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Parte I.

Programação linear
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Introdução

If one would take statistics about which mathematical problem is
using up most of the computer time in the world, then ... the answer
would probably be linear programming. (Laszlo Lovasz)
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1. Introdução

1.1. Exemplo

Exemplo 1.1 (No Ildo)
Antes da aula visito o Ildo1 para tomar um café e comer um Croissant. Ele me
conta: “Estou especializado em Croissants e Strudels. Tenho um lucro de 20
centavos por Croissant e 50 centavos por Strudel. Diariamente até 80 clientes
compram um Croissant e até 60 um Strudel.” Mas infelizmente, o Ildo apenas
disponibiliza de 150 ovos e 6 kg de açúcar por dia. Entre outros ingredientes,
preciso um ovo e 50g de açúcar para cada Croissant e um ovo e meio e 50g
de açúcar para cada Strudel. “Agora, professor, quantas Croissants e Strudels
devo produzir para obter o maior lucro?”

Sejam c o número de Croissants e s o número de Strudels. O lucro do Ildo em
Reais é 0.2c + 0.5s. Seria ótimo produzir todos 80 Croissants e 60 Strudels,
mas uma conta simples mostra que não temos ovos e açúcar suficiente. Para
produzir os Croissants e Strudels precisamos c+1.5s ovos e 50c+50sg de açúcar
que não podem ultrapassar 150 ovos e 6000g. Com a condição óbvia que c ≥ 0
e s ≥ 0 chegamos no seguinte problema de otimização:

maximiza 0.2c+ 0.5s, (1.1)
sujeito a c+ 1.5s ≤ 150,

50c+ 50s ≤ 6000,
c ≤ 80,
s ≤ 60,
c, s ≥ 0.

Como resolver esse problema? Com duas variáveis podemos visualizar a situa-
ção num grafo com c no eixo x e s no eixo y

No Ildo

1Uma lancheria que existia na Instituto de Informática até
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1. Introdução
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que nesse caso permite resolver o problema graficamente. Desenhando diversos
conjunto de nível (ingl. level set) com valor da função objetivo 10, 20, 30, 40
é fácil observar que o lucro máximo encontra-se no ponto c = s = 60, e possui
um valor de 42 reais.

♦

A forma geral de um problema de otimização (ou de programação matemática)
é

opt f(x),

sujeito a x ∈ V,

com

• um objetivo opt ∈ {max,min},

• uma função objetivo (ou função critério) f : V → R,

• um conjunto de soluções viáveis (ou soluções candidatas) V .

Falamos de um problema de otimização combinatória, caso V é discreto.
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1.1. Exemplo

Nessa generalidade um problema de otimização é difícil ou impossível de re-
solver. O exemplo 1.1 é um problema de otimização linear (ou programação
linear):

• as variáveis de decisão são reais: x1, . . . , xn ∈ R

• a função de otimização é linear em x1, . . . , xn:

f(x1, . . . , xn) = c1x1 + · · ·+ cnxn (1.2)

• as soluções viáveis são definidas implicitamente por m restrições lineares

a11x1 + a12x2 + · · ·+ a1nxn ./1 b1, (1.3)
a21x1 + a22x2 + · · ·+ a2nxn ./2 b2, (1.4)

· · · (1.5)
am1x1 + am2x2 + · · ·+ amnxn ./m bm, (1.6)

com ./i∈ {≤,=,≥}.

Exemplo 1.2 (O problema da dieta (Dantzig))
Suponha que temos uma tabela de nutrientes de diferentes tipos de alimentos.
Sabendo o valor diário de referência (VDR) de cada nutriente (quantidade de
nutriente que deve ser ingerido) e o preço de cada unidade de alimento, qual a
dieta ótima, i.e. a dieta de menor custo que contém pelo menos o valor diário
de referência?
Com m nutrientes e n alimentos, seja aij a quantidade do nutriente i no ali-
mento j (em g/g), ri o valor diário de referência do nutriente i (em g) e cj
o preço do alimento j (em R$/g). Queremos saber as quantidades xj de cada
alimento (em g) que

minimiza c1x1 + · · ·+ cnxn, (1.7)
sujeito a a11x1 + · · ·+ a1nxn ≥ r1, (1.8)

· · ·
am1x1 + · · ·+ amnxn ≥ rm, (1.9)
x1, . . . , xn ≥ 0. (1.10)

♦

Exemplo 1.3 (Problema de transporte (Hitchcock))
Uma empresa agrária temm depósitos, cada um com um estoque de ai, i ∈ [m]
toneladas de milho. Ela quer encaminhar bj, j ∈ [n] toneladas de milho para

11



1. Introdução

n clientes diferentes. O transporte de uma tonelada do depósito i para cliente
j custa R$ cij. Qual seria o esquema de transporte de menor custo?
Para formular o problema linearmente, podemos introduzir variáveis xij que
representam o peso dos produtos encaminhados do depósito i ao cliente j, e
queremos resolver

minimiza
∑

i∈[m],j∈[n]

cijxij, (1.11)

sujeito a
∑
j∈[n]

xij ≤ ai, para todo fornecedor i ∈ [m], (1.12)

∑
i∈[m]

xij = bj, para todo cliente j ∈ [n], (1.13)

xij ≥ 0, para todo fornecedor i ∈ [m] e cliente j ∈ [n].

Concretamente, suponha que temos a situação da Figura 1.1. A figura mostra
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Figura 1.1.: Esquerda: Instância do problema de transporte. Direita: Solução
ótima correspondente.

as toneladas disponíveis de cada fornecedor, a demanda (em toneladas) de
cada cliente e as distâncias (em km) entre eles. O transporte custa R$ 1000
por km e tonelada. Observe que um transporte do fornecedor 1 para cliente 3 e
fornecedor 3 para cliente 1 não é possível. Nós usaremos uma distância grande
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1.1. Exemplo

de 100 km nesses casos (uma outra possibilidade é usar restrições x13 = x31 = 0
ou remover as variáveis x13 e x31 do modelo).

minimiza 3x11 + x12 + 100x13 + 4x21 + 2x22

+ 4x23 + 100x31 + 3x32 + 3x33,

sujeito a x11 + x12 + x13 ≤ 5,
x21 + x22 + x23 ≤ 7,
x31 + x32 + x33 ≤ 3,
x11 + x21 + x31 = 7,

x12 + x22 + x32 = 3,

x13 + x23 + x33 = 5,

x11, x12, x13, x21, x22, x23, x31, x32, x33 ≥ 0.

Qual seria a solução ótima? A Figura 1.1 (direita) mostra o número ótimo de
toneladas transportadas. O custo mínimo é 46 (em R$ 1000). ♦

Podemos simplificar a descrição de um programa linear usando notação matri-
cial. Com A := (aij) ∈ Rm×n, b := (bi) ∈ Rm, c := (ci) ∈ Rn e x = (xi) ∈ Rn
o problema 1.2-1.6), pode ser escrito de forma

opt ctx,

sujeito a aix ./i bi, i ∈ [m]

(Denotamos com ai a i-ésima linha e como aj a j-ésima coluna da matriz A.)
Em caso todas restrições usam a mesma relação ≤, ≥ ou = podemos escrever

opt ctx,

sujeito a Ax ≤ b,
opt ctx,

sujeito a Ax ≥ b, ou

opt ctx,

sujeito a Ax = b.

Exemplo 1.4 (Problema do Ildo em forma matricial)
O problema 1.1 em forma matricial é

maximiza (0.2 0.5)(c s)t

sujeito a


1 1.5

50 50

1 0

0 1

(cs
)
≤


150

6000

80

60


(c s) ≥ 0.

♦
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1. Introdução

Observação 1.1 (“Programar” linearmente)
Como explicado na seção histórica 1.4, o termo “programação” em “programação
linear” se refere a “agendamento” ou “planejamento”. Porém, formular progra-
mas lineares é uma atividade muito similar à programação de computadores.
Um programa linear consiste de declarações de variáveis, constantes, uma fun-
ção objetivo e uma série de restrições. Podemos escrever um programa linear
de forma mais “computacional” para enfatizar a similaridade com programas.
No caso do problema de Hitchcock 1.3, por exemplo, podemos escrever

1 var xij, i ∈ [m], j ∈ [n] { declaração variáveis }
2 const ai, i ∈ [m] { estoques }
3 const bj, j ∈ [n] { demandas }
4 max

∑
i∈[m],j∈[n] cijxij

5 st
∑
j∈[n] xij ≤ ai, i ∈ [m] { limite estoque }

6 st
∑
i∈[m] xij = bj, j ∈ [n] { satisfação demanda }

Podemos ainda, igual a programação, introduzir nomes para funções lineares
para facilitar a formulação. Por exemplo enviado(i) =

∑
j∈[n] xij é a quanti-

dade total enviada pelo i-ésimo fornecedor. Similarmente, podemos escrever
recebido(j) =

∑
i∈[n] xij para a quantidade total recebida pelo j-ésimo cliente.

Com isso nosso “programa” linear fica

1 var xij, i ∈ [m], j ∈ [n] { declaração variáveis }
2 const ai, i ∈ [m] { estoques }
3 const bj, j ∈ [n] { demandas }
4 const cij, i ∈ [m], j ∈ [n] { custos }
5 function enviado(i) =

∑
j∈[n] xij

6 function recebido(j) =
∑
i∈[m] xij

7 max
∑
i∈[m],j∈[n] cijxij

8 st enviado(i) ≤ ai, i ∈ [m] { limite estoque }
9 st recebido(j) = bj, j ∈ [n] { satisfação demanda }

Vamos conhecer linguagens reais para especificar programas lineares no parte
prático. Um exemplo é Julia/JuMP explicado no appéndice B. A nossa espe-
cificação acima pode ser vista como “pseudo-código” de uma linguagem atual
como Julia/JuMP. ♦

1.2. Formas normais

Conversões
É possível converter

14



1.2. Formas normais

• um problema de minimização para um problema de maximização

min ctx⇐⇒ −max−ctx

(o sinal − em frente do max é uma lembrança que temos que negar a
solução depois.)

• uma restrição “≥” para uma restrição “≤”

aix ≥ bi ⇐⇒ −aix ≤ −bi

• uma igualdade para desigualdades

aix = bi ⇐⇒ aix ≤ bi ∧ aix ≥ bi

Conversões

• uma desigualdade para uma igualdade

aix ≤ b⇐⇒ aix+ xn+1 = bi ∧ xn+1 ≥ 0
aix ≥ b⇐⇒ aix− xn+1 = bi ∧ xn+1 ≥ 0

usando uma nova variável de folga ou excesso xn+1 (inglês: slack and
surplus variables).

• uma variável xi sem restrições para duas positivas

x+i ≥ 0∧ x
−
i ≥ 0

substituindo xi por x+i − x−i .

Essas transformações permitem descrever cada problema linear em uma forma
padrão.

Forma padrão

maximiza ctx,

sujeito a Ax ≤ b,
x ≥ 0.

As restrições x ≥ 0 se chamam triviais.

15



1. Introdução

Exemplo 1.5
Dado o problema

minimiza 3x1 − 5x2 + x3,

sujeito a x1 − x2 − x3 ≥ 0,
5x1 + 3x2 + x3 ≤ 200,
2x1 + 8x2 + 2x3 ≤ 500,
x1, x2 ≥ 0.

vamos substituir “minimiza” por “maximiza”, converter a primeira desigual-
dade de ≥ para ≤ e introduzir x3 = x+3 − x−3 com duas variáveis positivas x+3 e
x−3 para obter a forma padrão

maximiza − 3x1 + 5x2 − x
+
3 + x−3 ,

sujeito a − x1 + x2 + x
+
3 − x−3 ≤ 0,

5x1 + 3x2 + x
+
3 − x−3 ≤ 200,

2x1 + 8x2 + 2x
+
3 − 2x−3 ≤ 500,

x1, x2, x
+
3 , x

−
3 ≥ 0.

Em notação matricial temos

c =


−3
5

−1
1

 ; b =

 0

200

500

 ; A =

−1 1 1 −1
5 3 1 −1
2 8 2 −2

 .
♦

Definição 1.1 (Soluções viáveis, inviáveis e ótimas)
Para um programa linear P em forma normal, um vetor x ∈ Rn é uma solução
viável, caso Ax ≤ b e x ≥ 0. P é viável caso existe alguma solução viável,
caso contrário P é inviável. Um vetor x∗ ∈ Rn é uma solução ótima caso
ctx∗ = max{ctx | Ax ≤ b, x ≥ 0}.

Definição 1.2 (Programas ilimitados)
Uma programa linear em forma normal é ilimitado caso existe um v ∈ R tal
que para todo w ≥ v existe uma solução viável x com ctx ≥ w.

1.3. Solução por busca exaustiva

Uma observação importante na solução de um programa linear é que a solução
ótima, caso exista, somente ocorra na borda de região das soluções viáveis

16



1.3. Solução por busca exaustiva

(compara com a figura na página 9). Mais específico a solução ótima ocorre
num vértice (ou ponto extremo) dessa região, definido pela interseção de n
restrições linearmente independentes. Isso justifica tratar a programação linear
como problema de otimização combinatória, porque temos um número finito
de
(
m
n

)
candidatos para a solução ótima. Procurando o melhor entre todos

candidatos nos também fornece um algoritmo (muito ineficiente) para encontrar
uma solução ótima de um programa linear, caso exista.

Definição 1.3
Um conjunto C ⊆ Rn é convexo, caso para todo par de pontos x, y ∈ C a sua
combinação convexa λx+ (1− λ)y para λ ∈ [0, 1] também pertence a C.

Proposição 1.1
A região de soluções viáveis V = {x ∈ Rn | Ax ≤ b} definido por um programa
linear é convexa.

Prova. Sejam x, y ∈ V . Então

A(λx+ (1− λ)y) = λAx+ (1− λ)Ay ≤ λb+ (1− λ)b = b.

�

Definição 1.4
Um ponto x ∈ C de uma região C ⊆ Rn é um vértice ou ponto extremo, caso
não existe um y 6= 0 tal que x+ y ∈ C e x− y ∈ C.

Proposição 1.2
Caso existe uma única solução ótima de max{ctx | x ∈ V} ela é um vértice de
V .

Prova. Supõe que a solução ótima x∗ não é um vértice de V . Então existe
um y tal que x + y ∈ V e x − y ∈ V . Por x∗ ser a única solução ótima temos
ct(x∗+y) < ctx∗ e ct(x∗−y) < ctx∗, i.e., cty < 0 e −cty < 0, uma contradição.
�

Proposição 1.3
Um vértice de V = {x ∈ Rn | Ax ≤ b} é a interseção de n restrições linearmente
independentes.

Prova. Para um vértice v ∈ V , seja Av a matriz formado das linhas ai de A
tal que aiv = bi, e bv os lados direitos correspondentes.
Seja v ∈ V a interseção de n restrições linearmente independentes, i.e. posto(Av) =
n. Supõe v não é um vértice. Logo existe um y tal que x + y, x − y ∈ V que

17



1. Introdução

satisfazem Av(x+y) ≤ bv e Av(x−y) ≤ bv. Como Avx = bv obtemos Avy ≤ 0
e −Avy ≤ 0, i.e. Avy = 0, uma contradição com posto(Av) = n.
Agora seja v ∈ V um vértice e supõe posto(Av) < n, i.e. existe um y tal que
Avy = 0. Para as linhas ai em A com aiv < bi existe um δ > 0 tal que

ai(v+ δy) ≤ bi e ai(v− δy) ≤ bi

e logo

A(v+ δy) ≤ b e A(v− δy) ≤ b,

porque Avy = 0, em contradição com o fato que v é um vértice. �

Proposição 1.4
Caso existem múltiplas soluções ótimas de max{ctx | x ∈ V} e V é limitado, um
vértice de V é uma solução ótima.

Prova. Por indução sobre n − posto(Av). Caso n − posto(Av) = 0, v é
um vértice pela proposição (1.3). Para n − posto(Av) > 0 existe um y com
Avy = 0. Seja µ = max{t | v + ty ∈ V}. O valor µ existe porque V é limitado
(e compacto). Como ai(v+ µy) ≤ bi para cada linha i temos que

µ = min{(bi − aiv)/aiy | aiy > 0} (+)

Seja i∗ o índice da linha que satisfaz (+) com igualdade. Define v ′ = v + µy.
Temos Avv ′ = Avv + µAvy = Avv = bv, logo Av ′ contém as linhas de Av e
pelo menos a linha ai∗ a mais. Ainda, como Avy = 0 mas ai∗y 6= 0 temos que
posto(Av ′) > posto(Av). Logo, pela hipótese da indução, existe um vértice que
é uma solução ótima. �

Observação 1.2
Caso existem multiplas soluções ótimas de max{ctx | x ∈ V}, mas V não é
limitado, é possível que não existe um vértice ótimo. Um exemplo é o sistema
max{x1 | (x1, x2) ∈ R2, 0 ≤ x1 ≤ 1}. ♦

Usando os resultados acima, obtemos um algoritmo (muito ineficiente) para
encontrar uma solução ótima de um programa linear (limitado).

1 x∗ := null
2 for todas

(
m
n

)
seleções de n restrições lin. indep.

3 determine a interseção x das n restrições
4 if Ax ≤ b e ctx ≥ ctx∗ then
5 x∗ := x
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6 end if
7 end for
8 if x∗ 6= null then
9 return ‘‘Solução ótima é x∗ ou sistema ilimitado ’’
10 else
11 return ‘‘Não possui solução ou não possui vértice ’’
12 end if

1.4. Notas históricas

História da programação linear

• Jean Baptiste Joseph Fourier (1826): Método de resolver um sistema de
desigualdades (eliminação de Fourier-Motzkin) Williams 1986.

• Leonid Kantorovich (1939): Programação linear.

• George Bernard Dantzig (1948): Método Simplex.

• John von Neumann: Dualidade.

• Leonid Khachiyan (1979): Método de ellipsoides.

• Narendra Karmarkar (1984): Métodos de pontos interiores.

Figura 1.2.: Jean Bap-
tiste Joseph Fourier (*1768,
+1830)

Pesquisa operacional, otimização e “programação”

• “The discipline of applying advanced analytical methods to help make
better decisions” (INFORMS)

• O nome foi criado durante a segunda guerra mundial, para métodos ci-
entíficos de análise e predição de problemas logísticos.

• Hoje se aplica para técnicas que ajudam tomar decisões sobre a execução
e coordenação de operações em organizações.

• Problemas da pesquisa operacional são problemas de otimização.

• “Programação” 6= “Programação”

– Não se refere à computação: a noção significa “planejamento” ou
“agendamento”.

Figura 1.3.: George Ber-
nard Dantzig (*1914,
+2005)
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1. Introdução

Técnicas da pesquisa operacional

• Em geral: Técnicas algorítmicas conhecidas como

– Modelagem matemática (equações, igualdades, desigualdades, mo-
delos probabilísticos,...)

– Algoritmos gulosos, randômicos, ...; programação dinâmica, linear,
convexo, ...

– Heurísticas e algoritmos de aproximação.

• Algumas dessas técnicas se aplicam para muitos problemas e por isso são
mais comuns:

– Exemplo: Programação linear.

1.5. Exercícios

(Soluções a partir da página 201.)

Exercício 1.1
Na definição da programação linear permitimos restrições lineares da forma

ai1x1 + ai2x2 + · · ·+ ainxn ./i bi

com ./i∈ {≤,=,≥}. Por que não permitimos ./i∈ {<,>} também? Discute.

Exercício 1.2
Procura a tabela nutricional de algum restaurante e resolve o problema da dieta
(exemplo 1.2).

Exercício 1.3
Um investidor pode vender ações de suas duas empresas na bolsa de valores,
mas está sujeito a um limite de 10.000 operações diárias (vendas por dia). Na
cotação atual, as ações da empresa A valorizaram-se 10% e agora cada uma vale
R$ 22. Já a empresa B teve valorização de 2% e cada ação vale R$ 51. Sabendo-
se que o investidor possui 6.000 ações da Empresa A e 7.000 da empresa B,
maximize seu lucro na BOVESPA e diga qual o lucro obtido.

Exercício 1.4
Dona Maria adora ver seus netinhos Marcos, Renato e Vinicius bem alimenta-
dos. Sempre na hora de cozinhar ela leva em conta o quanto eles gostam de
cada prato para fazê-los comer o máximo possível. Marcos gosta da lasanha e
comeria 3 pratos dela após um prato de sopa; Renato prefere lanches, e comeria
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5 hambúrgueres, ignorando a sopa; Vinicius gosta muita da massa a bolonhesa,
e comeria 2 pratos após tomar dois pratos de sopa. Para fazer a sopa, são ne-
cessários entre outros ingredientes, 70 gramas de queijo por prato e 30 gramas
de carne. Para cada prato de lasanha, 200 gramas de queijo, e 100 gramas
de carne. Para cada hambúrguer são necessários 100 gramas de carne, e 100
gramas de queijo. Para cada prato de massa a bolonhesa são necessários 100
gramas de carne e 30 gramas de queijo (ralado para por sobre a massa). Seus
netos vieram visitá-la de surpresa, e tendo ela somente 800 gramas de carne e
1000 gramas de queijo em casa, como ela poderia fazê-los comer o maior nú-
mero de pratos, garantindo que cada um deles comerá pelo menos dois pratos,
e usando somente os ingredientes que ela possui?

Exercício 1.5
A empresa “Luz para o mundo” produz dois tipos de lampadas, cada um com
partes metálicos e partes eléctricos. A gerencia quer saber com quantas uni-
dades produzidas por tipo o lucro é maximizado. A produção de uma unidade
de produto 1, precisa uma unidade de partes metálicos e duas unidades de
componentes eléctricos. A produção de uma unidade de produto 2, precisa três
unidades de partes metálicos e duas unidades de componentes eléctricos. A
empresa tem um estoque de 200 unidades de partes metálicos e 300 unidades
de componentes eléctricos. Cada unidade de produto um tem um lucro de R$
1 e cada unidade de produto 2, até um limite de 60 unidades, um lucro de R$
2. (Cada unidade acima de 60 no caso do produto 2 não rende nada.)

Exercício 1.6
A empresa “Janela jóia” com três empregados produz dois tipos de janelas: com
molduras de madeira e com molduras de alumínio. Eles têm um lucro de 60
R$ para toda janela de madeira e 30R$ para toda janela de alumínio. João
produz as molduras de madeira. Ele consegue produzir até seis molduras por
dia. Sylvana é responsável pelas molduras de alumínio, e ela consegue produzir
até quatro por dia. Ricardo corta o vidro e é capaz de produzir até 48 m2 por
dia. Uma janela de madeira precisa 6m2 de vidro, e uma de alumínio 8m2. A
empresa quer maximizar o seu lucro.

Exercício 1.7
Uma empresa de aço tem uma rede de distribuição conforme Figura 1.4. Duas
minas P1 e P2 produzem 40t e 60t de mineral de ferro, respectivamente, que são
distribuídos para dois estoques intermediários S1 e S2. A planta de produção
P tem uma demanda dem 100t de mineral de ferro. A vias de transporte tem
limites de toneladas de mineral de ferro que podem ser transportadas e custos
de transporte por tonelada de mineral de ferra (veja figura). A direção da
empresa quer determinar a transportação que minimiza os custos.
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M1 S1

M2 S2

P

R$ 2000/t

30t

R$ 1700/t

30t

R$ 1600/t

50t

R$ 1100/t

50t

R$ 400/t

70t

R$ 800/t

70t

Figura 1.4.: Rede de distribuição de uma empresa de aço.

Exercício 1.8
Um importador de Whisky tem as seguintes restrições de importação

• no máximo 2000 garrafas de Johnny Ballantine por 70 R$ cada uma,

• no máximo 2500 garrafas de Old Gargantua por 50 R$ cada uma,

• no máximo 1200 garrafas de Misty Deluxe por 40 R$ cada uma.

Dos Whiskies importados ele produz três misturas A, B, C, que ele vende por
68 R$, 57 R$ e 45 R$, respectivamente. As misturas são

• A: no mínimo 60% Johnny Ballantine, no máximo 20% Misty Deluxe,

• B: no mínimo 15% Johnny Ballantine, no máximo 60% Misty Deluxe,

• C: no máximo 50% Misty Deluxe.

Quais seriam as misturas ótimas, e quantas garrafas de cada mistura devem ser
produzidas para maximizar o lucro?

Observações:

• Use como variáveis o número de garrafas xm,i da marca m usadas na
mistura i.

• Desconsidere a integralidade das garrafas.

Exercício 1.9
A empresa de televisão “Boa vista” precisa decidir quantas TVs de 29"e 31"ela
vai produzir. Uma analise do mercado descobriu que podem ser vendidas no
máximo 40 TVs de 29"e 10 de 31"por mês. O trabalho máximo disponível por
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mês é 500h. A produção de um TV de 29"precisa 20h de trabalho, e um TV
de 31"precisa 10h. Cada TV de 29"rende um lucro de R$ 120 e cada de 31"um
lucro de R$ 80.
Qual a produção ótima média de cada TV por mês?

Exercício 1.10 (da Costa)
Um certo óleo é refinado a partir da mistura de outros óleos, vegetais ou não
vegetais. Temos óleos vegetais V1 e V2 e óleos não vegetais NV1 NV2 NV3.
Por restrições da fábrica, um máximo de 200 ton. de óleos vegetais podem ser
refinados por mês, e um máximo de 250 ton. de óleos não vegetais. A acidez do
óleo desejado deve estar entre 3 e 6 (dada uma unidade de medida) e a acidez
depende linearmente das quantidades/acidez dos óleos brutos usados. O preço
de venda de uma tonelada do óleo é R$ 150. Calcule a mistura que maximiza
o lucro, dado que:

Óleo V1 V2 NV1 NV2 NV3

Custo/ton 110 120 130 110 115
Acidez 8.8 6.1 2.0 4.2 5.0

Exercício 1.11 (Campêlo Neto)
Um estudante, na véspera de seus exames finais, dispõe de 100 horas de estudo
para dedicar às disciplinas A, B e C. Cada um destes exames é formado por
100 questões, e o estudante espera acertar, alternativamente, uma questão em
A, duas em B ou três em C, por cada hora de estudo. Suas notas nas provas
anteriores foram 6, 7 e 10, respectivamente, e sua aprovação depende de atingir
uma média mínima de 5 pontos em cada disciplina. O aluno deseja distribuir
seu tempo de forma a ser aprovado com a maior soma total de notas.

Exercício 1.12 (Dasgupta et al. 2009)
Moe está decidindo quanta cerveja Duff regular e quanta cerveja Duff Forte
encomendar a cada semana. Duff regular custa a Moe $1 por caneco e ele a
vende por $2 por caneco; Duff Forte custa $1.50 por caneco e ele vendo por $3
por caneco. Entretanto, como parte de uma complicada fraude de marketing, a
companhia Duff somente vende um caneco de Duff Forte para cada dois canecos
ou mais de Duff regular que Moe compra. Além disso, devido a eventos passados
sobre os quais é melhor nem comentar, Duff não venderá Moe mais do que 3000
canecos por semana. Moe sabe que ele pode vender tanta cerveja quanto tiver.
Formule um programa linear em duas variáveis para decidir quanto de Duff
regular e quanto de Duff Forte comprar, para maximizar o lucro de Moe.
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Exercício 1.13 (Dasgupta et al. 2009)
A companhia de produtos caninos oferece duas comidas para cachorro: Frisky
Pup e Husky Hound, que são feitas de uma mistura de cereais e carne. Um
pacote de Frisky Pup requer 1 quilo de cereal e 1.5 quilo de carne, e é vendido
por $7. Um pacote de Husky Hound usa 2 quilos de cereal e 1 quilo de carne,
e é vendido por $6. O cereal bruto custa $1 por quilo e a carne bruta, $2
por quilo. Há também o custo de $1.40 para empacotar o Frisky Pup e $0.60
para o Husky Hound. Um total de 240000 quilos de cereal e 180000 quilos de
carne estão disponíveis a cada mês. O único gargalo de produção está no fato
de a fábrica poder empacotar apenas 110000 pacotes de Frisky Pup por mês.
Desnecessário dizer, a gerência gostaria de maximizar o lucro.
Formule o problema como um programa linear em duas variáveis.

Exercício 1.14 (Vanderbei 2001)
Formule como problema de otimização linear e resolve graficamente.
Uma empresa de aço produz placas ou canos de ferro. As taxas de produção
são 200t/h para placas e 140t/h para canos. O lucro desses produtos e 25$/t
para placas e 30$/t para canos. Considerando a demanda atual, os limites de
produção são 6000t de placas e 4000t de canos. Na semana atual são 40h de
tempo de produção disponível. Quantas toneladas de placas e canos devem ser
produzidas para maximizar o lucro?

Exercício 1.15 (Vanderbei 2001)
Formule como problema de otimização linear.
Uma pequena empresa aérea oferece um vôo de Pelotas, com escala em Porto
Alegre para Torres. Logo tem três tipos de clientes que voam Pelotas–Porto
Alegre, Pelotas–Torres e Porto Alegre–Torres. A linha também oferece três
tipos de bilhetes:

• Tipo A: bilhete regular.

• Tipo B: sem cancelamento.

• Tipo C: sem cancelamento, pagamento três semanas antes de viajar.

