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Parte I.

Programacao linear






Introducdo

If one would take statistics about which mathematical problem is
using up most of the computer time in the world, then ... the answer
would probably be linear programming. (Laszlo Lovasz)






1. Introducao

1.1. Exemplo

Exemplo 1.1 (No Ildo)

Antes da aula visito o Ildo! para tomar um café e comer um Croissant. Ele me
conta: “Estou especializado em Croissants e Strudels. Tenho um lucro de 20
centavos por Croissant e 50 centavos por Strudel. Diariamente até 80 clientes
compram um Croissant e até 60 um Strudel.” Mas infelizmente, o Ildo apenas
disponibiliza de 150 ovos e 6 kg de agicar por dia. Entre outros ingredientes,
preciso um ovo e 50g de agticar para cada Croissant e um ovo e meio e 50g
de agticar para cada Strudel. “Agora, professor, quantas Croissants e Strudels
devo produzir para obter o maior lucro?”

Sejam ¢ o numero de Croissants e s o numero de Strudels. O lucro do Ildo em
Reais é 0.2¢ + 0.5s. Seria 6timo produzir todos 80 Croissants e 60 Strudels,
mas uma conta simples mostra que nao temos ovos e agicar suficiente. Para
produzir os Croissants e Strudels precisamos c+1.5s ovos e 50c+50sg de agiicar
que nao podem ultrapassar 150 ovos e 6000g. Com a condigao ébvia que ¢ > 0
e s > 0 chegamos no seguinte problema de otimizacao:

maximiza 0.2c¢ + 0.5s, (1.1)
sujeito a ¢+ 1.5s < 150,
50c + 50s < 6000,
c < 80,
s < 60,
c,s > 0.

Como resolver esse problema? Com duas variaveis podemos visualizar a situa-
¢ao num grafo com ¢ no eixo x e s no eixo y

No lldo

'Uma lancheria que existia na Instituto de Informatica até



1. Introducao

Otimizando o lucro do bar

100
90 - (6000-50¢)/50 N

80 | 2/3(150-) N

70 -

s=60

s (strudels)

c=80 L

0 10 20 30 40 50 60 70 80 90 100
c (croissants)

que nesse caso permite resolver o problema graficamente. Desenhando diversos
conjunto de nivel (ingl. level set) com valor da fungao objetivo 10, 20, 30, 40
é facil observar que o lucro maximo encontra-se no ponto ¢ = s = 60, e possui
um valor de 42 reais.

O

A forma geral de um problema de otimizagao (ou de programagao matemdtica)
é

opt  f(x),
sujeito a x eV,

com
e um objetivo opt € {max, min},
e uma funcao objetivo (ou fungao critério) f: V — R,
e um conjunto de solugdes vidveis (ou solugoes candidatas) V.

Falamos de um problema de otimizag¢ao combinatoria, caso V é discreto.

10



1.1. Exemplo

Nessa generalidade um problema de otimizagao é dificil ou impossivel de re-
solver. O exemplo 1.1 é um problema de otimiza¢ao linear (ou programagao
linear):

e as variaveis de decisao sao reais: Xj,...,Xn € R
e a fungado de otimizagao é linear em x1,...,Xn:
f(X1yeeeyXn) =C1X7 + -+ + CnXn (1.2)

e as solugoes vidveis sao definidas implicitamente por m restricoes lineares

anxy +apxy + - -+ amXxn > by,
a1xy + apx + -+ - + aapXxn > by,

~ o~~~
—_ = =
S O = W
I — — —

Am1X1 + Am2X2 + -+ - + AmnXn >in b,

com b€ {<, =, >}

Exemplo 1.2 (O problema da dieta (Dantzig))

Suponha que temos uma tabela de nutrientes de diferentes tipos de alimentos.
Sabendo o valor diario de referéncia (VDR) de cada nutriente (quantidade de
nutriente que deve ser ingerido) e o prego de cada unidade de alimento, qual a
dieta 6tima, i.e. a dieta de menor custo que contém pelo menos o valor diario
de referéncia?

Com m nutrientes e n alimentos, seja ajj a quantidade do nutriente i no ali-
mento j (em g/g), 1y o valor diario de referéncia do nutriente i (em g) e c;
o prego do alimento j (em R$/g). Queremos saber as quantidades x; de cada
alimento (em g) que

minimiza c¢ix;+ -+ ChXn, (1.7)

sujeito a apxy + -+ 4 ApXxn > 17,

AmiX1 + -+ QmnXn 2> Tm, (1'9)
Xly«eeyXn > 0. (1.10)
O

Exemplo 1.3 (Problema de transporte (Hitchcock))
Uma empresa agraria tem m depoésitos, cada um com um estoque de aj, i € [m]
toneladas de milho. Ela quer encaminhar bj, j € [n] toneladas de milho para

11



1. Introducao

n clientes diferentes. O transporte de uma tonelada do depésito i para cliente
j custa RS cyj. Qual seria o esquema de transporte de menor custo?

Para formular o problema linearmente, podemos introduzir varidveis xi; que
representam o peso dos produtos encaminhados do depdsito i ao cliente j, e
queremos resolver

minimiza Z CijXijy (1.11)
ie[ml],j€n]

sujeito a Z xij < ay, para todo fornecedor i € [m], (1.12)
j€MmI
Z Xij = bj, para todo cliente j € [n], (1.13)
ie[m]
xij > 0, para todo fornecedor i € [m] e cliente j € [n].

Concretamente, suponha que temos a situagao da Figura 1.1. A figura mostra

Cliente 1 Cliente 1

Fornecedor 1 Fornecedor 1

1 Cliente 2 Cliente 2

e

Fornecedor 3 Fornecedor 3

Cliente 3 Cliente 3

Figura 1.1.: Esquerda: Instdncia do problema de transporte. Direita: Solugao
6tima correspondente.

as toneladas disponiveis de cada fornecedor, a demanda (em toneladas) de
cada cliente e as distancias (em km) entre eles. O transporte custa R$ 1000
por km e tonelada. Observe que um transporte do fornecedor 1 para cliente 3 e
fornecedor 3 para cliente 1 nao é possivel. Nos usaremos uma distancia grande

12



1.1. Exemplo

de 100 km nesses casos (uma outra possibilidade é usar restrigoes x13 = x31 = 0
ou remover as variaveis x13 e x31 do modelo).

minimiza 3xq7 + %92 + 100x13 + 4%x21 + 2x22
+ 4x3 + 100x37 + 3x32 + 3x33,
sujeito a xq17 +x12 + %13 <5,
X21 +x22 + %23 <7,
x31 +x32 +x33 < 3,
X711 +X21 + %31 =7,
X12 +X22 +X32 = 3,
x13 + X23 + X33 = 5,
X115 X125 X135 X215 X22, X23, X31, X32, X33 = 0.

Qual seria a solugao 6tima? A Figura 1.1 (direita) mostra o nimero 6timo de
toneladas transportadas. O custo minimo ¢ 46 (em R$ 1000). O

Podemos simplificar a descri¢do de um programa linear usando notacao matri-
cial. Com A := (ay) € R™™ b= (bj) e R™, c:=(ci) € R" e x = (x;) € R"
o problema 1.2-1.6), pode ser escrito de forma

opt ctx,
sujeito a ayx > by, ie[m]

(Denotamos com a; a i-ésima linha e como @ a j-ésima coluna da matriz A.)
Em caso todas restri¢oes usam a mesma relacao <, > ou = podemos escrever

opt  c'x, opt ', opt  c'x,

sujeito a Ax < b, sujeito a Ax >Db sujeito a Ax =b.

> ou

Exemplo 1.4 (Problema do Ildo em forma matricial)
O problema 1.1 em forma matricial é

maximiza (0.2 0.5)(c s)t

1 15 150
.. 50 50 c 6000
sujeito a 10 (s) < 80
0 1 60

(cs)>0.

13
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Observagao 1.1 (“Programar” linearmente)

Como explicado na segao historica 1.4, o termo “programagao” em “programagao
linear” se refere a “agendamento” ou “planejamento”. Porém, formular progra-
mas lineares é uma atividade muito similar & programacao de computadores.
Um programa linear consiste de declaracoes de varidveis, constantes, uma fun-
¢ao objetivo e uma série de restrigoes. Podemos escrever um programa linear
de forma mais “computacional” para enfatizar a similaridade com programas.
No caso do problema de Hitchcock 1.3, por exemplo, podemos escrever

var xij, i€ [m],jenl { declaragdo variaveis }
const a;i, i€ [m] { estoques }

const bj, je€n] { demandas 7}

max D icfmljem C4Xij

st Zie[n}xijgai, ie[m] { limite estoque }

st Zie[m]xij:bj’ jen] { satisfagdo demanda }

Podemos ainda, igual a programagao, introduzir nomes para fungoes lineares
para facilitar a formulacao. Por exemplo enviado(i) = Zje[n] xij ¢ a quanti-
dade total enviada pelo i-ésimo fornecedor. Similarmente, podemos escrever
recebido(j) = } ;< Xij para a quantidade total recebida pelo j-ésimo cliente.
Com isso nosso “programa’ linear fica

var xij, 1€ [ml],jeMm] { declaragio variaveis }
const a;i, i€ [m] { estoques }
const by, je[n] { demandas }

const ¢y, ieml,jen] { custos }

function enviado(i) = Zje[n} Xij

function recebido(j) = 3 i<y Xij

max D icqmjem CHXy

st enviado(i) < a;j, i€[m] { limite estoque }

st recebido(j) =bj, je€[n] { satisfagdo demanda }

Vamos conhecer linguagens reais para especificar programas lineares no parte
pratico. Um exemplo ¢ Julia/JuMP explicado no appéndice B. A nossa espe-
cificacdo acima pode ser vista como “pseudo-codigo” de uma linguagem atual
como Julia/JuMP. O

1.2. Formas normais

Conversoes
E possivel converter

14



1.2. Formas normais

e um problema de minimizac¢ao para um problema de maximizacao

min c'x & —max —ctx

(o sinal — em frente do max é uma lembranca que temos que negar a

solucdo depois.)
e uma restrigdo “>" para uma restrigao “<”
aix > b; &= —a;x < —b;
e uma igualdade para desigualdades
ax = b &= aix < b; AN ajx > b;
Conversoes

e uma desigualdade para uma igualdade

ax <b <<= aix+xn1 =bi Axp >0
aix > b &< aix —xn+1 = bi Axnp1 >0

usando uma nova varidvel de folga ou excesso xny1 (inglés:

surplus variables).
e uma variavel x; sem restricoes para duas positivas
xi >0Ax; >0

substituindo x; por xf — X .

slack and

Essas transformacgoes permitem descrever cada problema linear em uma forma

padrao.

Forma padrio

maximiza c'x,

sujeito a Ax <D,

As restrigdes x > 0 se chamam triviais.

15



1. Introducao

Exemplo 1.5
Dado o problema

minimiza 3x; — 5%, + X3,
sujeito a x; —xp —x3 > 0,
5x1 + 3% + x3 < 200,
2x1 + 8x2 + 2x3 < 500,
x1,%x2 > 0.
vamos substituir “minimiza” por “maximiza”, converter a primeira desigual-
dade de > para < e introduzir x3 = xgr —x3 com duas varidveis positivas x; e
X3 para obter a forma padrao
maximiza — 3x;+5x; — x; +x3,
sujeito a —xj+x2+x3 —x; <0,
5%1 4+ 3%, + xgr —x3 <200,
2x1 4+ 8x2 + 2x3 — 2x5 < 500,

+ —
X1,X2,X3,%3 > 0.

Em notagdo matricial temos

_53 0 1 1 1 =1
c=1 51 b=1200); A=|5 3 1 -1
500 2 8 2 2

O

Definigao 1.1 (Solugbes viaveis, inviaveis e 6timas)

Para um programa linear P em forma normal, um vetor x € R™ é uma solucdo
vidvel, caso Ax < b e x > 0. P é vidvel caso existe alguma solugao viavel,
caso contrario P é invidvel. Um vetor x* € R™ é uma solug¢ao dtima caso
ctx* = max{ctx | Ax < b,x > 0}.

Definigao 1.2 (Programas ilimitados)
Uma programa linear em forma normal é ilimitado caso existe um v € R tal
que para todo w > v existe uma solucao viavel x com ctx > w.

1.3. Solucido por busca exaustiva

Uma observagao importante na solugdo de um programa linear é que a solugao
Otima, caso exista, somente ocorra na borda de regiao das solugdes vidveis

16



1.3. Solugao por busca exaustiva

(compara com a figura na pagina 9). Mais especifico a solu¢ao 6tima ocorre
num vértice (ou ponto extremo) dessa regiao, definido pela interse¢ao de n
restrigoes linearmente independentes. Isso justifica tratar a programacao linear
como problema de otimizagdo combinatéria, porque temos um ntmero finito
de (TT?) candidatos para a solugao 6tima. Procurando o melhor entre todos
candidatos nos também fornece um algoritmo (muito ineficiente) para encontrar
uma solucao 6tima de um programa linear, caso exista.

Definigao 1.3
Um conjunto C C R™ é convero, caso para todo par de pontos x,y € C a sua
combinagao convexa Ax + (1 —A)y para A € [0, 1] também pertence a C.

Proposicao 1.1
A regido de solugoes vidveis V = {x € R™ | Ax < b} definido por um programa
linear é convexa.

Prova. Sejam x,y € V. Entao
AM+ (1=Ay) =AAx+ (1 —A)Ay <Ab+ (1 —A)b =b.

Definicao 1.4
Um ponto x € C de uma regiao C C R™ é um wértice ou ponto extremo, caso
nao existe umy #0 tal quex+ye€ Cex—y € C.

Proposigao 1.2
Caso existe uma tnica solucao 6tima de max{c'x | x € V} ela é um vértice de
V.

Prova. SupéGe que a solugao 6tima x* nao é um vértice de V. Entao existe
um y tal que x+y € Vex—y € V. Por x* ser a tnica solugao étima temos
ct(x*+y) < cx* e ct(x*—y) < ctx*, ie., ¢ty < 0 e —cly < 0, uma contradicao.
|

Proposigao 1.3
Um vértice de V = {x € R™ | Ax < b} é a intersecao de n restri¢oes linearmente
independentes.

Prova. Para um vértice v € V, seja A, a matriz formado das linhas a; de A
tal que a;v = by, e b,, os lados direitos correspondentes.

Sejav € V a interse¢ao de n restrigoes linearmente independentes, i.e. posto(A,)
n. Supde v nao é um vértice. Logo existe um y tal que x +y,x —y € V que

17
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satisfazem A, (x+y) < b, e A, (x—y) < b,. Como A,x = b, obtemos A,y <0
e —Ayy <0, i.e. Ayy =0, uma contradi¢do com posto(A,) = n.

Agora seja v € V um vértice e supoe posto(A,) < m, i.e. existe um y tal que
Ayy = 0. Para as linhas a; em A com aiv < bj existe um & > 0 tal que

ai(v+8y) <bjeai(v—=0y) <b;
e logo
Av+dy) <beA(v—>0y) <D,

porque A,y = 0, em contradi¢cao com o fato que v é um vértice. |

Proposigao 1.4
Caso existem miiltiplas solucoes 6timas de max{ctx | x € V} e V é limitado, um
vértice de V é uma solugao 6tima.

Prova. Por indugdo sobre n — posto(A,). Caso n — posto(A,) = 0, v é
um vértice pela proposi¢ao (1.3). Para n — posto(A,) > 0 existe um y com
Ayy = 0. Seja p = max{t|v+ty € V}. O valor u existe porque V é limitado
(e compacto). Como a;(v+ pny) < b; para cada linha i temos que

p = min{(b; — aiv)/aiy | ayy > 0} (+H)

Seja i* o indice da linha que satisfaz (+) com igualdade. Define v/ = v + py.
Temos Ay = Ayw + pAyy = Ayv = by, logo A,/ contém as linhas de A, e
pelo menos a linha aj+ a mais. Ainda, como A,y =0 mas ai+y # 0 temos que
posto(A,/) > posto(A,). Logo, pela hipotese da inducio, existe um vértice que
¢é uma solucao 6tima. |

Observagao 1.2

Caso existem multiplas solucoes 6timas de max{c'x | x € V}, mas V nao é
limitado, é possivel que nao existe um vértice 6timo. Um exemplo é o sistema
max{x | (thl) € RZ)O <x; < 1L O

Usando os resultados acima, obtemos um algoritmo (muito ineficiente) para
encontrar uma solugao 6tima de um programa linear (limitado).

x* :=null

for todas (?11) selegdes de M restrigdes lin. indep.
determine a intersec8o x das m restrigdes
if Ax<b e ctx > ctx* then

x*i=x

18
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1.4. Notas histéricas

end if
end for
if x* #%null then

return ‘‘Solucgdo otima & Xx* ou sistema ilimitado’’
else

return ‘‘N3do possui solugdo ou ndo possui vértice?’’
end if

1.4. Notas histéricas

Histéria da programacio linear

e Jean Baptiste Joseph Fourier (1826): Método de resolver um sistema de
desigualdades (eliminagao de Fourier-Motzkin) Williams 1986.

e Leonid Kantorovich (1939): Programacao linear.
e George Bernard Dantzig (1948): Método Simplex.
e John von Neumann: Dualidade.

e Leonid Khachiyan (1979): Método de ellipsoides.

e Narendra Karmarkar (1984): Métodos de pontos interiores.

Pesquisa operacional, otimizacdo e “programacio”

e “The discipline of applying advanced analytical methods to help make
better decisions” (INFORMS)

O nome foi criado durante a segunda guerra mundial, para métodos ci-
entificos de analise e predi¢ao de problemas logisticos.

Hoje se aplica para técnicas que ajudam tomar decisoes sobre a execugao
e coordenacao de operagoes em organizacoes.

e Problemas da pesquisa operacional sao problemas de otimizacao.

“Programacao” # “Programacao”

— Nao se refere & computagao: a nocao significa “planejamento” ou
“agendamento”.

19
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Técnicas da pesquisa operacional

e Em geral: Técnicas algoritmicas conhecidas como

— Modelagem matemaética (equagoes, igualdades, desigualdades, mo-
delos probabilisticos,...)

— Algoritmos gulosos, randémicos, ...; programacao dinamica, linear,
convexo, ...

— Heuristicas e algoritmos de aproximacao.

e Algumas dessas técnicas se aplicam para muitos problemas e por isso sao
mais comuns:

— Exemplo: Programagao linear.

1.5. Exercicios

(Solugoes a partir da pagina 201.)

Exercicio 1.1
Na defini¢do da programacao linear permitimos restri¢cdes lineares da forma

ai1x] + apxy + - -+ QinXn <4 by
com <€ {<, =, >}. Por que nao permitimos > € {<, >} também? Discute.

Exercicio 1.2
Procura a tabela nutricional de algum restaurante e resolve o problema da dieta
(exemplo 1.2).

Exercicio 1.3

Um investidor pode vender acoes de suas duas empresas na bolsa de valores,
mas esta sujeito a um limite de 10.000 operagoes diarias (vendas por dia). Na
cotagao atual, as agoes da empresa A valorizaram-se 10% e agora cada uma vale
R$ 22. J4 a empresa B teve valorizagao de 2% e cada agao vale R$ 51. Sabendo-
se que o investidor possui 6.000 agoes da Empresa A e 7.000 da empresa B,
maximize seu lucro na BOVESPA e diga qual o lucro obtido.

Exercicio 1.4

Dona Maria adora ver seus netinhos Marcos, Renato e Vinicius bem alimenta-
dos. Sempre na hora de cozinhar ela leva em conta o quanto eles gostam de
cada prato para fazé-los comer o méaximo possivel. Marcos gosta da lasanha e
comeria 3 pratos dela apds um prato de sopa; Renato prefere lanches, e comeria
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5 hambirgueres, ignorando a sopa; Vinicius gosta muita da massa a bolonhesa,
e comeria 2 pratos apds tomar dois pratos de sopa. Para fazer a sopa, sao ne-
cessérios entre outros ingredientes, 70 gramas de queijo por prato e 30 gramas
de carne. Para cada prato de lasanha, 200 gramas de queijo, e 100 gramas
de carne. Para cada hamburguer sao necesséarios 100 gramas de carne, e 100
gramas de queijo. Para cada prato de massa a bolonhesa sdao necessarios 100
gramas de carne e 30 gramas de queijo (ralado para por sobre a massa). Seus
netos vieram visita-la de surpresa, e tendo ela somente 800 gramas de carne e
1000 gramas de queijo em casa, como ela poderia fazé-los comer o maior ni-
mero de pratos, garantindo que cada um deles comera pelo menos dois pratos,
e usando somente os ingredientes que ela possui?

Exercicio 1.5

A empresa “Luz para o mundo” produz dois tipos de lampadas, cada um com
partes metalicos e partes eléctricos. A gerencia quer saber com quantas uni-
dades produzidas por tipo o lucro é maximizado. A producdo de uma unidade
de produto 1, precisa uma unidade de partes metalicos e duas unidades de
componentes eléctricos. A producao de uma unidade de produto 2, precisa trés
unidades de partes metalicos e duas unidades de componentes eléctricos. A
empresa tem um estoque de 200 unidades de partes metalicos e 300 unidades
de componentes eléctricos. Cada unidade de produto um tem um lucro de R$
1 e cada unidade de produto 2, até um limite de 60 unidades, um lucro de R$
2. (Cada unidade acima de 60 no caso do produto 2 nao rende nada.)

Exercicio 1.6

A empresa “Janela jéia” com trés empregados produz dois tipos de janelas: com
molduras de madeira e com molduras de aluminio. Eles tém um lucro de 60
R$ para toda janela de madeira e 30R$ para toda janela de aluminio. Joao
produz as molduras de madeira. Ele consegue produzir até seis molduras por
dia. Sylvana é responsével pelas molduras de aluminio, e ela consegue produzir
até quatro por dia. Ricardo corta o vidro e é capaz de produzir até 48 m? por
dia. Uma janela de madeira precisa 6m? de vidro, e uma de aluminio §m?. A
empresa quer maximizar o seu lucro.

Exercicio 1.7

Uma empresa de ago tem uma rede de distribui¢ao conforme Figura 1.4. Duas
minas P; e P, produzem 40t e 60t de mineral de ferro, respectivamente, que sao
distribuidos para dois estoques intermediarios S; e S». A planta de producao
P tem uma demanda dem 100t de mineral de ferro. A vias de transporte tem
limites de toneladas de mineral de ferro que podem ser transportadas e custos
de transporte por tonelada de mineral de ferra (veja figura). A diregao da
empresa quer determinar a transportacao que minimiza os custos.
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R$ 2000/t

Figura 1.4.: Rede de distribuicao de uma empresa de ago.
Exercicio 1.8
Um importador de Whisky tem as seguintes restri¢coes de importacao
e no maximo 2000 garrafas de Johnny Ballantine por 70 R$ cada uma,
e no maximo 2500 garrafas de Old Gargantua por 50 R$ cada uma,
e no maximo 1200 garrafas de Misty Deluze por 40 R$ cada uma.

Dos Whiskies importados ele produz trés misturas A, B, C, que ele vende por
68 R$, 57 R$ e 45 RS, respectivamente. As misturas sao

e A: no minimo 60% Johnny Ballantine, no maximo 20% Misty Deluxe,
e B: no minimo 15% Johnny Ballantine, no maximo 60% Misty Deluxe,
e C: no méaximo 50% Misty Deluxe.

Quais seriam as misturas otimas, e quantas garrafas de cada mistura devem ser
produzidas para maximizar o lucro?

Observagoes:

e Use como varidveis o ntimero de garrafas xm, i da marca m usadas na
mistura 1i.

e Desconsidere a integralidade das garrafas.

Exercicio 1.9

A empresa de televisao “Boa vista” precisa decidir quantas TVs de 29"e 31"ela
vai produzir. Uma analise do mercado descobriu que podem ser vendidas no
méximo 40 TVs de 29"e 10 de 31"por més. O trabalho maximo disponivel por
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més é 500h. A producao de um TV de 29"precisa 20h de trabalho, ¢ um TV
de 31"precisa 10h. Cada TV de 29"rende um lucro de R$ 120 e cada de 31"um
lucro de R$ 80.

Qual a producgao 6tima média de cada TV por més?

Exercicio 1.10 (da Costa)

Um certo 6leo é refinado a partir da mistura de outros 6leos, vegetais ou nao
vegetais. Temos 6leos vegetais V1 e V2 e 6leos nao vegetais NV1 NV2 NV3.
Por restrigoes da fabrica, um méximo de 200 ton. de 6leos vegetais podem ser
refinados por més, e um méaximo de 250 ton. de 6leos néo vegetais. A acidez do
6leo desejado deve estar entre 3 e 6 (dada uma unidade de medida) e a acidez
depende linearmente das quantidades/acidez dos 6leos brutos usados. O prego
de venda de uma tonelada do 6leo ¢ R$ 150. Calcule a mistura que maximiza
o lucro, dado que:

Oleo Vi V2 NV1 NV2 NV3
Custo/ton 110 120 130 110 115
Acidez 88 6.1 20 42 50

Exercicio 1.11 (Campélo Neto)

Um estudante, na véspera de seus exames finais, dispoe de 100 horas de estudo
para dedicar as disciplinas A, B e C. Cada um destes exames é formado por
100 questoes, e o estudante espera acertar, alternativamente, uma questao em
A, duas em B ou trés em C, por cada hora de estudo. Suas notas nas provas
anteriores foram 6, 7 e 10, respectivamente, e sua aprovacao depende de atingir
uma média minima de 5 pontos em cada disciplina. O aluno deseja distribuir
seu tempo de forma a ser aprovado com a maior soma total de notas.

Exercicio 1.12 (Dasgupta et al. 2009)

Moe esta decidindo quanta cerveja Duff regular e quanta cerveja Duff Forte
encomendar a cada semana. Duff regular custa a Moe $1 por caneco e ele a
vende por $2 por caneco; Duff Forte custa $1.50 por caneco e ele vendo por $3
por caneco. Entretanto, como parte de uma complicada fraude de marketing, a
companhia Duff somente vende um caneco de Duff Forte para cada dois canecos
ou mais de Duff regular que Moe compra. Além disso, devido a eventos passados
sobre os quais ¢ melhor nem comentar, Duff ndo vendera Moe mais do que 3000
canecos por semana. Moe sabe que ele pode vender tanta cerveja quanto tiver.
Formule um programa linear em duas variaveis para decidir quanto de Duff
regular e quanto de Duff Forte comprar, para maximizar o lucro de Moe.
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Exercicio 1.13 (Dasgupta et al. 2009)

A companhia de produtos caninos oferece duas comidas para cachorro: Frisky
Pup e Husky Hound, que sdo feitas de uma mistura de cereais e carne. Um
pacote de Frisky Pup requer 1 quilo de cereal e 1.5 quilo de carne, e é vendido
por $7. Um pacote de Husky Hound usa 2 quilos de cereal e 1 quilo de carne,
e ¢ vendido por $6. O cereal bruto custa $1 por quilo e a carne bruta, $2
por quilo. H4 também o custo de $1.40 para empacotar o Frisky Pup e $0.60
para o Husky Hound. Um total de 240000 quilos de cereal e 180000 quilos de
carne estao disponiveis a cada més. O tnico gargalo de producgao esta no fato
de a fabrica poder empacotar apenas 110000 pacotes de Frisky Pup por més.
Desnecessario dizer, a geréncia gostaria de maximizar o lucro.

Formule o problema como um programa linear em duas variaveis.

Exercicio 1.14 (Vanderbei 2001)

Formule como problema de otimizacao linear e resolve graficamente.

Uma empresa de ago produz placas ou canos de ferro. As taxas de produgao
sdo 200t/h para placas e 140t/h para canos. O lucro desses produtos e 25$/t
para placas e 308/t para canos. Considerando a demanda atual, os limites de
producao sao 6000t de placas e 4000t de canos. Na semana atual sao 40h de
tempo de produgao disponivel. Quantas toneladas de placas e canos devem ser
produzidas para maximizar o lucro?

Exercicio 1.15 (Vanderbei 2001)

Formule como problema de otimizagao linear.

Uma pequena empresa aérea oferece um vdo de Pelotas, com escala em Porto
Alegre para Torres. Logo tem trés tipos de clientes que voam Pelotas—Porto
Alegre, Pelotas—Torres e Porto Alegre—Torres. A linha também oferece trés
tipos de bilhetes:

e Tipo A: bilhete regular.
e Tipo B: sem cancelamento.
e Tipo C: sem cancelamento, pagamento trés semanas antes de viajar.

Os pregos (em R$) dos bilhetes sao

Pelotas—Porto Alegre Porto Alegre-Torres Pelotas—Torres

A 600 320 720
B 440 260 560
C 200 160 280
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Baseado na experiéncia com esse v6o, o marketing tem a seguinte predicao de
passageiros:

Pelotas—Porto Alegre Porto Alegre-Torres Pelotas—Torres

A 4 8 3
B 8 13 10
C 22 20 18

O objetivo da empresa e determinar o ntimero 6timo de bilhetes para vender
de cada tipo, respeitando um limite de 30 passageiros em cada v6o e o limite
dos passageiros previstos em cada categoria, que maximiza o lucro.

Exercicio 1.16
Resolva graficamente.

maximiza 4x; + xy,
sujeito a —x;+x; <2,
x1 + 8x2 < 36,
Xy < 4,
x1 < 4.25,
x1,%2 > 0.

(a) Qual a solugao 6tima?
(b) Qual o valor da solugao 6tima?

Exercicio 1.17
Escreve em forma normal.

minimiza z = —5x; —5x; — 5x3,

sujeito a —6x7 —2xy —9x3 <0,
—9%1 —3x2 + 3x3 = 3,
X1, X2,%3 > 0.

maximiza z = —6x; — 2xy — 6Xx3 + 4x4 + 4xs,
sujeito a — 3x7 — 8%y — 6x3 — 7x4 — 5x5 = 3,
5x1 — 7%y + 7x3 + 7x4 — 6X5 < 6,
Tx1 — 9% + 5x3 + 7x4 — 10x5 = —6,

X1y X2y X3y X4, X5 > 0.
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26

maximiza z =7x;+4x; + 8x3 + 7x4 — 9xs,
sujeito a —4x; — Ixy — 7x3 — 8x4 + 6X5 = —2,
X1 +4x2 + 2x3 + 2x4 — 7x5 > —7,
— 8% + 2x2 + 8x3 — 6X4 — 7X5 = —7,

X1y X2, X3, X4, X5 > 0.

minimiza z = —6x; + 5x; + 8x3 + 7x4 — 8xs,

sujeito a —5x; —2x) +x3 — 9Ixq4 — 7x5 =9,
7x1 + 7x2 + 5%x3 — 3x4 + x5 = =8,
—5x1 —3x2 —5%x3 + Ix4 + 8x5 <0,

X1y X2y X3y X4y X5 > 0.



2. O método Simplex

Graficamente, é dificil resolver sistemas com mais que trés variaveis. Portanto é
necessario achar métodos que permitam resolver sistemas grandes. Um dos mais
importantes é o método Simples. Nos vamos estudar esse método primeiramente
através da aplicacao a um exemplo.

2.1. Um exemplo

Comegamos com o seguinte sistema em forma padrao:

Exemplo: Simplex

maximiza z = 6x; + 8x; + 5x3 + x4,
sujeito a  2x7 +x2 +x3 + 3x4 <5,
X1+ 3x2 + x3 + 2x4 < 3,
X1, X2,X3, X4 > 0.

Introduzimos variaveis de folga e reescrevemos as equacgoes:

Exemplo: Com variaveis de folga

maximiza z = 6%+ 8x2 + 5x3 + x4, (2.1)
sujeito a wj; =5—2x; —x2 — X3 — 3x4,
wy =3 —x1 — 3X2 — X3 — 2X4,

X1y X2y X3y X4, W1, W) > 0.

Observagao 2.1

Nesse exemplo é facil obter uma solugéo vidvel, escolhendo x; = xp = x3 =
x4 = 0. Podemos verificar que w; = 5 e wy = 3 e todas as restrigoes sao
respeitadas. O valor da funcao objetivo seria 0. Uma outra solugdo vidvel é
x1=1,%x2=%x3=%x4 =0, w; =3, wy) =2 com valor z = 6. O
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Com seis variaveis e duas equacoes lineares independentes o espaco de solugoes
do sistema de equacées lineares dado pelas restricoes tem 6 — 2 = 4 graus de
liberdade. Uma solucao viavel com esse ntimero de varidveis nulas (igual a 0)
se chama uma solucdo bdsica vidvel. Logo nossa primeira solugao acima é uma
solucao bésica vidvel.

A idéia do método Simplex é percorrer solucoes bésicas vidveis, aumentando
em cada passo o valor z da fungéo objetivo.

