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Programação linear
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Introdução

If one would take statistics about which mathematical problem is using up
most of the computer time in the world, then ... the answer would probably
be linear programming. (Laszlo Lovasz)
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1. Introdução

1.1. Exemplo

Exemplo 1.1 (No Ildo)
Antes da aula visito o Ildo1 para tomar um café e comer um Croissant. Ele me
conta: “Estou especializado em Croissants e Strudels. Tenho um lucro de 20 centavos
por Croissant e 50 centavos por Strudel. Diariamente até 80 clientes compram um
Croissant e até 60 um Strudel.” Mas infelizmente, o Ildo apenas disponibiliza de
150 ovos e 6 kg de açúcar por dia. Entre outros ingredientes, preciso um ovo e 50g de
açúcar para cada Croissant e um ovo e meio e 50g de açúcar para cada Strudel. “Agora,
professor, quantas Croissants e Strudels devo produzir para obter o maior lucro?”

Sejam c o número de Croissants e s o número de Strudels. O lucro do Ildo em Reais
é 0.2c+ 0.5s. Seria ótimo produzir todos 80 Croissants e 60 Strudels, mas uma conta
simples mostra que não temos ovos e açúcar suficiente. Para produzir os Croissants e
Strudels precisamos c + 1.5s ovos e 50c + 50sg de açúcar que não podem ultrapassar
150 ovos e 6000g. Com a condição óbvia que c ≥ 0 e s ≥ 0 chegamos no seguinte
problema de otimização:

maximiza 0.2c+ 0.5s, (1.1)
sujeito a c+ 1.5s ≤ 150,

50c+ 50s ≤ 6000,
c ≤ 80,
s ≤ 60,
c, s ≥ 0.

Como resolver esse problema? Com duas variáveis podemos visualizar a situação num
grafo com c no eixo x e s no eixo y

No Ildo

1Uma lancheria que existia na Instituto de Informática até
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que nesse caso permite resolver o problema graficamente. Desenhando diversos con-
junto de nível (ingl. level set) com valor da função objetivo 10, 20, 30, 40 é fácil
observar que o lucro máximo encontra-se no ponto c = s = 60, e possui um valor de
42 reais.

♦

A forma geral de um problema de otimização (ou de programação matemática) é

opt f(x),

sujeito a x ∈ V,

com

• um objetivo opt ∈ {max,min},

• uma função objetivo (ou função critério) f : V → R,

• um conjunto de soluções viáveis (ou soluções candidatas) V .

Falamos de um problema de otimização combinatória, caso V é discreto.
Nessa generalidade um problema de otimização é difícil ou impossível de resolver. O
exemplo 1.1 é um problema de otimização linear (ou programação linear):

• as variáveis de decisão são reais: x1, . . . , xn ∈ R
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1.1. Exemplo

• a função de otimização é linear em x1, . . . , xn:

f(x1, . . . , xn) = c1x1 + · · ·+ cnxn (1.2)

• as soluções viáveis são definidas implicitamente por m restrições lineares

a11x1 + a12x2 + · · ·+ a1nxn ./1 b1, (1.3)
a21x1 + a22x2 + · · ·+ a2nxn ./2 b2, (1.4)

· · · (1.5)
am1x1 + am2x2 + · · ·+ amnxn ./m bm, (1.6)

com ./i∈ {≤,=,≥}.

Exemplo 1.2 (O problema da dieta (Dantzig))
Suponha que temos uma tabela de nutrientes de diferentes tipos de alimentos. Sabendo
o valor diário de referência (VDR) de cada nutriente (quantidade de nutriente que deve
ser ingerido) e o preço de cada unidade de alimento, qual a dieta ótima, i.e. a dieta de
menor custo que contém pelo menos o valor diário de referência?
Com m nutrientes e n alimentos, seja aij a quantidade do nutriente i no alimento j
(em g/g), ri o valor diário de referência do nutriente i (em g) e cj o preço do alimento
j (em R$/g). Queremos saber as quantidades xj de cada alimento (em g) que

minimiza c1x1 + · · ·+ cnxn, (1.7)
sujeito a a11x1 + · · ·+ a1nxn ≥ r1, (1.8)

· · ·
am1x1 + · · ·+ amnxn ≥ rm, (1.9)
x1, . . . , xn ≥ 0. (1.10)

♦

Exemplo 1.3 (Problema de transporte (Hitchcock))
Uma empresa agrária tem m depósitos, cada um com um estoque de ai, i ∈ [m]
toneladas de milho. Ela quer encaminhar bj, j ∈ [n] toneladas de milho para n
clientes diferentes. O transporte de uma tonelada do depósito i para cliente j custa
R$ cij. Qual seria o esquema de transporte de menor custo?
Para formular o problema linearmente, podemos introduzir variáveis xij que represen-
tam o peso dos produtos encaminhados do depósito i ao cliente j, e queremos resolver

minimiza
∑

i∈[m],j∈[n]

cijxij, (1.11)

sujeito a
∑
j∈[n]

xij ≤ ai, para todo fornecedor i ∈ [m], (1.12)

∑
i∈[m]

xij = bj, para todo cliente j ∈ [n], (1.13)

xij ≥ 0, para todo fornecedor i ∈ [m] e cliente j ∈ [n].

11
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Figura 1.1.: Esquerda: Instância do problema de transporte. Direita: Solução ótima
correspondente.

Concretamente, suponha que temos a situação da figura 1.1. A figura mostra as
toneladas disponíveis de cada fornecedor, a demanda (em toneladas) de cada cliente
e as distâncias (em km) entre eles. O transporte custa R$ 1000 por km e tonelada.
Observe que um transporte do fornecedor 1 para cliente 3 e fornecedor 3 para cliente
1 não é possível. Nós usaremos uma distância grande de 100 km nesses casos (uma
outra possibilidade é usar restrições x13 = x31 = 0 ou remover as variáveis x13 e x31
do modelo).

minimiza 3x11 + x12 + 100x13 + 4x21 + 2x22

+ 4x23 + 100x31 + 3x32 + 3x33,

sujeito a x11 + x12 + x13 ≤ 5,
x21 + x22 + x23 ≤ 7,
x31 + x32 + x33 ≤ 3,
x11 + x21 + x31 = 7,

x12 + x22 + x32 = 3,

x13 + x23 + x33 = 5,

x11, x12, x13, x21, x22, x23, x31, x32, x33 ≥ 0.

Qual seria a solução ótima? A figura 1.1 (direita) mostra o número ótimo de toneladas
transportadas. O custo mínimo é 46 (em R$ 1000). ♦

Podemos simplificar a descrição de um programa linear usando notação matricial. Com
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1.1. Exemplo

A := (aij) ∈ Rm×n, b := (bi) ∈ Rm, c := (ci) ∈ Rn e x = (xi) ∈ Rn o problema
1.2-1.6), pode ser escrito de forma

opt ctx,

sujeito a aix ./i bi, i ∈ [m]

(Denotamos com ai a i-ésima linha e como aj a j-ésima coluna da matriz A.) Em
caso todas restrições usam a mesma relação ≤, ≥ ou = podemos escrever

opt ctx,

sujeito a Ax ≤ b,
opt ctx,

sujeito a Ax ≥ b, ou

opt ctx,

sujeito a Ax = b.

Exemplo 1.4 (Problema do Ildo em forma matricial)
O problema 1.1 em forma matricial é

maximiza (0.2 0.5)(c s)t

sujeito a


1 1.5
50 50
1 0
0 1

(cs
)
≤


150
6000
80
60


(c s) ≥ 0.

♦

Observação 1.1 (“Programar” linearmente)
Como explicado na seção histórica 1.4, o termo “programação” em “programação linear”
se refere a “agendamento” ou “planejamento”. Porém, formular programas lineares é
uma atividade muito similar à programação de computadores. Um programa linear
consiste de declarações de variáveis, constantes, uma função objetivo e uma série de
restrições. Podemos escrever um programa linear de forma mais “computacional” para
enfatizar a similaridade com programas. No caso do problema de Hitchcock 1.3, por
exemplo, podemos escrever

1 var xij, i ∈ [m], j ∈ [n] { declaração variáveis }
2 const ai, i ∈ [m] { estoques }
3 const bj, j ∈ [n] { demandas }
4 max

∑
i∈[m],j∈[n] cijxij

5 st
∑
j∈[n] xij ≤ ai, i ∈ [m] { limite estoque }

6 st
∑
i∈[m] xij = bj, j ∈ [n] { satisfação demanda }

Podemos ainda, igual a programação, introduzir nomes para funções lineares para faci-
litar a formulação. Por exemplo enviado(i) =

∑
j∈[n] xij é a quantidade total enviada

pelo i-ésimo fornecedor. Similarmente, podemos escrever recebido(j) =
∑
i∈[n] xij para

a quantidade total recebida pelo j-ésimo cliente. Com isso nosso “programa” linear fica

1 var xij, i ∈ [m], j ∈ [n] { declaração variáveis }

13



1. Introdução

2 const ai, i ∈ [m] { estoques }
3 const bj, j ∈ [n] { demandas }
4 const cij, i ∈ [m], j ∈ [n] { custos }
5 function enviado(i) =

∑
j∈[n] xij

6 function recebido(j) =
∑
i∈[m] xij

7 max
∑
i∈[m],j∈[n] cijxij

8 st enviado(i) ≤ ai, i ∈ [m] { limite estoque }
9 st recebido(j) = bj, j ∈ [n] { satisfação demanda }

Vamos conhecer linguagens reais para especificar programas lineares no parte prático.
Um exemplo é Julia/JuMP explicado no appéndice B. A nossa especificação acima
pode ser vista como “pseudo-código” de uma linguagem atual como Julia/JuMP. ♦

1.2. Formas normais

Conversões
É possível converter

• um problema de minimização para um problema de maximização

min ctx⇐⇒ −max−ctx

(o sinal − em frente do max é uma lembrança que temos que negar a solução
depois.)

• uma restrição “≥” para uma restrição “≤”

aix ≥ bi ⇐⇒ −aix ≤ −bi

• uma igualdade para desigualdades

aix = bi ⇐⇒ aix ≤ bi ∧ aix ≥ bi

Conversões

• uma desigualdade para uma igualdade

aix ≤ b⇐⇒ aix+ xn+1 = bi ∧ xn+1 ≥ 0
aix ≥ b⇐⇒ aix− xn+1 = bi ∧ xn+1 ≥ 0

usando uma nova variável de folga ou excesso xn+1 (inglês: slack and surplus
variables).

• uma variável xi sem restrições para duas positivas

x+i ≥ 0∧ x
−
i ≥ 0

substituindo xi por x+i − x−i .

Essas transformações permitem descrever cada problema linear em uma forma padrão.

14



1.2. Formas normais

Forma padrão

maximiza ctx,

sujeito a Ax ≤ b,
x ≥ 0.

As restrições x ≥ 0 se chamam triviais.

Exemplo 1.5
Dado o problema

minimiza 3x1 − 5x2 + x3,

sujeito a x1 − x2 − x3 ≥ 0,
5x1 + 3x2 + x3 ≤ 200,
2x1 + 8x2 + 2x3 ≤ 500,
x1, x2 ≥ 0.

vamos substituir “minimiza” por “maximiza”, converter a primeira desigualdade de
≥ para ≤ e introduzir x3 = x+3 − x−3 com duas variáveis positivas x+3 e x−3 para obter
a forma padrão

maximiza − 3x1 + 5x2 − x
+
3 + x−3 ,

sujeito a − x1 + x2 + x
+
3 − x−3 ≤ 0,

5x1 + 3x2 + x
+
3 − x−3 ≤ 200,

2x1 + 8x2 + 2x
+
3 − 2x−3 ≤ 500,

x1, x2, x
+
3 , x

−
3 ≥ 0.

Em notação matricial temos

c =


−3
5
−1
1

 ; b =

 0
200
500

 ; A =

−1 1 1 −1
5 3 1 −1
2 8 2 −2

 .
♦

Definição 1.1 (Soluções viáveis, inviáveis e ótimas)
Para um programa linear P em forma normal, um vetor x ∈ Rn é uma solução viável,
caso Ax ≤ b e x ≥ 0. P é viável caso existe alguma solução viável, caso contrário P é
inviável. Um vetor x∗ ∈ Rn é uma solução ótima caso ctx∗ = max{ctx | Ax ≤ b, x ≥ 0}.

Definição 1.2 (Programas ilimitados)
Uma programa linear em forma normal é ilimitado caso existe um v ∈ R tal que para
todo w ≥ v existe uma solução viável x com ctx ≥ w.

15



1. Introdução

1.3. Solução por busca exaustiva

Uma observação importante na solução de um programa linear é que a solução ótima,
caso exista, somente ocorra na borda de região das soluções viáveis (compara com a
figura na página 9). Mais específico a solução ótima ocorre num vértice (ou ponto ex-
tremo) dessa região, definido pela interseção de n restrições linearmente independentes.
Isso justifica tratar a programação linear como problema de otimização combinatória,
porque temos um número finito de

(
m
n

)
candidatos para a solução ótima. Procurando

o melhor entre todos candidatos nos também fornece um algoritmo (muito ineficiente)
para encontrar uma solução ótima de um programa linear, caso exista.

Definição 1.3
Um conjunto C ⊆ Rn é convexo, caso para todo par de pontos x, y ∈ C a sua combi-
nação convexa λx+ (1− λ)y para λ ∈ [0, 1] também pertence a C.

Proposição 1.1
A região de soluções viáveis V = {x ∈ Rn | Ax ≤ b} definido por um programa linear
é convexa.

Prova. Sejam x, y ∈ V. Então

A(λx+ (1− λ)y) = λAx+ (1− λ)Ay ≤ λb+ (1− λ)b = b.

�

Definição 1.4
Um ponto x ∈ C de uma região C ⊆ Rn é um vértice ou ponto extremo, caso não existe
um y 6= 0 tal que x+ y ∈ C e x− y ∈ C.

Proposição 1.2
Caso existe uma única solução ótima de max{ctx | x ∈ V} ela é um vértice de V.

Prova. Supõe que a solução ótima x∗ não é um vértice de V. Então existe um y tal
que x+ y ∈ V e x− y ∈ V. Por x∗ ser a única solução ótima temos ct(x∗ + y) < ctx∗
e ct(x∗ − y) < ctx∗, i.e., cty < 0 e −cty < 0, uma contradição. �

Proposição 1.3
Um vértice de V = {x ∈ Rn | Ax ≤ b} é a interseção de n restrições linearmente
independentes.

Prova. Para um vértice v ∈ V, seja Av a matriz formado das linhas ai de A tal que
aiv = bi, e bv os lados direitos correspondentes.
Seja v ∈ V a interseção de n restrições linearmente independentes, i.e. posto(Av) = n.
Supõe v não é um vértice. Logo existe um y tal que x + y, x − y ∈ V que satisfazem
Av(x + y) ≤ bv e Av(x − y) ≤ bv. Como Avx = bv obtemos Avy ≤ 0 e −Avy ≤ 0,
i.e. Avy = 0, uma contradição com posto(Av) = n.
Agora seja v ∈ V um vértice e supõe posto(Av) < n, i.e. existe um y tal que Avy = 0.
Para as linhas ai em A com aiv < bi existe um δ > 0 tal que

ai(v+ δy) ≤ bi e ai(v− δy) ≤ bi
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e logo

A(v+ δy) ≤ b e A(v− δy) ≤ b,

porque Avy = 0, em contradição com o fato que v é um vértice. �

Proposição 1.4
Caso existem múltiplas soluções ótimas de max{ctx | x ∈ V} e V é limitado, um vértice
de V é uma solução ótima.

Prova. Por indução sobre n − posto(Av). Caso n − posto(Av) = 0, v é um vértice
pela proposição (1.3). Para n − posto(Av) > 0 existe um y com Avy = 0. Seja
µ = max{t | v + ty ∈ V}. O valor µ existe porque V é limitado (e compacto). Como
ai(v+ µy) ≤ bi para cada linha i temos que

µ = min{(bi − aiv)/aiy | aiy > 0} (+)

Seja i∗ o índice da linha que satisfaz (+) com igualdade. Define v ′ = v + µy. Temos
Avv

′ = Avv+µAvy = Avv = bv, logo Av ′ contém as linhas de Av e pelo menos a linha
ai∗ a mais. Ainda, como Avy = 0 mas ai∗y 6= 0 temos que posto(Av ′) > posto(Av).
Logo, pela hipótese da indução, existe um vértice que é uma solução ótima. �

Observação 1.2
Caso existem multiplas soluções ótimas de max{ctx | x ∈ V}, mas V não é limitado, é
possível que não existe um vértice ótimo. Um exemplo é o sistema max{x1 | (x1, x2) ∈
R2, 0 ≤ x1 ≤ 1}. ♦

Usando os resultados acima, obtemos um algoritmo (muito ineficiente) para encontrar
uma solução ótima de um programa linear (limitado).

1 x∗ := null
2 for todas

(
m
n

)
seleções de n restrições lin. indep.

3 determine a interseção x das n restrições
4 if Ax ≤ b e ctx ≥ ctx∗ then
5 x∗ := x
6 end if
7 end for
8 if x∗ 6= null then
9 return ‘‘Solução ótima é x∗ ou sistema ilimitado ’’
10 else
11 return ‘‘Não possui solução ou não possui vértice ’’
12 end if

1.4. Notas históricas

História da programação linear
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• Jean Baptiste Joseph Fourier (1826): Método de resolver um sistema de desi-
gualdades (eliminação de Fourier-Motzkin) Williams 1986.

• Leonid Kantorovich (1939): Programação linear.

• George Bernard Dantzig (1948): Método Simplex.

• John von Neumann: Dualidade.

• Leonid Khachiyan (1979): Método de ellipsoides.

• Narendra Karmarkar (1984): Métodos de pontos interiores.

Figura 1.2.: Jean Baptiste Jo-
seph Fourier (*1768, +1830)

Pesquisa operacional, otimização e “programação”

• “The discipline of applying advanced analytical methods to help make better
decisions” (INFORMS)

• O nome foi criado durante a segunda guerra mundial, para métodos científicos
de análise e predição de problemas logísticos.

• Hoje se aplica para técnicas que ajudam tomar decisões sobre a execução e
coordenação de operações em organizações.

• Problemas da pesquisa operacional são problemas de otimização.

• “Programação” 6= “Programação”

– Não se refere à computação: a noção significa “planejamento” ou “agenda-
mento”.

Figura 1.3.: George Bernard
Dantzig (*1914, +2005)

Técnicas da pesquisa operacional

• Em geral: Técnicas algorítmicas conhecidas como

– Modelagem matemática (equações, igualdades, desigualdades, modelos pro-
babilísticos,...)

– Algoritmos gulosos, randômicos, ...; programação dinâmica, linear, convexo,
...

– Heurísticas e algoritmos de aproximação.

• Algumas dessas técnicas se aplicam para muitos problemas e por isso são mais
comuns:

– Exemplo: Programação linear.
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1.5. Exercícios

1.5. Exercícios

(Soluções a partir da página 183.)

Exercício 1.1
Na definição da programação linear permitimos restrições lineares da forma

ai1x1 + ai2x2 + · · ·+ ainxn ./i bi

com ./i∈ {≤,=,≥}. Por que não permitimos ./i∈ {<,>} também? Discute.

Exercício 1.2
Procura a tabela nutricional de algum restaurante e resolve o problema da dieta (exem-
plo 1.2).

Exercício 1.3
Um investidor pode vender ações de suas duas empresas na bolsa de valores, mas está
sujeito a um limite de 10.000 operações diárias (vendas por dia). Na cotação atual, as
ações da empresa A valorizaram-se 10% e agora cada uma vale R$ 22. Já a empresa
B teve valorização de 2% e cada ação vale R$ 51. Sabendo-se que o investidor possui
6.000 ações da Empresa A e 7.000 da empresa B, maximize seu lucro na BOVESPA e
diga qual o lucro obtido.

Exercício 1.4
Dona Maria adora ver seus netinhos Marcos, Renato e Vinicius bem alimentados.
Sempre na hora de cozinhar ela leva em conta o quanto eles gostam de cada prato para
fazê-los comer o máximo possível. Marcos gosta da lasanha e comeria 3 pratos dela
após um prato de sopa; Renato prefere lanches, e comeria 5 hambúrgueres, ignorando
a sopa; Vinicius gosta muita da massa a bolonhesa, e comeria 2 pratos após tomar dois
pratos de sopa. Para fazer a sopa, são necessários entre outros ingredientes, 70 gramas
de queijo por prato e 30 gramas de carne. Para cada prato de lasanha, 200 gramas de
queijo, e 100 gramas de carne. Para cada hambúrguer são necessários 100 gramas de
carne, e 100 gramas de queijo. Para cada prato de massa a bolonhesa são necessários
100 gramas de carne e 30 gramas de queijo (ralado para por sobre a massa). Seus
netos vieram visitá-la de surpresa, e tendo ela somente 800 gramas de carne e 1000
gramas de queijo em casa, como ela poderia fazê-los comer o maior número de pratos,
garantindo que cada um deles comerá pelo menos dois pratos, e usando somente os
ingredientes que ela possui?

Exercício 1.5
A empresa “Luz para o mundo” produz dois tipos de lampadas, cada um com partes
metálicos e partes eléctricos. A gerencia quer saber com quantas unidades produzidas
por tipo o lucro é maximizado. A produção de uma unidade de produto 1, precisa uma
unidade de partes metálicos e duas unidades de componentes eléctricos. A produção de
uma unidade de produto 2, precisa três unidades de partes metálicos e duas unidades
de componentes eléctricos. A empresa tem um estoque de 200 unidades de partes
metálicos e 300 unidades de componentes eléctricos. Cada unidade de produto um
tem um lucro de R$ 1 e cada unidade de produto 2, até um limite de 60 unidades, um
lucro de R$ 2. (Cada unidade acima de 60 no caso do produto 2 não rende nada.)
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M1 S1

M2 S2

P

R$ 2000/t

30t

R$ 1700/t

30t

R$ 1600/t

50t

R$ 1100/t

50t

R$ 400/t

70t

R$ 800/t

70t

Figura 1.4.: Rede de distribuição de uma empresa de aço.

Exercício 1.6
A empresa “Janela jóia” com três empregados produz dois tipos de janelas: com mol-
duras de madeira e com molduras de alumínio. Eles têm um lucro de 60 R$ para toda
janela de madeira e 30R$ para toda janela de alumínio. João produz as molduras de
madeira. Ele consegue produzir até seis molduras por dia. Sylvana é responsável pelas
molduras de alumínio, e ela consegue produzir até quatro por dia. Ricardo corta o
vidro e é capaz de produzir até 48 m2 por dia. Uma janela de madeira precisa 6m2
de vidro, e uma de alumínio 8m2. A empresa quer maximizar o seu lucro.

Exercício 1.7
Uma empresa de aço tem uma rede de distribuição conforme figura 1.4. Duas minas
P1 e P2 produzem 40t e 60t de mineral de ferro, respectivamente, que são distribuídos
para dois estoques intermediários S1 e S2. A planta de produção P tem uma demanda
dem 100t de mineral de ferro. A vias de transporte tem limites de toneladas de mineral
de ferro que podem ser transportadas e custos de transporte por tonelada de mineral
de ferra (veja figura). A direção da empresa quer determinar a transportação que
minimiza os custos.

Exercício 1.8
Um importador de Whisky tem as seguintes restrições de importação

• no máximo 2000 garrafas de Johnny Ballantine por 70 R$ cada uma,

• no máximo 2500 garrafas de Old Gargantua por 50 R$ cada uma,

• no máximo 1200 garrafas de Misty Deluxe por 40 R$ cada uma.

Dos Whiskies importados ele produz três misturas A, B, C, que ele vende por 68 R$,
57 R$ e 45 R$, respectivamente. As misturas são

• A: no mínimo 60% Johnny Ballantine, no máximo 20% Misty Deluxe,

• B: no mínimo 15% Johnny Ballantine, no máximo 60% Misty Deluxe,

• C: no máximo 50% Misty Deluxe.
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Quais seriam as misturas ótimas, e quantas garrafas de cada mistura devem ser pro-
duzidas para maximizar o lucro?

Observações:

• Use como variáveis o número de garrafas xm,i da marca m usadas na mistura i.

• Desconsidere a integralidade das garrafas.

Exercício 1.9
A empresa de televisão “Boa vista” precisa decidir quantas TVs de 29"e 31"ela vai
produzir. Uma analise do mercado descobriu que podem ser vendidas no máximo 40
TVs de 29"e 10 de 31"por mês. O trabalho máximo disponível por mês é 500h. A
produção de um TV de 29"precisa 20h de trabalho, e um TV de 31"precisa 10h. Cada
TV de 29"rende um lucro de R$ 120 e cada de 31"um lucro de R$ 80.
Qual a produção ótima média de cada TV por mês?

Exercício 1.10 (da Costa)
Um certo óleo é refinado a partir da mistura de outros óleos, vegetais ou não vegetais.
Temos óleos vegetais V1 e V2 e óleos não vegetais NV1 NV2 NV3. Por restrições
da fábrica, um máximo de 200 ton. de óleos vegetais podem ser refinados por mês,
e um máximo de 250 ton. de óleos não vegetais. A acidez do óleo desejado deve
estar entre 3 e 6 (dada uma unidade de medida) e a acidez depende linearmente das
quantidades/acidez dos óleos brutos usados. O preço de venda de uma tonelada do
óleo é R$ 150. Calcule a mistura que maximiza o lucro, dado que:

Óleo V1 V2 NV1 NV2 NV3

Custo/ton 110 120 130 110 115
Acidez 8.8 6.1 2.0 4.2 5.0

Exercício 1.11 (Campêlo Neto)
Um estudante, na véspera de seus exames finais, dispõe de 100 horas de estudo para
dedicar às disciplinas A, B e C. Cada um destes exames é formado por 100 questões,
e o estudante espera acertar, alternativamente, uma questão em A, duas em B ou três
em C, por cada hora de estudo. Suas notas nas provas anteriores foram 6, 7 e 10,
respectivamente, e sua aprovação depende de atingir uma média mínima de 5 pontos
em cada disciplina. O aluno deseja distribuir seu tempo de forma a ser aprovado com
a maior soma total de notas.

Exercício 1.12 (Dasgupta et al. 2009)
Moe está decidindo quanta cerveja Duff regular e quanta cerveja Duff Forte encomendar
a cada semana. Duff regular custa a Moe $1 por caneco e ele a vende por $2 por caneco;
Duff Forte custa $1.50 por caneco e ele vendo por $3 por caneco. Entretanto, como
parte de uma complicada fraude de marketing, a companhia Duff somente vende um
caneco de Duff Forte para cada dois canecos ou mais de Duff regular que Moe compra.
Além disso, devido a eventos passados sobre os quais é melhor nem comentar, Duff não

21



1. Introdução

venderá Moe mais do que 3000 canecos por semana. Moe sabe que ele pode vender
tanta cerveja quanto tiver.
Formule um programa linear em duas variáveis para decidir quanto de Duff regular e
quanto de Duff Forte comprar, para maximizar o lucro de Moe.

Exercício 1.13 (Dasgupta et al. 2009)
A companhia de produtos caninos oferece duas comidas para cachorro: Frisky Pup e
Husky Hound, que são feitas de uma mistura de cereais e carne. Um pacote de Frisky
Pup requer 1 quilo de cereal e 1.5 quilo de carne, e é vendido por $7. Um pacote de
Husky Hound usa 2 quilos de cereal e 1 quilo de carne, e é vendido por $6. O cereal
bruto custa $1 por quilo e a carne bruta, $2 por quilo. Há também o custo de $1.40
para empacotar o Frisky Pup e $0.60 para o Husky Hound. Um total de 240000 quilos
de cereal e 180000 quilos de carne estão disponíveis a cada mês. O único gargalo de
produção está no fato de a fábrica poder empacotar apenas 110000 pacotes de Frisky
Pup por mês. Desnecessário dizer, a gerência gostaria de maximizar o lucro.
Formule o problema como um programa linear em duas variáveis.

Exercício 1.14 (Vanderbei 2001)
Formule como problema de otimização linear e resolve graficamente.
Uma empresa de aço produz placas ou canos de ferro. As taxas de produção são
200t/h para placas e 140t/h para canos. O lucro desses produtos e 25$/t para placas e
30$/t para canos. Considerando a demanda atual, os limites de produção são 6000t de
placas e 4000t de canos. Na semana atual são 40h de tempo de produção disponível.
Quantas toneladas de placas e canos devem ser produzidas para maximizar o lucro?

Exercício 1.15 (Vanderbei 2001)
Formule como problema de otimização linear.
Uma pequena empresa aérea oferece um vôo de Pelotas, com escala em Porto Alegre
para Torres. Logo tem três tipos de clientes que voam Pelotas–Porto Alegre, Pelotas–
Torres e Porto Alegre–Torres. A linha também oferece três tipos de bilhetes:

• Tipo A: bilhete regular.

• Tipo B: sem cancelamento.

• Tipo C: sem cancelamento, pagamento três semanas antes de viajar.

Os preços (em R$) dos bilhetes são

Pelotas–Porto Alegre Porto Alegre–Torres Pelotas–Torres

A 600 320 720
B 440 260 560
C 200 160 280

Baseado na experiência com esse vôo, o marketing tem a seguinte predição de passa-
geiros:
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Pelotas–Porto Alegre Porto Alegre–Torres Pelotas–Torres

A 4 8 3
B 8 13 10
C 22 20 18

O objetivo da empresa e determinar o número ótimo de bilhetes para vender de cada
tipo, respeitando um limite de 30 passageiros em cada vôo e o limite dos passageiros
previstos em cada categoria, que maximiza o lucro.

Exercício 1.16
Resolva graficamente.

maximiza 4x1 + x2,

sujeito a − x1 + x2 ≤ 2,
x1 + 8x2 ≤ 36,
x2 ≤ 4,
x1 ≤ 4.25,
x1, x2 ≥ 0.

(a) Qual a solução ótima?

(b) Qual o valor da solução ótima?

Exercício 1.17
Escreve em forma normal.

minimiza z = −5x1 − 5x2 − 5x3,

sujeito a − 6x1 − 2x2 − 9x3 ≤ 0,
− 9x1 − 3x2 + 3x3 = 3,

x1, x2, x3 ≥ 0.

maximiza z = −6x1 − 2x2 − 6x3 + 4x4 + 4x5,

sujeito a − 3x1 − 8x2 − 6x3 − 7x4 − 5x5 = 3,

5x1 − 7x2 + 7x3 + 7x4 − 6x5 ≤ 6,
1x1 − 9x2 + 5x3 + 7x4 − 10x5 = −6,

x1, x2, x3, x4, x5 ≥ 0.
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maximiza z = 7x1 + 4x2 + 8x3 + 7x4 − 9x5,

sujeito a − 4x1 − 1x2 − 7x3 − 8x4 + 6x5 = −2,

x1 + 4x2 + 2x3 + 2x4 − 7x5 ≥ −7,

− 8x1 + 2x2 + 8x3 − 6x4 − 7x5 = −7,

x1, x2, x3, x4, x5 ≥ 0.

minimiza z = −6x1 + 5x2 + 8x3 + 7x4 − 8x5,

sujeito a − 5x1 − 2x2 + x3 − 9x4 − 7x5 = 9,

7x1 + 7x2 + 5x3 − 3x4 + x5 = −8,

− 5x1 − 3x2 − 5x3 + 9x4 + 8x5 ≤ 0,
x1, x2, x3, x4, x5 ≥ 0.
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Graficamente, é difícil resolver sistemas com mais que três variáveis. Portanto é ne-
cessário achar métodos que permitam resolver sistemas grandes. Um dos mais impor-
tantes é o método Simples. Nós vamos estudar esse método primeiramente através da
aplicação a um exemplo.

2.1. Um exemplo

Começamos com o seguinte sistema em forma padrão:

Exemplo: Simplex

maximiza z = 6x1 + 8x2 + 5x3 + 9x4,

sujeito a 2x1 + x2 + x3 + 3x4 ≤ 5,
x1 + 3x2 + x3 + 2x4 ≤ 3,
x1, x2, x3, x4 ≥ 0.

Introduzimos variáveis de folga e reescrevemos as equações:

Exemplo: Com variáveis de folga

maximiza z = 6x1 + 8x2 + 5x3 + 9x4, (2.1)
sujeito a w1 = 5− 2x1 − x2 − x3 − 3x4, (2.2)

w2 = 3− x1 − 3x2 − x3 − 2x4, (2.3)
x1, x2, x3, x4, w1, w2 ≥ 0.