Os preços (em R$) dos bilhetes são

Pelotas–Porto Alegre Porto Alegre–Torres Pelotas–Torres

A 600 320 720
B 440 260 560
C 200 160 280
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Baseado na experiência com esse vôo, o marketing tem a seguinte predição de
passageiros:

Pelotas–Porto Alegre Porto Alegre–Torres Pelotas–Torres

A 4 8 3
B 8 13 10
C 22 20 18

O objetivo da empresa e determinar o número ótimo de bilhetes para vender
de cada tipo, respeitando um limite de 30 passageiros em cada vôo e o limite
dos passageiros previstos em cada categoria, que maximiza o lucro.
Exercício 1.16
Resolva graficamente.

maximiza 4x1 + x2,

sujeito a − x1 + x2 ≤ 2,
x1 + 8x2 ≤ 36,
x2 ≤ 4,
x1 ≤ 4.25,
x1, x2 ≥ 0.

(a) Qual a solução ótima?

(b) Qual o valor da solução ótima?

Exercício 1.17
Escreve em forma normal.

minimiza z = −5x1 − 5x2 − 5x3,

sujeito a − 6x1 − 2x2 − 9x3 ≤ 0,
− 9x1 − 3x2 + 3x3 = 3,

x1, x2, x3 ≥ 0.

maximiza z = −6x1 − 2x2 − 6x3 + 4x4 + 4x5,

sujeito a − 3x1 − 8x2 − 6x3 − 7x4 − 5x5 = 3,

5x1 − 7x2 + 7x3 + 7x4 − 6x5 ≤ 6,
1x1 − 9x2 + 5x3 + 7x4 − 10x5 = −6,

x1, x2, x3, x4, x5 ≥ 0.
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maximiza z = 7x1 + 4x2 + 8x3 + 7x4 − 9x5,

sujeito a − 4x1 − 1x2 − 7x3 − 8x4 + 6x5 = −2,

x1 + 4x2 + 2x3 + 2x4 − 7x5 ≥ −7,

− 8x1 + 2x2 + 8x3 − 6x4 − 7x5 = −7,

x1, x2, x3, x4, x5 ≥ 0.

minimiza z = −6x1 + 5x2 + 8x3 + 7x4 − 8x5,

sujeito a − 5x1 − 2x2 + x3 − 9x4 − 7x5 = 9,

7x1 + 7x2 + 5x3 − 3x4 + x5 = −8,

− 5x1 − 3x2 − 5x3 + 9x4 + 8x5 ≤ 0,
x1, x2, x3, x4, x5 ≥ 0.
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2. O método Simplex

Graficamente, é difícil resolver sistemas com mais que três variáveis. Portanto é
necessário achar métodos que permitam resolver sistemas grandes. Um dos mais
importantes é ométodo Simples. Nós vamos estudar esse método primeiramente
através da aplicação a um exemplo.

2.1. Um exemplo

Começamos com o seguinte sistema em forma padrão:

Exemplo: Simplex

maximiza z = 6x1 + 8x2 + 5x3 + 9x4,

sujeito a 2x1 + x2 + x3 + 3x4 ≤ 5,
x1 + 3x2 + x3 + 2x4 ≤ 3,
x1, x2, x3, x4 ≥ 0.

Introduzimos variáveis de folga e reescrevemos as equações:

Exemplo: Com variáveis de folga

maximiza z = 6x1 + 8x2 + 5x3 + 9x4, (2.1)
sujeito a w1 = 5− 2x1 − x2 − x3 − 3x4, (2.2)

w2 = 3− x1 − 3x2 − x3 − 2x4, (2.3)
x1, x2, x3, x4, w1, w2 ≥ 0.

Observação 2.1
Nesse exemplo é fácil obter uma solução viável, escolhendo x1 = x2 = x3 =
x4 = 0. Podemos verificar que w1 = 5 e w2 = 3 e todas as restrições são
respeitadas. O valor da função objetivo seria 0. Uma outra solução viável é
x1 = 1, x2 = x3 = x4 = 0, w1 = 3, w2 = 2 com valor z = 6. ♦
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Com seis variáveis e duas equações lineares independentes o espaço de soluções
do sistema de equações lineares dado pelas restrições tem 6 − 2 = 4 graus de
liberdade. Uma solução viável com esse número de variáveis nulas (igual a 0)
se chama uma solução básica viável. Logo nossa primeira solução acima é uma
solução básica viável.
A idéia do método Simplex é percorrer soluções básicas viáveis, aumentando
em cada passo o valor z da função objetivo.
Logo nosso próximo objetivo é aumentar o valor da função objetivo z. Para
esse fim, podemos aumentar o valor das variáveis x1, x2, x3 ou x4, pois o co-
eficiente delas é positivo. Escolhemos x4, porque essa variável tem o maior
coeficiente. Não podemos aumentar x4 arbitrariamente: Para respeitar as res-
trições w1, w2 ≥ 0 temos os limites

Limites

w1 = 5− 3x4 ≥ 0⇐⇒ x4 ≤ 5/3
w2 = 3− 2x4 ≥ 0⇐⇒ x4 ≤ 3/2

ou seja x4 ≤ 3/2. Aumentando x4 o máximo possível, obtemos x4 = 3/2 e
w2 = 0. Os valores das demais variáveis não mudam. Essa solução respeita
novamente todas as restrições, e portanto é viável. Ainda, como trocamos uma
variável nula (x4) com uma outra não-nula (w2) temos uma nova solução básica
viável

Solução básica viável

x1 = x2 = x3 = 0; x4 = 3/2;w1 = 1/2;w2 = 0

com valor da função objetivo z = 13.5.
O que facilitou esse primeiro passo foi a forma especial do sistema de equações.
Escolhemos quatro variáveis independentes (x1, x2, x3 e x4) e duas variáveis
dependentes (w1 e w2). Essas variáveis são chamadas não-básicas e básicas,
respectivamente. Na nossa solução básica viável todas variáveis não-básicas
são nulas. Logo, pode-se aumentar uma variável não-básica cujo coeficiente
na função objetivo seja positivo (para aumentar o valor da função objetivo).
Inicialmente tem-se as seguintes variáveis básicas e não-básicas

B = {w1, w2}; N = {x1, x2, x3, x4}.
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Depois de aumentar x4 (e consequentemente zerar w2) podemos escolher

B = {w1, x4}; N = {x1, x2, x3, w2}.

A variável x4 se chama variável entrante, porque ela entra no conjunto de
variáveis básicas B. Analogamente w2 se chama variável sainte.
Para continuar, podemos reescrever o sistema atual com essas novas variáveis
básicas e não-básicas. A segunda restrição 2.3 é fácil de reescrever

w2 = 3− x1 − 3x2 − x3 − 2x4 ⇐⇒ 2x4 = 3− x1 − 3x2 − x3 −w2⇐⇒ x4 = 3/2− 1/2x1 − 3/2x2 − 1/2x3 − 1/2w2

Além disso, temos que reescrever a primeira restrição 2.2, porque a variável
básica w1 depende de x4 que agora é básica também. Nosso objetivo é escrever
todas variáveis básicas em termos de variáveis não-básicas. Para esse fim,
podemos usar combinações lineares da linhas, que eliminam as variáveis não-
básicas. Em nosso exemplo, a combinação (2.2)−3/2(2.3) elimina x4 e resulta
em

w1 − 3/2w2 = 1/2− 1/2x1 + 7/2x2 + 1/2x3

e colocando a variável não-básica w2 no lado direito obtemos

w1 = 1/2− 1/2x1 + 7/2x2 + 1/2x3 + 3/2w2.

Temos que aplicar uma operação semelhante à função objetivo que ainda de-
pende da variável básica x4. Escolhemos (2.1)−9/2(2.3) para obter

z = 27/2+ 3/2x1 − 11/2x2 + 1/2x3 − 9/2w2.

Novo sistema

maximiza z = 27/2+ 3/2x1 − 11/2x2 + 1/2x3 − 9/2w2,

sujeito a w1 = 1/2− 1/2x1 + 7/2x2 + 1/2x3 + 3/2w2,

x4 = 3/2− 1/2x1 − 3/2x2 − 1/2x3 − 1/2w2,

x1, x2, x3, x4, w1, w2 ≥ 0.

que obtemos após uma operação de trocar as variáveis x4 e w2. Essa operação
se chama um pivô. Observe que no novo sistema é fácil recuperar toda infor-
mação atual: zerando as variáveis não-básicas obtemos diretamente a solução
x1 = x2 = x3 = w2 = 0, w1 = 1/2 e x4 = 3/2 com função objetivo z = 27/2.
Antes de continuar “pivotando” introduzimos uma forma mais simples de es-
crever o sistema
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Dicionário

z = 27/2 +3/2x1 −11/2x2 +1/2x3 −9/2w2
w1 = 1/2 −1/2x1 +7/2x2 +1/2x3 +3/2w2
x4 = 3/2 −1/2x1 −3/2x2 −1/2x3 −1/2w2

que se chama dicionário (inglês: dictionary).

Excurso 2.1
Alguns autores usam um tableau em vez de um dicionário. Para n variáveis e
m restrições, um tableau consiste em n+ 1 colunas e m+ 1 linhas. Igual a um
dicionário, a primeira linha corresponde com a função objetivo, e as restantes
linhas com as restrições. Diferente do dicionário a primeira coluna contém os
constantes, e as restantes colunas correspondem com as variáveis, incluindo as
básicas. Nosso exemplo acima em forma de tableau é

base︷ ︸︸ ︷
x1 x2 x3 x4 w1 w2

27/2 3/2 −11/2 1/2 0 0 9/2

1/2 1/2 −7/2 −1/2 0 1 −3/2
3/2 1/2 3/2 1/2 1 0 1/2

♦

No próximo passo podemos aumentar somente x1 ou x3 porque somente elas têm
coeficientes positivos. Aumentado x1 temos que respeitar x1 ≤ 1 (da primeira
restrição) e x1 ≤ 3 (da segunda). Logo a primeira restrição é mais forte, x1 é a
variável entrante, w1 a variável sainte, e depois do pivô obtemos

Segundo passo

z = 15 −3w1 +5x2 +2x3
x1 = 1 −2w1 +7x2 +x3 +3w2
x4 = 1 +w1 −5x2 −x3 −2w2

No próximo pivô x2 entra. A primeira restrição não fornece limite para x2,
porque o coeficiente de x2 é positivo! Mas a segunda x2 ≤ 1/5 e x4 sai da base.
O resultado do pivô é
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2.1. Um exemplo

Terceiro passo

z = 16 −2w1 −x4 +x3 −2w2
x1 = 12/5 −3/5w1 −7/5x4 −2/5x3 +1/5w2
x2 = 1/5 +1/5w1 −1/5x4 −1/5x3 −2/5w2

O próximo pivô: x3 entra, x2 sai:

Quarto passo

z = 17 −w1 −2x4 −5x2 −4w2
x1 = 2 −w1 −x4 +2x2 +w2
x3 = 1 +w1 −x4 −5x2 −2w2

Agora, todos coeficientes da função objetivo são negativos. Isso significa, que
não podemos mais aumentar nenhuma variável não-básica. Como esse sistema
é equivalente ao sistema original, qualquer solução tem que ter um valor menor
ou igual a 17, pois todas as variáveis são positivas. Logo chegamos no resultado
final: a solução

w1 = x4 = x2 = w2 = 0; x1 = 2; x3 = 1

com valor objetivo 17, é ótima!
Concluímos esse exemplo com mais uma observação. O número de soluções
básicas viáveis é limitado. Em nosso exemplo, se escolhemos um subconjunto
de quatro variáveis nulas, as duas equações determinam as variáveis restantes.
Logo temos no máximo

(
6
4

)
= 15 soluções básicas viáveis. Em geral, com m

equações e n variáveis, uma solução básica viável possui n−m variáveis nulas
e o número delas é limitado por

(
n

n−m

)
. Portanto, se aumentamos em cada pivô

o valor da função objetivo, o método termina em no máximo
(
n

n−m

)
passos.

Exemplo 2.1 (Solução do problema do Ildo)
Exemplo da solução do problema do Ildo na página 9.

z = 0/1 +1/5c +1/2s

w1 = 150 −c −3/2s
w2 = 6000 −50c −50s
w3 = 80 −c
w4 = 60 −s

Pivô s–w4
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2. O método Simplex

z = 30 +1/5c −1/2w4
w1 = 60 −c +3/2w4
w2 = 3000 −50c +50w4
w3 = 80 −c
s = 60 −w4

Pivô c–w1

z = 42 −1/5w1 −1/5w4
c = 60 −w1 +3/2w4
w2 = +50w1 −25w4
w3 = 20 +w1 −3/2w4
s = 60 −w4

O resultado é um lucro total de R$ 42, com os seguintes valores de variáveis:
c = 60, s = 60, w1 = 0, w2 = 0, w3 = 20 e w4 = 0. A interpretação das
variáveis de folga é como segue.

• w1: Número de ovos sobrando: 0.

• w2: Quantidade de açúcar sobrando: 0 g.

• w3: Croissants não produzidos (abaixo da demanda): 20.

• w4: Strudels não produzidos: 0.

♦

2.2. O método resumido

Considerando n variáveis e m restrições:

Sistema inicial

maximiza z =
∑
j∈[n]

cjxj,

sujeito a
∑
j∈[n]

aijxj ≤ bi, i ∈ [m],

xj ≥ 0, j ∈ [n].
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2.2. O método resumido

Preparação
Introduzimos variáveis de folga∑

j∈[n]

aijxj + xn+i = bi, i ∈ [m],

e escrevemos as variáveis de folga como dependentes das variáveis restantes

xn+i = bi −
∑
j∈[n]

aijxj, i ∈ [m].

Solução básica viável inicial
Se todos bi ≥ 0 (o caso contrário vamos tratar na próxima seção), temos uma
solução básica inicial

xn+i = bi, i ∈ [m],

xj = 0, j ∈ [n].

Índices das variáveis
Depois do primeiro passo, os conjuntos de variáveis básicas e não-básicas mu-
dam. Seja B o conjunto dos índices das variáveis básicas (não-nulas) e N o
conjunto das variáveis nulas. No começo temos

B = {n+ 1, n+ 2, . . . , n+m}; N = {1, 2, . . . , n}

A forma geral do sistema muda para

z = z̄+
∑
j∈N

c̄jxj,

xi = b̄i −
∑
j∈N

āijxj, i ∈ B.

As barras em cima dos coeficientes enfatizam que eles mudam ao longo da apli-
cação do método. Os coeficientes c̄j são chamados custos reduzidos (ingl. redu-
ced costs).
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2. O método Simplex

Escolher variável entrante (ingl. pricing)
Em cada passo do método Simplex, escolhemos uma variável não-básica xk,
com k ∈ N para aumentar o valor objetivo z. Isso somente é possível para os
índices j tal que c̄j > 0, i.e.

{j ∈ N | c̄j > 0}.

Escolhemos um k desse conjunto, e xk é a variável entrante. Uma heurística
simples é a regra do maior coeficiente, que escolhe

k = argmax{c̄j | c̄j > 0, j ∈ N }

Aumentar a variável entrante
Seja xk a variável entrante. Se aumentamos xk para um valor positivo, as
variáveis básicas têm novos valores

xi = b̄i − āikxk i ∈ B.

Temos que respeitar xi ≥ 0 para 1 ≤ i ≤ n. Cada equação com āik > 0 fornece
uma cota superior para xk:

xk ≤ b̄i/āik.

Logo podemos aumentar xk ao máximo um valor

α := min
i∈B
āik>0

b̄i/āik =

max
i∈B
āik>0

āik/b̄i

−1

=

(
max
i∈B

āik/b̄i

)−1

> 0. (2.4)

Podemos escolher a variável sainte entre os índices

{i ∈ B | b̄i/āik = α}.

2.3. Sistemas ilimitados

Como pivotar?

• Considere o sistema

z = 24 −x1 +2x2
x3 = 2 −x1 +x2
x4 = 5 +x1 +4x2
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2.4. Encontrar uma solução inicial: o método de duas fases

• Qual a próxima solução básica viável?

• A duas equações não restringem o aumento de x2: existem soluções com
valor ilimitado.

2.4. Encontrar uma solução inicial: o método de duas fases

Solução básica inicial

• Nosso problema inicial é

maximiza z =
∑
j∈[n]

cjxj,

sujeito a
∑
j∈[n]

aijxj ≤ bi, i ∈ [m],

xi ≥ 0, i ∈ [n],

• com dicionário inicial

z = z̄+
∑
j∈N

c̄jxj

xi = b̄i −
∑
j∈N

āijxj, i ∈ B.

Solução básica inicial

• A solução básica inicial desse dicionário é

x = (0 · · · 0 b1 · · ·bm)t

• O que acontece se existe um bi < 0?

• A solução básica não é mais viável! Sabe-se disso porque pelo menos uma
variável básica terá valor negativo.
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2. O método Simplex

Sistema auxiliar

• Um método para resolver o problema: resolver outro programa linear

– cuja solução fornece uma solução básica viável do programa linear
original e

– que tem uma solução básica viável simples, tal que podemos aplicar
o método Simplex.

maximiza z = −x0,

sujeito a
∑
j∈[n]

aijxj − x0 ≤ bi, 0 ≤ i ≤ m,

xi ≥ 0, i ∈ [n].

Resolver o sistema auxiliar

• É fácil encontrar uma solução viável do sistema auxiliar:

– Escolhe xi = 0, para todos i ∈ [n].

– Escolhe x0 suficientemente grande: x0 ≥ maxi∈[m]−bi.

• Isso corresponde com um primeiro pivô com variável entrante x0 após
introduzir as variáveis de folga (“pseudo-pivô”).

– Podemos começar com a solução não-viável x0 = x1 = . . . = xn = 0.

– Depois aumentamos x0 tal que a variável de folga mais negativa vire
positiva.

– x0 e variável sainte xk tal que k = argmaxi∈[m]−bi.

Exemplo: Problema original

maximiza z = −2x1 − x2,

sujeito a − x1 + x2 ≤ −1,

− x1 − 2x2 ≤ −2,

x2 ≤ 1,
x1, x2 ≥ 0.
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2.4. Encontrar uma solução inicial: o método de duas fases

Exemplo: Problema auxiliar

maximiza z = −x0,

sujeito a − x1 + x2 − x0 ≤ −1,

− x1 − 2x2 − x0 ≤ −2,

x2 − x0 ≤ 1,
x0, x1, x2 ≥ 0.

Exemplo: Dicionário inicial do problema auxiliar

z = −x0
w1 = −1 +x1 −x2 +x0
w2 = −2 +x1 +2x2 +x0
w3 = 1 −x2 +x0

• Observe que a solução básica não é viável.

• Para achar uma solução básica viável: fazemos um primeiro pivô com
variável entrante x0 e variável sainte w2.

Exemplo: Dicionário inicial viável do sistema auxiliar

z = −2 +x1 +2x2 −w2
w1 = 1 −3x2 +w2
x0 = 2 −x1 −2x2 +w2
w3 = 3 −x1 −3x2 +w2

Primeiro pivô

z = −4/3 +x1 −2/3w1 −1/3w2
x2 = 1/3 −1/3w1 +1/3w2
x0 = 4/3 −x1 +2/3w1 +1/3w2
w3 = 2 −x1 +w1
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2. O método Simplex

Segundo pivô

z = 0 −x0
x2 = 1/3 −1/3w1 +1/3w2
x1 = 4/3 −x0 +2/3w1 +1/3w2
w3 = 2/3 +x0 +1/3w1 −1/3w2

Solução ótima!

Solução do sistema auxiliar

• O que podemos concluir da solução do sistema auxiliar?

• Obviamente, se o sistema original possui solução, o sistema auxiliar tam-
bém possui uma solução com x0 = 0.

• Logo, após aplicar o método Simplex ao sistema auxiliar, temos os casos

– x0 > 0: O sistema original não tem solução.

– x0 = 0: O sistema original tem solução. Podemos descartar x0 e
continuar resolvendo o sistema original com a solução básica viável
obtida.

• A solução do sistema auxiliar se chama fase I, a solução do sistema ori-
ginal fase II.

Sistema original
Reescreve-se a função objetivo original substituindo as variáveis básicas do
sistema original pelas equações correspondentes do sistema auxiliar, de forma
que a função objetivo z não contenha variáveis básicas. No exemplo, a função
objetivo é rescrita como:

z = −2x1 − x2 = −3−w1 −w2.

z = −3 −w1 −w2
x2 = 1/3 −1/3w1 +1/3w2
x1 = 4/3 +2/3w1 +1/3w2
w3 = 2/3 +1/3w1 −1/3w2

Nesse exemplo, o dicionário original já é ótimo!
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2.4. Encontrar uma solução inicial: o método de duas fases

Exemplo 2.2 (Sistema original inviável)
O sistema

maximiza x1 + x2,

sujeito a x1 + x2 ≥ 2,
x1 + x2 ≤ 1,
x1, x2 ≥ 0.

obviamente não possui uma solução viável. O dicionário inicial do sistema
auxiliar (após normalização e introdução das variáveis de folga) é

z = 0 −x0
x3 = −2 +x1 +x2 +x0
x4 = 1 −x1 −x2 +x0

e o pseudo-pivô x0–x3 produz

z = −2 +x1 +x2 −x3
x0 = 2 −x1 −x2 +x3
x4 = 3 −2x1 −2x2 +x3

e o pivô x1–x4 produz o sistema ótimo

z = −1/2 −1/2x4 −1/2x3
x0 = 1/2 +1/2x4 +1/2x3
x1 = 3/2 −1/2x4 −x2 +1/2x3 .

O valor ótimo do sistema auxiliar é −z = x0 = 1/2, confirmando que o sistema
original não possui solução viável. ♦

2.4.1. Resumo do método de duas fases

Fase I necessária? Caso bi ≥ 0 para todo i ∈ [m]: continua com a fase II.

Dicionário inicial Cria o dicionário inicial do sistema auxiliar

z = min{x0 | Ax ≤ b+ xoe}.

Pseudo-pivô Pivota x0–xk, sendo k = argmini∈[m] bk o índice do lado direito
mais negativo.

Solução fase I Aplica o método no dicionário obtido no passo anterior.
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2. O método Simplex

Fase II necessária? Caso a solução ótima da fase I possui valor x0 > 0: o
sistema original não possui solução. Para.

Prepara fase II Caso x0 é uma variável básica: pivota x0–xk sendo xk alguma
variável nula tal que a0k 6= 0. Remove a coluna x0. Remove a função ob-
jetivo do sistema auxiliar e introduz a função objetivo do sistema original
(escrita em função das variáveis nulas).

Fase II Aplica o método Simplex no dicionário inicial da fase II.

2.5. Sistemas degenerados

Sistemas, soluções e pivôs degenerados

• Um dicionário é degenerado se existe um i ∈ B tal que b̄i = 0.

• Qual o problema?

• Pode acontecer um pivô que não aumenta a variável entrante, e portanto
não aumenta o valor da função objetivo.

• Tais pivôs são degenerados.

Exemplo 1

• Nem sempre é um problema.

z = 5 +x3 −x4
x2 = 5 −2x3 −3x4
x1 = 7 −4x4
w3 = 0 +x4

• x2 é a variável sainte e o valor da função objetivo aumenta.

Exemplo 2

z = 3 −1/2x1 +2x2 −3/2w1
x3 = 1 −1/2x1 −1/2w1
w2 = 0 + x1 −x2 +w1

• Se a variável sainte é determinada pela equação com b̄i = 0, temos um
pivô degenerado.

• Nesse caso, a variável entrante não aumenta: temos a mesma solução
depois do pivô.
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2.5. Sistemas degenerados

Exemplo 2: Primeiro pivô

• Pivô: x2–w2

z = 3 +3/2x1 −2w2 +1/2w1
x3 = 1 −1/2x1 −1/2w1
x2 = 0 +x1 −w2 +w1

• O valor da função objetivo não aumentou!

Exemplo 2: Segundo pivô

• Pivô: x1–x3

z = 6 −3x3 −2w2 −w1
x1 = 2 −2x3 −w1
x2 = 2 −2x3 −w2

• A segunda iteração aumentou o valor da função objetivo!

Ciclos

• O pior caso seria, se entramos em ciclos.

• É possível? Depende da regra de seleção de variáveis entrantes e saintes.

• Nossas regras

– Escolhe a variável entrante com o maior coeficiente.

– Escolhe a variável sainte mais restrita.

– Em caso de empate, escolhe a variável com o menor índice.

• Ciclos são possíveis: O seguinte sistema possui um ciclo de seis pivôs:
x1–w1, x2–w2, x3–x1, x4–x2, w1–x3, w2–x4.

z = 10x1 −57x2 −9x3 −24x4
w1 = 0 −1/2x1 +11/2x2 +5/2x3 −9x4
w2 = 0 −1/2x1 +3/2x2 +1/2x3 −x4
w3 = 1 −x1
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2. O método Simplex

Soluções do problema

• Como resolver o problema?

• Três soluções

– Ignorar o problema.

– Método lexicográfico.

– Regra de Bland.

Método lexicográfico

• Idéia: O fato que existe um b̄i = 0 é por acaso.

• Se introduzimos uma pequena perturbação ε� 1

– o problema desaparece

– a solução será (praticamente) a mesma.

Método lexicográfico

• Ainda é possível que duas perturbações numéricas se cancelem.

• Para evitar isso: Trabalha-se simbolicamente.

• Introduzimos perturbações simbólicas

0 < ε1 � ε2 � · · · � εm

em cada equação.

• Característica: Todo εi é numa escala diferente dos outros tal que eles
não se cancelam.

Exemplo
Exemplo 2.3
Sistema original degenerado e sistema perturbado

z = 4 +2x1 −x2
w1 = 1/2 −x2
w2 = −2x1 +4x2
w3 = x1 −3x2

z = 4 +2x1 −x2
w1 = 1/2 +ε1 −x2
w2 = ε2 −2x1 +4x2
w3 = ε3 +x1 −3x2

♦
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2.5. Sistemas degenerados

Comparar perturbações

• A linha com o menor limite li = b̄i/aik (com xk entrante) define a variável
sainte.

• A comparação de limites respeita a ordem lexicográfica das perturbações,
i.e. com

li = ei1ε1 + · · ·+ eikεk
lj = fj1ε1 + · · ·+ fik ′ε ′k

temos li < lj se k < k ′ ou k = k ′ e eik < fik.

Características

• Depois de chegar no valor ótimo, podemos retirar as perturbações εi.

Teorema 2.1
O método Simplex sempre termina escolhendo as variáveis saintes usando
a regra lexicográfica.

Prova. É suficiente mostrar que o sistema nunca será degenerado. Neste caso
o valor da função objetivo sempre cresce, e o método Simplex não cicla. A
matriz de perturbações 

ε1
ε2
· · ·

εm


inicialmente tem posto m. As operações do método Simplex são operações
lineares que não mudam o posto do matriz. Logo, em cada passo do método
Simplex temos uma matriz de perturbações

e11ε1 e12ε2 · · · e1mεm
e21ε1 e22ε2 · · · e2mεm
· · · · · ·
em1ε1 em2ε2 · · · emmεm


que ainda tem postom. Portanto, em cada linha i existe pelo menos um eij 6= 0
e assim uma perturbação diferente de zero e o sistema não é degenerado. �
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2. O método Simplex

Exemplo 2.4
Solução do exemplo 2.3.
Pivô x1–w2. z = 4 +ε2 −w2 +3x2

w1 = 1/2 +ε1 −x2
x1 1/2ε2 −1/2w2 +2x2
w3 1/2ε2 +ε3 −1/2w2 −x2

Pivô x2–w3. z = 4 +5/2ε2 +3ε3 −5/2w2 −3w3
w1 = 1/2 +ε1 −1/2ε2 −ε3 +1/2w2 +w3
x1 = 3/2ε2 +2ε3 −3/2w2 −2w3
x2 = 1/2ε2 +ε3 −1/2w2 −w3

♦

Regra de Bland

• Outra solução do problema: A regra de Bland.

• Escolhe como variável entrante e sainte sempre a variável com o menor
índice (caso tiver mais que um candidato).

Teorema 2.2
O método Simplex sempre termina se as variáveis entrantes e saintes são
escolhidas através da regra de Bland.

Prova. Prova por contradição: Suponha que exista uma sequência de dicio-
nários que entra num ciclo D0, D1, . . . , Dk−1 usando a regra do Bland. Nesse
ciclo algumas variáveis, chamadas instáveis, entram e saem novamente da base,
outras permanecem sempre como básicas, ou como não-básicas. Seja xt a variá-
vel instável com o maior índice. Sem perda de generalidade, seja xt a variável
sainte do primeiro dicionário D0. Seja xs a variável entrante no D0. Observe
que xs também é instável e portanto s < t. Seja D∗ o dicionário em que xt
entra na base. Temos a situação

D0, D1, D2, · · · D∗, · · · Dk−1

xs entra

xt sai

xt entra

44



2.5. Sistemas degenerados

com os sistemas correspondentes

D0 : D∗ :

z = z0 +
∑
j∈N

cjxj z = z∗ +
∑
j∈N ∗

c∗j xj

xi = bi −
∑
j∈N

aijxj i ∈ B xi = b
∗
i −
∑
j∈N ∗

a∗ijxj i ∈ B∗

Como temos um ciclo, todas variáveis instáveis tem valor 0 e o valor da função
objetivo é constante. Logo z0 = z∗ e para D∗ temos

z = z∗ +
∑
j∈N ∗

c∗j xj = z0 +
∑
j∈N ∗

c∗j xj. (2.5)

Se aumentamos em D0 o valor do xs para y, qual é o novo valor da função
objetivo? Os valores das variáveis são

xs = y

xj = 0 j ∈ N \ {s}

xi = bi − aisy i ∈ B
(2.6)

e temos no sistema D1 o novo valor

z = z0 + csy (2.7)

Vamos substituir os valores das variáveis (2.6) com índices em N ∗ ∩ B na equa-
ção (2.5). Para facilitar a substituição, vamos definir c∗j := 0 para j 6∈ N ∗, que
permite substituir todas variáveis xj, j ∈ B e assim obtemos

z = z0 +
∑

j∈[1,n+m]

c∗j xj = z0 + c
∗
sy+

∑
j∈B

c∗j (bj − ajsy). (2.8)

Equações (2.7) e (2.8) representam o mesmo valor, portanto(
cs − c

∗
s +
∑
j∈B

c∗j ajs

)
y =
∑
j∈B

c∗j bj.