Logo nosso proximo objetivo é aumentar o valor da fungao objetivo z. Para
esse fim, podemos aumentar o valor das varidveis xj, X3, X3 ou X4, pois o co-
eficiente delas é positivo. Escolhemos x4, porque essa varidvel tem o maior
coeficiente. Nao podemos aumentar x4 arbitrariamente: Para respeitar as res-
trigdes wi,wy > 0 temos os limites

Limites

Wy =5—-3x4>0&= x4 <5/3
wy=3—-2x4 >0 &= x4 <3/2

ou seja x4 < 3/2. Aumentando x4 o maximo possivel, obtemos x4 = 3/2 e
wy = 0. Os valores das demais variaveis nao mudam. Essa solugdo respeita
novamente todas as restrigoes, e portanto é vidvel. Ainda, como trocamos uma
variavel nula (x4) com uma outra ndo-nula (w;) temos uma nova solugao béasica
vidvel

Solucdo basica viavel

X1=x2=x3=0;%=3/2,w1 =1/2;w, =0

com valor da fungao objetivo z = 13.5.

O que facilitou esse primeiro passo foi a forma especial do sistema de equagoes.
Escolhemos quatro variaveis independentes (x7, X2, X3 € x4) e duas variaveis
dependentes (wy e wy). Essas varidveis sdo chamadas nao-bdsicas e bdsicas,
respectivamente. Na nossa solugao bésica vidvel todas varidveis nao-basicas
sao nulas. Logo, pode-se aumentar uma variavel nao-bésica cujo coeficiente
na fungao objetivo seja positivo (para aumentar o valor da fungao objetivo).
Inicialmente tem-se as seguintes variaveis basicas e nao-bésicas

B ={wi,wy}; N = {x1,%2,%3, X4}
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Depois de aumentar x4 (e consequentemente zerar w;) podemos escolher
B={wi,xify N ={xi1,x2,%x3,W2}.

A variavel x4 se chama wvaridvel entrante, porque ela entra no conjunto de
varidveis bésicas B. Analogamente w; se chama varidvel sainte.

Para continuar, podemos reescrever o sistema atual com essas novas variaveis
bésicas e nao-bésicas. A segunda restricao 2.3 é facil de reescrever

Wy=3—%xX1—3x—X3—2X4 &= 2x4 =3 —Xx1 —3x2 — X3 — W)
= xqg=3/2—1/2x7—3/2x3 — 1/2x3 — 1/2w,

Além disso, temos que reescrever a primeira restricdo 2.2, porque a varidvel
basica wy depende de x4 que agora é basica também. Nosso objetivo é escrever
todas varidveis béasicas em termos de varidveis nao-béasicas. Para esse fim,
podemos usar combinacoes lineares da linhas, que eliminam as varidveis nao-
bésicas. Em nosso exemplo, a combinagao (2.2)—3/2(2.3) elimina x4 e resulta
em

w1 —3/2wy =1/2—1/2x1 +7/2x3 + 1/2x3

e colocando a varidvel nao-basica wy no lado direito obtemos
wy =1/2—1/2x1+7/2x3 + 1/2x3 + 3/2w;.

Temos que aplicar uma operagao semelhante & funcao objetivo que ainda de-
pende da variavel basica x4. Escolhemos (2.1)—9/2(2.3) para obter

2=27/243/2x1 —11/2x3 +1/2x3 — 9/2w».

Novo sistema

maximiza z=27/2+43/2x1 —11/2x; +1/2x3 — 9/2w»,
sujeito a wy =1/2—1/2x1+7/2x; + 1/2x3 + 3 /2w,
X4 = 3/2 - ]/2)(1 - 3/27(2 - ]/2)(3 - ]/ZWZ,

X1y X2y X3y X4, W1, W) > 0.

que obtemos apds uma operagao de trocar as varidveis x4 e W;. Essa operagao
se chama um pivd. Observe que no novo sistema é facil recuperar toda infor-
magao atual: zerando as varidveis nao-béasicas obtemos diretamente a solugao
x1=x2=x3=w;=0,w; =1/2 e x4 =3/2 com fungdo objetivo z = 27/2.
Antes de continuar “pivotando” introduzimos uma forma mais simples de es-
crever o sistema
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Dicionario
z =27/2 +3/2x1 —11/2x; +1/2x3 —9/2w;

wy =1/2 —1/2x1 +7/2x; +1/2x3 +3/2w;
X4 :3/2 —]/27(1 —3/2X2 —]/2)(3 —]/ZWZ

que se chama diciondrio (inglés: dictionary).

Excurso 2.1

Alguns autores usam um tableau em vez de um dicionério. Para n variaveis e
m restrigoes, um tableau consiste em n+ 1 colunas e m+ 1 linhas. Igual a um
dicionéario, a primeira linha corresponde com a funcao objetivo, e as restantes
linhas com as restrigoes. Diferente do dicionério a primeira coluna contém os
constantes, e as restantes colunas correspondem com as variaveis, incluindo as
bésicas. Nosso exemplo acima em forma de tableau é

X1 X2 X3 X4 Wj 4%
27/213/2 —11/2 12 0 0
1/211/2 —7/2 —1/2 0 1 —3/2
3/201/2  3/2 12 1 0

O

No préximo passo podemos aumentar somente x; ou X3 porque somente elas tém
coeficientes positivos. Aumentado x; temos que respeitar x; < 1 (da primeira
restrigao) e x; < 3 (da segunda). Logo a primeira restrigdo é mais forte, xj é a
variavel entrante, wy a varidvel sainte, e depois do pivé obtemos

Segundo passo

z =15 —3w; +5xp +2x3
xp =1 —2wy +7x2 +x3  +3w;
x4 =1 4w —5xy —x3 —2w,

No proximo pivo x; entra. A primeira restricdo nao fornece limite para x;,
porque o coeficiente de x; é positivo! Mas a segunda x; < 1/5 e x4 sai da base.
O resultado do pivo é
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Terceiro passo

z =16 —2w —X4 +x3 —2w,
x; =12/5 —=3/5w; —7/5x4 —2/5x3 +1/5w,
x; =1/5  +1/5wy —1/5x4 —1/5x3 —2/5w»

O proéximo pivo: x3 entra, Xy sai:

Quarto passo

z =17 —w; —2x4 —-5x3 —4wy
X1 =2 —w; —x3 +2x2 4wy
x3 =1 4w —x4 —bdxy —2wy

Agora, todos coeficientes da fung@o objetivo sdo negativos. Isso significa, que
nao podemos mais aumentar nenhuma variavel nao-basica. Como esse sistema
é equivalente ao sistema original, qualquer solugao tem que ter um valor menor
ou igual a 17, pois todas as variaveis sao positivas. Logo chegamos no resultado
final: a solugao

wWi=x4=%x2=wy=0;x1 =2;x3 =1

com valor objetivo 17, é 6timal

Concluimos esse exemplo com mais uma observacdo. O namero de solugoes
bésicas viaveis é limitado. Em nosso exemplo, se escolhemos um subconjunto
de quatro variaveis nulas, as duas equacoes determinam as varidveis restantes.
Logo temos no méaximo (i) = 15 solugoes bésicas viaveis. Em geral, com m
equagoes e M variaveis, uma solugao basica vidvel possui n — m variaveis nulas
e o nimero delas é limitado por (nfm). Portanto, se aumentamos em cada pivo

o valor da funcao objetivo, o0 método termina em no maximo ( "

n_m) passos.

Exemplo 2.1 (Solugao do problema do Ildo)
Exemplo da solucao do problema do Ildo na pagina 9.

z= 0/1 +41/5¢ +1/2s
wi; = 150 —c  —3/2s
wy; = 6000 —50c —50s
wy= 80 —C
Wy = 60 —S

Pivo s—wy
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z= 30 +1/5¢ —1/2wy

w1 = 60 —C +3/2W4
wy = 3000 —50c +50wy
W3 = 80 —C

s= 60 —Wy

Pivd c—w;q

z= 42 —1/5w; —1/5wy,
c= 60 —w;  +3/2wy

wy = +50w;  —25wy
wzy = 20 +wq —3/2wy
s= 60 —Wy

O resultado ¢ um lucro total de R$ 42, com os seguintes valores de variaveis:
c=60,s =60 wi =0, w) =0, w3 =20e wy =0. A interpretacao das
variaveis de folga é como segue.

e wi: Niumero de ovos sobrando: 0.
e wy: Quantidade de agucar sobrando: 0 g.
e wj: Croissants nao produzidos (abaixo da demanda): 20.

e wy: Strudels nao produzidos: 0.

2.2. O método resumido

Considerando n variaveis e m restrigoes:

Sistema inicial

maximiza z = E CjXj,

j€m]
sujeito a Z aijx; < by, i e [m],
jeml
xj > 0, j € [n].
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Preparacao
Introduzimos variaveis de folga

Z aijXj + Xn4i = by, ie [m],
j€m]

e escrevemos as varidveis de folga como dependentes das varidveis restantes

Xnii = bj — Z aijX;, ie [m].
jeMml

Solucdo basica viavel inicial
Se todos by > 0 (o caso contrario vamos tratar na proxima segao), temos uma
solugao béasica inicial

Indices das variaveis

Depois do primeiro passo, os conjuntos de varidveis bésicas e nao-basicas mu-
dam. Seja B o conjunto dos indices das variaveis basicas (nado-nulas) e N o
conjunto das variaveis nulas. No comego temos

B={n+1,n+2,...,n+m} N={1,2,...,n}

A forma geral do sistema muda para

z=2z+ Z (_l]'X]',
jeN
Xi:Bi*ZC_linj, ieB.
jeN

As barras em cima dos coeficientes enfatizam que eles mudam ao longo da apli-
cacao do método. Os coeficientes ¢ sao chamados custos reduzidos (ingl. redu-
ced costs).
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2. O método Simplex

Escolher variavel entrante (ingl. pricing)

Em cada passo do método Simplex, escolhemos uma varidvel nao-basica xy,
com k € N para aumentar o valor objetivo z. Isso somente é possivel para os
indices j tal que ¢; >0, i.e.

{]€N|(_Z]>O}

Escolhemos um k desse conjunto, e xi é a variavel entrante. Uma heuristica
simples é a regra do maior coeficiente, que escolhe

k = argmax{c; | ¢; > 0,j € N}

Aumentar a variavel entrante
Seja xx a variavel entrante. Se aumentamos Xy para um valor positivo, as
variaveis basicas tém novos valores

Xi = bj — QiXk ieB.
Temos que respeitar x; > 0 para 1 <1 < n. Cada equagao com aj > 0 fornece
uma cota superior para Xy:
xx < bi/ai.
Logo podemos aumentar xx ao maximo um valor

—1

-1
o := min bi/C_lik = | max dik/bi = (max dik/bi> > 0. (2.4)
ieB ieB ieB
aj >0 aj >0

Podemos escolher a variavel sainte entre os indices

{ieB|bi/ay = ak.

2.3. Sistemas ilimitados
Como pivotar?

e Considere o sistema

z =24 —x7 +2x2
X3 = X1 +X2
X4 =5 +x7 +4x2
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2.4. Encontrar uma solucao inicial: o método de duas fases
e Qual a préxima solugao bésica viavel?

e A duas equagbes nao restringem o aumento de x;: existem solugoes com
valor ilimitado.

2.4. Encontrar uma solucio inicial: o método de duas fases

Solucio basica inicial
e Nosso problema inicial é

maximiza z = E CjXj,

jeml
sujeito a Z aijx; < by, i€ [m],
jeMm]
x; > 0, i€ [n],

e com dicionario inicial
= i + E ijj
jEN
Xi = by — E Elinj, ieB.
jeEN
Solucio basica inicial

e A solucgéo basica inicial desse dicionério é

x=(0---0by---by)t

e O que acontece se existe um b; < 07

e A solugao béasica ndo é mais viavel! Sabe-se disso porque pelo menos uma
variavel basica tera valor negativo.
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2. O método Simplex

Sistema auxiliar

e Um método para resolver o problema: resolver outro programa linear

— cuja solucao fornece uma solucao bésica viavel do programa linear
original e

— que tem uma solucao bésica vidvel simples, tal que podemos aplicar
o método Simplex.

maximiza z = —xp,
sujeito a Z aijxj —xo < by, 0<i<m,
jeMml
xi > 0, ie[nl.

Resolver o sistema auxiliar

e E facil encontrar uma solugao viavel do sistema auxiliar:
— Escolhe x; = 0, para todos 1 € [n].
— Escolhe x¢ suficientemente grande: xo > max;cm —bi.
e Isso corresponde com um primeiro pivd com variavel entrante xg apos
introduzir as variaveis de folga (“pseudo-pivo”).
— Podemos comecar com a solucao nao-viavel xg =x1 =...=x, =0.
— Depois aumentamos x¢ tal que a variavel de folga mais negativa vire
positiva.

— X e varidvel sainte xy tal que k = argmax;c;,) —bs.

Exemplo: Problema original

maximiza z=—2x;— Xy,
sujeito a —x;+x; < —1,
—x1—2xy < =2,
x2 < 1,
x1,%2 > 0.
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2.4. Encontrar uma solucao inicial: o método de duas fases

Exemplo: Problema auxiliar

maximiza z = —Xx,
sujeito a —x7+x—x%x < —1,
—x1 —2x) —xp < —2,
x2 —x0 < 1,

X0y X1, X2 > 0.

Exemplo: Dicionario inicial do problema auxiliar

z = —X0
w =-—1 4+x1 —x2 +Xg
Wy = -2 +Xq +2X2 +Xo
wzy =1 —x2  +x9

e Observe que a solugdo basica nao é viavel.

e Para achar uma solugdo basica viavel: fazemos um primeiro pivd com
variavel entrante xg e variavel sainte wy.

Exemplo: Dicionario inicial viavel do sistema auxiliar

z =—=2 4x1 +2x2 —wWy

w; =1 —3x2 +wW;

xXp =2 —X] —2x2 +w»

wy =3 —X1 —3x2 +wy

Primeiro pivd

z =—4/3 +x1 —2/3w; —1/3w,
S /3w, 1173w,
xo =4/3 —x1 +2/3w; +1/3w;
w3 = —X1 +wq
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2. O método Simplex

Segundo pivd

z =0 —X0

X2 :]/3 —]/3W] +]/3W2
x1 =4/3 —xo +2/3w; +1/3w;
wy =2/3 +x0 +1/3w; —1/3w;

Solugao 6timal

Solucdo do sistema auxiliar

e O que podemos concluir da solugao do sistema auxiliar?

e Obviamente, se o sistema original possui solucao, o sistema auxiliar tam-
bém possui uma solucao com xp = 0.

e Logo, apo6s aplicar o método Simplex ao sistema auxiliar, temos os casos
— x0 > 0: O sistema original nao tem solugao.

— xo = 0: O sistema original tem solugdo. Podemos descartar xg e
continuar resolvendo o sistema original com a solugao bésica viavel
obtida.

e A solucao do sistema auxiliar se chama fase I, a solugdo do sistema ori-
ginal fase II.

Sistema original

Reescreve-se a fungao objetivo original substituindo as varidveis basicas do
sistema original pelas equagoes correspondentes do sistema auxiliar, de forma
que a fungao objetivo z nao contenha variaveis bésicas. No exemplo, a fungao
objetivo é rescrita como:

ZZ—ZX] —X2:—3—W] — W).

z =-3 —W1 —W)

x2 =1/3 —=1/3w; +1/3w,
x1 =4/3 +2/3w; +1/3w,
wy =2/3 +1/3w; —1/3w;

Nesse exemplo, o dicionario original ja é 6timo!
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2.4. Encontrar uma solucao inicial: o método de duas fases

Exemplo 2.2 (Sistema original inviavel)
O sistema

maximiza xj 4+ X,
sujeito a x;+x; > 2,
X1 +x2 <1,
x1,%x2 > 0.

obviamente nao possui uma solugdo viavel. O dicionério inicial do sistema
auxiliar (ap6s normalizacao e introdugao das variaveis de folga) é

z= 0 —X0
xX3= —2 +x1 +x2 +Xo
X4 = 1 —X1 —X2 +Xp

e o pseudo-pivo xp—x3 produz

z= —2 +xX1 +x2 —x3
X0= 2 —X1 —X2 +X3
x4 = 3 =2x1 —2x2 +x3

e 0 pivd x1—x4 produz o sistema 6timo

z= —1/2 —1/2x4 —1/2x3
X0 = ]/2 +]/2X4 +]/2X3
x1= 3/2 —1/2x4 —x2 +1/2x3

O valor 6timo do sistema auxiliar é —z = xg = 1/2, confirmando que o sistema,
original nao possui solucao viavel. O

2.4.1. Resumo do método de duas fases

Fase | necessaria? Caso b; > 0 para todo i € [m]: continua com a fase II.

Dicionario inicial Cria o dicionéario inicial do sistema auxiliar

z =min{xg | Ax < b+ x.e}.

Pseudo-piv6é Pivota xo—x, sendo k = argmin;c,,; bx o indice do lado direito
mais negativo.

Solugdo fase | Aplica o método no dicionéario obtido no passo anterior.
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2. O método Simplex

Fase Il necessaria? Caso a solucao 6tima da fase I possui valor xg > 0: o
sistema original nao possui solugao. Para.

Prepara fase Il Caso xg ¢ uma varidvel basica: pivota xo—x, sendo xy alguma
variavel nula tal que agx # 0. Remove a coluna xy. Remove a fungao ob-
jetivo do sistema auxiliar e introduz a fungao objetivo do sistema original
(escrita em fungao das variaveis nulas).

Fase Il Aplica o método Simplex no dicionéario inicial da fase II.

2.5. Sistemas degenerados

Sistemas, solucBes e pivos degenerados
e Um dicionério é degenerado se existe um 1 € B tal que bi = 0.
e Qual o problema?

e Pode acontecer um pivd que nao aumenta a variavel entrante, e portanto
nao aumenta o valor da funcao objetivo.

e Tais pivos sao degenerados.

Exemplo 1

e Nem sempre é um problema.

z =5 4+x3 —x4
X2 =5 *27(3 *37(4
X1 =7 —4X4
wy =0 +X4

e X, ¢ a variavel sainte e o valor da fungao objetivo aumenta.

Exemplo 2

z =3 —1/2x1 4+2x2 —3/2w
x3 =1 —1/2x —1/2w
wy; =0 +x1 —X2 4w

e Se a variavel sainte é determinada pela equagdo com b; = 0, temos um
pivd degenerado.

e Nesse caso, a variavel entrante nao aumenta: temos a mesma solucao
depois do pivd.
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2.5. Sistemas degenerados

Exemplo 2: Primeiro pivo
e Pivo: xp-w»)
z =3 43/2x1 —2wy +1/2w;

X3 =1 —1/27(1 —1/21/\)]
x2 =0 4xq —Wy  +Wq

e O valor da fungéo objetivo nao aumentou!

Exemplo 2: Segundo pivd
e Pivo: x1—x3
z =6 —3x3 —2wy —w;

X1 =2 —2X3 —W1
X2 =2 —2X3 — W)

e A segunda iteragdo aumentou o valor da funcao objetivo!

Ciclos

e O pior caso seria, se entramos em ciclos.

e E possivel? Depende da regra de selecio de varidveis entrantes e saintes.

o Nossas regras
— Escolhe a variavel entrante com o maior coeficiente.

— Escolhe a variavel sainte mais restrita.

— Em caso de empate, escolhe a variavel com o menor indice.

e Ciclos sao possiveis: O seguinte sistema possui um ciclo de seis pivos:

X17Wq, X2-W2, X37X1, X4-X2, W1—X3, W2—X4q.

z = 10%; —57%3 —9%3 —24x4

wy =0 —1/2x7 +11/2xy +5/2x3 —9x4
wy =0 —1/2x1 +3/2x;  +1/2x3 —x4
w3 = 1 —X1
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2. O método Simplex

Solucdes do problema
e Como resolver o problema?

e Trés solucoes
— Ignorar o problema.
— Meétodo lexicografico.
— Regra de Bland.

Método lexicografico
e Idéia: O fato que existe um bi=0¢ por acaso.

e Se introduzimos uma pequena perturbacao € < 1
— o problema desaparece

— a solugao serd (praticamente) a mesma.

Método lexicografico
e Ainda é possivel que duas perturbagoes numeéricas se cancelem.
e Para evitar isso: Trabalha-se simbolicamente.
e Introduzimos perturbagoes simboélicas
<k - Ken
em cada equagao.

e Caracteristica: Todo €; é numa escala diferente dos outros tal que eles
nao se cancelam.

Exemplo

Exemplo 2.3
Sistema original degenerado e sistema perturbado

z =4 +2x1 —x2 z =4 +2x1 —x2
w =1/2 —X2 wy =1/2 +e€ —X2
wy; = —2x1  +4%x2 wy = € —2x7 +4x;
w3 = X1 —3%x7 w3 = €3 +Xj —3x%
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2.5. Sistemas degenerados

Comparar perturbacées

e A linha com o menor limite l; = bj/aj, (com xi entrante) define a variavel
sainte.

e A comparacgao de limites respeita a ordem lexicografica das perturbagoes,
i.e. com

li =eirer + -+ + eixex
lj :fj1€1 +"'+fik’€1/<

temos l; < ljse k <k’ ouk =k e ey < fix.

Caracteristicas

e Depois de chegar no valor 6timo, podemos retirar as perturbacoes €;.

Teorema 2.1
O método Simplex sempre termina escolhendo as variaveis saintes usando
a regra lexicogréafica.

Prova. E suficiente mostrar que o sistema nunca sera degenerado. Neste caso
o valor da fung@o objetivo sempre cresce, e o método Simplex nédo cicla. A
matriz de perturbagoes
€1
€2

€m

inicialmente tem posto m. As operagdes do método Simplex sdo operagoes
lineares que nao mudam o posto do matriz. Logo, em cada passo do método
Simplex temos uma matriz de perturbacoes

€11€1 €12€2 -+ €Im€Em
€21€1 €xn€xy - €2mEm
€mi€1 €m2€2 - Cmm€Em

que ainda tem posto m. Portanto, em cada linha 1 existe pelo menos um ej; # 0
e assim uma perturbacao diferente de zero e o sistema nao é degenerado. W
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2. O método Simplex

Exemplo 2.4

Solucao do exemplo 2.3.

Pivdo x1—-w,. z =1 +€3 —W) +3%x,
wy =1/2 +e —X2
X1 1/2¢; —1/2wy;  +2x,
w3 1/2e5 +e€3 —1/2wy —x3

Pivdo xo-w3. z =4 +5/2¢> +4+3e3 —5/2wy; —3wj;
wy =1/2 +e1 —1/2¢; —e3 +1/2wy +w;3
X1 = 3/2¢; +2e3 —3/2wy; —2wjs
X = 1/2¢; +e3 —1/2wy, —ws

Regra de Bland

e Qutra solugdo do problema: A regra de Bland.

e Escolhe como varidvel entrante e sainte sempre a variavel com o menor
indice (caso tiver mais que um candidato).

Teorema 2.2
O método Simplex sempre termina se as variaveis entrantes e saintes sao
escolhidas através da regra de Bland.

Prova. Prova por contradi¢do: Suponha que exista uma sequéncia de dicio-
néarios que entra num ciclo Dy, D1,...,Dy_1 usando a regra do Bland. Nesse
ciclo algumas variaveis, chamadas instdveis, entram e saem novamente da base,
outras permanecem sempre como basicas, ou como nao-basicas. Seja Xt a varid-
vel instavel com o maior indice. Sem perda de generalidade, seja x; a variavel
sainte do primeiro dicionario Dy. Seja xs a variavel entrante no Dy. Observe
que Xg também é instével e portanto s < t. Seja D* o dicionario em que x¢
entra na base. Temos a situacao

Xs entra Xt entra
Do, Dy, Dz, -+ D* -+ Dy
Xt sai
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2.5. Sistemas degenerados

com os sistemas correspondentes

Do: D*:
Z:ZO+ZCij z:z*+Zc;‘xj
jeN JEN*
xi:bi—Zaﬁxj ieB Xi:bf—zaiij]' ie B*
jeN jEN™

Como temos um ciclo, todas varidveis instaveis tem valor 0 e o valor da funcgéo
objetivo é constante. Logo zyp = z* e para D* temos

z=2z"+ Z X = zo + Z ;. (2.5)
jEN™ jEN™*

Se aumentamos em Dy o valor do xs para y, qual é o novo valor da funcao
objetivo? Os valores das variaveis sao

Xs :y
=0 jeN\{s} (2.6)
xi:bi—aisy ieB

e temos no sistema D7 o novo valor
z=12p+Csy (2.7)

Vamos substituir os valores das variaveis (2.6) com indices em N'* N B na equa-
¢ao (2.5). Para facilitar a substituigao, vamos definir (:]fg := 0 para j € N*, que
permite substituir todas varidveis x;,j € B e assim obtemos

z=2zy+ Z ;X :zo+c;‘y+Zc§‘(bj—ajsy). (2.8)
jell,n4m] jeB
Equagoes (2.7) e (2.8) representam o mesmo valor, portanto
(cs —c; + Z c;‘ajs>y = Z ci'b;.
jeB ieB

Essa igualdade deve ser correta para qualquer aumento Yy, portanto os dois
lados sao 0, em particular

cs—c§+Zc§‘aJ~5 =0.
jeB
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2. O método Simplex

Como x, entra em Dy temos cg > 0. Em D* a varidvel x; entra, entao c; <0
senao pela regra de Bland s < t entraria. Logo,

Zc;‘ajs:cj—cs < —cs <0
jeB

e deve existir um v € B tal que cja,s < 0. Isso tem uma série de consequéncias:
(i) c; #0.
(ii) r € N*, porque somente as variaveis nulas satisfazem c; # 0 em D*.

(iii) x, é instavel, porque ela é basica em Dy (r € B), mas nao-basica em D*

(re N¥).
(iv) r < t, porque t foi a variavel instavel com o maior indice.

(v) r < t, porque cjais > 0: x¢ entra em D*, logo ¢; > 0, e x¢ sai em Do,
logo ais > 0.

(vi) ¢} <0, sendo r e nao t entraria em D* seguindo a regra de Bland.
(vii) ars > 0.

(viii) by = 0, porque x, é instavel, mas todos variaveis instaveis tem valor 0 no
ciclo, e x; é basica em Dy.

Os tultimos dois itens mostram que x, foi candidato ao sair em Dy com indice
r < t, uma contradigao com a regra de Bland. |

Teorema fundamental

Teorema 2.3 (Teorema fundamental da programacao linear)
Para qualquer programa linear temos:

(i) Se nao existe solucao 6tima, o problema é inviavel ou ilimitado.
(ii) Se existe uma solugao viavel, existe uma solugao basica viavel.

(iii) Se existe uma solucao 6tima, existe uma solucao 6tima basica.
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2.6. Complexidade do método Simplex

2.6. Complexidade do método Simplex

Usando a regra de Bland o método Simplex nunca repete uma base e o niimero
de pivos é limitado pelo nimero de bases. Com n + m variaveis (de decisao e
de folga) existem no méaximo

n+m n+m
n m
bases possiveis. Para n 4+ m constante, essa expressao é maximizada para
n =m. Os limites nesse caso sao (exercicio 2.3)

Lo (P <o
n- —~\n/) " °

Logo é possivel que o método Simplex precisa um niimero exponencial de pivos.
A existéncia de sistemas com um namero de pivos exponencial depende da regra
de pivoteamento. Por exemplo, para a regra de maior coeficiente, existem siste-
mas que precisam um numero exponencial de pivos (Klee-Minty). A pergunta
se isso € o caso para qualquer regra de pivoteamento estd em aberto. O me-
lhor algoritmo para a programacéo linear precisa tempo O((n3/logn)L (Ans-
treicher 1999), supondo que uma operagao aritmética custa O(1) e os dados
sdo inteiros de L bits. Empiricamente o método Simplex precisa O(m + n)
pivos (Vanderbei 2001), e cada pivo custa O(mn) operagoes, logo o tempo em-
pirico, novamente supondo que uma operacao aritmética custa O(1) do método
Simplex ¢ O((m + n)mn).

Observagao 2.2

Spielman e Teng (2004) mostram que o método Simplex possui complezidade
suavizada polinomial, i.e., 0 maximo do valor esperado do tempo de execugao
sobre pequenos perturbagoes (Gaussianas) é polinomial no tamanho da instan-
cia e no inverso da perturbagao.

Sem perturbagoes o problema de encontrar a solucdo que o método Simplex
encontraria usando a regra de Dantzig é PSPACE-completo (Fearnley e Savani
2014). O

2.7. Exercicios

(Solugoes a partir da pagina 209.)
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2. O método Simplex

Exercicio 2.1 (Maculan e Fampa 2006)
Resolve com o método Simplex.

maximiza z = 3x; + 5xy,
sujeito a x; <4,
x2 < 6,
3x1 + 2% < 18,
x1,%x2 > 0.

Exercicio 2.2
Resolve o exercicio 1.7 usando o método Simplex.

Exercicio 2.3
Prova que

Exercicio 2.4
Resolve o sistema degenerado

z = ]07(1 —57X2 —9X3 —24X4
wp = —1/2x7 +11/2x2 +5/2x3 —9x4
wy = —=1/2x1 +3/2x;  +1/2x3 —x4
w3 = 1 —X1

usando o método lexicogréfico e a regra de Bland.

Exercicio 2.5
Dado o problema de otimizacao

maximiza x; + X2,
sujeito a ax; +bx; <1,

x1,%x2 > 0,

determine condigoes suficientes e necesséarias que a e b tem que satisfazer tal
que

(a) existe pelo menos uma solugao 6tima,
(b) existe exatamente uma solu¢ao 6tima,

(c) existe nenhuma solugao 6tima,
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(d) o sistema é ilimitado.
ou demonstre que o caso nao é possivel.

Exercicio 2.6
Sabe-se que o dicionério 6timo do problema

maximiza z = 3x; + X,

sujeito a —2x7 4+ 3xy <5,

x1—x2 <1,
X1y, X2 2 0,
é
z¥ =31 *1]1/\)2 *4W]
X2 = 7 —2W2 —W1
X1 = 8 —3W2 —W1

(a) Se a fungao objetivo passar a z = x1 + 2x,, a solugdo continua 6tima? No
caso de resposta negativa, determine a nova solugao 6tima.

(b) Se a func@o objetivo passar a z = X7 — X2, a solugao continua 6tima? No
caso de resposta negativa, determine a nova solugao 6tima.

(c) Se a fungao objetivo passar a z = 2x7 — 2x;, a soluc¢@o continua 6tima?No
caso de resposta negativa, determine a nova solugao 6tima.

(d) Formular o dual e obter a solugao dual 6tima.

Exercicio 2.7

Prove ou mostre um contra-exemplo.

O problema max{ctx | Ax < b} possui uma solucao viavel sse min{xg | Ax —
exp < b} possui uma solugao viavel com xo = 0. Observagao: e é um vetor com
todos compentes igual 1 da mesma dimensao que b.

Exercicio 2.8

Prove ou mostre um contra-exemplo.

Se x é a variavel sainte em um pivo, x nao pode ser variavel entrante no pivo
seguinte.

Exercicio 2.9

Demonstramos na secdo 2.5 que existem sistemas em que o método Simplex
entra em ciclos. No exemplo o método Simplex ficou sempre na mesma solugao,
representada por bases diferentes. Agora supbe que temos solugoes diferentes
com o mesmo valor da funcéo objetivo. E possivel que o método Simplex entra
num ciclo sempre visitando solucoes diferentes?
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Exercicio 2.10

Supbe que temos um dicionario com uma base infactivel, com um candidato
para a variavel entrante x. (i.e. ce > 0) tal que todos coeficientes na coluna
correspondente sao negativos (i.e. aje < 0 para todo i € B). Caso a base
fosse vidvel podemos concluir que o sistema é ilimitado. Podemos concluir isso
também com a base infactivel?
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3. Dualidade

3.1. Introducao
Visdo global

e Dualidade: Cada programa linear (chamada de primal) possui um pro-
grama linear correspondente, chamado de dual.
e A dualidade tem varias aplicagoes como

— Estimar a qualidade de solugoes e a convergéncia do método Sim-
plex.

Certificar a otimalidade de um programa linear.

Analisar a sensibilidade e re-otimizar sistemas.

Resolver programas lineares mais eficiente com o Método Simplex
dual.

e O programa linear dual possui uma interpretacao relevante.

Introducéo
e Considere o programa linear

maximiza z =4x; + x2 + 3x3, (3.1)
sujeito a x;+4x; <1,
3x1 —x2 +x3 <3,
X1yX2,X3 > 0.
e Cada solugao viavel fornece um limite inferior para o valor maximo.
X1=x2=x3=0=2z=0
x1=3,x=x3=0=>2z=4
e Qual a qualidade da solugao atual?

e Nao sabemos, sem limite superior.
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3. Dualidade

Limites superiores

e Como obter um limite superior?