Observação 2.1
Nesse exemplo é fácil obter uma solução viável, escolhendo x1 = x2 = x3 = x4 = 0.
Podemos verificar que w1 = 5 e w2 = 3 e todas as restrições são respeitadas. O valor
da função objetivo seria 0. Uma outra solução viável é x1 = 1, x2 = x3 = x4 = 0,
w1 = 3, w2 = 2 com valor z = 6. ♦

Com seis variáveis e duas equações lineares independentes o espaço de soluções do
sistema de equações lineares dado pelas restrições tem 6 − 2 = 4 graus de liberdade.
Uma solução viável com esse número de variáveis nulas (igual a 0) se chama uma
solução básica viável. Logo nossa primeira solução acima é uma solução básica viável.
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A idéia do método Simplex é percorrer soluções básicas viáveis, aumentando em cada
passo o valor z da função objetivo.
Logo nosso próximo objetivo é aumentar o valor da função objetivo z. Para esse fim,
podemos aumentar o valor das variáveis x1, x2, x3 ou x4, pois o coeficiente delas é
positivo. Escolhemos x4, porque essa variável tem o maior coeficiente. Não podemos
aumentar x4 arbitrariamente: Para respeitar as restrições w1, w2 ≥ 0 temos os limites

Limites

w1 = 5− 3x4 ≥ 0⇐⇒ x4 ≤ 5/3
w2 = 3− 2x4 ≥ 0⇐⇒ x4 ≤ 3/2

ou seja x4 ≤ 3/2. Aumentando x4 o máximo possível, obtemos x4 = 3/2 e w2 = 0.
Os valores das demais variáveis não mudam. Essa solução respeita novamente todas
as restrições, e portanto é viável. Ainda, como trocamos uma variável nula (x4) com
uma outra não-nula (w2) temos uma nova solução básica viável

Solução básica viável

x1 = x2 = x3 = 0; x4 = 3/2;w1 = 1/2;w2 = 0

com valor da função objetivo z = 13.5.
O que facilitou esse primeiro passo foi a forma especial do sistema de equações. Esco-
lhemos quatro variáveis independentes (x1, x2, x3 e x4) e duas variáveis dependentes
(w1 e w2). Essas variáveis são chamadas não-básicas e básicas, respectivamente. Na
nossa solução básica viável todas variáveis não-básicas são nulas. Logo, pode-se au-
mentar uma variável não-básica cujo coeficiente na função objetivo seja positivo (para
aumentar o valor da função objetivo). Inicialmente tem-se as seguintes variáveis bási-
cas e não-básicas

B = {w1, w2}; N = {x1, x2, x3, x4}.

Depois de aumentar x4 (e consequentemente zerar w2) podemos escolher

B = {w1, x4}; N = {x1, x2, x3, w2}.

A variável x4 se chama variável entrante, porque ela entra no conjunto de variáveis
básicas B. Analogamente w2 se chama variável sainte.
Para continuar, podemos reescrever o sistema atual com essas novas variáveis básicas
e não-básicas. A segunda restrição 2.3 é fácil de reescrever

w2 = 3− x1 − 3x2 − x3 − 2x4 ⇐⇒ 2x4 = 3− x1 − 3x2 − x3 −w2⇐⇒ x4 = 3/2− 1/2x1 − 3/2x2 − 1/2x3 − 1/2w2

Além disso, temos que reescrever a primeira restrição 2.2, porque a variável básica w1
depende de x4 que agora é básica também. Nosso objetivo é escrever todas variáveis

26



2.1. Um exemplo

básicas em termos de variáveis não-básicas. Para esse fim, podemos usar combina-
ções lineares da linhas, que eliminam as variáveis não-básicas. Em nosso exemplo, a
combinação (2.2)−3/2(2.3) elimina x4 e resulta em

w1 − 3/2w2 = 1/2− 1/2x1 + 7/2x2 + 1/2x3

e colocando a variável não-básica w2 no lado direito obtemos

w1 = 1/2− 1/2x1 + 7/2x2 + 1/2x3 + 3/2w2.

Temos que aplicar uma operação semelhante à função objetivo que ainda depende da
variável básica x4. Escolhemos (2.1)−9/2(2.3) para obter

z = 27/2+ 3/2x1 − 11/2x2 + 1/2x3 − 9/2w2.

Novo sistema

maximiza z = 27/2+ 3/2x1 − 11/2x2 + 1/2x3 − 9/2w2,

sujeito a w1 = 1/2− 1/2x1 + 7/2x2 + 1/2x3 + 3/2w2,

x4 = 3/2− 1/2x1 − 3/2x2 − 1/2x3 − 1/2w2,

x1, x2, x3, x4, w1, w2 ≥ 0.

que obtemos após uma operação de trocar as variáveis x4 e w2. Essa operação se
chama um pivô. Observe que no novo sistema é fácil recuperar toda informação atual:
zerando as variáveis não-básicas obtemos diretamente a solução x1 = x2 = x3 = w2 =
0, w1 = 1/2 e x4 = 3/2 com função objetivo z = 27/2.
Antes de continuar “pivotando” introduzimos uma forma mais simples de escrever o
sistema

Dicionário

z = 27/2 +3/2x1 −11/2x2 +1/2x3 −9/2w2
w1 = 1/2 −1/2x1 +7/2x2 +1/2x3 +3/2w2
x4 = 3/2 −1/2x1 −3/2x2 −1/2x3 −1/2w2

que se chama dicionário (inglês: dictionary).

Excurso 2.1
Alguns autores usam um tableau em vez de um dicionário. Para n variáveis e m res-
trições, um tableau consiste em n + 1 colunas e m + 1 linhas. Igual a um dicionário,
a primeira linha corresponde com a função objetivo, e as restantes linhas com as res-
trições. Diferente do dicionário a primeira coluna contém os constantes, e as restantes
colunas correspondem com as variáveis, incluindo as básicas. Nosso exemplo acima em
forma de tableau é
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base︷ ︸︸ ︷
x1 x2 x3 x4 w1 w2

27/2 3/2 −11/2 1/2 0 0 9/2

1/2 1/2 −7/2 −1/2 0 1 −3/2
3/2 1/2 3/2 1/2 1 0 1/2

♦

No próximo passo podemos aumentar somente x1 ou x3 porque somente elas têm co-
eficientes positivos. Aumentado x1 temos que respeitar x1 ≤ 1 (da primeira restrição)
e x1 ≤ 3 (da segunda). Logo a primeira restrição é mais forte, x1 é a variável entrante,
w1 a variável sainte, e depois do pivô obtemos

Segundo passo

z = 15 −3w1 +5x2 +2x3
x1 = 1 −2w1 +7x2 +x3 +3w2
x4 = 1 +w1 −5x2 −x3 −2w2

No próximo pivô x2 entra. A primeira restrição não fornece limite para x2, porque o
coeficiente de x2 é positivo! Mas a segunda x2 ≤ 1/5 e x4 sai da base. O resultado do
pivô é

Terceiro passo

z = 16 −2w1 −x4 +x3 −2w2
x1 = 12/5 −3/5w1 −7/5x4 −2/5x3 +1/5w2
x2 = 1/5 +1/5w1 −1/5x4 −1/5x3 −2/5w2

O próximo pivô: x3 entra, x2 sai:

Quarto passo

z = 17 −w1 −2x4 −5x2 −4w2
x1 = 2 −w1 −x4 +2x2 +w2
x3 = 1 +w1 −x4 −5x2 −2w2

Agora, todos coeficientes da função objetivo são negativos. Isso significa, que não
podemos mais aumentar nenhuma variável não-básica. Como esse sistema é equivalente
ao sistema original, qualquer solução tem que ter um valor menor ou igual a 17, pois
todas as variáveis são positivas. Logo chegamos no resultado final: a solução

w1 = x4 = x2 = w2 = 0; x1 = 2; x3 = 1

com valor objetivo 17, é ótima!
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2.2. O método resumido

Concluímos esse exemplo com mais uma observação. O número de soluções básicas
viáveis é limitado. Em nosso exemplo, se escolhemos um subconjunto de quatro variá-
veis nulas, as duas equações determinam as variáveis restantes. Logo temos no máximo(
6
4

)
= 15 soluções básicas viáveis. Em geral, com m equações e n variáveis, uma solu-

ção básica viável possui n−m variáveis nulas e o número delas é limitado por
(
n

n−m

)
.

Portanto, se aumentamos em cada pivô o valor da função objetivo, o método termina
em no máximo

(
n

n−m

)
passos.

Exemplo 2.1 (Solução do problema do Ildo)
Exemplo da solução do problema do Ildo na página 9.

z = 0/1 +1/5c +1/2s
w1 = 150 −c −3/2s
w2 = 6000 −50c −50s
w3 = 80 −c
w4 = 60 −s

Pivô s–w4

z = 30 +1/5c −1/2w4
w1 = 60 −c +3/2w4
w2 = 3000 −50c +50w4
w3 = 80 −c
s = 60 −w4

Pivô c–w1

z = 42 −1/5w1 −1/5w4
c = 60 −w1 +3/2w4

w2 = +50w1 −25w4
w3 = 20 +w1 −3/2w4
s = 60 −w4

O resultado é um lucro total de R$ 42, com os seguintes valores de variáveis: c = 60,
s = 60, w1 = 0, w2 = 0, w3 = 20 e w4 = 0. A interpretação das variáveis de folga é
como segue.

• w1: Número de ovos sobrando: 0.

• w2: Quantidade de açúcar sobrando: 0 g.

• w3: Croissants não produzidos (abaixo da demanda): 20.

• w4: Strudels não produzidos: 0.

♦

2.2. O método resumido

Considerando n variáveis e m restrições:
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2. O método Simplex

Sistema inicial

maximiza z =
∑
j∈[n]

cjxj,

sujeito a
∑
j∈[n]

aijxj ≤ bi, i ∈ [m],

xj ≥ 0, j ∈ [n].

Preparação
Introduzimos variáveis de folga∑

j∈[n]

aijxj + xn+i = bi, i ∈ [m],

e escrevemos as variáveis de folga como dependentes das variáveis restantes

xn+i = bi −
∑
j∈[n]

aijxj, i ∈ [m].

Solução básica viável inicial
Se todos bi ≥ 0 (o caso contrário vamos tratar na próxima seção), temos uma solução
básica inicial

xn+i = bi, i ∈ [m],

xj = 0, j ∈ [n].

Índices das variáveis
Depois do primeiro passo, os conjuntos de variáveis básicas e não-básicas mudam. Seja
B o conjunto dos índices das variáveis básicas (não-nulas) e N o conjunto das variáveis
nulas. No começo temos

B = {n+ 1, n+ 2, . . . , n+m}; N = {1, 2, . . . , n}

A forma geral do sistema muda para

z = z̄+
∑
j∈N

c̄jxj,

xi = b̄i −
∑
j∈N

āijxj, i ∈ B.

As barras em cima dos coeficientes enfatizam que eles mudam ao longo da aplicação
do método. Os coeficientes c̄j são chamados custos reduzidos (ingl. reduced costs).
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2.3. Sistemas ilimitados

Escolher variável entrante (ingl. pricing)
Em cada passo do método Simplex, escolhemos uma variável não-básica xk, com k ∈ N
para aumentar o valor objetivo z. Isso somente é possível para os índices j tal que
c̄j > 0, i.e.

{j ∈ N | c̄j > 0}.

Escolhemos um k desse conjunto, e xk é a variável entrante. Uma heurística simples é
a regra do maior coeficiente, que escolhe

k = argmax{c̄j | c̄j > 0, j ∈ N }

Aumentar a variável entrante
Seja xk a variável entrante. Se aumentamos xk para um valor positivo, as variáveis
básicas têm novos valores

xi = b̄i − āikxk i ∈ B.

Temos que respeitar xi ≥ 0 para 1 ≤ i ≤ n. Cada equação com āik > 0 fornece uma
cota superior para xk:

xk ≤ b̄i/āik.

Logo podemos aumentar xk ao máximo um valor

α := min
i∈B
āik>0

b̄i/āik =

(
max
i∈B
āik>0

āik/b̄i

)−1

=

(
max
i∈B

āik/b̄i

)−1

> 0. (2.4)

Podemos escolher a variável sainte entre os índices

{i ∈ B | b̄i/āik = α}.

2.3. Sistemas ilimitados

Como pivotar?

• Considere o sistema
z = 24 −x1 +2x2
x3 = 2 −x1 +x2
x4 = 5 +x1 +4x2

• Qual a próxima solução básica viável?

• A duas equações não restringem o aumento de x2: existem soluções com valor
ilimitado.
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2. O método Simplex

2.4. Encontrar uma solução inicial: o método de duas fases

Solução básica inicial

• Nosso problema inicial é

maximiza z =
∑
j∈[n]

cjxj,

sujeito a
∑
j∈[n]

aijxj ≤ bi, i ∈ [m],

xi ≥ 0, i ∈ [n],

• com dicionário inicial

z = z̄+
∑
j∈N

c̄jxj

xi = b̄i −
∑
j∈N

āijxj, i ∈ B.

Solução básica inicial

• A solução básica inicial desse dicionário é

x = (0 · · · 0 b1 · · ·bm)t

• O que acontece se existe um bi < 0?

• A solução básica não é mais viável! Sabe-se disso porque pelo menos uma variável
básica terá valor negativo.

Sistema auxiliar

• Um método para resolver o problema: resolver outro programa linear

– cuja solução fornece uma solução básica viável do programa linear original
e

– que tem uma solução básica viável simples, tal que podemos aplicar o mé-
todo Simplex.

maximiza z = −x0,

sujeito a
∑
j∈[n]

aijxj − x0 ≤ bi, 0 ≤ i ≤ m,

xi ≥ 0, i ∈ [n].
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2.4. Encontrar uma solução inicial: o método de duas fases

Resolver o sistema auxiliar

• É fácil encontrar uma solução viável do sistema auxiliar:
– Escolhe xi = 0, para todos i ∈ [n].
– Escolhe x0 suficientemente grande: x0 ≥ maxi∈[m] −bi.

• Isso corresponde com um primeiro pivô com variável entrante x0 após introduzir
as variáveis de folga (“pseudo-pivô”).
– Podemos começar com a solução não-viável x0 = x1 = . . . = xn = 0.
– Depois aumentamos x0 tal que a variável de folga mais negativa vire posi-

tiva.
– x0 e variável sainte xk tal que k = argmaxi∈[m] −bi.

Exemplo: Problema original

maximiza z = −2x1 − x2,

sujeito a − x1 + x2 ≤ −1,

− x1 − 2x2 ≤ −2,

x2 ≤ 1,
x1, x2 ≥ 0.

Exemplo: Problema auxiliar

maximiza z = −x0,

sujeito a − x1 + x2 − x0 ≤ −1,

− x1 − 2x2 − x0 ≤ −2,

x2 − x0 ≤ 1,
x0, x1, x2 ≥ 0.

Exemplo: Dicionário inicial do problema auxiliar

z = −x0
w1 = −1 +x1 −x2 +x0
w2 = −2 +x1 +2x2 +x0
w3 = 1 −x2 +x0

• Observe que a solução básica não é viável.

• Para achar uma solução básica viável: fazemos um primeiro pivô com variável
entrante x0 e variável sainte w2.
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2. O método Simplex

Exemplo: Dicionário inicial viável do sistema auxiliar

z = −2 +x1 +2x2 −w2
w1 = 1 −3x2 +w2
x0 = 2 −x1 −2x2 +w2
w3 = 3 −x1 −3x2 +w2

Primeiro pivô

z = −4/3 +x1 −2/3w1 −1/3w2
x2 = 1/3 −1/3w1 +1/3w2
x0 = 4/3 −x1 +2/3w1 +1/3w2
w3 = 2 −x1 +w1

Segundo pivô

z = 0 −x0
x2 = 1/3 −1/3w1 +1/3w2
x1 = 4/3 −x0 +2/3w1 +1/3w2
w3 = 2/3 +x0 +1/3w1 −1/3w2

Solução ótima!

Solução do sistema auxiliar

• O que podemos concluir da solução do sistema auxiliar?

• Obviamente, se o sistema original possui solução, o sistema auxiliar também
possui uma solução com x0 = 0.

• Logo, após aplicar o método Simplex ao sistema auxiliar, temos os casos

– x0 > 0: O sistema original não tem solução.

– x0 = 0: O sistema original tem solução. Podemos descartar x0 e continuar
resolvendo o sistema original com a solução básica viável obtida.

• A solução do sistema auxiliar se chama fase I, a solução do sistema original fase
II.
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2.4. Encontrar uma solução inicial: o método de duas fases

Sistema original
Reescreve-se a função objetivo original substituindo as variáveis básicas do sistema
original pelas equações correspondentes do sistema auxiliar, de forma que a função
objetivo z não contenha variáveis básicas. No exemplo, a função objetivo é rescrita
como:

z = −2x1 − x2 = −3−w1 −w2.

z = −3 −w1 −w2
x2 = 1/3 −1/3w1 +1/3w2
x1 = 4/3 +2/3w1 +1/3w2
w3 = 2/3 +1/3w1 −1/3w2

Nesse exemplo, o dicionário original já é ótimo!

Exemplo 2.2 (Sistema original inviável)
O sistema

maximiza x1 + x2,

sujeito a x1 + x2 ≥ 2,
x1 + x2 ≤ 1,
x1, x2 ≥ 0.

obviamente não possui uma solução viável. O dicionário inicial do sistema auxiliar
(após normalização e introdução das variáveis de folga) é

z = 0 −x0
x3 = −2 +x1 +x2 +x0
x4 = 1 −x1 −x2 +x0

e o pseudo-pivô x0–x3 produz

z = −2 +x1 +x2 −x3
x0 = 2 −x1 −x2 +x3
x4 = 3 −2x1 −2x2 +x3

e o pivô x1–x4 produz o sistema ótimo

z = −1/2 −1/2x4 −1/2x3
x0 = 1/2 +1/2x4 +1/2x3
x1 = 3/2 −1/2x4 −x2 +1/2x3 .

O valor ótimo do sistema auxiliar é −z = x0 = 1/2, confirmando que o sistema original
não possui solução viável. ♦
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2. O método Simplex

2.4.1. Resumo do método de duas fases

Fase I necessária? Caso bi ≥ 0 para todo i ∈ [m]: continua com a fase II.

Dicionário inicial Cria o dicionário inicial do sistema auxiliar

z = min{x0 | Ax ≤ b+ xoe}.

Pseudo-pivô Pivota x0–xk, sendo k = argmini∈[m] bk o índice do lado direito mais
negativo.

Solução fase I Aplica o método no dicionário obtido no passo anterior.

Fase II necessária? Caso a solução ótima da fase I possui valor x0 > 0: o sistema
original não possui solução. Para.

Prepara fase II Caso x0 é uma variável básica: pivota x0–xk sendo xk alguma variável
nula tal que a0k 6= 0. Remove a coluna x0. Remove a função objetivo do sistema
auxiliar e introduz a função objetivo do sistema original (escrita em função das
variáveis nulas).

Fase II Aplica o método Simplex no dicionário inicial da fase II.

2.5. Sistemas degenerados

Sistemas, soluções e pivôs degenerados

• Um dicionário é degenerado se existe um i ∈ B tal que b̄i = 0.

• Qual o problema?

• Pode acontecer um pivô que não aumenta a variável entrante, e portanto não
aumenta o valor da função objetivo.

• Tais pivôs são degenerados.

Exemplo 1

• Nem sempre é um problema.

z = 5 +x3 −x4
x2 = 5 −2x3 −3x4
x1 = 7 −4x4
w3 = 0 +x4

• x2 é a variável sainte e o valor da função objetivo aumenta.
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2.5. Sistemas degenerados

Exemplo 2

z = 3 −1/2x1 +2x2 −3/2w1
x3 = 1 −1/2x1 −1/2w1
w2 = 0 + x1 −x2 +w1

• Se a variável sainte é determinada pela equação com b̄i = 0, temos um pivô
degenerado.

• Nesse caso, a variável entrante não aumenta: temos a mesma solução depois do
pivô.

Exemplo 2: Primeiro pivô

• Pivô: x2–w2

z = 3 +3/2x1 −2w2 +1/2w1
x3 = 1 −1/2x1 −1/2w1
x2 = 0 +x1 −w2 +w1

• O valor da função objetivo não aumentou!

Exemplo 2: Segundo pivô

• Pivô: x1–x3

z = 6 −3x3 −2w2 −w1
x1 = 2 −2x3 −w1
x2 = 2 −2x3 −w2

• A segunda iteração aumentou o valor da função objetivo!

Ciclos

• O pior caso seria, se entramos em ciclos.

• É possível? Depende da regra de seleção de variáveis entrantes e saintes.

• Nossas regras

– Escolhe a variável entrante com o maior coeficiente.

– Escolhe a variável sainte mais restrita.

– Em caso de empate, escolhe a variável com o menor índice.

• Ciclos são possíveis: O seguinte sistema possui um ciclo de seis pivôs:
x1–w1, x2–w2, x3–x1, x4–x2, w1–x3, w2–x4.
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2. O método Simplex

z = 10x1 −57x2 −9x3 −24x4
w1 = 0 −1/2x1 +11/2x2 +5/2x3 −9x4
w2 = 0 −1/2x1 +3/2x2 +1/2x3 −x4
w3 = 1 −x1

Soluções do problema

• Como resolver o problema?

• Três soluções

– Ignorar o problema.

– Método lexicográfico.

– Regra de Bland.

Método lexicográfico

• Idéia: O fato que existe um b̄i = 0 é por acaso.

• Se introduzimos uma pequena perturbação ε� 1

– o problema desaparece

– a solução será (praticamente) a mesma.

Método lexicográfico

• Ainda é possível que duas perturbações numéricas se cancelem.

• Para evitar isso: Trabalha-se simbolicamente.

• Introduzimos perturbações simbólicas

0 < ε1 � ε2 � · · · � εm

em cada equação.

• Característica: Todo εi é numa escala diferente dos outros tal que eles não se
cancelam.
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2.5. Sistemas degenerados

Exemplo
Exemplo 2.3
Sistema original degenerado e sistema perturbado

z = 4 +2x1 −x2
w1 = 1/2 −x2
w2 = −2x1 +4x2
w3 = x1 −3x2

z = 4 +2x1 −x2
w1 = 1/2 +ε1 −x2
w2 = ε2 −2x1 +4x2
w3 = ε3 +x1 −3x2

♦

Comparar perturbações

• A linha com o menor limite li = b̄i/aik (com xk entrante) define a variável
sainte.

• A comparação de limites respeita a ordem lexicográfica das perturbações, i.e.
com

li = ei1ε1 + · · ·+ eikεk
lj = fj1ε1 + · · ·+ fik ′ε ′k

temos li < lj se k < k ′ ou k = k ′ e eik < fik.

Características

• Depois de chegar no valor ótimo, podemos retirar as perturbações εi.
Teorema 2.1
O método Simplex sempre termina escolhendo as variáveis saintes usando a regra
lexicográfica.

Prova. É suficiente mostrar que o sistema nunca será degenerado. Neste caso o
valor da função objetivo sempre cresce, e o método Simplex não cicla. A matriz de
perturbações 

ε1
ε2

· · ·
εm


inicialmente tem posto m. As operações do método Simplex são operações lineares
que não mudam o posto do matriz. Logo, em cada passo do método Simplex temos
uma matriz de perturbações

e11ε1 e12ε2 · · · e1mεm
e21ε1 e22ε2 · · · e2mεm
· · · · · ·

em1ε1 em2ε2 · · · emmεm


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2. O método Simplex

que ainda tem posto m. Portanto, em cada linha i existe pelo menos um eij 6= 0 e
assim uma perturbação diferente de zero e o sistema não é degenerado. �

Exemplo 2.4
Solução do exemplo 2.3.
Pivô x1–w2. z = 4 +ε2 −w2 +3x2

w1 = 1/2 +ε1 −x2
x1 1/2ε2 −1/2w2 +2x2
w3 1/2ε2 +ε3 −1/2w2 −x2

Pivô x2–w3. z = 4 +5/2ε2 +3ε3 −5/2w2 −3w3
w1 = 1/2 +ε1 −1/2ε2 −ε3 +1/2w2 +w3
x1 = 3/2ε2 +2ε3 −3/2w2 −2w3
x2 = 1/2ε2 +ε3 −1/2w2 −w3

♦

Regra de Bland

• Outra solução do problema: A regra de Bland.

• Escolhe como variável entrante e sainte sempre a variável com o menor índice
(caso tiver mais que um candidato).

Teorema 2.2
O método Simplex sempre termina se as variáveis entrantes e saintes são esco-
lhidas através da regra de Bland.

Prova. Prova por contradição: Suponha que exista uma sequência de dicionários
que entra num ciclo D0, D1, . . . , Dk−1 usando a regra do Bland. Nesse ciclo algumas
variáveis, chamadas instáveis, entram e saem novamente da base, outras permanecem
sempre como básicas, ou como não-básicas. Seja xt a variável instável com o maior
índice. Sem perda de generalidade, seja xt a variável sainte do primeiro dicionário D0.
Seja xs a variável entrante no D0. Observe que xs também é instável e portanto s < t.
Seja D∗ o dicionário em que xt entra na base. Temos a situação

D0, D1, D2, · · · D∗, · · · Dk−1

xs entra

xt sai

xt entra
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2.5. Sistemas degenerados

com os sistemas correspondentes

D0 : D∗ :

z = z0 +
∑
j∈N

cjxj z = z∗ +
∑
j∈N∗

c∗jxj

xi = bi −
∑
j∈N

aijxj i ∈ B xi = b
∗
i −
∑
j∈N∗

a∗ijxj i ∈ B∗

Como temos um ciclo, todas variáveis instáveis tem valor 0 e o valor da função objetivo
é constante. Logo z0 = z∗ e para D∗ temos

z = z∗ +
∑
j∈N∗

c∗jxj = z0 +
∑
j∈N∗

c∗jxj. (2.5)

Se aumentamos em D0 o valor do xs para y, qual é o novo valor da função objetivo?
Os valores das variáveis são

xs = y

xj = 0 j ∈ N \ {s}

xi = bi − aisy i ∈ B
(2.6)

e temos no sistema D1 o novo valor

z = z0 + csy (2.7)

Vamos substituir os valores das variáveis (2.6) com índices emN ∗ ∩ B na equação (2.5).
Para facilitar a substituição, vamos definir c∗j := 0 para j 6∈ N ∗, que permite substituir
todas variáveis xj, j ∈ B e assim obtemos

z = z0 +
∑

j∈[1,n+m]

c∗jxj = z0 + c
∗
sy+

∑
j∈B

c∗j (bj − ajsy). (2.8)

Equações (2.7) e (2.8) representam o mesmo valor, portanto(
cs − c

∗
s +
∑
j∈B

c∗jajs

)
y =
∑
j∈B

c∗jbj.

Essa igualdade deve ser correta para qualquer aumento y, portanto os dois lados são
0, em particular

cs − c
∗
s +
∑
j∈B

c∗jajs = 0.

Como xs entra em D0 temos cs > 0. Em D∗ a variável xt entra, então c∗s ≤ 0 senão
pela regra de Bland s < t entraria. Logo,∑

j∈B

c∗jajs = c
∗
s − cs ≤ −cs < 0

e deve existir um r ∈ B tal que c∗rars < 0. Isso tem uma série de consequências:
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2. O método Simplex

(i) c∗r 6= 0.

(ii) r ∈ N ∗, porque somente as variáveis nulas satisfazem c∗j 6= 0 em D∗.

(iii) xr é instável, porque ela é básica em D0 (r ∈ B), mas não-básica em D∗ (r ∈ N ∗).

(iv) r ≤ t, porque t foi a variável instável com o maior índice.

(v) r < t, porque c∗tats > 0: xt entra em D∗, logo c∗t > 0, e xt sai em D0, logo
ats > 0.

(vi) c∗r ≤ 0, senão r e não t entraria em D∗ seguindo a regra de Bland.

(vii) ars > 0.

(viii) br = 0, porque xr é instável, mas todos variáveis instáveis tem valor 0 no ciclo,
e xr é básica em D0.

Os últimos dois itens mostram que xr foi candidato ao sair em D0 com índice r < t,
uma contradição com a regra de Bland. �

Teorema fundamental

Teorema 2.3 (Teorema fundamental da programação linear)
Para qualquer programa linear temos:

(i) Se não existe solução ótima, o problema é inviável ou ilimitado.

(ii) Se existe uma solução viável, existe uma solução básica viável.

(iii) Se existe uma solução ótima, existe uma solução ótima básica.

2.6. Complexidade do método Simplex

Usando a regra de Bland o método Simplex nunca repete uma base e o número de
pivôs é limitado pelo número de bases. Com n +m variáveis (de decisão e de folga)
existem no máximo (

n+m

n

)
=

(
n+m

m

)
bases possíveis. Para n+m constante, essa expressão é maximizada para n = m. Os
limites nesse caso são (exercício 2.3)

1

2n
22n ≤

(
2n

n

)
≤ 22n.

Logo é possível que o método Simplex precisa um número exponencial de pivôs. A
existência de sistemas com um número de pivôs exponencial depende da regra de
pivoteamento. Por exemplo, para a regra de maior coeficiente, existem sistemas que
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2.7. Exercícios

precisam um número exponencial de pivôs (Klee-Minty). A pergunta se isso é o caso
para qualquer regra de pivoteamento está em aberto. O melhor algoritmo para a
programação linear precisa tempo O((n3/ logn)L (Anstreicher 1999), supondo que
uma operação aritmética custa O(1) e os dados são inteiros de L bits. Empiricamente
o método Simplex precisa O(m+n) pivôs (Vanderbei 2001), e cada pivô custa O(mn)
operações, logo o tempo empírico, novamente supondo que uma operação aritmética
custa O(1) do método Simplex é O((m+ n)mn).

Observação 2.2
Spielman e Teng (2004) mostram que o método Simplex possui complexidade suavizada
polinomial, i.e., o máximo do valor esperado do tempo de execução sobre pequenos
perturbações (Gaussianas) é polinomial no tamanho da instância e no inverso da per-
turbação.
Sem perturbações o problema de encontrar a solução que o método Simplex encontraria
usando a regra de Dantzig é PSPACE-completo (Fearnley e Savani 2014). ♦

2.7. Exercícios

(Soluções a partir da página 190.)

Exercício 2.1 (Maculan e Fampa 2006)
Resolve com o método Simplex.

maximiza z = 3x1 + 5x2,

sujeito a x1 ≤ 4,
x2 ≤ 6,
3x1 + 2x2 ≤ 18,
x1, x2 ≥ 0.

Exercício 2.2
Resolve o exercício 1.7 usando o método Simplex.

Exercício 2.3
Prova que

22n

2n
≤
(
2n

n

)
≤ 22n.

Exercício 2.4
Resolve o sistema degenerado

z = 10x1 −57x2 −9x3 −24x4
w1 = −1/2x1 +11/2x2 +5/2x3 −9x4
w2 = −1/2x1 +3/2x2 +1/2x3 −x4
w3 = 1 −x1

usando o método lexicográfico e a regra de Bland.
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2. O método Simplex

Exercício 2.5
Dado o problema de otimização

maximiza x1 + x2,

sujeito a ax1 + bx2 ≤ 1,
x1, x2 ≥ 0,

determine condições suficientes e necessárias que a e b tem que satisfazer tal que

(a) existe pelo menos uma solução ótima,

(b) existe exatamente uma solução ótima,

(c) existe nenhuma solução ótima,

(d) o sistema é ilimitado.

ou demonstre que o caso não é possível.

Exercício 2.6
Sabe-se que o dicionário ótimo do problema

maximiza z = 3x1 + x2,

sujeito a − 2x1 + 3x2 ≤ 5,
x1 − x2 ≤ 1,
x1, x2 ≥ 0,

é
z∗ = 31 −11w2 −4w1
x2 = 7 −2w2 −w1
x1 = 8 −3w2 −w1

(a) Se a função objetivo passar a z = x1 + 2x2, a solução continua ótima? No caso de
resposta negativa, determine a nova solução ótima.

(b) Se a função objetivo passar a z = x1 − x2, a solução continua ótima? No caso de
resposta negativa, determine a nova solução ótima.

(c) Se a função objetivo passar a z = 2x1 − 2x2, a solução continua ótima?No caso de
resposta negativa, determine a nova solução ótima.

(d) Formular o dual e obter a solução dual ótima.

Exercício 2.7
Prove ou mostre um contra-exemplo.
O problema max{ctx | Ax ≤ b} possui uma solução viável sse min{x0 | Ax − ex0 ≤ b}
possui uma solução viável com x0 = 0. Observação: e é um vetor com todos compentes
igual 1 da mesma dimensão que b.
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2.7. Exercícios

Exercício 2.8
Prove ou mostre um contra-exemplo.
Se x é a variável sainte em um pivô, x não pode ser variável entrante no pivô seguinte.

Exercício 2.9
Demonstramos na seção 2.5 que existem sistemas em que o método Simplex entra em
ciclos. No exemplo o método Simplex ficou sempre na mesma solução, representada
por bases diferentes. Agora supõe que temos soluções diferentes com o mesmo valor da
função objetivo. É possível que o método Simplex entra num ciclo sempre visitando
soluções diferentes?

Exercício 2.10
Supõe que temos um dicionário com uma base infactível, com um candidato para a
variável entrante xe (i.e. ce > 0) tal que todos coeficientes na coluna correspondente
são negativos (i.e. aie < 0 para todo i ∈ B). Caso a base fosse viável podemos concluir
que o sistema é ilimitado. Podemos concluir isso também com a base infactível?
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3. Dualidade

3.1. Introdução

Visão global

• Dualidade: Cada programa linear (chamada de primal) possui um programa
linear correspondente, chamado de dual.

• A dualidade tem várias aplicações como

– Estimar a qualidade de soluções e a convergência do método Simplex.

– Certificar a otimalidade de um programa linear.

– Analisar a sensibilidade e re-otimizar sistemas.

– Resolver programas lineares mais eficiente com o Método Simplex dual.

• O programa linear dual possui uma interpretação relevante.

Introdução

• Considere o programa linear

maximiza z = 4x1 + x2 + 3x3, (3.1)
sujeito a x1 + 4x2 ≤ 1,

3x1 − x2 + x3 ≤ 3,
x1, x2, x3 ≥ 0.

• Cada solução viável fornece um limite inferior para o valor máximo.

x1 = x2 = x3 = 0⇒ z = 0

x1 = 3, x2 = x3 = 0⇒ z = 4

• Qual a qualidade da solução atual?

• Não sabemos, sem limite superior.

Limites superiores

• Como obter um limite superior?