Essa igualdade deve ser correta para qualquer aumento y, portanto os dois
lados são 0, em particular

cs − c
∗
s +
∑
j∈B

c∗j ajs = 0.
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2. O método Simplex

Como xs entra em D0 temos cs > 0. Em D∗ a variável xt entra, então c∗s ≤ 0
senão pela regra de Bland s < t entraria. Logo,∑

j∈B
c∗j ajs = c

∗
s − cs ≤ −cs < 0

e deve existir um r ∈ B tal que c∗rars < 0. Isso tem uma série de consequências:

(i) c∗r 6= 0.

(ii) r ∈ N ∗, porque somente as variáveis nulas satisfazem c∗j 6= 0 em D∗.

(iii) xr é instável, porque ela é básica em D0 (r ∈ B), mas não-básica em D∗

(r ∈ N ∗).

(iv) r ≤ t, porque t foi a variável instável com o maior índice.

(v) r < t, porque c∗tats > 0: xt entra em D∗, logo c∗t > 0, e xt sai em D0,
logo ats > 0.

(vi) c∗r ≤ 0, senão r e não t entraria em D∗ seguindo a regra de Bland.

(vii) ars > 0.

(viii) br = 0, porque xr é instável, mas todos variáveis instáveis tem valor 0 no
ciclo, e xr é básica em D0.

Os últimos dois itens mostram que xr foi candidato ao sair em D0 com índice
r < t, uma contradição com a regra de Bland. �

Teorema fundamental

Teorema 2.3 (Teorema fundamental da programação linear)
Para qualquer programa linear temos:

(i) Se não existe solução ótima, o problema é inviável ou ilimitado.

(ii) Se existe uma solução viável, existe uma solução básica viável.

(iii) Se existe uma solução ótima, existe uma solução ótima básica.
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2.6. Complexidade do método Simplex

2.6. Complexidade do método Simplex

Usando a regra de Bland o método Simplex nunca repete uma base e o número
de pivôs é limitado pelo número de bases. Com n +m variáveis (de decisão e
de folga) existem no máximo(

n+m

n

)
=

(
n+m

m

)
bases possíveis. Para n + m constante, essa expressão é maximizada para
n = m. Os limites nesse caso são (exercício 2.3)

1

2n
22n ≤

(
2n

n

)
≤ 22n.

Logo é possível que o método Simplex precisa um número exponencial de pivôs.
A existência de sistemas com um número de pivôs exponencial depende da regra
de pivoteamento. Por exemplo, para a regra de maior coeficiente, existem siste-
mas que precisam um número exponencial de pivôs (Klee-Minty). A pergunta
se isso é o caso para qualquer regra de pivoteamento está em aberto. O me-
lhor algoritmo para a programação linear precisa tempo O((n3/ logn)L (Ans-
treicher 1999), supondo que uma operação aritmética custa O(1) e os dados
são inteiros de L bits. Empiricamente o método Simplex precisa O(m + n)
pivôs (Vanderbei 2001), e cada pivô custa O(mn) operações, logo o tempo em-
pírico, novamente supondo que uma operação aritmética custa O(1) do método
Simplex é O((m+ n)mn).

Observação 2.2
Spielman e Teng (2004) mostram que o método Simplex possui complexidade
suavizada polinomial, i.e., o máximo do valor esperado do tempo de execução
sobre pequenos perturbações (Gaussianas) é polinomial no tamanho da instân-
cia e no inverso da perturbação.
Sem perturbações o problema de encontrar a solução que o método Simplex
encontraria usando a regra de Dantzig é PSPACE-completo (Fearnley e Savani
2014). ♦

2.7. Exercícios

(Soluções a partir da página 209.)
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2. O método Simplex

Exercício 2.1 (Maculan e Fampa 2006)
Resolve com o método Simplex.

maximiza z = 3x1 + 5x2,

sujeito a x1 ≤ 4,
x2 ≤ 6,
3x1 + 2x2 ≤ 18,
x1, x2 ≥ 0.

Exercício 2.2
Resolve o exercício 1.7 usando o método Simplex.

Exercício 2.3
Prova que

22n

2n
≤
(
2n

n

)
≤ 22n.

Exercício 2.4
Resolve o sistema degenerado

z = 10x1 −57x2 −9x3 −24x4
w1 = −1/2x1 +11/2x2 +5/2x3 −9x4
w2 = −1/2x1 +3/2x2 +1/2x3 −x4
w3 = 1 −x1

usando o método lexicográfico e a regra de Bland.

Exercício 2.5
Dado o problema de otimização

maximiza x1 + x2,

sujeito a ax1 + bx2 ≤ 1,
x1, x2 ≥ 0,

determine condições suficientes e necessárias que a e b tem que satisfazer tal
que

(a) existe pelo menos uma solução ótima,

(b) existe exatamente uma solução ótima,

(c) existe nenhuma solução ótima,
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2.7. Exercícios

(d) o sistema é ilimitado.

ou demonstre que o caso não é possível.

Exercício 2.6
Sabe-se que o dicionário ótimo do problema

maximiza z = 3x1 + x2,

sujeito a − 2x1 + 3x2 ≤ 5,
x1 − x2 ≤ 1,
x1, x2 ≥ 0,

é
z∗ = 31 −11w2 −4w1
x2 = 7 −2w2 −w1
x1 = 8 −3w2 −w1

(a) Se a função objetivo passar a z = x1 + 2x2, a solução continua ótima? No
caso de resposta negativa, determine a nova solução ótima.

(b) Se a função objetivo passar a z = x1 − x2, a solução continua ótima? No
caso de resposta negativa, determine a nova solução ótima.

(c) Se a função objetivo passar a z = 2x1 − 2x2, a solução continua ótima?No
caso de resposta negativa, determine a nova solução ótima.

(d) Formular o dual e obter a solução dual ótima.

Exercício 2.7
Prove ou mostre um contra-exemplo.
O problema max{ctx | Ax ≤ b} possui uma solução viável sse min{x0 | Ax −
ex0 ≤ b} possui uma solução viável com x0 = 0. Observação: e é um vetor com
todos compentes igual 1 da mesma dimensão que b.

Exercício 2.8
Prove ou mostre um contra-exemplo.
Se x é a variável sainte em um pivô, x não pode ser variável entrante no pivô
seguinte.

Exercício 2.9
Demonstramos na seção 2.5 que existem sistemas em que o método Simplex
entra em ciclos. No exemplo o método Simplex ficou sempre na mesma solução,
representada por bases diferentes. Agora supõe que temos soluções diferentes
com o mesmo valor da função objetivo. É possível que o método Simplex entra
num ciclo sempre visitando soluções diferentes?
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2. O método Simplex

Exercício 2.10
Supõe que temos um dicionário com uma base infactível, com um candidato
para a variável entrante xe (i.e. ce > 0) tal que todos coeficientes na coluna
correspondente são negativos (i.e. aie < 0 para todo i ∈ B). Caso a base
fosse viável podemos concluir que o sistema é ilimitado. Podemos concluir isso
também com a base infactível?
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3. Dualidade

3.1. Introdução

Visão global

• Dualidade: Cada programa linear (chamada de primal) possui um pro-
grama linear correspondente, chamado de dual.

• A dualidade tem várias aplicações como

– Estimar a qualidade de soluções e a convergência do método Sim-
plex.

– Certificar a otimalidade de um programa linear.

– Analisar a sensibilidade e re-otimizar sistemas.

– Resolver programas lineares mais eficiente com o Método Simplex
dual.

• O programa linear dual possui uma interpretação relevante.

Introdução

• Considere o programa linear

maximiza z = 4x1 + x2 + 3x3, (3.1)
sujeito a x1 + 4x2 ≤ 1,

3x1 − x2 + x3 ≤ 3,
x1, x2, x3 ≥ 0.

• Cada solução viável fornece um limite inferior para o valor máximo.

x1 = x2 = x3 = 0⇒ z = 0

x1 = 3, x2 = x3 = 0⇒ z = 4

• Qual a qualidade da solução atual?

• Não sabemos, sem limite superior.

51



3. Dualidade

Limites superiores

• Como obter um limite superior?

Observe: z = 4x1 + x2 + 3x3 ≤ 10x1 + x2 + 3x3 ≤ 10

• Podemos construir uma combinação linear das desigualdades, tal que o
coeficiente de cada xj ultrapasse o coeficiente da função objetivo.

• Nosso exemplo:

(x1 + 4x2) + 3(3x1 − x2 + x3) ≤ 1+ 3 · 3 = 10⇐⇒10x1 + x2 + 3x3 ≤ 10
• Como obter um limite superior para a função objetivo?

• Qual seria o menor limite superior que esse método fornece?

Exemplo 3.1
Para o sistema (3.1) obtemos:

minimiza y1 + 3y2,

sujeito a y1 + 3y2 ≥ 4,
4y1 − y2 ≥ 1,
y2 ≥ 3,
y1, y2, y3 ≥ 0.

♦

O menor limite superior

• Sejam y1, . . . , yn os coeficientes de cada linha. Observação: Eles devem
ser ≥ 0 para manter a direção das desigualdades.

• Então queremos

minimiza
∑
i∈[m]

biyi,

sujeito a
∑
i∈[m]

aijyi ≥ cj, ∀j ∈ [n],

yi ≥ 0.

• Isto é o problema dual com variáveis duais ou multiplicadores duais yi.
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3.1. Introdução

Dualidade: Características

• Em notação matricial

maximiza ctx, minimiza bty,

sujeito a Ax ≤ b. sujeito a ytA ≥ ct.
x ≥ 0. y ≥ 0.

• O primeiro se chama primal e o segundo dual.

• Eles usam os mesmos parâmetros cj, aij, bi.

O dual do dual

• Observação: O dual do dual é o primal.

• Forma normal do dual:

−maximiza − bty, −maximiza − bty,

sujeito a − ytA ≤ −ct, = sujeito a (−At)y ≤ −c,

y ≥ 0. y ≥ 0.

• Dual do dual

−minimiza − ctz, maximiza ctz,

sujeito a zt(−At) ≥ −bt, = sujeito a Az ≤ b,
z ≥ 0. z ≥ 0.

Exemplo 3.2
Qual o dual do problema de transporte (1.11)? Com variáveis duais πi, i ∈ [n]
para as das restrições de estoque (1.12) e variáveis duais ρj, j ∈ [m] para as
restrições de demanda (1.13) obtemos

maximiza
∑
i∈[n]

aiπi +
∑
j∈[m]

bjρj, (3.2)

sujeito a πi + ρj ≥ cij, ∀i ∈ [n], j ∈ [m],

πi, ρj ≥ 0, ∀i ∈ [n], j ∈ [m].

♦
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3. Dualidade

3.2. Características

Teorema da dualidade fraca
Teorema 3.1 (Dualidade fraca)
Se x1, . . . , xn é uma solução viável do sistema primal, e y1, . . . , ym uma solução
viável do sistema dual, então∑

i∈[n]

cixi ≤
∑
j∈[m]

bjyj.

Prova.

ctx ≤ (ytA)x = yt(Ax) pela restrição dual (3.3)

≤ ytb pela restrição primal (3.4)

�

Situação

Soluções primais viáveis Soluções duais viáveis
z

Gap de otimalidade?

• Em aberto: Qual o tamanho desse intervalo em geral?

Teorema da dualidade forte
Teorema 3.2
Se x∗1, . . . , x

∗
n é uma solução ótima do sistema primal, existe uma solução ótima

y∗1, . . . , y
∗
m do sistema dual com∑

i∈[n]

cix
∗
i =
∑
j∈[m]

bjy
∗
j .

Prova. Seja x∗ uma solução ótima do sistema primal. Considere um dicionário
inicial do método Simplex com variáveis de folga

xn+j = bj −
∑
i∈[n]

ajixi, ∀j ∈ [m]

e a função objetivo de um dicionário que corresponde com a solução ótima

z = z∗ +
∑

i∈[n+m]

cixi
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3.2. Características

(com ci = 0 para variáveis básicas). Temos que construir uma solução ótima
dual y∗. Pela optimalidade, na função objetivo acima, todos c̄i devem ser não-
positivos. Provaremos que y∗j = −c̄n+j ≥ 0 para j ∈ [m] é uma solução dual
ótima. Como z∗ é o valor ótimo do problema, temos z∗ =

∑
i∈[n] cix

∗
i .

Reescrevendo a função objetivo temos

z =
∑
i∈[n]

cixi sistema inicial

= z∗ +
∑

i∈[n+m]

c̄ixi sistema final

= z∗ +
∑
i∈[n]

c̄ixi +
∑
j∈[m]

c̄n+jxn+j separando índices

= z∗ +
∑
i∈[n]

c̄ixi −
∑
j∈[m]

y∗j

(
bj −

∑
i∈[n]

ajixi

)
subst. solução e var. folga

=

(
z∗ −

∑
j∈[m]

y∗j bj

)
+
∑
i∈[n]

(
c̄i +

∑
j∈[m]

y∗j aji

)
xi agrupando

Essa derivação está válida para qualquer valor das variáveis xi, portanto

z∗ =
∑
j∈[m]

y∗j bj e ci = c̄i +
∑
j∈[m]

y∗j aji, i ∈ [n].

Logo o primal e dual possuem o mesmo valor∑
j∈[m]

y∗j bj = z
∗ =
∑
i∈[n]

cix
∗
i

e como c̄i ≤ 0 sabemos que a solução y∗ satisfaz as restrições duais

ci ≤
∑
j∈[m]

y∗j aji, i ∈ [n],

y∗j ≥ 0, j ∈ [m].

�

Consequências: Soluções primais e duais

• Com o teorema da dualidade forte, temos quatro possibilidades
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3. Dualidade

Sistema primal Sistema dual Intervalo

Ótimo Ótimo Sem
Ilimitado Inviável Sem
Inviável Ilimitado Sem
Inviável Inviável Infinito

Exemplo 3.3 (Primal e dual inviável)
Não segue do teorema da dualidade forte que existe um caso em que tanto o
sistema primal quanto o sistema dual são inviáveis. O seguinte exemplo mostra
que isso pode acontecer. O sistema primal

maximiza x1,

sujeito a + x1 − x2 ≤ 0,
− x1 + x2 ≤ −1,

x1, x2 ≥ 0,

possui sistema dual correspondente

minimiza − y2,

sujeito a + y1 − y2 ≥ 1,
− y1 + y2 ≥ 0.

Ambos os sistemas são inviáveis. ♦

Podemos resumir as possibilidades na seguinte tabela:

Dual

Primal Inviável Ótimo Ilimitado

Inviável
√

×
√

Ótimo ×
√

×
Ilimitado

√
× ×

Consequências

• Dado soluções primais e duais x∗, y∗ tal que ctx∗ = bty∗ podemos concluir
que ambas soluções são ótimas (x∗, y∗ é um certificado da optimalidade)1.

1Uma consequência é que o problema de decisão correspondente, determinar se existe uma
solução maior que um dado valor, possui um certificado que pode ser verificado em tempo
polinomial tanto para uma resposta positiva quanto uma resposta negativa. Portanto,
já antes da descoberta de um algoritmo polinomial para esse problema, foi claro que ele
pertence a NP ∩ co-NP.
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3.2. Características

• A prova mostra: com o valor ótimo do sistema primal, sabemos também
o valor ótimo do sistema dual.

• Além disso: Podemos trocar livremente entre o sistema primal e dual.⇒ Método Simplex dual.

Outra consequência do Teorema da dualidade forte é o

Teorema 3.3 (Teorema das folgas complementares)
Os vetores x∗, y∗ são soluções ótimas do sistema primal e dual, respectivamente,
se e somente se

y∗t(b−Ax∗) = 0 (3.5)

(y∗tA− ct)x∗ = 0 (3.6)

Prova. Pelo Teorema da dualidade forte as duas desigualdades (3.3) e (3.4)
da prova do Teorema da dualidade fraca se tornam igualdades para soluções
ótimas:

ctx∗ = y∗tAx∗ = y∗tb

Reagrupando termos, o teorema segue. Conversamente, caso (3.5) e (3.6) estão
satisfeitos, as soluções primais e duais possuem o mesmo valor e assim tem que
ser ótimas. �
As igualdades 3.5 e 3.6 são ainda válidas em cada componente, porque tanto
as soluções ótimas x∗, y∗ quanto as folgas primas e duais b − Ax e y∗tA − ct

sempre são positivos.

xi > 0⇒ ∑
j∈[m]

yjaji = ci (3.7)

∑
j∈[m]

yjaji > ci ⇒ xi = 0 (3.8)

yj > 0⇒ bj =
∑
i∈[n]

ajixi (3.9)

bj >
∑
i∈[n]

ajixi ⇒ yj = 0 (3.10)

Como consequência podemos ver que, por exemplo, caso uma igualdade primal
não possui folga, a variável dual correspondente é positiva, e, contrariamente,
caso uma igualdade primal possui folga, a variável dual correspondente é zero.
As mesmas relações se aplicam para as desigualdades no sistema dual. Após
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3. Dualidade

a introdução da forma matricial no seção 3.6 vamos analisar a interpretação
das variáveis duais com mais detalha no seção 3.7. O teorema das folgas com-
plementares pode ser usado ainda para obter a solução dual dado a solução
primal:

Exemplo 3.4
A solução ótima de

maximiza z = 6x1 + 8x2 + 5x3 + 9x4,

sujeito a 2x1 + x2 + x3 + 3x4 ≤ 5,
x1 + 3x2 + x3 + 2x4 ≤ 3,
x1, x2, x3, x4 ≥ 0,

é x1 = 2 e x3 = 1 com valor 17. Pela equação (3.7) sabemos que

2y1 + y2 = 6

y1 + y2 = 5.

Portanto a solução dual é y1 = 1 e y2 = 4. ♦

3.3. Dualidade em forma não-padrão

Dualidade em forma padrão

maximiza ctx, minimiza bty,

sujeito a Ax ≤ b, sujeito a ytA ≥ ct,
x ≥ 0. y ≥ 0.

• O que acontece se o sistema não é em forma padrão?

Igualdades

• Caso de igualdades: Substituindo desigualdades..

maximiza ctx, maximiza ctx,

sujeito a Ax = b, sujeito a Ax ≤ b,
x ≥ 0. Ax ≥ b,

x ≥ 0.
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3.3. Dualidade em forma não-padrão

• ... padronizar novamente, e formar o dual:

maximiza ctx, minimiza bty+ − bty−,

sujeito a Ax ≤ b, sujeito a y+
t
A− y−

t
A ≥ c,

−Ax ≤ −b, y+ ≥ 0, y− ≥ 0,
x ≥ 0. y+ = (y+1 , . . . , y

+
m)

t,

y− = (y−1 , . . . , y
−
m)

t.

Igualdades

• Equivalente, usando variáveis irrestritas y = y+ − y−

minimiza bty,

sujeito a ytA ≥ c,
yt ≶ 0.

• Resumo

Primal (max) Dual (min)

Igualdade Variável dual livre
Desigualdade (≤) Variável dual não-negativa
Desigualdade (≥) Variável dual não-positiva
Variável primal livre Igualdade
Variável primal não-negativa Desigualdade (≥)
Variável primal não-positiva Desigualdade (≤)

Exemplo 3.5 (Exemplo dualidade não-padrão)
O dual de

maximiza 3x1 + x2 + 4x3,

sujeito a x1 + 5x2 + 9x3 = 2,

6x1 + 5x2 + 3x3 ≤ 5,
x1, x3 ≥ 0, x2 ≶ 0,
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3. Dualidade

é

minimiza 2y1 + 5y2,

sujeito a y1 + 6y2 ≥ 3,
5y1 + 5y2 = 1,

9y1 + 3y2 ≥ 4,
y1 ≶ 0, y2 ≥ 0.

♦

Exemplo 3.6 (Dual do problema de transporte)
O dual do problema de transporte num grafo direcionado G = (V,A) com custos
nas arestas ca, limites inferiores e superiores para o fluxo la e ua em cada arco,
e demandas bv em cada vértice

minimiza
∑
a∈A

caxa,

sujeito a
∑

(u,v)∈A

x(u,v) −
∑

(v,u)∈A

x(v,u) = bv, ∀v ∈ V,

xa ≥ la, ∀a ∈ A,
xa ≤ ua, ∀a ∈ A,
xa ≥ 0, ∀a ∈ A,

usando variáveis duais πv ≶ 0, v ∈ V , ρa ≥ 0, a ∈ A e σa ≤ 0, a ∈ A para as
três restrições é

maximiza
∑
v∈V

bvπv +
∑
a∈A

laρa + uaσa,

sujeito a − πu + πv + ρa + σa ≥ 1, ∀a = (u, v) ∈ A,
πv ∈ R, ∀v ∈ V,
ρa ≥ 0, ∀a ∈ A,
σa ≤ 0, ∀a ∈ A.

♦

3.4. Interpretação do dual

Exemplo: Dieta dual
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3.4. Interpretação do dual

• Problema da dieta: Minimiza custos de uma dieta x que alcance dados
VDR mínimos.

minimiza ctx,

sujeito a Ax ≥ r,
x ≥ 0.

• Unidades das variáveis e parâmetros

– x ∈ Rn: Quantidade do alimento [g]

– c ∈ Rn: R$/alimento [R$/g]

– aij ∈ Rm×n: Nutriente/Alimento [g/g]

– r ∈ Rm: Quantidade de nutriente [g].

Exemplo: Dieta dual

• O problema dual é

maximiza ytr,

sujeito a ytA ≤ ct,
y ≥ 0.

• Qual a unidade de y? Preço por nutriente [R$/g].

• Imagine uma empresa, que produz cápsulas que substituem os nutrientes.

• Para vender no mercado, a empresa tem que garantir que uma dieta
baseado em cápsulas custa menos que os alimentos correspondentes:∑

i∈[m]

yiaij ≤ cj, ∀j ∈ [m]

• Além disso, ela define preços por nutriente que maximizam o custo de
uma dieta adequada, para maximizar o próprio lucro.

maximiza ytr
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3. Dualidade

Interpretação do dual

• Outra interpretação: o valor de uma variável dual yj é o custo marginal
de adicionar mais uma unidade bj.

Teorema 3.4
Se um sistema possui pelo menos uma solução básica ótima não-degenerada,
existe um ε > 0 tal que, se |tj| ≤ ε para j ∈ [m],

maximiza ctx,

sujeito a Ax ≤ b+ t,
x ≥ 0,

tem uma solução ótima com valor

z = z∗ + y∗tt

(com z∗ o valor ótimo do primal, é y∗ a solução ótima do dual).

Exemplo 3.7
Considere uma modificação do sistema do Ildo

maximiza 0.2c+ 0.5c, (3.11)
sujeito a c+ 1.5s ≤ 150, (3.12)

50c+ 50s ≤ 6000, (3.13)
c ≤ 80, (3.14)
s ≤ 70, (3.15)
c, s ≥ 0. (3.16)

(O sistema foi modificado para a solução ótima atender as condições do teorema
3.4.) A solução ótima do sistema primal é x∗ = (45 70)t com valor 44, a
solução ótima do dual y∗(1/5 0 0 1/5)t. A figura 3.1 mostra a solução ótima
com as variáveis duais associadas com as restrições. O valor da variável dual
correspondente com uma restrição é o lucro marginal de um aumento do lado
direito da restrição por um.

♦
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3.5. Método Simplex dual

(3.12)

(3.13)
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Figura 3.1.: Solução ótima do sistema (3.11) com variáveis duais.

3.5. Método Simplex dual

Método Simplex dual

• Considere

maximiza − x1 − x2,

sujeito a − 2x1 − x2 ≤ 4,
− 2x1 + 4x2 ≤ −8,

− x1 + 3x2 ≤ −7,

x1, x2 ≥ 0.

• Qual o dual?

minimiza 4y1 − 8y2 − 7y3,

sujeito a − 2y1 − 2y2 − y3 ≥ −1,

− y1 + 4y2 + 3y2 ≥ −1,

y1, y2, y3 ≥ 0.

Com dicionários
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3. Dualidade

z = −x1 −x2
w1 = 4 +2x1 +x2
w2 = −8 +2x1 −4x2
w3 = −7 +x1 −3x2

−w = −4y1 +8y2 +7y3
z1 = 1 −2y1 −2y2 −y3
z2 = 1 −y1 +4y2 +3y3

• Observação: O primal não é viável, mas o dual é!

• Correspondência das variáveis:

Variáveis

principais de folga
Primal x1, . . . , xn w1, . . . , wm

Dual z1, . . . , zn, y1, . . . , ym
de folga principais

• Primeiro pivô: y2 entra, z1 sai. No primal: w2 sai, x1 entra.

Primeiro pivô

z = −4 −0.5w2 −3x2
w1 = 12 +w2 +5x2
x1 = 4 +0.5w2 +2x2
w3 = −3 +0.5w2 −x2

−w = 4 −12y1 −4z1 +3y3
y2 = 0.5 −y1 −0.5z1 −0.5y3
z2 = 3 −5y1 −2z1 +y3

• Segundo pivô: y3 entra, y2 sai. No primal: w3 sai, w2 entra.

Segundo pivô

z = −7 −w3 −4x2
w1 = 18 +2w3 +7x2
x1 = 7 +w3 +3x2
w2 = 6 +2w3 +2x2

−w = 7 −18y1 −7z1 −6y2
y3 = 1 −2y1 −z1 −2y2
z2 = 4 −7y1 −3z1 −2y2

• Sistema dual é ótimo, e portanto o sistema primal também.
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3.5. Método Simplex dual

Método Simplex dual

• Observação: Não é necessário escrever o sistema dual. Ele é sempre o
negativo transposto do sistema primal.

z = z̄+
∑
j∈N

c̄jxj,

xi = b̄i −
∑
j∈N

āijxj, i ∈ B

• Mas é necessário modificar as regras para resolver o sistema dual.

Método Simplex dual: Viabilidade e otimalidade

• Pré-condição: O dicionário é dualmente viável, i.e. os coeficientes das
variáveis não-básicas na função objetivo tem quer ser não-positivos.

c̄j ≤ 0 para j ∈ N .

• Otimalidade: Todos variáveis básicas primais positivas

∀i ∈ B : b̄i ≥ 0

Método Simplex dual: Pivô

• Caso existe uma variável primal negativa: A solução dual não é ótima.

• Regra do maior coeficiente: A variável básica primal de menor valor (que
é negativo) sai da base primal.

i = argmin
i∈B

b̄i

• A variável primal nula com fração āij/c̄j maior entra.

j = argmin
j∈N
āij<0

c̄j

āij
= argmax

j∈N
āij<0

āij

c̄j
= argmax

j∈N

āij

c̄j
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3. Dualidade

Método Simplex dual
Resumo:

• Dualmente viável: c̄j ≤ 0 para j ∈ N .

• Otimalidade: ∀i ∈ B : b̄i ≥ 0.

• Variável sainte: i = argmini∈B b̄i

• Variável entrante: j = argmaxj∈N
āij
c̄j
.

Exemplo

maximiza z = −2x1 − x2,

sujeito a − x1 + x2 ≤ −1,

− x1 − 2x2 ≤ −2,

x2 ≤ 1,
x1, x2 ≥ 0.

Exemplo: Dicionário inicial
z = −2x1 −x2
w1 = −1 +x1 −x2
w2 = −2 +x1 +2x2
w3 = 1 −x2

• O dicionário primal não é viável, mas o dual é.

Exemplo: Primeiro pivô
z = −1 −3/2x1 −1/2w2
w1 = −2 +3/2x1 −1/2w2
x2 = 1 −1/2x1 +1/2w2
w3 = +1/2x1 −1/2w2

Exemplo: Segundo pivô
z = −3 −w1 −w2
x1 = 4/3 +2/3w1 +1/3w2
x2 = 1/3 −1/3w1 +1/3w2
w3 = 2/3 +1/3w1 −1/3w2
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3.6. Os métodos em forma matricial

3.6. Os métodos em forma matricial

A forma matricial permite uma descrição mais sucinta do método Simplex. A
seguir vamos resumir os métodos Simplex primal e dual na forma matricial.
Mais importante, nessa forma é possível expressar o dicionário correspondente
com qualquer base em termos dos dados inicias (A, c, b). Na próxima seção
vamos usar essa forma para analisar a sensibilidade de uma solução à pequenas
perturbações dos dados (i.e. os coeficientes A,b, e c).

3.6.1. O dicionário final em função dos dados

Sistema padrão

• O sistema padrão é

maximiza ctx,

sujeito a Ax ≤ b,
x ≥ 0.

• Com variáveis de folga xn+1, . . . , xn+m e A,c,x novo (definição segue
abaixo)

maximiza ctx,

sujeito a Ax = b,

x ≥ 0.

Matrizes

A =


a11 a12 · · · a1n 1

a21 a22 · · · a2n 1
...