Observe: z =4x7 +x2 +3x3 < 10x7 +x2 +3x3 < 10

e Podemos construir uma combinacao linear das desigualdades, tal que o
coeficiente de cada x; ultrapasse o coeficiente da fungao objetivo.

e Nosso exemplo:
(1 +4x2) +303%1 —x2+x%x3)<1+3-3=10
—10x +x%x2 +3x3 < 10
e Como obter um limite superior para a fungao objetivo?

e Qual seria o menor limite superior que esse método fornece?

Exemplo 3.1
Para o sistema (3.1) obtemos:

minimiza y; + 3y;,

sujeito a yj +3yz > 4,

491 _UZ Z 1)
Y2 > 3)
Y1, Y2, Y3 = 0.
O
O menor limite superior
e Sejam yYi,...,Yn 0s coeficientes de cada linha. Observagao: Eles devem

ser > 0 para manter a diregao das desigualdades.

e Entao queremos
minimiza Z biyi,
ie(m]
sujeito a Z QijYi = Cj, Yj € [n],
ie(m]

y; > 0.

e Isto é o problema dual com varidveis duais ou multiplicadores duais yj.
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3.1. Introdugao

Dualidade: Caracteristicas

e Em notacao matricial

maximiza c'x, minimiza b'y,
sujeito a Ax <b. sujeito a y'A > c'.
x > 0. y > 0.

e O primeiro se chama primal e o segundo dual.
e Eles usam os mesmos parametros cj, aij, bj.
O dual do dual

e Observagao: O dual do dual é o primal.

e Forma normal do dual:

—maximiza —b'y, —maximiza — b'y,
sujeitoa —y'A<-—c', = sujeito a (—A')y < —c,
y > 0. y >0.

e Dual do dual

—minimiza —c'z, maximiza c'z,
sujeito a z'(—A') > —b', sujeito a Az <b,
z > 0. z > 0.

Exemplo 3.2

Qual o dual do problema de transporte (1.11)7 Com variaveis duais 7, i € [n]
para as das restricoes de estoque (1.12) e variaveis duais pj, j € [m] para as
restricoes de demanda (1.13) obtemos

maximiza Z Q7T + Z b;pj, (3.2)
ieMm] jelm]
sujeito a 7 + pj > cyj, Vi€ [n],j € [ml,
T, Pj > 0, Vie [Tl],j c [m]
O
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3. Dualidade

3.2. Caracteristicas

Teorema da dualidade fraca

Teorema 3.1 (Dualidade fraca)
Se X1, ...,%Xn € uma solugao viavel do sistema primal, e yi,...,Yym uma solucao
viavel do sistema dual, entédo

DS ) by
i€l jelm]

Prova.
c'x < (Y'A)x = y'(Ax) pela restricao dual (3.3)
<y'b pela restrigao primal (3.4)
|
Situacdo

Gap de otimalidade?

S -

Solugdes primais vidveis Solugoes duais viaveis
e Em aberto: Qual o tamanho desse intervalo em geral?

Teorema da dualidade forte

Teorema 3.2
Se xJ,...,X; ¢ uma solugao 6tima do sistema primal, existe uma solugao 6tima
Y3y .-y Ym do sistema dual com

> exi= 5 oni
iem] j€lm]

Prova. Seja x* uma solucao 6tima do sistema primal. Considere um dicionario
inicial do método Simplex com varidveis de folga

Xn4j = b]' — Z Qi X4, \V/) € [m]
ien]
e a fungéo objetivo de um dicionario que corresponde com a solugdo 6tima

z=2z"+ Z CiXi

ien+m]
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3.2. Caracteristicas

(com ¢; = 0 para variaveis basicas). Temos que construir uma solu¢ao 6tima
dual y*. Pela optimalidade, na funcao objetivo acima, todos ¢; devem ser nao-
positivos. Provaremos que y;’ = —Cnyj > 0 para j € [m] ¢ uma solucéo dual
24t * 2 £4s * __ Ak

6tima. Como z* é o valor 6timo do problema, temos z* = Zie[n] CiX{.
Reescrevendo a funcao objetivo temos

z=) o sistema inicial
i€n]

=z + Z CiXi sistema final
iem+m]

=z + Z cixi + Z Cn+jXn+j separando indices
iem] jelml

=z'+ Z CiXi — Z y;k (b)’ - Z ajiXi> subst. solugao e var. folga
ieMml j€lm] ieMm]

- <Z* B Z y]fkbj> + Z (Ei + Z U;‘aji> Xi agrupando

j€mm] i€[n] j€lm]

Essa derivacao esta valida para qualquer valor das variaveis x;, portanto

zf = Zy]*b] §] Ci:(_li—i-Zy;kaji, ie [n].
jemm]

jelm]

Logo o primal e dual possuem o mesmo valor

Z yibyj=z"= Z CiXi
jelm

] ieMm]
e como c; < 0 sabemos que a solugao y* satisfaz as restrigoes duais
<) ylap, iem]

jelm]
y; >0, jem]

Consequéncias: Solucdes primais e duais

e Com o teorema da dualidade forte, temos quatro possibilidades
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3. Dualidade

Sistema primal Sistema dual Intervalo

Otimo Otimo Sem
Ilimitado Inviavel Sem
Inviavel Ilimitado Sem
Inviavel Inviavel Infinito

Exemplo 3.3 (Primal e dual inviavel)
Nao segue do teorema da dualidade forte que existe um caso em que tanto o
sistema primal quanto o sistema dual sdo invidveis. O seguinte exemplo mostra
que isso pode acontecer. O sistema primal

maximiza xi,

sujeito a +x1—x% <0,

—xX1+x2 < _1>
x1,X2 = 0,
possui sistema dual correspondente
minimiza —yj,

sujeitoa +y;—yz>1,
—Yy1+y2>0.
Ambos os sistemas sao inviaveis. O

Podemos resumir as possibilidades na seguinte tabela:

Dual
Primal Invidgvel Otimo Ilimitado
Inviavel V X Vv
Otimo X V X
[imitado V X X

Consequéncias

e Dado solugoes primais e duais x*, y* tal que c'x* = b'y* podemos concluir
que ambas solucdes sdo 6timas (x*,y* é um certificado da optimalidade)!.

'Uma consequéncia ¢ que o problema de decisdo correspondente, determinar se existe uma
solugdo maior que um dado valor, possui um certificado que pode ser verificado em tempo
polinomial tanto para uma resposta positiva quanto uma resposta negativa. Portanto,
ja antes da descoberta de um algoritmo polinomial para esse problema, foi claro que ele
pertence a NP N co-NP.
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3.2. Caracteristicas

e A prova mostra: com o valor 6timo do sistema primal, sabemos também
o valor 6timo do sistema dual.

e Além disso: Podemos trocar livremente entre o sistema primal e dual.
= Método Simplex dual.

Outra consequéncia do Teorema da dualidade forte é o

Teorema 3.3 (Teorema das folgas complementares)
Os vetores x*,y* sao solugoes 6timas do sistema primal e dual, respectivamente,
se e somente se

y(b—Ax*) =0
(YA —chHx* =0 (3.6)

Prova. Pelo Teorema da dualidade forte as duas desigualdades (3.3) e (3.4)
da prova do Teorema da dualidade fraca se tornam igualdades para solugoes
Otimas:

CtX* _ y*tAX* _ y*tb

Reagrupando termos, o teorema segue. Conversamente, caso (3.5) e (3.6) estao
satisfeitos, as solugOes primais e duais possuem o mesmo valor e assim tem que
ser 6timas. |
As igualdades 3.5 e 3.6 sao ainda validas em cada componente, porque tanto
as solucbes 6timas x*,y* quanto as folgas primas e duais b — Ax e y**A — ¢t
sempre sao positivos.

x> 0= Z Yjaji = Ci (3.7)
j€lm]

Z Yjaji > ¢ = X =0 (3.8)
jemm]

Yy > 0= b]' = Z QjiXq (3.9)

i€[n]
bj > Z ajiXi = Yj = 0 (310)
i€n]

Como consequéncia podemos ver que, por exemplo, caso uma igualdade primal
nao possui folga, a varidvel dual correspondente é positiva, e, contrariamente,
caso uma igualdade primal possui folga, a variavel dual correspondente é zero.
As mesmas relagoes se aplicam para as desigualdades no sistema dual. Apoés
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3. Dualidade

a introducao da forma matricial no secao 3.6 vamos analisar a interpretagao
das varidveis duais com mais detalha no se¢éo 3.7. O teorema das folgas com-
plementares pode ser usado ainda para obter a solugdo dual dado a solugao
primal:

Exemplo 3.4

A solucao 6tima de

maximiza z = 6x; + 8x) + 5x3 + 9x4,
sujeito a 2x7 +x2 +x3 + 3x4 <5,
X1 4 3x2 +x3 + 2x4 < 3,

X1y X2y X3y X4 > O)

éx1 =2ex3 =1 com valor 17. Pela equagao (3.7) sabemos que

2y1 +yy = 6
y; +yz =>5.
Portanto a solucao dual é y; =1ey; =4. O

3.3. Dualidade em forma nio-padrio

Dualidade em forma padrio

maximiza c'x, minimiza b'y,
sujeito a Ax < b, sujeito a y'A > ¢,
x > 0. y > 0.

e O que acontece se o sistema nao é em forma padrao?

Igualdades

e Caso de igualdades: Substituindo desigualdades..

maximiza c'x, maximiza c'x,
sujeito a Ax =D, sujeito a Ax <D,
x > 0. Ax > b,
x > 0.
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3.3. Dualidade em forma nao-padrao

e ... padronizar novamente, e formar o dual:

Ui = (y?) oo ’y;l)t‘

maximiza c'x, minimiza b'y" — by,
sujeito a Ax < b, sujeitoa yT'A—y ‘A >,
— Ax < —b, yt >0,y >0,
x > 0. y+:(yr)---ay¢1)t)
Igualdades

e Equivalente, usando variaveis irrestritas y = y* —y~

minimiza b'y,

sujeito a y'A >,

y'so.
e Resumo
Primal (max) Dual (min)
Igualdade Variével dual livre
Desigualdade (<) Variavel dual nao-negativa
Desigualdade (>) Variavel dual ndo-positiva
Variavel primal livre Igualdade

Variavel primal nao-negativa Desigualdade (>)
Variavel primal nao-positiva  Desigualdade (<)

Exemplo 3.5 (Exemplo dualidade nao-padrao)
O dual de

maximiza 3x; + x; + 4x3,
sujeito a X7 + 5%, + 9x3 = 2,
6x1 + 5% + 3x3 < 5,
X1,%3 > 0,x2 S0,
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3. Dualidade

minimiza 2y + 5ya,

sujeito a yj + 6y > 3,
Syr+5y =1,
9y1 +3yz > 4,
yr s 0,y >0.

Exemplo 3.6 (Dual do problema de transporte)
O dual do problema de transporte num grafo direcionado G = (V, A) com custos
nas arestas cq, limites inferiores e superiores para o fluxo 1, € uq em cada arco,

e demandas b, em cada vértice

minimiza E CaXa,

acA

sujeito a Z X(uy) — Z X(vu) = by, Vv ey,
(u,v)eA (vu)eA
Xa > g, Va e A,
Xa < Uq, Ya € A,
Xq > 0, Va € A,

usando varidveis duais m, S 0, ve V, pg >0, a€ Ae o, <0, a € A para as
trés restrigoes é

maximiza Z b, + Z lapa +uq0q,

vev acA
sujeito a —m, + 7, + pq+0q > 1, Va = (u,v) € A,
T, € R, YW ey,
Pa > 0, Va € A,
0q <0, Va e A.

3.4. Interpretacido do dual

Exemplo: Dieta dual

60



3.4. Interpretagao do dual

e Problema da dieta: Minimiza custos de uma dieta x que alcance dados
VDR minimos.

minimiza c',
sujeitoa Ax >,
x > 0.

e Unidades das variaveis e pardmetros

x € R™: Quantidade do alimento [g]
— ¢ € R™ R$/alimento [R$/g]

— ai € R™*™: Nutriente/Alimento [g/g]
— r € R™: Quantidade de nutriente [g].

Exemplo: Dieta dual

e O problema dual é

maximiza y'r,
sujeito a y'A <cf,
y >0.

Qual a unidade de y? Prego por nutriente [R$/g].

Imagine uma empresa, que produz ciapsulas que substituem os nutrientes.

Para vender no mercado, a empresa tem que garantir que uma dieta
baseado em cépsulas custa menos que os alimentos correspondentes:

Z yiay < ¢j, Vj € [m]
]

i€m

Além disso, ela define precos por nutriente que maximizam o custo de
uma dieta adequada, para maximizar o préprio lucro.

maximiza y'r
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3. Dualidade

Interpretacio do dual

e Outra interpretagao: o valor de uma variavel dual y; € o custo marginal
de adicionar mais uma unidade bj.

Teorema 3.4
Se um sistema possui pelo menos uma solucao basica 6tima nao-degenerada,
existe um e > 0 tal que, se [tj| < e para j € [m],

maximiza c'x,
sujeito a Ax <b +t,
x > 0,

tem uma solugao 6tima com valor
% *t
z=z +yt

(com z* o valor 6timo do primal, é y* a solugdo 6tima do dual).

Exemplo 3.7
Considere uma modificacao do sistema do Ildo

maximiza 0.2c¢ + 0.5c, (3.11)
sujeito a ¢+ 1.5s < 150, (3.12)
50c + 50s < 6000, (3.13)

¢ < 80, (3.14)

s < 70, (3.15)

c,s >0. (3.16)

(O sistema foi modificado para a solu¢ao 6tima atender as condig¢oes do teorema
3.4.) A solugao 6tima do sistema primal é x* = (45 70)' com valor 44, a
solucao 6tima do dual y*(1/500 1/5)t. A figura 3.1 mostra a solugao 6tima
com as variaveis duais associadas com as restrigoes. O valor da variavel dual
correspondente com uma restricao é o lucro marginal de um aumento do lado
direito da restricdo por um.

O
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3.5. Método Simplex dual

100
90 3'13)1'4 =1/5
80 (312} Zg| = !/5
20 3.15
260
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¢ (croissants)

Figura 3.1.: Solugao 6tima do sistema (3.11) com variaveis duais.

3.5. Método Simplex dual

Método Simplex dual
e Considere

maximiza —Xx;— Xy,
sujeito a —2x; —xy <4,
—2x1 +4xy < =8,
—x1+3x < —7,
x1,%2 > 0.

e Qual o dual?

minimiza 4y; — 8y, — 7y3,

sujeito a —2y; —2y; —y3 > —1,
—y1 +4yz2 +3y2 > -1,
Y1,Y2,Y3 > 0.

Com dicionérios
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3. Dualidade

z = X1 X2 -w = —4y; +8y, +7y;3
wi =4 +2xq +x2 Z1 =1 —Zy1 —2y2 —Y3
wy =-—-8 +2x1 —4xy Z =1 —yr 44y —+3y;
wy =—7 +x1 —3x2

e Observacao: O primal ndo é viavel, mas o dual é!

e Correspondéncia das varidveis:

Variaveis
principais de folga
Primal x1,...,%0  Wi,..., Wi
Dual z,...yzn, VYi1y---,Ym
de folga principais

e Primeiro pivo: y; entra, zq sai. No primal: w; sai, x1 entra.

Primeiro pivo

z =-—4 —05w; —3x —w =4 12y Az +3y3
w; =12 +w;y  +5%x) Y2 =0.5 —y1 —0.5z1 —0.5y3
X1 = +0.5w, +2x; Z =3 —5Sy; —22; +y3
w3 = -3 +O.5W2 —X2

e Segundo pivo: yz entra, Yz sai. No primal: ws sai, w, entra.

Segundo pivd

z =-—7 —w3; —4x —-w =7 —18y; —7z1 —6y;
wy; =18 +2wz +7x) Y3 =1 -2y —2Z -2y
X1 =7 4wz +3x z =4 —7y —3z1 —2y;
W) =6 +2w3 +2x2

e Sistema dual é 6timo, e portanto o sistema primal também.
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3.5. Método Simplex dual

Método Simplex dual

e Observagao: Nao é necessario escrever o sistema dual. Ele é sempre o

negativo transposto do sistema primal.
z=z+) ¢,
jeN

Xi:Bi_Zainj) ieB
jeN

e Mas é necessario modificar as regras para resolver o sistema dual.

Método Simplex dual: Viabilidade e otimalidade

e Pré-condigao: O dicionario é dualmente vidvel, i.e. os coeficientes das

variaveis nao-bésicas na funcao objetivo tem quer ser nao-positivos.

¢; <0 para jeN.

e Otimalidade: Todos variaveis bésicas primais positivas

Vie B:b; >0

Método Simplex dual: Pivd

e Caso existe uma variavel primal negativa: A solu¢do dual nao é 6tima.

e Regra do maior coeficiente: A variavel béasica primal de menor valor (que

é negativo) sai da base primal.

1 = argmin by
ieB

e A variével primal nula com fracao aij/c; maior entra.

: .G Qjj ayj

) = argmin — = argmax — = argmax —
jen  djj jen G jeN G
aij<0 aij<0
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3. Dualidade

Método Simplex dual
Resumo:

e Dualmente viavel: ¢; < 0 para j € N.
e Otimalidade: Vi € B: b; > 0.
e Variavel sainte: 1 = argmin; g b;

i4 Ci= %4
e Variavel entrante: j = argmax;c s G -

Exemplo

maximiza z= —2x;— Xy,
sujeito a —x;+x; < —1,
—x1 — 2%y < =2,
x2 <1,
x1,%2 > 0.

Exemplo: Dicionario inicial

z = —2)(1 —X2
w; = —1 +Xx1 —X2
w; =-—2 +x1 +2x9
W3 =1 —X2

e O dicionério primal nao é viavel, mas o dual é.

Exemplo: Primeiro pivo

z =-=1 =3/2x7 —1/2w,
wp = —2 +3/2X1 —1/2W2
X2 =1 —=1/2x1 +1/2w,
w3 = +1/2x7 —1/2w;

Exemplo: Segundo pivd
z =-3 —Wq —Wy
x1 =4/3 +2/3w; +1/3w,
x =1/3 —=1/3w; +1/3w,
wy =2/3 +1/3w; —1/3w,
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3.6. Os métodos em forma matricial

3.6. Os métodos em forma matricial

A forma matricial permite uma descri¢gdo mais sucinta do método Simplex. A
seguir vamos resumir os métodos Simplex primal e dual na forma matricial.
Mais importante, nessa forma é possivel expressar o dicionario correspondente
com qualquer base em termos dos dados inicias (A,c,b). Na proxima se¢ao
vamos usar essa forma para analisar a sensibilidade de uma solug@o & pequenas
perturbagoes dos dados (i.e. os coeficientes A,b, e c).

3.6.1. O dicionario final em funcido dos dados
Sistema padrao

e O sistema padrao é

maximiza c'x,

sujeito a Ax < b,

x > 0.
e Com variaveis de folga Xni1,y...,Xn+m € A,c,x novo (definicdo segue
abaixo)
maximiza c'x,
sujeito a Ax =D,
x > 0.
Matrizes
an a1
az azp -+ Qu 1
A= ;
Qmi Om2 ... Qmn 1
C1 X1
C2 X2
by :
b, :
b=] . |;c=]cn|ix=1| xn
' 0 Xn+1
bm
0 Xn+m
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3. Dualidade

Separacio das variaveis
e Fm cada iteracao as varidveis estao separados em basicas e nao-basicas.
e Conjuntos de indices correspondentes: BUN = [1,n + m].

e A componente i de Ax pode ser separado como

Z aijXj = Z aijX;j + Z aijXj.

jem+m] jeB jeEN

Separacio das variaveis

e Para obter a mesma separagdo na forma matricial: Reordenamos as co-
lunas e separamos as matrizes e vetores:

A =(BN); x:<XB); c:<CB>
XN CN
e com B € R™™ N ¢ R™*" ¢ ¢ RV,

Forma matricial das equacdes

e Agora, Ax = b é equivalente com

(BN) (XB> =Bxg+Nxny=b
XN

e Numa solugao bésica, a matriz B tem posto m tal que as colunas de B
formam uma base do R™. Logo B possui inversa e

xg =B7'(b—Nxn) =B 'b— B "Nxn
Forma matricial da funcdo objetivo

e A fungao objetivo é

x
z=c% = (ckcy) (XB> = CEXB + CNXN
N

e e usando xg = B~'b — B~ "Nxy obtemos
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Dicionario em forma matricial

e Logo, o dicionario em forma matricial é
z= ctBB_1b — ((B7"N)tcg — en)txn

xg =B b — B "Nxn

[ ] Compare com a forma em Componentes:

z:2+Zijj z=1z+cxn
jeN

Xi:Bi—ZaﬁXj ieB XB:B—AXN
jeN

Dicionario em forma matricial

e Portanto, vamos identificar

z=c5B'b; c=—(B"N)tcg —cn)
b=B""b; A = (a;) =B7'N

e para obter o dicionario

N
I
+
(o]l
o+
x
z

=
o
I
o'W
|
b
=
z

Sistema dual
e As variaveis primais sao

X = (X7 .0 Xn Xngd « oo Xnam )"
—

original folga
e Para manter indices correspondentes, escolhemos varidveis duais da forma

Y= (Y1 -YnYnti - Ynsm)'
folga dual

e O dicionéario do dual correspondente entao é

Primal Dual
z=1z+cxn —w:—i—BtyB
XB:B—AXN UN:_E‘l‘AtUB
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3. Dualidade

Primal e dual

e A solugdo basica do sistema primal é

X, =0; x;=b=B""b
e A soluc@o dual correspondente é
yh =0; yi=-—c= (B "N)cp—cn
e Com isso temos os dicionarios

z=1z— (y&)xn —w=—z— (x})'ys
xg =xp — (B7'N)xn yn =y + (B7'N)'yp

Observacgao 3.1

A solugdo dual completa ¢ yt = ctB~TA — ¢! (isso pode ser visto como?), ou
yi = CEB*] a' — ¢; para cada indice i € [n + m]. As varidveis duais originais
com indice i € [n+ 1, m] correspondem com as colunas a* = e; das variaveis de
folga e possuem coeficientes ¢; = 0. Logo y& = cEBq é a solugao do sistema
dual sem as variaveis de folga, e podemos escrever y = (ytA —ct)t = Aty, — ¢
e para os custos reduzidos ¢ = ¢ — Aly,. O

3.6.2. Simplex em forma matricial

Método Simplex em forma matricial

e Comecamos com uma particdo B UN = [1,n + m].

e Em cada iteragao selecionamos uma variavel sainte i € B e entrante

jeN.
e Fazemos o pivd x; com X;.
e Depois a nova base é B\ {i}U{j}.
Método Simplex em forma matricial

S1: Verifique solugdo 6tima Se yy, > 0 a solugao atual é 6tima. Pare.

S2: Escolhe variavel entrante Escolhej € N com yj <O0. A variével entrante
€ ;.
j
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3.7. Anélise de sensibilidade

S3: Determine passo basico Aumentando x; uma unidade temos novas varia-
veis nado-bésicas xN = X}, + Axn com Axy = (0---010---0)' =ej e g5 0
vetor nulo com somente 1 na posi¢ao correspondente com indice j. Como

XB = Xp — B~ 'Nxn,

a diminuicdo correspondente das variaveis bésicas é Axg = B~ Ne;j.
Método Simplex em forma matricial

S4: Determine aumento maximo O aumento méaximo de x; ¢ limitado por
XB > O, ie.
xp = xg — tAxg > 0 & xp > tAxp.

Com t,xp > 0 temos

* X"L
t<t" = min
i€B  Axy
Ax; >0

S5: Escolhe variavel sainte Escolhe um i € B com x{ = t*Ax;.

Método Simplex em forma matricial

S5: Determine passo dual A variavel entrante dual é y;. Aumentando uma
unidade, as variaveis yn diminuem Ayy = —(B7'N)te;.

S6: Determina aumento maximo Com varidvel sainte y;, sabemos que y; pode
aumentar ao maximo

s= U
Ay;
S7: Atualiza solucio
X =t yi=s
Xp = Xp — tAxp YN = Yn — SAyYN

B:=B\{i}U{j}

3.7. Analise de sensibilidade
Motivacio

e Na solucao da programas lineares os parametros sao fixos.
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3. Dualidade
e Qual o efeito de uma perturbacao
c:=c+Ac; b:=b+Ab; A=A+ AA?
(Imagina erros de medida, pequenas flutuagoes, etc.)
Analise de sensibilidade

e Apos a solugdo de um sistema linear, temos o dicionario 6timo

z=2z"— (yi) N

XB = XE — B_1NXN

e com
x5 =B b
yn = (B7'N)*eg —en
zr=ciB7'b
Modificar c

e Mudarmos ¢ para ¢, mantendo a base B.
* X . : * *
e xp nao muda, mas temos que reavaliar yg, e z*.
e Depois, xp ainda ¢ uma solucao basica viavel do sistema primal.

e Logo, podemos continuar aplicando o método Simplex primal.

Modificar b

e Da mesma forma, modificamos b para b (mantendo a base).
* = 3 * *
e Yy nao muda, mas temos que reavaliar xz e z*.
e Depois, Yy, ainda ¢ uma solucao basica vidvel do sistema dual.

e Logo, podemos continuar aplicando o método Simplex dual.
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Vantagem dessa abordagem

3.7. Anélise de sensibilidade

e Nos dois casos, esperamos que a solugao inicial ji é perto da solucao

Otima.

e Experiéncia pratica confirma isso.

e O que acontece se queremos modificar tanto b quanto ¢ ou ainda A?

e Mas: Mesmo assim, a convergéncia na pratica é mais rapido.

Estimar intervalos

A solucao atual ndo necessariamente é viavel no sistema primal ou dual.

e Pergunta estendida: Qual o intervalo de t € R tal que o sistema com
€ = ¢ + tAc permanece 6timo?

Para t > 0 temos

Para t < 0 temos

Estimar intervalos
e Agora seja b =b+ tAb.
e Parat=1: xj = B~ 'b aumenta Axg := B~'Ab.

e Em geral: Aumento tAb.

Em geral: Aumento tAyn.

Condig¢ao para manter a viabilidade dual:

yn +tAyn >0

. Y;
t < min .
jeEN Ay)
Ay]-<0
¥
xSt
je
A]yj>0 yJ

Para t = 1: y§, = (B7"N)tcg — cn aumenta Ayy := (B~"N)*Acp — Acy.

73



3. Dualidade

e Condicdo para manter a viabilidade primal:

xg + tAxg >0

e Para t > 0 temos .

t < min —
— ieB Axi
Ax;<0

e Para t < 0 temos

i

max — <t
ieB Ax; —

Ax;>0

Observagao 3.2

A matriz B~! é formada pelas colunas do dicionério final que correspondem
com as variaveis de folga. O

Exemplo 3.8
Considere o problema da empresa de ac¢o (visto na aula prética, veja também

execicio 1.7).
maximiza 25p + 30c,
sujeito a 7p + 10c < 56000,
P < 6000,
¢ <4000,
p,c > 0.

Qual o intervalo em que o valor do lucro das placas de 25R'$ pode variar sem
alterar a solugdo 6tima?

Exemplo: Empresa de aco

e Sistema 6timo

e Base B = {p, w3, c}, variaveis nao-basicas N' = {wy,w,}. (Observe: usa-
mos conjuntos de variaveis, ao invés de conjuntos de indices).
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3.7. Anélise de sensibilidade

Exemplo: Variaveis

e Vetores ¢ e Ac. Observe que reordenamos os dados do sistema inicial de
forma correspondente com a ordem das variaveis do sistema final.

25

0 25 0
c=|30]|;cg=1]0 ;cN—<O>;

0 30

0

1

0 1 0
Ac=|0];Acg= |0 ;ACN:<O>

0 0

0

Exemplo: Aumentos

e Aumento das varidveis duais

Ayn = (BT'N)*Acg — Acy = (B7'N)*Acg

® Com

0 1
B 'N=[-1/10 7/10
1/10  —7/10
e temos

=)

Exemplo: Limites

e Limites em geral

Y; .
max ——— < t < min —y—]
jeEN Yj JEN ij
ij>0 Ay]-<0
e Logo
—4 <t < o0.
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3. Dualidade

e Uma variacao do preco entre 25+[—4, oo] = [21, oo] preserve a otimalidade
da solucao atual.

e O novo valor da fungao objetivo é
6000
z == 6}‘3]3_]b = (25 +t O 30) 2600 | = 192000 + 6000t
1400

e os valores das varidveis p e ¢ permanecem oS mesmos.

Exemplo 3.9
Qual o intervalo em que o lucro das placas (R$ 25) e dos canos (R$ 30) podem
variar sem que a solugdo 6tima seja alterada?

Exemplo: Variacdo do lucro dos placas e canos

e Os vetores ¢, cg, cN € Acn permanecem os mesmos do exemplo anterior.
Enquanto que:

Ac

Il
o O = O =
>
(¢}
os]
|
o

e Neste caso, o valor de Ayy €

1
o (0 1710 1/10 (110
Ayn = (B NMCB_<1 7/10 —7/10) ? _<3/1o)'

e Logo —40/3 <t <

e Ou seja, uma variacao do lucro das placas entre R$ 11.67 e oo, e do lucro
dos canos entre R$ 16.67 e 0o, nao altera a solugao 6tima do sistema.
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3.7. Anélise de sensibilidade

Exemplo: Modificagdo

e Qual o intervalo em que o lucro dos canos (R$ 30) podem variar sem que
a solugao otima seja alterada?

e Os vetores ¢, cg, cN € Acy permanecem os mesmos do exemplo anterior.
Enquanto que:

Ac = sAcg = (0]

o O = O O

e Neste caso, o valor de Ayy é:
_ (110
Acs = <—7/1o> !
e Logo —30 <t<40/7

e Ou seja, uma variacdo do lucro dos canos entre R$ 0 e R$ 35.71, néo
altera a solugao 6tima do sistema.

Exemplo 3.10
O que acontece se mudarmos o lucro das placas para R$ 207

Exemplo: Placas com lucro R$ 20

e Novos vetores

20

0 20 0
c=130|;eg=|0 ,’\N:<O>

0 30

0

e Aumento

0% = (B7'N)'ep —&n = (B'N)'C
20

_ (0 —1/10 110\ (7Y _ (3
7100 —710) {5 T\
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3. Dualidade

Novas variaveis
e Com
6000
B~'b = | 2600
1400

e Novo valor da funcao objetivo

6000
2 =¢B'b=(20 0 30) (2600 | = 162000
1400

Exemplo: Novo dicionario

e Novo sistema primal vidvel, mas nao 6timo:

z = 162000 —3wq +w;
p =6000 —W)
ws = 2600 +1/10w; —7/10wo
c = 1400 —1/10w;  +7/10w,

e Depois um pivd: Sistema 6timo.

2 =1657142/7 —20/7w; —10/7w;

p =22855/7 —1/7w1  +10/7ws3
wy, =37142/7 +1/7wy; —10/7w,
¢ =4000 —W3

O

Exemplo 3.11
O que acontece se mudarmos o lucro das placas de R$ 25 para R$ 35 e dos

canos de R$ 30 para R$ 107

Exemplo: Placas e canos com lucro R$ 35 e R$ 10

e Novos vetores

35

0 35 0
c=1|10 N 63(0); /C\N:<O)

0 10

0

78



3.7. Anélise de sensibilidade

e Aumento
35

_ 0 —1/10 1/10 1
* 1 t o _ _
On = ((B7N)es —en) = (1 7/10 —7/10) ]OO - (zs)
Novas variaveis e novo dicionario
e Novo valor da funcao objetivo
6000
Z2r = ’C\EB*]b =Chxj = (35 0 10) 2600 | = 224000
1400
e O novo sistema primal viavel é
z = 224000 —Twyq —28w,
p =6000 —wW

ws = 2600 +1/10w; —7/10w,
¢ =1400  —1/10w; +7/10w,

e O sistema é otimo.

O

Exemplo 3.12
Qual o efeito de uma variagao do lado direito 6000 da segunda restrigao? Para
estudar essa variacao escolhemos Ab = (010)t. Temos

7 0 10 0 10 0
B=|(11 0); B'=1/10{—-1 7 10
00 1 1 —7 0

e logo Axg =B TAb =1/10(107 — 7)t. Obtemos a nova solucao basica

6000 10
%5 = 2600 +t/10( 7
1400 —7

e a condicao de otimalidade X > 0 nos fornece os limites
—26000/7 <t < 2000
entre quais ela é 6tima. O valor da fungao objetivo dentro desses limites é

6000 + t
5% = bRy = (25030)" | 2600 +7/10t | = 192000 + 4t.
1400 — 7/10t
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3. Dualidade

3.8. Exercicios
(Solugoes a partir da pagina 210.)

Exercicio 3.1
Qual o sistema dual de

minimiza 7x; + x; + 5x3,

sujeito a x; —xy + 3x3 > 10,
5x1 + 2x) — x3 > 6,
X1,%X2,%X3 > 07

Exercicio 3.2
Considere o problema

COBERTURA POR CONJUNTOS PONDERADOS (WEIGHTED SET COVER)

Instdncia Um universo U, uma familia S de subconjuntos do universo,
i.e. paratodo S € §, S C U, e custos c¢(S) para cada conjunto S € S.