Observe: z = 4x1 + x2 + 3x3 ≤ 10x1 + x2 + 3x3 ≤ 10
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3. Dualidade

• Podemos construir uma combinação linear das desigualdades, tal que o coeficiente
de cada xj ultrapasse o coeficiente da função objetivo.

• Nosso exemplo:

(x1 + 4x2) + 3(3x1 − x2 + x3) ≤ 1+ 3 · 3 = 10⇐⇒10x1 + x2 + 3x3 ≤ 10
• Como obter um limite superior para a função objetivo?

• Qual seria o menor limite superior que esse método fornece?
Exemplo 3.1
Para o sistema (3.1) obtemos:

minimiza y1 + 3y2,

sujeito a y1 + 3y2 ≥ 4,
4y1 − y2 ≥ 1,
y2 ≥ 3,
y1, y2, y3 ≥ 0.

♦

O menor limite superior

• Sejam y1, . . . , yn os coeficientes de cada linha. Observação: Eles devem ser ≥ 0
para manter a direção das desigualdades.

• Então queremos

minimiza
∑
i∈[m]

biyi,

sujeito a
∑
i∈[m]

aijyi ≥ cj, ∀j ∈ [n],

yi ≥ 0.

• Isto é o problema dual com variáveis duais ou multiplicadores duais yi.

Dualidade: Características

• Em notação matricial

maximiza ctx, minimiza bty,

sujeito a Ax ≤ b. sujeito a ytA ≥ ct.
x ≥ 0. y ≥ 0.

• O primeiro se chama primal e o segundo dual.

• Eles usam os mesmos parâmetros cj, aij, bi.
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3.2. Características

O dual do dual

• Observação: O dual do dual é o primal.

• Forma normal do dual:

−maximiza − bty, −maximiza − bty,

sujeito a − ytA ≤ −ct, = sujeito a (−At)y ≤ −c,

y ≥ 0. y ≥ 0.

• Dual do dual

−minimiza − ctz, maximiza ctz,

sujeito a zt(−At) ≥ −bt, = sujeito a Az ≤ b,
z ≥ 0. z ≥ 0.

Exemplo 3.2
Qual o dual do problema de transporte (1.11)? Com variáveis duais πi, i ∈ [n] para
as das restrições de estoque (1.12) e variáveis duais ρj, j ∈ [m] para as restrições de
demanda (1.13) obtemos

maximiza
∑
i∈[n]

aiπi +
∑
j∈[m]

bjρj, (3.2)

sujeito a πi + ρj ≥ cij, ∀i ∈ [n], j ∈ [m],

πi, ρj ≥ 0, ∀i ∈ [n], j ∈ [m].

♦

3.2. Características

Teorema da dualidade fraca
Teorema 3.1 (Dualidade fraca)
Se x1, . . . , xn é uma solução viável do sistema primal, e y1, . . . , ym uma solução viável
do sistema dual, então ∑

i∈[n]

cixi ≤
∑
j∈[m]

bjyj.

Prova.

ctx ≤ (ytA)x = yt(Ax) pela restrição dual (3.3)

≤ ytb pela restrição primal (3.4)

�
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3. Dualidade

Situação

Soluções primais viáveis Soluções duais viáveis
z

Gap de otimalidade?

• Em aberto: Qual o tamanho desse intervalo em geral?

Teorema da dualidade forte
Teorema 3.2
Se x∗1, . . . , x

∗
n é uma solução ótima do sistema primal, existe uma solução ótima

y∗1, . . . , y
∗
m do sistema dual com∑

i∈[n]

cix
∗
i =

∑
j∈[m]

bjy
∗
j .

Prova. Seja x∗ uma solução ótima do sistema primal. Considere um dicionário inicial
do método Simplex com variáveis de folga

xn+j = bj −
∑
i∈[n]

ajixi, ∀j ∈ [m]

e a função objetivo de um dicionário que corresponde com a solução ótima

z = z∗ +
∑

i∈[n+m]

cixi

(com ci = 0 para variáveis básicas). Temos que construir uma solução ótima dual
y∗. Pela optimalidade, na função objetivo acima, todos c̄i devem ser não-positivos.
Provaremos que y∗j = −c̄n+j ≥ 0 para j ∈ [m] é uma solução dual ótima. Como z∗ é
o valor ótimo do problema, temos z∗ =

∑
i∈[n] cix

∗
i .

Reescrevendo a função objetivo temos

z =
∑
i∈[n]

cixi sistema inicial

= z∗ +
∑

i∈[n+m]

c̄ixi sistema final

= z∗ +
∑
i∈[n]

c̄ixi +
∑
j∈[m]

c̄n+jxn+j separando índices

= z∗ +
∑
i∈[n]

c̄ixi −
∑
j∈[m]

y∗j

(
bj −

∑
i∈[n]

ajixi

)
subst. solução e var. folga

=

(
z∗ −

∑
j∈[m]

y∗jbj

)
+
∑
i∈[n]

(
c̄i +

∑
j∈[m]

y∗jaji

)
xi agrupando
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3.2. Características

Essa derivação está válida para qualquer valor das variáveis xi, portanto

z∗ =
∑
j∈[m]

y∗jbj e ci = c̄i +
∑
j∈[m]

y∗jaji, i ∈ [n].

Logo o primal e dual possuem o mesmo valor∑
j∈[m]

y∗jbj = z
∗ =

∑
i∈[n]

cix
∗
i

e como c̄i ≤ 0 sabemos que a solução y∗ satisfaz as restrições duais

ci ≤
∑
j∈[m]

y∗jaji, i ∈ [n],

y∗j ≥ 0, j ∈ [m].

�

Consequências: Soluções primais e duais

• Com o teorema da dualidade forte, temos quatro possibilidades

Sistema primal Sistema dual Intervalo

Ótimo Ótimo Sem
Ilimitado Inviável Sem
Inviável Ilimitado Sem
Inviável Inviável Infinito

Exemplo 3.3 (Primal e dual inviável)
Não segue do teorema da dualidade forte que existe um caso em que tanto o sistema
primal quanto o sistema dual são inviáveis. O seguinte exemplo mostra que isso pode
acontecer. O sistema primal

maximiza x1,

sujeito a + x1 − x2 ≤ 0,
− x1 + x2 ≤ −1,

x1, x2 ≥ 0,

possui sistema dual correspondente

minimiza − y2,

sujeito a + y1 − y2 ≥ 1,
− y1 + y2 ≥ 0.

Ambos os sistemas são inviáveis. ♦
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3. Dualidade

Podemos resumir as possibilidades na seguinte tabela:

Dual

Primal Inviável Ótimo Ilimitado

Inviável
√

×
√

Ótimo ×
√

×
Ilimitado

√
× ×

Consequências

• Dado soluções primais e duais x∗, y∗ tal que ctx∗ = bty∗ podemos concluir que
ambas soluções são ótimas (x∗, y∗ é um certificado da optimalidade)1.

• A prova mostra: com o valor ótimo do sistema primal, sabemos também o valor
ótimo do sistema dual.

• Além disso: Podemos trocar livremente entre o sistema primal e dual.⇒ Método Simplex dual.

Outra consequência do Teorema da dualidade forte é o

Teorema 3.3 (Teorema das folgas complementares)
Os vetores x∗, y∗ são soluções ótimas do sistema primal e dual, respectivamente, se e
somente se

y∗
t(b−Ax∗) = 0 (3.5)

(y∗tA− ct)x∗ = 0 (3.6)

Prova. Pelo Teorema da dualidade forte as duas desigualdades (3.3) e (3.4) da prova
do Teorema da dualidade fraca se tornam igualdades para soluções ótimas:

ctx∗ = y∗tAx∗ = y∗tb

Reagrupando termos, o teorema segue. Conversamente, caso (3.5) e (3.6) estão satis-
feitos, as soluções primais e duais possuem o mesmo valor e assim tem que ser ótimas.
�
As igualdades 3.5 e 3.6 são ainda válidas em cada componente, porque tanto as soluções
ótimas x∗, y∗ quanto as folgas primas e duais b−Ax e y∗tA−ct sempre são positivos.

1Uma consequência é que o problema de decisão correspondente, determinar se existe uma solução
maior que um dado valor, possui um certificado que pode ser verificado em tempo polinomial tanto
para uma resposta positiva quanto uma resposta negativa. Portanto, já antes da descoberta de
um algoritmo polinomial para esse problema, foi claro que ele pertence a NP ∩ co-NP.
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3.3. Dualidade em forma não-padrão

xi > 0⇒ ∑
j∈[m]

yjaji = ci (3.7)

∑
j∈[m]

yjaji > ci ⇒ xi = 0 (3.8)

yj > 0⇒ bj =
∑
i∈[n]

ajixi (3.9)

bj >
∑
i∈[n]

ajixi ⇒ yj = 0 (3.10)

Como consequência podemos ver que, por exemplo, caso uma igualdade primal não
possui folga, a variável dual correspondente é positiva, e, contrariamente, caso uma
igualdade primal possui folga, a variável dual correspondente é zero. As mesmas
relações se aplicam para as desigualdades no sistema dual. Após a introdução da
forma matricial no seção 3.6 vamos analisar a interpretação das variáveis duais com
mais detalha no seção 3.7. O teorema das folgas complementares pode ser usado ainda
para obter a solução dual dado a solução primal:

Exemplo 3.4
A solução ótima de

maximiza z = 6x1 + 8x2 + 5x3 + 9x4,

sujeito a 2x1 + x2 + x3 + 3x4 ≤ 5,
x1 + 3x2 + x3 + 2x4 ≤ 3,
x1, x2, x3, x4 ≥ 0,

é x1 = 2 e x3 = 1 com valor 17. Pela equação (3.7) sabemos que

2y1 + y2 = 6

y1 + y2 = 5.

Portanto a solução dual é y1 = 1 e y2 = 4. ♦

3.3. Dualidade em forma não-padrão

Dualidade em forma padrão

maximiza ctx, minimiza bty,

sujeito a Ax ≤ b, sujeito a ytA ≥ ct,
x ≥ 0. y ≥ 0.

• O que acontece se o sistema não é em forma padrão?
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3. Dualidade

Igualdades

• Caso de igualdades: Substituindo desigualdades..

maximiza ctx, maximiza ctx,

sujeito a Ax = b, sujeito a Ax ≤ b,
x ≥ 0. Ax ≥ b,

x ≥ 0.

• ... padronizar novamente, e formar o dual:

maximiza ctx, minimiza bty+ − bty−,

sujeito a Ax ≤ b, sujeito a y+
t
A− y−

t
A ≥ c,

−Ax ≤ −b, y+ ≥ 0, y− ≥ 0,
x ≥ 0. y+ = (y+1 , . . . , y

+
m)t,

y− = (y−1 , . . . , y
−
m)t.

Igualdades

• Equivalente, usando variáveis irrestritas y = y+ − y−

minimiza bty,

sujeito a ytA ≥ c,
yt ≶ 0.

• Resumo

Primal (max) Dual (min)

Igualdade Variável dual livre
Desigualdade (≤) Variável dual não-negativa
Desigualdade (≥) Variável dual não-positiva
Variável primal livre Igualdade
Variável primal não-negativa Desigualdade (≥)
Variável primal não-positiva Desigualdade (≤)

Exemplo 3.5 (Exemplo dualidade não-padrão)
O dual de

maximiza 3x1 + x2 + 4x3,

sujeito a x1 + 5x2 + 9x3 = 2,

6x1 + 5x2 + 3x3 ≤ 5,
x1, x3 ≥ 0, x2 ≶ 0,
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3.4. Interpretação do dual

é

minimiza 2y1 + 5y2,

sujeito a y1 + 6y2 ≥ 3,
5y1 + 5y2 = 1,

9y1 + 3y2 ≥ 4,
y1 ≶ 0, y2 ≥ 0.

♦

Exemplo 3.6 (Dual do problema de transporte)
O dual do problema de transporte num grafo direcionado G = (V,A) com custos nas
arestas ca, limites inferiores e superiores para o fluxo la e ua em cada arco, e demandas
bv em cada vértice

minimiza
∑
a∈A

caxa,

sujeito a
∑

(u,v)∈A

x(u,v) −
∑

(v,u)∈A

x(v,u) = bv, ∀v ∈ V,

xa ≥ la, ∀a ∈ A,
xa ≤ ua, ∀a ∈ A,
xa ≥ 0, ∀a ∈ A,

usando variáveis duais πv ≶ 0, v ∈ V , ρa ≥ 0, a ∈ A e σa ≤ 0, a ∈ A para as três
restrições é

maximiza
∑
v∈V

bvπv +
∑
a∈A

laρa + uaσa,

sujeito a − πu + πv + ρa + σa ≥ 1, ∀a = (u, v) ∈ A,
πv ∈ R, ∀v ∈ V,
ρa ≥ 0, ∀a ∈ A,
σa ≤ 0, ∀a ∈ A.

♦

3.4. Interpretação do dual

Exemplo: Dieta dual

• Problema da dieta: Minimiza custos de uma dieta x que alcance dados VDR
mínimos.

minimiza ctx,

sujeito a Ax ≥ r,
x ≥ 0.
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3. Dualidade

• Unidades das variáveis e parâmetros
– x ∈ Rn: Quantidade do alimento [g]

– c ∈ Rn: R$/alimento [R$/g]
– aij ∈ Rm×n: Nutriente/Alimento [g/g]

– r ∈ Rm: Quantidade de nutriente [g].

Exemplo: Dieta dual

• O problema dual é

maximiza ytr,

sujeito a ytA ≤ ct,
y ≥ 0.

• Qual a unidade de y? Preço por nutriente [R$/g].

• Imagine uma empresa, que produz cápsulas que substituem os nutrientes.

• Para vender no mercado, a empresa tem que garantir que uma dieta baseado em
cápsulas custa menos que os alimentos correspondentes:∑

i∈[m]

yiaij ≤ cj, ∀j ∈ [m]

• Além disso, ela define preços por nutriente que maximizam o custo de uma dieta
adequada, para maximizar o próprio lucro.

maximiza ytr

Interpretação do dual

• Outra interpretação: o valor de uma variável dual yj é o custo marginal de
adicionar mais uma unidade bj.

Teorema 3.4
Se um sistema possui pelo menos uma solução básica ótima não-degenerada,
existe um ε > 0 tal que, se |tj| ≤ ε para j ∈ [m],

maximiza ctx,

sujeito a Ax ≤ b+ t,
x ≥ 0,

tem uma solução ótima com valor

z = z∗ + y∗tt

(com z∗ o valor ótimo do primal, é y∗ a solução ótima do dual).
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3.5. Método Simplex dual

(3.12)

(3.13)

(3.14)

(3.15)
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Figura 3.1.: Solução ótima do sistema (3.11) com variáveis duais.

Exemplo 3.7
Considere uma modificação do sistema do Ildo

maximiza 0.2c+ 0.5c, (3.11)
sujeito a c+ 1.5s ≤ 150, (3.12)

50c+ 50s ≤ 6000, (3.13)
c ≤ 80, (3.14)
s ≤ 70, (3.15)
c, s ≥ 0. (3.16)

(O sistema foi modificado para a solução ótima atender as condições do teorema 3.4.)
A solução ótima do sistema primal é x∗ = (4570)t com valor 44, a solução ótima do dual
y∗(1/5001/5)t. A figura 3.1 mostra a solução ótima com as variáveis duais associadas
com as restrições. O valor da variável dual correspondente com uma restrição é o lucro
marginal de um aumento do lado direito da restrição por um.

♦

3.5. Método Simplex dual

Método Simplex dual
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3. Dualidade

• Considere

maximiza − x1 − x2,

sujeito a − 2x1 − x2 ≤ 4,
− 2x1 + 4x2 ≤ −8,

− x1 + 3x2 ≤ −7,

x1, x2 ≥ 0.

• Qual o dual?

minimiza 4y1 − 8y2 − 7y3,

sujeito a − 2y1 − 2y2 − y3 ≥ −1,

− y1 + 4y2 + 3y2 ≥ −1,

y1, y2, y3 ≥ 0.

Com dicionários

z = −x1 −x2
w1 = 4 +2x1 +x2
w2 = −8 +2x1 −4x2
w3 = −7 +x1 −3x2

−w = −4y1 +8y2 +7y3
z1 = 1 −2y1 −2y2 −y3
z2 = 1 −y1 +4y2 +3y3

• Observação: O primal não é viável, mas o dual é!

• Correspondência das variáveis:

Variáveis

principais de folga
Primal x1, . . . , xn w1, . . . , wm

Dual z1, . . . , zn, y1, . . . , ym
de folga principais

• Primeiro pivô: y2 entra, z1 sai. No primal: w2 sai, x1 entra.

Primeiro pivô

z = −4 −0.5w2 −3x2
w1 = 12 +w2 +5x2
x1 = 4 +0.5w2 +2x2
w3 = −3 +0.5w2 −x2

−w = 4 −12y1 −4z1 +3y3
y2 = 0.5 −y1 −0.5z1 −0.5y3
z2 = 3 −5y1 −2z1 +y3

• Segundo pivô: y3 entra, y2 sai. No primal: w3 sai, w2 entra.
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3.5. Método Simplex dual

Segundo pivô

z = −7 −w3 −4x2
w1 = 18 +2w3 +7x2
x1 = 7 +w3 +3x2
w2 = 6 +2w3 +2x2

−w = 7 −18y1 −7z1 −6y2
y3 = 1 −2y1 −z1 −2y2
z2 = 4 −7y1 −3z1 −2y2

• Sistema dual é ótimo, e portanto o sistema primal também.

Método Simplex dual

• Observação: Não é necessário escrever o sistema dual. Ele é sempre o negativo
transposto do sistema primal.

z = z̄+
∑
j∈N

c̄jxj,

xi = b̄i −
∑
j∈N

āijxj, i ∈ B

• Mas é necessário modificar as regras para resolver o sistema dual.

Método Simplex dual: Viabilidade e otimalidade

• Pré-condição: O dicionário é dualmente viável, i.e. os coeficientes das variáveis
não-básicas na função objetivo tem quer ser não-positivos.

c̄j ≤ 0 para j ∈ N .

• Otimalidade: Todos variáveis básicas primais positivas

∀i ∈ B : b̄i ≥ 0

Método Simplex dual: Pivô

• Caso existe uma variável primal negativa: A solução dual não é ótima.

• Regra do maior coeficiente: A variável básica primal de menor valor (que é
negativo) sai da base primal.

i = argmin
i∈B

b̄i

• A variável primal nula com fração āij/c̄j maior entra.

j = argmin
j∈N
āij<0

c̄j

āij
= argmax

j∈N
āij<0

āij

c̄j
= argmax

j∈N

āij

c̄j
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3. Dualidade

Método Simplex dual
Resumo:

• Dualmente viável: c̄j ≤ 0 para j ∈ N .

• Otimalidade: ∀i ∈ B : b̄i ≥ 0.

• Variável sainte: i = argmini∈B b̄i

• Variável entrante: j = argmaxj∈N
āij
c̄j

.

Exemplo

maximiza z = −2x1 − x2,

sujeito a − x1 + x2 ≤ −1,

− x1 − 2x2 ≤ −2,

x2 ≤ 1,
x1, x2 ≥ 0.

Exemplo: Dicionário inicial
z = −2x1 −x2
w1 = −1 +x1 −x2
w2 = −2 +x1 +2x2
w3 = 1 −x2

• O dicionário primal não é viável, mas o dual é.

Exemplo: Primeiro pivô
z = −1 −3/2x1 −1/2w2
w1 = −2 +3/2x1 −1/2w2
x2 = 1 −1/2x1 +1/2w2
w3 = +1/2x1 −1/2w2

Exemplo: Segundo pivô
z = −3 −w1 −w2
x1 = 4/3 +2/3w1 +1/3w2
x2 = 1/3 −1/3w1 +1/3w2
w3 = 2/3 +1/3w1 −1/3w2
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3.6. Os métodos em forma matricial

3.6. Os métodos em forma matricial

A forma matricial permite uma descrição mais sucinta do método Simplex. A seguir
vamos resumir os métodos Simplex primal e dual na forma matricial. Mais importante,
nessa forma é possível expressar o dicionário correspondente com qualquer base em
termos dos dados inicias (A, c, b). Na próxima seção vamos usar essa forma para
analisar a sensibilidade de uma solução à pequenas perturbações dos dados (i.e. os
coeficientes A,b, e c).

3.6.1. O dicionário final em função dos dados

Sistema padrão

• O sistema padrão é

maximiza ctx,

sujeito a Ax ≤ b,
x ≥ 0.

• Com variáveis de folga xn+1, . . . , xn+m e A,c,x novo (definição segue abaixo)

maximiza ctx,

sujeito a Ax = b,

x ≥ 0.

Matrizes

A =


a11 a12 · · · a1n 1
a21 a22 · · · a2n 1
...

...
...

. . .
am1 am2 . . . amn 1

 ;

b =


b1
b2
...
bm

 ; c =



c1
c2
...
cn
0
...
0


; x =



x1
x2
...
xn
xn+1
...

xn+m


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3. Dualidade

Separação das variáveis

• Em cada iteração as variáveis estão separados em básicas e não-básicas.

• Conjuntos de índices correspondentes: B
.
∪ N = [1, n+m].

• A componente i de Ax pode ser separado como∑
j∈[n+m]

aijxj =
∑
j∈B

aijxj +
∑
j∈N

aijxj.

Separação das variáveis

• Para obter a mesma separação na forma matricial: Reordenamos as colunas e
separamos as matrizes e vetores:

A = (BN) ; x =

(
xB
xN

)
; c =

(
cB
cN

)
• com B ∈ Rm×m, N ∈ Rm×n, c ∈ Rn+m.

Forma matricial das equações

• Agora, Ax = b é equivalente com

(BN)

(
xB
xN

)
= BxB +NxN = b

• Numa solução básica, a matriz B tem posto m tal que as colunas de B formam
uma base do Rm. Logo B possui inversa e

xB = B−1(b−NxN) = B
−1b− B−1NxN

Forma matricial da função objetivo

• A função objetivo é

z = ctx = (ctB c
t
N)

(
xB
xN

)
= ctBxB + ctNxN

• e usando xB = B−1b− B−1NxN obtemos

z = ctB(B
−1b− B−1NxN) + c

t
NxN

= ctBB
−1b− (ctBB

−1N− ctN)xN

= ctBB
−1b− ((B−1N)tcB − cN)

txN
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3.6. Os métodos em forma matricial

Dicionário em forma matricial

• Logo, o dicionário em forma matricial é

z = ctBB
−1b− ((B−1N)tcB − cN)

txN

xB = B−1b− B−1NxN

• Compare com a forma em componentes:

z = z̄+
∑
j∈N

c̄jxj z = z̄+ c̄txN

xi = b̄i −
∑
j∈N

āijxj i ∈ B xB = b̄− ĀxN

Dicionário em forma matricial

• Portanto, vamos identificar

z̄ = ctBB
−1b; c̄ = −((B−1N)tcB − cN)

b̄ = B−1b; Ā = (āij) = B
−1N

• para obter o dicionário

z = z̄+ c̄txN

xB = b̄− ĀxN

Sistema dual

• As variáveis primais são

x = (x1 . . . xn︸ ︷︷ ︸
original

xn+1 . . . xn+m︸ ︷︷ ︸
folga

)t

• Para manter índices correspondentes, escolhemos variáveis duais da forma

y = (y1 . . . yn︸ ︷︷ ︸
folga

yn+1 . . . yn+m︸ ︷︷ ︸
dual

)t

• O dicionário do dual correspondente então é

Primal Dual

z = z̄+ c̄txN −w = −z̄− b̄tyB

xB = b̄− ĀxN yN = −c̄+ ĀtyB
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3. Dualidade

Primal e dual

• A solução básica do sistema primal é

x∗N = 0; x∗B = b̄ = B−1b

• A solução dual correspondente é

y∗B = 0; y∗N = −c̄ = (B−1N)tcB − cN

• Com isso temos os dicionários

z = z̄− (y∗N)
txN −w = −z̄− (x∗B)

tyB

xB = x∗B − (B−1N)xN yN = y∗N + (B−1N)tyB

Observação 3.1
A solução dual completa é yt = ctBB

−1A − ct (isso pode ser visto como?), ou yi =
ctBB

−1ai − ci para cada índice i ∈ [n +m]. As variáveis duais originais com índice
i ∈ [n + 1,m] correspondem com as colunas ai = ei das variáveis de folga e possuem
coeficientes ci = 0. Logo yto = ctBB

−1 é a solução do sistema dual sem as variáveis
de folga, e podemos escrever y = (ytoA − ct)t = Atyo − c e para os custos reduzidos
c̄ = c−Atyo. ♦

3.6.2. Simplex em forma matricial

Método Simplex em forma matricial

• Começamos com uma partição B
.
∪ N = [1, n+m].

• Em cada iteração selecionamos uma variável sainte i ∈ B e entrante j ∈ N .

• Fazemos o pivô xi com xj.

• Depois a nova base é B \ {i} ∪ {j}.

Método Simplex em forma matricial

S1: Verifique solução ótima Se y∗N ≥ 0 a solução atual é ótima. Pare.

S2: Escolhe variável entrante Escolhe j ∈ N com y∗j < 0. A variável entrante é xj.

S3: Determine passo básico Aumentando xj uma unidade temos novas variáveis não-
básicas xN = x∗N + ∆xN com ∆xN = (0 · · · 010 · · · 0)t = ej e ej o vetor nulo com
somente 1 na posição correspondente com índice j. Como

xB = x∗B − B−1NxN,

a diminuição correspondente das variáveis básicas é ∆xB = B−1Nej.
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3.7. Análise de sensibilidade

Método Simplex em forma matricial

S4: Determine aumento máximo O aumento máximo de xj é limitado por xB ≥ 0,
i.e.

xB = x∗B − t∆xB ≥ 0⇐⇒ x∗B ≥ t∆xB.

Com t, x∗B ≥ 0 temos

t ≤ t∗ = min
i∈B
∆xi>0

x∗i
∆xi

S5: Escolhe variável sainte Escolhe um i ∈ B com x∗i = t
∗∆xi.

Método Simplex em forma matricial

S5: Determine passo dual A variável entrante dual é yi. Aumentando uma unidade,
as variáveis yN diminuem ∆yN = −(B−1N)tei.

S6: Determina aumento máximo Com variável sainte yj, sabemos que yi pode au-
mentar ao máximo

s =
y∗j

∆yj
.

S7: Atualiza solução

x∗j := t y∗i := s

x∗B := x∗B − t∆xB y∗N := y∗N − s∆yN

B := B \ {i} ∪ {j}

3.7. Análise de sensibilidade

Motivação

• Na solução da programas lineares os parâmetros são fixos.

• Qual o efeito de uma perturbação

c := c+ ∆c; b := b+ ∆b; A := A+ ∆A?

(Imagina erros de medida, pequenas flutuações, etc.)

Análise de sensibilidade

• Após a solução de um sistema linear, temos o dicionário ótimo

z = z∗ − (y∗N)
txN

xB = x∗B − B−1NxN
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3. Dualidade

• com

x∗B = B−1b

y∗N = (B−1N)tcB − cN

z∗ = ctBB
−1b

Modificar c

• Mudarmos c para ĉ, mantendo a base B.

• x∗B não muda, mas temos que reavaliar y∗N e z∗.

• Depois, x∗B ainda é uma solução básica viável do sistema primal.

• Logo, podemos continuar aplicando o método Simplex primal.

Modificar b

• Da mesma forma, modificamos b para b̂ (mantendo a base).

• y∗N não muda, mas temos que reavaliar x∗B e z∗.

• Depois, y∗N ainda é uma solução básica viável do sistema dual.

• Logo, podemos continuar aplicando o método Simplex dual.

Vantagem dessa abordagem

• Nos dois casos, esperamos que a solução inicial já é perto da solução ótima.

• Experiência prática confirma isso.

• O que acontece se queremos modificar tanto b quanto c ou ainda A?

• A solução atual não necessariamente é viável no sistema primal ou dual.

• Mas: Mesmo assim, a convergência na prática é mais rápido.

Estimar intervalos

• Pergunta estendida: Qual o intervalo de t ∈ R tal que o sistema com ĉ = c+ t∆c
permanece ótimo?

• Para t = 1: y∗N = (B−1N)tcB − cN aumenta ∆yN := (B−1N)t∆cB − ∆cN.

• Em geral: Aumento t∆yN.

• Condição para manter a viabilidade dual:

y∗N + t∆yN ≥ 0
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3.7. Análise de sensibilidade

• Para t > 0 temos

t ≤ min
j∈N
∆yj<0

−
y∗j

∆yj

• Para t < 0 temos

max
j∈N
∆yj>0

−
y∗j

∆yj
≤ t

Estimar intervalos

• Agora seja b̂ = b+ t∆b.

• Para t = 1: x∗B = B−1b aumenta ∆xB := B−1∆b.

• Em geral: Aumento t∆b.

• Condição para manter a viabilidade primal:

x∗B + t∆xB ≥ 0

• Para t > 0 temos

t ≤ min
i∈B
∆xi<0

−
x∗i
∆xi

• Para t < 0 temos

max
i∈B
∆xi>0

−
x∗i
∆xi

≤ t

Observação 3.2
A matriz B−1 é formada pelas colunas do dicionário final que correspondem com as
variáveis de folga. ♦

Exemplo 3.8
Considere o problema da empresa de aço (visto na aula prática, veja também execí-
cio 1.7).

maximiza 25p+ 30c,

sujeito a 7p+ 10c ≤ 56000,
p ≤ 6000,
c ≤ 4000,
p, c ≥ 0.

Qual o intervalo em que o valor do lucro das placas de 25R $ pode variar sem alterar
a solução ótima?
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3. Dualidade

Exemplo: Empresa de aço

• Sistema ótimo

• Base B = {p,w3, c}, variáveis não-básicas N = {w1, w2}. (Observe: usamos
conjuntos de variáveis, ao invés de conjuntos de índices).

Exemplo: Variáveis

• Vetores c e ∆c. Observe que reordenamos os dados do sistema inicial de forma
correspondente com a ordem das variáveis do sistema final.

c =


25
0
30
0
0

 ; cB =

250
30

 ; cN =

(
0
0

)
;

∆c =


1
0
0
0
0

 ;∆cB =

10
0

 ;∆cN =

(
0
0

)

Exemplo: Aumentos

• Aumento das variáveis duais

∆yN = (B−1N)t∆cB − ∆cN = (B−1N)t∆cB

• com

B−1N =

 0 1
−1/10 7/10
1/10 −7/10


• temos

∆yN =

(
0
1

)
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3.7. Análise de sensibilidade

Exemplo: Limites

• Limites em geral

max
j∈N
∆yj>0

−
y∗j

∆yj
≤ t ≤ min

j∈N
∆yj<0

−
y∗j

∆yj

• Logo
−4 ≤ t ≤∞.

• Uma variação do preço entre 25 + [−4,∞] = [21,∞] preserve a otimalidade da
solução atual.

• O novo valor da função objetivo é

z == ĉtBB
−1b =

(
25+ t 0 30

)60002600
1400

 = 192000+ 6000t

e os valores das variáveis p e c permanecem os mesmos.

♦

Exemplo 3.9
Qual o intervalo em que o lucro das placas (R$ 25) e dos canos (R$ 30) podem variar
sem que a solução ótima seja alterada?

Exemplo: Variação do lucro dos placas e canos

• Neste caso, os vetores c, cB, cN e ∆cN permanecem os mesmos do exemplo
anterior. Enquanto que:

∆c =


1
0
1
0
0

 ;∆cB =

10
1

 ;

• Neste caso, o valor de ∆yN é

∆yN = (B−1N)t∆cB =

(
0 −1/10 1/10
1 7/10 −7/10

)10
1

 =

(
1/10
3/10

)
.

• Logo −40/3 ≤ t ≤∞
• Ou seja, uma variação do lucro das placas entre R$ 11.67 e ∞, e do lucro dos

canos entre R$ 16.67 e ∞, não altera a solução ótima do sistema.

♦
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Exemplo: Modificação

• Qual o intervalo em que o lucro dos canos (R$ 30) podem variar sem que a
solução ótima seja alterada?

• Neste caso, os vetores c, cB, cN e ∆cN permanecem os mesmos do exemplo
anterior. Enquanto que:

∆c =


0
0
1
0
0

 ;∆cB =

00
1

 ;

• Neste caso, o valor de ∆yN é:

∆cB =

(
1/10
−7/10

)
;

• Logo −30 ≤ t ≤ 40/7

• Ou seja, uma variação do lucro dos canos entre R$ 0 e R$ 35.71, não altera a
solução ótima do sistema.

Exemplo 3.10
O que acontece se mudarmos o lucro das placas para R$ 20?

Exemplo: Placas com lucro R$ 20

• Novos vetores

ĉ =


20
0
30
0
0

 ; ĉB =

200
30

 ; ĉN =

(
0
0

)

• Aumento

ŷ∗N = (B−1N)tĉB − ĉN = (B−1N)tĉB

=

(
0 −1/10 1/10
1 7/10 −7/10

)200
30

 =

(
3
−1

)
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3.7. Análise de sensibilidade

Novas variáveis

• Com

B−1b =

60002600
1400


• Novo valor da função objetivo

ẑ∗ = ĉtBB
−1b =

(
20 0 30

)60002600
1400

 = 162000

Exemplo: Novo dicionário

• Novo sistema primal viável, mas não ótimo:

z = 162000 −3w1 +w2
p = 6000 −w2
w3 = 2600 +1/10w1 −7/10w2
c = 1400 −1/10w1 +7/10w2

• Depois um pivô: Sistema ótimo.

z = 165714 2/7 −20/7w1 −10/7w3
p = 2285 5/7 −1/7w1 +10/7w3
w2 = 3714 2/7 +1/7w1 −10/7w2
c = 4000 −w3

♦

Exemplo 3.11
O que acontece se mudarmos o lucro das placas de R$ 25 para R$ 35 e dos canos de
R$ 30 para R$ 10?