...
...

. . .
am1 am2 . . . amn 1

 ;

b =


b1
b2
...
bm

 ; c =



c1
c2
...
cn
0
...
0


; x =



x1
x2
...
xn
xn+1
...

xn+m


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3. Dualidade

Separação das variáveis

• Em cada iteração as variáveis estão separados em básicas e não-básicas.

• Conjuntos de índices correspondentes: B
.
∪ N = [1, n+m].

• A componente i de Ax pode ser separado como∑
j∈[n+m]

aijxj =
∑
j∈B

aijxj +
∑
j∈N

aijxj.

Separação das variáveis

• Para obter a mesma separação na forma matricial: Reordenamos as co-
lunas e separamos as matrizes e vetores:

A = (BN) ; x =

(
xB
xN

)
; c =

(
cB
cN

)
• com B ∈ Rm×m, N ∈ Rm×n, c ∈ Rn+m.

Forma matricial das equações

• Agora, Ax = b é equivalente com

(BN)

(
xB
xN

)
= BxB +NxN = b

• Numa solução básica, a matriz B tem posto m tal que as colunas de B
formam uma base do Rm. Logo B possui inversa e

xB = B−1(b−NxN) = B
−1b− B−1NxN

Forma matricial da função objetivo

• A função objetivo é

z = ctx = (ctB c
t
N)

(
xB
xN

)
= ctBxB + c

t
NxN

• e usando xB = B−1b− B−1NxN obtemos

z = ctB(B
−1b− B−1NxN) + c

t
NxN

= ctBB
−1b− (ctBB

−1N− ctN)xN

= ctBB
−1b− ((B−1N)tcB − cN)

txN
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3.6. Os métodos em forma matricial

Dicionário em forma matricial

• Logo, o dicionário em forma matricial é

z = ctBB
−1b− ((B−1N)tcB − cN)

txN

xB = B−1b− B−1NxN

• Compare com a forma em componentes:

z = z̄+
∑
j∈N

c̄jxj z = z̄+ c̄txN

xi = b̄i −
∑
j∈N

āijxj i ∈ B xB = b̄− ĀxN

Dicionário em forma matricial

• Portanto, vamos identificar

z̄ = ctBB
−1b; c̄ = −((B−1N)tcB − cN)

b̄ = B−1b; Ā = (āij) = B
−1N

• para obter o dicionário

z = z̄+ c̄txN

xB = b̄− ĀxN

Sistema dual

• As variáveis primais são

x = (x1 . . . xn︸ ︷︷ ︸
original

xn+1 . . . xn+m︸ ︷︷ ︸
folga

)t

• Para manter índices correspondentes, escolhemos variáveis duais da forma

y = (y1 . . . yn︸ ︷︷ ︸
folga

yn+1 . . . yn+m︸ ︷︷ ︸
dual

)t

• O dicionário do dual correspondente então é

Primal Dual

z = z̄+ c̄txN −w = −z̄− b̄tyB

xB = b̄− ĀxN yN = −c̄+ ĀtyB

69



3. Dualidade

Primal e dual

• A solução básica do sistema primal é

x∗N = 0; x∗B = b̄ = B−1b

• A solução dual correspondente é

y∗B = 0; y∗N = −c̄ = (B−1N)tcB − cN

• Com isso temos os dicionários

z = z̄− (y∗N)
txN −w = −z̄− (x∗B)

tyB

xB = x∗B − (B−1N)xN yN = y∗N + (B−1N)tyB

Observação 3.1
A solução dual completa é yt = ctBB

−1A − ct (isso pode ser visto como?), ou
yi = ctBB

−1ai − ci para cada índice i ∈ [n +m]. As variáveis duais originais
com índice i ∈ [n+1,m] correspondem com as colunas ai = ei das variáveis de
folga e possuem coeficientes ci = 0. Logo yto = ctBB

−1 é a solução do sistema
dual sem as variáveis de folga, e podemos escrever y = (ytoA− ct)t = Atyo − c
e para os custos reduzidos c̄ = c−Atyo. ♦

3.6.2. Simplex em forma matricial

Método Simplex em forma matricial

• Começamos com uma partição B
.
∪ N = [1, n+m].

• Em cada iteração selecionamos uma variável sainte i ∈ B e entrante
j ∈ N .

• Fazemos o pivô xi com xj.

• Depois a nova base é B \ {i} ∪ {j}.

Método Simplex em forma matricial

S1: Verifique solução ótima Se y∗N ≥ 0 a solução atual é ótima. Pare.

S2: Escolhe variável entrante Escolhe j ∈ N com y∗j < 0. A variável entrante
é xj.
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3.7. Análise de sensibilidade

S3: Determine passo básico Aumentando xj uma unidade temos novas variá-
veis não-básicas xN = x∗N + ∆xN com ∆xN = (0 · · · 010 · · · 0)t = ej e ej o
vetor nulo com somente 1 na posição correspondente com índice j. Como

xB = x∗B − B
−1NxN,

a diminuição correspondente das variáveis básicas é ∆xB = B−1Nej.

Método Simplex em forma matricial

S4: Determine aumento máximo O aumento máximo de xj é limitado por
xB ≥ 0, i.e.

xB = x∗B − t∆xB ≥ 0⇐⇒ x∗B ≥ t∆xB.

Com t, x∗B ≥ 0 temos

t ≤ t∗ = min
i∈B
∆xi>0

x∗i
∆xi

S5: Escolhe variável sainte Escolhe um i ∈ B com x∗i = t
∗∆xi.

Método Simplex em forma matricial

S5: Determine passo dual A variável entrante dual é yi. Aumentando uma
unidade, as variáveis yN diminuem ∆yN = −(B−1N)tei.

S6: Determina aumento máximo Com variável sainte yj, sabemos que yi pode
aumentar ao máximo

s =
y∗j
∆yj

.

S7: Atualiza solução

x∗j := t y∗i := s

x∗B := x∗B − t∆xB y∗N := y∗N − s∆yN

B := B \ {i} ∪ {j}

3.7. Análise de sensibilidade

Motivação

• Na solução da programas lineares os parâmetros são fixos.
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3. Dualidade

• Qual o efeito de uma perturbação

c := c+ ∆c; b := b+ ∆b; A := A+ ∆A?

(Imagina erros de medida, pequenas flutuações, etc.)

Análise de sensibilidade

• Após a solução de um sistema linear, temos o dicionário ótimo

z = z∗ − (y∗N)
txN

xB = x∗B − B
−1NxN

• com

x∗B = B−1b

y∗N = (B−1N)tcB − cN

z∗ = ctBB
−1b

Modificar c

• Mudarmos c para ĉ, mantendo a base B.

• x∗B não muda, mas temos que reavaliar y∗N e z∗.

• Depois, x∗B ainda é uma solução básica viável do sistema primal.

• Logo, podemos continuar aplicando o método Simplex primal.

Modificar b

• Da mesma forma, modificamos b para b̂ (mantendo a base).

• y∗N não muda, mas temos que reavaliar x∗B e z∗.

• Depois, y∗N ainda é uma solução básica viável do sistema dual.

• Logo, podemos continuar aplicando o método Simplex dual.
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3.7. Análise de sensibilidade

Vantagem dessa abordagem

• Nos dois casos, esperamos que a solução inicial já é perto da solução
ótima.

• Experiência prática confirma isso.

• O que acontece se queremos modificar tanto b quanto c ou ainda A?

• A solução atual não necessariamente é viável no sistema primal ou dual.

• Mas: Mesmo assim, a convergência na prática é mais rápido.

Estimar intervalos

• Pergunta estendida: Qual o intervalo de t ∈ R tal que o sistema com
ĉ = c+ t∆c permanece ótimo?

• Para t = 1: y∗N = (B−1N)tcB − cN aumenta ∆yN := (B−1N)t∆cB − ∆cN.

• Em geral: Aumento t∆yN.

• Condição para manter a viabilidade dual:

y∗N + t∆yN ≥ 0

• Para t > 0 temos

t ≤ min
j∈N
∆yj<0

−
y∗j
∆yj

• Para t < 0 temos

max
j∈N
∆yj>0

−
y∗j
∆yj
≤ t

Estimar intervalos

• Agora seja b̂ = b+ t∆b.

• Para t = 1: x∗B = B−1b aumenta ∆xB := B−1∆b.

• Em geral: Aumento t∆b.
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3. Dualidade

• Condição para manter a viabilidade primal:

x∗B + t∆xB ≥ 0

• Para t > 0 temos
t ≤ min

i∈B
∆xi<0

−
x∗i
∆xi

• Para t < 0 temos
max
i∈B
∆xi>0

−
x∗i
∆xi
≤ t

Observação 3.2
A matriz B−1 é formada pelas colunas do dicionário final que correspondem
com as variáveis de folga. ♦

Exemplo 3.8
Considere o problema da empresa de aço (visto na aula prática, veja também
execício 1.7).

maximiza 25p+ 30c,

sujeito a 7p+ 10c ≤ 56000,
p ≤ 6000,
c ≤ 4000,
p, c ≥ 0.

Qual o intervalo em que o valor do lucro das placas de 25R $ pode variar sem
alterar a solução ótima?

Exemplo: Empresa de aço

• Sistema ótimo

• Base B = {p,w3, c}, variáveis não-básicas N = {w1, w2}. (Observe: usa-
mos conjuntos de variáveis, ao invés de conjuntos de índices).
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3.7. Análise de sensibilidade

Exemplo: Variáveis

• Vetores c e ∆c. Observe que reordenamos os dados do sistema inicial de
forma correspondente com a ordem das variáveis do sistema final.

c =


25

0

30

0

0

 ; cB =

250
30

 ; cN =

(
0

0

)
;

∆c =


1

0

0

0

0

 ;∆cB =

10
0

 ;∆cN =

(
0

0

)

Exemplo: Aumentos

• Aumento das variáveis duais

∆yN = (B−1N)t∆cB − ∆cN = (B−1N)t∆cB

• com

B−1N =

 0 1

−1/10 7/10

1/10 −7/10


• temos

∆yN =

(
0

1

)

Exemplo: Limites

• Limites em geral

max
j∈N
∆yj>0

−
y∗j
∆yj
≤ t ≤ min

j∈N
∆yj<0

−
y∗j
∆yj

• Logo
−4 ≤ t ≤∞.
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3. Dualidade

• Uma variação do preço entre 25+[−4,∞] = [21,∞] preserve a otimalidade
da solução atual.

• O novo valor da função objetivo é

z == ĉtBB
−1b =

(
25+ t 0 30

)60002600

1400

 = 192000+ 6000t

e os valores das variáveis p e c permanecem os mesmos.

♦

Exemplo 3.9
Qual o intervalo em que o lucro das placas (R$ 25) e dos canos (R$ 30) podem
variar sem que a solução ótima seja alterada?

Exemplo: Variação do lucro dos placas e canos

• Os vetores c, cB, cN e ∆cN permanecem os mesmos do exemplo anterior.
Enquanto que:

∆c =


1

0

1

0

0

 ;∆cB =

10
1

 ;

• Neste caso, o valor de ∆yN é

∆yN = (B−1N)t∆cB =

(
0 −1/10 1/10

1 7/10 −7/10

)10
1

 =

(
1/10

3/10

)
.

• Logo −40/3 ≤ t ≤∞
• Ou seja, uma variação do lucro das placas entre R$ 11.67 e∞, e do lucro

dos canos entre R$ 16.67 e ∞, não altera a solução ótima do sistema.

♦
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Exemplo: Modificação

• Qual o intervalo em que o lucro dos canos (R$ 30) podem variar sem que
a solução ótima seja alterada?

• Os vetores c, cB, cN e ∆cN permanecem os mesmos do exemplo anterior.
Enquanto que:

∆c =


0

0

1

0

0

 ;∆cB =

00
1

 ;

• Neste caso, o valor de ∆yN é:

∆cB =

(
1/10

−7/10

)
;

• Logo −30 ≤ t ≤ 40/7

• Ou seja, uma variação do lucro dos canos entre R$ 0 e R$ 35.71, não
altera a solução ótima do sistema.

Exemplo 3.10
O que acontece se mudarmos o lucro das placas para R$ 20?

Exemplo: Placas com lucro R$ 20

• Novos vetores

ĉ =


20

0

30

0

0

 ; ĉB =

200
30

 ; ĉN =

(
0

0

)

• Aumento

ŷ∗N = (B−1N)tĉB − ĉN = (B−1N)tĉB

=

(
0 −1/10 1/10

1 7/10 −7/10

)200
30

 =

(
3

−1

)
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Novas variáveis

• Com

B−1b =

60002600

1400


• Novo valor da função objetivo

ẑ∗ = ĉtBB
−1b =

(
20 0 30

)60002600

1400

 = 162000

Exemplo: Novo dicionário

• Novo sistema primal viável, mas não ótimo:

z = 162000 −3w1 +w2
p = 6000 −w2
w3 = 2600 +1/10w1 −7/10w2
c = 1400 −1/10w1 +7/10w2

• Depois um pivô: Sistema ótimo.

z = 165714 2/7 −20/7w1 −10/7w3
p = 2285 5/7 −1/7w1 +10/7w3
w2 = 3714 2/7 +1/7w1 −10/7w2
c = 4000 −w3

♦

Exemplo 3.11
O que acontece se mudarmos o lucro das placas de R$ 25 para R$ 35 e dos
canos de R$ 30 para R$ 10?

Exemplo: Placas e canos com lucro R$ 35 e R$ 10

• Novos vetores

ĉ =


35

0

10

0

0

 ; ĉB =

350
10

 ; ĉN =

(
0

0

)
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• Aumento

ŷ∗N = ((B−1N)tcB − cN) =

(
0 −1/10 1/10

1 7/10 −7/10

)350
10

 =

(
1

28

)

Novas variáveis e novo dicionário

• Novo valor da função objetivo

ẑ∗ = ĉtBB
−1b = ĉtBx

∗
B =

(
35 0 10

)60002600

1400

 = 224000

• O novo sistema primal viável é

z = 224000 −1w1 −28w2
p = 6000 −w2
w3 = 2600 +1/10w1 −7/10w2
c = 1400 −1/10w1 +7/10w2

• O sistema é ótimo.

♦

Exemplo 3.12
Qual o efeito de uma variação do lado direito 6000 da segunda restrição? Para
estudar essa variação escolhemos ∆b = (0 1 0)t. Temos

B =

7 0 10

1 1 0

0 0 1

 ; B−1 = 1/10

 0 10 0

−1 7 10

1 −7 0


e logo ∆xB = B−1∆b = 1/10(10 7 − 7)t. Obtemos a nova solução básica

x̂∗B =

60002600

1400

+ t/10

107
−7


e a condição de otimalidade x̂∗B ≥ 0 nos fornece os limites

−26000/7 ≤ t ≤ 2000

entre quais ela é ótima. O valor da função objetivo dentro desses limites é

ẑ∗ = ctBx̂
∗
B = (25 0 30)t

 6000+ t
2600+ 7/10t
1400− 7/10t

 = 192000+ 4t.

♦
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3.8. Exercícios

(Soluções a partir da página 210.)

Exercício 3.1
Qual o sistema dual de

minimiza 7x1 + x2 + 5x3,

sujeito a x1 − x2 + 3x3 ≥ 10,
5x1 + 2x2 − x3 ≥ 6,
x1, x2, x3 ≥ 0?

Exercício 3.2
Considere o problema

Cobertura por conjuntos ponderados (weighted set cover)

Instância Um universo U, uma familia S de subconjuntos do universo,
i.e. para todo S ∈ S, S ⊆ U, e custos c(S) para cada conjunto S ∈ S.

Solução Uma cobertura por conjuntos, i.e. uma seleção de conjuntos T ⊆
S tal que para cada elemento e ∈ U existe pelo menos um S ∈ T com
e ∈ S.

Objetivo Minimizar o custo total dos conjuntos selecionados.

Uma formulação inteira do problema é

minimiza
∑
S∈S

c(S)xS,

sujeito a
∑
S:e∈S

xS ≥ 1, e ∈ U,

xS ∈ {0, 1}, S ∈ S.

O problema com restrições de integralidade é NP-completo. Substituindo as
restrições de integralidade xS ∈ {0, 1} por restrições triviais xS ≥ 0 obtemos um
programa linear. Qual o seu dual?
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Exercício 3.3
O sistema

maximiza 2x1 − x2 + x3,

sujeito a 3x1 + x2 + x3 ≤ 60,
x1 − x2 + 2x3 ≤ 10,
x1 + x2 − x3 ≤ 20,
x1, x2, x3 ≥ 0.

possui dicionário ótimo

z = 25 −3/2x5 −1/2x6 −3/2x3
x4 = 10 +x5 +2x6 −x3
x1 = 15 −1/2x5 −1/2x6 −1/2x3
x2 = 5 +1/2x5 −1/2x6 +3/2x3

a) Em qual intervalo o coeficiente c1 = 2 pode variar?

b) Em qual intervalo o coeficiente b2 = 10 pode variar?

c) Modifique o lado direito de (60 10 20)t para (70 20 10)t: o sistema mantém-
se ótimo? Caso contrário, determina a nova solução ótima.

d) Modifique a função objetivo para 3x1 − 2x2 + 3x3: o sistema mantém-se
ótimo? Caso contrário, determina a nova solução ótima.
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4. Tópicos

4.1. Centro de Chebyshev

Seja B(c, r) = {c+u | ||u|| ≤ r} a esfera com centro c e raio r. Para um polígono
convexo aix ≤ bi, para i ∈ [n], queremos encontrar o centro e o raio da maior
esfera, que cabe dentro do polígono, i.e. resolver

maximiza r,

sujeito a sup
p∈B(c,r)

aip ≤ bi, ∀i ∈ [n].

Temos
sup

p∈B(c,r)
aip = cai + sup

||u||≤r
aiu = cai + ||ai||r

porque o segundo supremo é atingido por u = rai/||ai||. Assim obtemos uma
formulação linear

maximiza r,

sujeito a aic+ r||ai|| ≤ bi, ∀i ∈ [n].

Exemplo 4.1
O polígono da Fig. 4.1 possui a descrição

2x1 + 4x2 ≤ 24,
4x1 − x2 ≤ 12,

−x1 ≤ 0,
−x2 ≤ 0.

Portanto o programa linear para encontrar o centro e o raio do maior círculo

1 2 3 4 5

1

2

3

4

5

6

x1

x2

(1.85, 3.01)

r = 1.85

Figura 4.1.: Exemplo do
centro de Chebyshev

é

maximiza r,

sujeito a 2c1 + 4c2 +
√
20r ≤ 24,

4c1 − c2 +
√
17r ≤ 12,

− c1 + r ≤ 0,
− c2 + r ≤ 0.

♦
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4. Tópicos

4.2. Função objetivo convexa e linear por segmentos

Uma função f é convexa se f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) para qualquer
x e y e 0 ≤ t ≤ t. Funções convexas são importantes na otimização, porque
eles possuem no máximo um mínimo no interior do domínio deles, e portanto
o mínimo de uma função convexa pode ser obtido com métodos locais.
Seja fi(x), i ∈ [n] uma coleção de funções lineares. O máximo f(x) = maxi∈[n] fi(x)
é uma função convexa linear por segmentos. O problema de otimização

minimizamax
i∈[n]

fi(x)

é equivalente com o programa linear

minimiza x0, (4.1)
sujeito a fi(x) ≤ x0, ∀i ∈ [n]. (4.2)

Portanto podemos minimizar uma função convexa linear por segmentos usando
programação linear. De forma similar, f é concava se f(tx+(1− t)y) ≥ tf(x)+
(1− t)f(y). (Observe que uma função convexa e concava é afina.) O sistema

maximiza x0,

sujeito a fi(x) ≥ x0, x ∀i ∈ [n].

maximiza uma função concava linear por segmentos.
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Parte II.

Programação inteira
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5. Introdução

5.1. Definições

Problema da dieta

• Problema da dieta

minimiza ctx,

sujeito a Ax ≥ r,
x ≥ 0.

• Uma solução (laboratório): 5 McDuplos, 3 maçãs, 2 casquinhas mista
para R$ 24.31

• Mentira! Solução correta: 5.05 McDuplos, 3.21 maças, 2.29 casquinhas
mistas.

• Observação: Correto somente em média sobre várias refeições.

Como resolver?

• Com saber o valor ótima para uma única refeição?

• Restringe as variáveis x ao conjunto Z.

• Será que método Simplex ainda funciona?

• Não. Pior: O problema torna-se NP-completo.

Problemas de otimização

• Forma geral

optimiza f(x),

sujeito a x ∈ V.
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5. Introdução

Programação inteira

• Programação linear (PL)

maximiza ctx,

sujeito a Ax ≤ b,
x ∈ Rn ≥ 0;

• Programação inteira pura (PI)

maximiza hty,

sujeito a Gy ≤ b,
y ∈ Zn ≥ 0.

Programação inteira

• Programação (inteira) mista (PIM)

maximiza ctx+ hty,

sujeito a Ax+Gy ≤ b,
x ∈ Rn ≥ 0, y ∈ Zm ≥ 0;

• Programação linear e inteira pura são casos particulares da programação
mista.

• Outro caso particular: 0-1-PIM e 0-1-PI.

x ∈ Bn

Exemplo

maximiza x1 + x2,

sujeito a 2x1 + 7x2 ≤ 49,
5x1 + 3x2 ≤ 50.
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5.1. Definições

Exemplo

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
x 2 2x1+7x2≤ 49

5x1+3x2≤ 50Soluções viáveis
3

6

9

12

• Sorte: A solução ótima é inteira! x1 = 7, x2 = 5, V = 12.

• Observação: Se a solução ótima é inteira, um problema de PI(M) pode
ser resolvido com o método Simplex.

Exemplo

maximiza x1 + x2,

sujeito a 1.8x1 + 7x2 ≤ 49,
5x1 + 2.8x2 ≤ 50.

Exemplo
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5. Introdução

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x 2 1.8x1+7x2≤ 49

5x1+2.8x2≤ 50Soluções viáveis
3

6

9

12

• Solução ótima agora: x1 ≈ 7.10, x2 ≈ 5.17, V = 12.28.

• Será que bx1c , bx2c é a solução ótima do PI?

Exemplo

maximiza − x1 + 7.5x2,

sujeito a − x1 + 7.2x2 ≤ 50.4,
5x1 + 2.8x2 ≤ 62.

Exemplo
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5.2. Motivação e exemplos

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x 2

-x1+7.2x2≤ 50.4

5x1+2.8x2≤ 62

Soluções viáveis
10

20

30

40

50

• Solução ótima agora: x1 ≈ 7.87, x2 ≈ 8.09, V = 52.83.

• bx1c = 7, bx2c = 8.

• Solução ótima inteira: x1 = 0, x2 = 7!

• Infelizmente a solução ótima inteira pode ser arbitrariamente distante!

Métodos para resolver PI

• Prove que a solução da relaxação linear sempre é inteira.

• Insere cortes.

• Branch-and-bound.

5.2. Motivação e exemplos

Motivação

• Otimização combinatória é o ramo da ciência da computação que estuda
problemas de otimização em conjuntos (wikipedia).
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5. Introdução

• “The discipline of applying advanced analytical methods to help make
better decisions” (INFORMS)

• Tais problemas são extremamente frequentes e importantes.

Máquina de fazer dinheiro

• Imagine uma máquina com 10 botões, cada botão podendo ser ajustado
em um número entre 0 e 9.
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Máquina de fazer dinheiro
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• há uma configuração que retorna R$ 10.000.

• total de combinações: 1010.

• dez testes por segundo

• em um ano:⇒ 10× 60× 60× 24× 365 ∼= 3× 108

Explosão combinatória
Funções típicas:

1retirado de Integer Programming - Wolsey (1998)
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5.3. Aplicações

n log n n0.5 n2 2n n!

10 3.32 3.16 102 1.02× 103 3.6× 106
100 6.64 10.00 104 1.27× 1030 9.33× 10157
1000 9.97 31.62 106 1.07× 10301 4.02× 102567

“Conclusões”
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• Melhor não aceitar a máquina de dinheiro.

• Problemas combinatórios são difíceis.

5.3. Aplicações

Apanhado de problemas de otimização combinatória

• Caixeiro viajante

• Roteamento

• Projeto de redes

• Alocação de horários

• Tabelas esportivas

• Gestão da produção

• etc.

Caixeiro Viajante
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5. Introdução

Caixeiro Viajante

Caixeiro Viajante

• Humanos são capazes de produzir boas soluções em pouco tempo!

• Humanos ?

Caixeiro Viajante

94



5.3. Aplicações

Fonte: Applegate.etal/2007

Caixeiro Viajante

Fonte: Applegate.etal/2007

Caixeiro Viajante

Fonte: Applegate.etal/2007

Caixeiro Viajante
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5. Introdução

• Business leads the traveling salesman here and there, and there is not
a good tour for all occurring cases; but through an expedient choice
division of the tour so much time can be won that we feel compelled
to give guidelines about this. Everyone should use as much of the advice
as he thinks useful for his application. We believe we can ensure as
much that it will not be possible to plan the tours through Germany in
consideration of the distances and the traveling back and fourth, which
deserves the traveler’s special attention, with more economy. The main
thing to remember is always to visit as many localities as possible without
having to touch them twice.

“Der Handlungsreisende wie er sein soll und was er zu tun hat, um Aufträge
zu erhalten und eines glücklichen Erfolgs in seinen Geschäften gewiss zu sein.
Von einem alten Commis-Voyageur” (O caixeiro viajante, como ele deve ser e o
que ele deve fazer para obter encomendas e garantir um sucesso feliz dos seus
negócios. Por um caixeiro viajante experiente). First brought to the attention

Fonte:
Applegate.etal/2007

of the TSP research community in 1983 by Heiner Muller-Merbach [410]. The
title page of this small book is shown in Figure 1.1. The Commis-Voyageur [132]
explicitly described the need for good tours in the following passage, translated
from the German original by Linda Cook.

Caixeiro Viajante

Fonte: Applegate.etal/2007

Formulando matemáticamente o PCV

• Associar uma variável a cada possível decisão.
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5.3. Aplicações

Formulando matemáticamente o PCV

• Associar uma variável a cada possível decisão.

minimiza
∑
i,j∈N

cijyij

sujeito a
∑
j∈N

xij +
∑
j∈N

xji = 2, ∀i ∈ N

xij ∈ {0, 1}, ∀i, j ∈ N.

Formulando matemáticamente o PCV

• Associar uma variável a cada possível decisão.

minimiza
∑
i,j∈N

cijyij

sujeito a
∑
j∈N

xij +
∑
j∈N

xji = 2, ∀i ∈ N

xij ∈ {0, 1}, ∀i, j ∈ N.

+ restrições de eliminação de subci-
clos!
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5. Introdução

Problemas de roteamento

Problemas de roteamento
(10−12)

(10−12)

(Tercas e quintas)

(Tercas e quintas)

(segundas e quartas)

Etc.

Problemas em árvores

Problemas em árvores

98



5.3. Aplicações

Problemas em árvores - aplicações

• Telecomunicações

• Redes de acesso local

• Engenharias elétrica, civil, etc..

Alocação de tripulações

Tabelas esportivas
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5. Introdução

Gestão da produção

Etc.

• programação de projetos

• rotação de plantações

• alocação de facilidades (escolas, centros de comércio, ambulâncias...)

• projeto de circuitos integrados

• portfolio de ações

• etc, etc, etc, etc...
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6. Formulação

6.1. Exemplos

“Regras de formulação”

• Criar (boas) formulações é uma arte.

• Algumas diretivas básicas:

– escolha das variáveis de decisão.

– escolha do objetivo.

– ajuste das restrições.

Exemplo: 0-1-Knapsack

Problema da Mochila (Knapsack)

Instância Um conjunto de n itens com valores vi e pesos pi, i ∈ [n]. Um
limite de peso P do mochila.

Solução Um conjunto S ⊆ [n] de itens que cabe na mochila, i.e.
∑
i∈S pi ≤

P.

Objetivo Maximizar o valor
∑
i∈S vi.

• Observação: Existe uma solução (pseudo-polinomial) com programação
dinâmica em tempo O(Pn) usando espaço O(P).

Formulação – Problema da mochila

maximiza
∑
i∈[n]

vixi,

sujeito a
∑
i∈[n]

pixi ≤ P,

xi ∈ B.
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6. Formulação

Exemplo 6.1 (Maximizar cavalos num tabuleiro de xadrez)
Qual o número máximo de cavalos que cabe num tabuleiro de xadrez, tal que
nenhum ameaça um outro?

Figura 6.1.: Os campos ata-
cados por um cavalo num
tabuleiro de xadrez.

Formulação do problema dos cavalos com variáveis indicadores xij:

maximiza
∑
i,j

xij,

sujeito a xij + xi−2,j+1 ≤ 1, 3 ≤ i ≤ 8, j ∈ [7],

xij + xi−1,j+2 ≤ 1, 2 ≤ i ≤ 8, j ∈ [6],

xij + xi+2,j+1 ≤ 1, i ∈ [6], j ∈ [7],

xij + xi+1,j+2 ≤ 1, i ∈ [7], j ∈ [6].