Solugdo Uma cobertura por conjuntos, i.e. uma sele¢ido de conjuntos 7 C
S tal que para cada elemento e € U existe pelo menos um S € 7 com
e€s.

Objetivo Minimizar o custo total dos conjuntos selecionados.

Uma formulagao inteira do problema é

minimiza Z c(S)xs,

Ses

sujeito a Z xs > 1, eec U,
S:e€S
XS 6{0’]}) Ses.

O problema com restrigoes de integralidade é NP-completo. Substituindo as
restrigoes de integralidade xg € {0, 1} por restri¢oes triviais xg > 0 obtemos um
programa linear. Qual o seu dual?
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Exercicio 3.3
O sistema

possui dicionario 6timo

maximiza

sujeito a

2x1 — X2 + X3,

3x1 +x2 + x3 < 60,
X1 —x2 + 2x3 < 10,
X1+ x2 —x3 < 20,

X1,X2,%3 > 0.

z= 25 —3/2x5 —1/2xg —3/2x3
x4 = 10 +X5 +2x¢ —X3
X1 = 15 —]/27(5 —]/ZXG —]/2X3
x2= 5 +1/2xs —1/2x¢ +3/2x3

a) Em qual intervalo o coeficiente ¢; = 2 pode variar?

b) Em qual intervalo o coeficiente by = 10 pode variar?

3.8. Exercicios

¢) Modifique o lado direito de (60 10 20)t para (70 20 10)': o sistema mantém-

se 6timo? Caso contrario, determina a nova solugdo 6tima.

d) Modifique a fungao objetivo para 3x; — 2x; + 3x3: o sistema mantém-se

6timo? Caso contrario, determina a nova solugao 6tima.
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4. Topicos

4.1. Centro de Chebyshev

Seja B(c,r) ={c+u||[ul| < r}a esfera com centro c e raio r. Para um poligono
convexo a;x < by, para i € [n], queremos encontrar o centro e o raio da maior
esfera, que cabe dentro do poligono, i.e. resolver

maximiza T,

sujeito a  sup a;p < by, Vi e [nl.
pEB(c,T)

Temos

sup aip =caj+ sup aiu = cai + |[air
pEB(c,T) [lufl<r

porque o segundo supremo é atingido por u = ra;i/||lail|. Assim obtemos uma
formulagao linear

maximiza T,

sujeito a aic + 1/|ai]| < by, Vi e [n].
Exemplo 4.1
O poligono da Fig. 4.1 possui a descrigao
X2
2x1 + 4%y < 24,
6
4x) —x3 < 12, i /
—X1 < O) 4
—x2 < 0. r=1.85
3
Portanto o programa linear para encontrar o centro e o raio do maior circulo 9 (1.85,3.01) /
¢ /
1
maximiza ,
1 Z 3 4 5X]

sujeito a 2cy +4cy + V20r < 24,
dey —cp + VI7r <12, Figura 4.1.. Exemplo do
centro de Chebyshev
—c1+1r<0,

—c+r<0.
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4. Topicos

4.2. Funcao objetivo convexa e linear por segmentos

Uma funcao f é conveza se f(tx+ (1 —t)y) < tf(x) + (1 —t)f(y) para qualquer
xeyeO<t<t. Fungoes convexas sdo importantes na otimizagdo, porque
eles possuem no méximo um minimo no interior do dominio deles, e portanto

o minimo de uma funcao convexa pode ser obtido com métodos locais.

Seja fi(x), 1 € [n] uma colecao de funcoes lineares. O maximo f(x) = max;epy) fi(x)
¢ uma fungao convexa linear por segmentos. O problema de otimizagao

minimiza max fi(x)
i€n]

é equivalente com o programa linear

minimiza xo, (4.1)
sujeito a fi(x) < xo, Vie n]. (4.2)

Portanto podemos minimizar uma funcéo convexa linear por segmentos usando
programacao linear. De forma similar, f é concava se f(tx+ (1 —t)y) > tf(x)+
(1 —1t)f(y). (Observe que uma fungao convexa e concava é afina.) O sistema

maximiza X,

sujeito a fi(x) > xp,x Vi€ [n].

maximiza uma funcao concava linear por segmentos.

84



Parte II.

Programacao inteira
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5. Introducao

5.1. Definicoes
Problema da dieta
e Problema da dieta

minimiza c',
sujeitoa Ax >,
x > 0.

e Uma solucdo (laboratério): 5 McDuplos, 3 macas, 2 casquinhas mista
para R$ 24.31

e Mentira! Solugdo correta: 5.05 McDuplos, 3.21 magas, 2.29 casquinhas
mistas.

e Observagao: Correto somente em média sobre varias refeigoes.

Como resolver?

e Com saber o valor 6tima para uma tnica refeigao?
o Restringe as varidveis x ao conjunto Z.
e Serd que método Simplex ainda funciona?

e N&ao. Pior: O problema torna-se NP-completo.

Problemas de otimizacio

e Forma geral

optimiza f(x),

sujeito a x €V
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5. Introdugao

Programacio inteira
e Programagao linear (PL)
maximiza c'x,
sujeito a Ax <),
x € R™ > 0;
e Programagao inteira pura (PI)

maximiza h'y,
sujeito a Gy < b,
yez+>0.

Programacao inteira
e Programagao (inteira) mista (PIM)

maximiza c' + h'y,
sujeito a Ax+ Gy < b,
xe€R*">0,yezZ™ >0

e Programacao linear e inteira pura sao casos particulares da programacao
mista.

e Outro caso particular: 0-1-PIM e 0-1-PI.

x € B"

Exemplo

maximiza x;+ X2,
sujeito a 2x7 4 7x; < 49,
5x1 + 3%, < 50.
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5.1. Definigoes

Exemplo

X2

5x,+3%,< 50

— \
012 3 456 7 8 9 10111213 14 15

X3

e Sorte: A solucdo otima é inteiral x; =7, x; =5, V =12.

e Observagao: Se a solugdo 6tima é inteira, um problema de PI(M) pode
ser resolvido com o método Simplex.

Exemplo
maximiza X + x2,
sujeito a 1.8x7 + 7xy < 49,
5x1 + 2.8x, < 50.
Exemplo
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5. Introdugao

X2

5X1+2.8x,< 50

7
01 2 3 45 6 7 8 910111
X1

T 1
213 14 15

e Solugao 6tima agora: x; =~ 7.10, x; ~ 5.17, V = 12.28.

e Sera que |[x1], |x2] é a solucao 6tima do PI?

Exemplo
maximiza —x;+ 7.5%y,
sujeito a —xj+7.2x; <504,
5x1 + 2.8x; < 62.
Exemplo
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5.2. Motivagao e exemplos

-X1+7.2X,< 50.4 L

X2

012 3 456 7 8 9 10111213 1415

e Solugao o6tima agora: x ~ 7.87, x; ~ 8.09, V = 52.83.

L LX]J = 7, LXzJ =38.

e Solugao 6tima inteira: x; = 0,%x; = 7!

e Infelizmente a solugdo 6tima inteira pode ser arbitrariamente distante!
Métodos para resolver Pl

e Prove que a solugao da relaxacao linear sempre é inteira.
e Insere cortes.

e Branch-and-bound.
5.2. Motivacido e exemplos
Motivacio

e Otimizacao combinatoéria é o ramo da ciéncia da computagao que estuda
problemas de otimizacao em conjuntos (wikipedia).
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5. Introdugao

e “The discipline of applying advanced analytical methods to help make
better decisions” (INFORMS)

e Tais problemas sdo extremamente frequentes e importantes.
Maquina de fazer dinheiro

e Imagine uma méaquina com 10 botoes, cada botao podendo ser ajustado
em um numero entre 0 e 9.

Maquina de fazer dinheiro

Iooooon) — O

e ha uma configuragao que retorna R$ 10.000.

total de combinacoes: 10'°.

dez testes por segundo

e em um ano:= 10 x 60 x 60 x 24 x 365 = 3 x 108

Explosdo combinatéria
Funcoes tipicas:

!retirado de Integer Programming - Wolsey (1998)
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5.3. Aplicagoes

n logn n%5 n? 2" n!
10 332 316 107 1.02x10° 3.6 x 10°
100 6.64 10.00 10* 1.27x10%°  9.33 x 10"
1000 9.97 31.62 10° 1.07 x 10°7 4,02 x 10¢7

“Conclusbes”

é

e Melhor nao aceitar a maquina de dinheiro.

e Problemas combinatoérios sao dificeis.

5.3. Aplicacdes

Apanhado de problemas de otimizacdo combinatéria

e (Caixeiro viajante

e Roteamento

e Projeto de redes

e Alocacao de horérios
e Tabelas esportivas

e Gestao da produgao

e etc.

Caixeiro Viajante
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5. Introdugao

° [
[ J
[ J
[ J
([
Caixeiro Viajante
[
L.

Caixeiro Viajante

e Humanos sdo capazes de produzir boas solu¢ées em pouco tempo!

e Humanos 7

Caixeiro Viajante
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Figure 1. 40 Chimpan#ees tour (Bida),

Fonte: Applegate.etal/2007

Caixeiro Viajante

Figure 1.41 Pigeon solving a TSP Images courtesy of Bret Gibson

Fonte: Applegate.etal/2007

Caixeiro Viajante

Der

Handlungsreifende
wic et fein {oll

und was er zu thun Hat, um Auftedge
gu echalten und eined gliclihyen Grfolgs
in feinen Gefdhdften gewif gu fein,

Bon
¢inem alten Commis - Voyageur.

W

MiteinemTitelbupfer,
———
Slmenau1832,
Orud und Verlag von B, Fr. BVoigt.

Fonte: Applegate.etal/2007

Caixeiro Viajante

5.3. Aplicagoes
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5. Introdugao

e Business leads the traveling salesman here and there, and there is not
a good tour for all occurring cases; but through an expedient choice
division of the tour so much time can be won that we feel compelled
to give guidelines about this. Everyone should use as much of the advice
as he thinks useful for his application. We believe we can ensure as
much that it will not be possible to plan the tours through Germany in
consideration of the distances and the traveling back and fourth, which
deserves the traveler’s special attention, with more economy. The main
thing to remember is always to visit as many localities as possible without
having to touch them twice.

HeLp “carsar...anpwincash  Der Handlungsreisende wie er sein soll und was er zu tun hat, um Auftrige
032'-'-135%%&?1! % zu erhalten und eines gliicklichen Erfolgs in seinen Geschéften gewiss zu sein.

x /. Von einem alten Commis-Voyageur” (O caixeiro viajante, como ele deve ser e o
que ele deve fazer para obter encomendas e garantir um sucesso feliz dos seus
negocios. Por um caixeiro viajante experiente). First brought to the attention
of the TSP research community in 1983 by Heiner Muller-Merbach [410]. The
title page of this small book is shown in Figure 1.1. The Commis-Voyageur [132]
explicitly described the need for good tours in the following passage, translated

from the German original by Linda Cook.

Fonte:
Applegate.etal /2007

Caixeiro Viajante

100000 | T T T T T =]
i plagsooo P 3
i sw24978 1
usa13509

s o307 e 3
: PR o— ]
1000 | E
g cP ]

C G
00 HK g1 E
E D.F—J—___ _I. 1 1 7

E ; E
1850 18600 1970 1880 1980 2000 2010

Figure 1.45 Further progress in the TSP, log scale.

Fonte: Applegate.etal /2007

Formulando matematicamente o PCV

e Associar uma variével a cada possivel decisao.
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Formulando matematicamente o PCV

e Associar uma variavel a cada possivel decisao.

minimiza E CijYij
i,jeN

sujeito a Z Xij + Z Xji = 2,

jeEN jeEN
xij € {0, 1},

Formulando matematicamente o PCV

e Associar uma variavel a cada possivel decisdo.

minimiza E CijYy
i,jeN

sujeito a Z Xij + Z Xji = 2,

jeN jeN
7 xi; € {0, 1},

5.3. Aplicagoes

VieN

Vi,j € N.

VieN

Vi,j € N.

+ restrigoes de eliminacao de subci-

clos!
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5. Introdugao

Problemas de roteamento

-

ool

Problemas de roteamento

-

oolo

Lo

Problemas em a&rvores

Problemas em arvores
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5.3. Aplicagoes

Problemas em arvores - aplicacées

e Telecomunicagoes

e Redes de acesso local

e Engenharias elétrica, civil, etc..

Alocacio de tripulacdes

Tabelas esportivas
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5. Introdugao

Proximos Adversarios

Fla Vasco Paysandu Criciuma  Vitoria
JUVENTUDE Fonte Coritiba GALO CORINTHIANE
Guarani CRUZEIRO PALMEIRAS  Santos Juventude
GALO Sao Paulo Parana FURACAO GUARANI
Botafogo GOIAS CRICIUMA Paysandu Grémio
PALMEIRAS  Juventude Santos PONTE COXA
Coritiba CORINTHIANS GALO Parana S&o Paulo

5. PAULO Furacdio Guarani PALMEIRAS CRUZEIRO
Cruzeiro SANTOS JUVENTUDE Coxa Ponte
Botafogo | Galo Parana |Grémio Guarani
Cruzeiro Criciima S.CAETAND  Palmeiras Goids

5. PAULO GOIAS Grémio PARANA FLA

Coxa Fla PAYSANDU Ponte Vitoria

FLA PARANA Galo VITORIA PALMEIRAS
Guarani FIGUEIRA Goids Furacdo BOTAFOGO
JUVENTUDE Paysandu CRICIUMA, SANTOS Figueira
Corinthians GREMIO Flu Galo PAYSANDU
FURACAQ 5. Caelano INTER GUARANI Grémio

Gestdo da producio

Etc.

e programacao de projetos
e rotacao de plantacoes

e alocagao de facilidades (escolas, centros de comércio, ambulancias...
e projeto de circuitos integrados
e portfolio de agoes

e etc, etc, ete, etc...
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6. Formulacao

6.1. Exemplos
“Regras de formulacio”

e Criar (boas) formulagoes é uma arte.

e Algumas diretivas basicas:
— escolha das variaveis de decisao.
— escolha do objetivo.

— ajuste das restrigoes.

Exemplo: 0-1-Knapsack

PROBLEMA DA MOCHILA (KNAPSACK)

Instancia Um conjunto de n itens com valores v; e pesos pi, 1 € [n]. Um
limite de peso P do mochila.

Solugdo Um conjunto S C [n] de itens que cabe na mochila, i.e. } ;s pi <
P.

Objetivo Maximizar o valor } ; s Vi.

e Observagao: Existe uma solugao (pseudo-polinomial) com programagao
dindmica em tempo O(Pn) usando espaco O(P).

<= 7
3 . o,
Formulacdo — Problema da mochila —
L)) ==
B
maximiza Z ViXi,
i€n]
sujeito a Z pixi < P
i€n]
x; € B.

101



T - - T -
L]
L ]

B W oot o -]

Figura 6.1.: Os campos ata-
cados por um cavalo num
tabuleiro de xadrez.

6. Formulagao

Exemplo 6.1 (Maximizar cavalos num tabuleiro de xadrez)

Qual o ntmero maximo de cavalos que cabe num tabuleiro de xadrez, tal que
nenhum ameaca um outro?

Formulagao do problema dos cavalos com varidveis indicadores xij:

maximiza E Xijy
ij

sujeito a  xij +xi2j41 < 1, 3<i1<8,jel7],
Xij + Xi-1j42 < 1, 2<1<8,) € [6],
Xij +Xig2j41 < 1y € [6,j € [7],
Xij + X142 < 1, € [71,j € [6].

Nuamero de solugoes do problema dos cavalos (A030978)
n‘1234567891011121314 15

k‘145813182532415061728598113 ¢
6.2. Técnicas para formular programas inteiros
Um problema recorrente com indicadores x1,...,X, € B e selecionar no ma-

ximo, exatamente, ou no minimo k dos n itens. As restrigoes
Swsk Yok Youzk
ien] ien] i€n]
conseguem isso.
Exemplo 6.2 (Localizagao de facilidades simples 1)
Em n cidades dadas queremos instalar no maximo k fabricas (k < n) de modo
a minimizar o custo da instalagdo das fabricas. A instalagdo na cidade j € [n]
custa fj. Podemos usar indicadores para y; € B para a instalagao da uma
fabrica na cidade j e formular
minimiza Z 53,
jeml
sujeito a Z yj =k,
jeml

y; € B, j € Mml.

(Obviamente para resolver este problema ¢ suficiente escolher as k cidades de
menor custo. No exemplo 6.3 estenderemos esta formulagao para incluir custos
de transporte.) O
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6.2. Técnicas para formular programas inteiros

clientes

[ ] l:l fabricas
. . [ ]

[ ]
[ ]
(a) Exemplo de uma instancia (b) Exemplo de uma solugao

Figura 6.2.: Localizacao de facilidades.

6.2.1. Formular restricoes logicas

Formulacdo: Indicadores

e Variaveis indicadores x,y € B: Sele¢ao de um objeto.
e Implicagao (limitada): Se x for selecionado, entao y deve ser selecionado
x <y, x,yeB
e Ou (disjungao):
x+y=>1, x,y €B
e QOu-exlusivo:
x+y=1, x,y € B

Exemplo 6.3 (Localizagao de facilidades nao-capacitado)

Queremos incluir no exemplo 6.2 clientes. Suponha que em cada cidade tem
um cliente, e queremos, junto com os custos das fabricas instaladas, minimizar
o custo de atendimento dos clientes. Entre cada par de cidade, i e j, o custo
de transporte ¢ dado por cy (ver Figura 6.2). Para formulagao escolhemos
varidveis de decisao xi; € B, que indicam se o cliente i for atendido pela fabrica
em j. K importante “vincular” as variaveis de decisao: o cliente i pode ser
atendido pela cidade j somente se na cidade j foi instalada uma fabrica, i.e.
Xyj — Yj.
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6. Formulagao

minimiza Z fiy; + Z CijXij,

jeml i,jeml
sujeito a Z xij =1, i€ [n], (s6 uma fabrica atende)
jeml
Z yj <m, (no méaximo m fabricas)
jem]
xij < Vj, i€ n],j € nl, (so fab. existentes atendem)
Xij c B, ie [n],j S [Tl],
Y; € B, ) € [n].
O
Formulacdo: Indicadores
Para x,y,z € B
e Conjuncaox =yz=yAz
x < (y+2z)/2 (6.1)
x>y+z—1
e Disjuncao x =y Vz
x> (y+2)2 (6.2)
x<y+z
o Negacao x =y
x=1—y (6.3)
e Implicagdo: z=x =y
z<1—x+y (6.4)
z>(1T—x+vy)/2 (6.5)
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6.2. Técnicas para formular programas inteiros

Exemplo 6.4 (Max-3-SAT)

Seja @ (X1y...yXn) = /\ie[m] C;i uma férmula em forma normal conjuntiva, com
clausulas da forma C; = lj7 V liz V liz. Queremos encontrar uma atribuicao
x; € B maximizando o niamero de clausulas satisfeitas.

Seja ¢ € B uma variavel que indica que clausula i é satisfeita. Também vamos
introduzir uma variavel x; € B para cada varidvel x; do problema, e uma
varidvel auxiliar lj para literal l;; do problema.

maximiza c¢;,
sujeito a ¢; < lj7 + lip + li,
L = xi, caso lij = xi,
L =1-—x, caso lij # xi,

ci € B,xg EB,L‘L]' € B.

6.2.2. Formular restricoes condicionais

Indicadores para igualdades satisfeitas Queremos definir uma variavel y € B
que indica se uma dada restricao é satisfeita.

e Para } ;. aixi <b: Escolhe um limite superior M para ) ;. aixi—b,
um limite inferior m para Zie[n] aix;—b e uma constante € > 0 pequena.

> axi<b+M(1-y) (6.6)
i€n]

Z aixi > b+my+ (1 —y)e

i€n]

e Para x > 0: Escolhe um limite superior M para x e uma constante €
pequena.
X > €y, (6.7)
x < My.

Exemplo 6.5 (Custos fixos)
Uma aplicagdo para problemas de minimizac¢ao com uma fungao objetivo nao-
linear. Queremos minimizar custos, com uma “entrada” fixa ¢ da forma

0 caso x =0
f(x) = _
c+1l(x) caso 0 <x <x
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6. Formulagao

d d d d
Semana 1 f 2 f 3 f 4 f
Estoque ) S1 $2 S3 S4
Custos f1/p1 f2/p2 3/P3 f4/P4

Figura 6.4.: Planejamento de producao.

f(x) e 1(x) uma funcao linear (ver Figura 6.3). Com umay € B indica a positividade
‘ de x, i.e. y =1 sse x > 0 podemos definir a funcao objetivo por
¢ i (x)

. / f(x) = cy + L(x)

e a técnica da equagao (6.7) resolve o problema. Como o objetivo é minimizar

|

|

3 f(x) a primeira equagao x > ey ¢é redundante: caso y = 1 néo faz sentido
0 1 X escolher uma solugdo com x = 0, porque para x = 0 existe a solucao de menor

X custo x =y = 0. Logo
F.igura~ 6..3.: Fungao obje- x < fcy,
tivo nao-linear

x € R,y € B,

¢é suficiente neste caso.

Exemplo
Planejamento de produgao (ingl. uncapacitated lot sizing)

e Objetivo: Planejar a futura produc¢ao no préoximos n semanas.

o Parametros: Para cada semana i € [n]
— Custo fixo f; para produzir,

— Custo p; para produzir uma unidade,

Custo h; por unidade para armazenar,

— Demanda d;
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6.2. Técnicas para formular programas inteiros

Exemplo
Seja

e x; a quantidade produzida,

e s; a quantidade no estoque no final da semana 1,

e y; = I sem tem produgao na semana i, 0 senao.
Problema:

e Funcao objetivo tem custos fixos, mas x; nao tem limite.

e Determina ou estima um valor limite M.

Exemplo

minimiza Z pixi + hisi + fiyi,

iem]

sujeito a s; =s; 1 +x; — dj, ienl,
So = 0,
xi < My, i€ n],
x € RYjy € B™.

Disjuncdo de equacodes
e (QQueremos que aplica-se uma das equagoes
f1 < fa,
g1 < 9.
e Solugao, com constante M suficientemente grande

f1 <, + Mx,
g1 < 92+M(] _X)a
x € B.
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X2

X1

Figura 6.5.: Diferentes for-
mulagoes lineares que defi-
nem o mesmo conjunto de
solugdes inteiras.

6. Formulagao

6.3. Formulacdes alternativas

Uma problema de programacao linear ou inteira geralmente possui mais que
uma formulagdo. A Figura 6.5 mostra diversas formulagdes que definem o
mesmo conjunto de solugoes inteiras.

Na programacao linear existe pouca diferenca entre as formulagoes: a solugao
é a mesma e o tempo para resolver o problema é comparavel, para um ntmero
comparavel de restrigoes e variaveis. Na programacao inteira uma formulacao
boa é mais importante. Como a solugao de programas inteiras é NP-completo,
frequentemente a relaxacao linear é usada para obter uma aproximacao. Di-
ferentes formulacao de um programa inteiro possuem diferentes qualidades da
relaxacao linear. Uma maneira de quantificar a qualidade de uma formulagao é
o gap de integralidade(ingl. integrality gap ). Para um problema P e uma ins-
tancia i € P seja OPT(i) a solugao 6tima inteira e LP(1i) a soluc¢do da relaxagao
linear. O gap de integralidade é

(6.8)

(para um problema de maximizagao.) O gap de integralidade d4 uma garantia
para qualidade da solucao da relaxacao linear: caso o gap é g, a solugao nao é
mais que um fator g maior que a solugao integral 6tima.

Exemplo 6.6 (Conjunto independente méaximo)
Uma formulagao do problema de encontrar o conjunto independente maximo
num grafo nao-direcionado G = (V,A) é

maximiza Z Xv, (CIM)
vev
sujeito a  xy +x, <1, V{u,v} € E,
Xy € B, Yv e V.

No grafo completo com n vértices Ky, a relaxagdo linear possui um valor pelo
menos n/2 (porque a solugao x, = 1/2;v € V possui valor n/2), enquanto
a solugdo Otima inteira é 1. Por isso, o programa (CIM) possui um gap de
integralidade ilimitado. O

6.4. Exercicios

(Solugoes a partir da pagina 212.)
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6.4. Exercicios

Exercicio 6.1
A empresa “Festa fulminante” organiza festas. Nos préoximos n dias, ela precisa
pi pratos, 1 <1 < n. No comego de cada dia gerente tem os seguintes opgoes:

e Comprar um prato para um precgo de c reais.

e Mandar lavar um prato devagarmente em d; dias, por um preco de l;
reais.

e Mandar lavar um prato rapidamente em d, < d; dias, por um preco de
L, > 1 reais.

O gerente quer minimizar os custos dos pratos. Formule como programa inteira.

Exercicio 6.2
Para os problemas abaixo, encontra uma formulacao como programa inteira.

CONJUNTO INDEPENDENTE MAXIMO
Instancia Um grafo ndo-direcionado G = (V, A).

Solucdo Um conjunto independente 1, i.e. I C V tal que para vértices
Vi, V2 € L {thz} ¢ A.

Objetivo Maximiza []].

EMPARELHAMENTO PERFEITO COM PESO MAXIMO

Instancia Um grafo nao-direcionado bi-partido G = (V5 U V,,A) (a fato
de ser bi-partido significa que A C V7 x V) com pesos p : A — R
noS arcos.

Solucdo Um emparelhamento perfeito, i.e. um conjunto de arcos C C A
tal que todos nos no sub-grafo G[C] = (V5 U V,, C) tem grau 1.

Objetivo Maximiza o peso total } ..-p(c) do emparelhamento.

PROBLEMA DE TRANSPORTE

Instancia n depdsitos, cada um com um estoque de p; produtos, i € [n], e
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6. Formulagao

m clientes, cada um com uma demanda dj, j € [m] produtos. Custos
de transporte aj; de cada deposito i € [n] para cada cliente j € [m].

Solugcdo Um decisao quantos produtos xij devem ser transportados do de-
posito i € [n] ao cliente j € [m], que satisfaz (i) Cada depdsito manda
todo seu estoque (ii) Cada cliente recebe exatamente a sua demanda.
(Observe que o ntumero de produtos transportados deve ser integral.)

Objetivo Minimizar os custos de transporte Zie[n}’j clm) G-

CONJUNTO DOMINANTE
Instancia Um grafo nao-direcionado G = (V, A).

Solucdo Um conjunto dominante, i.e. um conjunto D C V, tal que Vv €
V:veDV (JueD:{u,v}e A) (cada vértice faz parte do conjunto
dominante ou tem um vizinho no conjunto dominante).

Objetivo Minimizar o tamanho do conjunto dominante |D].

Exercicio 6.3
Acha uma formulagao inteira para todos os 21 problemas que o Karp provou
NP-completo (Karp. 1972).

Exercicio 6.4

Juliano é fa do programa de auditério Apagando e Ganhando, um programa no
qual os participantes sao selecionados atraves de um sorteio e recebem prémios
em dinheiro por participarem. No programa, o apresentador escreve um ndmero
de N digitos em uma lousa. O participante entdo deve apagar exatamente
D digitos do namero que estd na lousa; o nimero formado pelos digitos que
restaram € entao o prémio do participante. Juliano finalmente foi selecionado
para participar do programa, e pediu que vocé escrevesse um programa inteira
que, dados o nimero que o apresentador escreveu na lousa, e quantos digitos
Juliano tem que apagar, determina o valor do maior prémio que Juliano pode
ganhar.

(Fonte: Maratona de programagcao regional 2008, RS)

Exercicio 6.5
Set é um jogo jogado com um baralho no qual cada carta pode ter uma, duas
ou trés figuras. Todas as figuras em uma carta sao iguais, e podem ser circulos,
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6.4. Exercicios

quadrados ou tridngulos. Um set é um conjunto de trés cartas em que, para
cada caracteristica (ntumero e figura), u ou as trés cartas sdo iguais, ou as trés
cartas sao diferentes. Por exemplo, na figura abaixo, (a) é um set vélido, ja que
todas as cartas tém o mesmo tipo de figura e todas elas tém numeros diferentes
de figuras. Em (b), tanto as figuras quanto os nimeros sao diferentes para cada
carta. Por outro lado, (c¢) ndo é um set, ja que as duas ultimas cartas tém a
mesma figura, mas esta é diferente da figura da primeira carta.

1 [a | [O |

[ee | |O0O] [AAA

[eee] [eof [AA
(a) (b) ()

O objetivo do jogo é formar o maior niumero de sets com as cartas que estdo na
mesa; cada vez que um set é formado, as trés cartas correspondentes sao remo-
vidas de jogo. Quando ha poucas cartas na mesa, é facil determinar o maior
nimero de sets que podem ser formados; no entanto, quando ha muitas cartas
h& muitas combinacGes possiveis. Seu colega quer treinar para o campeonato
mundial de Set, e por isso pediu que vocé fizesse um programa inteira e que
calcula o maior ntimero de sets que podem ser formados com um determinado
conjunto de cartas.

(Fonte: Maratona de programacao regional 2008, RS)

Exercicio 6.6
Para os problemas abaixo, acha uma formulagao como programa inteira.

COBERTURA POR ARCOS

Instdncia Um grafo nao-direcionado G = (V,E) com pesos ¢ : E — Q nos
arcos.

Solugdo Uma cobertura por arcos, i.e. um subconjunto E/ C E dos arcos
tal que todo vértice faz parte de pelo menos um arco selecionado.

Objetivo Minimiza o custo total dos arcos selecionados em E’.

CONJUNTO DOMINANTE DE ARCOS

Instancia Um grafo nao-direcionado G = (V,E) com pesos ¢ : E — Q nos
arcos.
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6. Formulagao

Solucdo Um conjunto dominante de arcos, i.e. um subconjunto E/ C E dos
arcos tal que todo arco compartilha um vértice com pelo menos um
arco em E’.

Objetivo Minimiza o custo total dos arcos selecionados em E’.

COLORACAO DE GRAFOS
Instdncia Um grafo nao-direcionado G = (V, E).

Solucdo Uma coloragdo do grafo, i.e. uma atribuicdo de cores as vértices
c:V — 7Z, tal que cada par de vértices ligado por uma aresta recebe
uma cor diferente.

Objetivo Minimiza o numero de cores diferentes.

CLIQUE MINIMO PONDERADO

Instancia Um grafo nao-direcionado G = (V, E) com pesos ¢ : V — Q nos
vértices.

Solugdo Uma clique, i.e. um subconjunto V/ C V de vértices tal que existe
um arco entre todo par de vértices em V’.

Objetivo Maximiza o peso total dos vértices selecionados V.

SUBGRAFO CUBICO
Instdncia Um grafo nao-direcionado G = (V, E).

Solucdo Uma subgrafo ctbico, i.e. uma selecao E/ C E dos arcos, tal que
cada vértice em G’ = (V, E’) possui grau 0 ou 3.

Objetivo Maximiza o ntimero de arcos selecionados [E’|.

Exercicio 6.7

Uma empresa tem que decidir quais de sete investimentos devem ser feitos.
Cada investimento pode ser feito somente uma tnica vez. Os investimentos
tem lucros (ao longo prazo) e custos iniciais diferentes como segue

112



6.4. Exercicios

Investimento
1 2 3 4 5 6 7

Lucro estimado [MR$| 17 10 15 19 7 13 9
Custos iniciais [MR$] 43 28 34 48 17 32 23

A empresa tem 100 MRS capital disponivel. Como maximizar o lucro total
(ao longo prazo, nao considerando os investimentos atuais), respeitando que os
investimentos 1,2 e 3,4 sdo mutualmente exclusivas, ¢ nem o investimento 3
nem o investimento 4 pode ser feita, sem pelo menos um investimento em 1 ou
2 (as outros investimentos nao tem restrigoes).

Exercicio 6.8

Um produtor de brinquedos projetou dois novos brinquedos para Natal. A
preparacao de uma fabrica para produzir custaria 50000 R$ para a primeiro
brinquedo e 80000 R$ para o segundo. Apds esse investimento inicial, o primeiro
brinquedo rende 10 R$ por unidade e o segundo 15 R$.

O produtor tem duas fabricas disponiveis mas pretende usar somente uma, para
evitar custos de preparacao duplos. Se a decisao for tomada de produzir os dois
brinquedos, a mesma fabrica seria usada.

Por hora, a fabrica 1 é capaz de produzir 50 unidades do brinquedo 1 e 40
unidades do brinquedo 2 e tem 500 horas de producao disponivel antes de Natal.
A fébrica 2 é capaz de produzir 40 unidades do brinquedo 1 e 25 unidades do
brinquedo 2 por hora, e tem 700 horas de producao disponivel antes de Natal.