Exemplo: Placas e canos com lucro R$ 35 e R$ 10

• Novos vetores

ĉ =


35
0
10
0
0

 ; ĉB =

350
10

 ; ĉN =

(
0
0

)

• Aumento

ŷ∗N = ((B−1N)tcB − cN) =

(
0 −1/10 1/10
1 7/10 −7/10

)350
10

 =

(
1
28

)
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3. Dualidade

Novas variáveis e novo dicionário

• Novo valor da função objetivo

ẑ∗ = ĉtBB
−1b = ĉtBx

∗
B =

(
35 0 10

)60002600
1400

 = 224000

• O novo sistema primal viável é

z = 224000 −1w1 −28w2
p = 6000 −w2
w3 = 2600 +1/10w1 −7/10w2
c = 1400 −1/10w1 +7/10w2

• O sistema é ótimo.

♦

Exemplo 3.12
Qual o efeito de uma variação do lado direito 6000 da segunda restrição? Para estudar
essa variação escolhemos ∆b = (0 1 0)t. Temos

B =

7 0 10
1 1 0
0 0 1

 ; B−1 = 1/10

 0 10 0
−1 7 10
1 −7 0


e logo ∆xB = B−1∆b = 1/10(10 7 − 7)t. Obtemos a nova solução básica

x̂∗B =

60002600
1400

+ t/10

107
−7


e a condição de otimalidade x̂∗B ≥ 0 nos fornece os limites

−26000/7 ≤ t ≤ 2000

entre quais ela é ótima. O valor da função objetivo dentro desses limites é

ẑ∗ = ctBx̂
∗
B = (25 0 30)t

 6000+ t
2600+ 7/10t
1400− 7/10t

 = 192000+ 4t.

♦
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3.8. Exercícios

3.8. Exercícios

(Soluções a partir da página 192.)

Exercício 3.1
Qual o sistema dual de

minimiza 7x1 + x2 + 5x3,

sujeito a x1 − x2 + 3x3 ≥ 10,
5x1 + 2x2 − x3 ≥ 6,
x1, x2, x3 ≥ 0?

Exercício 3.2
Considere o problema

Cobertura por conjuntos ponderados (weighted set cover)

Instância Um universo U, uma familia S de subconjuntos do universo, i.e. para
todo S ∈ S, S ⊆ U, e custos c(S) para cada conjunto S ∈ S.

Solução Uma cobertura por conjuntos, i.e. uma seleção de conjuntos T ⊆ S tal
que para cada elemento e ∈ U existe pelo menos um S ∈ T com e ∈ S.

Objetivo Minimizar o custo total dos conjuntos selecionados.

Uma formulação inteira do problema é

minimiza
∑
S∈S

c(S)xS,

sujeito a
∑
S:e∈S

xS ≥ 1, e ∈ U,

xS ∈ {0, 1} S ∈ S.

O problema com restrições de integralidade é NP-completo. Substituindo as restrições
de integralidade xS ∈ {0, 1} por restrições triviais xS ≥ 0 obtemos um programa linear.
Qual o seu dual?

Exercício 3.3
O sistema

maximiza 2x1 − x2 + x3,

sujeito a 3x1 + x2 + x3 ≤ 60,
x1 − x2 + 2x3 ≤ 10,
x1 + x2 − x3 ≤ 20,
x1, x2, x3 ≥ 0.
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3. Dualidade

possui dicionário ótimo

z = 25 −3/2x5 −1/2x6 −3/2x3
x4 = 10 +x5 +2x6 −x3
x1 = 15 −1/2x5 −1/2x6 −1/2x3
x2 = 5 +1/2x5 −1/2x6 +3/2x3

a) Em qual intervalo o coeficiente c1 = 2 pode variar?

b) Em qual intervalo o coeficiente b2 = 10 pode variar?

c) Modifique o lado direito de (60 10 20)t para (70 20 10)t: o sistema mantém-se
ótimo? Caso contrário, determina a nova solução ótima.

d) Modifique a função objetivo para 3x1 − 2x2 + 3x3: o sistema mantém-se ótimo?
Caso contrário, determina a nova solução ótima.
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4. Tópicos

4.1. Centro de Chebyshev

Seja B(c, r) = {c + u | ||u|| ≤ r} a esfera com centro c e raio r. Para um polígono
convexo aix ≤ bi, para i ∈ [n], queremos encontrar o centro e o raio da maior esfera,
que cabe dentro do polígono, i.e. resolver

maximiza r,

sujeito a sup
p∈B(c,r)

aip ≤ bi, ∀i ∈ [n].

Temos
sup

p∈B(c,r)
aip = cai + sup

||u||≤r
aiu = cai + ||ai||r

porque o segundo supremo é atingido por u = rai/||ai||. Assim obtemos uma formu-
lação linear

maximiza r,

sujeito a aic+ r||ai|| ≤ bi, ∀i ∈ [n].

Exemplo 4.1
O polígono da Fig. 4.1 possui a descrição

2x1 + 4x2 ≤ 24,
4x1 − x2 ≤ 12,

−x1 ≤ 0,
−x2 ≤ 0.

Portanto o programa linear para encontrar o centro e o raio do maior círculo é

maximiza r,

sujeito a 2c1 + 4c2 +
√
20r ≤ 24,

4c1 − c2 +
√
17r ≤ 12,

− c1 + r ≤ 0,
− c2 + r ≤ 0.

♦
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4. Tópicos

Figura 4.1.: Exemplo do centro de Chebyshev

1 2 3 4 5

1

2

3

4

5

6

x1

x2

(1.85, 3.01)

r = 1.85

4.2. Função objetivo convexa e linear por segmentos

Uma função f é convexa se f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) para qualquer x e y e
0 ≤ t ≤ t. Funções convexas são importantes na otimização, porque eles possuem no
máximo um mínimo no interior do domínio deles, e portanto o mínimo de uma função
convexa pode ser obtido com métodos locais.
Seja fi(x), i ∈ [n] uma coleção de funções lineares. O máximo f(x) = maxi∈[n] fi(x) é
uma função convexa linear por segmentos. O problema de otimização

minimizamax
i∈[n]

fi(x)

é equivalente com o programa linear

minimiza x0, (4.1)
sujeito a fi(x) ≤ x0, ∀i ∈ [n]. (4.2)

Portanto podemos minimizar uma função convexa linear por segmentos usando pro-
gramação linear. De forma similar, f é concava se f(tx+(1−t)y) ≥ tf(x)+(1−t)f(y).
(Observe que uma função convexa e concava é afina.) O sistema

maximiza x0,

sujeito a fi(x) ≥ x0, x ∀i ∈ [n].

maximiza uma função concava linear por segmentos.

76



Parte II.

Programação inteira
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5. Introdução

5.1. Definições

Problema da dieta

• Problema da dieta

minimiza ctx

sujeito a Ax ≥ r
x ≥ 0

• Uma solução (laboratório): 5 McDuplos, 3 maçãs, 2 casquinhas mista para R$
24.31

• Mentira! Solução correta: 5.05 McDuplos, 3.21 maças, 2.29 casquinhas mistas.

• Observação: Correto somente em média sobre várias refeições.

Como resolver?

• Com saber o valor ótima para uma única refeição?

• Restringe as variáveis x ao conjunto Z.

• Será que método Simplex ainda funciona?

• Não. Pior: O problema torna-se NP-completo.

Problemas de otimização

• Forma geral

optimiza f(x)

sujeito a x ∈ V
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5. Introdução

Programação inteira

• Programação linear (PL)

maximiza ctx

sujeito a Ax ≤ b
x ∈ Rn ≥ 0

• Programação inteira pura (PI)

maximiza hty

sujeito a Gy ≤ b
y ∈ Zn ≥ 0

Programação inteira

• Programação (inteira) mista (PIM)

maximiza ctx+ hty

sujeito a Ax+Gy ≤ b
x ∈ Rn ≥ 0, y ∈ Zm ≥ 0

• Programação linear e inteira pura são casos particulares da programação mista.

• Outro caso particular: 0-1-PIM e 0-1-PI.

x ∈ Bn

Exemplo

maximiza x1 + x2

sujeito a 2x1 + 7x2 ≤ 49
5x1 + 3x2 ≤ 50
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5.1. Definições

Exemplo

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x1

0

1
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15

x 2 2x1+7x2≤ 49

5x1+3x2≤ 50Soluções viáveis
3

6

9

12

• Sorte: A solução ótima é inteira! x1 = 7, x2 = 5, V = 12.

• Observação: Se a solução ótima é inteira, um problema de PI(M) pode ser resol-
vido com o método Simplex.

Exemplo

maximiza x1 + x2

sujeito a 1.8x1 + 7x2 ≤ 49
5x1 + 2.8x2 ≤ 50

Exemplo
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5. Introdução

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x1
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15

x 2 1.8x1+7x2≤ 49

5x1+2.8x2≤ 50Soluções viáveis
3

6

9

12

• Solução ótima agora: x1 ≈ 7.10, x2 ≈ 5.17, V = 12.28.

• Será que bx1c , bx2c é a solução ótima do PI?

Exemplo

maximiza − x1 + 7.5x2

sujeito a − x1 + 7.2x2 ≤ 50.4
5x1 + 2.8x2 ≤ 62

Exemplo
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5.2. Motivação e exemplos

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x1
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11

12

13

14

15

x 2

-x1+7.2x2≤ 50.4

5x1+2.8x2≤ 62

Soluções viáveis
10

20

30

40

50

• Solução ótima agora: x1 ≈ 7.87, x2 ≈ 8.09, V = 52.83.

• bx1c = 7, bx2c = 8.

• Solução ótima inteira: x1 = 0, x2 = 7!

• Infelizmente a solução ótima inteira pode ser arbitrariamente distante!

Métodos para resolver PI

• Prove que a solução da relaxação linear sempre é inteira.

• Insere cortes.

• Branch-and-bound.

5.2. Motivação e exemplos

Motivação

• Otimização combinatória é o ramo da ciência da computação que estuda proble-
mas de otimização em conjuntos (wikipedia).
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5. Introdução

• “The discipline of applying advanced analytical methods to help make better
decisions” (INFORMS)

• Tais problemas são extremamente frequentes e importantes.

Máquina de fazer dinheiro

• Imagine uma máquina com 10 botões, cada botão podendo ser ajustado em um
número entre 0 e 9.
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Máquina de fazer dinheiro
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• há uma configuração que retorna R$ 10.000.

• total de combinações: 1010.

• dez testes por segundo

• em um ano:⇒ 10× 60× 60× 24× 365 ∼= 3× 108

Explosão combinatória
Funções típicas:

n log n n0.5 n2 2n n!
10 3.32 3.16 102 1.02× 103 3.6× 106
100 6.64 10.00 104 1.27× 1030 9.33× 10157
1000 9.97 31.62 106 1.07× 10301 4.02× 102567

1retirado de Integer Programming - Wolsey (1998)
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5.3. Aplicações

“Conclusões”
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• Melhor não aceitar a máquina de dinheiro.

• Problemas combinatórios são difíceis.

5.3. Aplicações

Apanhado de problemas de otimização combinatória

• Caixeiro viajante

• Roteamento

• Projeto de redes

• Alocação de horários

• Tabelas esportivas

• Gestão da produção

• etc.

Caixeiro Viajante
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5. Introdução

Caixeiro Viajante

Caixeiro Viajante

• Humanos são capazes de produzir boas soluções em pouco tempo!

• Humanos ?

Caixeiro Viajante

Caixeiro Viajante

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L. Applegate,
Robert E. Bixby, Vasek Chvátal & William J. Cook. Princeton University Press
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5.3. Aplicações

Caixeiro Viajante

Caixeiro Viajante

• Business leads the traveling salesman here and there, and there is not a good
tour for all occurring cases; but through an expedient choice division of the tour
so much time can be won that we feel compelled to give guidelines about this.
Everyone should use as much of the advice as he thinks useful for his application.
We believe we can ensure as much that it will not be possible to plan the tours
through Germany in consideration of the distances and the traveling back and
fourth, which deserves the traveler’s special attention, with more economy. The
main thing to remember is always to visit as many localities as possible without
having to touch them twice.

“Der Handlungsreisende wie er sein soll und was er zu tun hat, um Aufträge zu erhalten
und eines glücklichen Erfolgs in seinen Geschäften gewiss zu sein. Von einem alten
1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L. Applegate,
Robert E. Bixby, Vasek Chvátal & William J. Cook. Princeton University Press

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L. Applegate,
Robert E. Bixby, Vasek Chvátal & William J. Cook. Princeton University Press
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5. Introdução

Commis-Voyageur” (O caixeiro viajante, como ele deve ser e o que ele deve fazer para
obter encomendas e garantir um sucesso feliz dos seus negócios. Por um caixeiro
viajante experiente).
First brought to the attention of the TSP research community in 1983 by Heiner
Muller-Merbach [410]. The title page of this small book is shown in Figure 1.1. The
Commis-Voyageur [132] explicitly described the need for good tours in the following
passage, translated from the German original by Linda Cook.

Caixeiro Viajante

Caixeiro Viajante

Formulando matemáticamente o PCV

• Associar uma variável a cada possível decisão.

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L. Applegate,
Robert E. Bixby, Vasek Chvátal & William J. Cook. Princeton University Press

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L. Applegate,
Robert E. Bixby, Vasek Chvátal & William J. Cook. Princeton University Press
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5.3. Aplicações

Formulando matemáticamente o PCV

• Associar uma variável a cada possível decisão.

minimiza
∑
i,j∈N

cijyij

sujeito a
∑
j∈N

xij +
∑
j∈N

xji = 2, ∀i ∈ N

xij ∈ {0, 1}, ∀i, j ∈ N.

Formulando matemáticamente o PCV

• Associar uma variável a cada possível decisão.

minimiza
∑
i,j∈N

cijyij

sujeito a
∑
j∈N

xij +
∑
j∈N

xji = 2, ∀i ∈ N

xij ∈ {0, 1}, ∀i, j ∈ N.

+ restrições de eliminação de subciclos!

Problemas de roteamento
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5. Introdução

Problemas de roteamento
(10−12)

(10−12)

(Tercas e quintas)

(Tercas e quintas)

(segundas e quartas)

Etc.

Problemas em árvores

Problemas em árvores
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5.3. Aplicações

Problemas em árvores - aplicações

• Telecomunicações

• Redes de acesso local

• Engenharias elétrica, civil, etc..

Alocação de tripulações

Tabelas esportivas

91



5. Introdução

Gestão da produção

Etc.

• programação de projetos

• rotação de plantações

• alocação de facilidades (escolas, centros de comércio, ambulâncias...)

• projeto de circuitos integrados

• portfolio de ações

• etc, etc, etc, etc...
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6. Formulação

6.1. Exemplos

“Regras de formulação”

• Criar (boas) formulações é uma arte.

• Algumas diretivas básicas:

– escolha das variáveis de decisão.

– escolha do objetivo.

– ajuste das restrições.

Exemplo: 0-1-Knapsack

Problema da Mochila (Knapsack)

Instância Um conjunto de n itens com valores vi e pesos pi, i ∈ [n]. Um limite
de peso P do mochila.

Solução Um conjunto S ⊆ [n] de itens que cabe na mochila, i.e.
∑
i∈S pi ≤ P.

Objetivo Maximizar o valor
∑
i∈S vi.

• Observação: Existe uma solução (pseudo-polinomial) com programação dinâmica
em tempo O(Pn) usando espaço O(P).

Formulação – Problema da mochila

maximiza
∑
i∈[n]

vixi,

sujeito a
∑
i∈[n]

pixi ≤ P,

xi ∈ B.

Exemplo 6.1 (Maximizar cavalos num tabuleiro de xadrez)
Qual o número máximo de cavalos que cabe num tabuleiro de xadrez, tal que nenhum
ameaça um outro?

Figura 6.1.: Os campos ataca-
dos por um cavalo num tabu-
leiro de xadrez.
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6. Formulação

Formulação do problema dos cavalos com variáveis indicadores xij:

maximiza
∑
i,j

xij,

sujeito a xij + xi−2,j+1 ≤ 1, 3 ≤ i ≤ 8, j ∈ [7],

xij + xi−1,j+2 ≤ 1, 2 ≤ i ≤ 8, j ∈ [6],

xij + xi+2,j+1 ≤ 1, i ∈ [6], j ∈ [7],

xij + xi+1,j+2 ≤ 1, i ∈ [7], j ∈ [6].

Número de soluções do problema dos cavalos (A030978)
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

k 1 4 5 8 13 18 25 32 41 50 61 72 85 98 113
♦

6.2. Técnicas para formular programas inteiros

Um problema recorrente com indicadores x1, . . . , xn ∈ B e selecionar no máximo,
exatamente, ou no mínimo k dos n itens. As restrições∑

i∈[n]

xi ≤ k;
∑
i∈[n]

xi = k;
∑
i∈[n]

xi ≥ k

conseguem isso.

Exemplo 6.2 (Localização de facilidades simples 1)
Em n cidades dadas queremos instalar no máximo k fábricas (k ≤ n) de modo a
minimizar o custo da instalação das fábricas. A instalação na cidade j ∈ [n] custa fj.
Podemos usar indicadores para yj ∈ B para a instalação da uma fábrica na cidade j e
formular

minimiza
∑
j∈[n]

fjyj,

sujeito a
∑
j∈[n]

yj = k,

yj ∈ B, j ∈ [n].

(Obviamente para resolver este problema é suficiente escolher as k cidades de menor
custo. No exemplo 6.3 estenderemos esta formulação para incluir custos de transporte.)

♦

6.2.1. Formular restrições lógicas

Formulação: Indicadores

• Variáveis indicadores x, y ∈ B: Seleção de um objeto.
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6.2. Técnicas para formular programas inteiros

clientes

fabricas

(a) Exemplo de uma instância (b) Exemplo de uma solução

Figura 6.2.: Localização de facilidades.

• Implicação (limitada): Se x for selecionado, então y deve ser selecionado

x ≤ y, x, y ∈ B

• Ou:

x+ y ≥ 1, x, y ∈ B

• Ou-exlusivo:

x+ y = 1, x, y ∈ B

Exemplo 6.3 (Localização de facilidades não-capacitado)
Queremos incluir no exemplo 6.2 clientes. Suponha que em cada cidade tem um
cliente, e queremos, junto com os custos das fábricas instaladas, minimizar o custo
de atendimento dos clientes. Entre cada par de cidade, i e j, o custo de transporte é
dado por cij (ver figura 6.2). Para formulação escolhemos variáveis de decisão xij ∈ B,
que indicam se o cliente i for atendido pela fábrica em j. É importante “vincular” as
variáveis de decisão: o cliente i pode ser atendido pela cidade j somente se na cidade
j foi instalada uma fábrica, i.e. xij → yj.

minimiza
∑
j∈[n]

fjyj +
∑
i,j∈[n]

cijxij,

sujeito a
∑
j∈[n]

xij = 1, i ∈ [n], (só uma fábrica atende)

∑
j∈[n]

yj ≤ m, (no máximo m fábricas)

xij ≤ yj, i ∈ [n], j ∈ [n], (só fáb. existentes atendem)
xij ∈ B, i ∈ [n], j ∈ [n],

yj ∈ B, j ∈ [n].

♦
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6. Formulação

Formulação: Indicadores
Para x, y, z ∈ B

• Conjunção x = yz = y∧ z

x ≤ (y+ z)/2 (6.1)
x ≥ y+ z− 1

• Disjunção x = y∨ z

x ≥ (y+ z)/2 (6.2)
x ≤ y+ z

• Negação x = ¬y

x = 1− y (6.3)

• Implicação: z = x→ y

z ≤ 1− x+ y (6.4)
z ≥ (1− x+ y)/2 (6.5)

Exemplo 6.4 (Max-3-SAT)
Seja ϕ(x1, . . . , xn) =

∧
i∈[m] Ci uma fórmula em forma normal conjuntiva, com cláu-

sulas da forma Ci = li1 ∨ li2 ∨ li3. Queremos encontrar uma atribuição xi ∈ B
maximizando o número de cláusulas satisfeitas.
Seja ci ∈ B uma variável que indica que cláusula i é satisfeita. Também vamos
introduzir uma variável xi ∈ B para cada variável xi do problema, e uma variável
auxiliar lij para literal lij do problema.

maximiza ci,

sujeito a ci ≤ li1 + li2 + li3,
lij = xi, caso lij = xi,
lij = 1− xi, caso lij 6= xi,
ci ∈ B, xi ∈ B, lij ∈ B.

♦

6.2.2. Formular restrições condicionais

Indicadores para igualdades satisfeitas Queremos definir uma variável y ∈ B que
indica se uma dada restrição é satisfeita.
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6.2. Técnicas para formular programas inteiros

• Para
∑
i∈[n] aixi ≤ b: Escolhe um limite superior M para

∑
i∈[n] aixi − b, um

limite inferior m para
∑
i∈[n] aixi − b e uma constante ε > 0 pequena.∑
i∈[n]

aixi ≤ b+M(1− y) (6.6)

∑
i∈[n]

aixi ≥ b+my+ (1− y)ε

• Para x > 0: Escolhe um limite superior M para x e uma constante ε pequena.

x ≥ εy,
x ≤My.

Exemplo 6.5 (Custos fixos)
Uma aplicação para problemas de minimização com uma função objetivo não-linear.
Queremos minimizar custos, com uma “entrada” fixa c da forma

f(x) =

{
0 caso x = 0
c+ l(x) caso 0 < x ≤M

e l(x) uma função linear (ver figura 6.3). Com uma y ∈ B indica a positividade de x,

x

f(x)

x̄

c

0

c+ l(x)

Figura 6.3.: Função objetivo
não-linear

i.e. y = 1 sse x > 0 podemos definir a função objetivo por

f(x) = cy+ l(x)

e a técnica da equação (??) resolve o problema. Como o objetivo é minimizar f(x)
a primeira equação x ≥ εy é redundante: caso y = 1 não faz sentido escolher uma
solução com x = 0, porque para x = 0 existe a solução de menor custo x = y = 0.
Logo

x ≤My,
x ∈ R, y ∈ B,

é suficiente neste caso.
♦

Exemplo
Planejamento de produção (ingl. uncapacitated lot sizing)

• Objetivo: Planejar a futura produção no próximos n semanas.

• Parâmetros: Para cada semana i ∈ [n]

– Custo fixo fi para produzir,
– Custo pi para produzir uma unidade,
– Custo hi por unidade para armazenar,
– Demanda di
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6. Formulação

1

s1

d1

f1/p1

2

s2

d2

f2/p2

3

s3

d3

f3/p3

4

s4

d4

f4/p4

s0

Semana

Estoque

Custos

Figura 6.4.: Planejamento de produção.

Exemplo
Seja

• xi a quantidade produzida,

• si a quantidade no estoque no final da semana i,

• yi = 1 sem tem produção na semana i, 0 senão.

Problema:

• Função objetivo tem custos fixos, mas xi não tem limite.

• Determina ou estima um valor limite M.

Exemplo

minimiza
∑
i∈[n]

pixi + hisi + fiyi,

sujeito a si = si−1 + xi − di, i ∈ [n],

s0 = 0,

xi ≤Myi, i ∈ [n],

x ∈ Rn, y ∈ Bn.

Disjunção de equações

• Queremos que aplica-se uma das equações

f1 ≤ f2,
g1 ≤ g2.

• Solução, com constante M suficientemente grande

f1 ≤ f2 +Mx,
g1 ≤ g2 +M(1− x),

x ∈ B.
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6.3. Formulações alternativas

6.3. Formulações alternativas

Uma problema de programação linear ou inteira geralmente possui mais que uma
formulação. A figura 6.5 mostra diversas formulações que definem o mesmo conjunto
de soluções inteiras.
Na programação linear existe pouca diferença entre as formulações: a solução é a
mesma e o tempo para resolver o problema é comparável, para um número compa-
rável de restrições e variáveis. Na programação inteira uma formulação boa é mais
importante. Como a solução de programas inteiras é NP-completo, frequentemente a
relaxação linear é usada para obter uma aproximação. Diferentes formulação de um
programa inteiro possuem diferentes qualidades da relaxação linear. Uma maneira de
quantificar a qualidade de uma formulação é o gap de integralidade(ingl. integrality

x1

x2

Figura 6.5.: Diferentes formu-
lações lineares que definem o
mesmo conjunto de soluções
inteiras.

gap ). Para um problema P e uma instância i ∈ P seja OPT(i) a solução ótima inteira
e LP(i) a solução da relaxação linear. O gap de integralidade é

g(P) = sup
i∈P

LP(i)
OPT(i)

(6.7)

(para um problema de maximização.) O gap de integralidade dá uma garantia para
qualidade da solução da relaxação linear: caso o gap é g, a solução não é mais que um
fator g maior que a solução integral ótima.

Exemplo 6.6 (Conjunto independente máximo)
Uma formulação do problema de encontrar o conjunto independente máximo num
grafo não-direcionado G = (V,A) é

maximiza
∑
v∈V

xv, (CIM)

sujeito a xu + xv ≤ 1, ∀{u, v} ∈ E,
xv ∈ B, ∀v ∈ V.

No grafo completo com n vértices Kn a relaxação linear possui um valor pelo menos
n/2 (porque a solução xv = 1/2, v ∈ V possui valor n/2), enquanto a solução ótima
inteira é 1. Por isso, o programa (CIM) possui um gap de integralidade ilimitado. ♦

6.4. Exercícios

(Soluções a partir da página 193.)

Exercício 6.1
A empresa “Festa fulminante” organiza festas. Nos próximos n dias, ela precisa pi
pratos, 1 ≤ i ≤ n. No começo de cada dia gerente tem os seguintes opções:

• Comprar um prato para um preço de c reais.

• Mandar lavar um prato devagarmente em d1 dias, por um preço de l1 reais.
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6. Formulação

• Mandar lavar um prato rapidamente em d2 < d1 dias, por um preço de l2 > l1
reais.

O gerente quer minimizar os custos dos pratos. Formule como programa inteira.

Exercício 6.2
Para os problemas abaixo, encontra uma formulação como programa inteira.

Conjunto independente máximo

Instância Um grafo não-direcionado G = (V,A).

Solução Um conjunto independente I, i.e. I ⊆ V tal que para vértices v1, v2 ∈ I,
{v1, v2} 6∈ A.

Objetivo Maximiza |I|.

Emparelhamento perfeito com peso máximo

Instância Um grafo não-direcionado bi-partido G = (V1
.
∪ V2, A) (a fato de ser

bi-partido significa que A ⊆ V1 × V2) com pesos p : A→ R nos arcos.

Solução Um emparelhamento perfeito, i.e. um conjunto de arcos C ⊆ A tal que
todos nós no sub-grafo G[C] = (V1 ∪ V2, C) tem grau 1.

Objetivo Maximiza o peso total
∑
c∈C p(c) do emparelhamento.

Problema de transporte

Instância n depósitos, cada um com um estoque de pi produtos, i ∈ [n], e m
clientes, cada um com uma demanda dj, j ∈ [m] produtos. Custos de
transporte aij de cada depósito i ∈ [n] para cada cliente j ∈ [m].

Solução Um decisão quantos produtos xij devem ser transportados do depósito
i ∈ [n] ao cliente j ∈ [m], que satisfaz (i) Cada depósito manda todo seu
estoque (ii) Cada cliente recebe exatamente a sua demanda. (Observe que
o número de produtos transportados deve ser integral.)

Objetivo Minimizar os custos de transporte
∑
i∈[n],j∈[m] aijxij.

Conjunto dominante

Instância Um grafo não-direcionado G = (V,A).
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Solução Um conjunto dominante, i.e. um conjunto D ⊆ V, tal que ∀v ∈ V : v ∈
D∨ (∃u ∈ D : {u, v} ∈ A) (cada vértice faz parte do conjunto dominante ou
tem um vizinho no conjunto dominante).

Objetivo Minimizar o tamanho do conjunto dominante |D|.

Exercício 6.3
Acha uma formulação inteira para todos os 21 problemas que o Karp provou NP-
completo (Karp. 1972).

Exercício 6.4
Juliano é fã do programa de auditório Apagando e Ganhando, um programa no qual
os participantes são selecionados atráves de um sorteio e recebem prêmios em dinheiro
por participarem. No programa, o apresentador escreve um número de N dígitos em
uma lousa. O participante então deve apagar exatamente D dígitos do número que
está na lousa; o número formado pelos dígitos que restaram é então o prêmio do
participante. Juliano finalmente foi selecionado para participar do programa, e pediu
que você escrevesse um programa inteira que, dados o número que o apresentador
escreveu na lousa, e quantos dígitos Juliano tem que apagar, determina o valor do
maior prêmio que Juliano pode ganhar.
(Fonte: Maratona de programação regional 2008, RS)

Exercício 6.5
Set é um jogo jogado com um baralho no qual cada carta pode ter uma, duas ou três
figuras. Todas as figuras em uma carta são iguais, e podem ser círculos, quadrados
ou triângulos. Um set é um conjunto de três cartas em que, para cada característica
(número e figura), u ou as três cartas são iguais, ou as três cartas são diferentes. Por
exemplo, na figura abaixo, (a) é um set válido, já que todas as cartas têm o mesmo
tipo de figura e todas elas têm números diferentes de figuras. Em (b), tanto as figuras
quanto os números são diferentes para cada carta. Por outro lado, (c) nào é um set,
já que as duas ultimas cartas têm a mesma figura, mas esta é diferente da figura da
primeira carta.

• 4 �

• • ��� 444
• • • •• 44
(a) (b) (c)

O objetivo do jogo é formar o maior número de sets com as cartas que estão na mesa;
cada vez que um set é formado, as três cartas correspondentes são removidas de jogo.
Quando há poucas cartas na mesa, é fácil determinar o maior número de sets que
podem ser formados; no entanto, quando há muitas cartas há muitas combinações
possíveis. Seu colega quer treinar para o campeonato mundial de Set, e por isso pediu
que você fizesse um programa inteira e que calcula o maior número de sets que podem
ser formados com um determinado conjunto de cartas.
(Fonte: Maratona de programação regional 2008, RS)
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Exercício 6.6
Para os problemas abaixo, acha uma formulação como programa inteira.

Cobertura por arcos

Instância Um grafo não-direcionado G = (V, E) com pesos c : E→ Q nos arcos.

Solução Uma cobertura por arcos, i.e. um subconjunto E ′ ⊆ E dos arcos tal que
todo vértice faz parte de pelo menos um arco selecionado.

Objetivo Minimiza o custo total dos arcos selecionados em E ′.

Conjunto dominante de arcos

Instância Um grafo não-direcionado G = (V, E) com pesos c : E→ Q nos arcos.

Solução Um conjunto dominante de arcos, i.e. um subconjunto E ′ ⊆ E dos arcos
tal que todo arco compartilha um vértice com pelo menos um arco em E ′.

Objetivo Minimiza o custo total dos arcos selecionados em E ′.

Coloração de grafos

Instância Um grafo não-direcionado G = (V, E).

Solução Uma coloração do grafo, i.e. uma atribuição de cores às vértices c :
V → Z+ tal que cada par de vértices ligado por uma aresta recebe uma cor
diferente.

Objetivo Minimiza o número de cores diferentes.

Clique mínimo ponderado

Instância Um grafo não-direcionado G = (V, E) com pesos c : V → Q nos vértices.

Solução Uma clique, i.e. um subconjunto V ′ ⊆ V de vértices tal que existe um
arco entre todo par de vértices em V ′.

Objetivo Maximiza o peso total dos vértices selecionados V ′.

Subgrafo cúbico
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Instância Um grafo não-direcionado G = (V, E).
Solução Uma subgrafo cúbico, i.e. uma seleção E ′ ⊆ E dos arcos, tal que cada

vértice em G ′ = (V, E ′) possui grau 0 ou 3.

Objetivo Maximiza o número de arcos selecionados |E ′|.

Exercício 6.7
Uma empresa tem que decidir quais de sete investimentos devem ser feitos. Cada
investimento pode ser feito somente uma única vez. Os investimentos tem lucros (ao
longo prazo) e custos iniciais diferentes como segue

Investimento

1 2 3 4 5 6 7

Lucro estimado [MR$] 17 10 15 19 7 13 9
Custos iniciais [MR$] 43 28 34 48 17 32 23

A empresa tem 100 MR$ capital disponível. Como maximizar o lucro total (ao longo
prazo, não considerando os investimentos atuais), respeitando que os investimentos
1, 2 e 3, 4 são mutualmente exclusivas, e nem o investimento 3 nem o investimento 4
pode ser feita, sem pelo menos um investimento em 1 ou 2 (as outros investimentos
não tem restrições).

Exercício 6.8
Um produtor de brinquedos projetou dois novos brinquedos para Natal. A preparação
de uma fábrica para produzir custaria 50000R$ para a primeiro brinquedo e 80000R$
para o segundo. Após esse investimento inicial, o primeiro brinquedo rende 10R$ por
unidade e o segundo 15R$.
O produtor tem duas fábricas disponíveis mas pretende usar somente uma, para evitar
custos de preparação duplos. Se a decisão for tomada de produzir os dois brinquedos,
a mesma fábrica seria usada.
Por hora, a fábrica 1 é capaz de produzir 50 unidades do brinquedo 1 e 40 unidades
do brinquedo 2 e tem 500 horas de produção disponível antes de Natal. A fábrica 2 é
capaz de produzir 40 unidades do brinquedo 1 e 25 unidades do brinquedo 2 por hora,
e tem 700 horas de produção disponível antes de Natal.
Como não sabemos se os brinquedos serão continuados depois Natal, a problema é de-
terminar quantas unidades de cada brinquedo deve ser produzido até Natal (incluindo
o caso que um brinquedo não é produzido) de forma que maximiza o lucro total.