Número de soluções do problema dos cavalos (A030978)
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

k 1 4 5 8 13 18 25 32 41 50 61 72 85 98 113
♦

6.2. Técnicas para formular programas inteiros

Um problema recorrente com indicadores x1, . . . , xn ∈ B e selecionar no má-
ximo, exatamente, ou no mínimo k dos n itens. As restrições∑

i∈[n]

xi ≤ k;
∑
i∈[n]

xi = k;
∑
i∈[n]

xi ≥ k

conseguem isso.
Exemplo 6.2 (Localização de facilidades simples 1)
Em n cidades dadas queremos instalar no máximo k fábricas (k ≤ n) de modo
a minimizar o custo da instalação das fábricas. A instalação na cidade j ∈ [n]
custa fj. Podemos usar indicadores para yj ∈ B para a instalação da uma
fábrica na cidade j e formular

minimiza
∑
j∈[n]

fjyj,

sujeito a
∑
j∈[n]

yj = k,

yj ∈ B, j ∈ [n].

(Obviamente para resolver este problema é suficiente escolher as k cidades de
menor custo. No exemplo 6.3 estenderemos esta formulação para incluir custos
de transporte.) ♦
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6.2. Técnicas para formular programas inteiros

clientes

fabricas

(a) Exemplo de uma instância (b) Exemplo de uma solução

Figura 6.2.: Localização de facilidades.

6.2.1. Formular restrições lógicas

Formulação: Indicadores

• Variáveis indicadores x, y ∈ B: Seleção de um objeto.

• Implicação (limitada): Se x for selecionado, então y deve ser selecionado

x ≤ y, x, y ∈ B

• Ou (disjunção):

x+ y ≥ 1, x, y ∈ B

• Ou-exlusivo:

x+ y = 1, x, y ∈ B

Exemplo 6.3 (Localização de facilidades não-capacitado)
Queremos incluir no exemplo 6.2 clientes. Suponha que em cada cidade tem
um cliente, e queremos, junto com os custos das fábricas instaladas, minimizar
o custo de atendimento dos clientes. Entre cada par de cidade, i e j, o custo
de transporte é dado por cij (ver Figura 6.2). Para formulação escolhemos
variáveis de decisão xij ∈ B, que indicam se o cliente i for atendido pela fábrica
em j. É importante “vincular” as variáveis de decisão: o cliente i pode ser
atendido pela cidade j somente se na cidade j foi instalada uma fábrica, i.e.
xij → yj.
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6. Formulação

minimiza
∑
j∈[n]

fjyj +
∑
i,j∈[n]

cijxij,

sujeito a
∑
j∈[n]

xij = 1, i ∈ [n], (só uma fábrica atende)

∑
j∈[n]

yj ≤ m, (no máximo m fábricas)

xij ≤ yj, i ∈ [n], j ∈ [n], (só fáb. existentes atendem)
xij ∈ B, i ∈ [n], j ∈ [n],

yj ∈ B, j ∈ [n].

♦

Formulação: Indicadores
Para x, y, z ∈ B

• Conjunção x = yz = y∧ z

x ≤ (y+ z)/2 (6.1)
x ≥ y+ z− 1

• Disjunção x = y∨ z

x ≥ (y+ z)/2 (6.2)
x ≤ y+ z

• Negação x = ¬y

x = 1− y (6.3)

• Implicação: z = x→ y

z ≤ 1− x+ y (6.4)
z ≥ (1− x+ y)/2 (6.5)
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6.2. Técnicas para formular programas inteiros

Exemplo 6.4 (Max-3-SAT)
Seja ϕ(x1, . . . , xn) =

∧
i∈[m]Ci uma fórmula em forma normal conjuntiva, com

cláusulas da forma Ci = li1 ∨ li2 ∨ li3. Queremos encontrar uma atribuição
xi ∈ B maximizando o número de cláusulas satisfeitas.
Seja ci ∈ B uma variável que indica que cláusula i é satisfeita. Também vamos
introduzir uma variável xi ∈ B para cada variável xi do problema, e uma
variável auxiliar lij para literal lij do problema.

maximiza ci,

sujeito a ci ≤ li1 + li2 + li3,
lij = xi, caso lij = xi,
lij = 1− xi, caso lij 6= xi,
ci ∈ B, xi ∈ B, lij ∈ B.

♦

6.2.2. Formular restrições condicionais

Indicadores para igualdades satisfeitas Queremos definir uma variável y ∈ B
que indica se uma dada restrição é satisfeita.

• Para
∑
i∈[n] aixi ≤ b: Escolhe um limite superiorM para

∑
i∈[n] aixi−b,

um limite inferiorm para
∑
i∈[n] aixi−b e uma constante ε > 0 pequena.∑

i∈[n]

aixi ≤ b+M(1− y) (6.6)

∑
i∈[n]

aixi ≥ b+my+ (1− y)ε

• Para x > 0: Escolhe um limite superior M para x e uma constante ε
pequena.

x ≥ εy, (6.7)
x ≤My.

Exemplo 6.5 (Custos fixos)
Uma aplicação para problemas de minimização com uma função objetivo não-
linear. Queremos minimizar custos, com uma “entrada” fixa c da forma

f(x) =

{
0 caso x = 0
c+ l(x) caso 0 < x ≤ x̄
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6. Formulação

1

s1

d1

f1/p1

2

s2

d2

f2/p2

3

s3

d3

f3/p3

4

s4

d4

f4/p4

s0

Semana

Estoque

Custos

Figura 6.4.: Planejamento de produção.

e l(x) uma função linear (ver Figura 6.3). Com uma y ∈ B indica a positividade

x

f(x)

x̄

c

0

c+ l(x)

Figura 6.3.: Função obje-
tivo não-linear

de x, i.e. y = 1 sse x > 0 podemos definir a função objetivo por

f(x) = cy+ l(x)

e a técnica da equação (6.7) resolve o problema. Como o objetivo é minimizar
f(x) a primeira equação x ≥ εy é redundante: caso y = 1 não faz sentido
escolher uma solução com x = 0, porque para x = 0 existe a solução de menor
custo x = y = 0. Logo

x ≤ x̄y,
x ∈ R, y ∈ B,

é suficiente neste caso.
♦

Exemplo
Planejamento de produção (ingl. uncapacitated lot sizing)

• Objetivo: Planejar a futura produção no próximos n semanas.

• Parâmetros: Para cada semana i ∈ [n]

– Custo fixo fi para produzir,

– Custo pi para produzir uma unidade,

– Custo hi por unidade para armazenar,

– Demanda di
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6.2. Técnicas para formular programas inteiros

Exemplo
Seja

• xi a quantidade produzida,

• si a quantidade no estoque no final da semana i,

• yi = 1 sem tem produção na semana i, 0 senão.

Problema:

• Função objetivo tem custos fixos, mas xi não tem limite.

• Determina ou estima um valor limite M.

Exemplo

minimiza
∑
i∈[n]

pixi + hisi + fiyi,

sujeito a si = si−1 + xi − di, i ∈ [n],

s0 = 0,

xi ≤Myi, i ∈ [n],

x ∈ Rn, y ∈ Bn.

Disjunção de equações

• Queremos que aplica-se uma das equações

f1 ≤ f2,
g1 ≤ g2.

• Solução, com constante M suficientemente grande

f1 ≤ f2 +Mx,
g1 ≤ g2 +M(1− x),

x ∈ B.
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6. Formulação

6.3. Formulações alternativas

Uma problema de programação linear ou inteira geralmente possui mais que
uma formulação. A Figura 6.5 mostra diversas formulações que definem o
mesmo conjunto de soluções inteiras.
Na programação linear existe pouca diferença entre as formulações: a solução
é a mesma e o tempo para resolver o problema é comparável, para um número
comparável de restrições e variáveis. Na programação inteira uma formulação
boa é mais importante. Como a solução de programas inteiras é NP-completo,
frequentemente a relaxação linear é usada para obter uma aproximação. Di-
ferentes formulação de um programa inteiro possuem diferentes qualidades da
relaxação linear. Uma maneira de quantificar a qualidade de uma formulação é
o gap de integralidade(ingl. integrality gap ). Para um problema P e uma ins-

x1

x2

Figura 6.5.: Diferentes for-
mulações lineares que defi-
nem o mesmo conjunto de
soluções inteiras.

tância i ∈ P seja OPT(i) a solução ótima inteira e LP(i) a solução da relaxação
linear. O gap de integralidade é

g(P) = sup
i∈P

LP(i)
OPT(i)

(6.8)

(para um problema de maximização.) O gap de integralidade dá uma garantia
para qualidade da solução da relaxação linear: caso o gap é g, a solução não é
mais que um fator g maior que a solução integral ótima.

Exemplo 6.6 (Conjunto independente máximo)
Uma formulação do problema de encontrar o conjunto independente máximo
num grafo não-direcionado G = (V,A) é

maximiza
∑
v∈V

xv, (CIM)

sujeito a xu + xv ≤ 1, ∀{u, v} ∈ E,
xv ∈ B, ∀v ∈ V .

No grafo completo com n vértices Kn a relaxação linear possui um valor pelo
menos n/2 (porque a solução xv = 1/2, v ∈ V possui valor n/2), enquanto
a solução ótima inteira é 1. Por isso, o programa (CIM) possui um gap de
integralidade ilimitado. ♦

6.4. Exercícios

(Soluções a partir da página 212.)
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Exercício 6.1
A empresa “Festa fulminante” organiza festas. Nos próximos n dias, ela precisa
pi pratos, 1 ≤ i ≤ n. No começo de cada dia gerente tem os seguintes opções:

• Comprar um prato para um preço de c reais.

• Mandar lavar um prato devagarmente em d1 dias, por um preço de l1
reais.

• Mandar lavar um prato rapidamente em d2 < d1 dias, por um preço de
l2 > l1 reais.

O gerente quer minimizar os custos dos pratos. Formule como programa inteira.

Exercício 6.2
Para os problemas abaixo, encontra uma formulação como programa inteira.

Conjunto independente máximo

Instância Um grafo não-direcionado G = (V,A).

Solução Um conjunto independente I, i.e. I ⊆ V tal que para vértices
v1, v2 ∈ I, {v1, v2} 6∈ A.

Objetivo Maximiza |I|.

Emparelhamento perfeito com peso máximo

Instância Um grafo não-direcionado bi-partido G = (V1
.
∪ V2, A) (a fato

de ser bi-partido significa que A ⊆ V1 × V2) com pesos p : A → R
nos arcos.

Solução Um emparelhamento perfeito, i.e. um conjunto de arcos C ⊆ A
tal que todos nós no sub-grafo G[C] = (V1 ∪ V2, C) tem grau 1.

Objetivo Maximiza o peso total
∑
c∈C p(c) do emparelhamento.

Problema de transporte

Instância n depósitos, cada um com um estoque de pi produtos, i ∈ [n], e
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6. Formulação

m clientes, cada um com uma demanda dj, j ∈ [m] produtos. Custos
de transporte aij de cada depósito i ∈ [n] para cada cliente j ∈ [m].

Solução Um decisão quantos produtos xij devem ser transportados do de-
pósito i ∈ [n] ao cliente j ∈ [m], que satisfaz (i) Cada depósito manda
todo seu estoque (ii) Cada cliente recebe exatamente a sua demanda.
(Observe que o número de produtos transportados deve ser integral.)

Objetivo Minimizar os custos de transporte
∑
i∈[n],j∈[m] aijxij.

Conjunto dominante

Instância Um grafo não-direcionado G = (V,A).

Solução Um conjunto dominante, i.e. um conjunto D ⊆ V , tal que ∀v ∈
V : v ∈ D∨ (∃u ∈ D : {u, v} ∈ A) (cada vértice faz parte do conjunto
dominante ou tem um vizinho no conjunto dominante).

Objetivo Minimizar o tamanho do conjunto dominante |D|.

Exercício 6.3
Acha uma formulação inteira para todos os 21 problemas que o Karp provou
NP-completo (Karp. 1972).

Exercício 6.4
Juliano é fã do programa de auditório Apagando e Ganhando, um programa no
qual os participantes são selecionados atráves de um sorteio e recebem prêmios
em dinheiro por participarem. No programa, o apresentador escreve um número
de N dígitos em uma lousa. O participante então deve apagar exatamente
D dígitos do número que está na lousa; o número formado pelos dígitos que
restaram é então o prêmio do participante. Juliano finalmente foi selecionado
para participar do programa, e pediu que você escrevesse um programa inteira
que, dados o número que o apresentador escreveu na lousa, e quantos dígitos
Juliano tem que apagar, determina o valor do maior prêmio que Juliano pode
ganhar.
(Fonte: Maratona de programação regional 2008, RS)

Exercício 6.5
Set é um jogo jogado com um baralho no qual cada carta pode ter uma, duas
ou três figuras. Todas as figuras em uma carta são iguais, e podem ser círculos,
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6.4. Exercícios

quadrados ou triângulos. Um set é um conjunto de três cartas em que, para
cada característica (número e figura), u ou as três cartas são iguais, ou as três
cartas são diferentes. Por exemplo, na figura abaixo, (a) é um set válido, já que
todas as cartas têm o mesmo tipo de figura e todas elas têm números diferentes
de figuras. Em (b), tanto as figuras quanto os números são diferentes para cada
carta. Por outro lado, (c) nào é um set, já que as duas ultimas cartas têm a
mesma figura, mas esta é diferente da figura da primeira carta.

• 4 �

• • ��� 444
• • • •• 44
(a) (b) (c)

O objetivo do jogo é formar o maior número de sets com as cartas que estão na
mesa; cada vez que um set é formado, as três cartas correspondentes são remo-
vidas de jogo. Quando há poucas cartas na mesa, é fácil determinar o maior
número de sets que podem ser formados; no entanto, quando há muitas cartas
há muitas combinações possíveis. Seu colega quer treinar para o campeonato
mundial de Set, e por isso pediu que você fizesse um programa inteira e que
calcula o maior número de sets que podem ser formados com um determinado
conjunto de cartas.
(Fonte: Maratona de programação regional 2008, RS)

Exercício 6.6
Para os problemas abaixo, acha uma formulação como programa inteira.

Cobertura por arcos

Instância Um grafo não-direcionado G = (V, E) com pesos c : E → Q nos
arcos.

Solução Uma cobertura por arcos, i.e. um subconjunto E ′ ⊆ E dos arcos
tal que todo vértice faz parte de pelo menos um arco selecionado.

Objetivo Minimiza o custo total dos arcos selecionados em E ′.

Conjunto dominante de arcos

Instância Um grafo não-direcionado G = (V, E) com pesos c : E → Q nos
arcos.
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6. Formulação

Solução Um conjunto dominante de arcos, i.e. um subconjunto E ′ ⊆ E dos
arcos tal que todo arco compartilha um vértice com pelo menos um
arco em E ′.

Objetivo Minimiza o custo total dos arcos selecionados em E ′.

Coloração de grafos

Instância Um grafo não-direcionado G = (V, E).

Solução Uma coloração do grafo, i.e. uma atribuição de cores às vértices
c : V → Z+ tal que cada par de vértices ligado por uma aresta recebe
uma cor diferente.

Objetivo Minimiza o número de cores diferentes.

Clique mínimo ponderado

Instância Um grafo não-direcionado G = (V, E) com pesos c : V → Q nos
vértices.

Solução Uma clique, i.e. um subconjunto V ′ ⊆ V de vértices tal que existe
um arco entre todo par de vértices em V ′.

Objetivo Maximiza o peso total dos vértices selecionados V ′.

Subgrafo cúbico

Instância Um grafo não-direcionado G = (V, E).

Solução Uma subgrafo cúbico, i.e. uma seleção E ′ ⊆ E dos arcos, tal que
cada vértice em G ′ = (V, E ′) possui grau 0 ou 3.

Objetivo Maximiza o número de arcos selecionados |E ′|.

Exercício 6.7
Uma empresa tem que decidir quais de sete investimentos devem ser feitos.
Cada investimento pode ser feito somente uma única vez. Os investimentos
tem lucros (ao longo prazo) e custos iniciais diferentes como segue
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Investimento

1 2 3 4 5 6 7

Lucro estimado [MR$] 17 10 15 19 7 13 9
Custos iniciais [MR$] 43 28 34 48 17 32 23

A empresa tem 100 MR$ capital disponível. Como maximizar o lucro total
(ao longo prazo, não considerando os investimentos atuais), respeitando que os
investimentos 1, 2 e 3, 4 são mutualmente exclusivas, e nem o investimento 3
nem o investimento 4 pode ser feita, sem pelo menos um investimento em 1 ou
2 (as outros investimentos não tem restrições).

Exercício 6.8
Um produtor de brinquedos projetou dois novos brinquedos para Natal. A
preparação de uma fábrica para produzir custaria 50000R$ para a primeiro
brinquedo e 80000R$ para o segundo. Após esse investimento inicial, o primeiro
brinquedo rende 10R$ por unidade e o segundo 15R$.
O produtor tem duas fábricas disponíveis mas pretende usar somente uma, para
evitar custos de preparação duplos. Se a decisão for tomada de produzir os dois
brinquedos, a mesma fábrica seria usada.
Por hora, a fábrica 1 é capaz de produzir 50 unidades do brinquedo 1 e 40
unidades do brinquedo 2 e tem 500 horas de produção disponível antes de Natal.
A fábrica 2 é capaz de produzir 40 unidades do brinquedo 1 e 25 unidades do
brinquedo 2 por hora, e tem 700 horas de produção disponível antes de Natal.
Como não sabemos se os brinquedos serão continuados depois Natal, a problema
é determinar quantas unidades de cada brinquedo deve ser produzido até Natal
(incluindo o caso que um brinquedo não é produzido) de forma que maximiza
o lucro total.

Exercício 6.9
Uma empresa produz pequenos aviões para gerentes. Os gerentes frequente-
mente precisam um avião com características específicas que gera custos inicias
altos no começo da produção.
A empresa recebeu encomendas para três aviões, mas como ela está com capa-
cidade de produção limitada, ela tem que decidir quais das três aviões ela vai
produzir. Os seguintes dados são relevantes
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Aviões Cliente

produzidas 1 2 3

Custo inicial [MR$] 3 2 0
Lucro [MR$/avião] 2 3 0.8
Capacidade usada [%/avião] 20% 40% 20%
Demanda máxima [aviões] 3 2 5

Os clientes aceitam qualquer número de aviões até a demanda máxima. A
empresa tem quer decidir quais e quantas aviões ela vai produzir. As aviões
serão produzidos em paralelo.

Exercício 6.10 (Winkler)
Uma fechadura de combinação com três discos, cada um com números entre 1
e 8, possui um defeito, tal que precisa-se somente dois números corretos dos
três para abri-la. Qual o número mínimo de combinações (de três números)
que precisa-se testar, para garantidamente abrir a fechadura?
Formule um programa inteiro e resolva-o.

Exercício 6.11
Formule o problema

MAX-k-SAT

Entrada Uma fórmula em forma normal conjuntiva com m variáveis e n
cláusulas ϕ(x1, . . . , xm) = C1∧ · · ·∧Cn tal que cada cláusula possui
no máximo k literais

Solução Uma atribuição xi 7→ {0, 1}.

Objetivo Maximizar o número de cláusulas satisfeitas.

(Dica: Usa as desigualdades (6.1)-(6.3). Começa com k = 3.)

Exercício 6.12
A Seção 6.2.1 mostrava como expressar a restrição lógica z = x∧y linearmente.
A formulação linear precisava duas restrições lineares. Mostra que não existe
uma única restrição linear que é suficiente para expressar z = x∧ y.
(Dica: Supõe que z = ax+by+c (ou z ≥ ax+by+c, ou z ≤ ax+by+c) com
constantes a, b, c e mostra que as restrições que resultam de uma análise caso
a caso levam a uma contradição ou não são suficientes para garantir a restrição
lógica.)
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Exercício 6.13
Considere o problema de coloração de grafos:

Coloração de grafos

Instância Um grafo não-direcionado G = (V, E).

Solução Uma coloração do grafo, i.e. uma atribuição de cores às vértices
c : V → Z+ tal que cada par de vértices ligado por uma aresta recebe
uma cor diferente.

Objetivo Minimiza o número de cores diferentes.

Uma formulação possível é introduzir uma variável xvc ∈ {0, 1} tal que xvc = 1
caso o vértice v ∈ V recebe a cor c. Como nunca tem mais que n = |V | cores,
podemos escolher C = [n]. Temos a condição∑

c∈C
xvc = 1, ∀v ∈ V. (6.9)

Uma coloração válida ainda tem que satisfazer

xuc + xvc ≤ 1, ∀{u, v} ∈ E, c ∈ C. (6.10)

Para contar o número de cores vamos usar variáveis auxiliares uc ∈ {0, 1} com
uc = 1 caso a cor c ∈ C foi usada. Eles satisfazem

uc ≥
∑
v∈V

xvc/n, ∀c ∈ C. (6.11)

Com isso obtemos

(C1) minimiza
∑
c∈C

uc,

sujeito a (6.9), (6.10), (6.11)
xvc ∈ {0, 1}, uc ∈ {0, 1}, ∀v ∈ V, c ∈ C.

Um outro modelo é minimizar a soma das cores. Seja fv ∈ Z+ a cor do vértice
v ∈ V , que pode ser definida por

fv =
∑
c∈C

cxvc, ∀v ∈ V. (6.12)
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Com isso podemos formular

(C2) minimiza
∑
v∈V

fv,

sujeito a (6.9), (6.10), (6.12),
xvc ∈ {0, 1}, fc ∈ Z+, ∀v ∈ V, c ∈ C.

Os modelos (C1) e (C2) são equivalentes?

Exercício 6.14
Considere o problema de posicionar os números 1, . . . , 10 nas posições P =
{a, . . . , j} do triângulo

a

b c

d e f

g h i j

.

Um colega afirma que podemos usar variáveis xa, . . . , xj ∈ Z e as restrições

1 ≤ xp ≤ 10, ∀p ∈ P,∑
p∈P

xp = 55,∏
p∈P

xp = 10!

Ele tem razão?
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7. Técnicas de solução

7.1. Introdução

Limites

• Exemplo: Problema de maximização.

• Limite inferior (limite primal): Cada solução viável.

– Qualquer técnica construtiva, p.ex. algoritmos gulosos, heurísticas
etc.

• Limite superior (limite dual): Essencialmente usando uma relaxação

– Menos restrições ⇒ conjunto maior de solução viáveis.

– Nova função objetivo que é maior ou igual.

• Importante: Relaxação linear: x ∈ Z⇒ x ∈ R.

7.2. Problemas com solução eficiente

Observação 7.1 (Regra de Laplace)
Lembrança: A determinante de uma matriz pela regra de Laplace é

det(A) =
∑
i∈[n]

(−1)i+jaij det(Aij) =
∑
j∈[n]

(−1)i+jaij det(Aij)

sendo Aij a submatriz sem linha i e coluna j. ♦

Relaxação inteira

• Solução simples: A relaxação linear possui solução ótima inteira.

• Como garantir?

• Com base B temos a solução x = (xB xN)
t = (B−1b, 0)t.

• Observação: Se b ∈ Zm e | det(B)| = 1 para a base ótima, então o PL
resolve o PI.
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Relaxação inteira

• Para ver isso: Regra de Cramer.

• A solução de Ax = b é

xi =
det(Ai)
det(A)

com Ai a matriz resultante da substituição da i-gésima coluna de A por
b.

Prova. Seja Ui a matriz identidade com a i-gésima coluna substituído por x,
i.e. 

1 x1
. . . x2

...

xn−1
. . .

xn 1


Temos que AUi = Ai e com det(Ui) = xi temos

det(Ai) = det(AUi) = det(A) det(Ui) = det(A)xi.

�

Exemplo: Regra de Cramer

3 2 1

5 0 2

2 1 2

x1x2
x3

 =

11
1



Exemplo: Regra de Cramer∣∣∣∣∣∣
3 2 1

5 0 2

2 1 2

∣∣∣∣∣∣ = −13;

∣∣∣∣∣∣
1 2 1

1 0 2

1 1 2

∣∣∣∣∣∣ = −1

∣∣∣∣∣∣
3 1 1

5 1 2

2 1 2

∣∣∣∣∣∣ = −3;

∣∣∣∣∣∣
3 2 1

5 0 1

2 1 1

∣∣∣∣∣∣ = −4

Logo x1 = 1/13; x2 = 3/13; x3 = 4/13.
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Aplicação da regra de Cramer

• Como garantir que x = B−1b é inteiro?

• Cramer:
xi =

det(Bi)
det(B)

• Condição possível: (a) det(Bi) inteiro, (b) det(B) ∈ {−1, 1}.

• Garantir (a): A ∈ Zm×n e b ∈ Zm.

• Garantir (b): Toda submatriz quadrada não-singular de A tem determi-
nante {−1, 1}.

Exemplo 7.1
Observe que essas condições são suficientes, mas não necessárias. É possível que
Bx = b possui solução inteira sem essas condições ser satisfeitas. Por exemplo

(
2 2

1 0

)(
x1
x2

)
=

(
2

1

)
tem a solução inteira (x1 x2) = (1 0), mesmo que det(A) = −2. ♦

A relaxação é inteira
Definição 7.1
Uma matriz quadrada inteira A ∈ Rn×n é unimodular se | det(A)| = 1. Uma
matriz arbitrária A é totalmente unimodular (TU) se cada submatriz quadrada
não-singular A ′ de A é modular, i.e. det(A ′) ∈ {0, 1,−1}.

Uma consequência imediata dessa definição: aij ∈ {−1, 0, 1}.

Exemplo
Quais matrizes são totalmente unimodular?

(
1 −1
1 1

)
;

1 1 0

0 1 1

1 0 1


 1 −1 −1 0

−1 0 0 1

0 1 0 −1

 ;


0 1 0 0 0

0 1 1 1 1

1 0 1 1 1

1 0 0 1 0

1 0 0 0 0


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Critérios

Proposição 7.1
Se A é TU então

(i) At é TU.

(ii) (A I) com matriz de identidade I é TU.

(iii) Uma matriz B que é uma permutação das linhas ou colunas de A é TU.

(iv) Multiplicando uma linha ou coluna com −1 resulta numa matriz TU.

Prova. (i) Qualquer submatriz quadrada Bt de At e uma submatriz B de A
também. Com det(B) = det(Bt), segue que At é totalmente unimodular. (ii)
Qualquer submatriz de (AI) tem a forma (A ′I ′) com A ′ submatriz de A e I ′

submatriz de I. Com | det(A ′I ′)| = | det(A ′)| segue que (AI) é TU. (iii) Cada
submatriz de B é uma submatriz de A. (iv) A determinante troca no máximo
o sinal. �

Exercício 7.1 pede generalizar a proposição 7.1.

Critérios

Proposição 7.2
Uma matriz A é totalmente unimodular se

(i) aij ∈ {+1,−1, 0}

(ii) Cada coluna contém no máximo dois coeficientes não-nulos.

(iii) Existe uma partição de linhasM1

.
∪M2 = [1,m] tal que cada coluna com

dois coeficientes não-nulos satisfaz∑
i∈M1

aij −
∑
i∈M2

aij = 0

Observe que esse critério é suficiente, mas não necessário.

Exemplo

 1 −1 −1 0

−1 0 0 1

0 1 0 −1


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• Coeficientes ∈ {−1, 0, 1}: Sim.

• Cada coluna no máximo dois coeficientes não-nulos: Sim.

• Partição M1,M2? Sim, escolhe M1 = [1, 3],M2 = ∅.

Exemplo

A =

(
1 −1
1 1

)
TU? Não: det(A) = 2.

A =

1 1 0

0 1 1

1 0 1


TU? Não: det(A) = 2.


0 1 0 0 0

0 1 1 1 1

1 0 1 1 1

1 0 0 1 0

1 0 0 0 0


TU? Sim. Mas nossa regra não se aplica!

Prova. (da proposição 7.2). Prova por contradição. Seja A uma matriz que
satisfaz os critérios da proposição 7.2, e B a menor submatriz quadrada de A tal
que det(B) 6∈ {0,+1,−1}. B não contém uma coluna com um único coeficiente
não-nula: seria uma contradição com a minimalidade do B (removendo a linha e
a coluna que contém esse coeficiente, obtemos uma matriz quadrada menor B∗,
que ainda satisfaz det(B∗) 6∈ {0,+1,−1}). Logo, B contém dois coeficientes não-
nulos em cada coluna. Aplicando a condição (3) acima, subtraindo as linhas
com índice em M1 das linhas com índice em M2 podemos ver as linhas do B
são linearmente dependentes e portanto temos det(B) = 0, uma contradição.
�
Uma caracterização (i.e. um critério necessário e suficiente) das matrizes total-
mente unimodulares (sem prova) é
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Teorema 7.1 (Ghouila-Houri (1962))
Um matriz A ∈ Zm×n é TU sse para todo subconjunto R ⊆ [m] de linhas existe
uma partição R1

.
∪ R2 tal que∣∣∣∣∑

i∈R1

aij −
∑
i∈R2

aij

∣∣∣∣ ≤ 1 (7.1)

para todas colunas j ∈ [n].

Observe que a proposição 7.2 implica o critério acima: dado uma partição das
linhas de acordo com 7.2, para todo R ⊆ [m], a partição (M1 ∩ R)

.
∪ (M2 ∩ R)

satisfaz (7.1).

Definição 7.2
Uma matriz A ∈ {0, 1}m×n possui a propriedade de uns consecutivos se para
cada coluna j ∈ [n], aij = 1 e ai ′j = 1 com i < i ′ implica akj = 1 para k ∈ [i, i ′].

Uma aplicação do critério de Ghouila-Houri é a

Proposição 7.3
Uma matriz que satisfaz a propriedade de uns consecutivos é totalmente uni-
modular.