Como nao sabemos se os brinquedos serao continuados depois Natal, a problema
é determinar quantas unidades de cada brinquedo deve ser produzido até Natal
(incluindo o caso que um brinquedo nao é produzido) de forma que maximiza
o lucro total.

Exercicio 6.9

Uma empresa produz pequenos avides para gerentes. Os gerentes frequente-
mente precisam um aviao com caracteristicas especificas que gera custos inicias
altos no comeco da producao.

A empresa recebeu encomendas para trés avides, mas como ela esta com capa-
cidade de producao limitada, ela tem que decidir quais das trés avides ela vai
produzir. Os seguintes dados sao relevantes
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6. Formulagao

Avides Cliente
produzidas 1 2 3
Custo inicial [MR$] 3 2 0
Lucro [MR$/aviao| 2 3 0.8
Capacidade usada [%/aviao] 20% 40% 20%
Demanda méxima [avides] 3 2 5

Os clientes aceitam qualquer ntimero de avioes até a demanda maxima. A
empresa tem quer decidir quais e quantas avides ela vai produzir. As avides
serao produzidos em paralelo.

Exercicio 6.10 (Winkler)

Uma fechadura de combinacao com trés discos, cada um com niimeros entre 1
e 8, possui um defeito, tal que precisa-se somente dois ntimeros corretos dos
trés para abri-la. Qual o nimero minimo de combinagoes (de trés ntumeros)
que precisa-se testar, para garantidamente abrir a fechadura?

Formule um programa inteiro e resolva-o.

Exercicio 6.11
Formule o problema

MAX-k-SAT

Entrada Uma férmula em forma normal conjuntiva com m varidveis e n
clausulas @(x1,...,xm) = C; A+ A Cy, tal que cada clausula possui
no maximo k literais

Solucdo Uma atribuigdo x; — {0, 1}.

Objetivo Maximizar o nimero de clausulas satisfeitas.

(Dica: Usa as desigualdades (6.1)-(6.3). Comeca com k = 3.)

Exercicio 6.12

A Secao 6.2.1 mostrava como expressar a restricao logica z = x/\y linearmente.
A formulacao linear precisava duas restricoes lineares. Mostra que nao existe
uma Unica restri¢ao linear que ¢é suficiente para expressar z =x A y.

(Dica: Supoe que z = ax+by+c (ouz > ax+by+c, ouz < ax+by+c) com
constantes a, b, c e mostra que as restrigdoes que resultam de uma analise caso
a caso levam a uma contradi¢do ou nao sao suficientes para garantir a restrigao
logica.)
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6.4. Exercicios

Exercicio 6.13
Considere o problema de coloragao de grafos:

COLORACAO DE GRAFOS
Instdncia Um grafo ndo-direcionado G = (V, E).

Solugdo Uma coloragao do grafo, i.e. uma atribuigdo de cores as vértices
c:V — Z, tal que cada par de vértices ligado por uma aresta recebe
uma cor diferente.

Objetivo Minimiza o niimero de cores diferentes.

Uma formulacao possivel é introduzir uma variavel x,. € {0, 1} tal que X, = 1
caso o vértice v € V recebe a cor ¢. Como nunca tem mais que n = |V| cores,
podemos escolher C = [n]. Temos a condi¢ao

D xe =1, Y e V. (6.9)

ceC
Uma coloracao valida ainda tem que satisfazer
Xue + Xpe < 1, Y{u,v} € E,c e C. (6.10)

Para contar o ntimero de cores vamos usar variaveis auxiliares u. € {0, 1} com
U, = 1 caso a cor ¢ € C foi usada. Eles satisfazem

Ue > Y Xue/M, Ve € C. (6.11)
vev

Com isso obtemos

(C1) minimiza Zuc,

ceC
sujeito a (6.9), (6.10), (6.11)
xve € {0, THu, € {0, 1}, YveV,ceC.

Um outro modelo é minimizar a soma das cores. Seja f, € Z, a cor do vértice
v € V, que pode ser definida por

fy = Z CXvcy Yv e V. (6.12)
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6. Formulagao

Com isso podemos formular

(C3) minimiza Zf\,,

veV
sujeito a (6.9),(6.10), (6.12),
Xve € {0, 1} fe € Z, vv e V,ceC.

Os modelos (C71) e (C;) sao equivalentes?

Exercicio 6.14
Considere o problema de posicionar os ntimeros 1,...,10 nas posigoes P =
{a,...,j} do triangulo

Um colega afirma que podemos usar variaveis Xq,...,X;j € Z e as restricoes
1 <x, <10, Vp € P,
D xp =55,
peP
[T =10
peP

Ele tem razao?
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7. Técnicas de solucao

7.1. Introducao
Limites
e Exemplo: Problema de maximizacao.

e Limite inferior (limite primal): Cada solucao viavel.

— Qualquer técnica construtiva, p.ex. algoritmos gulosos, heuristicas

etc.

e Limite superior (limite dual): Essencialmente usando uma relaxagao

— Menos restricbes = conjunto maior de solugao viaveis.

— Nova fungao objetivo que é maior ou igual.

e Importante: Relaxagao linear: x € Z = x € R.

7.2. Problemas com solucio eficiente

Observagao 7.1 (Regra de Laplace)
Lembranca: A determinante de uma matriz pela regra de Laplace é

det(A) = ) (=M aydet(Ay) = > (—1)"ay det(Ay)

ieMn] jem]

sendo Ajj a submatriz sem linha i e coluna j.

Relaxacio inteira
e Solugao simples: A relaxacao linear possui solugao 6tima inteira.
e Como garantir?

e Com base B temos a solucio x = (xg xn)t = (B~'b, 0)t.

e Observacao: Se b € Z™ e |det(B)| = 1 para a base 6tima, entdao o PL

resolve o PI.
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7. Técnicas de solugao

Relaxacdo inteira
e Para ver isso: Regra de Cramer.

e A solucao de Ax =Db é

det(Ay)
Xy =
' det(A)
com A; a matriz resultante da substituicao da i-gésima coluna de A por
b.
Prova. Seja U; a matriz identidade com a i-gésima coluna substituido por x,
ie.
1 X1
X2
Xn—1
Xn 1

Temos que AU; = A; e com det(U;) = x; temos
det(A;) = det(AlU;) = det(A) det(U;) = det(A)x;.

Exemplo: Regra de Cramer

3 21 X1 1

5 0 2 X2 | = 1

21 2 X3 1

Exemplo: Regra de Cramer

3 21 1 21
50 2 |=-13 10 2 |=-1
21 2 1T 1 2
311 3 21
51 2 |=-3 501 |=-4
21 2 2 11

Logo x1 =1/13; x, =3/13; x3=4/13.
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7.2. Problemas com solugao eficiente

Aplicacdo da regra de Cramer

e Como garantir que x = B~'b ¢ inteiro?

e Cramer:
X — det(Bi)
' det(B)
e Condigao possivel: (a) det(B;) inteiro, (b) det(B) € {—1,1}.
e Garantir (a): A€ Z™ M ebeZ™.
e Garantir (b): Toda submatriz quadrada nao-singular de A tem determi-
nante {—1,1}.
Exemplo 7.1

Observe que essas condigoes sao suficientes, mas nao necessarias. E possivel que
Bx = b possui solucao inteira sem essas condigoes ser satisfeitas. Por exemplo

2 2\ (x1\ _ (2
10 X2 1
tem a solucdo inteira (x7 x2) = (1 0), mesmo que det(A) = —2. O

A relaxagdo é inteira

Definicao 7.1

Uma matriz quadrada inteira A € R™™ é unimodular se |det(A)] = 1. Uma
matriz arbitraria A é totalmente unimodular (TU) se cada submatriz quadrada
nao-singular A’ de A é modular, i.e. det(A’) € {0,1,—1}.

Uma consequéncia imediata dessa definicao: ay € {—1,0, 1}.

Exemplo
Quais matrizes sao totalmente unimodular?

110
G:]);O]]
10 1

01000

1T =1 =1 0 01 1 11

-1 0 0 1 ]:f{1 01 11

o 1 0 - 10010

10000
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7. Técnicas de solugao

Critérios
Proposigao 7.1
Se A é TU entao

(i) At ¢ TU.

(ii) ( com matriz de identidade I é TU.
)
)

(iii) Uma matriz B que é uma permutagao das linhas ou colunas de A é TU.

(iv) Multiplicando uma linha ou coluna com —1 resulta numa matriz TU.

Prova. (i) Qualquer submatriz quadrada B' de A' e uma submatriz B de A
também. Com det(B) = det(B'), segue que A' é totalmente unimodular. (ii)
Qualquer submatriz de (AI) tem a forma (A’l’) com A’ submatriz de A e I’
submatriz de I. Com |det(A'l")| = |det(A’)| segue que (AI) é TU. (iii) Cada
submatriz de B é uma submatriz de A. (iv) A determinante troca no maximo
o sinal. |

Exercicio 7.1 pede generalizar a proposicao 7.1.

Critérios
Proposigao 7.2
Uma matriz A é totalmente unimodular se

(i) ay €{+1,-1,0}
(ii) Cada coluna contém no méaximo dois coeficientes nao-nulos.

(iii) Existe uma parti¢ao de linhas My UM, = [1, m] tal que cada coluna com
dois coeficientes nao-nulos satisfaz

Zaij—z (11]':0

ieM; ieM;
Observe que esse critério é suficiente, mas néo necessario.

Exemplo
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7.2. Problemas com solugao eficiente

e Coeficientes € {—1,0,1}: Sim.
e Cada coluna no méaximo dois coeficientes ndo-nulos: Sim.

e Particao M1,M;? Sim, escolhe M; = [1, 3], M, = ().

Exemplo

TU? Nao: det(A) = 2.

110
A=10 T 1
10 1

TU? Nao: det(A) = 2.

01000
011 11
101 11
10010
100 00

TU? Sim. Mas nossa regra nao se aplica!

Prova. (da proposigao 7.2). Prova por contradigdo. Seja A uma matriz que
satisfaz os critérios da proposicao 7.2, e B a menor submatriz quadrada de A tal
que det(B) ¢ {0,4+1,—1}. B ndo contém uma coluna com um tnico coeficiente
nao-nula: seria uma contradi¢ao com a minimalidade do B (removendo a linha e
a coluna que contém esse coeficiente, obtemos uma matriz quadrada menor B*,
que ainda satisfaz det(B*) ¢ {0,+1,—1}). Logo, B contém dois coeficientes nao-
nulos em cada coluna. Aplicando a condic@o (3) acima, subtraindo as linhas
com indice em M; das linhas com indice em M; podemos ver as linhas do B
sdo linearmente dependentes e portanto temos det(B) = 0, uma contradigao.
|

Uma caracterizacgao (i.e. um critério necessério e suficiente) das matrizes total-
mente unimodulares (sem prova) é
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7. Técnicas de solugao

Teorema 7.1 (Ghouila-Houri (1962))
Um matriz A € Z™*™ & TU sse para todo subconjunto R C [m] de linhas existe

uma particao Ry U R, tal que

Z aij — Z ayj < 1 (71)

ieRy i€Ry
para todas colunas j € [n].

Observe que a proposicao 7.2 implica o critério acima: dado uma parti¢ao das
linhas de acordo com 7.2, para todo R C [m], a particao (M; N R) U (M; NR)
satisfaz (7.1).

Definicao 7.2
Uma matriz A € {0, 1}™™ possui a propriedade de uns consecutivos se para
cada colunaj € ], ajj =T eay;=1comi< i’ implica aiy = 1 para k € [i,1].

Uma aplicagao do critério de Ghouila-Houri é a

Proposigao 7.3
Uma matriz que satisfaz a propriedade de uns consecutivos é totalmente uni-
modular.

Prova. A matriz formada por um subconjunto de linhas R C [m] também

possui a propriedade de uns consecutivos. Seja R = {ij,..., i} com i3 < --- <
ix. A particao em M; = {ij,13,...} e My ={iz,14,...} satisfaz (7.1). |
Exemplo 7.2
A matriz

01000

o1 1 11

T 01 11

T 0010

100 00
do exemplo anterior satisfaz a propriedade de uns consecutivos. Logo ela é TU.

O

Exemplo 7.3
Para um universo U = {uy,...,un}, e uma familia de conjuntos Cy,...,C,, C U
com pesos Pi,...,Pn uma cobertura é uma sele¢cdo de conjuntos S C [n] tal

que cada elemento do universo é coberto, i.e. para todo u € U existe um i € S
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7.2. Problemas com solugao eficiente

com u € C;. A problema de encontrar a cobertura de menor peso total pode
ser formulado por

minimiza Z Pixi,
iem]

sujeito a Ax > 1,
x € B"™.

com aj = 1 sse u; € Cj. (Figura 7.1 mostra um exemplo de uma instancia
e a matriz A correspondente.) Este problema em geral é NP-completo. Pela
propriedade de uns consecutivos, podemos ver que no caso de um universo
U = [m] com subconjuntos que sdo intervalos o problema pode ser resolvido
em tempo polinomial. O

Consequéncias

Teorema 7.2 (Hoffman e Kruskal (1956))
Se a matriz A de um programa linear é totalmente unimodular e o vetor b é
inteiro, todas solugoes béasicas sao inteiras. Em particular as regioes

{x e R"| Ax < b}
{x e R"| Ax > b}
{xeR"| Ax < b,x > 0}
{xeR"| Ax =b,x > 0}

possuem pontos extremos inteiros.

Prova. Consideragoes acima. |

Exemplo 7.4 (Caminhos mais curtos)

Exemplo: Caminhos mais curtos

e Dado um grafo direcionado G = (V, A) com custos ¢ : A — Z nos arcos.

e Qual o caminho mais curto entre dois noés s,t € V?

123
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1001000
101 0000
0101000
0011000
000O0T1TO1
00001 1O
000O0O0T11

Figura 7.1.:. Exemplo de
uma instancia do problema
de cobertura por conjuntos
e a matriz A da formulagao
inteira correspondente.




7. Técnicas de solugao

Exemplo: Caminhos mais curtos

minimiza E CaXa,

acA
sujeito a Z Xg — Z Xq =1,
aeNT(s) aeN—(s)
Z Xq — Z xq =0, Yv e V\ {s, t}
aeNt(v) aeN—(v)
2 Xa= ) Xa=-1,
aeN+(t) aeN-(t)
Xq € B, Va € A.

A matriz do sistema acima de forma explicita:

S 1 R | Xa 1
1 0
—1 1 0
t —1 Xam —1

Como cada arco é incidente a dois vértices, cada coluna contém um coeficiente
1 e —1, e a Proposicao 7.2 é satisfeito pela particao trivial U V. O

Exemplo 7.5 (Fluxo em redes)

Exemplo: Fluxo em redes

e Dado: Um grafo direcionado G = (V, A)
— com arcos de capacidade limitada 1: A — Z™,

— demandas d : V — Z dos vértices,

0 0
\ 23 / — (com d, < 0 para destino e d, > 0 nos fonte)
3 / N 5 — e custos ¢ : A — R por unidade de fluxo nos arcos.
—1 6 —
N / e Qual o fluxo com custo minimo?
T

Figura 7.2.: Exemplo de 124
uma instancia de um pro-
blema de fluxo.



7.2. Problemas com solugao eficiente
Exemplo: Fluxo em redes

minimiza E CaXa,

acA

sujeito a Z Xa — Z Xq = dy, YvevVv
aeN*(v) aeN—(v)
0 <xq <l Va € A.

com conjunto de arcos entrantes N~ (v) e arcos saintes NT(v).

Exemplo: Fluxo

e A matriz que define um problema de fluxo é totalmente unimodular.

e Consequéncias
— Cada ponto extremo da regiao viavel é inteira.

— A relaxagao PL resolve o problema.

e Existem varios subproblemas de fluxo minimo que podem ser resolvidos
também, p.ex. fluxo maximo entre dois vértices.

Exemplo 7.6 (Emparelhamentos)

EMPARELHAMENTO MAXIMO (EM)
Entrada Um grafo G = (V, E) nao-direcionado.

Solucdo Um emparelhamento M C E, i.e. um conjunto de arcos, tal que
para todos vértices v temos |[N(v) " M| < 1.

Objetivo Maximiza |M].

Uma formulagao é

maximiza Z CeXey (7.2)
eck
sujeito a Z Xuy < 1, Yv ey, (7.3)
ueN(v)
Xe € B.
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7. Técnicas de solugao

A matriz de coeficientes dessa formulagao é TU para grafos bipartidos. Por
qué? Isso ainda é vélida para grafos nao-bipartidos? O

7.3. Desigualdades validas

X2 Desigualdades validas

e Problema inteiro

max{c'x | Ax < b,x € ZT}

e Relaxagao linear
X1
max{c'x | Ax < b,x € R}

Figura 7.3.: Diferentes for-
mulagoes dos mesmo PI.

Desigualdades validas

Definigao 7.3
Uma desigualdade x < 119 é vdlida para um conjunto P, se Vx € P : tx < 71p.

e Como achar desigualdades (restrigoes) validas para o conjunto da solugoes
viaveis {x | Ax < b,x € Z'} de um problema inteiro?

— Técnicas de construgao (p.ex. método de Chvatal-Gomory)
— Observar e formalizar caracteristicas especificas do problema.

— “The determination of families of strong valid inequalities is more
of an art than a formal methodology” Wolsey e Nemhauser 1999, p.
259

Exemplo 7.7 (Localizagao de facilidades nao-capacitado)

Temos um conjunto de cidades C = [n] em que podemos abrir facilidades para
um custo fixo fj,j € C. Em cada cidade i existe um demanda que pode ser
satisfeito por uma facilidade na cidade j com custo cyj, caso existe um facilidade
na cidade j. Com x;; € B indicando que a demanda da cidade 1 é satisfeito pela
facilidade na cidade j podemos formular
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minimiza Z fiy; + Z CijXijy (7.4)
jem] i€nl,jem]
sujeito a xij = 1, Vi€ [n], (7.5)
jen]
xXij < Yj, Vi€ [n],j € n], (7.6)
xij € B, Vi e [nl,j € n], (7.7)
yj € B, Vj € [n]. (7.8)
Ao invés de
Xij < Yj (7.9)
podemos formular
Z Xy < nyj. (7.10)
iem]

Essa formulacdo ainda é correto, mas usa n restri¢des ao invés de n?. Entre-
tanto, a qualidade da relacdo linear é diferente. E simples ver que podemos
obter (7.10) somando (7.9) sobre todos i. Portanto, qualquer solu¢ao que sa-
tisfaz (7.9) satisfaz (7.10) também, e dizemos que (7.9) domina (7.10).

O seguinte exemplo mostra, que o contrario nao é verdadeiro. Com custos de
instalagao f; = 1, de transporte ci; = 5 para i # j e ¢y; = 0, duas cidades e uma
fabrica obtemos as duas formulagoes (sem restri¢oes de integralidade)

minimiza vy +yz + 5x12 + 5x21, Y1 + Y2 + 5x12 + 521,
sujeito a xj1+x12=1, X171 +x12 =1,

x21 +x22 =1, X1 +x22 =1,

yr+y2 <1, Yy +y2 <1,

x11 < Y, x11 +x21 < 2y7,

X12 < Y2,

x21 <Y1, x21 + %22 < 2y;.

x22 < Y2.

A solugao 6tima do primeiro sistema é y; = 1,x17 = x21 = 1 com valor 6, que é
a solugao 6tima inteira. Do outro lado, a solu¢ao 6tima da segunda formulagao
éyr =y =05 com x11 = x22 = 1, com valor 1, i.e. ficam instaladas duas
“meia-fabricas” nas duas cidades!

O
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1/3
7
S~

1/3
2/3 2/3 2/3 2/3
1/3
/\

\/
1/3

Figura 7.4.: Uma solugado
fracionaria de uma instan-
cia do PCV com 4 cidades
da formulagao Ps, que nao
é valida na formulacao Ps, .
O valor pi = 0 para todos
ieN.

7. Técnicas de solugao

Exemplo 7.8 (Problema do caixeiro viajante)
Na introdugao discutimos a formulagao basica do PCV

minimiza E CijYij)

i,jeN

sujeito a Y xij =1, vieN, (7.11)
JEN
D xi=1, vieN, (7.12)
JEN
Xy € {0) 1}, vi,j € N, (7.13)
+ restri¢oes de eliminagdo de subciclos! (7.14)

Uma ideia de eliminar subciclos é a seguinte: considere um subconjunto S C N
de cidades: entre cidades em S nao podemos selecionar mais que |S|—1 arestas,
senao vai formar um subciclo. Logo uma forma de eliminar subciclos é pelas
restrigoes

3 xy<IsI—1, VS C N,S#£0,S #N. ($1)

ijes

Uma outra forma pode ser obtido como segue: associa um “potencial” (uma
altura) p; a cada cidade 1 € N e for¢a o sucessor de i na rota ter um potencial
pelo menos pi+1. Isso nao pode ser satisfeito em ciclos. Para permitir um ciclo
global, vamos excluir uma cidade fixa s € S dessa restrigao. Logo, as restrigoes

pi+n(xij_1)+1§pj Vi)j>i7és)j7és (SZ>

também eliminam os subciclos.
Quais restrigoes sao melhores? Considere as solugoes

Ps, = {x | x satisfaz (7.11), (7.12), (7.13), (S1)}
da primeira formulagao e as solucoes
Ps, = {x | existem valores p tal que x satisfaz (7.11), (7.12), (7.13), (S2)}

da segunda. Nao ¢ dificil de ver que existem solugoes fracionarias x € Ps, que
nao pertencem a Ps,: um exemplo ¢ dado na Figura 7.4.
E possivel mostrar que Ps, C Ps,. Logo a formulacao (S1) domina a formulagao
(S2).

O
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Exemplo: 0-1-Mochila

maximiza Z ViXi,
i€nl
sujeito a Z pixi <P
i€[n]
xi € B.
Exemplo: 79x1 + 53%) + 53x3 + 45%x4 + 45x5 < 178.
Exemplo 7.9 (Problema da mochila)

Exemplo: 0-1-Mochila
e Observagao: Para um subconjunto S C [1,n]:
Se ) icsPi>Pentao ) ¢x; <I[S|—1.

e Exemplos:
X1 +x2+x3 <2,
X1+ %2+ x4+ x5 < 3
X1+ X3+ x4+ x5 < 3,
X2 + X3+ x4 + x5 < 3.

Um conjunto S tal } ;.spi > P se chama uma cobertura e a desigualdades
obtidos por tais conjuntos desigualdades de cobertura (ingl. cover inequalities).

¢
Exemplo 7.10 (Emparelhamentos)

Continuando exemplo 7.6.

Exemplo: Emparelhamentos
e Escolhe um subconjunto arbitrario de vértices U C V.
e Observagao: O nimero de arestas internas ¢ < [[U|/2].

e Portanto:

> xa < [IUl/2) (7.15)
acUZnA
é uma desigualdade valida.
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Observacao 7.2
A envoltoria convexa do problema de emparelhamentos é dado pelas restri-
goes (7.3) e (7.15) para todo conjunto U de cardinalidade impar maior que 1.

O

Método de Chvatal-Gomory
Dado uma restricao

Z aixi < b
ien]

também temos, para u € R,u > 0 as restrigdes validas

Z uaix; < ub (multiplicagao com )
iem]
Z luai | % < ub porque [y| <ye0<x
iem]
Z |luai| x; < [ub] porque o lado da esquerda é inteira
ieMn]

O método de Chvétal-Gomory funciona igualmente para combinagoes lineares

de colunas. Com A = (a' a? ---am) e u € R™ obtemos

Z Lua"J xi < [ub] (7.16)

i€n]

Teorema 7.3
Cada desigualdade valida pode ser construida através de um ntmero finito de
aplicagoes do método de Chvatal-Gomory (7.16).

(Uma prova do teorema encontra-se, por exemplo, em Wolsey e Nemhauser

(1999, p. I1.1.2) ou, para o caso de variaveis 0-1, em Wolsey (1998, Th. 8.4).)

Observagao 7.3

Para desigualdades >_ aix; > b obtemos similarmente

Z {uaﬂ xi > [ub]

i€n]

i€n]
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Exemplo 7.11 (Problema da mochila)
A relaxagao linear do problema da mochila acima possui as restrigoes

79%1 +53x; +53x3 +45x4 +45x5 1
X1
X2

X3

X4

VAVARVARVANI VAR VAN
— — — \‘_l — \l

X5
Com uw=(1/79026/79 26/79 0 0)! obtemos a desigualdade valida

X1 +x) +x3 < 2.

Exemplo 7.12 (Emparelhamentos)

e Para um U C V podemos aplicar o método de Chvatal-Gomory com

=(1/21/2---1/2)t €« RY a5 desigualdades

Z Xuy < 1, Ywel
ueN(v)
para obter
2 12 Z Xw= ) Xat Z 1/2xq < [UJ/2
velu ueN(v aeUZnA aeN(U

e depois aplicar os pisos com ZQGN(U) |1/2] xq =0

Z Xqg < |U|/2J

acUZnA

7.4. Planos de corte
Como usar restricdes validas?

e Adicionar & formulacdo antes de resolver.
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— Vantagens: Resolugdo com ferramentas padrao.
— Desvantagens: Numero de restricoes pode ser muito grande ou de-
mais.
e Adicionar ao problema se necessario: Algoritmos de plano de corte.

— Vantagens: Somente cortes que ajudam na solugao da instancia sao
usados.

Planos de corte
Problema inteiro
max{c'x | Ax < b,x € Z1}

e O que fazer, caso a relaxacao linear nao produz solugoes 6timas?

e Um método: Introduzir planos de corte.

Definicao 7.4
Um plano de corte (ingl. cutting plane) é uma restrigao valida (ingl. valid
inequality) que todas solugoes inteiras satisfazem.

Algoritmo de planos de corte

Algoritmo 7.1 (Planos de corte)
Entrada Programa inteiro max{c'x | Ax < b,x € Z}.

Saida Solugao inteira 6tima ou “Néo existe corte.”.

1 Vi={x|Ax<b} { regido viavel }
2 x*:=argmax{c'x |x € V} { resolve relaxagdo }

3 while (x*¢ZL}) do

4 if (existe corte a'x<d com a'x* >d) then

5 Vi=Vn{x|a'x<d} { nova regido viavel }

6 x* = argmax{c'x | x € V} { nova solugdo 6tima }
7 else

8 return "N&o existe corte."

9 end if

10 end while
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Método de Gomory

e Como achar um novo corte na linha 4 do algoritmo?

e A solucdo 6tima atual é representado pelo dicionario
z=2z+ Z (_3)'7()'
j

xi:Bi—Zdﬁxj ieB
jeN

e Se a solugao nao é inteira, existe um indice i tal que x; € Z, i.e. by € Z.

Cortes de Chvatal-Gomory

xi = b; — aix; Linha fracionéria (7.17)
jeN
xi <bi— Y |ay)x Definicio de |- (7.18)
jeN
xi < LBIJ — Z Laij] X Integralidade de x (7.19)
jeEN
0> {bi} - > {aylx (7.17) — (7.19) (7.20)
jeN
Xni] = — {61} + Z {aij}x; Nova variavel (7.21)
jeN
Xn+1 € Z+ (722)

Para solucoes inteiras, a diferenca do lado esquerdo e do lado direito na equa-
gao (7.19) é inteira. Como uma solugao inteira também satisfaz a equagao
(7.17) podemos concluir que Xn+1 também ¢é inteira.

Observagao 7.4
Lembra que o parte fracionario de um namero é definido por {x} = x—|x], sendo
0 piso |x| o maior nimero inteiro menor que x. Por exemplo, {0.25} = 0.25 e

{—0.25} = 0.75. (Ver definigao A.1 na pagina 187.) O

A solucao basica atual nao satisfaz (7.20), porque com x; = 0,j € N temos que
satisfazer )
{bl} < 03
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7. Técnicas de solugao

uma contradi¢do com a defini¢ao de {-} e o fato que I_)i é fracionario. Portanto,
provamos

Proposicao 7.4

O corte (7.20) satisfaz os critérios da linha 4 do algoritmo PLANOS DE CORTE.
Em particular, sempre existe um corte e o caso da linha 8 nunca se aplica.

Exemplo 7.13
Queremos resolver o problema
maximiza x; + X2,

sujeito a —x;+3x <9,

10x1 < 27,
X1,X2 € Z+.
A solugao da relaxagao linear produz a série de dicionarios
(1) z = X1 X2 (2) z =3 +4/3x1 —1/3w;
Wi =9 +x7 —3xg9 X2 =3 +1/3x7 —1/3wy
wy = 27 —10X1 wy; = 27 —]0X1

(3) z =6.6 —4/30w; —1/3w,
x2 =3.9 —1/30wy, —1/3w;q
X1 =27 —1/10W2
A solugdo oOtima x; = 2.7, x; = 3.9 é fracionaria. Correspondendo com a
segunda linha
x) =3.9 —1/30w, —1/3w,
temos o corte
wy =-—0.9 +1/30w; +1/3w;

e 0 novo sistema é

(4) z =6.6 —4/30w; —1/3w;
X2 =3.9 —1/30w; —1/3w;
X1 =27 —1 /1 OWZ
wy =-—0.9 +1/30w, +1/3w;y
Substituindo w, e wy no corte wy = —0.9 + 1/30w, + 1/3w; > 0 podemos

reescrever o corte sando as variaveis originais do sistema, obtendo x; < 3.
Esse sistema nao é mais 6timo, e temos que re-otimizar. Pior, a solugao bésica
atual nao é viavell Mas como na fungao objetivo todos coeficientes ainda sao
negativos, podemos aplicar o método Simplex dual. Um pivd dual gera a nova
solugao 6tima
(5) z =57 —=1/10w; —w3

X2 =3 —W3

X1 =27 —1/]01/\)2

wp = 2.7 —]/]OWZ +3W3
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7.4. Planos de corte

X1
1 2 3 4

Figura 7.5.: Visualizagao do exemplo 7.13.

com x; = 3 inteiro agora, mas x; ainda fracionario. O préximo corte, que
corresponde com Xj €

(6) z =57 —1/10wy; —w;3 Mz =5 —wi —w3

X2 =3 —W3 X2 = 3 —W3

X1 =2.7 -1 /] OW2 X1 =2 —Wy

wq =27 —1/10wy; +3wj; w; =2 —wy  +3wg

wy =-—0.7 +1/10w, wy =7 410wy
cuja solugao ¢é inteira e 6tima. (O tultimo corte inserido wy = —0.7+1/10w; > 0
corresponde com xj < 2.) O

Observagao 7.5

Nosso método se aplica somente para sistemas puros (ver pagina 115) e temos
que garantir que as variaveis de folga s@o variaveis inteiras. Por isso os coefi-
cientes de um sistema original em forma normal tem que ser ntmeros inteiros,
ie, AcZ"™MebcZ™. O

Resumo: Algoritmos de planos de corte

e O algoritmo de planos de corte, usando os cortes de Gomory termina
sempre, i.e. é correto.

e O algoritmos pode ser modificado para programas mistos.
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7. Técnicas de solugao

e A técnica é considerado inferior ao algoritmos de branch-and-bound.

e Mas: Planos de corte em combinacao com branch-and-bound é uma téc-
nica poderosa: Branch-and-cut.

7.5. Branch-and-bound

Branch-and-bound
Ramifica-e-limite (ingl. branch-and-bound, Land e Doig (1960))

e Técnica geral para problemas combinatoriais.

Branch and Bound is by far the most widely used tool for
solving large scale NP-hard combinatorial optimization pro-
blems. (Clausen 1999)

e Ideia basica:

— Particiona um problema em subproblemas disjuntos e procura solu-
¢oes recursivamente.

— Evite percorrer toda arvore de busca, calculando limites e cortando
sub-arvores.

e Particularmente efetivo para programas inteiras: a relaxagao linear for-
nece os limites.

Limitar

e Para cada sub-arvore mantemos um limite inferior e um limite superior.
— Limite inferior: Valor da melhor solu¢ao encontrada na sub-arvore.

— Limite superior: Estimativa (p.ex. valor da relaxagao linear na PI)

e Observagao: A eficiéncia do método depende crucialmente da qualidade
do limite superior.

Cortar sub-arvores
Podemos cortar ...

(1) por inviabilidade: Sub-problema é inviavel.
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7.5. Branch-and-bound

(2) por limite: Limite superior da sub-arvore z; menor que limite inferior global
z (o valor da melhor solu¢ao encontrada).

(3) por otimalidade: Limite superior z; igual limite inferior z; da sub-arvore.
Observagao: Como os cortes dependem do limite z, uma boa solugao inicial

pode reduzir a busca consideravelmente.

