6) =2.
iel7]
(Outra abordagem: Supoe, sem perda de generalidade, que x; = 1 na solu¢ao otima.

Pelas restrigoes x1 +x; < 2 temos x; = 0 para i € {3,4,5, 6}. Pela restrigdo x;+x7 < 1,
portanto ) ;.7 %i < 2.)

Solugao do exercicio 7.5.

Seja S = [n]\ S e m = maxics a; e M = maxics a;. A idéia é somar desigualdades
xi < 1 parai € S até o corte de Gomory obtido pela divisao pelo coeficiente maximo em
S rende a desigualdade desejada. Seja 6 = max{m+1, m}. Somando (6—a;)x; < d—a;
obtemos

D i+ ) axi b+ (8- ai)xi <8IS| < 5IS|— 1.
i€s icS ies
Aplicando o corte de Gomory com multiplicador 1/8 obtemos
S < lIsl—1/8] =I5~ 1
ie$S
porque a; < m < max{m+ 1,m} =6 e logo |ai/d] =0 para i€ S.
Solucao do exercicio 7.6.
X1 + X6 + x7 < 2 porque uma rota nao contém subrotas. Portanto x; 4+ x2 + x5 +
X6 + X7 +xo < 5. Supde x1 +x2 + x5 + X + X7 + x9 = 5. Temos trés casos: x; = 0,
x¢ = 0 ou x; = 0. Em todos os casos, as restantes variaveis possuem valor 1, e no

grafo resultante sempre existe um vértice de grau 3 (0 vértice no centro, da esquerda,
de acima, respectivamente), que nao é possivel numa solugao valida.

Solucao do exercicio 7.8.
O sistema inicial

z= X1 +3x%2
wr= =2 +4x
W = 3 —X2
w3y = —4 4xq +x2
Wy = 12 —3X1 —X2

nao é primalmente nem dualmente viavel. Aplicando a fase I (pivos xo—ws, xo—X1) €
depois fase II (pivos x3—w1, wz—wy, wi—wy) gera o dicionario final

z= 12 —8/3wy —1/3wy
X2 = 3 —W3
w3 = 2 —2/3W2 —1/3W4
x1= 3 +1/3wy  —1/3wy
w; = 1 +1/3wy  —1/3wy
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cuja solugao x1 = 3, x2 = 3 ja é inteira.
No segundo sistema comegamos com o dicionério

z X1 —2%7
w1 60 +11x; —15%,
W = 24 —4X1 —3X2
wz = 59 —10x7 +5x;
e um pivd x;—w3 gera a solugdo 6tima fracionéria
z= 4.9 —0.1wz  —1.5x,
wy = 113.9 —1.Twz —9.5x,
wy, = 44 +0.4wz  —5%x;
x1 = 4.9 —0.Twz  4+0.5%,
e a linha terceira linha (x71) gera o corte
wg = —0.9 +0.1lwz +0.5x,

Com o0 pivo ws—ws3 obtemos a solu¢ao 6tima inteira

z= 4 —Wy —X2
wi = 104 -1 1W4 —4X2
wy = 8 +4wy —7%2
x1= 4 —Wy +1x2
w3 = 9 +10ws  —5xy
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[n,m] conjunto {n,n+1,...,m}, pagina 42
] conjunto {1,2,...,n}, pagina 111
argmax valor para que uma funcao atinge o méximo, pagina 31

argmin valor para que uma fungdo atinge o minimo, pagina 59

B conjunto booleano {0, 1}, pagina 80
(E) coeficiente binomial, pagina 16
[x] menor nimero inteiro maior ou igual a x, pagina 130

co-NP classe de problemas de decisao com certificados polinomiais para instincias
negativas, pagina 52

U uniao disjunta, pagina 62
[x] maior nimero inteiro menor ou igual a x, pagina 82
< significadamente menor que, pagina 38

conjunto de ntimeros inteiros, pagina 79

B conjunto de variaveis bésicas, pagina 26
conjunto de variaveis nulas, pagina 26

NP classe de problemas de decisao com certificados polinomiais para instincias
positivas, pagina 52

R conjunto de ntimeros reais, pagina 10

sup supremo, menor limite superior de um conjunto, pagina 75

o Coluna j da matrix A = (ay;), pagina 13

At matriz transposta, pagina 49

a; Linha i da matrix A = (ay;), pagina 13

cn espago vetorial com vetores de n componentes sobre o campo C, pégina 13

C™*™ grupo de matrizes de tamanho n X m sobre o campo C, pagina 13

N*(v) conjunto de arcos saintes de v, pagina 114
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