Exercício 6.9
Uma empresa produz pequenos aviões para gerentes. Os gerentes frequentemente pre-
cisam um avião com características específicas que gera custos inicias altos no começo
da produção.
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A empresa recebeu encomendas para três aviões, mas como ela está com capacidade
de produção limitada, ela tem que decidir quais das três aviões ela vai produzir. Os
seguintes dados são relevantes

Aviões Cliente

produzidas 1 2 3

Custo inicial [MR$] 3 2 0
Lucro [MR$/avião] 2 3 0.8
Capacidade usada [%/avião] 20% 40% 20%
Demanda máxima [aviões] 3 2 5

Os clientes aceitam qualquer número de aviões até a demanda máxima. A empresa
tem quer decidir quais e quantas aviões ela vai produzir. As aviões serão produzidos
em paralelo.

Exercício 6.10 (Winkler)
Uma fechadura de combinação com três discos, cada um com números entre 1 e 8,
possui um defeito, tal que precisa-se somente dois números corretos dos três para abri-
la. Qual o número mínimo de combinações (de três números) que precisa-se testar,
para garantidamente abrir a fechadura?
Formule um programa inteiro e resolva-o.

Exercício 6.11
Formule o problema

MAX-k-SAT

Entrada Uma fórmula em forma normal conjuntiva comm variáveis e n cláusulas
ϕ(x1, . . . , xm) = C1 ∧ · · · ∧ Cn tal que cada cláusula possui no máximo k
literais

Solução Uma atribuição xi 7→ {0, 1}.

Objetivo Maximizar o número de cláusulas satisfeitas.

(Dica: Usa as desigualdades (6.1)-(6.3). Começa com k = 3.)

Exercício 6.12
A Seção 6.2.1 mostrava como expressar a restrição lógica z = x ∧ y linearmente. A
formulação linear precisava duas restrições lineares. Mostra que não existe uma única
restrição linear que é suficiente para expressar z = x∧ y.
(Dica: Supõe que z = ax + by + c (ou z ≥ ax + by + c, ou z ≤ ax + by + c) com
constantes a, b, c e mostra que as restrições que resultam de uma análise caso a caso
levam a uma contradição ou não são suficientes para garantir a restrição lógica.)
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Exercício 6.13
Considere o problema de coloração de grafos:

Coloração de grafos

Instância Um grafo não-direcionado G = (V, E).

Solução Uma coloração do grafo, i.e. uma atribuição de cores às vértices c :
V → Z+ tal que cada par de vértices ligado por uma aresta recebe uma cor
diferente.

Objetivo Minimiza o número de cores diferentes.

Uma formulação possível é introduzir uma variável xvc ∈ {0, 1} tal que xvc = 1 caso
o vértice v ∈ V recebe a cor c. Como nunca tem mais que n = |V | cores, podemos
escolher C = [n]. Temos a condição∑

c∈C

xvc = 1, ∀v ∈ V. (6.8)

Uma coloração válida ainda tem que satisfazer

xuc + xvc ≤ 1, ∀{u, v} ∈ E, c ∈ C. (6.9)

Para contar o número de cores vamos usar variáveis auxiliares uc ∈ {0, 1} com uc = 1
caso a cor c ∈ C foi usada. Eles satisfazem

uc ≥
∑
v∈V

xvc/n, ∀c ∈ C. (6.10)

Com isso obtemos

(C1) minimiza
∑
c∈C

uc,

sujeito a (6.8), (6.9), (6.10)
xvc ∈ {0, 1}, uc ∈ {0, 1}, ∀v ∈ V, c ∈ C.

Um outro modelo é minimizar a soma das cores. Seja fv ∈ Z+ a cor do vértice v ∈ V ,
que pode ser definida por

fv =
∑
c∈C

cxvc, ∀v ∈ V. (6.11)

Com isso podemos formular

(C2) minimiza
∑
v∈V

fv,

sujeito a (6.8), (6.9), (6.11),
xvc ∈ {0, 1}, fc ∈ Z+, ∀v ∈ V, c ∈ C.

Os modelos (C1) e (C2) são equivalentes?

105



6. Formulação

Exercício 6.14
Considere o problema de posicionar os números 1, . . . , 10 nas posições P = {a, . . . , j}
do triângulo

a

b c

d e f

g h i j

.

Um colega afirma que podemos usar variáveis xa, . . . , xj ∈ Z e as restrições

1 ≤ xp ≤ 10, ∀p ∈ P,∑
p∈P

xp = 55,

∏
p∈P

xp = 10!

Ele tem razão?
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7.1. Introdução

Limites

• Exemplo: Problema de maximização.

• Limite inferior (limite primal): Cada solução viável.

– Qualquer técnica construtiva, p.ex. algoritmos gulosos, heurísticas etc.

• Limite superior (limite dual): Essencialmente usando uma relaxação

– Menos restrições ⇒ conjunto maior de solução viáveis.

– Nova função objetivo que é maior ou igual.

• Importante: Relaxação linear: x ∈ Z⇒ x ∈ R.

7.2. Problemas com solução eficiente

Observação 7.1 (Regra de Laplace)
Lembrança: A determinante de uma matriz pela regra de Laplace é

det(A) =
∑
i∈[n]

(−1)i+jaij det(Aij) =
∑
j∈[n]

(−1)i+jaij det(Aij)

sendo Aij a submatriz sem linha i e coluna j. ♦

Relaxação inteira

• Solução simples: A relaxação linear possui solução ótima inteira.

• Como garantir?

• Com base B temos a solução x = (xB xN)
t = (B−1b, 0)t.

• Observação: Se b ∈ Zm e |det(B)| = 1 para a base ótima, então o PL resolve o
PI.
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Relaxação inteira

• Para ver isso: Regra de Cramer.

• A solução de Ax = b é

xi =
det(Ai)
det(A)

com Ai a matriz resultante da substituição da i-gésima coluna de A por b.

Prova. Seja Ui a matriz identidade com a i-gésima coluna substituído por x, i.e.

1 x1
. . . x2

...

xn−1
. . .

xn 1


Temos que AUi = Ai e com det(Ui) = xi temos

det(Ai) = det(AUi) = det(A) det(Ui) = det(A)xi.

�

Exemplo: Regra de Cramer

3 2 1
5 0 2
2 1 2

x1x2
x3

 =

11
1



Exemplo: Regra de Cramer

∣∣∣∣∣∣
3 2 1
5 0 2
2 1 2

∣∣∣∣∣∣ = −13;

∣∣∣∣∣∣
1 2 1
1 0 2
1 1 2

∣∣∣∣∣∣ = −1

∣∣∣∣∣∣
3 1 1
5 1 2
2 1 2

∣∣∣∣∣∣ = −3;

∣∣∣∣∣∣
3 2 1
5 0 1
2 1 1

∣∣∣∣∣∣ = −4

Logo x1 = 1/13; x2 = 3/13; x3 = 4/13.
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Aplicação da regra de Cramer

• Como garantir que x = B−1b é inteiro?

• Cramer:
xi =

det(Bi)
det(B)

• Condição possível: (a) det(Bi) inteiro, (b) det(B) ∈ {−1, 1}.

• Garantir (a): A ∈ Zm×n e b ∈ Zm.

• Garantir (b): Toda submatriz quadrada não-singular de A tem determinante
{−1, 1}.

Exemplo 7.1
Observe que essas condições são suficientes, mas não necessárias. É possível que Bx = b
possui solução inteira sem essas condições ser satisfeitas. Por exemplo

(
2 2
1 0

)(
x1
x2

)
=

(
2
1

)
tem a solução inteira (x1 x2) = (1 0), mesmo que det(A) = −2. ♦

A relaxação é inteira

Definição 7.1
Uma matriz quadrada inteira A ∈ Rn×n é unimodular se | det(A)| = 1. Uma matriz
arbitrária A é totalmente unimodular (TU) se cada submatriz quadrada não-singular
A ′ de A é modular, i.e. det(A ′) ∈ {0, 1,−1}.

Uma consequência imediata dessa definição: aij ∈ {−1, 0, 1}.

Exemplo
Quais matrizes são totalmente unimodular?

(
1 −1
1 1

)
;

1 1 0
0 1 1
1 0 1


 1 −1 −1 0
−1 0 0 1
0 1 0 −1

 ;


0 1 0 0 0
0 1 1 1 1
1 0 1 1 1
1 0 0 1 0
1 0 0 0 0


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Critérios

Proposição 7.1
Se A é TU então

(i) At é TU.

(ii) (A I) com matriz de identidade I é TU.

(iii) Uma matriz B que é uma permutação das linhas ou colunas de A é TU.

(iv) Multiplicando uma linha ou coluna com −1 resulta numa matriz TU.

Prova. (i) Qualquer submatriz quadrada Bt de At e uma submatriz B de A tam-
bém. Com det(B) = det(Bt), segue que At é totalmente unimodular. (ii) Qualquer
submatriz de (AI) tem a forma (A ′I ′) com A ′ submatriz de A e I ′ submatriz de I.
Com |det(A ′I ′)| = |det(A ′)| segue que (AI) é TU. (iii) Cada submatriz de B é uma
submatriz de A. (iv) A determinante troca no máximo o sinal. �

Exercício 7.1 pede generalizar a proposição 7.1.

Critérios

Proposição 7.2
Uma matriz A é totalmente unimodular se

(i) aij ∈ {+1,−1, 0}

(ii) Cada coluna contém no máximo dois coeficientes não-nulos.

(iii) Existe uma partição de linhas M1

.
∪ M2 = [1,m] tal que cada coluna com dois

coeficientes não-nulos satisfaz∑
i∈M1

aij −
∑
i∈M2

aij = 0

Observe que esse critério é suficiente, mas não necessário.

Exemplo

 1 −1 −1 0
−1 0 0 1
0 1 0 −1


• Coeficientes ∈ {−1, 0, 1}: Sim.

• Cada coluna no máximo dois coeficientes não-nulos: Sim.

• Partição M1,M2? Sim, escolhe M1 = [1, 3],M2 = ∅.
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Exemplo

A =

(
1 −1
1 1

)
TU? Não: det(A) = 2.

A =

1 1 0
0 1 1
1 0 1


TU? Não: det(A) = 2.


0 1 0 0 0
0 1 1 1 1
1 0 1 1 1
1 0 0 1 0
1 0 0 0 0


TU? Sim. Mas nossa regra não se aplica!

Prova. (da proposição 7.2). Prova por contradição. Seja A uma matriz que satisfaz
os critérios da proposição 7.2, e B a menor submatriz quadrada de A tal que det(B) 6∈
{0,+1,−1}. B não contém uma coluna com um único coeficiente não-nula: seria uma
contradição com a minimalidade do B (removendo a linha e a coluna que contém esse
coeficiente, obtemos uma matriz quadrada menor B∗, que ainda satisfaz det(B∗) 6∈
{0,+1,−1}). Logo, B contém dois coeficientes não-nulos em cada coluna. Aplicando
a condição (3) acima, subtraindo as linhas com índice em M1 das linhas com índice
em M2 podemos ver as linhas do B são linearmente dependentes e portanto temos
det(B) = 0, uma contradição. �
Uma caracterização (i.e. um critério necessário e suficiente) das matrizes totalmente
unimodulares (sem prova) é

Teorema 7.1 (Ghouila-Houri (1962))
Um matriz A ∈ Zm×n é TU sse para todo subconjunto R ⊆ [m] de linhas existe uma
partição R1

.
∪ R2 tal que ∣∣∑

i∈R1

aij −
∑
i∈R2

aij
∣∣ ≤ 1 (7.1)

para todas colunas j ∈ [n].

Observe que a proposição 7.2 implica o critério acima: dado uma partição das linhas
de acordo com 7.2, para todo R ⊆ [m], a partição (M1 ∩ R)

.
∪ (M2 ∩ R) satisfaz (7.1).
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Definição 7.2
Uma matriz A ∈ {0, 1}m×n possui a propriedade de uns consecutivos se para cada
coluna j ∈ [n], aij = 1 e ai ′j = 1 com i < i ′ implica akj = 1 para k ∈ [i, i ′].

Uma aplicação do critério de Ghouila-Houri é a
Proposição 7.3
Uma matriz que satisfaz a propriedade de uns consecutivos é totalmente unimodular.

Prova. A matriz formada por um subconjunto de linhas R ⊆ [m] também possui a
propriedade de uns consecutivos. Seja R = {i1, . . . , ik} com i1 ≤ · · · ≤ ik. A partição
em M1 = {i1, i3, . . .} e M2 = {i2, i4, . . .} satisfaz (7.1). �

Exemplo 7.2
A matriz 

0 1 0 0 0
0 1 1 1 1
1 0 1 1 1
1 0 0 1 0
1 0 0 0 0


do exemplo anterior satisfaz a propriedade de uns consecutivos. Logo ela é TU. ♦

Exemplo 7.3
Para um universo U = {u1, . . . , um}, e uma família de conjuntos C1, . . . , Cn ⊆ U
com pesos p1, . . . , pn uma cobertura é uma seleção de conjuntos S ⊆ [n] tal que cada
elemento do universo é coberto, i.e. para todo u ∈ U existe um i ∈ S com u ∈ Ci. A
problema de encontrar a cobertura de menor peso total pode ser formulado por

minimiza
∑
i∈[n]

pixi,

sujeito a Ax ≥ 1,
x ∈ Bn.

com aij = 1 sse ui ∈ Cj. (Figure 7.1 mostra um exemplo de uma instância e a matriz
A correspondente.) Este problema em geral é NP-completo. Pela propriedade de uns
consecutivos, podemos ver que no caso de um universo U = [1,m] com subconjuntos
que são intervalos o problema pode ser resolvido em tempo polinomial. ♦

Consequências
Teorema 7.2 (Hoffman e Kruskal (1956))
Se a matriz A de um programa linear é totalmente unimodular e o vetor b é inteiro,
todas soluções básicas são inteiras. Em particular as regiões

{x ∈ Rn | Ax ≤ b}
{x ∈ Rn | Ax ≥ b}
{x ∈ Rn | Ax ≤ b, x ≥ 0}
{x ∈ Rn | Ax = b, x ≥ 0}
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7.2. Problemas com solução eficiente

u1

u2

u3

u4 u5 u6

u7

u8

C1

C2 C3

C4

C5 C6

C7



1 1 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 1
0 0 0 0 1 1 0
0 0 0 0 0 1 1


Figura 7.1.: Exemplo de uma instância do problema de cobertura por conjuntos a

matriz A da formulação inteira correspondente.

possuem pontos extremos inteiros.

Prova. Considerações acima. �

Exemplo 7.4 (Caminhos mais curtos)

Exemplo: Caminhos mais curtos

• Dado um grafo direcionado G = (V,A) com custos c : A→ Z nos arcos.

• Qual o caminho mais curto entre dois nós s, t ∈ V?

Exemplo: Caminhos mais curtos
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minimiza
∑
a∈A

caxa,

sujeito a
∑

a∈N+(s)

xa −
∑

a∈N−(s)

xa = 1,

∑
a∈N+(v)

xa −
∑

a∈N−(v)

xa = 0, ∀v ∈ V \ {s, t},

∑
a∈N+(t)

xa −
∑

a∈N−(t)

xa = −1,

xa ∈ B, ∀a ∈ A.

A matriz do sistema acima de forma explicita:

s

...

t


1 · · · · · · −1

1
...

−1 1
−1 · · ·




xa1

...

xam

 =


1
0
...
0
−1


Como cada arco é incidente a dois vértices, cada coluna contém um coeficiente 1 e −1,
e a Proposição 7.2 é satisfeito pela partição trivial ∅

.
∪ V . ♦

Exemplo 7.5 (Fluxo em redes)

Exemplo: Fluxo em redes

• Dado: Um grafo direcionado G = (V,A)

– com arcos de capacidade limitada l : A→ Z+,

– demandas d : V → Z dos vértices,

– (com dv < 0 para destino e dv > 0 nos fonte)

– e custos c : A→ R por unidade de fluxo nos arcos.

• Qual o fluxo com custo mínimo?
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1

2 3

4 5

6

0 0

5

42

3

Exemplo: Fluxo em redes

minimiza
∑
a∈A

caxa,

sujeito a
∑

a∈N+(v)

xa −
∑

a∈N−(v)

xa = dv, ∀v ∈ V

0 ≤ xa ≤ la, ∀a ∈ A.

com conjunto de arcos entrantes N−(v) e arcos saintes N+(v).

Exemplo: Fluxo

• A matriz que define um problema de fluxo é totalmente unimodular.

• Consequências

– Cada ponto extremo da região víavel é inteira.

– A relaxação PL resolve o problema.

• Existem vários subproblemas de fluxo mínimo que podem ser resolvidos também,
p.ex. fluxo máximo entre dois vértices.

♦

Exemplo 7.6 (Emparelhamentos)

Emparelhamento máximo (EM)

Entrada Um grafo G = (V, E) não-direcionado.

Solução Um emparelhamento M ⊆ E, i.e. um conjunto de arcos, tal que para
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7. Técnicas de solução

todos vértices v temos |N(v) ∩M| ≤ 1.
Objetivo Maximiza |M|.

Uma formulação é

maximiza
∑
e∈E

cexe, (7.2)

sujeito a
∑

u∈N(v)

xuv ≤ 1, ∀v ∈ V, (7.3)

xe ∈ B.

A matriz de coeficientes dessa formulação é TU para grafos bipartidos. Por quê? Isso
ainda é válida para grafos não-bipartidos? ♦

7.3. Desigualdades válidas

Desigualdades válidas

• Problema inteiro
max{ctx | Ax ≤ b, x ∈ Zn+}

• Relaxação linear
max{ctx | Ax ≤ b, x ∈ Rn+}

x1

x2

Desigualdades válidas

Definição 7.3
Uma desigualdade πx ≤ π0 é válida para um conjunto P, se ∀x ∈ P : πx ≤ π0.

• Como achar desigualdades (restrições) válidas para o conjunto da soluções viáveis
{x | Ax ≤ b, x ∈ Zn+} de um problema inteiro?
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7.3. Desigualdades válidas

– Técnicas de construção (p.ex. método de Chvátal-Gomory)
– Observar e formalizar características específicas do problema.
– “The determination of families of strong valid inequalities is more of an art

than a formal methodology” Wolsey e Nemhauser 1999, p. 259

Exemplo 7.7 (Localização de facilidades não-capacitado)
Temos um conjunto de cidades C = [n] em que podemos abrir facilidades para um
custo fixo fj, j ∈ C. Em cada cidade i existe um demanda que pode ser satisfeito por
uma facilidade na cidade j com custo cij, caso existe um facilidade na cidade j. Com
xij ∈ B indicando que a demanda da cidade i é satisfeito pela facilidade na cidade j
podemos formular

minimiza
∑
j∈[n]

fjyj +
∑

i∈[n],j∈[n]

cijxij, (7.4)

sujeito a
∑
j∈[n]

xij = 1, ∀i ∈ [n], (7.5)

xij ≤ yj, ∀i ∈ [n], j ∈ [n], (7.6)
xij ∈ B, ∀i ∈ [n], j ∈ [n], (7.7)
yj ∈ B, ∀j ∈ [n]. (7.8)

Ao invés de
xij ≤ yj (7.9)

podemos formular ∑
i∈[n]

xij ≤ nyj. (7.10)

Essa formulação ainda é correto, mas usa n restrições ao invés de n2. Entretanto,
a qualidade da relação linear é diferente. É simples ver que podemos obter (7.10)
somando (7.9) sobre todos i. Portanto, qualquer solução que satisfaz (7.9) satisfaz
(7.10) também, e dizemos que (7.9) domina (7.10).
O seguinte exemplo mostra, que o contrário não é verdadeiro. Com custos de instalação
fj = 1, de transporte cij = 5 para i 6= j e cii = 0, duas cidades e uma fábrica obtemos
as duas formulações (sem restrições de integralidade)

minimiza y1 + y2 + 5x12 + 5x21, y1 + y2 + 5x12 + 5x21,

sujeito a x11 + x12 = 1, x11 + x12 = 1,

x21 + x22 = 1, x21 + x22 = 1,

y1 + y2 ≤ 1, y1 + y2 ≤ 1,
x11 ≤ y1, x11 + x21 ≤ 2y1,
x12 ≤ y2,
x21 ≤ y1, x21 + x22 ≤ 2y2.
x22 ≤ y2.
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7. Técnicas de solução

A solução ótima do primeiro sistema é y1 = 1, x11 = x21 = 1 com valor 6, que é
a solução ótima inteira. Do outro lado, a solução ótima da segunda formulação é
y1 = y2 = 0.5 com x11 = x22 = 1, com valor 1, i.e. ficam instaladas duas “meia-
fábricas” nas duas cidades!

♦

Exemplo 7.8 (Problema do caixeiro viajante)
Na introdução discutimos a formulação básica do PCV

minimiza
∑
i,j∈N

cijyij,

sujeito a
∑
j∈N

xij = 1, ∀i ∈ N, (7.11)

∑
j∈N

xji = 1, ∀i ∈ N, (7.12)

xij ∈ {0, 1}, ∀i, j ∈ N, (7.13)
+ restrições de eliminação de subciclos! (7.14)

Uma ideia de eliminar subciclos é a seguinte: considere um subconjunto S ⊂ N de
cidades: entre cidades em S não podemos selecionar mais que |S|− 1 arestas, senão vai
formar um subciclo. Logo uma forma de eliminar subciclos é pelas restrições∑

i,j∈S

xij ≤ |S|− 1, ∀S ⊆ N, S 6= ∅, S 6= N. (S1)

Uma outra forma pode ser obtido como segue: associa um “potencial” (uma altura)
pi a cada cidade i ∈ N e força o sucessor de i na rota ter um potencial pelo menos
pi + 1. Isso não pode ser satisfeito em ciclos. Para permitir um ciclo global, vamos
excluir uma cidade fixa s ∈ S dessa restrição. Logo, as restrições

pi + n(xij − 1) + 1 ≤ pj ∀i, j, i 6= s, j 6= s (S2)

também eliminam os subciclos.
Quais restrições são melhores? Considere as soluções

PS1 = {x | x satisfaz (7.11), (7.12), (7.13), (S1)}

da primeira formulação e as soluções

PS2 = {x | existem valores p tal que x satisfaz (7.11), (7.12), (7.13), (S2)}

da segunda. Não é difícil de ver que existem soluções fracionárias x ∈ PS2 que não
pertencem a PS1 : um exemplo é dado na Figura 7.2.
É possível mostrar que PS1 ⊂ PS2 . Logo a formulação (S1) domina a formulação (S2).

♦
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2/3 2/3

1/3

1/3

2/3 2/3

1/3

1/3

Figura 7.2.: Exemplo de uma solução fracionária de uma instância do PCV com 4
cidades da formulação PS2 que não é válida na formulação PS1 . O valor
pi = 0 para todos i ∈ N.

Exemplo: 0-1-Mochila

maximiza
∑
i∈[n]

vixi,

sujeito a
∑
i∈[n]

pixi ≤ P,

xi ∈ B.

Exemplo: 79x1 + 53x2 + 53x3 + 45x4 + 45x5 ≤ 178.
Exemplo 7.9 (Problema da mochila)

Exemplo: 0-1-Mochila

• Observação: Para um subconjunto S ⊂ [1, n]:
Se
∑
i∈S pi > P então

∑
S xi ≤ |S|− 1.

• Exemplos:

x1 + x2 + x3 ≤ 2,
x1 + x2 + x4 + x5 ≤ 3,
x1 + x3 + x4 + x5 ≤ 3,
x2 + x3 + x4 + x5 ≤ 3.

Um conjunto S tal
∑
i∈S pi > P se chama uma cobertura e a desigualdades obtidos

por tais conjuntos desigualdades de cobertura (ingl. cover inequalities).
♦

Exemplo 7.10 (Emparelhamentos)
Continuando exemplo 7.6.
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7. Técnicas de solução

Exemplo: Emparelhamentos

• Escolhe um subconjunto arbitrário de vértices U ⊆ V.

• Observação: O número de arestas internas é ≤ b|U|/2c.

• Portanto: ∑
a∈U2∩A

xa ≤ b|U|/2c (7.15)

é uma desigualdade válida.

♦

Observação 7.2
A envoltória convexa do problema de emparelhamentos é dado pelas restrições (7.3) e
(7.15) para todo conjunto U de cardinalidade impar maior que 1. ♦

Método de Chvátal-Gomory
Dado uma restrição ∑

i∈[n]

aixi ≤ b

também temos, para u ∈ R, u > 0 as restrições válidas∑
i∈[n]

uaixi ≤ ub (multiplicação com u)

∑
i∈[n]

buaic xi ≤ ub porque byc ≤ y e 0 ≤ xi

∑
i∈[n]

buaic xi ≤ bubc porque o lado da esquerda é inteira

O método de Chvátal-Gomory funciona igualmente para combinações lineares de
colunas. Com A = (a1 a2 · · ·an) e u ∈ Rm obtemos∑

i∈[n]

⌊
uai

⌋
xi ≤ bubc (7.16)

Teorema 7.3
Cada desigualdade válida pode ser construída através de um número finito de aplica-
ções do método de Chvátal-Gomory (7.16).

(Uma prova do teorema encontra-se, por exemplo, em Wolsey e Nemhauser (1999,
p. II.1.2) ou, para o caso de variáveis 0-1, em Wolsey (1998, Th. 8.4).)
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Observação 7.3
Para desigualdades

∑
i∈[n] aixi ≥ b obtemos similarmente∑

i∈[n]

⌈
uai

⌉
xi ≥ dube

♦

Exemplo 7.11 (Problema da mochila)
A relaxação linear do problema da mochila acima possui as restrições

79x1 +53x2 +53x3 +45x4 +45x5 ≤ 178,
x1 ≤ 1,

x2 ≤ 1,
x3 ≤ 1,

x4 ≤ 1,
x5 ≤ 1,

Com u = (1/79 0 26/79 26/79 0 0)t obtemos a desigualdade válida

x1 + x2 + x3 ≤ 2.

♦

Exemplo 7.12 (Emparelhamentos)

• Para um U ⊆ V podemos aplicar o método de Chvátal-Gomory com u =
(1/2 1/2 · · · 1/2)t ∈ R|U| às desigualdades∑

u∈N(v)

xuv ≤ 1, ∀v ∈ U

para obter∑
v∈U

1/2
∑

u∈N(v)

xuv =
∑

a∈U2∩A

xa +
∑

a∈N(U)

1/2xa ≤ |U|/2

e depois aplicar os pisos com
∑
a∈N(U) b1/2c xa = 0

∑
a∈U2∩A

xa ≤ b|U|/2c

♦
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7.4. Planos de corte

Como usar restrições válidas?

• Adicionar à formulação antes de resolver.

– Vantagens: Resolução com ferramentas padrão.

– Desvantagens: Número de restrições pode ser muito grande ou demais.

• Adicionar ao problema se necessário: Algoritmos de plano de corte.

– Vantagens: Somente cortes que ajudam na solução da instância são usados.

Planos de corte
Problema inteiro

max{ctx | Ax ≤ b, x ∈ Zn+}

• O que fazer, caso a relaxação linear não produz soluções ótimas?

• Um método: Introduzir planos de corte.

Definição 7.4
Um plano de corte (ingl. cutting plane) é uma restrição válida (ingl. valid ine-
quality) que todas soluções inteiras satisfazem.

Algoritmo de planos de corte

Algoritmo 7.1 (Planos de corte)
Entrada Programa inteiro max{ctx | Ax ≤ b, x ∈ Zn+}.
Saida Solução inteira ótima ou “Não existe corte.”.

1 V := {x | Ax ≤ b} { região viável }
2 x∗ := argmax{ctx | x ∈ V} { resolve relaxação }
3 while (x∗ 6∈ Zn+) do
4 if (existe corte atx ≤ d com atx∗ > d) then
5 V := V ∩ {x | atx ≤ d} { nova região viável }
6 x∗ := argmax{ctx | x ∈ V} { nova solução ótima }
7 else
8 return "Não existe corte ."
9 end if
10 end while
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Método de Gomory

• Como achar um novo corte na linha 4 do algoritmo?

• A solução ótima atual é representado pelo dicionário

z = z̄+
∑
j

c̄jxj

xi = b̄i −
∑
j∈N

āijxj i ∈ B

• Se a solução não é inteira, existe um índice i tal que xi 6∈ Z+, i.e. b̄i 6∈ Z+.

Cortes de Chvátal-Gomory

xi = b̄i −
∑
j∈N

āijxj Linha fracionária (7.17)

xi ≤ b̄i −
∑
j∈N

bāijc xj Definição de b·c (7.18)

xi ≤
⌊
b̄i

⌋
−
∑
j∈N

bāijc xj Integralidade de x (7.19)

0 ≥
{
b̄i

}
−
∑
j∈N

{āij} xj (7.17)− (7.19) (7.20)

xn+1 = −
{
b̄i

}
+
∑
j∈N

{āij} xj Nova variável (7.21)

xn+1 ∈ Z+ (7.22)

Para soluções inteiras, a diferença do lado esquerdo e do lado direito na equação (7.19) é
inteira. Como uma solução inteira também satisfaz a equação (7.17) podemos concluir
que xn+1 também é inteira.

Observação 7.4
Lembra que o parte fracionário de um número é definido por {x} = x−bxc, sendo o piso
bxc o maior número inteiro menor que x. Por exemplo, {0.25} = 0.25 e {−0.25} = 0.75.
(Ver definição A.1 na página 171.) ♦

A solução básica atual não satisfaz (7.20), porque com xj = 0, j ∈ N temos que
satisfazer {

b̄i

}
≤ 0,

uma contradição com a definição de {·} e o fato que b̄i é fracionário. Portanto, provamos
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Proposição 7.4
O corte (7.20) satisfaz os critérios da linha 4 do algoritmo Planos de corte. Em
particular, sempre existe um corte e o caso da linha 8 nunca se aplica.

Exemplo 7.13
Queremos resolver o problema

maximiza x1 + x2,

sujeito a − x1 + 3x2 ≤ 9,
10x1 ≤ 27,
x1, x2 ∈ Z+.

A solução da relaxação linear produz a série de dicionários
(1) z = x1 +x2

w1 = 9 +x1 −3x2
w2 = 27 −10x1

(2) z = 3 +4/3x1 −1/3w1
x2 = 3 +1/3x1 −1/3w1
w2 = 27 −10x1

(3) z = 6.6 −4/30w2 −1/3w1
x2 = 3.9 −1/30w2 −1/3w1
x1 = 2.7 −1/10w2

A solução ótima x1 = 2.7, x2 = 3.9 é fracionária. Correspondendo com a segunda
linha
x2 = 3.9 −1/30w2 −1/3w1

temos o corte
w3 = −0.9 +1/30w2 +1/3w1

e o novo sistema é
(4) z = 6.6 −4/30w2 −1/3w1

x2 = 3.9 −1/30w2 −1/3w1
x1 = 2.7 −1/10w2
w3 = −0.9 +1/30w2 +1/3w1

Substituindo w2 e w1 no corte w3 = −0.9+ 1/30w2 + 1/3w1 ≥ 0 podemos reescrever
o corte sando as variáveis originais do sistema, obtendo x2 ≤ 3.
Esse sistema não é mais ótimo, e temos que re-otimizar. Pior, a solução básica atual
não é viável! Mas como na função objetivo todos coeficientes ainda são negativos,
podemos aplicar o método Simplex dual. Um pivô dual gera a nova solução ótima
(5) z = 5.7 −1/10w2 −w3

x2 = 3 −w3
x1 = 2.7 −1/10w2
w1 = 2.7 −1/10w2 +3w3

com x2 = 3 inteiro agora, mas x1 ainda fracionário. O próximo corte, que corresponde
com x1 é
(6) z = 5.7 −1/10w2 −w3

x2 = 3 −w3
x1 = 2.7 −1/10w2
w1 = 2.7 −1/10w2 +3w3
w4 = −0.7 +1/10w2

(7) z = 5 −w4 −w3
x2 = 3 −w3
x1 = 2 −w4
w1 = 2 −w4 +3w3
w2 = 7 +10w4

124



7.5. Branch-and-bound

x∗0 =

(
2.7

3.9

)

Primeiro corte
x∗1 =

(
2.7

3

)

Segundo corte

x∗2 =

(
2

3

)

x1

x2

1

1

2

2

3

3

4

4

Figura 7.3.: Visualização do exemplo 7.13.

cuja solução é inteira e ótima. (O último corte inserido w4 = −0.7 + 1/10w2 ≥ 0
corresponde com x1 ≤ 2.) ♦

Observação 7.5
Nosso método se aplica somente para sistemas puros (ver página 115) e temos que
garantir que as variáveis de folga são variáveis inteiras. Por isso os coeficientes de um
sistema original em forma normal tem que ser números inteiros, i.e., A ∈ Zn×m e
b ∈ Zm. ♦

Resumo: Algoritmos de planos de corte

• O algoritmo de planos de corte, usando os cortes de Gomory termina sempre,
i.e. é correto.

• O algoritmos pode ser modificado para programas mistos.

• A técnica é considerado inferior ao algoritmos de branch-and-bound.

• Mas: Planos de corte em combinação com branch-and-bound é uma técnica
poderosa: Branch-and-cut.