Prova. A matriz formada por um subconjunto de linhas R ⊆ [m] também
possui a propriedade de uns consecutivos. Seja R = {i1, . . . , ik} com i1 ≤ · · · ≤
ik. A partição em M1 = {i1, i3, . . .} e M2 = {i2, i4, . . .} satisfaz (7.1). �

Exemplo 7.2
A matriz 

0 1 0 0 0

0 1 1 1 1

1 0 1 1 1

1 0 0 1 0

1 0 0 0 0


do exemplo anterior satisfaz a propriedade de uns consecutivos. Logo ela é TU.

♦

Exemplo 7.3
Para um universo U = {u1, . . . , um}, e uma família de conjuntos C1, . . . , Cn ⊆ U
com pesos p1, . . . , pn uma cobertura é uma seleção de conjuntos S ⊆ [n] tal
que cada elemento do universo é coberto, i.e. para todo u ∈ U existe um i ∈ S
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7.2. Problemas com solução eficiente

com u ∈ Ci. A problema de encontrar a cobertura de menor peso total pode
ser formulado por

minimiza
∑
i∈[n]

pixi,

sujeito a Ax ≥ 1,
x ∈ Bn.

com aij = 1 sse ui ∈ Cj. (Figura 7.1 mostra um exemplo de uma instância
e a matriz A correspondente.) Este problema em geral é NP-completo. Pela
propriedade de uns consecutivos, podemos ver que no caso de um universo
U = [m] com subconjuntos que são intervalos o problema pode ser resolvido
em tempo polinomial. ♦

u1

u2

u3

u4 u5

u6

u7

u8

C1

C2 C3

C4

C5 C6

C7



1 1 0 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 0 1

0 0 0 0 1 1 0

0 0 0 0 0 1 1


Figura 7.1.: Exemplo de
uma instância do problema
de cobertura por conjuntos
e a matriz A da formulação
inteira correspondente.

Consequências

Teorema 7.2 (Hoffman e Kruskal (1956))
Se a matriz A de um programa linear é totalmente unimodular e o vetor b é
inteiro, todas soluções básicas são inteiras. Em particular as regiões

{x ∈ Rn | Ax ≤ b}
{x ∈ Rn | Ax ≥ b}
{x ∈ Rn | Ax ≤ b, x ≥ 0}
{x ∈ Rn | Ax = b, x ≥ 0}

possuem pontos extremos inteiros.

Prova. Considerações acima. �

Exemplo 7.4 (Caminhos mais curtos)

Exemplo: Caminhos mais curtos

• Dado um grafo direcionado G = (V,A) com custos c : A→ Z nos arcos.

• Qual o caminho mais curto entre dois nós s, t ∈ V?
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7. Técnicas de solução

Exemplo: Caminhos mais curtos

minimiza
∑
a∈A

caxa,

sujeito a
∑

a∈N+(s)

xa −
∑

a∈N−(s)

xa = 1,

∑
a∈N+(v)

xa −
∑

a∈N−(v)

xa = 0, ∀v ∈ V \ {s, t},

∑
a∈N+(t)

xa −
∑

a∈N−(t)

xa = −1,

xa ∈ B, ∀a ∈ A.

A matriz do sistema acima de forma explicita:

s

...

t


1 · · · · · · −1

1
...

−1 1

−1 · · ·




xa1

...

xam

 =


1

0
...
0

−1


Como cada arco é incidente a dois vértices, cada coluna contém um coeficiente
1 e −1, e a Proposição 7.2 é satisfeito pela partição trivial ∅

.
∪ V . ♦

Exemplo 7.5 (Fluxo em redes)

Exemplo: Fluxo em redes

• Dado: Um grafo direcionado G = (V,A)

– com arcos de capacidade limitada l : A→ Z+,

– demandas d : V → Z dos vértices,

– (com dv < 0 para destino e dv > 0 nos fonte)

– e custos c : A→ R por unidade de fluxo nos arcos.

• Qual o fluxo com custo mínimo?
1

2 3

4 5

6

0 0

5

42

3

Figura 7.2.: Exemplo de
uma instância de um pro-
blema de fluxo.
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7.2. Problemas com solução eficiente

Exemplo: Fluxo em redes

minimiza
∑
a∈A

caxa,

sujeito a
∑

a∈N+(v)

xa −
∑

a∈N−(v)

xa = dv, ∀v ∈ V

0 ≤ xa ≤ la, ∀a ∈ A.

com conjunto de arcos entrantes N−(v) e arcos saintes N+(v).

Exemplo: Fluxo

• A matriz que define um problema de fluxo é totalmente unimodular.

• Consequências
– Cada ponto extremo da região víavel é inteira.
– A relaxação PL resolve o problema.

• Existem vários subproblemas de fluxo mínimo que podem ser resolvidos
também, p.ex. fluxo máximo entre dois vértices.

♦

Exemplo 7.6 (Emparelhamentos)

Emparelhamento máximo (EM)

Entrada Um grafo G = (V, E) não-direcionado.

Solução Um emparelhamento M ⊆ E, i.e. um conjunto de arcos, tal que
para todos vértices v temos |N(v) ∩M| ≤ 1.

Objetivo Maximiza |M|.

Uma formulação é

maximiza
∑
e∈E

cexe, (7.2)

sujeito a
∑
u∈N(v)

xuv ≤ 1, ∀v ∈ V, (7.3)

xe ∈ B.
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7. Técnicas de solução

A matriz de coeficientes dessa formulação é TU para grafos bipartidos. Por
quê? Isso ainda é válida para grafos não-bipartidos? ♦

7.3. Desigualdades válidas

Desigualdades válidas

• Problema inteiro
max{ctx | Ax ≤ b, x ∈ Zn+}

x1

x2

Figura 7.3.: Diferentes for-
mulações dos mesmo PI.

• Relaxação linear
max{ctx | Ax ≤ b, x ∈ Rn+}

Desigualdades válidas

Definição 7.3
Uma desigualdade πx ≤ π0 é válida para um conjunto P, se ∀x ∈ P : πx ≤ π0.

• Como achar desigualdades (restrições) válidas para o conjunto da soluções
viáveis {x | Ax ≤ b, x ∈ Zn+} de um problema inteiro?

– Técnicas de construção (p.ex. método de Chvátal-Gomory)

– Observar e formalizar características específicas do problema.

– “The determination of families of strong valid inequalities is more
of an art than a formal methodology” Wolsey e Nemhauser 1999, p.
259

Exemplo 7.7 (Localização de facilidades não-capacitado)
Temos um conjunto de cidades C = [n] em que podemos abrir facilidades para
um custo fixo fj, j ∈ C. Em cada cidade i existe um demanda que pode ser
satisfeito por uma facilidade na cidade j com custo cij, caso existe um facilidade
na cidade j. Com xij ∈ B indicando que a demanda da cidade i é satisfeito pela
facilidade na cidade j podemos formular
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7.3. Desigualdades válidas

minimiza
∑
j∈[n]

fjyj +
∑

i∈[n],j∈[n]

cijxij, (7.4)

sujeito a
∑
j∈[n]

xij = 1, ∀i ∈ [n], (7.5)

xij ≤ yj, ∀i ∈ [n], j ∈ [n], (7.6)
xij ∈ B, ∀i ∈ [n], j ∈ [n], (7.7)
yj ∈ B, ∀j ∈ [n]. (7.8)

Ao invés de
xij ≤ yj (7.9)

podemos formular ∑
i∈[n]

xij ≤ nyj. (7.10)

Essa formulação ainda é correto, mas usa n restrições ao invés de n2. Entre-
tanto, a qualidade da relação linear é diferente. É simples ver que podemos
obter (7.10) somando (7.9) sobre todos i. Portanto, qualquer solução que sa-
tisfaz (7.9) satisfaz (7.10) também, e dizemos que (7.9) domina (7.10).
O seguinte exemplo mostra, que o contrário não é verdadeiro. Com custos de
instalação fj = 1, de transporte cij = 5 para i 6= j e cii = 0, duas cidades e uma
fábrica obtemos as duas formulações (sem restrições de integralidade)

minimiza y1 + y2 + 5x12 + 5x21, y1 + y2 + 5x12 + 5x21,

sujeito a x11 + x12 = 1, x11 + x12 = 1,

x21 + x22 = 1, x21 + x22 = 1,

y1 + y2 ≤ 1, y1 + y2 ≤ 1,
x11 ≤ y1, x11 + x21 ≤ 2y1,
x12 ≤ y2,
x21 ≤ y1, x21 + x22 ≤ 2y2.
x22 ≤ y2.

A solução ótima do primeiro sistema é y1 = 1, x11 = x21 = 1 com valor 6, que é
a solução ótima inteira. Do outro lado, a solução ótima da segunda formulação
é y1 = y2 = 0.5 com x11 = x22 = 1, com valor 1, i.e. ficam instaladas duas
“meia-fábricas” nas duas cidades!

♦
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7. Técnicas de solução

Exemplo 7.8 (Problema do caixeiro viajante)
Na introdução discutimos a formulação básica do PCV

minimiza
∑
i,j∈N

cijyij,

sujeito a
∑
j∈N

xij = 1, ∀i ∈ N, (7.11)

∑
j∈N

xji = 1, ∀i ∈ N, (7.12)

xij ∈ {0, 1}, ∀i, j ∈ N, (7.13)
+ restrições de eliminação de subciclos! (7.14)

Uma ideia de eliminar subciclos é a seguinte: considere um subconjunto S ⊂ N
de cidades: entre cidades em S não podemos selecionar mais que |S|−1 arestas,
senão vai formar um subciclo. Logo uma forma de eliminar subciclos é pelas
restrições ∑

i,j∈S
xij ≤ |S|− 1, ∀S ⊆ N, S 6= ∅, S 6= N. (S1)

Uma outra forma pode ser obtido como segue: associa um “potencial” (uma
altura) pi a cada cidade i ∈ N e força o sucessor de i na rota ter um potencial
pelo menos pi+1. Isso não pode ser satisfeito em ciclos. Para permitir um ciclo
global, vamos excluir uma cidade fixa s ∈ S dessa restrição. Logo, as restrições

pi + n(xij − 1) + 1 ≤ pj ∀i, j, i 6= s, j 6= s (S2)

também eliminam os subciclos.
Quais restrições são melhores? Considere as soluções

PS1 = {x | x satisfaz (7.11), (7.12), (7.13), (S1)}

da primeira formulação e as soluções

PS2 = {x | existem valores p tal que x satisfaz (7.11), (7.12), (7.13), (S2)}

da segunda. Não é difícil de ver que existem soluções fracionárias x ∈ PS2 que
não pertencem a PS1 : um exemplo é dado na Figura 7.4.

2/3 2/3

1/3

1/3

2/3 2/3

1/3

1/3

Figura 7.4.: Uma solução
fracionária de uma instân-
cia do PCV com 4 cidades
da formulação PS2 que não
é válida na formulação PS1 .
O valor pi = 0 para todos
i ∈ N.

É possível mostrar que PS1 ⊂ PS2 . Logo a formulação (S1) domina a formulação
(S2).

♦
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7.3. Desigualdades válidas

Exemplo: 0-1-Mochila

maximiza
∑
i∈[n]

vixi,

sujeito a
∑
i∈[n]

pixi ≤ P,

xi ∈ B.

Exemplo: 79x1 + 53x2 + 53x3 + 45x4 + 45x5 ≤ 178.
Exemplo 7.9 (Problema da mochila)

Exemplo: 0-1-Mochila

• Observação: Para um subconjunto S ⊂ [1, n]:
Se
∑
i∈S pi > P então

∑
S xi ≤ |S|− 1.

• Exemplos:

x1 + x2 + x3 ≤ 2,
x1 + x2 + x4 + x5 ≤ 3,
x1 + x3 + x4 + x5 ≤ 3,
x2 + x3 + x4 + x5 ≤ 3.

Um conjunto S tal
∑
i∈S pi > P se chama uma cobertura e a desigualdades

obtidos por tais conjuntos desigualdades de cobertura (ingl. cover inequalities).
♦

Exemplo 7.10 (Emparelhamentos)
Continuando exemplo 7.6.

Exemplo: Emparelhamentos

• Escolhe um subconjunto arbitrário de vértices U ⊆ V .

• Observação: O número de arestas internas é ≤ b|U|/2c.

• Portanto: ∑
a∈U2∩A

xa ≤ b|U|/2c (7.15)

é uma desigualdade válida.
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7. Técnicas de solução

♦

Observação 7.2
A envoltória convexa do problema de emparelhamentos é dado pelas restri-
ções (7.3) e (7.15) para todo conjunto U de cardinalidade impar maior que 1.

♦

Método de Chvátal-Gomory
Dado uma restrição ∑

i∈[n]

aixi ≤ b

também temos, para u ∈ R, u > 0 as restrições válidas∑
i∈[n]

uaixi ≤ ub (multiplicação com u)

∑
i∈[n]

buaic xi ≤ ub porque byc ≤ y e 0 ≤ xi∑
i∈[n]

buaic xi ≤ bubc porque o lado da esquerda é inteira

O método de Chvátal-Gomory funciona igualmente para combinações lineares
de colunas. Com A = (a1 a2 · · ·an) e u ∈ Rm obtemos∑

i∈[n]

⌊
uai
⌋
xi ≤ bubc (7.16)

Teorema 7.3
Cada desigualdade válida pode ser construída através de um número finito de
aplicações do método de Chvátal-Gomory (7.16).

(Uma prova do teorema encontra-se, por exemplo, em Wolsey e Nemhauser
(1999, p. II.1.2) ou, para o caso de variáveis 0-1, em Wolsey (1998, Th. 8.4).)

Observação 7.3
Para desigualdades

∑
i∈[n] aixi ≥ b obtemos similarmente∑

i∈[n]

⌈
uai
⌉
xi ≥ dube

♦
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Exemplo 7.11 (Problema da mochila)
A relaxação linear do problema da mochila acima possui as restrições

79x1 +53x2 +53x3 +45x4 +45x5 ≤ 178,

x1 ≤ 1,

x2 ≤ 1,

x3 ≤ 1,

x4 ≤ 1,

x5 ≤ 1,

Com u = (1/79 0 26/79 26/79 0 0)t obtemos a desigualdade válida

x1 + x2 + x3 ≤ 2.

♦

Exemplo 7.12 (Emparelhamentos)

• Para um U ⊆ V podemos aplicar o método de Chvátal-Gomory com
u = (1/2 1/2 · · · 1/2)t ∈ R|U| às desigualdades∑

u∈N(v)

xuv ≤ 1, ∀v ∈ U

para obter∑
v∈U

1/2
∑
u∈N(v)

xuv =
∑

a∈U2∩A

xa +
∑

a∈N(U)

1/2xa ≤ |U|/2

e depois aplicar os pisos com
∑
a∈N(U) b1/2c xa = 0

∑
a∈U2∩A

xa ≤ b|U|/2c .

♦

7.4. Planos de corte

Como usar restrições válidas?

• Adicionar à formulação antes de resolver.
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7. Técnicas de solução

– Vantagens: Resolução com ferramentas padrão.

– Desvantagens: Número de restrições pode ser muito grande ou de-
mais.

• Adicionar ao problema se necessário: Algoritmos de plano de corte.

– Vantagens: Somente cortes que ajudam na solução da instância são
usados.

Planos de corte
Problema inteiro

max{ctx | Ax ≤ b, x ∈ Zn+}

• O que fazer, caso a relaxação linear não produz soluções ótimas?

• Um método: Introduzir planos de corte.

Definição 7.4
Um plano de corte (ingl. cutting plane) é uma restrição válida (ingl. valid
inequality) que todas soluções inteiras satisfazem.

Algoritmo de planos de corte

Algoritmo 7.1 (Planos de corte)
Entrada Programa inteiro max{ctx | Ax ≤ b, x ∈ Zn+}.

Saida Solução inteira ótima ou “Não existe corte.”.

1 V := {x | Ax ≤ b} { região viável }
2 x∗ := argmax{ctx | x ∈ V} { resolve relaxação }
3 while (x∗ 6∈ Zn+) do
4 if (existe corte atx ≤ d com atx∗ > d) then
5 V := V ∩ {x | atx ≤ d} { nova região viável }
6 x∗ := argmax{ctx | x ∈ V} { nova solução ótima }
7 else
8 return "Não existe corte ."
9 end if
10 end while
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Método de Gomory

• Como achar um novo corte na linha 4 do algoritmo?

• A solução ótima atual é representado pelo dicionário

z = z̄+
∑
j

c̄jxj

xi = b̄i −
∑
j∈N

āijxj i ∈ B

• Se a solução não é inteira, existe um índice i tal que xi 6∈ Z+, i.e. b̄i 6∈ Z+.

Cortes de Chvátal-Gomory

xi = b̄i −
∑
j∈N

āijxj Linha fracionária (7.17)

xi ≤ b̄i −
∑
j∈N
bāijc xj Definição de b·c (7.18)

xi ≤
⌊
b̄i
⌋
−
∑
j∈N
bāijc xj Integralidade de x (7.19)

0 ≥
{
b̄i
}
−
∑
j∈N

{āij} xj (7.17)− (7.19) (7.20)

xn+1 = −
{
b̄i
}
+
∑
j∈N

{āij} xj Nova variável (7.21)

xn+1 ∈ Z+ (7.22)

Para soluções inteiras, a diferença do lado esquerdo e do lado direito na equa-
ção (7.19) é inteira. Como uma solução inteira também satisfaz a equação
(7.17) podemos concluir que xn+1 também é inteira.

Observação 7.4
Lembra que o parte fracionário de um número é definido por {x} = x−bxc, sendo
o piso bxc o maior número inteiro menor que x. Por exemplo, {0.25} = 0.25 e
{−0.25} = 0.75. (Ver definição A.1 na página 187.) ♦

A solução básica atual não satisfaz (7.20), porque com xj = 0, j ∈ N temos que
satisfazer {

b̄i
}
≤ 0,
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7. Técnicas de solução

uma contradição com a definição de {·} e o fato que b̄i é fracionário. Portanto,
provamos
Proposição 7.4
O corte (7.20) satisfaz os critérios da linha 4 do algoritmo Planos de corte.
Em particular, sempre existe um corte e o caso da linha 8 nunca se aplica.

Exemplo 7.13
Queremos resolver o problema

maximiza x1 + x2,

sujeito a − x1 + 3x2 ≤ 9,
10x1 ≤ 27,
x1, x2 ∈ Z+.

A solução da relaxação linear produz a série de dicionários
(1) z = x1 +x2

w1 = 9 +x1 −3x2
w2 = 27 −10x1

(2) z = 3 +4/3x1 −1/3w1
x2 = 3 +1/3x1 −1/3w1
w2 = 27 −10x1

(3) z = 6.6 −4/30w2 −1/3w1
x2 = 3.9 −1/30w2 −1/3w1
x1 = 2.7 −1/10w2

A solução ótima x1 = 2.7, x2 = 3.9 é fracionária. Correspondendo com a
segunda linha
x2 = 3.9 −1/30w2 −1/3w1
temos o corte
w3 = −0.9 +1/30w2 +1/3w1
e o novo sistema é
(4) z = 6.6 −4/30w2 −1/3w1

x2 = 3.9 −1/30w2 −1/3w1
x1 = 2.7 −1/10w2
w3 = −0.9 +1/30w2 +1/3w1

Substituindo w2 e w1 no corte w3 = −0.9 + 1/30w2 + 1/3w1 ≥ 0 podemos
reescrever o corte sando as variáveis originais do sistema, obtendo x2 ≤ 3.
Esse sistema não é mais ótimo, e temos que re-otimizar. Pior, a solução básica
atual não é viável! Mas como na função objetivo todos coeficientes ainda são
negativos, podemos aplicar o método Simplex dual. Um pivô dual gera a nova
solução ótima
(5) z = 5.7 −1/10w2 −w3

x2 = 3 −w3
x1 = 2.7 −1/10w2
w1 = 2.7 −1/10w2 +3w3
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7.4. Planos de corte

x∗0 =

(
2.7
3.9

)

Primeiro corte
x∗1 =

(
2.7
3

)
Segundo corte

x∗2 =

(
2
3

)

x1

x2

1

1

2

2

3

3

4

4

Figura 7.5.: Visualização do exemplo 7.13.

com x2 = 3 inteiro agora, mas x1 ainda fracionário. O próximo corte, que
corresponde com x1 é
(6) z = 5.7 −1/10w2 −w3

x2 = 3 −w3
x1 = 2.7 −1/10w2
w1 = 2.7 −1/10w2 +3w3
w4 = −0.7 +1/10w2

(7) z = 5 −w4 −w3
x2 = 3 −w3
x1 = 2 −w4
w1 = 2 −w4 +3w3
w2 = 7 +10w4

cuja solução é inteira e ótima. (O último corte inserido w4 = −0.7+1/10w2 ≥ 0
corresponde com x1 ≤ 2.) ♦

Observação 7.5
Nosso método se aplica somente para sistemas puros (ver página 115) e temos
que garantir que as variáveis de folga são variáveis inteiras. Por isso os coefi-
cientes de um sistema original em forma normal tem que ser números inteiros,
i.e., A ∈ Zn×m e b ∈ Zm. ♦

Resumo: Algoritmos de planos de corte

• O algoritmo de planos de corte, usando os cortes de Gomory termina
sempre, i.e. é correto.

• O algoritmos pode ser modificado para programas mistos.
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7. Técnicas de solução

• A técnica é considerado inferior ao algoritmos de branch-and-bound.

• Mas: Planos de corte em combinação com branch-and-bound é uma téc-
nica poderosa: Branch-and-cut.

7.5. Branch-and-bound

Branch-and-bound
Ramifica-e-limite (ingl. branch-and-bound, Land e Doig (1960))

• Técnica geral para problemas combinatoriais.

Branch and Bound is by far the most widely used tool for
solving large scale NP-hard combinatorial optimization pro-
blems. (Clausen 1999)

• Ideia básica:

– Particiona um problema em subproblemas disjuntos e procura solu-
ções recursivamente.

– Evite percorrer toda árvore de busca, calculando limites e cortando
sub-árvores.

• Particularmente efetivo para programas inteiras: a relaxação linear for-
nece os limites.

Limitar

• Para cada sub-árvore mantemos um limite inferior e um limite superior.

– Limite inferior: Valor da melhor solução encontrada na sub-árvore.

– Limite superior: Estimativa (p.ex. valor da relaxação linear na PI)

• Observação: A eficiência do método depende crucialmente da qualidade
do limite superior.

Cortar sub-árvores
Podemos cortar ...

(1) por inviabilidade: Sub-problema é inviável.
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7.5. Branch-and-bound

(2) por limite: Limite superior da sub-árvore zi menor que limite inferior global
z (o valor da melhor solução encontrada).

(3) por otimalidade: Limite superior zi igual limite inferior zi da sub-árvore.

Observação: Como os cortes dependem do limite z, uma boa solução inicial
pode reduzir a busca consideravelmente.

Ramificar

• Não tem como cortar mais? Escolhe um nó e particiona.

• Qual a melhor ordem de busca?

• Busca por profundidade

– V: Limite superior encontrado mais rápido.

– V: Pouca memória (O(δd), para δ subproblemas e profundidade d).

– V: Re-otimização eficiente do pai (método Simplex dual)

– D: Custo alto, se solução ótima encontrada tarde.

• Melhor solução primeiro (“best-bound rule”)

– V: Procura ramos com maior potencial.

– V: Depois encontrar solução ótima, não produz ramificações supér-
fluas.

• Busca por largura? Demanda de memória é impraticável.

Em resumo: um algoritmo de branch-and-bound consiste de quatro componen-
tes principais:

• Uma heurística que encontra uma boa solução inicial;

• um limite inferior (no caso de minimização) ou superior (para maximiza-
ção) do valor de um subproblema;

• uma estratégia de ramificação, que decompõe um problema em subpro-
blemas;

• uma estratégia de seleção, que escolhe o próximo subproblema entre os
subproblemas ativos.

Algoritmos B&B
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7. Técnicas de solução

Algoritmo 7.2 (B&B)
Instância Programa inteiro P = max{ctx | Ax ≤ b, x ∈ Zn+}.

Saida Solução inteira ótima.

1 { usando função z para estimar limite superior }
2 z:=−∞ { limite inferior }
3 A:= {(P, g(P))} { nós ativos }
4 while A 6= ∅ do
5 Escolhe: (P, g(P) ∈ A; A := A \ (P, g(P))
6 Ramifique: Gera subproblemas P1, . . . , Pn.
7 for all Pi, 1 ≤ i ≤ n do
8 { adiciona , se permite melhor solução }
9 if z(Pi) > z then
10 A := A ∪ {(Pi, z(Pi))}
11 end if
12 { atualize melhor solução }
13 if (solução z(Pi) é viável) then
14 z := z(Pi)
15 end if
16 end for
17 end while

Exemplo 7.14 (Aplicação Branch-and-Bound no PCV)
Considera uma aplicação do PCV no grafo da Figura 7.6.
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Figura 7.6.: Exemplo de
uma instância do PCV.

Aplicando somente backtracking obtemos a seguinte árvore de busca:
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A árvore de backtracking completa possui 65 vértices (por nível: 1,4,12,24,24).
Usando como limite inferior o custo atual mais o número de arcos que faltam
vezes a distância mínima e aplicando branch-and-bound obtemos os custos
parciais e limites indicados na direita de cada vértice. Com isso podemos
aplicar uma série de cortes: busca da esquerda para direito obtemos

• uma nova solução 7 em 2345;

• um corte por limite em 235;

• um corte por otimalidade em 243;

• um corte por otimalidade em 2453;

• um corte por limite em 253;

• um corte por otimalidade em 2543;

• uma nova solução 6 em 3245;

• um corte por otimalidade em 32;

• um corte por otimalidade em 3;
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7. Técnicas de solução

• um corte por limite em 4;

• um corte por otimalidade em 5234;

• um corte por otimalidade 5243;

• um corte por limite em 53;

• um corte por otimalidade 543.

♦

Exemplo 7.15 (Escalonamento de tarefas)
Considera o problema de escalonamento 1 | rj | Lmax: temos n tarefas a serem
executadas numa única máquina. Cada tarefa possui um tempo de execução pj
e é disponível a partir do tempo rj (release date) e idealmente tem que terminar
antes do prazo dj (due date). Caso a tarefa j termina no tempo Cj o seu atraso
é Lj = max{0, Cj − dj}. Uma tarefa tem que ser executada sem interrupção.
Queremos encontrar uma sequenciamento das tarefas tal que o atraso máximo
é minimizado. (Observe que uma solução é uma permutação das tarefas.)
Um exemplo de uma instância com quatro tarefas é

Tarefa 1 2 3 4

pj 4 2 6 5
rj 0 1 3 5
dj 8 12 11 11

Uma abordagem via branch-and-bound é explorar todas permutações possíveis.
Um limite inferior bom para a função objetivo pode ser obtido como segue: o
problema sem release dates 1 || Lmax possui uma solução simples polinomial,
conhecida como EDD (earliest due date): ordene as tarefas por due date. No
nosso caso é possível que durante a execução de uma tarefa passamos o release
de uma outra tarefa com due date menor. Para considerar isso, o nosso limite
inferior será o sequenciamento obtido pela regra EDD, permitindo interrupções.

♦

Branch-and-bound e PI

• Problema PI (puro): {max ctx | x ∈ S, x ∈ Zn+}.

• Resolve a relaxação linear.

• Solução inteira? Problema resolvido.
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7.6. Notas

• Caso contrário: Escolhe uma variável inteira xi, com valor b̄i fracionário.

• Heurística: Variável mais fracionária: argmini | {xi}− 0.5|.

• Particione o problema S = S1
.
∪ S2 tal que

S1 = S ∩ {x | xi ≤ bvic}; S2 = S ∩ {x | xi ≥ dvie}

• Em particular com variáveis xi ∈ B:

S1 = S ∩ {x | xi = 0}; S2 = S ∩ {x | xi = 1}

• Preferimos formulações mais “rígidas”.

7.6. Notas

Clausen (1999) dá uma boa introdução em algoritmos de branch-and-bound,
com mais exemplos e exercícios. O artigo do Cook (2012) relata a história do
método. Concorde atualmente é o melhor solver exato para o problema do
caixeiro viajante. Exemplos de soluções e código aberto do solver é disponível
na sua página web (Cook 2011).

7.7. Exercícios

(Soluções a partir da página 221.)

Exercício 7.1 (Matrizes totalmente unimodulares)
Mostra que a seguinte generalização do item 2 da proposição 7.1 é válido: Para
uma matriz arbitrária A ∈ {−1, 0, 1}m×n e uma matriz B ∈ {−1, 0, 1}m×o com
no máximo um coeficiente não-nulo em cada coluna, a matriz (A B) é TU sse
a matriz A é totalmente unimodular.

Exercício 7.2 (Matrizes totalmente unimodulares)
Para cada um dos problemas do exercício 6.2 decide, se a matriz de coeficientes
é totalmente unimodular.

Exercício 7.3 (Matrizes totalmente unimodulares)
Prove ou mostre um contra-exemplo.

a) Se A é totalmente unimodular, então
(
A 0
0 A

)
também.

b) Se A é totalmente unimodular, então (A At ) também.
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7. Técnicas de solução

c) Se A é totalmente unimodular, então
(
A A
A 0

)
também.