Ramificar
e Nao tem como cortar mais? Escolhe um no e particiona.
e Qual a melhor ordem de busca?

e Busca por profundidade
— V: Limite superior encontrado mais rapido.
— V: Pouca memoéria (O(8d), para & subproblemas e profundidade d).
— V: Re-otimizagao eficiente do pai (método Simplex dual)

— D: Custo alto, se solugao 6tima encontrada tarde.

e Melhor soluc¢ao primeiro (“best-bound rule”)
— V: Procura ramos com maior potencial.

— V: Depois encontrar solugao 6tima, nao produz ramificacoes supér-
fluas.

e Busca por largura? Demanda de memoéria é impraticavel.

Em resumo: um algoritmo de branch-and-bound consiste de quatro componen-
tes principais:

e Uma heuristica que encontra uma boa solucao inicial;

e um limite inferior (no caso de minimizagao) ou superior (para maximiza-
¢ao) do valor de um subproblema;

e uma estratégia de ramificagao, que decompoe um problema em subpro-
blemas;

e uma estratégia de selegdo, que escolhe o préoximo subproblema entre os
subproblemas ativos.

Algoritmos B&B

137



7. Técnicas de solugao

Algoritmo 7.2 (B&B)
Instancia Programa inteiro P = max{c*x | Ax < b,x € Z"}}.

Saida Solugao inteira 6tima.

1 { usando fungdo Z para estimar limite superior }

2 z:=—00 { limite inferior }

3 A:= {(P,g(P))} { nés ativos }

4 while A#( do

5 Escolhe: (P,g(P)eA; A:=A\(P,g(P))

6 Ramifique: Gera subproblemas Py,...,Py.
7 for all P;, 1<i<n do

8 { adiciona, se permite melhor solugdo }
9 if Z(Py) >z then

10 A=A U{(Py,z(P))}

11 end if

12 { atualize melhor solucgdo 1}

13 if (solugdo zZ(P;) & viavel) then

14 z:=Z(Pi)

15 end if

16 end for
17 end while

Exemplo 7.14 (Aplicagao Branch-and-Bound no PCV)
Considera uma aplicagao do PCV no grafo da Figura 7.6.

Aplicando somente backtracking obtemos a seguinte arvore de busca:

Figura 7.6.: Exemplo de
uma instancia do PCV.
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7

3 A\. A\.
3 3 4 5
6 6 6 7 8
D 4 40
6.5 .4 4
877 T6 6
0, 5 4 4
7
8 6

7.5. Branch-and-bound

:
3 \4
4 N2
5 7 5
3.3 3.4
575 56
4 3 :
5.5 4
6 6 5

A arvore de backtracking completa possui 65 vértices (por nivel: 1,4,12,24,24).
Usando como limite inferior o custo atual mais o nimero de arcos que faltam
vezes a distdncia minima e aplicando branch-and-bound obtemos os custos
parciais e limites indicados na direita de cada vértice. Com isso podemos
aplicar uma série de cortes: busca da esquerda para direito obtemos

uma nova solucao 7 em 2345;

um corte por limite em 235;

um corte por otimalidade em 243;
um corte por otimalidade em 2453;
um corte por limite em 253;

um corte por otimalidade em 2543;
uma nova solugao 6 em 3245;

um corte por otimalidade em 32;

um corte por otimalidade em 3;
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7. Técnicas de solugao

e um corte por limite em 4;

e um corte por otimalidade em 5234;
e um corte por otimalidade 5243;

e um corte por limite em 53;

e um corte por otimalidade 543.

Exemplo 7.15 (Escalonamento de tarefas)

Considera o problema de escalonamento 1 | 7 | Limax: temos n tarefas a serem
executadas numa tnica maquina. Cada tarefa possui um tempo de execugao p;j
e ¢ disponivel a partir do tempo 1j (release date) e idealmente tem que terminar
antes do prazo d; (due date). Caso a tarefa j termina no tempo C;j o seu atraso
¢ Lj = max{0,Cj — dj}. Uma tarefa tem que ser executada sem interrupgao.
Queremos encontrar uma sequenciamento das tarefas tal que o atraso maximo
¢ minimizado. (Observe que uma solucao é uma permutagao das tarefas.)

Um exemplo de uma instancia com quatro tarefas é

Tarefa 1 2 3 4
Pj 4 2 6 5
T 0 1 3 5
d; 8 12 11 11

Uma abordagem via branch-and-bound é explorar todas permutacoes possiveis.
Um limite inferior bom para a fungao objetivo pode ser obtido como segue: o
problema sem release dates 1 || Linax possui uma solugdo simples polinomial,
conhecida como EDD (earliest due date): ordene as tarefas por due date. No
nosso caso é possivel que durante a execugdo de uma tarefa passamos o release
de uma outra tarefa com due date menor. Para considerar isso, o nosso limite
inferior seréd o sequenciamento obtido pela regra EDD, permitindo interrupgoes.

O

Branch-and-bound e PI

e Problema PI (puro): {maxc'x | x € S,x € Z1}.
e Resolve a relaxacao linear.

e Solugao inteira? Problema resolvido.
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7.6. Notas

Caso contrario: Escolhe uma varidvel inteira x;, com valor b; fracionéario.

Heuristica: Variavel mais fracionéaria: argmin; |[{x;} — 0.5|.
e Particione o problema S = S; U S, tal que

Si=Sn{x|xi < |villy S2=SN{x[x > [v]}

Em particular com variaveis x; € B:

S=SN{x|xi=0}; S, =SNn{x|x =1

Preferimos formulagoes mais “rigidas”.

7.6. Notas

Clausen (1999) da uma boa introdugdo em algoritmos de branch-and-bound,
com mais exemplos e exercicios. O artigo do Cook (2012) relata a historia do
método. Concorde atualmente é o melhor solver exato para o problema do
caixeiro viajante. Exemplos de solugoes e coddigo aberto do solver é disponivel
na sua pagina web (Cook 2011).

7.7. Exercicios

(Solugoes a partir da pagina 221.)

Exercicio 7.1 (Matrizes totalmente unimodulares)

Mostra que a seguinte generalizacao do item 2 da proposicao 7.1 é valido: Para
uma matriz arbitraria A € {—1,0,1}™*™ e uma matriz B € {—1,0, 1}™*° com
no maximo um coeficiente ndo-nulo em cada coluna, a matriz (A B) é TU sse
a matriz A é totalmente unimodular.

Exercicio 7.2 (Matrizes totalmente unimodulares)
Para cada um dos problemas do exercicio 6.2 decide, se a matriz de coeficientes
é totalmente unimodular.

Exercicio 7.3 (Matrizes totalmente unimodulares)
Prove ou mostre um contra-exemplo.

g) também.

a) Se A é totalmente unimodular, entao (’3

b) Se A é totalmente unimodular, entao (A At) também.
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Figura 7.7.: Instancia do
problema do conjunto inde-
pendente méaximo.

Figura 7.8.: Exemplo de
uma instancia do PCV.

7. Técnicas de solugao

c) Se A é totalmente unimodular, entao (Q /3) também.

Exercicio 7.4 (Desigualdades validas (Nemhauser,Wolsey))
Uma formulagao do problema do conjunto independente méximo é

maximiza ZXV, (7.23)
veV

sujeito a  xy +x, <1, V{u,v} € E, (7.24)

xy € B, Vv eV (7.25)

Considere a instancia da Figura 7.7. Mostra que Ziem x; < 2 é uma desigual-
dade valida.

Exercicio 7.5 (Desigualdades validas)
O exemplo 7.12 mostra como obter as desigualdades vélidas do exemplo 7.10
usando cortes de Gomory. Mostra como obter as desigualdades validas

D xi<IS|—1
ie$S
para um S C [n] com Zies p;i > P do problema da mochila usando cortes de

Gomory.

Exercicio 7.6 (Desigualdades validas)
Considere a instancia da Figura 7.8 do problema do caixeiro viajante (os nime-
ros nas arestas representam os indices das variaveis correspondentes). Mostra
que

X1 +X)+X5+X6+X7+%0 <4

¢ uma desigualdade valida.

Exercicio 7.7 (Desigualdades validas)

Para cada uma das desigualdades vélidas do exemplo 7.9 mostra como ele pode
ser obtida via uma aplicagdo (um numero finito de aplicagoes) do método de
Chvatal-Gomory (7.16).

Exercicio 7.8 (Planos de corte)
Resolve com o algoritmo de planos de corte using cortes de Chvéatal-Gomory.
maximiza x; + 3xy,
sujeito a —x; < -2,
x2 <3,
—x1 —x < —4,
3x1 +x2 < 12,
Xi € Ly,
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7.7. Exercicios

maximiza x; — 2xy,
sujeito a — 11x; + 15%x, < 60,
4xy 4+ 3%y < 24,
10x7 — 5% <49,

X1,X2 € Zy,

Exercicio 7.9 (Desigualdades validas)
Gera uma desigualdade vélida similar com a desigualdade (7.16) para a restri¢ao

Z aiXi > b.

i€n]
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8. Tépicos

Outras técnicas

e Branch-and-cut.
Comeca com menos restrigoes (relaxagdo) e insere restrigdes (cortes) nos
sub-problemas da busca com branch-and-bound.

e Branch-and-price.

Comega com menos variaveis e insere variaveis (“geracao de colunas”) nos
sub-problemas da busca com branch-and-bound.
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Parte III.

Heuristicas
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9. Introducao

Resolucido de Problemas

e Problemas Polinomiais
1. Programagao Dinamica
2. Divisao e Conquista

3. Algoritmos Gulosos

e Problemas Combinatorios

— Técnicas Exatas: Programagao Dinamica, Divisao e Conquista back-
tracking, branch & bound

Programacao nao-linear: Programacao semi-definida, etc.

Algoritmos de aproximacao: garantem solucio aproximada

— Heuristicas e metaheuristicas: raramente provéem aproximagcao

Heuristicas

e O que é uma heuristica?

Practice is when it works and nobody knows why. Grego heurisko:

acho, eu descubro.

e Qualquer procedimento que resolve um problema
— bom em média
— bom na préatica (p.ex. Simplex)

— nao necessariamente comprovadamente.

e Nosso foco
— Heuristicas construtivas: Criar solucoes.

— Heuristicas de busca: Procurar solugoes.
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9. Introdugao
Heuristicas de Construcio

e Constréem uma solugao, escolhendo um elemento a ser inserido na solugao
a cada passo.

e Geralmente sao algoritmos gulosos.

e Podem gerar solucoes infactiveis.
— Solugao infactivel: nao satisfaz todas as restrigoes do problema.

— Solucgao factivel: satisfaz todas as restri¢bes do problema, mas nao
¢é necessariamente 6tima.

Exemplo: Heuristica construtiva

e Problema do Caixeiro Viajante (PCV) — Heuristica do vizinho mais pro-
ximo.

Algoritmo 9.1 (Vizinho mais préximo)
Entrada Matriz de distancias completa D = (dj;), nimero de cidades n.

Saida Uma solugéo factivel do PCV: Ciclo Hamiltaneo C com custo c.

1 HVizMaisProx(D,n)=

2 { cidade inicial randdmica }

3 u:= seleciona uniformemente de [I,n]

4 wi=u

) { representagdo de caminhos: sequéncia de vértices }
6 C=u { ciclo inicial }

7 c:=0 { custo do ciclo }

8 repeat n—1 vezes

9 seleciona v¢ C com distdncia minima de u
10 C:=Cv

11 c:=c+ dyy

12 u:=v

13 end repeat

14 C:=Cw { fechar ciclo }
15 c:=c+ duw
16 return (C,c)
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Meta-heuristicas

e Heuristicas genéricas: meta-heuristicas.

Motivacdo: quando considera-se a possibilidade de usar heuristicas

e Para gerar uma solucdo factivel num tempo pequeno, muito menor que
uma solugdo exata pudesse ser fornecida.

e Para aumentar o desempenho de métodos exatos. Exemplo: um limitante
superior de um Branch-and-Bound pode ser fornecido por uma heuristica.
Desvantagens do uso de heuristicas

e No caso de metaheuristicas, nao ha como saber o quao distante do 6timo
a solugao esta.

e Nao hé garantia de convergéncia.
e Dependendo do problema e instdncia, ndao ha como garantir uma solugao
otima.
Problema de otimizacdo em geral

e Um problema de otimizagao pode ser representado por uma quadrupla

(I, S, , 0bj)

I é o conjunto de possiveis instancias.
— S(i) é o conjunto de solugoes factiveis (espago de solugoes factiveis)
para a instancia i.

— Uma fun¢ao objetivo (ou fitness) f(-) avalia a qualidade de uma dada
solucgao.

— Um objetivo obj = min ou max: s* € S para o qual f(s*) seja minimo
ou maximo.

e Alternativa

optimiza f(x),

sujeito a x € S.

e S discreto: problema combinatorial.
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9. Introdugao

Técnicas de solucio

e Resolver o problema nessa geralidade: enumeragao.
e Frequentemente: Uma solucao x € S possui uma estrutura.
e Exemplo: x é uma tupla, um grafo, etc.

e Permite uma enumeracao por componente: branch-and-bound.
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10. Heuristicas baseadas em Busca local

10.1. Busca local

Busca Local
e Frequentemente: O espago de solugoes possui uma topologia.

e Exemplo da otimizacio (continua): max{x* +xy | x,y € R}

XAXHXEY

e Espaco euclidiano de duas dimensoes.

e Isso podemos aproveitar: Busca localmente!

Vizinhancas
e O que fazer se nao existe uma topologia natural?
e Exemplo: No caso do PCV, qual o vizinho de um ciclo Hamiltaneo?
e Temos que definir uma vizinhanga.

e Notagao: Para x € S, escrevemos N (x) para o conjunto de solugdes
vizinhas.

e Uma vizinhanga defina a paisagem de otimizagao (ingl. optimization lands-
cape): Espaco de solugoes com valor de cada solugao.
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Figura 10.1.: Um mo-
vimento na vizinhanga 2-
exchange.

10. Heuristicas baseadas em Busca local

Relacdo de vizinhanca entre solucées

e Uma solugao s’ ¢ obtida por uma pequena modificagao na solugao s.

e Enquanto que § e f sao fornecidos pela especificacao do problema, o
projeto da vizinhanca é livre.

Busca Local k-change e insercdo

k-change: mudanca de k componentes da solucao.

Cada solucao possui vizinhanca de tamanho O(n¥).

Exemplo: 2-change, 3-change.

TSP: 2-change (inversao).

Insergao/remogao: inser¢ao de um componente da solugdo, seguido da
factibilizagao da solugao

Vertex cover: 1-change + remocao.

Exemplo: Vizinhanca mais elementar

e Suponha um problema que possue como solugoes factiveis S = B™ (por
exemplo, uma instancia do problema de particionamento de conjuntos).

e Entdo, para n = 3 e sp={0,1,0}, para uma busca local 1-flip, N(sp) =
{(1,1,0),(0,0,0), (0,1, 1)}

Exemplo: Vizinhancas para TSP

e 2-exchange: Para cada par de arcos (uy,vq) e (u2,v2) ndo consecutivos,
remova-os da rota, e insira os arcos (uj, uy) e (vi,v2).

e Para uma solucdo s e uma busca k-exchange [N (s)| € O(nk).
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10.1. Busca local

Caracteristicas de vizinhancas
E desejavel que uma vizinhanca é

e simétrica (ou reversivel)

yeNKx)=xeNy)

e conectada (ou completa)

Vx,y €S: Iz1,...,z €S: z1 € N(x),
ziv1 € N(zy), 1<i<k,
Y € N(z).

Busca Local: Ideia

e Inicia a partir de uma solugao sy

e Se move para solugoes vizinhas melhores no espago de busca.

e Para, se nao tem solucoes melhores na vizinhanca.

e Mas: Repetindo uma busca local com solugoes inicias randémicas, acha-

mos o minimo global com probabilidade T.

Exemplo 10.1 (Método Simplex)
O método Simplex pode ser visto como busca local no espago de vértices com
uma vizinhanga definido por arestas no politopo. O

Busca local — Caso continuo

Algoritmo 10.1 (Busca local continua)

Entrada Solucgéo inicial sy € R™, tamanho inicial @ de um passo.
Saida Solucao s € R™ tal que f(s) < f(sg).

Nome Gradient descent.

1 BuscaLocal(sp,x)=

2 S =98
3 while Vf(s)#0 do
4 s’ :=s— aVf(s)
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10. Heuristicas baseadas em Busca local

5 if f(s’) < f(s) then
6 s:=s’

7 else

8 diminui «

9 end if

10 end while

11 return s

Busca local — Caso continuo

VH(x) = ( of (x),...,”(x))

a Oxn

e Gradiente

sempre aponta na diregdo do crescimento mais alto de f (Cauchy).
e Necessario: A funcao objetivo f é diferenciavel.
e Diversas técnicas para diminuir (aumentar) o.

e Opcao: Line search na direcdo —V{(x) para diminuir o ntimero de gradi-
entes a computar.

Busca Local — Best Improvement

Algoritmo 10.2 (Busca Local BI)
Entrada Solucéo inicial sg.

Saida Solugao s tal que f(s) < f(sp).

Nomes Steepest descent, steepest ascent.

1 BuscaLocal(sgy)=

2 S :=Sp

while true
s':= argmin,{f(y) |y € N (s)}
if f(s’) < f(s) then s:=s’
else break

end while

N O Ot = W
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10.1. Busca local

8 return S

Busca Local — First Improvement
Algoritmo 10.3 (Busca Local FI)
Entrada Solucgéo inicial sp.

Saida Solucao s’ tal que f(s’) < f(s).

Nomes Hill descent, hill climbing.

1 BuscaLocal(sp)=

2 S:=Sp

3 repeat

4 Select any s’ € N(s) not yet visited

5 if f(s’) < f(s) then s:=s’

6 until all solutions in A(s) have been visited
7 return S

Projeto de uma busca local

e Como gerar uma solugao inicial? Aleatéria, via método construtivo, etc.

e Quantas solugoes inicias devem ser geradas?

Importante: Definicao da funcao de vizinhanca N

Vizinhanca grande ou pequena? (grande= muito tempo e pequena=menos
vizinhos)

Estratégia de selegao de novas solugoes
— examine todas as solugoes vizinhas e escolha a melhor

— assim que uma solucao melhor for encontrada, reinicie a busca.
Neste caso, qual a sequéncia de solugbes examinar?

Importante: Método eficiente para avaliar a funcao objetivo de vizinhos.
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10. Heuristicas baseadas em Busca local

Exemplo: 2-change TSP

e Vizinhanca: Tamanho O(n?).
e Avaliacao de uma solu¢ao: O(n) (somar n distancias).
e Atualizando a valor da solucao atual: O(1) (somar 4 distancias)

e Portanto: Custo por iteragdo de “best improvement”
— O(n?) sem avaliacio diferential.

— O(n?) com avaliacdo diferential.

Avaliac3o de buscas locais
Como avaliar a busca local proposta?

e Poucos resultados teoricos.
e Dificil de saber a qualidade da solucao resultante.

e Depende de experimentos.

Problema Dificil

e E facil de gerar uma solucao aleatoria para o TSP, bem como testar sua
factibilidade

e Isso nao é verdade para todos os problemas

e Exemplo dificil: Atribuicdo de pesos a uma rede OSPF

Busca local

e Desvantagem obvia: Podemos parar em minimos locais.

e Exceto: Fungao objetivo convexa (caso minimizac¢ao) ou concava (caso
maximizagao).
e Técnicas para superar isso baseadas em busca local
Multi-Start
— Busca Tabu
/ — Algoritmos Metropolis e Simlated Annealing

Valor

— Variable neighborhood search

Solugéo

Figura 10.2.: Busca local e
minimos locais é globais. 158



Multi-Start Metaheuristic

10.1. Busca local

e Gera uma solugao aleatoria inicial e aplique busca local nesta solugao.

e Repita este procedimento por n vezes.

e Retorne a melhor solugao encontrada.

e Problema: solugoes aleatoriamente geradas em geral possuem baixa qua-

lidade.

Multi-Start

Algoritmo 10.4 (Multi-Start)
Entrada Numero de repeticoes n.

Saida Solugao s.

1

1

1
2

© 00 3 O Ut = W

0

2

Multi_Start(mn) :=
s =10
f* = o0
repeat m vezes
gera solugdo randdmica s
s := BuscalLocal(s)
if f(s) <f* then
s*i=s
* .= f(s)
end if
end repeat
return s*

Cobrimento de Vértices

e Definicao de vizinhanca

grafo sem vértices
grafo estrela
clique bipartido Ky

grafo linha
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10. Heuristicas baseadas em Busca local

10.2. Metropolis e Simulated Annealing

O algoritmo Metropolis

e Proposto em 1953 por Metropolis, Rosenbluth, Rosenbluth, Teller e Teller

e Simula o comportamento de um sistema fisico de acordo com a mecéanica
estatistica

e Supoe temperatura constante

Um modelo bésico define que a probabilidade de obter um sistema
num estado com energia E é proporcional a funcio e %7 de Gibbs-
Boltzmann, onde T > 0 é a temperatura, e k > 0 uma constante

a fungao é monotonica decrescente em E: maior probabilidade de
estar em um sistema de baixa energia

para T pequeno, a probabilidade de um sistema estar num estado de
baixa energia é maior que ele estar num em estado de alta energia

para T grande, a probabilidade de passar para outra configuracao
qualquer do sistema é grande

A distribuicdo de Boltzmann

1.2

exp(-x/0.1) ——

exp(-x/2) ——
1 exp(-x/10) —— |

exp(-x/20) ——

exp(-x/500) ——
0.8 B
o 0.6 o
0.4 i
0.2 i

O 1 1 1
0 2 4 6 8 10

Algoritmo Metropolis

e Estados do sistema sao solucoes candidatas

e A energia do sistema é representada pelo custo da solucao
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10.2. Metropolis e Simulated Annealing

e Gere uma perturbagio na solugao s gerando uma solugao s’.
e Se E(s’) < E(s) atualize a nova solucao para s’.

Caso contrario, AE = E(s’) — E(s) > 0.

—AE/KT

A solugao s’ passa ser a solugao atual com probabilidade e

Caracteristica marcante: permite movimentos de melhora e, com baixa
probabilidade, também de piora

Metropolis
Algoritmo 10.5 (Metropolis)
Entrada Uma solugéo inicial s e uma temperatura T.

Saida Solucao s’ com c¢(s’) < c(s)

1 Metropolis(s, T, k)=

2 do

3 seleciona s’ € N(s) aleatoriamente

4 seja A:=c(s’) —c(s)

5 if A<O0 then

6 atualiza s:=s’

7 else

8 atualiza s:=s’ com probabilidade 67%
9 end if

10 until critério de parada satisfeito

11 return S

Observagao 10.1

Para T — oo o algoritmo executa um passeio aleatorio no grafo das solugoes
com a vizinhanga definida. Para T — 0 o algoritmo se aproxima a uma busca
local. O

Simulated Annealing

e Simula um processo de recozimento.
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10. Heuristicas baseadas em Busca local

e Recozimento: processo da fisica que aquece um material a uma tempera-
tura bem alta e resfria aos poucos, dando tempo para o material alcangar
seu estado de equilibrio

e Recozimento simulado: parte de uma alta temperatura e baixa gradual-
mente. Para cada temperatura, permite um ntmero maximo de saltos
(dois lagos encadeados)

Simulated Annealing

Algoritmo 10.6 (Simulated Annealing)
Entrada Solucdo inicial s, temperatura T, fator de esfriamento r € (0, 1),
nimero inteiro I.

Saida Solugao s’ tal que f(s’) < f(s).

1 SimulatedAnnealing(s, T, k, v, I) :=

2 repeat sistema ‘‘esfriado’’

3 repeat [ vezes

4 seleciona s’ € N(s) aleatoriamente
5 seja A:=c(s’)—c(s)

6 if A<O0 then

7 s:=s’

8 else

9 s:=s' com probabilidade e 2/T:
10 end fi

11 end repeat

12 T:=1T

13 end repeat

14 return s

Determinando uma temperatura inicial e final adequada é importante para nao
gastar tempo desnecessario com temperaturas em que o algoritmo se comporta
como passeio aleatério ou busca local.

Exemplo 10.2 (Temperatura inicial)

Define uma probabilidade p;. Executa uma versao rapida (I pequeno) do algo-
ritmo para determinar uma temperatura inicial tal que um movimento é aceito
com probabilidade p;. O
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10.3. GRASP

Exemplo 10.3 (Temperatura final)

Define uma probabilidade ps. Para cada nivel de temperatura em que os movi-
mentos foram aceitos com probabilidade menos que pf incrementa um contador.
Zera o contador caso uma nova melhor solugao é encontrada. Caso o contador
chega em 5, termina. O

10.3. GRASP

GRASP

e GRASP: greedy randomized adaptive search procedure
e Proposto por Mauricio Resende e Thomas Feo (1989).

e Mauricio Resende: Pesquisador da AT&T, Departamento de Algoritmos
e Otimizagao

GRASP

e Método multi-start, em cada iteragao
1. Gera solug¢bes com um procedimento guloso-randomizado.

2. Otimiza as solugoes geradas com busca local.

Algoritmo 10.7 (GRASP)
Entrada Parametro o.

Saida A melhor solu¢do encontrada.

1 GRASP(«x, ...)=
2 s & alguma solucgédo
do
s’ := Guloso — Randomizado( )
s’ := BuscaLocal(s’)
s:=s’' if f(s') < f(s)
until critério de parada satisfeito
return s

CO O U = W
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10. Heuristicas baseadas em Busca local

Construcdo gulosa-randomizada

e Motivagao: Um algoritmo guloso gera boas solugoes inicias.
e Problema: Um algoritmo deterministico produz sempre a mesma solugao.

e Logo: Aplica um algoritmo guloso, que nao escolhe o melhor elemento,
mas escolhe randomicamente entre os a% melhores candidatos.

e O conjunto desses candidatos se chama restricted candidate list (RCL).

Construcdo gulosa-randomizada: Algoritmo guloso

Guloso () :=
S:=()

while S =(s1,...,8{) com i<n do
entre todos candidatos C para sj;i:
escolhe o melhor scC
S:=1(s1y...,845)
end while

Construcdo gulosa-randomizada: Algoritmo guloso

Guloso-Randomizado () :=
S:=()

while S =(s1,...,8{) com i<n do
entre todos candidatos C para sj;i:
forma a RCL com os «\% melhores candidatos em C
escolhe randomicamente um s & RCL
S:=1(s1y...,85)
end while

GRASP

Algoritmo 10.8 (GRASP)
Entrada Parametro «.

Saida Uma solugao s*.
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10.3. GRASP

GRASP (&)=

1
2 do

3 y := Guloso — Randomizado(«)

4 y := BuscalLocal(y)

) atualiza a melhor solugdo s*

6 until critério de parada satisfeito
7 return s*

GRASP: Variacées

e long term memory: hash table (para evitar otimizar solucoes ja vistas)

e Parametros: so, N'(x), « € [0, 1] (para randomizagao), tamanho das listas
(conj. elite, rcl, hash table), namero de iteragoes,

GRASP com memoéria

e O GRASP original ndo havia mecanismo de meméria de iteragdes passa-
das

e Atualmente toda implementacdo de GRASP usa conjunto de solucoes
elite e religacao por caminhos (path relinking)

e Conjunto de solugoes elite: conjunto de solugbes diversas e de boa quali-
dade

— uma solugao somente é inserida se for melhor que a melhor do con-
junto ou se for melhor que a pior do conjunto e diversa das demais

— a solucao a ser removida é a de pior qualidade

e Religacao por Caminhos: a partir de uma solugao inicial, modifique um
elemento por vez até que se obtenha uma solugao alvo (do conjunto elite)

e solugoes intermediarias podem ser usadas como solugoes de partida

Comparacio entre as metaheuristicas apresentadas

e Metaheuristicas: Simulated annealing (SA), Multi-Start Search (MS),
GRASP
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10. Heuristicas baseadas em Busca local

e SA tem apenas um ponto de partida, enquanto que os outros dois métodos
testa diversos

e SA permite movimento de piora, enquanto que os outros dois métodos
nao

e SA é baseado em um processo da natureza, enquanto que os outros dois
nao
10.4. Busca Tabu

Busca Tabu (Tabu Search)

e Proposto por Fred Glover em 1986 (principios basicos do método foram
propostos por Glover ainda em 1977)

e Professor da Universidade do Colorado, EUA

Busca Tabu (BT)

Figura 10.4.: Fred Glover e Assim como em simulated annealing (SA) e VNS, TB ¢ baseada inteira-

* ~

(*1937) mente no processo de busca local, movendo-se sempre de uma solucao s
para uma solugao s’

e Assim com em SA, também permite movimentos de piora

e Diferente de SA que permite movimento de piora por randomizacao, tal
movimento na BT é deterministico

e A base do funcionamento de Busca Tabu é o uso de memoria segundo
algumas regras

e O nome Tabu tem origem na proibi¢ao de alguns movimentos durante a
busca

Busca Tabu (BT)

e Mantém uma lista T de movimentos tabu

e A cada iteragdo se move para o melhor vizinho, desde que nao faga mo-
vimentos tabus
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10.4. Busca Tabu

Permite piora da solugao: o melhor vizinho pode ser pior que o vizinho
atual!

Sao inseridos na lista tabu elementos que provavelmente nao direcionam
a busca para o 6timo local desejado. Ex: dltimo movimento executado

o tamanho da lista tabu é um importante parametro do algoritmo

Critérios de parada: quando todos movimentos sao tabus ou se x movi-
mentos foram feitos sem melhora

Busca Tabu: Conceitos Basicos e notacido

e s: solugao atual

o s*:

melhor solugao

e f*: valor de s*

e N(s): Vizinhanca de s.

o N(s) C N(s): possiveis (ndo tabu) solugdes vizinhas a serem visitadas
e Solugoes: inicial, atual e melhor

e Movimentos: atributos, valor

e Vizinhanga: original, modificada (reduzida ou expandida)

Movimentos Tabu

e Um movimento é classificado como tabu ou ndo tabu pelas regras de ati-
vagao tabu

e em geral, as regras de ativagao tabu classificam um movimento como tabu
se o movimento foi recentemente realizado

e Memoria de curta duragao (MCD) - também chamada de lista tabu:
usada para armazenar os movimentos tabu

e duracgao tabu (tabu tenure) é o nimero de iteragoes em que o movimento
permanecera tabu

e dependendo do tamanho da MCD um movimento pode deixar de ser tabu
antes da duracao tabu estabelecida
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10. Heuristicas baseadas em Busca local

e A MCD em geral é implementada como uma lista circular

e O objetivo principal da MCD ¢é evitar ciclagem e retorno a solugoes ja
visitadas

e 0s movimentos tabu também colaboram para a busca se mover para outra
parte do espaco de solucoes, em dire¢ao a um outro minimo local

Busca Tabu

Algoritmo 10.9 (BuscaTabu)
Entrada uma solucao s

Saida uma solucao s’ : f(s’) < f(s)

1 BuscaTabu()=
Inicializacgéo:
3 s:=Sp; f:="1(sp); s*:=s0 ; T:=10

4 while critério de parada n&do satisfeito
5 s/ := seleciona s’ € N(s) com min f(s)

6 if f(s) < f* then
7

8

9

[\

*:=1(s); s*:=s
insira movimento em T (a lista tabu)
end while

Busca Tabu (BT)

e critérios de parada:
— namero de iteragoes (Nmax)
— ndmero interagoes sem melhora
— quando s* atinge um certo valor minimo (méaximo) estabelecido

¢ Um movimento ndo é executado se for tabu, ou seja, se possuir um ou
mais atributos tabu-ativos

e Pode ser estabelecida uma regra de uso de um movimento tabu (critério
de aspiragao)

— Critério de aspiragao por objetivo: se 0 movimento gerar uma solu-
¢ao melhor que s*, permite uso do movimento tabu
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10.4. Busca Tabu

— Critério de aspiragao por direcao: o movimento tabu é liberado se
for na diregao da busca (de melhora ou piora)

Busca Tabu: mecanismos auxiliares
e intensificagdo: a idéia é gastar mais “esfor¢o” em regioes do espago de
busca que parece mais promissores. Isso pode ser feito de diversas manei-
ras (exemplo, guardar o nimero de interagoes com melhora consecutiva).

Nem sempre este a intensificacio traz beneficios.
e Diversificagao: recursos algoritmicos que for¢am a busca para um espaco
de solugoes ainda nao explorados.