7.5. Branch-and-bound
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Branch-and-bound
Ramifica-e-limite (ingl. branch-and-bound, Land e Doig (1960))

• Técnica geral para problemas combinatoriais.

Branch and Bound is by far the most widely used tool for solving large
scale NP-hard combinatorial optimization problems. (Clausen 1999)

• Ideia básica:

– Particiona um problema em subproblemas disjuntos e procura soluções re-
cursivamente.

– Evite percorrer toda árvore de busca, calculando limites e cortando sub-
árvores.

• Particularmente efetivo para programas inteiras: a relaxação linear fornece os
limites.

Limitar

• Para cada sub-árvore mantemos um limite inferior e um limite superior.

– Limite inferior: Valor da melhor solução encontrada na sub-árvore.

– Limite superior: Estimativa (p.ex. valor da relaxação linear na PI)

• Observação: A eficiência do método depende crucialmente da qualidade do limite
superior.

Cortar sub-árvores
Podemos cortar ...

(1) por inviabilidade: Sub-problema é inviável.

(2) por limite: Limite superior da sub-árvore zi menor que limite inferior global z (o
valor da melhor solução encontrada).

(3) por otimalidade: Limite superior zi igual limite inferior zi da sub-árvore.

Observação: Como os cortes dependem do limite z, uma boa solução inicial pode
reduzir a busca consideravelmente.

Ramificar

• Não tem como cortar mais? Escolhe um nó e particiona.

• Qual a melhor ordem de busca?

• Busca por profundidade
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– V: Limite superior encontrado mais rápido.

– V: Pouca memória (O(δd), para δ subproblemas e profundidade d).

– V: Re-otimização eficiente do pai (método Simplex dual)

– D: Custo alto, se solução ótima encontrada tarde.

• Melhor solução primeiro (“best-bound rule”)

– V: Procura ramos com maior potencial.

– V: Depois encontrar solução ótima, não produz ramificações supérfluas.

• Busca por largura? Demanda de memória é impraticável.

Em resumo: um algoritmo de branch-and-bound consiste de quatro componentes prin-
cipais:

• Uma heurística que encontra uma boa solução inicial;

• um limite inferior (no caso de minimização) ou superior (para maximização) do
valor de um subproblema;

• uma estratégia de ramificação, que decompõe um problema em subproblemas;

• uma estratégia de seleção, que escolhe o próximo subproblema entre os subpro-
blemas ativos.

Algoritmos B&B

Algoritmo 7.2 (B&B)
Instância Programa inteiro P = max{ctx | Ax ≤ b, x ∈ Zn+}.
Saida Solução inteira ótima.

1 { usando função z para estimar limite superior }
2 z:=−∞ { limite inferior }
3 A:= {(P, g(P))} { nós ativos }
4 while A 6= ∅ do
5 Escolhe: (P, g(P) ∈ A; A := A \ (P, g(P))
6 Ramifique: Gera subproblemas P1, . . . , Pn.
7 for all Pi, 1 ≤ i ≤ n do
8 { adiciona , se permite melhor solução }
9 if z(Pi) > z then
10 A := A ∪ {(Pi, z(Pi))}
11 end if
12 { atualize melhor solução }
13 if (solução z(Pi) é viável) then
14 z := z(Pi)
15 end if
16 end for
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7. Técnicas de solução

17 end while

Exemplo 7.14 (Aplicação Branch&Bound no PCV)
Considera uma aplicação do PCV no grafo
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Aplicando somente backtracking obtemos a seguinte árvore de busca:
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A árvore de backtracking completa possui 65 vértices (por nível: 1,4,12,24,24). Usando
como limite inferior o custo atual mais o número de arcos que faltam vezes a distância
mínima e aplicando branch&bound obtemos os custos parciais e limites indicados na
direita de cada vértice. Com isso podemos aplicar uma séria de cortes: busca da
esquerda para direito obtemos

• uma nova solução 7 em 2345;
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7.5. Branch-and-bound

• um corte por limite em 235;

• um corte por otimalidade em 243;

• um corte por otimalidade em 2453;

• um corte por limite em 253;

• um corte por otimalidade em 2543;

• uma nova solução 6 em 3245;

• um corte por otimalidade em 32;

• um corte por otimalidade em 3;

• um corte por limite em 4;

• um corte por otimalidade em 5234;

• um corte por otimalidade 5243;

• um corte por limite em 53;

• um corte por otimalidade 543.

♦

Exemplo 7.15 (Escalonamento de tarefas)
Considera o problema de escalonamento 1 | rj | Lmax: temos n tarefas a serem executa-
das numa única máquina. Cada tarefa possui um tempo de execução pj e é disponível
a partir do tempo rj (release date) e idealmente tem que terminar antes do prazo dj
(due date). Caso a tarefa j termina no tempo Cj o seu atraso é Lj = max{0, Cj − dj}.
Uma tarefa tem que ser executada sem interrupção. Queremos encontrar uma sequen-
ciamento das tarefas tal que o atraso máximo é minimizado. (Observe que uma solução
é uma permutação das tarefas.)
Um exemplo de uma instância com quatro tarefas é

Tarefa 1 2 3 4

pj 4 2 6 5
rj 0 1 3 5
dj 8 12 11 11

Uma abordagem via branch-and-bound é explorar todas permutações possíveis. Um
limite inferior bom para a função objetivo pode ser obtido como segue: o problema
sem release dates 1 || Lmax possui uma solução simples polinomial, conhecida como
EDD (earliest due date): ordene as tarefas por due date. No nosso caso é possível que
durante a execução de uma tarefa passamos o release de uma outra tarefa com due
date menor. Para considerar isso, o nosso limite inferior será o sequenciamento obtido
pela regra EDD, permitindo interrupções. ♦
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7. Técnicas de solução

Branch-and-bound e PI

• Problema PI (puro): {max ctx | x ∈ S, x ∈ Zn+}.

• Resolve a relaxação linear.

• Solução inteira? Problema resolvido.

• Caso contrário: Escolhe uma variável inteira xi, com valor b̄i fracionário.

• Heurística: Variável mais fracionária: argmini | {xi}− 0.5|.

• Particione o problema S = S1
.
∪ S2 tal que

S1 = S ∩ {x | xi ≤ bvic}; S2 = S ∩ {x | xi ≥ dvie}

• Em particular com variáveis xi ∈ B:

S1 = S ∩ {x | xi = 0}; S2 = S ∩ {x | xi = 1}

• Preferimos formulações mais “rígidas”.

7.6. Notas

Clausen (1999) dá uma boa introdução em algoritmos de branch-and-bound, com mais
exemplos e exercícios. O artigo do Cook (2012) relata a história do método. Concorde
atualmente é o melhor solver exato para o problema do caixeiro viajante. Exemplos
de soluções e código aberto do solver é disponível na sua página web (Cook 2011).

7.7. Exercícios

(Soluções a partir da página 201.)

Exercício 7.1 (Matrizes totalmente unimodulares)
Mostra que a seguinte generalização do item 2 da proposição 7.1 é válido: Para uma
matriz arbitrária A ∈ {−1, 0, 1}m×n e uma matriz B ∈ {−1, 0, 1}m×o com no máximo
um coeficiente não-nulo em cada coluna, a matriz (A B) é TU sse a matriz A é
totalmente unimodular.

Exercício 7.2 (Matrizes totalmente unimodulares)
Para cada um dos problemas do exercício 6.2 decide, se a matriz de coeficientes é
totalmente unimodular.

Exercício 7.3 (Matrizes totalmente unimodulares)
Prove ou mostre um contra-exemplo.

a) Se A é totalmente unimodular, então
(
A 0
0 A

)
também.
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b) Se A é totalmente unimodular, então (A At ) também.

c) Se A é totalmente unimodular, então
(
A A
A 0

)
também.

Exercício 7.4 (Desigualdades válidas (Nemhauser,Wolsey))
Uma formulação do problema do conjunto independente máximo é

maximiza
∑
v∈V

xv, (7.23)

sujeito a xu + xv ≤ 1, ∀{u, v} ∈ E, (7.24)
xv ∈ B, ∀v ∈ V. (7.25)

Considere a instância

1

2

3

4 5

6

7

.

Mostra que
∑
i∈[7] xi ≤ 2 é uma desigualdade válida.

Exercício 7.5 (Desigualdades válidas)
O exemplo 7.12 mostra como obter as desigualdades válidas do exemplo 7.10 usando
cortes de Gomory. Mostra como obter as desigualdades válidas∑

i∈S

xi ≤ |S|− 1

para um S ⊆ [n] com
∑
i∈S pi > P do problema da mochila usando cortes de Gomory.

Exercício 7.6 (Desigualdades válidas)
Considere a instância

678910

1

2

3

4

5
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7. Técnicas de solução

do problema do caixeiro viajante (os números nas arestas representam os índices das
variáveis correspondentes). Mostra que

x1 + x2 + x5 + x6 + x7 + x9 ≤ 4

é uma desigualdade válida.

Exercício 7.7 (Desigualdades válidas)
Para cada uma das desigualdades válidas do exemplo 7.9 mostra como ele pode ser
obtida via uma aplicação (um número finito de aplicações) do método de Chvátal-
Gomory (7.16).

Exercício 7.8 (Planos de corte)
Resolve

maximiza x1 + 3x2,

sujeito a − x1 ≤ −2,

x2 ≤ 3,
− x1 − x2 ≤ −4,

3x1 + x2 ≤ 12,
xi ∈ Z+,

e

maximiza x1 − 2x2,

sujeito a − 11x1 + 15x2 ≤ 60,
4x1 + 3x2 ≤ 24,
10x1 − 5x2 ≤ 49,
x1, x2 ∈ Z+,

com o algoritmo de planos de corte using cortes de Chvátal-Gomory.

Exercício 7.9 (Desigualdades válidas)
Gera uma desigualdade válida similar com a desigualdade (7.16) para a restrição∑

i∈[n]

aixi ≥ b.
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8. Tópicos

Outras técnicas

• Branch-and-cut.

Começa com menos restrições (relaxação) e insere restrições (cortes) nos sub-
problemas da busca com branch-and-bound.

• Branch-and-price.

Começa com menos variáveis e insere variáveis (“geração de colunas”) nos sub-
problemas da busca com branch-and-bound.
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Parte III.
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9. Introdução

Resolução de Problemas

• Problemas Polinomiais
1. Programação Dinâmica
2. Divisão e Conquista
3. Algoritmos Gulosos

• Problemas Combinatórios
– Técnicas Exatas: Programação Dinâmica, Divisão e Conquista backtrac-

king, branch & bound
– Programação não-linear: Programação semi-definida, etc.
– Algoritmos de aproximação: garantem solução aproximada
– Heurísticas e metaheurísticas: raramente provêem aproximação

Heurísticas

• O que é uma heurística?
Practice is when it works and nobody knows why. Grego heurísko: eu acho,

eu descubro.• Qualquer procedimento que resolve um problema
– bom em média
– bom na prática (p.ex. Simplex)
– não necessáriamente comprovadamente.

• Nosso foco
– Heurísticas construtivas: Criar soluções.
– Heurísticas de busca: Procurar soluções.

Heurísticas de Construção

• Constróem uma solução, escolhendo um elemento a ser inserido na solução a
cada passo.

• Geralmente são algoritmos gulosos.

• Podem gerar soluções infactíveis.
– Solução infactível: não satisfaz todas as restrições do problema.
– Solução factível: satisfaz todas as restrições do problema, mas não é neces-

sariamente ótima.
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9. Introdução

Exemplo: Heurística construtiva

• Problema do Caixeiro Viajante (PCV) – Heurística do vizinho mais próximo.

Algoritmo 9.1 (Vizinho mais próximo)
Entrada Matriz de distâncias completa D = (dij), número de cidades n.

Saída Uma solução factível do PCV: Ciclo Hamiltaneo C com custo c.

1 HVizMaisProx(D,n)=
2 { cidade inicial randômica }
3 u := seleciona uniformemente de [1, n]
4 w := u
5 { representação de caminhos: sequência de vértices }
6 C := u { ciclo inicial }
7 c := 0 { custo do ciclo }
8 repeat n − 1 vezes
9 seleciona v /∈ C com distância mínima de u

10 C := Cv
11 c := c + duv
12 u := v
13 end repeat
14 C := Cw { fechar ciclo }
15 c := c + duw
16 return (C, c)

Meta-heurísticas

• Heurísticas genéricas: meta-heurísticas.

Motivação: quando considera-se a possibilidade de usar heurísticas

• Para gerar uma solução factível num tempo pequeno, muito menor que uma
solução exata pudesse ser fornecida.

• Para aumentar o desempenho de métodos exatos. Exemplo: um limitante supe-
rior de um Branch-and-Bound pode ser fornecido por uma heurística.

Desvantagens do uso de heurísticas

• No caso de metaheurísticas, não há como saber o quão distante do ótimo a
solução está.

• Não há garantia de convergência.

• Dependendo do problema e instância, não há como garantir uma solução ótima.
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Problema de otimização em geral

• Um problema de otimização pode ser representado por uma quádrupla

(I, S, f, obj)

– I é o conjunto de possíveis instâncias.

– S(i) é o conjunto de soluções factíveis (espaço de soluções factíveis) para a
instância i.

– Uma função objetivo (ou fitness) f(·) avalia a qualidade de uma dada solu-
ção.

– Um objetivo obj = min ou max: s∗ ∈ S para o qual f(s∗) seja mínimo ou
máximo.

• Alternativa

optimiza f(x),

sujeito a x ∈ S.

• S discreto: problema combinatorial.

Técnicas de solução

• Resolver o problema nessa geralidade: enumeração.

• Frequentemente: Uma solução x ∈ S possui uma estrutura.

• Exemplo: x é uma tupla, um grafo, etc.

• Permite uma enumeração por componente: branch-and-bound.
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10. Heurísticas baseadas em Busca local

10.1. Busca local

Busca Local

• Frequentemente: O espaço de soluções possui uma topologia.

• Exemplo da otimização (contínua): max{x2 + xy | x, y ∈ R}
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x*x+x*y

• Espaço euclidiano de duas dimensões.

• Isso podemos aproveitar: Busca localmente!

Vizinhanças

• O que fazer se não existe uma topologia natural?

• Exemplo: No caso do PCV, qual o vizinho de um ciclo Hamiltaneo?

• Temos que definir uma vizinhança.

• Notação: Para x ∈ S, escrevemos N (x) para o conjunto de soluções vizinhas.

• Uma vizinhança defina a paisagem de otimização (ingl. optimization landscape):
Espaço de soluções com valor de cada solução.
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10. Heurísticas baseadas em Busca local

Relação de vizinhança entre soluções

• Uma solução s ′ é obtida por uma pequena modificação na solução s.

• Enquanto que S e f são fornecidos pela especificação do problema, o projeto da
vizinhança é livre.

Busca Local k-change e inserção

• k-change: mudança de k componentes da solução.

• Cada solução possui vizinhança de tamanho O(nk).

• Exemplo: 2-change, 3-change.

• TSP: 2-change (inversão).

• Inserção/remoção: inserção de um componente da solução, seguido da factibili-
zação da solução

• Vertex cover: 1-change + remoção.

Exemplo: Vizinhança mais elementar

• Suponha um problema que possue como soluções factíveis S = Bn (por exemplo,
uma instância do problema de particionamento de conjuntos).

• Então, para n = 3 e s0={0,1,0}, para uma busca local 1-flip,N(s0) = {(1, 1, 0), (0, 0, 0), (0, 1, 1)}.

Exemplo: Vizinhanças para TSP

• 2-opt: Para cada par de arcos (u1, v1) e (u2, v2) não consecutivos, remova-os da
rota, e insira os arcos (u1, u2) e (v1, v2).

• Para uma solução s e uma busca k-opt |N (s)| ∈ O(nk).

Características de vizinhanças
É desejável que uma vizinhança é

• simétrica (ou reversível)

y ∈ N (x)⇒ x ∈ N (y)

• conectada (ou completa)

∀x, y ∈ S : ∃z1, . . . , zk ∈ S : z1 ∈ N (x),

zi+1 ∈ N (zi), 1 ≤ i < k,
y ∈ N (zk).
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10.1. Busca local

Busca Local: Ideia

• Inicia a partir de uma solução s0

• Se move para soluções vizinhas melhores no espaço de busca.

• Para, se não tem soluções melhores na vizinhança.

• Mas: Repetindo uma busca local com soluções inicias randômicas, achamos o
mínimo global com probabilidade 1.

Exemplo 10.1 (Método Simplex)
O método Simplex pode ser visto como busca local no espaço de vértices com uma
vizinhança definido por arestas no politopo. ♦

Busca local – Caso contínuo

Algoritmo 10.1 (Busca local contínua)
Entrada Solução inicial s0 ∈ Rn, tamanho inicial α de um passo.

Saída Solução s ∈ Rn tal que f(s) ≤ f(s0).

Nome Gradient descent.

1 BuscaLocal(s0,α)=
2 s := s0
3 while ∇f(s) 6= 0 do
4 s ′ := s− α∇f(s)
5 if f(s ′) < f(s) then
6 s := s ′

7 else
8 diminui α
9 end if
10 end while
11 return s

Busca local – Caso contínuo

• Gradiente

∇f(x) =
(
δf

δx1
(x), . . . ,

δf

δxn
(x)

)t
sempre aponta na direção do crescimento mais alto de f (Cauchy).

• Necessário: A função objetivo f é diferenciável.
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10. Heurísticas baseadas em Busca local

• Diversas técnicas para diminuir (aumentar) α.

• Opção: Line search na direção −∇f(x) para diminuir o número de gradientes a
computar.

Busca Local – Best Improvement

Algoritmo 10.2 (Busca Local BI)
Entrada Solução inicial s0.

Saída Solução s tal que f(s) ≤ f(s0).

Nomes Steepest descent, steepest ascent.

1 BuscaLocal(s0)=
2 s := s0
3 while true
4 s ′ := argminy{f(y) | y ∈ N (s)}

5 if f(s ′) < f(s) then s := s ′

6 else break
7 end while
8 return s

Busca Local – First Improvement

Algoritmo 10.3 (Busca Local FI)
Entrada Solução inicial s0.

Saída Solução s ′ tal que f(s ′) ≤ f(s).

Nomes Hill descent, hill climbing.

1 BuscaLocal(s0)=
2 s := s0
3 repeat
4 Select any s ′ ∈ N (s) not yet visited
5 if f(s ′) < f(s) then s := s ′

6 until all solutions in N (s) have been visited
7 return s
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Projeto de uma busca local

• Como gerar uma solução inicial? Aleatória, via método construtivo, etc.

• Quantas soluções inicias devem ser geradas?

• Importante: Definição da função de vizinhança N .

• Vizinhança grande ou pequena? (grande= muito tempo e pequena=menos vizi-
nhos)

• Estratégia de seleção de novas soluções

– examine todas as soluções vizinhas e escolha a melhor

– assim que uma solução melhor for encontrada, reinicie a busca. Neste caso,
qual a sequência de soluções examinar?

• Importante: Método eficiente para avaliar a função objetivo de vizinhos.

Exemplo: 2-change TSP

• Vizinhança: Tamanho O(n2).

• Avaliação de uma solução: O(n) (somar n distâncias).

• Atualizando a valor da solução atual: O(1) (somar 4 distâncias)

• Portanto: Custo por iteração de “best improvement”

– O(n3) sem avaliação diferential.

– O(n2) com avaliação diferential.

Avaliação de buscas locais
Como avaliar a busca local proposta?

• Poucos resultados teóricos.

• Difícil de saber a qualidade da solução resultante.

• Depende de experimentos.

Problema Difícil

• É fácil de gerar uma solução aleatória para o TSP, bem como testar sua factibi-
lidade

• Isso não é verdade para todos os problemas

• Exemplo difícil: Atribuição de pesos a uma rede OSPF
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10. Heurísticas baseadas em Busca local

Busca local

• Desvantagem obvia: Podemos parar em mínimos locais.

• Exceto: Função objetivo convexa (caso minimização) ou concava (caso maximi-
zação).

• Técnicas para superar isso baseadas em busca local

– Multi-Start

– Busca Tabu

– Algoritmos Metropolis e Simlated Annealing

– Variable neighborhood search

Multi-Start Metaheuristic

• Gera uma solução aleatória inicial e aplique busca local nesta solução.

• Repita este procedimento por n vezes.

• Retorne a melhor solução encontrada.

• Problema: soluções aleatoriamente geradas em geral possuem baixa qualidade.

Multi-Start

Algoritmo 10.4 (Multi-Start)
Entrada Número de repetições n.

Saída Solução s.

1 Multi_Start(n) :=
2 s∗ := ∅
3 f∗ :=∞
4 repeat n vezes
5 gera solução randômica s
6 s := BuscaLocal(s)
7 if f(s) < f∗ then
8 s∗ := s
9 f∗ := f(s)
10 end if
11 end repeat
12 return s∗

146



10.2. Metropolis e Simulated Annealing

Cobrimento de Vértices

• Definição de vizinhança

• grafo sem vértices

• grafo estrela

• clique bipartido Ki,j

• grafo linha

10.2. Metropolis e Simulated Annealing

O algoritmo Metropolis

• Proposto em 1953 por Metropolis, Rosenbluth, Rosenbluth, Teller e Teller

• Simula o comportamento de um sistema físico de acordo com a mecânica esta-
tística

• Supõe temperatura constante

– Um modelo básico define que a probabilidade de obter um sistema num
estado com energia E é proporcional à função e−E/kT de Gibbs-Boltzmann,
onde T > 0 é a temperatura, e k > 0 uma constante

– a função é monotônica decrescente em E: maior probabilidade de estar em
um sistema de baixa energia

– para T pequeno, a probabilidade de um sistema estar num estado de baixa
energia é maior que ele estar num em estado de alta energia

– para T grande, a probabilidade de passar para outra configuração qualquer
do sistema é grande

A distribuição de Boltzmann
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Algoritmo Metropolis

• Estados do sistema são soluções candidatas

• A energia do sistema é representada pelo custo da solução

• Gere uma perturbação na solução s gerando uma solução s ′.

• Se E(s ′) ≤ E(s) atualize a nova solução para s ′.

• Caso contrário, 4E = E(s ′) − E(s) > 0.

• A solução s ′ passa ser a solução atual com probabilidade e−4E/kT

• Característica marcante: permite movimentos de melhora e, com baixa probabi-
lidade, também de piora

Metropolis

Algoritmo 10.5 (Metropolis)
Entrada Uma solução inicial s e uma temperatura T .

Saída Solução s ′ com c(s ′) ≤ c(s)

1 Metropolis(s, T , k)=
2 do
3 seleciona s ′ ∈ N (s) aleatoriamente
4 seja ∆ := c(s ′) − c(s)
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5 if ∆ ≤ 0 then
6 atualiza s := s ′

7 else
8 atualiza s := s ′ com probabilidade e−

∆
T

9 end if
10 until critério de parada satisfeito
11 return s

Observação 10.1
Para T → ∞ o algoritmo executa um passeio aleatório no grafo das soluções com a
vizinhança definida. Para T → 0 o algoritmo se aproxima a uma busca local. ♦

Simulated Annealing

• Simula um processo de recozimento.

• Recozimento: processo da física que aquece um material a uma temperatura bem
alta e resfria aos poucos, dando tempo para o material alcançar seu estado de
equilíbrio

• Recozimento simulado: parte de uma alta temperatura e baixa gradualmente.
Para cada temperatura, permite um número máximo de saltos (dois laços enca-
deados)

Simulated Annealing

Algoritmo 10.6 (Simulated Annealing)
Entrada Solução inicial s, temperatura T , fator de esfriamento r ∈ (0, 1), número

inteiro I.

Saída Solução s ′ tal que f(s ′) ≤ f(s).

1 SimulatedAnnealing(s, T , k, r, I) :=
2 repeat sistema ‘‘esfriado ’’
3 repeat I vezes
4 seleciona s ′ ∈ N (s) aleatoriamente
5 seja ∆ := c(s ′) − c(s)
6 if ∆ ≤ 0 then
7 s := s ′

8 else
9 s := s ′ com probabilidade e−∆/T :
10 end fi
11 end repeat
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12 T := rT
13 end repeat
14 return s

Determinando uma temperatura inicial e final adequada é importante para não gastar
tempo desnecessário com temperaturas em que o algoritmo se comporta como passeio
aleatório ou busca local.

Exemplo 10.2 (Temperatura inicial)
Define uma probabilidade pi. Executa uma versão rápida (I pequeno) do algoritmo
para determinar uma temperatura inicial tal que um movimento é aceito com proba-
bilidade pi. ♦

Exemplo 10.3 (Temperatura final)
Define uma probabilidade pf. Para cada nível de temperatura em que os movimen-
tos foram aceitos com probabilidade menos que pf incrementa um contador. Zera o
contador caso uma nova melhor solução é encontrada. Caso o contador chega em 5,
termina. ♦

10.3. GRASP

GRASP

• GRASP: greedy randomized adaptive search procedure

• Proposto por Mauricio Resende e Thomas Feo (1989).

• Mauricio Resende: Pesquisador da AT&T, Departamento de Algoritmos e Oti-
mização

Figura 10.1.: Mauricio G. C.
Resende

GRASP

• Método multi-start, em cada iteração

1. Gera soluções com um procedimento guloso-randomizado.

2. Otimiza as soluções geradas com busca local.

Algoritmo 10.7 (GRASP)
Entrada Parâmetro α.

Saída A melhor solução encontrada.

1 GRASP(α, ...)=
2 s é alguma solução
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3 do

4 s ′ := Guloso− Randomizado(α)
5 s ′ := BuscaLocal(s ′)
6 s := s ′ if f(s ′) < f(s)
7 until critério de parada satisfeito
8 return s

Construção gulosa-randomizada

• Motivação: Um algoritmo guloso gera boas soluções inicias.

• Problema: Um algoritmo determinístico produz sempre a mesma solução.

• Logo: Aplica um algoritmo guloso, que não escolhe o melhor elemento, mas
escolhe randomicamente entre os α% melhores candidatos.

• O conjunto desses candidatos se chama restricted candidate list (RCL).

Construção gulosa-randomizada: Algoritmo guloso

1 Guloso () :=
2 S := ()
3
4 while S = (s1, . . . , si) com i < n do
5 entre todos candidatos C para si+1:
6 escolhe o melhor s ∈ C
7 S := (s1, . . . , si, s)
8 end while

Construção gulosa-randomizada: Algoritmo guloso

1 Guloso -Randomizado(α) :=
2 S := ()
3
4 while S = (s1, . . . , si) com i < n do
5 entre todos candidatos C para si+1:
6 forma a RCL com os α\% melhores candidatos em C
7 escolhe randomicamente um s ∈ RCL
8 S := (s1, . . . , si, s)
9 end while

GRASP
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Algoritmo 10.8 (GRASP)
Entrada Parâmetro α.

Saída Uma solução s∗.

1 GRASP(α)=
2 do
3 y := Guloso− Randomizado(α)
4 y := BuscalLocal(y)
5 atualiza a melhor solução s∗

6 until critério de parada satisfeito
7 return s∗

GRASP: Variações

• long term memory : hash table (para evitar otimizar soluções já vistas)

• Parâmetros: s0, N (x), α ∈ [0, 1] (para randomização), tamanho das listas (conj.
elite, rcl, hash table), número de iterações,

GRASP com memória

• O GRASP original não havia mecanismo de memória de iterações passadas

• Atualmente toda implementação de GRASP usa conjunto de soluções elite e
religação por caminhos (path relinking)

• Conjunto de soluções elite: conjunto de soluções diversas e de boa qualidade
– uma solução somente é inserida se for melhor que a melhor do conjunto ou

se for melhor que a pior do conjunto e diversa das demais
– a solução a ser removida é a de pior qualidade

• Religação por Caminhos: a partir de uma solução inicial, modifique um elemento
por vez até que se obtenha uma solução alvo (do conjunto elite)

• soluções intermediárias podem ser usadas como soluções de partida

Comparação entre as metaheurísticas apresentadas

• Metaheurísticas: Simulated annealing (SA), Multi-Start Search (MS), GRASP

• SA tem apenas um ponto de partida, enquanto que os outros dois métodos testa
diversos

• SA permite movimento de piora, enquanto que os outros dois métodos não

• SA é baseado em um processo da natureza, enquanto que os outros dois não
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10.4. Busca Tabu

Busca Tabu (Tabu Search)

• Proposto por Fred Glover em 1986 (princípios básicos do método foram propostos
por Glover ainda em 1977)

• Professor da Universidade do Colorado, EUA

Figura 10.2.: Fred Glover
(*1937)

Busca Tabu (BT)

• Assim como em simulated annealing (SA) e VNS, TB é baseada inteiramente no
processo de busca local, movendo-se sempre de uma solução s para uma solução
s ′

• Assim com em SA, também permite movimentos de piora

• Diferente de SA que permite movimento de piora por randomização, tal movi-
mento na BT é determinístico

• A base do funcionamento de Busca Tabu é o uso de memória segundo algumas
regras

• O nome Tabu tem origem na proibição de alguns movimentos durante a busca

Busca Tabu (BT)

• Mantém uma lista T de movimentos tabu

• A cada iteração se move para o melhor vizinho, desde que não faça movimentos
tabus

• Permite piora da solução: o melhor vizinho pode ser pior que o vizinho atual!

• São inseridos na lista tabu elementos que provavelmente não direcionam a busca
para o ótimo local desejado. Ex: último movimento executado

• o tamanho da lista tabu é um importante parâmetro do algoritmo

• Critérios de parada: quando todos movimentos são tabus ou se x movimentos
foram feitos sem melhora
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Busca Tabu: Conceitos Básicos e notação

• s: solução atual

• s∗: melhor solução

• f∗: valor de s*

• N (s): Vizinhança de s.

• Ñ (s) ⊂ N (s): possíveis (não tabu) soluções vizinhas a serem visitadas

• Soluções: inicial, atual e melhor

• Movimentos: atributos, valor

• Vizinhança: original, modificada (reduzida ou expandida)

Movimentos Tabu

• Um movimento é classificado como tabu ou não tabu pelas regras de ativação
tabu

• em geral, as regras de ativação tabu classificam um movimento como tabu se o
movimento foi recentemente realizado

• Memória de curta duração (MCD) - também chamada de lista tabu: usada para
armazenar os movimentos tabu

• duração tabu (tabu tenure) é o número de iterações em que o movimento per-
manecerá tabu

• dependendo do tamanho da MCD um movimento pode deixar de ser tabu antes
da duração tabu estabelecida

• A MCD em geral é implementada como uma lista circular

• O objetivo principal da MCD é evitar ciclagem e retorno a soluções já visitadas

• os movimentos tabu também colaboram para a busca se mover para outra parte
do espaço de soluções, em direção a um outro mínimo local

Busca Tabu

Algoritmo 10.9 (BuscaTabu)
Entrada uma solução s

Saída uma solução s ′ : f(s ′) ≤ f(s)

1 BuscaTabu ()=
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2 Inicialização:
3 s := S0; f∗ := f(s0); s∗ := s0 ; T := ∅
4 while critério de parada não satisfeito
5 s ′ := seleciona s ′ ∈ Ñ (s) com min f(s)
6 if f(s) < f∗ then
7 f∗ := f(s); s∗ := s
8 insira movimento em T (a lista tabu)
9 end while

Busca Tabu (BT)

• critérios de parada:

– número de iterações (Nmax)

– número interações sem melhora

– quando s∗ atinge um certo valor mínimo (máximo) estabelecido

• Um movimento não é executado se for tabu, ou seja, se possuir um ou mais
atributos tabu-ativos

• Pode ser estabelecida uma regra de uso de um movimento tabu (critério de
aspiração)

– Critério de aspiração por objetivo: se o movimento gerar uma solução me-
lhor que s∗, permite uso do movimento tabu

– Critério de aspiração por direção: o movimento tabu é liberado se for na
direção da busca (de melhora ou piora)

Busca Tabu: mecanismos auxiliares

• intensificação: a idéia é gastar mais “esforço” em regiões do espaço de busca
que parece mais promissores. Isso pode ser feito de diversas maneiras (exemplo,
guardar o número de interações com melhora consecutiva). Nem sempre este a
intensificação traz benefícios.

• Diversificação: recursos algorítmicos que forçam a busca para um espaço de
soluções ainda não explorados.

– uso de memória de longo prazo (exemplo, número de vezes que a inserção
de um elemento provocou melhora da solução)

– Estratégia básica: forçar a inserção de alguns poucos movimentos pouco
executados e reiniciar a busca daquele ponto

– Estratégia usada para alguns problemas: permitir soluções infactíveis du-
rante algumas interações
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Busca Tabu: variações

• Várias listas tabus podem ser utilizadas (com tamanhos, duração, e regras dife-
rentes)

• BT probabilístico: os movimentos são avaliados para um conjunto selecionado
aleatoriamente N ′(s) ∈ Ñ(s). Permite usar uma lista tabu menor, acontece
menos ciclagem.

• A duração tabu pode variar durante a execução

Comparação entre as metaheurísticas apresentadas até então

• Metaheurísticas: Simulated annealing (SA), Multi-Start Search (MSS), GRASP,
BT

• SA e BT têm apenas um ponto de partida, enquanto que os outros dois métodos
testa diversos

• SA e BT permitem movimentos de piora, enquanto que os outros dois métodos
não

• SA é baseado em um processo da natureza, enquanto que os outros métodos não

Parâmetros e decisões das metaheurísticas

• SA:
– Parâmetros: temperatura inicial, critério de parada, variável de resfria-

mento
– Decisões: vizinhança, solução inicial

• GRASP:
– Parâmetros: s0, N(x), α ∈[0,1] (para randomização), tamanho das listas

(conj. elite, rcl, hash table), critério de parada
– Decisões: vizinhança, solução inicial (s0), randomização da s0, atualizações

do conjunto elite

• BT:
– Parâmetros: tamanho da lista tabu, critério de parada
– Decisões: vizinhaça, critérios para classificar movimento tabu

10.5. Variable Neighborhood Search

Variable Neighborhood Search

• Pierre Hansen e Mladenović, 1997

• Hansen é Professor na HEC Montréal, Canadá

Figura 10.3.: Pierre Hansen
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Variable Neighborhood Search

• Método que explora mais que uma vizinhança.