Exercício 7.4 (Desigualdades válidas (Nemhauser,Wolsey))
Uma formulação do problema do conjunto independente máximo é

maximiza
∑
v∈V

xv, (7.23)

sujeito a xu + xv ≤ 1, ∀{u, v} ∈ E, (7.24)
xv ∈ B, ∀v ∈ V. (7.25)

1
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4 5

6

7

Figura 7.7.: Instância do
problema do conjunto inde-
pendente máximo.

Considere a instância da Figura 7.7. Mostra que
∑
i∈[7] xi ≤ 2 é uma desigual-

dade válida.
Exercício 7.5 (Desigualdades válidas)
O exemplo 7.12 mostra como obter as desigualdades válidas do exemplo 7.10
usando cortes de Gomory. Mostra como obter as desigualdades válidas∑

i∈S
xi ≤ |S|− 1

para um S ⊆ [n] com
∑
i∈S pi > P do problema da mochila usando cortes de

Gomory.

Exercício 7.6 (Desigualdades válidas)
Considere a instância da Figura 7.8 do problema do caixeiro viajante (os núme-
ros nas arestas representam os índices das variáveis correspondentes). Mostra
que

x1 + x2 + x5 + x6 + x7 + x9 ≤ 4
é uma desigualdade válida.
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Figura 7.8.: Exemplo de
uma instância do PCV.

Exercício 7.7 (Desigualdades válidas)
Para cada uma das desigualdades válidas do exemplo 7.9 mostra como ele pode
ser obtida via uma aplicação (um número finito de aplicações) do método de
Chvátal-Gomory (7.16).

Exercício 7.8 (Planos de corte)
Resolve com o algoritmo de planos de corte using cortes de Chvátal-Gomory.

maximiza x1 + 3x2,

sujeito a − x1 ≤ −2,

x2 ≤ 3,
− x1 − x2 ≤ −4,

3x1 + x2 ≤ 12,
xi ∈ Z+,
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maximiza x1 − 2x2,

sujeito a − 11x1 + 15x2 ≤ 60,
4x1 + 3x2 ≤ 24,
10x1 − 5x2 ≤ 49,
x1, x2 ∈ Z+,

Exercício 7.9 (Desigualdades válidas)
Gera uma desigualdade válida similar com a desigualdade (7.16) para a restrição∑

i∈[n]

aixi ≥ b.

143





8. Tópicos

Outras técnicas

• Branch-and-cut.

Começa com menos restrições (relaxação) e insere restrições (cortes) nos
sub-problemas da busca com branch-and-bound.

• Branch-and-price.

Começa com menos variáveis e insere variáveis (“geração de colunas”) nos
sub-problemas da busca com branch-and-bound.
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9. Introdução

Resolução de Problemas

• Problemas Polinomiais

1. Programação Dinâmica

2. Divisão e Conquista

3. Algoritmos Gulosos

• Problemas Combinatórios

– Técnicas Exatas: Programação Dinâmica, Divisão e Conquista back-
tracking, branch & bound

– Programação não-linear: Programação semi-definida, etc.

– Algoritmos de aproximação: garantem solução aproximada

– Heurísticas e metaheurísticas: raramente provêem aproximação

Heurísticas

• O que é uma heurística?

Practice is when it works and nobody knows why. Grego heurísko: eu
acho, eu descubro.

• Qualquer procedimento que resolve um problema

– bom em média

– bom na prática (p.ex. Simplex)

– não necessáriamente comprovadamente.

• Nosso foco

– Heurísticas construtivas: Criar soluções.

– Heurísticas de busca: Procurar soluções.
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9. Introdução

Heurísticas de Construção

• Constróem uma solução, escolhendo um elemento a ser inserido na solução
a cada passo.

• Geralmente são algoritmos gulosos.

• Podem gerar soluções infactíveis.

– Solução infactível: não satisfaz todas as restrições do problema.

– Solução factível: satisfaz todas as restrições do problema, mas não
é necessariamente ótima.

Exemplo: Heurística construtiva

• Problema do Caixeiro Viajante (PCV) – Heurística do vizinho mais pró-
ximo.

Algoritmo 9.1 (Vizinho mais próximo)
Entrada Matriz de distâncias completa D = (dij), número de cidades n.

Saída Uma solução factível do PCV: Ciclo Hamiltaneo C com custo c.

1 HVizMaisProx(D,n)=
2 { cidade inicial randômica }
3 u := seleciona uniformemente de [1, n]
4 w := u
5 { representação de caminhos: sequência de vértices }
6 C := u { ciclo inicial }
7 c := 0 { custo do ciclo }
8 repeat n− 1 vezes
9 seleciona v /∈ C com distância mínima de u

10 C := Cv
11 c := c+ duv
12 u := v
13 end repeat
14 C := Cw { fechar ciclo }
15 c := c+ duw
16 return (C, c)
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Meta-heurísticas

• Heurísticas genéricas: meta-heurísticas.

Motivação: quando considera-se a possibilidade de usar heurísticas

• Para gerar uma solução factível num tempo pequeno, muito menor que
uma solução exata pudesse ser fornecida.

• Para aumentar o desempenho de métodos exatos. Exemplo: um limitante
superior de um Branch-and-Bound pode ser fornecido por uma heurística.

Desvantagens do uso de heurísticas

• No caso de metaheurísticas, não há como saber o quão distante do ótimo
a solução está.

• Não há garantia de convergência.

• Dependendo do problema e instância, não há como garantir uma solução
ótima.

Problema de otimização em geral

• Um problema de otimização pode ser representado por uma quádrupla

(I, S, f, obj)

– I é o conjunto de possíveis instâncias.

– S(i) é o conjunto de soluções factíveis (espaço de soluções factíveis)
para a instância i.

– Uma função objetivo (ou fitness) f(·) avalia a qualidade de uma dada
solução.

– Um objetivo obj = min ou max: s∗ ∈ S para o qual f(s∗) seja mínimo
ou máximo.

• Alternativa

optimiza f(x),

sujeito a x ∈ S.

• S discreto: problema combinatorial.
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9. Introdução

Técnicas de solução

• Resolver o problema nessa geralidade: enumeração.

• Frequentemente: Uma solução x ∈ S possui uma estrutura.

• Exemplo: x é uma tupla, um grafo, etc.

• Permite uma enumeração por componente: branch-and-bound.

152



10. Heurísticas baseadas em Busca local

10.1. Busca local

Busca Local

• Frequentemente: O espaço de soluções possui uma topologia.

• Exemplo da otimização (contínua): max{x2 + xy | x, y ∈ R}
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• Espaço euclidiano de duas dimensões.

• Isso podemos aproveitar: Busca localmente!

Vizinhanças

• O que fazer se não existe uma topologia natural?

• Exemplo: No caso do PCV, qual o vizinho de um ciclo Hamiltaneo?

• Temos que definir uma vizinhança.

• Notação: Para x ∈ S, escrevemos N (x) para o conjunto de soluções
vizinhas.

• Uma vizinhança defina a paisagem de otimização (ingl. optimization lands-
cape): Espaço de soluções com valor de cada solução.
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10. Heurísticas baseadas em Busca local

Relação de vizinhança entre soluções

• Uma solução s ′ é obtida por uma pequena modificação na solução s.

• Enquanto que S e f são fornecidos pela especificação do problema, o
projeto da vizinhança é livre.

Busca Local k-change e inserção

• k-change: mudança de k componentes da solução.

• Cada solução possui vizinhança de tamanho O(nk).

• Exemplo: 2-change, 3-change.

• TSP: 2-change (inversão).

• Inserção/remoção: inserção de um componente da solução, seguido da
factibilização da solução

• Vertex cover: 1-change + remoção.

Exemplo: Vizinhança mais elementar

• Suponha um problema que possue como soluções factíveis S = Bn (por
exemplo, uma instância do problema de particionamento de conjuntos).

• Então, para n = 3 e s0={0,1,0}, para uma busca local 1-flip, N(s0) =
{(1, 1, 0), (0, 0, 0), (0, 1, 1)}.

Exemplo: Vizinhanças para TSP

• 2-exchange: Para cada par de arcos (u1, v1) e (u2, v2) não consecutivos,
remova-os da rota, e insira os arcos (u1, u2) e (v1, v2).

Figura 10.1.: Um mo-
vimento na vizinhança 2-
exchange.

• Para uma solução s e uma busca k-exchange |N (s)| ∈ O(nk).
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10.1. Busca local

Características de vizinhanças
É desejável que uma vizinhança é

• simétrica (ou reversível)

y ∈ N (x)⇒ x ∈ N (y)

• conectada (ou completa)

∀x, y ∈ S : ∃z1, . . . , zk ∈ S : z1 ∈ N (x),

zi+1 ∈ N (zi), 1 ≤ i < k,
y ∈ N (zk).

Busca Local: Ideia

• Inicia a partir de uma solução s0

• Se move para soluções vizinhas melhores no espaço de busca.

• Para, se não tem soluções melhores na vizinhança.

• Mas: Repetindo uma busca local com soluções inicias randômicas, acha-
mos o mínimo global com probabilidade 1.

Exemplo 10.1 (Método Simplex)
O método Simplex pode ser visto como busca local no espaço de vértices com
uma vizinhança definido por arestas no politopo. ♦

Busca local – Caso contínuo

Algoritmo 10.1 (Busca local contínua)
Entrada Solução inicial s0 ∈ Rn, tamanho inicial α de um passo.

Saída Solução s ∈ Rn tal que f(s) ≤ f(s0).

Nome Gradient descent.

1 BuscaLocal(s0,α)=
2 s := s0
3 while ∇f(s) 6= 0 do
4 s ′ := s− α∇f(s)
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10. Heurísticas baseadas em Busca local

5 if f(s ′) < f(s) then
6 s := s ′

7 else
8 diminui α

9 end if
10 end while
11 return s

Busca local – Caso contínuo

• Gradiente

∇f(x) =
(
δf

δx1
(x), . . . ,

δf

δxn
(x)

)t
sempre aponta na direção do crescimento mais alto de f (Cauchy).

• Necessário: A função objetivo f é diferenciável.

• Diversas técnicas para diminuir (aumentar) α.

• Opção: Line search na direção −∇f(x) para diminuir o número de gradi-
entes a computar.

Busca Local – Best Improvement

Algoritmo 10.2 (Busca Local BI)
Entrada Solução inicial s0.

Saída Solução s tal que f(s) ≤ f(s0).

Nomes Steepest descent, steepest ascent.

1 BuscaLocal(s0)=
2 s := s0
3 while true
4 s ′ := argminy{f(y) | y ∈ N (s)}

5 if f(s ′) < f(s) then s := s ′

6 else break
7 end while
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8 return s

Busca Local – First Improvement

Algoritmo 10.3 (Busca Local FI)
Entrada Solução inicial s0.

Saída Solução s ′ tal que f(s ′) ≤ f(s).

Nomes Hill descent, hill climbing.

1 BuscaLocal(s0)=
2 s := s0
3 repeat
4 Select any s ′ ∈ N (s) not yet visited
5 if f(s ′) < f(s) then s := s ′

6 until all solutions in N (s) have been visited
7 return s

Projeto de uma busca local

• Como gerar uma solução inicial? Aleatória, via método construtivo, etc.

• Quantas soluções inicias devem ser geradas?

• Importante: Definição da função de vizinhança N .

• Vizinhança grande ou pequena? (grande= muito tempo e pequena=menos
vizinhos)

• Estratégia de seleção de novas soluções

– examine todas as soluções vizinhas e escolha a melhor

– assim que uma solução melhor for encontrada, reinicie a busca.
Neste caso, qual a sequência de soluções examinar?

• Importante: Método eficiente para avaliar a função objetivo de vizinhos.
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Exemplo: 2-change TSP

• Vizinhança: Tamanho O(n2).

• Avaliação de uma solução: O(n) (somar n distâncias).

• Atualizando a valor da solução atual: O(1) (somar 4 distâncias)

• Portanto: Custo por iteração de “best improvement”

– O(n3) sem avaliação diferential.

– O(n2) com avaliação diferential.

Avaliação de buscas locais
Como avaliar a busca local proposta?

• Poucos resultados teóricos.

• Difícil de saber a qualidade da solução resultante.

• Depende de experimentos.

Problema Difícil

• É fácil de gerar uma solução aleatória para o TSP, bem como testar sua
factibilidade

• Isso não é verdade para todos os problemas

• Exemplo difícil: Atribuição de pesos a uma rede OSPF

Busca local

• Desvantagem obvia: Podemos parar em mínimos locais.

• Exceto: Função objetivo convexa (caso minimização) ou concava (caso
maximização).

• Técnicas para superar isso baseadas em busca local

– Multi-Start

– Busca Tabu

– Algoritmos Metropolis e Simlated Annealing

– Variable neighborhood search

Figura 10.2.: Busca local e
mínimos locais é globais. 158



10.1. Busca local

Multi-Start Metaheuristic

• Gera uma solução aleatória inicial e aplique busca local nesta solução.

• Repita este procedimento por n vezes.

• Retorne a melhor solução encontrada.

• Problema: soluções aleatoriamente geradas em geral possuem baixa qua-
lidade.

Multi-Start

Algoritmo 10.4 (Multi-Start)
Entrada Número de repetições n.

Saída Solução s.

1 Multi_Start(n) :=
2 s∗ := ∅
3 f∗ :=∞
4 repeat n vezes
5 gera solução randômica s

6 s := BuscaLocal(s)
7 if f(s) < f∗ then
8 s∗ := s
9 f∗ := f(s)

10 end if
11 end repeat
12 return s∗

Cobrimento de Vértices

• Definição de vizinhança

• grafo sem vértices

• grafo estrela

• clique bipartido Ki,j

• grafo linha
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10. Heurísticas baseadas em Busca local

10.2. Metropolis e Simulated Annealing

O algoritmo Metropolis

• Proposto em 1953 por Metropolis, Rosenbluth, Rosenbluth, Teller e Teller

• Simula o comportamento de um sistema físico de acordo com a mecânica
estatística

• Supõe temperatura constante

– Um modelo básico define que a probabilidade de obter um sistema
num estado com energia E é proporcional à função e−E/kT de Gibbs-
Boltzmann, onde T > 0 é a temperatura, e k > 0 uma constante

– a função é monotônica decrescente em E: maior probabilidade de
estar em um sistema de baixa energia

– para T pequeno, a probabilidade de um sistema estar num estado de
baixa energia é maior que ele estar num em estado de alta energia

– para T grande, a probabilidade de passar para outra configuração
qualquer do sistema é grande

A distribuição de Boltzmann
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Algoritmo Metropolis

• Estados do sistema são soluções candidatas

• A energia do sistema é representada pelo custo da solução
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• Gere uma perturbação na solução s gerando uma solução s ′.

• Se E(s ′) ≤ E(s) atualize a nova solução para s ′.

• Caso contrário, 4E = E(s ′) − E(s) > 0.

• A solução s ′ passa ser a solução atual com probabilidade e−4E/kT

• Característica marcante: permite movimentos de melhora e, com baixa
probabilidade, também de piora

Metropolis

Algoritmo 10.5 (Metropolis)
Entrada Uma solução inicial s e uma temperatura T .

Saída Solução s ′ com c(s ′) ≤ c(s)

1 Metropolis(s, T , k)=
2 do
3 seleciona s ′ ∈ N (s) aleatoriamente
4 seja ∆ := c(s ′) − c(s)
5 if ∆ ≤ 0 then
6 atualiza s := s ′

7 else

8 atualiza s := s ′ com probabilidade e−
∆
T

9 end if
10 until critério de parada satisfeito
11 return s

Observação 10.1
Para T → ∞ o algoritmo executa um passeio aleatório no grafo das soluções
com a vizinhança definida. Para T → 0 o algoritmo se aproxima a uma busca
local. ♦

Simulated Annealing

• Simula um processo de recozimento.
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10. Heurísticas baseadas em Busca local

• Recozimento: processo da física que aquece um material a uma tempera-
tura bem alta e resfria aos poucos, dando tempo para o material alcançar
seu estado de equilíbrio

• Recozimento simulado: parte de uma alta temperatura e baixa gradual-
mente. Para cada temperatura, permite um número máximo de saltos
(dois laços encadeados)

Simulated Annealing

Algoritmo 10.6 (Simulated Annealing)
Entrada Solução inicial s, temperatura T , fator de esfriamento r ∈ (0, 1),

número inteiro I.

Saída Solução s ′ tal que f(s ′) ≤ f(s).

1 SimulatedAnnealing(s, T , k, r, I) :=
2 repeat sistema ‘‘esfriado ’’
3 repeat I vezes
4 seleciona s ′ ∈ N (s) aleatoriamente
5 seja ∆ := c(s ′) − c(s)
6 if ∆ ≤ 0 then
7 s := s ′

8 else
9 s := s ′ com probabilidade e−∆/T :

10 end fi
11 end repeat
12 T := rT
13 end repeat
14 return s

Determinando uma temperatura inicial e final adequada é importante para não
gastar tempo desnecessário com temperaturas em que o algoritmo se comporta
como passeio aleatório ou busca local.

Exemplo 10.2 (Temperatura inicial)
Define uma probabilidade pi. Executa uma versão rápida (I pequeno) do algo-
ritmo para determinar uma temperatura inicial tal que um movimento é aceito
com probabilidade pi. ♦

162



10.3. GRASP

Exemplo 10.3 (Temperatura final)
Define uma probabilidade pf. Para cada nível de temperatura em que os movi-
mentos foram aceitos com probabilidade menos que pf incrementa um contador.
Zera o contador caso uma nova melhor solução é encontrada. Caso o contador
chega em 5, termina. ♦

10.3. GRASP

GRASP

• GRASP: greedy randomized adaptive search procedure

• Proposto por Mauricio Resende e Thomas Feo (1989).

• Mauricio Resende: Pesquisador da AT&T, Departamento de Algoritmos
e Otimização

Figura 10.3.: Mauricio G.
C. Resende

GRASP

• Método multi-start, em cada iteração

1. Gera soluções com um procedimento guloso-randomizado.

2. Otimiza as soluções geradas com busca local.

Algoritmo 10.7 (GRASP)
Entrada Parâmetro α.

Saída A melhor solução encontrada.

1 GRASP(α, ...)=
2 s é alguma solução
3 do
4 s ′ := Guloso− Randomizado(α)
5 s ′ := BuscaLocal(s ′)
6 s := s ′ if f(s ′) < f(s)
7 until critério de parada satisfeito
8 return s
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10. Heurísticas baseadas em Busca local

Construção gulosa-randomizada

• Motivação: Um algoritmo guloso gera boas soluções inicias.

• Problema: Um algoritmo determinístico produz sempre a mesma solução.

• Logo: Aplica um algoritmo guloso, que não escolhe o melhor elemento,
mas escolhe randomicamente entre os α% melhores candidatos.

• O conjunto desses candidatos se chama restricted candidate list (RCL).

Construção gulosa-randomizada: Algoritmo guloso

1 Guloso () :=
2 S := ()
3
4 while S = (s1, . . . , si) com i < n do
5 entre todos candidatos C para si+1:
6 escolhe o melhor s ∈ C
7 S := (s1, . . . , si, s)
8 end while

Construção gulosa-randomizada: Algoritmo guloso

1 Guloso -Randomizado(α) :=
2 S := ()
3
4 while S = (s1, . . . , si) com i < n do
5 entre todos candidatos C para si+1:
6 forma a RCL com os α\% melhores candidatos em C

7 escolhe randomicamente um s ∈ RCL
8 S := (s1, . . . , si, s)
9 end while

GRASP

Algoritmo 10.8 (GRASP)
Entrada Parâmetro α.

Saída Uma solução s∗.
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1 GRASP(α)=

2 do
3 y := Guloso− Randomizado(α)
4 y := BuscalLocal(y)
5 atualiza a melhor solução s∗

6 until critério de parada satisfeito
7 return s∗

GRASP: Variações

• long term memory : hash table (para evitar otimizar soluções já vistas)

• Parâmetros: s0, N (x), α ∈ [0, 1] (para randomização), tamanho das listas
(conj. elite, rcl, hash table), número de iterações,

GRASP com memória

• O GRASP original não havia mecanismo de memória de iterações passa-
das

• Atualmente toda implementação de GRASP usa conjunto de soluções
elite e religação por caminhos (path relinking)

• Conjunto de soluções elite: conjunto de soluções diversas e de boa quali-
dade

– uma solução somente é inserida se for melhor que a melhor do con-
junto ou se for melhor que a pior do conjunto e diversa das demais

– a solução a ser removida é a de pior qualidade

• Religação por Caminhos: a partir de uma solução inicial, modifique um
elemento por vez até que se obtenha uma solução alvo (do conjunto elite)

• soluções intermediárias podem ser usadas como soluções de partida

Comparação entre as metaheurísticas apresentadas

• Metaheurísticas: Simulated annealing (SA), Multi-Start Search (MS),
GRASP
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10. Heurísticas baseadas em Busca local

• SA tem apenas um ponto de partida, enquanto que os outros dois métodos
testa diversos

• SA permite movimento de piora, enquanto que os outros dois métodos
não

• SA é baseado em um processo da natureza, enquanto que os outros dois
não

10.4. Busca Tabu

Busca Tabu (Tabu Search)

• Proposto por Fred Glover em 1986 (princípios básicos do método foram
propostos por Glover ainda em 1977)

• Professor da Universidade do Colorado, EUA

Figura 10.4.: Fred Glover
(*1937)

Busca Tabu (BT)

• Assim como em simulated annealing (SA) e VNS, TB é baseada inteira-
mente no processo de busca local, movendo-se sempre de uma solução s
para uma solução s ′

• Assim com em SA, também permite movimentos de piora

• Diferente de SA que permite movimento de piora por randomização, tal
movimento na BT é determinístico

• A base do funcionamento de Busca Tabu é o uso de memória segundo
algumas regras

• O nome Tabu tem origem na proibição de alguns movimentos durante a
busca

Busca Tabu (BT)

• Mantém uma lista T de movimentos tabu

• A cada iteração se move para o melhor vizinho, desde que não faça mo-
vimentos tabus
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• Permite piora da solução: o melhor vizinho pode ser pior que o vizinho
atual!

• São inseridos na lista tabu elementos que provavelmente não direcionam
a busca para o ótimo local desejado. Ex: último movimento executado

• o tamanho da lista tabu é um importante parâmetro do algoritmo

• Critérios de parada: quando todos movimentos são tabus ou se x movi-
mentos foram feitos sem melhora

Busca Tabu: Conceitos Básicos e notação

• s: solução atual

• s∗: melhor solução

• f∗: valor de s*

• N (s): Vizinhança de s.

• Ñ (s) ⊂ N (s): possíveis (não tabu) soluções vizinhas a serem visitadas

• Soluções: inicial, atual e melhor

• Movimentos: atributos, valor

• Vizinhança: original, modificada (reduzida ou expandida)

Movimentos Tabu

• Um movimento é classificado como tabu ou não tabu pelas regras de ati-
vação tabu

• em geral, as regras de ativação tabu classificam um movimento como tabu
se o movimento foi recentemente realizado

• Memória de curta duração (MCD) - também chamada de lista tabu:
usada para armazenar os movimentos tabu

• duração tabu (tabu tenure) é o número de iterações em que o movimento
permanecerá tabu

• dependendo do tamanho da MCD um movimento pode deixar de ser tabu
antes da duração tabu estabelecida
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10. Heurísticas baseadas em Busca local

• A MCD em geral é implementada como uma lista circular

• O objetivo principal da MCD é evitar ciclagem e retorno a soluções já
visitadas

• os movimentos tabu também colaboram para a busca se mover para outra
parte do espaço de soluções, em direção a um outro mínimo local

Busca Tabu

Algoritmo 10.9 (BuscaTabu)
Entrada uma solução s

Saída uma solução s ′ : f(s ′) ≤ f(s)

1 BuscaTabu ()=
2 Inicialização:
3 s := S0; f∗ := f(s0); s∗ := s0 ; T := ∅
4 while critério de parada não satisfeito
5 s ′ := seleciona s ′ ∈ Ñ (s) com min f(s)
6 if f(s) < f∗ then
7 f∗ := f(s); s∗ := s
8 insira movimento em T (a lista tabu)
9 end while

Busca Tabu (BT)

• critérios de parada:

– número de iterações (Nmax)

– número interações sem melhora

– quando s∗ atinge um certo valor mínimo (máximo) estabelecido

• Um movimento não é executado se for tabu, ou seja, se possuir um ou
mais atributos tabu-ativos

• Pode ser estabelecida uma regra de uso de um movimento tabu (critério
de aspiração)

– Critério de aspiração por objetivo: se o movimento gerar uma solu-
ção melhor que s∗, permite uso do movimento tabu
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– Critério de aspiração por direção: o movimento tabu é liberado se
for na direção da busca (de melhora ou piora)

Busca Tabu: mecanismos auxiliares

• intensificação: a idéia é gastar mais “esforço” em regiões do espaço de
busca que parece mais promissores. Isso pode ser feito de diversas manei-
ras (exemplo, guardar o número de interações com melhora consecutiva).
Nem sempre este a intensificação traz benefícios.

• Diversificação: recursos algorítmicos que forçam a busca para um espaço
de soluções ainda não explorados.

– uso de memória de longo prazo (exemplo, número de vezes que a
inserção de um elemento provocou melhora da solução)

– Estratégia básica: forçar a inserção de alguns poucos movimentos
pouco executados e reiniciar a busca daquele ponto

– Estratégia usada para alguns problemas: permitir soluções infactí-
veis durante algumas interações

Busca Tabu: variações

• Várias listas tabus podem ser utilizadas (com tamanhos, duração, e regras
diferentes)

• BT probabilístico: os movimentos são avaliados para um conjunto seleci-
onado aleatoriamente N ′(s) ∈ Ñ(s). Permite usar uma lista tabu menor,
acontece menos ciclagem.

• A duração tabu pode variar durante a execução

Comparação entre as metaheurísticas apresentadas até então

• Metaheurísticas: Simulated annealing (SA), Multi-Start Search (MSS),
GRASP, BT

• SA e BT têm apenas um ponto de partida, enquanto que os outros dois
métodos testa diversos

• SA e BT permitem movimentos de piora, enquanto que os outros dois
métodos não

• SA é baseado em um processo da natureza, enquanto que os outros mé-
todos não
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Parâmetros e decisões das metaheurísticas

• SA:

– Parâmetros: temperatura inicial, critério de parada, variável de res-
friamento

– Decisões: vizinhança, solução inicial

• GRASP:

– Parâmetros: s0, N(x), α ∈[0,1] (para randomização), tamanho das
listas (conj. elite, rcl, hash table), critério de parada

– Decisões: vizinhança, solução inicial (s0), randomização da s0, atu-
alizações do conjunto elite

• BT:

– Parâmetros: tamanho da lista tabu, critério de parada

– Decisões: vizinhaça, critérios para classificar movimento tabu

10.5. Variable Neighborhood Search

Variable Neighborhood Search

• Pierre Hansen e Mladenović, 1997

• Hansen é Professor na HEC Montréal, Canadá

Figura 10.5.: Pierre Hansen

Variable Neighborhood Search

• Método que explora mais que uma vizinhança.

• Explora sistematicamente as seguintes propriedades:

– O mínimo local de uma vizinhança não é necessariamente mínimo
para outra vizinhança

– Um mínimo global é um mínimo local com respeito a todas as vizi-
nhanças

– Para muitos problemas, os mínimos locais estão localizados relati-
vamente próximos no espaço de busca para todas as vizinhanças
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Os métodos usando k vizinhanças N1, . . . ,Nk sempre voltam a usar a primeira
vizinhança, caso um movimento melhora a solução atual. Caso contrário eles
passam para próxima vizinhança. Isso é o movimento básico:

Algoritmo 10.10 (Movimento)
Entrada Solução atual s, nova solução s ′, vizinhança atual k.

Saída Uma nova solução s e uma nova vizinhança k.

1 Movimento(s,s ′,k) :=
2 if f(s ′) < f(s) then
3 s := s ′

4 k := 1
5 else
6 k := k+ 1
7 end if
8 return (s, k)

Com isso podemos definir uma estratégia simples, chamada Variable Neigh-
borhood Descent (VND).

Algoritmo 10.11 (VND)
Entrada Solução inicial s, conjunto de vizinhanças Ni, i ∈ [m].

Saída Solução s.

1 VND(s,{Ni})=
2 k := 1
3 // até chegar num mínimo local
4 // para todas vizinhanças
5 while k ≤ m
6 encontra o melhor vizinho s ′ em Nk(s)
7 (s, k) := Movimento(s, s ′, k)
8 end while
9 return s

Uma versão randomizada é o reduced variable neighborhood search.
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Algoritmo 10.12 (rVNS)
Entrada Solução inicial s, conjunto de vizinhanças Ni, i ∈ [m].

Saída Solução s.

1 rVNS(s,{Ni})=
2 until critério de parada satisfeito
3 k := 1
4 while k ≤ m do
5 seleciona vizinho aleatório s ′ em Nk(s) { shake }
6 (s, k) := Movimento(s, s ′, k)
7 end while
8 end until
9 return s

Uma combinação do rVNS com uma busca local é o Variable Neighborhood
Search (VNS) básico.

Algoritmo 10.13 (VNS)
Entrada Solução inicial s, um conjunto de vizinhanças Ni, i ∈ [m].

Saída Solução s.