— uso de memoria de longo prazo (exemplo, nimero de vezes que a
inser¢do de um elemento provocou melhora da solugao)

— Estratégia basica: forcar a insercao de alguns poucos movimentos
pouco executados e reiniciar a busca daquele ponto

— Estratégia usada para alguns problemas: permitir solugoes infacti-
veis durante algumas interacoes
Busca Tabu: variacées

e Varias listas tabus podem ser utilizadas (com tamanhos, duracao, e regras
diferentes)

e BT probabilistico: os movimentos sao avaliados para um conjunto seleci-
onado aleatoriamente N’(s) € N(s). Permite usar uma lista tabu menor,
acontece menos ciclagem.

e A duracao tabu pode variar durante a execucao

Comparacio entre as metaheuristicas apresentadas até entio

e Metaheuristicas: Simulated annealing (SA), Multi-Start Search (MSS),
GRASP, BT

e SA e BT tém apenas um ponto de partida, enquanto que os outros dois
métodos testa diversos

e SA e BT permitem movimentos de piora, enquanto que os outros dois
métodos nao

e SA é baseado em um processo da natureza, enquanto que os outros mé-
todos nao
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10. Heuristicas baseadas em Busca local

Parametros e decisdes das metaheuristicas

o SA:
— Par@metros: temperatura inicial, critério de parada, variavel de res-
friamento
— Decisoes: vizinhanga, solugao inicial
¢ GRASP:
— Parametros: sp, N(x), a €[0,1] (para randomizacao), tamanho das
listas (conj. elite, rcl, hash table), critério de parada
— Decisoes: vizinhanga, solugao inicial (sg), randomizacao da sp, atu-
alizacoes do conjunto elite
e BT:

— Parametros: tamanho da lista tabu, critério de parada
— DecisoOes: vizinhaga, critérios para classificar movimento tabu
10.5. Variable Neighborhood Search

Variable Neighborhood Search

e Pierre Hansen e Mladenovié, 1997

e Hansen é Professor na HEC Montréal, Canada

_...-.w—
T
e O

=

Variable Neighborhood Search

e Método que explora mais que uma vizinhanga.
Figura 10.5.: Pierre Hansen

e Explora sistematicamente as seguintes propriedades:

— O minimo local de uma vizinhanga nao é necessariamente minimo
para outra vizinhanca

— Um minimo global é um minimo local com respeito a todas as vizi-
nhancas

— Para muitos problemas, os minimos locais estao localizados relati-
vamente proximos no espaco de busca para todas as vizinhangas
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10.5. Variable Neighborhood Search

Os métodos usando k vizinhangas N7, ..., Ny sempre voltam a usar a primeira
vizinhanga, caso um movimento melhora a solugao atual. Caso contrario eles
passam para proxima vizinhanca. Isso é o movimento bésico:

Algoritmo 10.10 (Movimento)
Entrada Solugao atual s, nova solucgao s’, vizinhanga atual k.

Saida Uma nova solugéo s e uma nova vizinhanga k.

1 Movimento(s,s’,k) :=
2 if f(s’) <f(s) then

3 s:=g¢’

4 k:=1

) else

6 k:=k+1

7 end if

8 return (s,k)

Com isso podemos definir uma estratégia simples, chamada Variable Neigh-

borhood Descent (VND).
Algoritmo 10.11 (VND)
Entrada Solucao inicial s, conjunto de vizinhancas N, i € [m].

Saida Solugéo s.

1 VND(s,{N})=

2 k:=1

3

4

5 while k<m

6 encontra o melhor vizinho s’ em Ny(s)
7 (s,k) := Movimento(s,s’, k)

8 end while

9 return s

Uma versao randomizada é o reduced variable neighborhood search.
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10. Heuristicas baseadas em Busca local

Algoritmo 10.12 (rVNS)
Entrada Solucao inicial s, conjunto de vizinhancas N, i € [m].

Saida Solucao s.

1 rVNS(s,{NM]D=

2 until critério de parada satisfeito

3 k:==1

4 while k<m do

5 seleciona vizinho aleatério s’ em Ny(s) { shake }
6 (s,k) := Movimento(s,s’, k)

7 end while

8 end until

9 return s

Uma combinagdo do rVNS com uma busca local é o Variable Neighborhood
Search (VNS) bésico.

Algoritmo 10.13 (VNS)
Entrada Solugao inicial s, um conjunto de vizinhangas N, i € [m].

Saida Solugao s.

1 VNS(s,{M))=

2 until critério de parada satisfeito

3 k:=1

4 while k<m do

5 seleciona vizinho aleatério s’ em Ny(s) { shake }
6 s” := BuscaLocal (s’)

7 (s,k) := Movimento(s,s”, k)

8 end until

9 return s

Observagao 10.2

A busca local em VNS pode usar uma vizinhanga diferente das vizinhangas que
perturbam a solucao atual. Também é possivel usar o VND no lugar da busca
local. O
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10.6. Algoritmo Guloso Iterado

10.6. Algoritmo Guloso Iterado

Algoritmos de construgao repetida independente como GRASP e Multi-Start
criam diversas solu¢bes durante a execugdo, mas nao utilizam a informagao
obtida por iteracoes anteriores para ajudar na composicao de novas solugoes.
O algoritmo guloso iterado proposto por Ruiz e Stiitzle (2007) utiliza parte da
solugao encontrada anteriormente para tentar achar uma nova solucao melhor.
O algoritmo guloso iterado cria uma solugao inicial e iterativamente destroi e
reconstroi solugbes de forma a gerar solugdes novas. A cada etapa parte da
solucao é removida. tornando a solucdo parcial, entdo o algoritmo gera uma
nova solugdo completa de forma gulosa a partir dessa solugao parcial. Uma
vez gerada a solugdo nova verificamos se a solucao sera aceita ou descartada.
Caso ela seja melhor que a solugao atual ela é aceita, caso seja pior é aceita
com chance dada pela perda de qualidade utilizando o critério de Metropolis.
O pseudo-cédigo esta no Algoritmo 10.14.

Algoritmo 10.14 (Busca Gulosa Iterada)
Entrada: Namero de repetigoes n, temperatura T, uma solugao ini-
cial s.

Saida: Melhor solugdo encontrada s*.

1 IG(s):=

2 s*=s

3 for n vezes

4 s'=s

5 Destrb6i parte de s

6 Reconstrdéi s’ gulosamente.
7 A = f(s') —f(s)

8 if A<O0 then

9 s=s¢

10 if f(s) < f(s*) then

11 s*=s

12 else

13 s=s" com probabilidade e T
14 end if

15 end for

16 return s*
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10. Heuristicas baseadas em Busca local

No algoritmo utilizamos um ntimero fixo de iteragoes mas podemos utilizar a
qualidade da solucao ou o tempo de execugao como critério de parada. Note que
utilizamos o a mesma estratégia que o algoritmo de Metropolis para permitir
solucgoes a transicao para solugoes qualidade pior que a anterior, entretanto nao
utilizamos resfriamento (como utilizado na Témpera Simulada). A destruigao e
reconstrugao em sequencia podem ser consideradas uma perturbagao da solugao
atual, pois podemos ter uma solu¢ao nova de qualidade melhor ou pior, portanto
pode ser 1til colocar algum método de melhoria, como uma busca local, apés
a reconstrucao.

No caso do caixeiro viajante podemos fazer a destrui¢do removendo um nimero
constante de arestas aleatérias do ciclo hamiltoniano, e a reconstrugao com a
heuritica do vizinho mais préximo. No caso da max-SAT podemos tornar alguns
bits aleatérios nao definidos para destruir parte da solugao, entao construimos
uma nova solugdo completa re-definindo estes bit em (ordem aleatoria), cada
vez maximizando o nimero de clausulas satisfeitas.
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11.

Heuristicas inspirados da natureza

11.1. Algoritmos Genéticos e meméticos

Algoritmos Genéticos

Proposto na década de 60 por Henry Holland.

Professor da Faculdade de Engenharia Elétrica e de Computagao da Uni-
versidade de Michigan/EUA.

Seu livro: Adaptation in Natural and Artificial Systems (1975).

Algoritmos genéticos

Foi proposto com o objetivo de projetar software de sistemas artificiais
que reproduzem processos naturais.

Baseados na evolucao natural das espécies.

Por Darwin: individuos mais aptos tém mais chances de perpetuar a
espécie.

Mantém uma populagao de solugdes e nao uma tnica solugao por vez.
Usa regras de transigao probabilisticas, e nao deterministicas.

Procedimentos: avaliacdo, sele¢ao, geragao de novos individuos (recom-
binagao), mutagao.

Parada: nimero x de geragoes total, nimero y de geracoes sem melhora.

Algoritmos genéticos: Caracteristicas

Varias solugoes (“populacao”).
Operagoes novas: Recombinagao e mutagao.

Separagao da representagao (“genotipo”) e formulagao “natural” (feno-
tipo).
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11. Heuristicas inspirados da natureza

Algoritmos Genéticos: Nocées

Genes: Representagao de um elemento (binario, inteiro, real, arco, etc)
que determine uma caracteristica da solucao.

Alelo: Instancia de uma gene.

e Cromossomo: Uma string de genes que compoem uma solugao.

Genotipo: Representagao genética da solu¢ao (cromossomos).

Fenotipo: Representacao “fisica” da solugao.

Populagao: Conjunto de cromossomos.

Algoritmos genéticos: Representacio e Solugio

Representagao Solugao
Al S
mapeamento
[of1]a]1[1]ofofo]1[0[1[1]0[O] O/ AN
L J/ (@)

e /

cromossomo

gene com alelos 0,1

Algoritmos Genéticos: exemplos

e Problema de particao de conjuntos
Alelos: O ou 1
Cromossomo: 0001101010101011110110

e Problema do Caixeiro viajante
Alelos: valores inteiros entre 1 e n

Cromossomo: 15368247
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11.1. Algoritmos Genéticos e meméticos

Procedimentos dos Algoritmos Genéticos

Codificagao: genes e cromossomos.
Initializacao: geragao da populagao inicial.

Fungao de Avaliagao (fitness): fungdo que avalia a qualidade de uma
solucgao.

Selecao de pais: selegdo dos individuos para crossover.
Operadores genéticos: crossover, mutagao

Parametros: tamanho da populacao, percentagem de mutacao, critério
de parada

Algoritmos Genéticos

Algoritmo 11.1 (AlgoritmoGenético)
Entrada Parametros do algoritmo.

Saida Melhor solugao encontrada para o problema.

1

0 O T W

11
12
13

Inicializag8o e avalig8o imnicial
while (critério de parada n#8o satisfeito) do
repeat
if (critério para recombinagdo) then
selecione pais
recombina e gera um filho
end if
if (critério para mutagdo) then
aplica mutacgédo
end if
until (descendentes suficientes)
selecione nova populagéo
end while

Populacdo Inicial: geracdo

e Solugoes aleatorias.

e Método construtivo (ex: vizinho mais proximo com diferentes cidades de
partida).
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11. Heuristicas inspirados da natureza

e Heuristica construtiva com perturbacoes da solugao.

e Pode ser uma mistura das opgoes acima.

Populacio inicial: tamanho
e Populagao maior: Custo alto por iteragao.
e Populagao menor: Cobertura baixa do espago de busca.

e Critério de Reeves: Para alfabeto binério, populagdo randémica:
Cada ponto do espaco de busca deve ser alcancavel através de recombi-
nagoes.

e Consequencia: Probabilidade que cada alelo é presente no gene i: 1—2'"™,
e Probabilidade que alelo é presente em todos gene: (1 —2'"™)t,

e Exemplo: Com 1 = 50, para garantir cobertura com probabilidade 0.999:
n>1-—log, (1 - 5\"/0.999) ~ 16.61

Terminacio
e Tempo.
e Numero de avaliacoes.

e Diversidade. Exemplo: Cada gene ¢ dominado por um alelo, i.e. 90% dos
individuos tem o mesmo alelo.

Préoxima Geracao

e Gerada por recombinagao e mutagao (solugoes aleatorias ou da populagao
anterior podem fazer parte da proxima geragao).

Estratégias:
— Recombinacao e mutagao.

— Recombinagao ou mutagao.

Regras podem ser randomizadas.

Exemplo: Taxa de recombinacao e taxa de mutagao.

Exemplo: Numero de genes mutados.
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11.1. Algoritmos Genéticos e meméticos
Mutacao

e Objetivo: Introduzir elementos diversificados na populagdo e com isso
possibilitar a exploracdo de uma outra parte do espacd de busca.

e Exemplo para representagao binaria: flip de k bits.

e Exemplo para o PCV: troca de posicao entre duas cidades.

Recombinacio

e Recombinagao (ingl. crossover): combinar caracteristicas de duas solu-
¢Oes para prover uma nova solucdo potencialmente com melhor fitness.

e Explora o espaco entre solugoes.

e Crossover classicos: one-point recombinagao e two-points recombinagao.

One-point crossover

Escolha um numero aleatério k entre 1 e n. Gere um filho com os primeiros k
bits do pai A e com os ultimos n — k bits do pai B

e Problema de particacao: aplicacao direta do conceito

e Problema do Caixeiro Viajante: copie os primeiros k elementos do pai A |

e as demais n — k posicoes preenche com as cidades faltantes, segundo a |

ordem em que elas aparecem no pai B

Recombinacio de dois pontos

Figura 11.2.: Recombina-
¢ao de um ponto.

Exemplo: Strategic Arc Crossover
e Selecione todos os pedagos de rotas (string) com 2 ou mais cidades que

sao iguais nas duas solucoes

e Forme uma rota através do algoritmo de vizinho mais proximo entre os
pontos extremos dos strings

Figura 11.3.: Recombina-
179 ¢ao de dois pontos.



11. Heuristicas inspirados da natureza

Recombinacio: Selecdo dos pais

e A probabilidade de uma solucéo ser pai num processo de crossover deve
depender do seu fitness.

e Variagoes:
— Probabilidade proporcional com fitness.

— Probabilidade proporcional com ordem.

Estratégia adotada pelos operadores

Intiimeros operadores podem ser propostos para cada problema. O ideal é
combinar caracteristicas do operador usado, com outros operadores (mutagao,
busca local) usados no GA. Basicamente um crossover é projetado da seguinte
forma:

e Encontre similaridades entre A e B e insira S = A N B no filho.
e Defina conjuntos Sin e Sout de caracteristicas desejaveis e nao desejaveis.
e Projete um operador que mantenha ao maximo elementos de S e Siy,

minimizando o uso de elementos de Sqys.

Nova Populacao

e Todos os elementos podem ser novos.
e Alguns elementos podem ser herdados da populagao anterior.
e Elementos novos podem ser gerados.

e Exemplos, com populacao de tamanho A que gera p filhos.
(A, ) Seleciona os A melhores dos filhos.
A+ Seleciona os A melhores em toda populagao.

Estrutura da Populacao

Em geral, populacdo estruturada garante melhores resultados. A estrutura
da populacdo permite selecionar pais para crossover de forma mais criteriosa.
Algumas estruturas conhecidas

e Divisao em Castas: 3 partigoes A, B e C (com tamanhos diferentes),
sendo que os melhores individuos estdo em A e os piores em C.
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11.1. Algoritmos Genéticos e meméticos

e Jlhas: a populagao é particionada em subpopulagoes que evoluem em
separado, mas trocam individuos a cada periodo de ntimero de geracoes.

e Populagao organizada como uma arvore.

Exemplo: Populacio em castas

e Recombinagdo: Somente entre individuos da casta A e B ou C para man-
ter diversidade.

e Nova populacao: Manter casta “elite” A, re-popular casta B com filhos,
substituir casta C com solugbes randomicas.

Exemplo: Populagdo em arvore

e Considere uma &arvore ternaria completa, em que cada ndé possui duas
solugbes (pocket e current).

e A solucao current é a solugdo atual armazenada naquela posicao da ar-
vore.

e A solucdo pocket & a melhor ja tida naquela posicdo desde a primeira
geragao.

e A cada solugao aplique ezchange (se a solu¢do current for melhor que a
pocket, troque-as de posigao)

e Se a solucgao pocket de um filho for melhor que a do seu pai, troque o né
de posigao.

Algoritmos Meméticos

e Proposto por Pablo Moscato, Newcastle, Australia.

e Ideia: Informacao “cultural” pode ser adicionada a um individuo, gerando
um algoritmo memético.

e Meme: unidade de informagcao cultural.
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Algoritmos Meméticos

e Um procedimento de busca local pode inserir informagao de boa quali-
dade, e nao genética (memes).

e Faz uso de um procedimento de busca local (em geral aplicado & solugao
gerada pelo procedimento de recombinagao).

e Geralmente trabalha com populagoes menores.

Comparacio entre as Metaheuristicas Apresentadas

Quais que dependem de randomizagao? SA, GRASP, GA
e Quais que geram apenas uma solugdo inicial em todo processo? BT, SA

e (Quais mantém um conjunto de solugoes, em vez de considerar apenas
uma? GA

e Quais sdo inspiradas em processos da natureza? GA, BT

Qual gera os melhores resultados?

Existem outras Metaheuristicas

Handbook of Metaheuristics, por Fred W. Glover (Editor), Gary A. Kochen-
berger (Editor) Kluwer 2002.

Consideracdes Finais

e O desempenho de uma metaheuristica depende muito de cada implemen-
tacao

e As metaheuristicas podem ser usadas de forma hibridizada

e Técnicas de otimizagao multiobjetivo tratam os casos de problemas com
mais de um objetivo (Curva de pareto)
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11.1. Algoritmos Genéticos e meméticos

Exercicio

e Problema de alocagao: atender n clientes por m postos de atendimento
(um posto ¢é instalado no local onde se encontra um cliente)

e Entrada: distancias entre cada par de clientes

e Problema: Determinar em que locais instalar os postos, de forma a mini-
mizar a soma das distancias de cada cliente a um ponto de atendimento

e Propor uma heuristica construtiva e uma busca local.

Comparacao entre as Metaheuristicas

e (Quais que permitem movimento de piora? BT, SA
e (Quais que nao dependem de randomizacao? BT
e Quais que geram apenas uma solu¢ao inicial em todo processo? BT, SA

e Quais mantém um conjunto de solugoes, em vez de considerar apenas
uma?

Qual gera os melhores resultados?
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A. Conceitos matematicos

N, Z, Q e R denotam os conjuntos dos ntimeros naturais sem 0, inteiros, racio-
nais e reais, respectivamente. Escrevemos também Ny = NU{0}, para qualquer
conjunto C, Cy :={x € Clx >0} e C_:={x € C|x < 0}. Por exemplo

Ri={xeR|x>0}L!

Para um conjunto finito S, P(S) denota o conjunto de todos subconjuntos de
S.

A = (ay) € F™*™ denota uma matriz de m linhas e n colunas com elementos
em F, a;, com a{ € F" a i-ésigma linha e a € F™ a j-ésima coluna de A.

Definigao A.1 (Pisos e tetos)
Para x € R o piso |x| é o maior ntmero inteiro menor que x e o teto [x| é o
menor numero inteiro maior que x. Formalmente

[x] =max{y € Z |y <x}
[x] =min{ly € Z|y > x}

O parte fraciondrio de x é {x} =x — |x].

Observe que o parte fracionério sempre é positivo, por exemplo {—0.3} = 0.7.

Proposicao A.1 (Regras para pisos e tetos)

Pisos e tetos satisfazem
x < [x] <x+1 (A.1)
x—1<|x] <x (A.2)

! Alguns autores usam R,
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B. Formatos

Este capitulo contém um breve resumo dos formatos CPLEX lp, Julia/JuMP
e AMPL/MathProg usados para especificar problemas de otimizagao linear.
CPLEX LP ¢ um formato simples, AMPL! ¢ uma linguagem completa para
definir problemas de otimizacao, com elementos de programacao, comandos in-
terativos e um interface para diferentes resolvedores de problemas. Por isso
CPLEX LP serve para modelos pequenos. Aprender AMPL precisa mais in-
vestimento, que rende em aplicagoes maiores. AMPL tem o apoio da maioria
das ferramentas disponiveis.

Varios outros formatos estao em uso, a maioria deles comerciais. Exemplos sao
ZIMPL, GAMS, LINGO, e MPS (Mathematical programming system).

B.1. CPLEX LP
Uma gramatica simplificada® do formato CPLEX LP ¢é

(specification) ::= (objective)

(restrictions)?

(bounds)

(general)?

(binary)?

‘End’
(objective) ::= (goal) (name)? (linear expression)
(goal) := ‘MINIMIZE’ | ‘MAXIMIZE’ | ‘MIN’ | ‘MAX’
(restrictions) ::= ‘SUBJECT TQ’ (restriction)+
(restriction) ::= (name)? (linear expression) (cmp) (number)
<Cmp> e (<7 ‘ L<=7 | (=7 ‘ C>7 ’ C>=7

LA sigla AMPL significa “A mathematical programming language”. O nome também sugere
uma funcionalidade “ampla” (“ample” em inglés).
2A graméatica ndo contém as especificacbes “semi-continuous” e “SOS”.
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B. Formatos

(linear expression) ::= (number) (variable) ( (+' | ’-") (number) (variable) )*
(bounds) ::= ‘BOUNDS’ (bound)—+
(bound) ::= (name)? ( (limit) ‘<=" (variable) ‘<=" (limit)

(limit) ‘<= (variable)
variable) ‘<=" (limit)

{
(variable) ‘=" (number)
(variable) ‘free’ )

(limit) = ‘infinity’ | ‘-infinity’ | (number)
(general) ::= ‘GENERAL’ (variable)-+
(binary) ::= ‘BINARY’ (variable)+

Todas variaveis x tem a restricdo padrao 0 < x < +o00. Caso outros limi-
tes sao necessarias, eles devem ser informados na segao “BOUNDS”. As segbes
“GENERAL” e “BINARY” permitem restringir variaveis para 7Z e {0, 1}, respec-
tivamente.

As palavras-chaves também podem ser escritas com letras mintsculas: o for-
mato permite algumas abreviagoes nao listadas acima (por exemplo, escrever
“s.t” ou “st” ao invés de “subject to”).

Um comentério até o final da linha inicia com “\”. Uma alternativa sao comen-
tarios entre “\*” e “x\”.

Exemplo B.1 (Problema (1.1) no formato CPLEX LP)

Maximize
lucro: 0.2 ¢c + 0.5 s
Subject To
ovVo: c + 1.5 s <= 150 \ um comentirio
acucar: 50 ¢ + 50 s <= 6000
clientl:c <= 80
client2:s <= 60
Bounds
0 <= ¢
0 <= s
End
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B.2. Julia/JuMP

Exemplo B.2
Problema de mochila 0-1 com 11 itens em formato CPLEX LP.

max 19x1+87x2+97x3+22x4+47x5+22x6+30x7+5x8+32x9+54x10+75x11
s.t

1x1+96x2+67x3+90x4+13x5+74x6+22x7+86x8+23x9+63x10+89x11<= 624
binary x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

end

O

Observagao B.1

CPLEX LP permite constantes como 0.5e6 que representa 0.5 x 10°. Ou-
tra interpretagao dessa expressao é 0.5 vezes a varidvel eg. Para evitar essa
ambiguidade, varidveis nao podem comecar com a letra e. O

B.2. Julia/JuMP

Julia é uma linguagem para programagao cientifica e JuMP (Julia for Mathema-
tical Programming) uma biblioteca que permite embutir programas mateméti-
cos diretamente em coédigo Julia. Isso tem a vantagem de poder ler e processar
os dados antes da solucao, resolver, e continuar trabalhar com o resultado no
mesmo programa.

Exemplo B.3 (Problema (1.1) em Julia/JuMP)

#!/usr/bin/env julia

using JuMP
using GLPKMathProgInterface

m = Model(solver=GLPKSolverMIP())

@variable(m, c)
O@variable(m, s)

Q@objective(m, Max, 0.2%c+0.5%s)

O@constraint(m, c + 1.5%s <= 150)
@constraint(m, 50%xc + b50*xs <= 6000)
@constraint (m, c <= 80)
Q@constraint (m, s <= 60)

status = solve(m)
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B. Formatos

if status == :0Optimal

println("A solucgdo otima & c=$(getvalue(c)) e
< s=$(getvalue(s)) de valor $(getobjectivevalue(m)).")
end

O

Diferente do CPLEX lp, Julia/JuMP permite expressar um tnico modelo para
um problema e resolver para diferentes instancias.

Exemplo B.4 (Exemplo (1.3) em Julia/JuMP)
#!/usr/bin/env julia

using JuMP
using GLPKMathProgInterface

3
3

[5,7,3]

[7,3,5]

[[3,4,100] [1,2,3] [100,4,3]]

o o B B
I

mm = Model (solver=GLPKSolverMIP())
Ovariable(mm, x[1:m,1:n] >= 0)
@objective(mm, Min, sum(c[i,jl#*x[i,j] for i=1:m, j=1:n))

Q@constraint(mm, [i=1:m], sum(x[i,j] for j=1:n) <= al[il)
Q@constraint (mm, [j=1:n], sum(x[i,j] for i=1:m) == b[j])

status = solve(mm)
if status == :0Optimal
println("A solugdo otima & x=$(getvalue(x)) de valor

— $(getobjectivevalue(mm)).")
end
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B.3. AMPL
Objetos de modelagem

e Um modelo em AMPL consiste em

— parametros,

variaveis,
— restricoes, e
— objetivos
e AMPL usa conjuntos (ou arrays de multiplas dimensoes)

A:1—-D

que mapeiam um conjunto de indices I =1; x --- x I;, para valores D.

Formato

e Parte do modelo

s1

sn
end;

com s; sendo um comando ou uma declaragao.

e Parte de dados

data
di

dn
end;

com d; sendo uma especificagao de dados.

Tipo de dados
e Numeros: 2.0,-4
e Strings: ’Comida’

e Conjuntos: {2,3,4}
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B. Formatos

ExpressGes numéricas
e Operagoes basicas: +,-,*,/,div,mod,less,**

Exemplo: x less y

e Funcoes: abs,ceil,floor,exp

Exemplo: abs(-3)

e Condicional: if x>y then x else y

Expressdes sobre strings

e AMPL converte ntmeros automaticamente em strings

e Concatenagao de strings: &

Exemplo: x & °> unidades’

Expressdes para conjuntos de indices

e Uma dimensao
— t in S: variavel “dummy” t, conjunto S
— (t1,...tn) in S: para conjuntos de tuplos

— S: sem nomear a variavel

e Multiplas dimensoes

— {el1,...,en} com e; uma dimensdo (acima).

e Variaveis “dummy” servem para referenciar e modificar.

Exemplo: (i-1) in S
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Conjuntos

Conjunto bésico: {v1,...,vn}

Valores: Considerados como conjuntos com conjunto de indices de dimen-
sao 0

Indices: [i1,...,in]
Sequéncias: n1 ... n2 by dounl ... n2

Construcao: setof I e: {e(i1,...,1in) | (i1,...,1n) €I}

Exemplo: setof {j in A} abs(j)

Operacdes de conjuntos

X union Y: Uniao XUY

X diff Y: Diferenca X \Y

X symdiff Y: Diferenga simétrica (X\Y)U (Y '\ X)
X inter Y: Interseccao XNY

X cross Y: Produto cartesiano X x Y

Expressdes lagicas

Interpretacao de nimeros: n vale “v”, sse n # 0.
Comparagoes simples: <,<=,= ou ==,>=,>,<> ou !=
Pertinéncia: x in Y, x not in Y, x 'in Y

Subconjunto: X within Y, X !within Y, X not within Y
Operadores 16gicos: && ou and, || ou or, ! ou not

Quantificagao: com indices I, expressao booleana b
forall I b: /\(11,...,in)61 b(i, ..., 1in)

exists I bV, e blin...yin)
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Declaracées: Conjuntos
set N I [dimen n] [within S] [default el] [:= e2]

param N I [in 8] [<=,>=,!=,... n] [default el] [:= e2]
e Nome N
e Conjunto de indices I (opcional)

Conjunto de valores S

Valor default e;

Valor inicial e

Declaracbes: Restricdes e objetivos
subject to NI : el = e2 | el <= e2, el >= e2

minimize [I] : e

maximize [I] : e

Comandos

e solve: Resolve o sistema.

check [I] : b: Valida expressao booleana b, erro caso falso.

display [I] : el,...en: Imprime expressoes ej,...,en.

printf [I] : fmt,el,...,en: Imprime expressoes e—1,..., e, usando
formato fmt.

e for I : c,for I : {cl ... cn}: Lacos.

Dados: Conjuntos
set N rl,...rn

Com nome N e records r1,...,T, cada record
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B.3. AMPL
e um tuplo: vi,...,vn
Exemplo: 12,13,22,27

e a definicdo de uma fatia (vi|*,va|*,...,vn|*): depois basta de listar os
elementos com .
Exemplo: (1 *)23,(2%*) 27

e uma matriz

clc2 ...cn:=
rl all al2 ... aln
r2 a21 a22 ... a2n
rm aml am2 ... amn

com aij “+”/”-” para inclusao/exclusao do par “ri cj” do conjunto.

Dados: Parametros
param N rl,...rn

Com nome N e records 11,...,Ty, cada record
e um valor iy,...,1n,V
e a definicdo de uma fatia [i1]*,1z]*,...,1n|*): depois basta definir indices
com *.

e uma matriz

:clc2 ... cn :=
rl all al2 ... aln
r2 a2l a22 ... a2n
rm aml am2 ... amn

com aij o valor do par “ri cj”.

e uma tabela

param default v : s : pl p2 ... pk :=
t11 t12 ... tin all al2 ... alk
t21 t22 ... t2n a21 a22 ... a2k
tml tm2 tmn aml am2 ... amk

para definir simultaneamente o conjunto
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set s := (11 t12 ... tin), ... , (tml tm2 ...

e 0s parametros

param pl default v := [t11l t12 ... tin] alil,
< ... tmn] aml;

param p2 default v := [t11 t12 ... tin] al2,
< ... tmn] am?2;

param pk default v := [t11 t12 ... tin] alk,

< ... tmn] amk;

Exemplo B.5 (Exemplo (1.1) em AMPL)

var c; # numero de croissants

var s; # numero de strudels

param lucro_croissant; # o lucro por croissant
param lucro_strudel; # o lucro por strudel
maximize lucro: lucro_croissant*c+lucro_strudel*s;
subject to ovo: c+1.5%s <= 150;

subject to acucar: 50*%c+50*s <= 6000:

subject to croissant: c¢ <= 80;

subject to strudel: s <= 60;

Exemplo B.6 (Exemplo (1.3) em AMPL)
param n; # numero de clientes
param m; # numero de fornecedores

param a { 1..m }; # estoque

param b { 1..n }; # demanda

param ¢ { 1..m, 1..n }; # custo transporte
var x { 1..m,1..n } >= 0;

minimize custo:

sum { i in 1..m, j in 1..n } c[i,jl=*x[i,j];
subject to limiteF { i in 1..m }:

sum { j in 1..n } x[1,j] <= alil;
subject to limiteC { j in 1..n }:

sum { i in 1..m } x[i,j] = b[jl;

data;
param n := 3;
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C. Solucoes dos exercicios

Solucao do exercicio 1.3.

maximiza 2A + B,
sujeito a A < 6000,
B <7000,
A+ B < 10000,
A,B >0.
Resposta: A = 6000, B =4000, e Z = 16000.

Solugao do exercicio 1.4.
S40 necessarias cinco variaveis:

e Xx1: nimero de pratos de lasanha comidos por Marcio

e Xx): nimero de pratos de sopa comidos por Marcio

e x3: nimero de pratos de hambirgueres comidos por Renato
e x4: numero de pratos de massa comidos por vini

e X5: nimeros de pratos de sopa comidos por vini

Formulagao:

maximiza xj+ x2 + X3 + X4 + X5,
sujeito a 4> x; +x > 2,
5>x%3 > 2,
4>x4+x5 > 2,
70(x2 + x5) 4+ 200x7 + 100x3 + 30x4 < 1000,
30(x2 4+ x5) + 100x7 + 100x3 + 100x4 < 800.
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C. Solugoes dos exercicios

Solucao do exercicio 1.5.

maximiza 1y 4 2L,
sujeito a 1; < 60,
L + 31, < 200,
21 + 21, < 300,
L,L >0.

Solugao do exercicio 1.6.

maximiza 60m + 30a,
sujeito a m < 6,
a <4,
6m + 8a < 48,
m,a > 0.

Solucao do exercicio 1.8.
Com marcas J, 0, M (Johnny Ballantine, Old Gargantua, Misty Deluxe) e mis-
turas A, B, C temos as variaveis

XJ,Ay X],By X],Cy XO,As XO,By X0O,Cy XM,Ay XM,By XM,C

que denotam o numero de garrafas usadas por mistura.
Vamos introduzir ainda as varidveis auxiliares para o nimero de garrafas usadas
de cada marca

X] =XJ,A + X8+ X],Cy
X0 = X0,A T X0, + X0,C)

XM =XMA +XMB +XM,C

e variaveis auxiliares para o ntumero de garrafas produzidas de cada mistura

XA = XJA +X0,A +XMA,
XB = XJB +X0,B + XM,B)

Xc =Xj,c +Xo,c +Xm,C-
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Queremos maximizar o lucro em reais
68xa + 57xp + 45xc — (70xj + 50x0 + 40xm)
respeitando os limites de importacao

xj < 2000,
xo < 2500,
xm < 1200

e os limites de percentagem

XJ,A > O.6XA,

xmA < 0.2xa,
xj,8 > 0.15xg,
xm, < 0.6xg,
xXMm,c < 0.5xc.