• Explora sistematicamente as seguintes propriedades:

– O mínimo local de uma vizinhança não é necessariamente mínimo para
outra vizinhança

– Um mínimo global é um mínimo local com respeito a todas as vizinhanças

– Para muitos problemas, os mínimos locais estão localizados relativamente
próximos no espaço de busca para todas as vizinhanças

Os métodos usando k vizinhanças N1, . . . ,Nk sempre voltam a usar a primeira vizi-
nhança, caso um movimento melhora a solução atual. Caso contrário eles passam para
próxima vizinhança. Isso é o movimento básico:

Algoritmo 10.10 (Movimento)
Entrada Solução atual s, nova solução s ′, vizinhança atual k.

Saída Uma nova solução s e uma nova vizinhança k.

1 Movimento(s,s ′,k) :=
2 if f(s ′) < f(s) then
3 s := s ′

4 k := 1
5 else
6 k := k+ 1
7 end if
8 return (s, k)

Com isso podemos definir uma estratégia simples, chamada Variable Neighborhood
Descent (VND).

Algoritmo 10.11 (VND)
Entrada Solução inicial s, conjunto de vizinhanças Ni, i ∈ [m].

Saída Solução s.

1 VND(s,{Ni})=
2 k := 1
3 // até chegar num mínimo local
4 // para todas vizinhanças
5 while k ≤ m
6 encontra o melhor vizinho s ′ em Nk(s)
7 (s, k) := Movimento(s, s ′, k)
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8 end while

9 return s

Uma versão randomizada é o reduced variable neighborhood search.

Algoritmo 10.12 (rVNS)
Entrada Solução inicial s, conjunto de vizinhanças Ni, i ∈ [m].

Saída Solução s.

1 rVNS(s,{Ni})=
2 until critério de parada satisfeito
3 k := 1
4 while k ≤ m do
5 seleciona vizinho aleatório s ′ em Nk(s) { shake }
6 (s, k) := Movimento(s, s ′, k)
7 end while
8 end until
9 return s

Uma combinação do rVNS com uma busca local é o Variable Neighborhood Search
(VNS) básico.

Algoritmo 10.13 (VNS)
Entrada Solução inicial s, um conjunto de vizinhanças Ni, i ∈ [m].

Saída Solução s.

1 VNS(s,{Ni})=
2 until critério de parada satisfeito
3 k := 1
4 while k ≤ m do
5 seleciona vizinho aleatório s ′ em Nk(s) { shake }
6 s ′′ := BuscaLocal(s ′)
7 (s, k) := Movimento(s, s ′′, k)
8 end until
9 return s

Observação 10.2
A busca local em VNS pode usar uma vizinhança diferente das vizinhanças que per-
turbam a solução atual. Também é possível usar o VND no lugar da busca local.

♦
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10.6. Algoritmo Guloso Iterado

Algoritmos de construção repetida independente como GRASP e Multi-Start criam di-
versas soluções durante a execução, mas não utilizam a informação obtida por iterações
anteriores para ajudar na composição de novas soluções. O algoritmo guloso iterado
proposto por Ruiz e Stützle (2007) utiliza parte da solução encontrada anteriormente
para tentar achar uma nova solução melhor.
O algoritmo guloso iterado cria uma solução inicial e iterativamente destrói e reconstrói
soluções de forma a gerar soluções novas. A cada etapa parte da solução é removida.
tornando a solução parcial, então o algoritmo gera uma nova solução completa de forma
gulosa à partir dessa solução parcial. Uma vez gerada a solução nova verificamos se
a solução será aceita ou descartada. Caso ela seja melhor que a solução atual ela é
aceita, caso seja pior é aceita com chance dada pela perda de qualidade utilizando o
critério de Metropolis. O pseudo-código está no Algoritmo 10.14.

Algoritmo 10.14 (Busca Gulosa Iterada)
Entrada: Número de repetições n, temperatura T , uma solução inicial s.

Saída: Melhor solução encontrada s∗.

1 IG(s):=
2 s∗ = s
3 for n vezes
4 s′ = s
5 Destrói parte de s′

6 Reconstrói s′ gulosamente.
7 ∆ = f(s′) − f(s)
8 if ∆ ≤ 0 then
9 s = s′

10 if f(s) < f(s∗) then
11 s∗ = s
12 else
13 s = s′ com probabilidade e−

∆
T

14 end if
15 end for
16 return s∗

No algoritmo utilizamos um número fixo de iterações mas podemos utilizar a qualidade
da solução ou o tempo de execução como critério de parada. Note que utilizamos o a
mesma estratégia que o algoritmo de Metropolis para permitir soluções a transição para
soluções qualidade pior que a anterior, entretanto não utilizamos resfriamento (como
utilizado na Têmpera Simulada). A destruição e reconstrução em sequencia podem ser
consideradas uma perturbação da solução atual, pois podemos ter uma solução nova
de qualidade melhor ou pior, portanto pode ser útil colocar algum método de melhoria,
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como uma busca local, após a reconstrução.
No caso do caixeiro viajante podemos fazer a destruição removendo um número cons-
tante de arestas aleatórias do ciclo hamiltoniano, e a reconstrução com a heurítica
do vizinho mais próximo. No caso da max-SAT podemos tornar alguns bits aleató-
rios não definidos para destruir parte da solução, então construímos uma nova solução
completa re-definindo estes bit em (ordem aleatória), cada vez maximizando o número
de cláusulas satisfeitas.
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11.1. Algoritmos Genéticos e meméticos

Algoritmos Genéticos

• Proposto na década de 60 por Henry Holland.

• Professor da Faculdade de Engenharia Elétrica e de Computação da Universidade
de Michigan/EUA.

• Seu livro: Adaptation in Natural and Artificial Systems (1975).

Figura 11.1.: John Henry Hol-
land (*1929,+2015)

Algoritmos genéticos

• Foi proposto com o objetivo de projetar software de sistemas artificiais que re-
produzem processos naturais.

• Baseados na evolução natural das espécies.

• Por Darwin: indivíduos mais aptos têm mais chances de perpetuar a espécie.

• Mantém uma população de soluções e não uma única solução por vez.

• Usa regras de transição probabilísticas, e não determinísticas.

• Procedimentos: avaliação, seleção, geração de novos indivíduos (recombinação),
mutação.

• Parada: número x de gerações total, número y de gerações sem melhora.

Algoritmos genéticos: Características

• Varias soluções (“população”).

• Operações novas: Recombinação e mutação.

• Separação da representação (“genótipo”) e formulação “natural” (fenótipo).
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Algoritmos Genéticos: Noções

• Genes: Representação de um elemento (binário, inteiro, real, arco, etc) que
determine uma característica da solução.

• Alelo: Instância de uma gene.

• Cromossomo: Uma string de genes que compõem uma solução.

• Genótipo: Representação genética da solução (cromossomos).

• Fenótipo: Representação “física” da solução.

• População: Conjunto de cromossomos.

Algorítmos genéticos: Representação e Solução

Algoritmos Genéticos: exemplos

• Problema de partição de conjuntos
Alelos: 0 ou 1
Cromossomo: 0001101010101011110110

• Problema do Caixeiro viajante
Alelos: valores inteiros entre 1 e n
Cromossomo: 1 5 3 6 8 2 4 7

Procedimentos dos Algoritmos Genéticos

• Codificação: genes e cromossomos.

• Initialização: geração da população inicial.

• Função de Avaliação (fitness): função que avalia a qualidade de uma solução.

• Seleção de pais: seleção dos indivíduos para crossover.

• Operadores genéticos: crossover, mutação

• Parâmetros: tamanho da população, percentagem de mutação, critério de parada
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Algoritmos Genéticos

Algoritmo 11.1 (AlgoritmoGenético)
Entrada Parâmetros do algoritmo.

Saída Melhor solução encontrada para o problema.

1 Inicialização e avalição inicial
2 while (critério de parada não satisfeito) do
3 repeat
4 if (critério para recombinação) then
5 selecione pais
6 recombina e gera um filho
7 end if
8 if (critério para mutação) then
9 aplica mutação
10 end if
11 until (descendentes suficientes)
12 selecione nova população
13 end while

População Inicial: geração

• Soluções aleatórias.

• Método construtivo (ex: vizinho mais próximo com diferentes cidades de par-
tida).

• Heurística construtiva com perturbações da solução.

• Pode ser uma mistura das opções acima.

População inicial: tamanho

• População maior: Custo alto por iteração.

• Populaçao menor: Cobertura baixa do espaço de busca.

• Critério de Reeves: Para alfabeto binário, população randômica:
Cada ponto do espaço de busca deve ser alcancável através de recombinações.

• Consequencia: Probabilidade que cada alelo é presente no gene i: 1− 21−n.

• Probabilidade que alelo é presente em todos gene: (1− 21−n)l.

• Exemplo: Com l = 50, para garantir cobertura com probabilidade 0.999:

n ≥ 1− log2
(
1−

50
√
0.999

)
≈ 16.61
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Terminação

• Tempo.

• Número de avaliações.

• Diversidade. Exemplo: Cada gene é dominado por um alelo, i.e. 90% dos indi-
víduos tem o mesmo alelo.

Próxima Geração

• Gerada por recombinação e mutação (soluções aleatórias ou da população ante-
rior podem fazer parte da próxima geração).

• Estratégias:
– Recombinação e mutação.
– Recombinação ou mutação.

• Regras podem ser randomizadas.

• Exemplo: Taxa de recombinação e taxa de mutação.

• Exemplo: Número de genes mutados.

Mutação

• Objetivo: Introduzir elementos diversificados na população e com isso possibilitar
a exploração de uma outra parte do espaçõ de busca.

• Exemplo para representação binária: flip de k bits.

• Exemplo para o PCV: troca de posição entre duas cidades.

Recombinação

• Recombinação (ingl. crossover): combinar características de duas soluções para
prover uma nova solução potencialmente com melhor fitness.

• Explora o espaço entre soluções.

• Crossover clássicos: one-point recombinação e two-points recombinação.

One-point crossover
Escolha um número aleatório k entre 1 e n. Gere um filho com os primeiros k bits do
pai A e com os últimos n− k bits do pai B

• Problema de particação: aplicação direta do conceito

• Problema do Caixeiro Viajante: copie os primeiros k elementos do pai A e as
demais n − k posições preenche com as cidades faltantes, segundo a ordem em
que elas aparecem no pai B

Figura 11.2.: Recombinação
em um ponto. 164
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Recombinação de dois pontos

Figura 11.3.: Recombinação
de dois pontos.

Exemplo: Strategic Arc Crossover

• Selecione todos os pedaçõs de rotas (string) com 2 ou mais cidades que são iguais
nas duas soluções

• Forme uma rota através do algoritmo de vizinho mais próximo entre os pontos
extremos dos strings

Recombinação: Seleção dos pais

• A probabilidade de uma solução ser pai num processo de crossover deve depender
do seu fitness.

• Variações:

– Probabilidade proporcional com fitness.

– Probabilidade proporcional com ordem.

Estratégia adotada pelos operadores
Inúmeros operadores podem ser propostos para cada problema. O ideal é combinar ca-
racterísticas do operador usado, com outros operadores (mutação, busca local) usados
no GA. Basicamente um crossover é projetado da seguinte forma:

• Encontre similaridades entre A e B e insira S = A ∩ B no filho.

• Defina conjuntos Sin e Sout de características desejáveis e não desejáveis.

• Projete um operador que mantenha ao máximo elementos de S e Sin, minimi-
zando o uso de elementos de Sout.

Nova População

• Todos os elementos podem ser novos.

• Alguns elementos podem ser herdados da população anterior.

• Elementos novos podem ser gerados.

• Exemplos, com população de tamanho λ que gera µ filhos.
(λ, µ) Seleciona os λ melhores dos filhos.
(λ+ µ) Seleciona os λ melhores em toda população.
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Estrutura da População
Em geral, população estruturada garante melhores resultados. A estrutura da po-
pulação permite selecionar pais para crossover de forma mais criteriosa. Algumas
estruturas conhecidas

• Divisão em Castas: 3 partições A, B e C (com tamanhos diferentes), sendo que
os melhores indivíduos estão em A e os piores em C.

• Ilhas: a população é particionada em subpopulações que evoluem em separado,
mas trocam indivíduos a cada período de número de gerações.

• População organizada como uma árvore.

Exemplo: População em castas

• Recombinação: Somente entre indivíduos da casta A e B ou C para manter
diversidade.

• Nova população: Manter casta ”elite” A, re-popular casta B com filhos, substituir
casta C com soluções randômicas.

Exemplo: População em árvore

• Considere uma árvore ternária completa, em que cada nó possui duas soluções
(pocket e current).

• A solução current é a solução atual armazenada naquela posição da árvore.

• A solução pocket é a melhor já tida naquela posição desde a primeira geração.

• A cada solução aplique exchange (se a solução current for melhor que a pocket,
troque-as de posição)

• Se a solução pocket de um filho for melhor que a do seu pai, troque o nó de
posição.

Algoritmos Meméticos

• Proposto por Pablo Moscato, Newcastle, Austrália.

• Ideía: Informação “cultural” pode ser adicionada a um indivíduo, gerando um
algoritmo memético.

• Meme: unidade de informação cultural.

Figura 11.4.: Pablo Moscato
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11.1. Algoritmos Genéticos e meméticos

Algoritmos Meméticos

• Um procedimento de busca local pode inserir informação de boa qualidade, e
não genética (memes).

• Faz uso de um procedimento de busca local (em geral aplicado à solução gerada
pelo procedimento de recombinação).

• Geralmente trabalha com populações menores.

Comparação entre as Metaheurísticas Apresentadas

• Quais que dependem de randomização? SA, GRASP, GA

• Quais que geram apenas uma solução inicial em todo processo? BT, SA

• Quais mantêm um conjunto de soluções, em vez de considerar apenas uma? GA

• Quais são inspiradas em processos da natureza? GA, BT

• Qual gera os melhores resultados?

Existem outras Metaheurísticas
Handbook of Metaheuristics, por Fred W. Glover (Editor), Gary A. Kochenberger
(Editor) Kluwer 2002.

Considerações Finais

• O desempenho de uma metaheurística depende muito de cada implementação

• As metaheurísticas podem ser usadas de forma hibridizada

• Técnicas de otimização multiobjetivo tratam os casos de problemas com mais de
um objetivo (Curva de pareto)

Exercício

• Problema de alocação: atender n clientes por m postos de atendimento (um
posto é instalado no local onde se encontra um cliente)

• Entrada: distâncias entre cada par de clientes

• Problema: Determinar em que locais instalar os postos, de forma a minimizar a
soma das distâncias de cada cliente a um ponto de atendimento

• Propor uma heurística construtiva e uma busca local.
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11. Heurísticas inspirados da natureza

Comparação entre as Metaheurísticas

• Quais que permitem movimento de piora? BT, SA

• Quais que não dependem de randomização? BT

• Quais que geram apenas uma solução inicial em todo processo? BT, SA

• Quais mantêm um conjunto de soluções, em vez de considerar apenas uma?

• Qual gera os melhores resultados?
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Parte IV.

Appéndice
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A. Conceitos matemáticos

N, Z, Q e R denotam os conjuntos dos números naturais sem 0, inteiros, racionais e
reais, respectivamente. Escrevemos também N0 = N ∪ {0}, para qualquer conjunto C,
C+ := {x ∈ C|x > 0} e C− := {x ∈ C | x < 0}. Por exemplo

R+ = {x ∈ R | x > 0}.1

Para um conjunto finito S, P(S) denota o conjunto de todos subconjuntos de S.
A = (aij) ∈ Fm×n denota uma matriz de m linhas e n colunas com elementos em F,
ai, com ati ∈ Fn a i-ésigma linha e aj ∈ Fm a j-ésima coluna de A.

Definição A.1 (Pisos e tetos)
Para x ∈ R o piso bxc é o maior número inteiro menor que x e o teto dxe é o menor
número inteiro maior que x. Formalmente

bxc = max{y ∈ Z | y ≤ x}
dxe = min{y ∈ Z | y ≥ x}

O parte fracionário de x é {x} = x− bxc.

Observe que o parte fracionário sempre é positivo, por exemplo {−0.3} = 0.7.

Proposição A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem

x ≤ dxe < x+ 1 (A.1)
x− 1 < bxc ≤ x (A.2)

1Alguns autores usam R+.
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B. Formatos

Este capítulo contém um breve resumo dos formatos CPLEX lp, Julia/JuMP e AM-
PL/MathProg usados para especificar problemas de otimização linear. CPLEX LP
é um formato simples, AMPL1 é uma linguagem completa para definir problemas de
otimização, com elementos de programação, comandos interativos e um interface para
diferentes resolvedores de problemas. Por isso CPLEX LP serve para modelos peque-
nos. Aprender AMPL precisa mais investimento, que rende em aplicações maiores.
AMPL tem o apoio da maioria das ferramentas disponíveis.
Vários outros formatos estão em uso, a maioria deles comerciais. Exemplos são ZIMPL,
GAMS, LINGO, e MPS (Mathematical programming system).

B.1. CPLEX LP

Uma gramática simplificada2 do formato CPLEX LP é

〈specification〉 ::= 〈objective〉
〈restrictions〉?
〈bounds〉
〈general〉?
〈binary〉?
‘End’

〈objective〉 ::= 〈goal〉 〈name〉? 〈linear expression〉

〈goal〉 ::= ‘MINIMIZE’ | ‘MAXIMIZE’ | ‘MIN’ | ‘MAX’

〈restrictions〉 ::= ‘SUBJECT TO’ 〈restriction〉+

〈restriction〉 ::= 〈name〉? 〈linear expression〉 〈cmp〉 〈number〉

〈cmp〉 ::= ‘<’ | ‘<=’ | ‘=’ | ‘>’ | ‘>=’

〈linear expression〉 ::= 〈number〉 〈variable〉 ( (’+’ | ’-’) 〈number〉 〈variable〉 )*

〈bounds〉 ::= ‘BOUNDS’ 〈bound〉+

1A sigla AMPL significa “A mathematical programming language”. O nome também sugere uma
funcionalidade “ampla” (“ample” em inglês).

2A gramática não contém as especificações “semi-continuous” e “SOS”.
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〈bound〉 ::= 〈name〉? ( 〈limit〉 ‘<=’ 〈variable〉 ‘<=’ 〈limit〉
| 〈limit〉 ‘<=’ 〈variable〉
| 〈variable〉 ‘<=’ 〈limit〉
| 〈variable〉 ‘=’ 〈number〉
| 〈variable〉 ‘free’ )

〈limit〉 ::= ‘infinity’ | ‘-infinity’ | 〈number〉

〈general〉 ::= ‘GENERAL’ 〈variable〉+

〈binary〉 ::= ‘BINARY’ 〈variable〉+

Todas variáveis x tem a restrição padrão 0 ≤ x ≤ +∞. Caso outros limites são
necessárias, eles devem ser informados na seção “BOUNDS”. As seções “GENERAL” e
“BINARY” permitem restringir variáveis para Z e {0, 1}, respectivamente.
As palavras-chaves também podem ser escritas com letras minúsculas: o formato per-
mite algumas abreviações não listadas acima (por exemplo, escrever “s.t” ou “st” ao
invés de “subject to”).
Um comentário até o final da linha inicia com “\”. Uma alternativa são comentários
entre “\*” e “*\”.

Exemplo B.1 (Problema (1.1) no formato CPLEX LP)
1 Maximize
2 lucro: 0.2 c + 0.5 s
3
4 Subject To
5 ovo: c + 1.5 s <= 150 \ um comentário
6 acucar: 50 c + 50 s <= 6000
7 client1:c <= 80
8 client2:s <= 60
9
10 Bounds
11 0 <= c
12 0 <= s
13 End

♦

Exemplo B.2
Problema de mochila 0-1 com 11 itens em formato CPLEX LP.

1 max 19x1+87x2+97x3+22x4+47x5+22x6+30x7+5x8+32x9+54x10+75x11
2 s.t
3 1x1+96x2+67x3+90x4+13x5+74x6+22x7+86x8+23x9+63x10 +89x11 <= 624
4 binary x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
5 end

♦
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B.2. Julia/JuMP

Observação B.1
CPLEX LP permite constantes como 0.5e6 que representa 0.5× 106. Outra interpre-
tação dessa expressão é 0.5 vezes a variável e6. Para evitar essa ambiguidade, variáveis
não podem começar com a letra e. ♦

B.2. Julia/JuMP

Julia é uma linguagem para programação científica e JuMP (Julia for Mathematical
Programming) uma biblioteca que permite embutir programas matemáticos direta-
mente em código Julia. Isso tem a vantagem de poder ler e processar os dados antes
da solução, resolver, e continuar trabalhar com o resultado no mesmo programa.

Exemplo B.3 (Problema (1.1) em Julia/JuMP)
#!/usr/bin/env julia

using JuMP
using GLPKMathProgInterface

m = Model(solver=GLPKSolverMIP())

@variable(m, c)
@variable(m, s)

@objective(m, Max, 0.2*c+0.5*s)

@constraint(m, c + 1.5*s <= 150)
@constraint(m, 50*c + 50*s <= 6000)
@constraint(m, c <= 80)
@constraint(m, s <= 60)

status = solve(m)

if status == :Optimal
println("A solução ótima é c=$(getvalue(c)) e s=$(getvalue(s)) de
valor $(getobjectivevalue(m)).")↪→

end

♦

Diferente do CPLEX lp, Julia/JuMP permite expressar um único modelo para um
problema e resolver para diferentes instâncias.

Exemplo B.4 (Exemplo (1.3) em Julia/JuMP)
#!/usr/bin/env julia

using JuMP
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using GLPKMathProgInterface

n = 3
m = 3
a = [5,7,3]
b = [7,3,5]
c = [[3,4,100] [1,2,3] [100,4,3]]

mm = Model(solver=GLPKSolverMIP())

@variable(mm, x[1:m,1:n] >= 0)

@objective(mm, Min, sum(c[i,j]*x[i,j] for i=1:m, j=1:n))

@constraint(mm, [i=1:m], sum(x[i,j] for j=1:n) <= a[i])
@constraint(mm, [j=1:n], sum(x[i,j] for i=1:m) == b[j])

status = solve(mm)

if status == :Optimal
println("A solução ótima é x=$(getvalue(x)) de valor
$(getobjectivevalue(mm)).")↪→

end

♦

B.3. AMPL

Objetos de modelagem

• Um modelo em AMPL consiste em

– parâmetros,

– variáveis,

– restrições, e

– objetivos

• AMPL usa conjuntos (ou arrays de múltiplas dimensões)

A : I→ D

que mapeiam um conjunto de índices I = I1 × · · · × In para valores D.
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B.3. AMPL

Formato

• Parte do modelo

s1
...
sn
end;

com si sendo um comando ou uma declaração.

• Parte de dados

data
d1
...
dn
end;

com di sendo uma especificação de dados.

Tipo de dados

• Números: 2.0,-4

• Strings: ’Comida’

• Conjuntos: {2,3,4}

Expressões numéricas

• Operações básicas: +,-,*,/,div,mod,less,**

Exemplo: x less y

• Funções: abs,ceil,floor,exp

Exemplo: abs(-3)

• Condicional: if x>y then x else y

Expressões sobre strings

• AMPL converte números automaticamente em strings

• Concatenação de strings: &

Exemplo: x & ’ unidades’
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B. Formatos

Expressões para conjuntos de índices

• Uma dimensão

– t in S: variável “dummy” t, conjunto S

– (t1,...tn) in S: para conjuntos de tuplos

– S: sem nomear a variável

• Multiplas dimensões

– {e1,...,en} com ei uma dimensão (acima).

• Variáveis “dummy” servem para referenciar e modificar.

Exemplo: (i-1) in S

Conjuntos

• Conjunto básico: {v1,...,vn}

• Valores: Considerados como conjuntos com conjunto de índices de dimensão 0

• Índices: [i1,...,in]

• Sequências: n1 ... n2 by d ou n1 ... n2

• Construção: setof I e: {e(i1, . . . , in) | (i1, . . . , in) ∈ I}

Exemplo: setof {j in A} abs(j)

Operações de conjuntos

• X union Y: União X ∪ Y

• X diff Y: Diferença X \ Y

• X symdiff Y: Diferença simétrica (X \ Y) ∪ (Y \ X)

• X inter Y: Intersecção X ∩ Y

• X cross Y: Produto cartesiano X× Y
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B.3. AMPL

Expressões lógicas

• Interpretação de números: n vale “v”, sse n 6= 0.

• Comparações simples: <,<=,= ou ==,>=,>,<> ou !=

• Pertinência: x in Y, x not in Y, x !in Y

• Subconjunto: X within Y, X !within Y, X not within Y

• Operadores lógicos: && ou and, || ou or, ! ou not

• Quantificação: com índices I, expressão booleana b

forall I b:
∧

(i1,...,in)∈I b(i1, . . . , in)

exists I b
∨

(i1,...,in)∈I b(i1, . . . , in)

Declarações: Conjuntos
set N I [dimen n] [within S] [default e1] [:= e2]

param N I [in S] [<=,>=,!=,... n] [default e1] [:= e2]

• Nome N

• Conjunto de índices I (opcional)

• Conjunto de valores S

• Valor default e1

• Valor inicial e2

Declarações: Restrições e objetivos
subject to N I : e1 = e2 | e1 <= e2, e1 >= e2

minimize [I] : e

maximize [I] : e
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Comandos

• solve: Resolve o sistema.

• check [I] : b: Valida expressão booleana b, erro caso falso.

• display [I] : e1,...en: Imprime expressões e1, . . . , en.

• printf [I] : fmt,e1,...,en: Imprime expressões e − 1, . . . , en usando for-
mato fmt.

• for I : c, for I : {c1 ... cn}: Laços.

Dados: Conjuntos
set N r1,...rn

Com nome N e records r1, . . . , rn, cada record

• um tuplo: v1, . . . , vn
Exemplo: 1 2, 1 3, 2 2, 2 7

• a definição de uma fatia (v1|∗, v2|∗, . . . , vn|∗): depois basta de listar os elementos
com ∗.
Exemplo: (1 *) 2 3, (2 *) 2 7

• uma matriz

: c1 c2 ... cn :=
r1 a11 a12 ... a1n
r2 a21 a22 ... a2n

...
rm am1 am2 ... amn

com aij “+”/”-” para inclusão/exclusão do par “ri cj” do conjunto.

Dados: Parâmetros
param N r1,...rn

Com nome N e records r1, . . . , rn, cada record

• um valor i1, . . . , in, v

• a definição de uma fatia [i1|∗, i2|∗, . . . , in|∗): depois basta definir índices com ∗.

• uma matriz
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: c1 c2 ... cn :=
r1 a11 a12 ... a1n
r2 a21 a22 ... a2n

...
rm am1 am2 ... amn

com aij o valor do par “ri cj”.

• uma tabela

param default v : s : p1 p2 ... pk :=
t11 t12 ... t1n a11 a12 ... a1k
t21 t22 ... t2n a21 a22 ... a2k

...
tm1 tm2 tmn am1 am2 ... amk

para definir simultaneamente o conjunto

set s := (t11 t12 ... t1n), ... , (tm1 tm2 ... tmn);

e os parâmetros

param p1 default v := [t11 t12 ... t1n] a11, ..., [tm1 tm2 ... tmn] am1;
param p2 default v := [t11 t12 ... t1n] a12, ..., [tm1 tm2 ... tmn] am2;
...
param pk default v := [t11 t12 ... t1n] a1k, ..., [tm1 tm2 ... tmn] amk;

Exemplo B.5 (Exemplo (1.1) em AMPL)
var c; # número de croissants
var s; # número de strudels
param lucro_croissant; # o lucro por croissant
param lucro_strudel; # o lucro por strudel
maximize lucro: lucro_croissant*c+lucro_strudel*s;
subject to ovo: c+1.5*s <= 150;
subject to acucar: 50*c+50*s <= 6000:
subject to croissant: c <= 80;
subject to strudel: s <= 60;

♦

Exemplo B.6 (Exemplo (1.3) em AMPL)
param n; # número de clientes
param m; # número de fornecedores
param a { 1..m }; # estoque
param b { 1..n }; # demanda
param c { 1..m, 1..n }; # custo transporte
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var x { 1..m,1..n } >= 0;

minimize custo:
sum { i in 1..m, j in 1..n } c[i,j]*x[i,j];

subject to limiteF { i in 1..m }:
sum { j in 1..n } x[i,j] <= a[i];

subject to limiteC { j in 1..n }:
sum { i in 1..m } x[i,j] = b[j];

data;
param n := 3;
param m := 3;
param a := 1 5, 2 7, 3 3;
param b := 1 7, 2 3, 3 5;
param c : 1 2 3 :=
1 3 1 100
2 4 2 4
3 100 3 3;
end;

♦
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C. Soluções dos exercícios

Solução do exercício 1.3.

maximiza 2A+ B,

sujeito a A ≤ 6000,
B ≤ 7000,
A+ B ≤ 10000,
A, B ≥ 0.

Resposta: A = 6000, B = 4000, e Z = 16000.

Solução do exercício 1.4.
São necessárias cinco variáveis:

• x1: número de pratos de lasanha comidos por Marcio

• x2: número de pratos de sopa comidos por Marcio

• x3: número de pratos de hambúrgueres comidos por Renato

• x4: número de pratos de massa comidos por vini

• x5: números de pratos de sopa comidos por vini

Formulação:

maximiza x1 + x2 + x3 + x4 + x5,

sujeito a 4 ≥ x1 + x2 ≥ 2,
5 ≥ x3 ≥ 2,
4 ≥ x4 + x5 ≥ 2,
70(x2 + x5) + 200x1 + 100x3 + 30x4 ≤ 1000,
30(x2 + x5) + 100x1 + 100x3 + 100x4 ≤ 800.

Solução do exercício 1.5.
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maximiza l1 + 2l2,

sujeito a l2 ≤ 60,
l1 + 3l2 ≤ 200,
2l1 + 2l2 ≤ 300,
l1, l2 ≥ 0.

Solução do exercício 1.6.

maximiza 60m+ 30a,

sujeito a m ≤ 6,
a ≤ 4,
6m+ 8a ≤ 48,
m, a ≥ 0.

Solução do exercício 1.8.
Com marcas J,O,M (Johnny Ballantine, Old Gargantua, Misty Deluxe) e misturas
A,B,C temos as variáveis

xJ,A, xJ,B, xJ,C, xO,A, xO,B, xO,C, xM,A, xM,B, xM,C

que denotam o número de garrafas usadas por mistura.
Vamos introduzir ainda as variáveis auxiliares para o número de garrafas usadas de
cada marca

xJ = xJ,A + xJ,B + xJ,C,

xO = xO,A + xO,B + xO,C,

xM = xM,A + xM,B + xM,C

e variáveis auxiliares para o número de garrafas produzidas de cada mistura

xA = xJ,A + xO,A + xM,A,

xB = xJ,B + xO,B + xM,B,

xC = xJ,C + xO,C + xM,C.

Queremos maximizar o lucro em reais

68xA + 57xB + 45xC − (70xJ + 50xO + 40xM)
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respeitando os limites de importação

xJ ≤ 2000,
xO ≤ 2500,
xM ≤ 1200

e os limites de percentagem

xJ,A ≥ 0.6xA,
xM,A ≤ 0.2xA,
xJ,B ≥ 0.15xB,
xM,B ≤ 0.6xB,
xM,C ≤ 0.5xC.

Portanto, o sistema final é

maximiza 68xA + 57xB + 45xC − (70xJ + 50xO + 40xM),

sujeito a cxJ ≤ 2000,
xO ≤ 2500,
xM ≤ 1200,
xJ,A ≥ 0.6xA,
xM,A ≤ 0.2xA,
xJ,B ≥ 0.15xB,
xM,B ≤ 0.6xB,
xM,C ≤ 0.5xC,
xm = xm,A + xm,B + xm,C m ∈ {J,O,M},

xm = xJ,m + xO,m + xM,m m ∈ {A,B,C},

xm,n ≥ 0 m ∈ {J,O,M}, n ∈ {A,B,C}.

Sem considerar a integralidade a solução ótima é produzir 2544.44 garrafas da mistura
A, 3155.56 garrafas da mistura B e 0 garrafas da mistura C, com as percentagens

• A: 60% Johnny Ballantine, 20% Old Gargantua, 20% Misty Deluxe

• B: 15% Johnny Ballantine, 63% Old Gargantua, 22% Misty Deluxe

Solução do exercício 1.9.
Com t1 o número de TVs de 29" e t2 de 31" temos

maximiza 120t1 + 80t2,

sujeito a t1 ≤ 40,
t2 ≤ 10,
20t1 + 10t2 ≤ 500,
t1, t2 ≥ 0.
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Solução do exercício 1.10.
Seja V = {V1, V2} e NV = {NV1, NV2, NV3} os conjuntos de óleas vegetais e não
vegetais e O = V ∪NV o conjunto do todos óleos. Seja ainda ci o custo por tonelada
do óleo i ∈ O e ai a acidez do óleo i ∈ O. (Por exemplo cV1 = 110 e aNV2 = 4.2.)
Com variáveis xi (toneladas refinadas do óleo i ∈ O) e xo (quantidade total de óleo
produzido) podemos formular

maximiza 150xo −
∑
i∈O

cixi,

sujeito a
∑
i∈V

xi ≤ 200, limite óleos vegetais∑
i∈NV

xi ≤ 250, limite óleos não vegetais

3xo ≤
∑
i∈O

aixi ≤ 6xo, Intervalo acidez∑
i∈O

xi = xo, Óleo total

xo, xi ≥ 0, ∀i ∈ O.