Portanto, o sistema final é

maximiza 68xa + 57xg + 45x¢
— (70x) + 50x0 + 40xp),
sujeito a cxj < 2000,
xo < 2500,
xm < 1200,
xjA = 0.6xa,
xma < 0.2xa,
x;,8 = 0.15xg,
xm,B < 0.6xp,
xm,c < 0.5xc,

Xm = XmA + Xm,B + Xm,C me {]) O) M})
Xm = XJm + X0O,m + XM,m m e {Aa Ba C})
Xmn = 0 me{],0,M},n € {A,B,C}L.

Sem considerar a integralidade a solugao 6tima é produzir 2544.44 garrafas da
mistura A, 3155.56 garrafas da mistura B e 0 garrafas da mistura C, com as
percentagens

e A: 60% Johnny Ballantine, 20% Old Gargantua, 20% Misty Deluxe
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C. Solugoes dos exercicios

e B: 15% Johnny Ballantine, 63% Old Gargantua, 22% Misty Deluxe

Solucao do exercicio 1.9.
Com ty o nimero de TVs de 29" e t; de 31" temos

maximiza 120t; + 80t,,
sujeito a t; <40,
t; <10,
20ty 4+ 10t < 500,
t1,t; > 0.

Solugao do exercicio 1.10.

Seja V ={V7,V2} e NV = {NV;,NV,, NV;} os conjuntos de 6leas vegetais e nao
vegetais e O = VU NV o conjunto do todos 6leos. Seja ainda c; o custo por
tonelada do 6leo i € O e a; a acidez do dleo i € O. (Por exemplo cy, = 110
e any, = 4.2.) Com variaveis x; (toneladas refinadas do 6leo i € O) e x,
(quantidade total de 6leo produzido) podemos formular

maximiza 150x0—g CiXi,

ie0
sujeito a Z x; < 200, limite 6leos vegetais
ieVv
Z x; < 250, limite 6leos nao vegetais
ieNV
3xo < Z aixi < 6Xq, Intervalo acidez
ieO
Z Xi = Xo, Oleo total
ie0
XO)XiZO) VIE O

Solucao do exercicio 1.11.
Sejam xa, xg € xc o niumero de horas investidos para cada disciplina. Vamos
usar varidveis auxiliares na, ng e n¢ para as notas finais das trés disciplinas.

204



Como isso temos o programa linear

maximiza na +ng+ nc,

sujeito a xa + xg + x¢c = 100, Total de estudo
na = (6+x4/10)/2, Nota final disc. A
ng = (7 + 2xg/10)/2, Nota final disc. B
ne = (10 + 3x¢/10)/2, Nota final disc. C
na > 5, Nota minima disc. A
ng > 5, Nota minima disc. B
nc > 5, Nota minima disc. C
na < 10, Nota méaxima disc. A
ng < 10, Nota méaxima disc. B
ne < 10, Nota méxima disc. C

NaA,MB, NC > 0.

Solugao do exercicio 1.12.
Sejam v € R e f € R o nimero de canecos do Duff regular e do Duff Forte,
respectivamente, encomendados por semana. Com isso podemos formular

maximiza v+ 1.5f, (C.1)
sujeito a 2f <, (C.2)
T+ f < 3000, (C.3)

r,feR;. (C.4)

Solucao do exercicio 1.13.
Sejam f € R e h € R o ntmero de pacotes de Frisky Pup e Husku Hound
produzidos, respectivamente. Com isso podemos formular

maximiza 1.6f + 1.4h, (C.5)
sujeito a f+ 2h < 240000, (C.6)
1.5f + h < 180000, (C.7)

f < 110000, (C.8)

fheR,. (C.9)
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Solugao do exercicio 1.14.

maximiza 25p + 30c,
sujeito a p/200+ c/140 < 40 < 7p + 10c < 56000,
P < 6000,
¢ <4000,
c,p > 0.

Produzindo ago

6000

5000 — (56000-7*X)/1 0

4000

3000

Canos ¢

2000 coes viaveis

1000

0 1000 2000 3000 4000 5000 6000 7000 8000
Placas p

A solugao 6tima é p = 6000, ¢ = 1400 com valor 192000.

Solugao do exercicio 1.15.

Usamos indices 1, 2 e 3 para os voos Pelotas—Porto Alegre, Porto Alegre—
Torres e Pelotas—Torres e varidveis aj, ay, az para a categoria A, by, by, b3 para
categoria B e ¢ — 1, ¢y, c3 para categoria C. A fungao objetivo é maximizar o
lucro

z = 600ay + 320a, + 720a3 + 440b; + 260b, + 560b3 + 200c; + 160c; + 280c3.
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Temos que respeitar os limites de capacidade

a;+by+cy+az+bz+c3 <30,
a;+by+cy+az+bz+c3 <30,

e os limites da predicao

a; <4, az <38, az <3,
b] §8) b2§]3) b3§103
¢ <22, ¢y < 20, c3 <18

Obviamente, todas varidveis também devem ser positivos.

Solugao do exercicio 1.16.
A solucéo grafica é
6

1 Solugdes viaveis

(a) A solugdo otima é x; =4.25, xa ~ 4 (valor exato x; = 3.96875).

(b) O valor da solugao 6tima é ~ 21 (valor exato 20.96875).

Solucao do exercicio 1.17.
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C. Solugoes dos exercicios

maximiza z = 5x; + 5x; + 5x3s,

sujeito a —6x7 —2x; — 9x3 <0,

— 9% —3x2 + 3x3 < 3,
9% + 3xp — 3x3 < =3,
X1yX2,X3 2 0.

maximiza z = —6x; — 2xy — 6x3 + 4x4 + 4xs,

sujeito a

—3x1 — 8xy — 6X3 — 7x4 — 5x5 < 3,
3x1 + 8%y + 6x3 + 7x4 + 5x5 < —3,
5x1 —7%x3 + 7x3 + 7x4 — 6X5 < 6,

X1 — 9% + 5x3 4+ 7x4 — 10x5 < —6,
— X1+ 9% —5x3 — 7x4 + 10x5 < 6,

X1,X2, X3, X4, X5 > 0.

maximiza z=7x;+ 4x; + 8x3 + 7x4 — 9xs,

sujeito a

maximiza

sujeito a
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—4x; — Ixy — 7x3 — 8x4 + 6x5 < —2,
Axq 4+ xp + 7x3 + 8x4 — 6x5 < 2,

—X1 —4dx) — 2x3 — 2x4 + 7x5 < 7,
—8x1 + 2x2 + 8x3 — 6%x4 — 7x5 < —7,
8x1 — 2xy — 8x3 + 6x4 + 7x5 < 7,

X1, X2, X3y X4, X5 > 0.

z = 6Xx7 — 5%y — 8x3 — 7x4 + 8xs,
—5x1 —2x2 +x3 — 9xq4 — 7x5 < 9,
5%1 4 2x) —x3 + x4 + 7x5 < —9,
7X1 4 7x2 + 5x3 — 3x4 + x5 < =8,
—7x1 — 7x2 —5%x3 + 3x4 — x5 < 8§,
—5%x7 — 3x2 — 5x3 + x4 + 8x5 < 0,

X1y X2y X3y X4, X5 > 0.



Solugao do exercicio 2.1.
Solucao com método Simplex, escolhendo como varidvel entrante sempre aquela
com o maior coeficiente positivo (em negrito):

z = 25p +30c
w; =56000 —7p —10c
wy; =6000 —p
w3 = 4000 —C
z  =120000 +25p —30ws;
w; =16000 —7p +10ws
wy = 6000 —p
c =4000 —W3
z  =1240000/7 —25/7p +40/7ws3
p =16000/7 —1/7wy  +10/7w3
wy = 26000/7 +1/7wy —10/7wg
c =4000 —W3
z = 192000 —3W1 —4W2
p =6000 —W»y
w3 = 2600 +1/10w; —7/10w;
c =1400 —1/10w;  +7/10w;,

Solucao do exercicio 2.3.

Temos
2m+1)\ _ (2n\(2n+2)2n+1) (2n)\2(2Zn+1)
(n—l—l >_<n> (n+1)? _(n> n+1
e logo
2n <2n) < (2(n+ 1)> <2 <2n).
n+I1\n/ ~ \ n+1 - n

Logo, por inducao (1/2n)22" < (2111) < 22,

Solucao do exercicio 2.6.

(a) Substituindo x; e x; obtemos a nova fungdo objetivo z = x; + 2x; =
22 — 7wy — 3w;. Como todos coeficientes sdo negativos, a solugao basica
atual permanece 6tima.

209



C. Solugoes dos exercicios

(b) A nova fungao objetivo é T —w; e o sistema mantem-se 6timo.
(¢) A nova fungao objetivo é 2 — 2w, e o sistema mantem-se 6timo.
(d) O dicionario dual é

z¢ =31 —7zp —8z

Yy, =11 +2z; +3z
Yy =4 +z 4z

e a solugao dual 6tima é (yyy2)t = (4 11)*.

Solucao do exercicio 2.9.

Nao, porque nessa situacao o valor da variavel entrante aumento para um valor
Xe > 0 e por defini¢do de varidvel entrante temos c. > 0, i.e. o valor da fungao
objetivo aumenta.

Solugao do exercicio 2.10.

Sim. Supoe que Xxg, s € B é a variavel basica negativa. Com xs = bs — QeXe €
ase < 0 temos x5 > 0 caso xe > bg/as. Logo para xe > max;c g i o Bi/&ie a
solucao é factivel.

Solugao do exercicio 3.1.

maximiza 10y; + 6y,
sujeito a yj +5yx <7,

— Y1 +'292 Sg])
3y1 —Yy2 < 5)
Yny2 > 0.

Solucao do exercicio 3.2.
Com variaveis duais y. para cada e € U temos

maximiza E Ye,

eclU

sujeito a Z Ye < c(S), Ses,
e:e€S
Ye > 0, ec U

Solucgao do exercicio 3.3.
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(a)

Temos B = {4, 1,2} (variaveis bésicas x4, X1 € x2) e N' = {5, 6,3} (variaveis
nulas x5, x¢ ¢ x3). No que segue, vamos manter essa ordem das variaveis
em todos vetores e matrizes. O vetor de custos nessa ordem é

=02 -1% cn=(001"
€ Ccom

Ac=(010000)"

temos
Ayi = (B7'N)'Acg — Acny = (B7'N)'Acg
—1 1/2 =172\ /0 1/2
=|-2 12 12 11=1(1/2
1 12 =372/ \o 1/2

Com y3, = (3/21/23/2)" obtemos os limites —1 <t <ooe 1< ¢ < o0.

Temos Axy = B™'Ab e Ab = (0 1 0)'. Para determinar Axg precisamos
calcular B~ pela inversao de

13 1
B=(0 1 -1
01 1

(observe que as colunas estao na ordem de B) que é

1T -1 =2
B'=|0 1/2 1,2
0o —1/2 1/2
Assim Axg = (—11/2 —1/2)", e com xj; = (10 15 5)" e pela definigao
max—xf <t< min — i
ieB Ax; — T ieB Ax;
Ax;>0 Ax;<0

obtemos os limites —30 <t <10 e —20 < b; < 20.

Com b = (70 20 10)t temos B~'6 = (30 15 — 5)t. Portanto, a solugao
bésica nao é mais viavel e temos que reotimizar. O novo valor da fungao
objetivo é
30
ck(B'0)=(0 2 —1)[15] =35
-5
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C. Solugoes dos exercicios

e temos o dicionario

z 35 —3/2x5 —1/2x¢ —3/2x3
x4 = 30 +x5 +2x¢ —X3
X1 = 15 —1/27(5 —]/2)(6 —]/27(3
+1/2x5 —1/2xg +3/2x3

6]

Xy = —

O dicionario é dualmente viavel, e apds pivd x;—x3 temos o novo sistema
6timo
z= 30 —X5 —Xg —X
x4 = 80/3 +4/3x5 +5/3x¢ —2/3%2
x1 = 40/3 —1/3xs —2/3x¢ —1/3%
x3= 10/3 —1/3x5 +1/3x¢ +2/3x2

(d) Temos € =(03 —2003)" (em ordem B, ') e com isso

-1 1/2 -1/2 0 0 5/2
gh=B"N)\'eg—en= -2 1/2 12 |3 |-(0o]=(1/2
1 12 =3/2) \-2 3 3/2

Portanto, a solugao ainda é 6tima. O novo valor da fungao objetivo é

10
e5(B'0)=(0 3 -2)|15] =35.
5

Solucao do exercicio 6.2.

Conjunto independente maximo Com varidveis indicadores x,, v € V temos
0 programa inteiro

maximiza E Xy,

vev
sujeito a x, +x, <1, Yiu,v} € A, (C.10)
Xy € B, Vv e V.

A equagao C.10 garante que cada aresta possui no maximo um né incidente.
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Emparelhamento perfeito com peso maximo Sejam x,, a € A varidveis
indicadores para a selecao de cada aresta. Com isso, obtemos o programa

inteiro

maximiza Z pla)xq,

aeA

sujeito a Z Xfun) = 1y Yv eV, (C.11)
ueN(v)
Xq € B, Yv e V.

A equagao C.11 garante que cada nd possui exatamente um vizinho.

Problema de transporte Sejam xj; variaveis inteiras, que correspondem com
o ntimero de produtos transportados do deposito i para cliente j. Entao

minimiza E CijXijy
i€n]
jelml]

sujeito a Z Xij = Ppi, Vie [n], cada depésito manda todo estoque
jelml

xij = dj, Vj € [m], cada cliente recebe a sua demanda
ien]
Xyj € VAR

Conjunto dominante Sejam x,, v € V variaveis indicadores para selecao de

vértices. Temos o programa inteiro

minimiza E Xy,

vev
sujeito a x, + Z xu>1, WeV, ndou vizinho selecionado
ueN(v)
Xy € B, Yv e V.

Solucao do exercicio 6.4.
Seja d1d;...d, a entrada, e o objetivo selecionar m < n digitos da entrada.

Seja xi; € B um indicador que o digito i € [n] da entrada seria selecionado
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C. Solugoes dos exercicios

como digito j € [m] da saida. Entao

maximiza Z Xij di10m 7,

i€[nl,je(ml

sujeito a Z xij = 1, Vj € [ml], (C.12)
i€n]
> oxy <, Vi € [n], (C.13)
jelml]
xij = 0, Vi€ [n],j € Iml],j > 1, (C.14)
Xk1§1_xij) Vi, k € [TL],],,]'E [m],k>i,l<j. (C.15)

A fungao das restri¢oes é a seguinte:
e Restrigao (C.12) garante que tem exatamente um digito em cada posigao.

e Restrigao (C.13) garante que cada digito é selecionado no méaximo uma
vez.

e Restrigao (C.14) garante que digito 1 aparece somente a partir da posigao
j.

e Restrigao (C.13) proibe inversoes.

Solugao do exercicio 6.5.

Existem 21 sets diferentes, cada um com consumo diferente das 9 cartas. Seja
AR?*?" uma matriz, que contém em cada das 21 coluna o namero de cartas
de cada set. Além disso, seja b € R? o nimero de cartas disponiveis. Usando
varidveis inteiros x € Z?' que representam o nimero de sets formandos de cada
tipo de set diferentes, temos a formulacao

maximiza Z Xi,
ie(21]

sujeito a Ax < b,
x > 0.

Solucao do exercicio 6.6.
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Cobertura por arcos
minimiza Z CeXeys
eckE
sujeito a Z Xy > 1, Yv ey,
ueN(v)
Xe € B.

Conjunto dominante de arcos

maximiza Z CeXe,
eckt
sujeito a Z Xer > 1, Ve e E

e/cE
ene’#£0

Xe € B.

Coloracdo de grafos Sejan =|V|.

minimiza E Cj,

jeml
sujeito a Z Xvj =1, YWwey (C.16)
jem]
Xui + Xvi < 1, Y{u,v} € E,;i € [n], (C.17)
nej > vaj, Vj € [n], (C.18)
vev
Xviy €j € B.

e Restricao C.16 garante que todo vértice recebe exatamente uma cor.
e Restricao C.17 garante que vértices adjacentes recebem cores diferentes.

e Restricao C.18 garante que ¢j = 1 caso cor j for usada.

Clique minimo ponderado

minimiza Z Cv Xy,
vev

sujeito a xy +x, <1, V{u,v} € E, (C.19)
Xy € B.
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C. Solugoes dos exercicios

Restrigao C.19 garante que nao existe um par de vértices selecionados que nao
sao vizinhos.

Subgrafo chbico x. indica se o arco e é selecionado, e Y. indica se ele possui
grau 0 (caso contrario grau 3).

minimiza E Xe,

ect
sujeito a Z Xe < 0+ [E[(T —ye),
eeN(v)
Z Xe S 3 + |E‘y(2>
eceN(v)
— Z Xe < —3+3ye-
eeN(v)

Observe que o grau de cada vértice é limitado por |E|.

Solugao do exercicio 6.7.
Sejam x; € B, i € [7] variaveis que definem a escolha do projeto i. Entao temos

maximiza 17x7 + 10x; 4+ 15x3
+ 19%4 + 7x5 + 13x4 + 9x7,
sujeito a 43x; + 28x; + 34x3 + 48x4,
+ 17x5 4+ 32x5 + 23x7 < 100, Limite do capital

X1 +x2 <1, Projetos 1,2 mutualmente exclusivos
x3+x4 <1, Projetos 3,4 mutualmente exclusivos
x3 + x4 < X1 + X2, Projeto 3 ou 4 somente se 1 ou 2

http://www.inf.ufrgs.br/ mrpritt/e6q2.mod

set projetos =1 .. 7;
param lucro { projetos };
param custo { projetos };

var fazer { projetos } binary;

maximize M:
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sum { i in projetos } lucro[ilxfazer[i];
subject to Si:

sum { i in projetos } custo[i]l*fazer[i] <= 100;
subject to S2:

fazer[1]+fazer[2] <= 1;
subject to 83:

fazer[3]+fazer[4] <= 1;
subject to S4:

fazer[3]+fazer[4] <= fazer[l1]+fazer[2];

data;
param lucro :
param custo :
end;

1172103 1541957 6 13 7 9;
143 2 28 3 34448 5 17 6 32 7 23;

Solucao: Selecionar projetos 1,3,7 com lucro de MR$ 4T.

Solugao do exercicio 6.8.

Seja f € B uma variavel que determina qual fabrica vai ser usada (fabrica 1,
caso f = 0, fabrica 2, caso f = 1), b; € B uma variavel binaria que determina,
se brinquedo 1 vai ser produzido e u; € Z as unidades produzidas de brinquedo
i (sempre com i € [2]).

maximiza 10u; + 15u,
— 50000b; — 8000003,
sujeito a u; < Mby, Permitir unidades somente se tem produgao
/50 + 1y /40 < 500 + M, Limite fabrica 1, se selecionada
w1 /40 +uy/25 <700 + (1 — f)M, Limite fabrica 2, se selecionada
a; € B,u; € Z,i e [3].

A constante M deve ser suficientemente grande tal que ela efetivamente nao
restringe as unidades. Dessa forma, se a fabrica 1 esta selecionada, a terceira
restrigao (da fabrica 2) nao se aplica e vice versa.

http://www.inf.ufrgs.br/ “mrpritt/e6q3.mod

set brinquedos := 1..2;

var f binary;

var b { brinquedos } binary;

var u { brinquedos } integer, >= 0;
param inicial { brinquedos };
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C. Solugoes dos exercicios

param
param
param
param

sSum

- (

sum

sum

lucro { brinquedos };
prodfabl { brinquedos 7};
prodfab2 { brinquedos };
M := 35000;

maximize Lucro:

{ i in brinquedos } uli]l*lucrol[i]
sum { i in brinquedos } iniciall[il*b[i] );

subject to PermitirProducao { i in brinquedos }:
ulil <= Mxb[il;
subject to LimiteFabl

{ i in brinquedos }

uli]*prodfab1[i] <= 500 + f*M;
subject to LimiteFab2 :

{ i in brinquedos }

uli]*prodfab2[i] <= 700 + (1-f)=M;

data;

param inicial := 1 50000 2 80000;

param lucro := 1 10 2 15;

param prodfabl := 1 0.020 2 0.025;

param prodfab2 := 1 0.025 2 0.040;
Solucao: Produzir 28000 unidades do brinquedo 1 na fabrica 2, com lucro
230KR$.

Solucgao do exercicio 6.9.

Sejam a; € B uma varidvel que determina se aviao i vai ser produzido e u; € Z
as unidades produzidas.

maximiza 2uj + 3uy; + 0.2u3

— 3(11 — 2(12,

sujeito a 0.2uy + 0.4u3 + 0.2u3z < 1, Limite de capacidade
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w; < bay, Permitir unidades somente se for

produzido, limite 5 avioes

w <3 Limite aviao 1
w <2, Limite aviao 2
uz <5, Limite aviao 3
a; € B,y € Z.



http://www.inf .ufrgs.br/ mrpritt/e6q4.mod

set avioes := 1..3;

param custo { avioes };

param lucro { avioes };

param capacidade { avioes };

param demanda { avioes };

var produzir { avioes } binary;

var unidades { avioes } integer, >= 0;

maximize Lucro:
sum { i in avioes }
(lucro[il*unidades[i]-custo[i]*produzir[i]);
subject to LimiteCapacidade:
sum { i in avioes } unidades[i]*capacidade[i] <= 1;
subject to PermitirProducao { i in avioes }:
unidades[i] <= b6xproduzir[i];
subject to LimiteDemanda { i in avioes }:
unidades[i] <= demandalil;

data;

param : custo lucro capacidade demanda :=
132 0.23

223 0.42

300.80.25;

Solugao: Produzir dois avioes para cliente 2, e um para cliente 3, com Tucro 4.8
MRS$.

Solugao do exercicio 6.10.

Seja xijx € B um indicador do teste com a combinagao (i,j, k) para 1 <1,j,k <
8. Cada combinacao (1, j, k) testada cobre 22 combinagoes: além de (i, j, k) mais
7 para cada combinagdo que difere somente na primeira, segunda ou terceira
posi¢do. Portanto, uma formulagéao é

minimiza Z Xij ks
(1,j,k)€l8]3
sujeito a Xijk + Z Xi’jk + Z Xij/k + Z Xijk/ = 1, Vi,j, ke8],
A i'# k/#k
Xijk € B, Vi, j, k € 8].
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A solugéo otima desse sistema é 32, i.e. 32 testes sdo suficientes para abrir a
fechadura. Uma solucao é testar as combinagoes

(1,2,4),(1,3,8),(1,5,5),(1,8,7),(2,1,1),(2,4,3),(2,6,6), (2,7,2),
(3,1,3),(3,4,2),(3,6,1),(3,7,6),(4,1,2),(4,4,6), (4,6,3), (4,7, 1),
(5,1,6),(5 4,1),(5,6 2),(5 7 3),(6 2 7),(6 3 5),(6 5 4),(6 8 8),
(7,2,5),(7,3,7),(7,5,8),(7,8,4),(8,2,8), (8,3,4), (8,5,7), (8,8,5)

Solucao do exercicio 6.11.

Sejam x; € B, i € [k] as variaveis de entrada, e ¢; € B, 1 € [n] variaveis que
indicam se a clausula c; esta satisfeita. Para aplicar a regra (6.2) diretamente,
vamos usar uma variavel auxiliar di. i € [n], que representa a disjungao dos
primeiros dois literais da clausula 1.

maximiza Z Ci,
ien]
.. Xk literal j na clausula i é xy,
sujeito a lj = ] ] .
1 —xy literal j na clausula i é —xy,
di > (Lo + l2)/2,
di <l + lig,
ci > (di +L3)/2,
ci < di + L,
Ci, di, x; € B.
Como é um problema de maximizagao, pode ser simplificado para
maximiza Z Ci,
i€n]
. Xk literal j na clausula 1 é xy,
sujeito a lj = ) i ]
1 —x, literal j na clausula 1 é —xy,
ci <l + k2 + bis,
ci, xi € B.
A segunda formulacdo possui uma generalizagao simples para o caso k > 3.

Solucao do exercicio 6.13.
Nao. Uma explicacao: http://nbviewer. jupyter.org/url/www.inf . .ufrgs.
br/ mrpritt/oc/greedy-independent-set.ipynb.
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Solucao do exercicio 6.14.
Nao. Primeiramente, a restricao

[ =10

peP

(C.20)

nao ¢é linear. Mas mesmo ignorando isso as restrigoes nao definem uma bijecao
entre nimeros e posi¢gdoes. O conjunto completo de solucoes é

1,2,3,4,5,6,7,8,9,10
1,2,3,4,6,6,6,7,10,10
1,2,4,4,4,5,7,9,9,10
1,3,3,3,4,6,7,8,10,10
1,3,3,4,4,4,7,9,10,10
2,2,2,3,4,6,7,9,10,10

Solugao do exercicio 7.2.

Conjunto independente maximo A matriz de coeficientes contém dois coefici-
entes igual 1 em cada linha, que correspondem com uma aresta, mas geralmente

nao é totalmente unimodular. Por exemplo, o grafo completo com trés vértices
K3

gera a matriz de coeficientes

110
1 0 1
0 11
cuja determinante é —2. A solugao 6tima da relaxacdo inteira 0 < x; < 1 é
X] = X2 = x3 = 1/2 com valor 3/2, a Fig. C.1 mostra o politopo correspon-
dente. (Observagao: A transposta dessa matriz satisfaz os critérios (i) e (ii) da
nossa proposigao, e caso o grafo é bi-partido, também o critério (iii). Portanto
Conjunto independente mdximo pode ser resolvido em tempo polinomial em
grafos bi-partidos).
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Figura C.1.: Politopo {x €
R [x1 +%x < 1,x1 +x3 <
Tx2+x3 < 1,0 <x < 1L
(O visualizador usa os eixos
X =X1,Y =X2, Z=X3.)



C. Solugoes dos exercicios

Emparelhamento perfeito com peso maximo A matriz de coeficientes satis-
faz critério (i). Ela tem uma linha para cada vértice e uma coluna para cada
aresta do grafo. Como cada aresta é incidente a exatamente dois vértices, ela
também satisfaz (ii). Finalmente, a bi-particdo Vi U V, do grafo gera uma
bi-parti¢ao das linhas que satisfaz (iii). Portanto, a matriz é TU, e o Empa-
relhamento perfeito com peso mdximo pode ser resolvido em tempo polinomial
usando a relaxacao linear.

Problema de transporte A matriz de coeficientes satisfaz critério (i). Po-
demos representar o problema como grafo bi-partido completo Ky 1, entre os
depositos e os clientes. Desta forma, com o mesmo argumento que no ultimo
problema, podemos ver, que os critérios (ii) e (iii) sao satisfeitos.

Conjunto dominante A matriz de coeficientes satisfaz critério (i), mas nao
critério (ii): cada linha e coluna correspondente com vértice v contém |N(v)|+1
coeficientes nao-nulos. Mas, ndo é obviou se a matriz mesmo assim nao ¢ TU
(lembra que o critério é suficiente, mas nao necessario). O K3z acima, por
exemplo, gera a matriz

1T 11
T 11
1T 11

que ¢ TU. Um contra-exemplo seria o grafo bi-partido Kj 3

que gera a matriz de coeficientes

_._._‘_.
Y R
©C =0 =

com determinante —2. Isso nao prova ainda que a relaxacao linear nao produz
resultados inteiros 6timos. De fato, nesse exemplo a solugao 6tima da relaxacao
inteira é a solucdo 6tima inteira D = {1}.

Um verdadeiro contra-exemplo é um ciclo com cinco vértices Cs
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com matriz

—_—— O O —
—_— O
—_—— O —

—_—0 O — —

0
1
1
0
100

(cuja determinante é 3). A relaxacao linear desse sistema tem a solugdo 6tima
X] =X2 =X3 =%X4 = X5 = 1/3 com valor 5/3 que nao é inteira.

Solugao do exercicio 7.4.

A formulacao possui 14 restrigoes, correspondendo com as 14 arestas. Como o
grafo é 4-regular, cada vértice ocorre 4 vezes no lado esquerdo de uma restricao,
e somando todas restrigdoes obtemos

4in <14
iel7]
= Z xi < 14/4
iel7]

=) x < [14/4] =3,
iel7]

que nao é suficiente. Para obter uma desigualdade mais forte, vamos somar
sobre todos tridngulos. Somando primeiro as restrigbes das arestas de cada
tridngulo (u,v, w) obtemos
2%y + 2%y + 2% < 3
=SxXu+ X +x0 < [3/2] = 1.

Somando agora as restrigoes obtidas desta forma de todos 14 tridngulos do
grafo (cada vértice é parte de 6 tridngulos) obtemos a desigualdade desejada

6) x <14

iel7]
=) x < [14/6) =2.
iel7]

223



C. Solugoes dos exercicios

(Outra abordagem: Supode, sem perda de generalidade, que x; = 1 na solugao
Otima. Pelas restrigdes x1 + x4 < 2 temos x; = 0 para i € {3,4,5,6}. Pela
restrigio x; +x7 < 1, portanto } ;7% < 2.)

Solucao do exercicio 7.5.
Seja S = [n]\'S e m = maxics a; e M = maxics a;. A idéia ¢ somar desigualda-
des x; < 1 para i € S até o corte de Gomory obtido pela divisao pelo coeficiente
méaximo em S rende a desigualdade desejada. Seja & = max{m-+1, m}. Somando
(6 — aj)x; < & — a; obtemos

D i+ ) axi<b+) (5—ai)xi <8IS|<8IS|—-1.

ieS i€ ies
Aplicando o corte de Gomory com multiplicador 1/8 obtemos

D xi < [ISI=1/8) =S| —1

ies
porque a; < m < max{m+ 1, m} =6 e logo |a;/8] =0 paraic€ S.

Solugao do exercicio 7.6.

X1 + %6 +x7 < 2 porque uma rota nao contém subrotas. Portanto x; +x + x5+
Xg+X7+Xo < 5. Supde x1+x2+x5+X6+x7+%x9 =5. Temos trés casos: x; =0,
x¢ = 0 ou x; = 0. Em todos os casos, as restantes variaveis possuem valor 1, e
no grafo resultante sempre existe um vértice de grau 3 (o vértice no centro, da
esquerda, de acima, respectivamente), que nao é possivel numa solugao valida.

Solugao do exercicio 7.8.
O sistema inicial

z= X1 +3x%
w= —2 4%
Wy = 3 —X2
wy = —4 4% +X2

wyg= 12 =3x1 —x

nao ¢ primalmente nem dualmente viavel. Aplicando a fase I (pivos xp—ws3,
Xo—X1) e depois fase IT (pivos x3-wq, Wi-wy, wi—wy) gera o dicionério final

2= 12 —8/3w; —1/3w,
X2 = 3 —W3
W3 = 2 —2/3W2 —]/3W4
x1= 3 +1/3wy; —1/3wy
w; = 1 +1/3wy;  —1/3wy
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cuja solucao x; = 3, x; = 3 ja ¢é inteira.
No segundo sistema comecamos com o dicionério

Zz= X1 —2X2
w1 = 60 +]]X] —]5X2
Wy = 24 —4X1 —3X2
W3 = 59 —]OX] +5X2

e um pivd x;—wj3 gera a solugao 6tima fracionéria

z= 4.9 —0.]W3 —1 .5Xz
wr = 113.9 —1.lw; —9.5x;
wy; = 44 +0.4w3 —5x,
x1 = 4.9 —0.Twz  +0.5%
e a linha terceira linha (x1) gera o corte
wy = —0.9 +0.lwz +0.5%x,

Com o pivé wg—w3 obtemos a solugao 6tima inteira

z= 4 —Wy —X2
w1 = 104 —1 1W4 —4X2
wy = 8 +4W4 —7X2
x1= 4 —Wy +1x;
W3 = 9 +1 0W4 —5X2
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n]

conjunto {n,n + 1,..., m}, pagina 42

conjunto {1,2,...,n}, pagina 111

argmax valor para que uma fung¢éo atinge o maximo, pagina 31

argmin valor para que uma fung¢ao atinge o minimo, pagina 59

B

(%)
[x]
co-NP

=

NP

sup
a
At

aj

conjunto booleano {0, 1}, pagina 80
coeficiente binomial, pagina 16
menor numero inteiro maior ou igual a x, pagina 130

classe de problemas de decisao com certificados polinomiais para instan-
cias negativas, pagina 52

unido disjunta, pagina 62

maior nimero inteiro menor ou igual a x, pagina 82
significadamente menor que, pagina 38
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conjunto de variaveis bésicas, pagina 26

conjunto de varidveis nulas, pagina 26

classe de problemas de decisao com certificados polinomiais para instan-
cias positivas, pagina 52

conjunto de nimeros reais, pagina 10

supremo, menor limite superior de um conjunto, pagina 75
Coluna j da matrix A = (ay), pagina 13

matriz transposta, pagina 49

Linha i da matrix A = (ayj), pagina 13
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