Solução do exercício 1.11.
Sejam xA, xB e xC o número de horas investidos para cada disciplina. Vamos usar
variáveis auxiliares nA, nB e nC para as notas finais das três disciplinas. Como isso
temos o programa linear

maximiza nA + nB + nC,

sujeito a xA + xB + xC = 100, Total de estudo
nA = (6+ xA/10)/2, Nota final disc. A
nB = (7+ 2xB/10)/2, Nota final disc. B
nC = (10+ 3xC/10)/2, Nota final disc. C
nA ≥ 5, Nota mínima disc. A
nB ≥ 5, Nota mínima disc. B
nC ≥ 5, Nota mínima disc. C
nA ≤ 10, Nota máxima disc. A
nB ≤ 10, Nota máxima disc. B
nC ≤ 10, Nota máxima disc. C
nA, nB, nC ≥ 0.
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Solução do exercício 1.12.
Sejam r ∈ R e f ∈ R o número de canecos do Duff regular e do Duff Forte, respectiva-
mente, encomendados por semana. Com isso podemos formular

maximiza r+ 1.5f, (C.1)
sujeito a 2f ≤ r, (C.2)

r+ f ≤ 3000, (C.3)
r, f ∈ R+. (C.4)

Solução do exercício 1.13.
Sejam f ∈ R e h ∈ R o número de pacotes de Frisky Pup e Husku Hound produzidos,
respectivamente. Com isso podemos formular

maximiza 1.6f+ 1.4h, (C.5)
sujeito a f+ 2h ≤ 240000, (C.6)

1.5f+ h ≤ 180000, (C.7)
f ≤ 110000, (C.8)
f, h ∈ R+. (C.9)

Solução do exercício 1.14.

maximiza 25p+ 30c,

sujeito a p/200+ c/140 ≤ 40⇐⇒ 7p+ 10c ≤ 56000,
p ≤ 6000,
c ≤ 4000,
c, p ≥ 0.
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A solução ótima é p = 6000, c = 1400 com valor 192000.

Solução do exercício 1.15.
Usamos índices 1, 2 e 3 para os vôos Pelotas–Porto Alegre, Porto Alegre–Torres e
Pelotas–Torres e variáveis a1, a2, a3 para a categoria A, b1, b2, b3 para categoria B e
c− 1, c2, c3 para categoria C. A função objetivo é maximizar o lucro

z = 600a1 + 320a2 + 720a3 + 440b1 + 260b2 + 560b3 + 200c1 + 160c2 + 280c3.

Temos que respeitar os limites de capacidade

a1 + b1 + c1 + a3 + b3 + c3 ≤ 30,
a2 + b2 + c2 + a3 + b3 + c3 ≤ 30,

e os limites da predição

a1 ≤ 4, a2 ≤ 8, a3 ≤ 3,
b1 ≤ 8, b2 ≤ 13, b3 ≤ 10,
c1 ≤ 22, c2 ≤ 20, c3 ≤ 18

Obviamente, todas variáveis também devem ser positivos.

Solução do exercício 1.16.
A solução gráfica é
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Soluções viáveis

-x1+x2≤ 2

x1+8x2≤ 36

x2≤ 4

x1≤ 4.25
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(a) A solução ótima é x1 = 4.25, x2 ≈ 4 (valor exato x2 = 3.96875).

(b) O valor da solução ótima é ≈ 21 (valor exato 20.96875).

Solução do exercício 1.17.

maximiza z = 5x1 + 5x2 + 5x3,

sujeito a − 6x1 − 2x2 − 9x3 ≤ 0,
− 9x1 − 3x2 + 3x3 ≤ 3,
9x1 + 3x2 − 3x3 ≤ −3,

x1, x2, x3 ≥ 0.

maximiza z = −6x1 − 2x2 − 6x3 + 4x4 + 4x5,

sujeito a − 3x1 − 8x2 − 6x3 − 7x4 − 5x5 ≤ 3,
3x1 + 8x2 + 6x3 + 7x4 + 5x5 ≤ −3,

5x1 − 7x2 + 7x3 + 7x4 − 6x5 ≤ 6,
x1 − 9x2 + 5x3 + 7x4 − 10x5 ≤ −6,

− x1 + 9x2 − 5x3 − 7x4 + 10x5 ≤ 6,
x1, x2, x3, x4, x5 ≥ 0.
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maximiza z = 7x1 + 4x2 + 8x3 + 7x4 − 9x5,

sujeito a − 4x1 − 1x2 − 7x3 − 8x4 + 6x5 ≤ −2,

4x1 + x2 + 7x3 + 8x4 − 6x5 ≤ 2,
− x1 − 4x2 − 2x3 − 2x4 + 7x5 ≤ 7,
− 8x1 + 2x2 + 8x3 − 6x4 − 7x5 ≤ −7,

8x1 − 2x2 − 8x3 + 6x4 + 7x5 ≤ 7,
x1, x2, x3, x4, x5 ≥ 0.

maximiza z = 6x1 − 5x2 − 8x3 − 7x4 + 8x5,

sujeito a − 5x1 − 2x2 + x3 − 9x4 − 7x5 ≤ 9,
5x1 + 2x2 − x3 + 9x4 + 7x5 ≤ −9,

7x1 + 7x2 + 5x3 − 3x4 + x5 ≤ −8,

− 7x1 − 7x2 − 5x3 + 3x4 − x5 ≤ 8,
− 5x1 − 3x2 − 5x3 + 9x4 + 8x5 ≤ 0,
x1, x2, x3, x4, x5 ≥ 0.

Solução do exercício 2.1.
Solução com método Simplex, escolhendo como variável entrante sempre aquela com
o maior coeficiente positivo (em negrito):

z = 25p +30c
w1 = 56000 −7p −10c
w2 = 6000 −p
w3 = 4000 −c

z = 120000 +25p −30w3
w1 = 16000 −7p +10w3
w2 = 6000 −p
c = 4000 −w3

z = 1240000/7 −25/7p +40/7w3
p = 16000/7 −1/7w1 +10/7w3
w2 = 26000/7 +1/7w1 −10/7w3
c = 4000 −w3

z = 192000 −3w1 −4w2
p = 6000 −w2
w3 = 2600 +1/10w1 −7/10w2
c = 1400 −1/10w1 +7/10w2
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Solução do exercício 2.3.
Temos (

2(n+ 1)

n+ 1

)
=

(
2n

n

)
(2n+ 2)(2n+ 1)

(n+ 1)2
=

(
2n

n

)
2(2n+ 1)

n+ 1

e logo
22n

n+ 1

(
2n

n

)
≤
(
2(n+ 1)

n+ 1

)
≤ 22

(
2n

n

)
.

Logo, por indução (1/2n)22n ≤
(
2n
n

)
≤ 22n.

Solução do exercício 2.6.

(a) Substituindo x1 e x2 obtemos a nova função objetivo z = x1+2x2 = 22−7w2−3w1.
Como todos coeficientes são negativos, a solução básica atual permanece ótima.

(b) A nova função objetivo é 1−w2 e o sistema mantem-se ótimo.

(c) A nova função objetivo é 2− 2w2 e o sistema mantem-se ótimo.

(d) O dicionário dual é
z∗ = 31 −7z2 −8z1
y2 = 11 +2z2 +3z1
y1 = 4 +z2 +z1

e a solução dual ótima é (y1 y2)
t = (4 11)t.

Solução do exercício 2.9.
Não, porque nessa situação o valor da variável entrante aumento para um valor xe > 0
e por definição de variável entrante temos ce > 0, i.e. o valor da função objetivo
aumenta.

Solução do exercício 2.10.
Sim. Supõe que xs, s ∈ B é a variável básica negativa. Com xs = b̄s− āsexe e ase < 0
temos xs > 0 caso xe > bs/āse. Logo para xe > maxi∈B,b̄s<0 b̄i/āie a solução é
factível.

Solução do exercício 3.1.

maximiza 10y1 + 6y2,

sujeito a y1 + 5y2 ≤ 7,
− y1 + 2y2 ≤ 1,
3y1 − y2 ≤ 5,
y1, y2 ≥ 0.
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Solução do exercício 3.2.
Com variáveis duais ye para cada e ∈ U temos

maximiza
∑
e∈U

ye,

sujeito a
∑
e:e∈S

ye ≤ c(S), S ∈ S,

ye ≥ 0, e ∈ U.

Solução do exercício 3.3.

(a) Temos B = {4, 1, 2} (variáveis básicas x4, x1 e x2) e N = {5, 6, 3} (variáveis nulas
x5, x6 e x3). No que segue, vamos manter essa ordem das variáveis em todos
vetores e matrizes. O vetor de custos nessa ordem é

cB = (0 2 − 1)t; cN = (0 0 1)t

e com

∆c = (0 1 0 0 0 0)t

temos

∆y∗N = (B−1N)t∆cB − ∆cN = (B−1N)t∆cB

=

−1 1/2 −1/2
−2 1/2 1/2
1 1/2 −3/2

01
0

 =

1/21/2
1/2

 .
Com y∗N = (3/2 1/2 3/2)t obtemos os limites −1 ≤ t ≤∞ e 1 ≤ c1 ≤∞.

(b) Temos ∆xb = B−1∆b e ∆b = (0 1 0)t. Para determinar ∆xB precisamos calcular
B−1 pela inversão de

B =

1 3 1
0 1 −1
0 1 1


(observe que as colunas estão na ordem de B) que é

B−1 =

1 −1 −2
0 1/2 1/2
0 −1/2 1/2


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Assim ∆xB = (−1 1/2 − 1/2)t, e com x∗B = (10 15 5)t e pela definição

max
i∈B
∆xi>0

−
x∗i
∆xi

≤ t ≤ min
i∈B
∆xi<0

−
x∗i
∆xi

obtemos os limites −30 ≤ t ≤ 10 e −20 ≤ b2 ≤ 20.

(c) Com b̂ = (70 20 10)t temos B−1b̂ = (30 15 − 5)t. Portanto, a solução básica não
é mais víavel e temos que reotimizar. O novo valor da função objetivo é

ctB(B
−1b̂) =

(
0 2 −1

)3015
−5

 = 35

e temos o dicionário

z = 35 −3/2x5 −1/2x6 −3/2x3
x4 = 30 +x5 +2x6 −x3
x1 = 15 −1/2x5 −1/2x6 −1/2x3
x2 = −5 +1/2x5 −1/2x6 +3/2x3

O dicionário é dualmente viável, e após pivô x2–x3 temos o novo sistema ótimo

z = 30 −x5 −x6 −x2
x4 = 80/3 +4/3x5 +5/3x6 −2/3x2
x1 = 40/3 −1/3x5 −2/3x6 −1/3x2
x3 = 10/3 −1/3x5 +1/3x6 +2/3x2

(d) Temos ĉ = (0 3 − 2 0 0 3)t (em ordem B,N ) e com isso

ŷ∗N = (B−1N)tĉB − ĉN =

−1 1/2 −1/2
−2 1/2 1/2
1 1/2 −3/2

 0
3
−2

−

00
3

 =

5/21/2
3/2


Portanto, a solução ainda é ótima. O novo valor da função objetivo é

ĉtB(B
−1b) =

(
0 3 −2

)1015
5

 = 35.

Solução do exercício 6.2.
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Conjunto independente máximo Com variáveis indicadores xv, v ∈ V temos o pro-
grama inteiro

maximiza
∑
v∈V

xv,

sujeito a xu + xv ≤ 1, ∀{u, v} ∈ A, (C.10)
xv ∈ B, ∀v ∈ V.

A equação C.10 garante que cada aresta possui no máximo um nó incidente.

Emparelhamento perfeito com peso máximo Sejam xa, a ∈ A variáveis indicadores
para a seleção de cada aresta. Com isso, obtemos o programa inteiro

maximiza
∑
a∈A

p(a)xa,

sujeito a
∑

u∈N(v)

x{u,v} = 1, ∀v ∈ V, (C.11)

xa ∈ B, ∀v ∈ V.

A equação C.11 garante que cada nó possui exatamente um vizinho.

Problema de transporte Sejam xij variáveis inteiras, que correspondem com o nú-
mero de produtos transportados do depósito i para cliente j. Então

minimiza
∑
i∈[n]
j∈[m]

cijxij,

sujeito a
∑
j∈[m]

xij = pi, ∀i ∈ [n], cada depósito manda todo estoque

∑
i∈[n]

xij = dj, ∀j ∈ [m], cada cliente recebe a sua demanda

xij ∈ Z+.

Conjunto dominante Sejam xv, v ∈ V variáveis indicadores para seleção de vértices.
Temos o programa inteiro

minimiza
∑
v∈V

xv,

sujeito a xv +
∑

u∈N(v)

xu ≥ 1, ∀v ∈ V, nó ou vizinho selecionado

xv ∈ B, ∀v ∈ V.
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Solução do exercício 6.4.
Seja d1d2 . . . dn a entrada, e o objetivo selecionar m ≤ n dígitos da entrada. Seja
xij ∈ B um indicador que o dígito i ∈ [n] da entrada seria selecionado como dígito
j ∈ [m] da saida. Então

maximiza
∑

i∈[n],j∈[m]

xijdi10
m−j,

sujeito a
∑
i∈[n]

xij = 1, ∀j ∈ [m], (C.12)

∑
j∈[m]

xij ≤ 1, ∀i ∈ [n], (C.13)

xij = 0, ∀i ∈ [n], j ∈ [m], j > i, (C.14)
xkl ≤ 1− xij, ∀i, k ∈ [n], l, j ∈ [m], k > i, l < j. (C.15)

A função das restrições é a seguinte:

• Restrição (C.12) garante que tem exatamente um dígito em cada posição.

• Restrição (C.13) garante que cada dígito é selecionado no máximo uma vez.

• Restrição (C.14) garante que dígito i aparece somente a partir da posição j.

• Restrição (C.13) proibe inversões.

Solução do exercício 6.5.
Existem 21 sets diferentes, cada um com consumo diferente das 9 cartas. Seja AR9×21
uma matriz, que contém em cada das 21 coluna o número de cartas de cada set. Além
disso, seja b ∈ R9 o número de cartas disponíveis. Usando variáveis inteiros x ∈ Z21
que representam o número de sets formandos de cada tipo de set diferentes, temos a
formulação

maximiza
∑
i∈[21]

xi,

sujeito a Ax ≤ b,
x ≥ 0.

Solução do exercício 6.6.
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Cobertura por arcos

minimiza
∑
e∈E

cexe,

sujeito a
∑

u∈N(v)

xuv ≥ 1, ∀v ∈ V,

xe ∈ B.

Conjunto dominante de arcos

maximiza
∑
e∈E

cexe,

sujeito a
∑
e ′∈E
e∩e ′ 6=∅

xe ′ ≥ 1, ∀e ∈ E

xe ∈ B.

Coloração de grafos Seja n = |V |.

minimiza
∑
j∈[n]

cj,

sujeito a
∑
j∈[n]

xvj = 1, ∀v ∈ V, (C.16)

xui + xvi ≤ 1, ∀{u, v} ∈ E, i ∈ [n], (C.17)

ncj ≥
∑
v∈V

xvj, ∀j ∈ [n], (C.18)

xvi, cj ∈ B.

• Restrição C.16 garante que todo vértice recebe exatamente uma cor.

• Restrição C.17 garante que vértices adjacentes recebem cores diferentes.

• Restrição C.18 garante que cj = 1 caso cor j for usada.

Clique mínimo ponderado

minimiza
∑
v∈V

cvxv,

sujeito a xu + xv ≤ 1, ∀{u, v} 6∈ E, (C.19)
xv ∈ B.

Restrição C.19 garante que não existe um par de vértices selecionados que não são
vizinhos.
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Subgrafo cúbico xe indica se o arco e é selecionado, e ye indica se ele possui grau 0
(caso contrário grau 3).

minimiza
∑
e∈E

xe,

sujeito a
∑

e∈N(v)

xe ≤ 0+ |E|(1− ye),

∑
e∈N(v)

xe ≤ 3+ |E|ye,

−
∑

e∈N(v)

xe ≤ −3+ 3ye.

Observe que o grau de cada vértice é limitado por |E|.

Solução do exercício 6.7.
Sejam xi ∈ B, i ∈ [7] variáveis que definem a escolha do projeto i. Então temos

maximiza 17x1 + 10x2 + 15x3

+ 19x4 + 7x5 + 13x6 + 9x7,

sujeito a 43x1 + 28x2 + 34x3 + 48x4,

+ 17x5 + 32x6 + 23x7 ≤ 100, Limite do capital
x1 + x2 ≤ 1, Projetos 1,2 mutualmente exclusivos
x3 + x4 ≤ 1, Projetos 3,4 mutualmente exclusivos
x3 + x4 ≤ x1 + x2, Projeto 3 ou 4 somente se 1 ou 2

http://www.inf.ufrgs.br/~mrpritt/e6q2.mod

set projetos := 1 .. 7;
param lucro { projetos };
param custo { projetos };

var fazer { projetos } binary;

maximize M:
sum { i in projetos } lucro[i]*fazer[i];

subject to S1:
sum { i in projetos } custo[i]*fazer[i] <= 100;

subject to S2:
fazer[1]+fazer[2] <= 1;

subject to S3:
fazer[3]+fazer[4] <= 1;
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subject to S4:
fazer[3]+fazer[4] <= fazer[1]+fazer[2];

data;
param lucro := 1 17 2 10 3 15 4 19 5 7 6 13 7 9;
param custo := 1 43 2 28 3 34 4 48 5 17 6 32 7 23;
end;

Solução: Selecionar projetos 1,3,7 com lucro de MR$ 41.

Solução do exercício 6.8.
Seja f ∈ B uma variável que determina qual fábrica vai ser usada (fábrica 1, caso f = 0,
fábrica 2, caso f = 1), bi ∈ B uma variável binária que determina, se brinquedo i vai
ser produzido e ui ∈ Z as unidades produzidas de brinquedo i (sempre com i ∈ [2]).

maximiza 10u1 + 15u2 − 50000b1 − 80000b2,

sujeito a ui ≤Mbi, Permitir unidades somente se tem produção
u1/50+ u2/40 ≤ 500+ fM, Limite fábrica 1, se selecionada
u1/40+ u2/25 ≤ 700+ (1− f)M, Limite fábrica 2, se selecionada
ai ∈ B, ui ∈ Z, i ∈ [3].

A constante M deve ser suficientemente grande tal que ela efetivamente não restringe
as unidades. Dessa forma, se a fábrica 1 está selecionada, a terceira restrição (da
fábrica 2) não se aplica e vice versa.

http://www.inf.ufrgs.br/~mrpritt/e6q3.mod

set brinquedos := 1..2;
var f binary;
var b { brinquedos } binary;
var u { brinquedos } integer, >= 0;
param inicial { brinquedos };
param lucro { brinquedos };
param prodfab1 { brinquedos };
param prodfab2 { brinquedos };
param M := 35000;

maximize Lucro:
sum { i in brinquedos } u[i]*lucro[i]
- ( sum { i in brinquedos } inicial[i]*b[i] );

subject to PermitirProducao { i in brinquedos }:
u[i] <= M*b[i];

subject to LimiteFab1 :
sum { i in brinquedos }

u[i]*prodfab1[i] <= 500 + f*M;
subject to LimiteFab2 :
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sum { i in brinquedos }
u[i]*prodfab2[i] <= 700 + (1-f)*M;

data;
param inicial := 1 50000 2 80000;
param lucro := 1 10 2 15;
param prodfab1 := 1 0.020 2 0.025;
param prodfab2 := 1 0.025 2 0.040;

Solução: Produzir 28000 unidades do brinquedo 1 na fábrica 2, com lucro 230KR$.

Solução do exercício 6.9.
Sejam ai ∈ B uma variável que determina se avião i vai ser produzido e ui ∈ Z as
unidades produzidas.

maximiza 2u1 + 3u2 + 0.2u3 − 3a1 − 2a2,

sujeito a 0.2u1 + 0.4u3 + 0.2u3 ≤ 1, Limite de capacidade
ui ≤ 5bi, Permitir unidades somente se for produzido, limite 5 aviões
u1 ≤ 3, Limite avião 1
u2 ≤ 2, Limite avião 2
u3 ≤ 5, Limite avião 3

http://www.inf.ufrgs.br/~mrpritt/e6q4.mod

set avioes := 1..3;
param custo { avioes };
param lucro { avioes };
param capacidade { avioes };
param demanda { avioes };
var produzir { avioes } binary;
var unidades { avioes } integer, >= 0;

maximize Lucro:
sum { i in avioes }

(lucro[i]*unidades[i]-custo[i]*produzir[i]);
subject to LimiteCapacidade:

sum { i in avioes } unidades[i]*capacidade[i] <= 1;
subject to PermitirProducao { i in avioes }:

unidades[i] <= 5*produzir[i];
subject to LimiteDemanda { i in avioes }:

unidades[i] <= demanda[i];

data;
param : custo lucro capacidade demanda :=
1 3 2 0.2 3
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2 2 3 0.4 2
3 0 0.8 0.2 5;

Solução: Produzir dois aviões para cliente 2, e um para cliente 3, com lucro 4.8 MR$.

Solução do exercício 6.10.
Seja xijk ∈ B um indicador do teste com a combinação (i, j, k) para 1 ≤ i, j, k ≤
8. Cada combinação (i, j, k) testada cobre 22 combinações: além de (i, j, k) mais 7
para cada combinação que difere somente na primeira, segunda ou terceira posição.
Portanto, uma formulação é

minimiza
∑
i,j,k

xi,j,k,

sujeito a xi,j,k +
∑
i ′ 6=i

xi ′jk +
∑
j ′ 6=j

xij ′k +
∑
k ′ 6=k

xijk ′ ≥ 1, ∀i, j, k,

xi,j,k ∈ B, ∀i, j, k.

A solução ótima desse sistema é 32, i.e. 32 testes são suficientes para abrir a fechadura.
Uma solução é testar as combinações

(1, 2, 4), (1, 3, 8), (1, 5, 5), (1, 8, 7), (2, 1, 1), (2, 4, 3), (2, 6, 6), (2, 7, 2),

(3, 1, 3), (3, 4, 2), (3, 6, 1), (3, 7, 6), (4, 1, 2), (4, 4, 6), (4, 6, 3), (4, 7, 1),

(5, 1, 6), (5, 4, 1), (5, 6, 2), (5, 7, 3), (6, 2, 7), (6, 3, 5), (6, 5, 4), (6, 8, 8),

(7, 2, 5), (7, 3, 7), (7, 5, 8), (7, 8, 4), (8, 2, 8), (8, 3, 4), (8, 5, 7), (8, 8, 5)

Solução do exercício 6.11.
Sejam xi ∈ B, i ∈ [k] as variáveis de entrada, e ci ∈ B, i ∈ [n] variáveis que indicam se
a cláusula ci está satisfeita. Para aplicar a regra (6.2) diretamente, vamos usar uma
variável auxiliar di. i ∈ [n], que representa a disjunção dos primeiros dois literais da
cláusula i.

maximiza
∑
i∈[n]

ci,

sujeito a lij =

{
xk literal j na cláusula i é xk,
1− xk literal j na cláusula i é ¬xk,

di ≥ (li1 + li2)/2,

di ≤ li1 + li2,
ci ≥ (di + li3)/2,

ci ≤ di + li3,
ci, di, xi ∈ B.
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Como é um problema de maximização, pode ser simplificado para

maximiza
∑
i∈[n]

ci,

sujeito a lij =

{
xk literal j na cláusula i é xk,
1− xk literal j na cláusula i é ¬xk,

ci ≤ li1 + li2 + li3,
ci, xi ∈ B.

A segunda formulação possui uma generalização simples para o caso k > 3.

Solução do exercício 6.13.
Não. Uma explicação: http://nbviewer.jupyter.org/url/www.inf.ufrgs.br/~mrpritt/
oc/greedy-independent-set.ipynb.

Solução do exercício 6.14.
Não. Primeiramente, a restrição ∏

p∈P

xp = 10! (C.20)

não é linear. Mas mesmo ignorando isso as restrições não definem uma bijeção entre
números e posições. O conjunto completo de soluções é

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

1, 2, 3, 4, 6, 6, 6, 7, 10, 10

1, 2, 4, 4, 4, 5, 7, 9, 9, 10

1, 3, 3, 3, 4, 6, 7, 8, 10, 10

1, 3, 3, 4, 4, 4, 7, 9, 10, 10

2, 2, 2, 3, 4, 6, 7, 9, 10, 10

Solução do exercício 7.2.

Conjunto independente máximo A matriz de coeficientes contém dois coeficientes
igual 1 em cada linha, que correspondem com uma aresta, mas geralmente não é
totalmente unimodular. Por exemplo, o grafo completo com três vértices K3

1

2 3
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C. Soluções dos exercícios

gera a matriz de coeficientes 1 1 0
1 0 1
0 1 1


cuja determinante é −2. A solução ótima da relaxação inteira 0 ≤ xi ≤ 1 é x1 = x2 =
x3 = 1/2 com valor 3/2, a Fig. C.1 mostra o polítopo correspondente. (Observação:
A transposta dessa matriz satisfaz os critérios (i) e (ii) da nossa proposição, e caso o
grafo é bi-partido, também o critério (iii). Portanto Conjunto independente máximo
pode ser resolvido em tempo polinomial em grafos bi-partidos).

Figura C.1.: Polítopo {x ∈ R3 |

x1 + x2 ≤ 1, x1 + x3 ≤ 1, x2 +
x3 ≤ 1, 0 ≤ xi ≤ 1}. (O visu-
alizador usa os eixos x = x1,
y = x2, z = x3.)

Emparelhamento perfeito com peso máximo A matriz de coeficientes satisfaz cri-
tério (i). Ela tem uma linha para cada vértice e uma coluna para cada aresta do
grafo. Como cada aresta é incidente a exatamente dois vértices, ela também satisfaz
(ii). Finalmente, a bi-partição V1

.
∪ V2 do grafo gera uma bi-partição das linhas que

satisfaz (iii). Portanto, a matriz é TU, e o Emparelhamento perfeito com peso máximo
pode ser resolvido em tempo polinomial usando a relaxação linear.

Problema de transporte A matriz de coeficientes satisfaz critério (i). Podemos re-
presentar o problema como grafo bi-partido completo Kn,m entre os depósitos e os
clientes. Desta forma, com o mesmo argumento que no último problema, podemos
ver, que os critérios (ii) e (iii) são satisfeitos.

Conjunto dominante A matriz de coeficientes satisfaz critério (i), mas não critério
(ii): cada linha e coluna correspondente com vértice v contém |N(v)| + 1 coeficientes
não-nulos. Mas, não é obviou se a matriz mesmo assim não é TU (lembra que o critério
é suficiente, mas não necessário). O K3 acima, por exemplo, gera a matriz1 1 1

1 1 1
1 1 1


que é TU. Um contra-exemplo seria o grafo bi-partido K1,3

1 2

3 4

que gera a matriz de coeficientes 
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1


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com determinante −2. Isso não prova ainda que a relaxação linear não produz resul-
tados inteiros ótimos. De fato, nesse exemplo a solução ótima da relaxação inteira é a
solução ótima inteira D = {1}.
Um verdadeiro contra-exemplo é um ciclo com cinco vértices C5

1

2
3

4
5

com matriz 
1 0 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 1 1 0
1 1 0 0 1


(cuja determinante é 3). A relaxação linear desse sistema tem a solução ótima x1 =
x2 = x3 = x4 = x5 = 1/3 com valor 5/3 que não é inteira.

Solução do exercício 7.4.
A formulação possui 14 restrições, correspondendo com as 14 arestas. Como o grafo é
4-regular, cada vértice ocorre 4 vezes no lado esquerdo de uma restrição, e somando
todas restrições obtemos

4
∑
i∈[7]

xi ≤ 14

⇒∑
i∈[7]

xi ≤ 14/4

⇒∑
i∈[7]

xi ≤ b14/4c = 3,

que não é suficiente. Para obter uma desigualdade mais forte, vamos somar sobre todos
triângulos. Somando primeiro as restrições das arestas de cada triângulo (u, v,w)
obtemos

2xu + 2xv + 2xw ≤ 3⇒xu + xv + xw ≤ b3/2c = 1.

Somando agora as restrições obtidas desta forma de todos 14 triângulos do grafo (cada
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C. Soluções dos exercícios

vértice é parte de 6 triângulos) obtemos a desigualdade desejada

6
∑
i∈[7]

xi ≤ 14

⇒∑
i∈[7]

xi ≤ b14/6c = 2.

(Outra abordagem: Supõe, sem perda de generalidade, que x1 = 1 na solução ótima.
Pelas restrições x1+xi ≤ 2 temos xi = 0 para i ∈ {3, 4, 5, 6}. Pela restrição x2+x7 ≤ 1,
portanto

∑
1≤i≤7 xi ≤ 2.)

Solução do exercício 7.5.
Seja S̄ = [n] \ S e m = maxi∈S ai e m̄ = maxi∈S ai. A idéia é somar desigualdades
xi ≤ 1 para i ∈ S até o corte de Gomory obtido pela divisão pelo coeficiente máximo em
S rende a desigualdade desejada. Seja δ = max{m̄+1,m}. Somando (δ−ai)xi ≤ δ−ai
obtemos ∑

i∈S

δxi +
∑
i∈S̄

aixi ≤ b+
∑
i∈S

(δ− ai)xi < δ|S| ≤ δ|S|− 1.

Aplicando o corte de Gomory com multiplicador 1/δ obtemos∑
i∈S

xi ≤ b|S|− 1/δc = |S|− 1

porque ai ≤ m̄ < max{m̄+ 1,m} = δ e logo bai/δc = 0 para i ∈ S̄.
Solução do exercício 7.6.
x1 + x6 + x7 ≤ 2 porque uma rota não contém subrotas. Portanto x1 + x2 + x5 +
x6 + x7 + x9 ≤ 5. Supõe x1 + x2 + x5 + x6 + x7 + x9 = 5. Temos três casos: x1 = 0,
x6 = 0 ou x7 = 0. Em todos os casos, as restantes variáveis possuem valor 1, e no
grafo resultante sempre existe um vértice de grau 3 (o vértice no centro, da esquerda,
de acima, respectivamente), que não é possível numa solução válida.

Solução do exercício 7.8.
O sistema inicial

z = x1 +3x2
w1 = −2 +x1
w2 = 3 −x2
w3 = −4 +x1 +x2
w4 = 12 −3x1 −x2

não é primalmente nem dualmente viável. Aplicando a fase I (pivôs x0–w3, x0–x1) e
depois fase II (pivôs x2–w1, w3–w2, w1–w4) gera o dicionário final

z = 12 −8/3w2 −1/3w4
x2 = 3 −w2
w3 = 2 −2/3w2 −1/3w4
x1 = 3 +1/3w2 −1/3w4
w1 = 1 +1/3w2 −1/3w4
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cuja solução x1 = 3, x2 = 3 já é inteira.
No segundo sistema começamos com o dicionário

z = x1 −2x2
w1 = 60 +11x1 −15x2
w2 = 24 −4x1 −3x2
w3 = 59 −10x1 +5x2

e um pivô x1–w3 gera a solução ótima fracionária

z = 4.9 −0.1w3 −1.5x2
w1 = 113.9 −1.1w3 −9.5x2
w2 = 4.4 +0.4w3 −5x2
x1 = 4.9 −0.1w3 +0.5x2

e a linha terceira linha (x1) gera o corte

w4 = −0.9 +0.1w3 +0.5x2

Com o pivô w4–w3 obtemos a solução ótima inteira

z = 4 −w4 −x2
w1 = 104 −11w4 −4x2
w2 = 8 +4w4 −7x2
x1 = 4 −w4 +1x2
w3 = 9 +10w4 −5x2
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Nomenclatura

[n,m] conjunto {n,n+ 1, . . . ,m}, página 42

[n] conjunto {1, 2, . . . , n}, página 111

argmax valor para que uma função atinge o máximo, página 31

argmin valor para que uma função atinge o mínimo, página 59

B conjunto booleano {0, 1}, página 80(
n
k

)
coeficiente binomial, página 16

dxe menor número inteiro maior ou igual a x, página 130

co-NP classe de problemas de decisão com certificados polinomiais para instâncias
negativas, página 52

.
∪ união disjunta, página 62

bxc maior número inteiro menor ou igual a x, página 82

� significadamente menor que, página 38

Z conjunto de números inteiros, página 79

B conjunto de variáveis básicas, página 26

N conjunto de variáveis nulas, página 26

NP classe de problemas de decisão com certificados polinomiais para instâncias
positivas, página 52

R conjunto de números reais, página 10

sup supremo, menor limite superior de um conjunto, página 75

aj Coluna j da matrix A = (aij), página 13

At matriz transposta, página 49

ai Linha i da matrix A = (aij), página 13

Cn espaço vetorial com vetores de n componentes sobre o campo C, página 13

Cn×m grupo de matrizes de tamanho n×m sobre o campo C, página 13

N+(v) conjunto de arcos saintes de v, página 114
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N−(v) conjunto de arcos saintes de v, página 114

Z+ conjunto de números inteiros não-negativos, página 132
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