1 VNS(s,{Ni})=
2 until critério de parada satisfeito
3 k := 1
4 while k ≤ m do
5 seleciona vizinho aleatório s ′ em Nk(s) { shake }
6 s ′′ := BuscaLocal(s ′)
7 (s, k) := Movimento(s, s ′′, k)
8 end until
9 return s

Observação 10.2
A busca local em VNS pode usar uma vizinhança diferente das vizinhanças que
perturbam a solução atual. Também é possível usar o VND no lugar da busca
local. ♦
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10.6. Algoritmo Guloso Iterado

Algoritmos de construção repetida independente como GRASP e Multi-Start
criam diversas soluções durante a execução, mas não utilizam a informação
obtida por iterações anteriores para ajudar na composição de novas soluções.
O algoritmo guloso iterado proposto por Ruiz e Stützle (2007) utiliza parte da
solução encontrada anteriormente para tentar achar uma nova solução melhor.
O algoritmo guloso iterado cria uma solução inicial e iterativamente destrói e
reconstrói soluções de forma a gerar soluções novas. A cada etapa parte da
solução é removida. tornando a solução parcial, então o algoritmo gera uma
nova solução completa de forma gulosa à partir dessa solução parcial. Uma
vez gerada a solução nova verificamos se a solução será aceita ou descartada.
Caso ela seja melhor que a solução atual ela é aceita, caso seja pior é aceita
com chance dada pela perda de qualidade utilizando o critério de Metropolis.
O pseudo-código está no Algoritmo 10.14.

Algoritmo 10.14 (Busca Gulosa Iterada)
Entrada: Número de repetições n, temperatura T , uma solução ini-
cial s.

Saída: Melhor solução encontrada s∗.

1 IG(s):=
2 s∗ = s
3 for n vezes
4 s′ = s
5 Destrói parte de s′

6 Reconstrói s′ gulosamente.
7 ∆ = f(s′) − f(s)
8 if ∆ ≤ 0 then
9 s = s′

10 if f(s) < f(s∗) then
11 s∗ = s
12 else

13 s = s′ com probabilidade e−
∆
T

14 end if
15 end for
16 return s∗
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No algoritmo utilizamos um número fixo de iterações mas podemos utilizar a
qualidade da solução ou o tempo de execução como critério de parada. Note que
utilizamos o a mesma estratégia que o algoritmo de Metropolis para permitir
soluções a transição para soluções qualidade pior que a anterior, entretanto não
utilizamos resfriamento (como utilizado na Têmpera Simulada). A destruição e
reconstrução em sequencia podem ser consideradas uma perturbação da solução
atual, pois podemos ter uma solução nova de qualidade melhor ou pior, portanto
pode ser útil colocar algum método de melhoria, como uma busca local, após
a reconstrução.
No caso do caixeiro viajante podemos fazer a destruição removendo um número
constante de arestas aleatórias do ciclo hamiltoniano, e a reconstrução com a
heurítica do vizinho mais próximo. No caso da max-SAT podemos tornar alguns
bits aleatórios não definidos para destruir parte da solução, então construímos
uma nova solução completa re-definindo estes bit em (ordem aleatória), cada
vez maximizando o número de cláusulas satisfeitas.
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11.1. Algoritmos Genéticos e meméticos

Algoritmos Genéticos

• Proposto na década de 60 por Henry Holland.

• Professor da Faculdade de Engenharia Elétrica e de Computação da Uni-
versidade de Michigan/EUA.

• Seu livro: Adaptation in Natural and Artificial Systems (1975).

Figura 11.1.: John Henry
Holland (*1929,+2015)

Algoritmos genéticos

• Foi proposto com o objetivo de projetar software de sistemas artificiais
que reproduzem processos naturais.

• Baseados na evolução natural das espécies.

• Por Darwin: indivíduos mais aptos têm mais chances de perpetuar a
espécie.

• Mantém uma população de soluções e não uma única solução por vez.

• Usa regras de transição probabilísticas, e não determinísticas.

• Procedimentos: avaliação, seleção, geração de novos indivíduos (recom-
binação), mutação.

• Parada: número x de gerações total, número y de gerações sem melhora.

Algoritmos genéticos: Características

• Varias soluções (“população”).

• Operações novas: Recombinação e mutação.

• Separação da representação (“genótipo”) e formulação “natural” (fenó-
tipo).
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Algoritmos Genéticos: Noções

• Genes: Representação de um elemento (binário, inteiro, real, arco, etc)
que determine uma característica da solução.

• Alelo: Instância de uma gene.

• Cromossomo: Uma string de genes que compõem uma solução.

• Genótipo: Representação genética da solução (cromossomos).

• Fenótipo: Representação “física” da solução.

• População: Conjunto de cromossomos.

Algorítmos genéticos: Representação e Solução

Algoritmos Genéticos: exemplos

• Problema de partição de conjuntos

Alelos: 0 ou 1

Cromossomo: 0001101010101011110110

• Problema do Caixeiro viajante

Alelos: valores inteiros entre 1 e n

Cromossomo: 1 5 3 6 8 2 4 7
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Procedimentos dos Algoritmos Genéticos

• Codificação: genes e cromossomos.

• Initialização: geração da população inicial.

• Função de Avaliação (fitness): função que avalia a qualidade de uma
solução.

• Seleção de pais: seleção dos indivíduos para crossover.

• Operadores genéticos: crossover, mutação

• Parâmetros: tamanho da população, percentagem de mutação, critério
de parada

Algoritmos Genéticos

Algoritmo 11.1 (AlgoritmoGenético)
Entrada Parâmetros do algoritmo.

Saída Melhor solução encontrada para o problema.

1 Inicialização e avalição inicial
2 while (critério de parada não satisfeito) do
3 repeat
4 if (critério para recombinação) then
5 selecione pais
6 recombina e gera um filho
7 end if
8 if (critério para mutação) then
9 aplica mutação
10 end if
11 until (descendentes suficientes)
12 selecione nova população
13 end while

População Inicial: geração

• Soluções aleatórias.

• Método construtivo (ex: vizinho mais próximo com diferentes cidades de
partida).
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• Heurística construtiva com perturbações da solução.

• Pode ser uma mistura das opções acima.

População inicial: tamanho

• População maior: Custo alto por iteração.

• Populaçao menor: Cobertura baixa do espaço de busca.

• Critério de Reeves: Para alfabeto binário, população randômica:
Cada ponto do espaço de busca deve ser alcancável através de recombi-
nações.

• Consequencia: Probabilidade que cada alelo é presente no gene i: 1−21−n.

• Probabilidade que alelo é presente em todos gene: (1− 21−n)l.

• Exemplo: Com l = 50, para garantir cobertura com probabilidade 0.999:

n ≥ 1− log2
(
1−

50
√
0.999

)
≈ 16.61

Terminação

• Tempo.

• Número de avaliações.

• Diversidade. Exemplo: Cada gene é dominado por um alelo, i.e. 90% dos
indivíduos tem o mesmo alelo.

Próxima Geração

• Gerada por recombinação e mutação (soluções aleatórias ou da população
anterior podem fazer parte da próxima geração).

• Estratégias:

– Recombinação e mutação.

– Recombinação ou mutação.

• Regras podem ser randomizadas.

• Exemplo: Taxa de recombinação e taxa de mutação.

• Exemplo: Número de genes mutados.
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Mutação

• Objetivo: Introduzir elementos diversificados na população e com isso
possibilitar a exploração de uma outra parte do espaçõ de busca.

• Exemplo para representação binária: flip de k bits.

• Exemplo para o PCV: troca de posição entre duas cidades.

Recombinação

• Recombinação (ingl. crossover): combinar características de duas solu-
ções para prover uma nova solução potencialmente com melhor fitness.

• Explora o espaço entre soluções.

• Crossover clássicos: one-point recombinação e two-points recombinação.

One-point crossover
Escolha um número aleatório k entre 1 e n. Gere um filho com os primeiros k
bits do pai A e com os últimos n− k bits do pai B

• Problema de particação: aplicação direta do conceito

• Problema do Caixeiro Viajante: copie os primeiros k elementos do pai A
e as demais n− k posições preenche com as cidades faltantes, segundo a
ordem em que elas aparecem no pai B

Figura 11.2.: Recombina-
ção de um ponto.Recombinação de dois pontos

Figura 11.3.: Recombina-
ção de dois pontos.

Exemplo: Strategic Arc Crossover

• Selecione todos os pedaçõs de rotas (string) com 2 ou mais cidades que
são iguais nas duas soluções

• Forme uma rota através do algoritmo de vizinho mais próximo entre os
pontos extremos dos strings
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Recombinação: Seleção dos pais

• A probabilidade de uma solução ser pai num processo de crossover deve
depender do seu fitness.

• Variações:

– Probabilidade proporcional com fitness.

– Probabilidade proporcional com ordem.

Estratégia adotada pelos operadores
Inúmeros operadores podem ser propostos para cada problema. O ideal é
combinar características do operador usado, com outros operadores (mutação,
busca local) usados no GA. Basicamente um crossover é projetado da seguinte
forma:

• Encontre similaridades entre A e B e insira S = A ∩ B no filho.

• Defina conjuntos Sin e Sout de características desejáveis e não desejáveis.

• Projete um operador que mantenha ao máximo elementos de S e Sin,
minimizando o uso de elementos de Sout.

Nova População

• Todos os elementos podem ser novos.

• Alguns elementos podem ser herdados da população anterior.

• Elementos novos podem ser gerados.

• Exemplos, com população de tamanho λ que gera µ filhos.
(λ, µ) Seleciona os λ melhores dos filhos.
(λ+ µ) Seleciona os λ melhores em toda população.

Estrutura da População
Em geral, população estruturada garante melhores resultados. A estrutura
da população permite selecionar pais para crossover de forma mais criteriosa.
Algumas estruturas conhecidas

• Divisão em Castas: 3 partições A, B e C (com tamanhos diferentes),
sendo que os melhores indivíduos estão em A e os piores em C.
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• Ilhas: a população é particionada em subpopulações que evoluem em
separado, mas trocam indivíduos a cada período de número de gerações.

• População organizada como uma árvore.

Exemplo: População em castas

• Recombinação: Somente entre indivíduos da casta A e B ou C para man-
ter diversidade.

• Nova população: Manter casta ”elite” A, re-popular casta B com filhos,
substituir casta C com soluções randômicas.

Exemplo: População em árvore

• Considere uma árvore ternária completa, em que cada nó possui duas
soluções (pocket e current).

• A solução current é a solução atual armazenada naquela posição da ár-
vore.

• A solução pocket é a melhor já tida naquela posição desde a primeira
geração.

• A cada solução aplique exchange (se a solução current for melhor que a
pocket, troque-as de posição)

• Se a solução pocket de um filho for melhor que a do seu pai, troque o nó
de posição.

Algoritmos Meméticos

• Proposto por Pablo Moscato, Newcastle, Austrália.

• Ideía: Informação “cultural” pode ser adicionada a um indivíduo, gerando
um algoritmo memético.

• Meme: unidade de informação cultural.

Figura 11.4.: Pablo Mos-
cato
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11. Heurísticas inspirados da natureza

Algoritmos Meméticos

• Um procedimento de busca local pode inserir informação de boa quali-
dade, e não genética (memes).

• Faz uso de um procedimento de busca local (em geral aplicado à solução
gerada pelo procedimento de recombinação).

• Geralmente trabalha com populações menores.

Comparação entre as Metaheurísticas Apresentadas

• Quais que dependem de randomização? SA, GRASP, GA

• Quais que geram apenas uma solução inicial em todo processo? BT, SA

• Quais mantêm um conjunto de soluções, em vez de considerar apenas
uma? GA

• Quais são inspiradas em processos da natureza? GA, BT

• Qual gera os melhores resultados?

Existem outras Metaheurísticas
Handbook of Metaheuristics, por Fred W. Glover (Editor), Gary A. Kochen-
berger (Editor) Kluwer 2002.

Considerações Finais

• O desempenho de uma metaheurística depende muito de cada implemen-
tação

• As metaheurísticas podem ser usadas de forma hibridizada

• Técnicas de otimização multiobjetivo tratam os casos de problemas com
mais de um objetivo (Curva de pareto)
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11.1. Algoritmos Genéticos e meméticos

Exercício

• Problema de alocação: atender n clientes por m postos de atendimento
(um posto é instalado no local onde se encontra um cliente)

• Entrada: distâncias entre cada par de clientes

• Problema: Determinar em que locais instalar os postos, de forma a mini-
mizar a soma das distâncias de cada cliente a um ponto de atendimento

• Propor uma heurística construtiva e uma busca local.

Comparação entre as Metaheurísticas

• Quais que permitem movimento de piora? BT, SA

• Quais que não dependem de randomização? BT

• Quais que geram apenas uma solução inicial em todo processo? BT, SA

• Quais mantêm um conjunto de soluções, em vez de considerar apenas
uma?

• Qual gera os melhores resultados?
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A. Conceitos matemáticos

N, Z, Q e R denotam os conjuntos dos números naturais sem 0, inteiros, racio-
nais e reais, respectivamente. Escrevemos também N0 = N∪ {0}, para qualquer
conjunto C, C+ := {x ∈ C|x > 0} e C− := {x ∈ C | x < 0}. Por exemplo

R+ = {x ∈ R | x > 0}.1

Para um conjunto finito S, P(S) denota o conjunto de todos subconjuntos de
S.
A = (aij) ∈ Fm×n denota uma matriz de m linhas e n colunas com elementos
em F, ai, com ati ∈ Fn a i-ésigma linha e aj ∈ Fm a j-ésima coluna de A.

Definição A.1 (Pisos e tetos)
Para x ∈ R o piso bxc é o maior número inteiro menor que x e o teto dxe é o
menor número inteiro maior que x. Formalmente

bxc = max{y ∈ Z | y ≤ x}
dxe = min{y ∈ Z | y ≥ x}

O parte fracionário de x é {x} = x− bxc.

Observe que o parte fracionário sempre é positivo, por exemplo {−0.3} = 0.7.

Proposição A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem

x ≤ dxe < x+ 1 (A.1)
x− 1 < bxc ≤ x (A.2)

1Alguns autores usam R+.
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B. Formatos

Este capítulo contém um breve resumo dos formatos CPLEX lp, Julia/JuMP
e AMPL/MathProg usados para especificar problemas de otimização linear.
CPLEX LP é um formato simples, AMPL1 é uma linguagem completa para
definir problemas de otimização, com elementos de programação, comandos in-
terativos e um interface para diferentes resolvedores de problemas. Por isso
CPLEX LP serve para modelos pequenos. Aprender AMPL precisa mais in-
vestimento, que rende em aplicações maiores. AMPL tem o apoio da maioria
das ferramentas disponíveis.
Vários outros formatos estão em uso, a maioria deles comerciais. Exemplos são
ZIMPL, GAMS, LINGO, e MPS (Mathematical programming system).

B.1. CPLEX LP

Uma gramática simplificada2 do formato CPLEX LP é

〈specification〉 ::= 〈objective〉
〈restrictions〉?
〈bounds〉
〈general〉?
〈binary〉?
‘End’

〈objective〉 ::= 〈goal〉 〈name〉? 〈linear expression〉

〈goal〉 ::= ‘MINIMIZE’ | ‘MAXIMIZE’ | ‘MIN’ | ‘MAX’

〈restrictions〉 ::= ‘SUBJECT TO’ 〈restriction〉+

〈restriction〉 ::= 〈name〉? 〈linear expression〉 〈cmp〉 〈number〉

〈cmp〉 ::= ‘<’ | ‘<=’ | ‘=’ | ‘>’ | ‘>=’

1A sigla AMPL significa “A mathematical programming language”. O nome também sugere
uma funcionalidade “ampla” (“ample” em inglês).

2A gramática não contém as especificações “semi-continuous” e “SOS”.
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〈linear expression〉 ::= 〈number〉 〈variable〉 ( (’+’ | ’-’) 〈number〉 〈variable〉 )*

〈bounds〉 ::= ‘BOUNDS’ 〈bound〉+

〈bound〉 ::= 〈name〉? ( 〈limit〉 ‘<=’ 〈variable〉 ‘<=’ 〈limit〉
| 〈limit〉 ‘<=’ 〈variable〉
| 〈variable〉 ‘<=’ 〈limit〉
| 〈variable〉 ‘=’ 〈number〉
| 〈variable〉 ‘free’ )

〈limit〉 ::= ‘infinity’ | ‘-infinity’ | 〈number〉

〈general〉 ::= ‘GENERAL’ 〈variable〉+

〈binary〉 ::= ‘BINARY’ 〈variable〉+

Todas variáveis x tem a restrição padrão 0 ≤ x ≤ +∞. Caso outros limi-
tes são necessárias, eles devem ser informados na seção “BOUNDS”. As seções
“GENERAL” e “BINARY” permitem restringir variáveis para Z e {0, 1}, respec-
tivamente.
As palavras-chaves também podem ser escritas com letras minúsculas: o for-
mato permite algumas abreviações não listadas acima (por exemplo, escrever
“s.t” ou “st” ao invés de “subject to”).
Um comentário até o final da linha inicia com “\”. Uma alternativa são comen-
tários entre “\*” e “*\”.

Exemplo B.1 (Problema (1.1) no formato CPLEX LP)
1 Maximize
2 lucro: 0.2 c + 0.5 s
3
4 Subject To
5 ovo: c + 1.5 s <= 150 \ um comentário
6 acucar: 50 c + 50 s <= 6000
7 client1:c <= 80
8 client2:s <= 60
9
10 Bounds
11 0 <= c
12 0 <= s
13 End

♦
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B.2. Julia/JuMP

Exemplo B.2
Problema de mochila 0-1 com 11 itens em formato CPLEX LP.

1 max 19x1+87x2+97x3+22x4+47x5+22x6+30x7+5x8+32x9+54 x10 +75x11
2 s.t
3 1x1+96x2+67x3+90x4+13x5+74x6+22x7+86x8+23x9+63x10+89x11 <= 624
4 binary x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
5 end

♦

Observação B.1
CPLEX LP permite constantes como 0.5e6 que representa 0.5 × 106. Ou-
tra interpretação dessa expressão é 0.5 vezes a variável e6. Para evitar essa
ambiguidade, variáveis não podem começar com a letra e. ♦

B.2. Julia/JuMP

Julia é uma linguagem para programação científica e JuMP (Julia for Mathema-
tical Programming) uma biblioteca que permite embutir programas matemáti-
cos diretamente em código Julia. Isso tem a vantagem de poder ler e processar
os dados antes da solução, resolver, e continuar trabalhar com o resultado no
mesmo programa.

Exemplo B.3 (Problema (1.1) em Julia/JuMP)
#!/usr/bin/env julia

using JuMP
using GLPKMathProgInterface

m = Model(solver=GLPKSolverMIP())

@variable(m, c)
@variable(m, s)

@objective(m, Max, 0.2*c+0.5*s)

@constraint(m, c + 1.5*s <= 150)
@constraint(m, 50*c + 50*s <= 6000)
@constraint(m, c <= 80)
@constraint(m, s <= 60)

status = solve(m)
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if status == :Optimal
println("A solução ótima é c=$(getvalue(c)) e
s=$(getvalue(s)) de valor $(getobjectivevalue(m)).")↪→

end

♦

Diferente do CPLEX lp, Julia/JuMP permite expressar um único modelo para
um problema e resolver para diferentes instâncias.

Exemplo B.4 (Exemplo (1.3) em Julia/JuMP)
#!/usr/bin/env julia

using JuMP
using GLPKMathProgInterface

n = 3
m = 3
a = [5,7,3]
b = [7,3,5]
c = [[3,4,100] [1,2,3] [100,4,3]]

mm = Model(solver=GLPKSolverMIP())

@variable(mm, x[1:m,1:n] >= 0)

@objective(mm, Min, sum(c[i,j]*x[i,j] for i=1:m, j=1:n))

@constraint(mm, [i=1:m], sum(x[i,j] for j=1:n) <= a[i])
@constraint(mm, [j=1:n], sum(x[i,j] for i=1:m) == b[j])

status = solve(mm)

if status == :Optimal
println("A solução ótima é x=$(getvalue(x)) de valor
$(getobjectivevalue(mm)).")↪→

end

♦
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B.3. AMPL

Objetos de modelagem

• Um modelo em AMPL consiste em

– parâmetros,

– variáveis,

– restrições, e

– objetivos

• AMPL usa conjuntos (ou arrays de múltiplas dimensões)

A : I→ D

que mapeiam um conjunto de índices I = I1 × · · · × In para valores D.

Formato

• Parte do modelo

s1
...
sn
end;

com si sendo um comando ou uma declaração.

• Parte de dados

data
d1
...
dn
end;

com di sendo uma especificação de dados.

Tipo de dados

• Números: 2.0,-4

• Strings: ’Comida’

• Conjuntos: {2,3,4}
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Expressões numéricas

• Operações básicas: +,-,*,/,div,mod,less,**

Exemplo: x less y

• Funções: abs,ceil,floor,exp

Exemplo: abs(-3)

• Condicional: if x>y then x else y

Expressões sobre strings

• AMPL converte números automaticamente em strings

• Concatenação de strings: &

Exemplo: x & ’ unidades’

Expressões para conjuntos de índices

• Uma dimensão

– t in S: variável “dummy” t, conjunto S

– (t1,...tn) in S: para conjuntos de tuplos

– S: sem nomear a variável

• Multiplas dimensões

– {e1,...,en} com ei uma dimensão (acima).

• Variáveis “dummy” servem para referenciar e modificar.

Exemplo: (i-1) in S
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Conjuntos

• Conjunto básico: {v1,...,vn}

• Valores: Considerados como conjuntos com conjunto de índices de dimen-
são 0

• Índices: [i1,...,in]

• Sequências: n1 ... n2 by d ou n1 ... n2

• Construção: setof I e: {e(i1, . . . , in) | (i1, . . . , in) ∈ I}

Exemplo: setof {j in A} abs(j)

Operações de conjuntos

• X union Y: União X ∪ Y

• X diff Y: Diferença X \ Y

• X symdiff Y: Diferença simétrica (X \ Y) ∪ (Y \ X)

• X inter Y: Intersecção X ∩ Y

• X cross Y: Produto cartesiano X× Y

Expressões lógicas

• Interpretação de números: n vale “v”, sse n 6= 0.

• Comparações simples: <,<=,= ou ==,>=,>,<> ou !=

• Pertinência: x in Y, x not in Y, x !in Y

• Subconjunto: X within Y, X !within Y, X not within Y

• Operadores lógicos: && ou and, || ou or, ! ou not

• Quantificação: com índices I, expressão booleana b

forall I b:
∧

(i1,...,in)∈I b(i1, . . . , in)

exists I b
∨

(i1,...,in)∈I b(i1, . . . , in)
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Declarações: Conjuntos
set N I [dimen n] [within S] [default e1] [:= e2]

param N I [in S] [<=,>=,!=,... n] [default e1] [:= e2]

• Nome N

• Conjunto de índices I (opcional)

• Conjunto de valores S

• Valor default e1

• Valor inicial e2

Declarações: Restrições e objetivos
subject to N I : e1 = e2 | e1 <= e2, e1 >= e2

minimize [I] : e

maximize [I] : e

Comandos

• solve: Resolve o sistema.

• check [I] : b: Valida expressão booleana b, erro caso falso.

• display [I] : e1,...en: Imprime expressões e1, . . . , en.

• printf [I] : fmt,e1,...,en: Imprime expressões e−1, . . . , en usando
formato fmt.

• for I : c, for I : {c1 ... cn}: Laços.

Dados: Conjuntos
set N r1,...rn

Com nome N e records r1, . . . , rn, cada record
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• um tuplo: v1, . . . , vn
Exemplo: 1 2, 1 3, 2 2, 2 7

• a definição de uma fatia (v1|∗, v2|∗, . . . , vn|∗): depois basta de listar os
elementos com ∗.
Exemplo: (1 *) 2 3, (2 *) 2 7

• uma matriz

: c1 c2 ... cn :=
r1 a11 a12 ... a1n
r2 a21 a22 ... a2n

...
rm am1 am2 ... amn

com aij “+”/”-” para inclusão/exclusão do par “ri cj” do conjunto.

Dados: Parâmetros
param N r1,...rn

Com nome N e records r1, . . . , rn, cada record

• um valor i1, . . . , in, v

• a definição de uma fatia [i1|∗, i2|∗, . . . , in|∗): depois basta definir índices
com ∗.

• uma matriz

: c1 c2 ... cn :=
r1 a11 a12 ... a1n
r2 a21 a22 ... a2n

...
rm am1 am2 ... amn

com aij o valor do par “ri cj”.

• uma tabela

param default v : s : p1 p2 ... pk :=
t11 t12 ... t1n a11 a12 ... a1k
t21 t22 ... t2n a21 a22 ... a2k

...
tm1 tm2 tmn am1 am2 ... amk

para definir simultaneamente o conjunto
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set s := (t11 t12 ... t1n), ... , (tm1 tm2 ... tmn);

e os parâmetros

param p1 default v := [t11 t12 ... t1n] a11, ..., [tm1 tm2
... tmn] am1;↪→

param p2 default v := [t11 t12 ... t1n] a12, ..., [tm1 tm2
... tmn] am2;↪→

...
param pk default v := [t11 t12 ... t1n] a1k, ..., [tm1 tm2

... tmn] amk;↪→
Exemplo B.5 (Exemplo (1.1) em AMPL)
var c; # número de croissants
var s; # número de strudels
param lucro_croissant; # o lucro por croissant
param lucro_strudel; # o lucro por strudel
maximize lucro: lucro_croissant*c+lucro_strudel*s;
subject to ovo: c+1.5*s <= 150;
subject to acucar: 50*c+50*s <= 6000:
subject to croissant: c <= 80;
subject to strudel: s <= 60;

♦

Exemplo B.6 (Exemplo (1.3) em AMPL)
param n; # número de clientes
param m; # número de fornecedores
param a { 1..m }; # estoque
param b { 1..n }; # demanda
param c { 1..m, 1..n }; # custo transporte
var x { 1..m,1..n } >= 0;

minimize custo:
sum { i in 1..m, j in 1..n } c[i,j]*x[i,j];

subject to limiteF { i in 1..m }:
sum { j in 1..n } x[i,j] <= a[i];

subject to limiteC { j in 1..n }:
sum { i in 1..m } x[i,j] = b[j];

data;
param n := 3;
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param m := 3;
param a := 1 5, 2 7, 3 3;
param b := 1 7, 2 3, 3 5;
param c : 1 2 3 :=
1 3 1 100
2 4 2 4
3 100 3 3;
end;

♦
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C. Soluções dos exercícios

Solução do exercício 1.3.

maximiza 2A+ B,

sujeito a A ≤ 6000,
B ≤ 7000,
A+ B ≤ 10000,
A, B ≥ 0.

Resposta: A = 6000, B = 4000, e Z = 16000.

Solução do exercício 1.4.
São necessárias cinco variáveis:

• x1: número de pratos de lasanha comidos por Marcio

• x2: número de pratos de sopa comidos por Marcio

• x3: número de pratos de hambúrgueres comidos por Renato

• x4: número de pratos de massa comidos por vini

• x5: números de pratos de sopa comidos por vini

Formulação:

maximiza x1 + x2 + x3 + x4 + x5,

sujeito a 4 ≥ x1 + x2 ≥ 2,
5 ≥ x3 ≥ 2,
4 ≥ x4 + x5 ≥ 2,
70(x2 + x5) + 200x1 + 100x3 + 30x4 ≤ 1000,
30(x2 + x5) + 100x1 + 100x3 + 100x4 ≤ 800.
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Solução do exercício 1.5.

maximiza l1 + 2l2,

sujeito a l2 ≤ 60,
l1 + 3l2 ≤ 200,
2l1 + 2l2 ≤ 300,
l1, l2 ≥ 0.

Solução do exercício 1.6.

maximiza 60m+ 30a,

sujeito a m ≤ 6,
a ≤ 4,
6m+ 8a ≤ 48,
m, a ≥ 0.

Solução do exercício 1.8.
Com marcas J,O,M (Johnny Ballantine, Old Gargantua, Misty Deluxe) e mis-
turas A,B,C temos as variáveis

xJ,A, xJ,B, xJ,C, xO,A, xO,B, xO,C, xM,A, xM,B, xM,C

que denotam o número de garrafas usadas por mistura.
Vamos introduzir ainda as variáveis auxiliares para o número de garrafas usadas
de cada marca

xJ = xJ,A + xJ,B + xJ,C,

xO = xO,A + xO,B + xO,C,

xM = xM,A + xM,B + xM,C

e variáveis auxiliares para o número de garrafas produzidas de cada mistura

xA = xJ,A + xO,A + xM,A,

xB = xJ,B + xO,B + xM,B,

xC = xJ,C + xO,C + xM,C.
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Queremos maximizar o lucro em reais

68xA + 57xB + 45xC − (70xJ + 50xO + 40xM)

respeitando os limites de importação

xJ ≤ 2000,
xO ≤ 2500,
xM ≤ 1200

e os limites de percentagem

xJ,A ≥ 0.6xA,
xM,A ≤ 0.2xA,
xJ,B ≥ 0.15xB,
xM,B ≤ 0.6xB,
xM,C ≤ 0.5xC.

Portanto, o sistema final é

maximiza 68xA + 57xB + 45xC

− (70xJ + 50xO + 40xM),

sujeito a cxJ ≤ 2000,
xO ≤ 2500,
xM ≤ 1200,
xJ,A ≥ 0.6xA,
xM,A ≤ 0.2xA,
xJ,B ≥ 0.15xB,
xM,B ≤ 0.6xB,
xM,C ≤ 0.5xC,
xm = xm,A + xm,B + xm,C m ∈ {J,O,M},

xm = xJ,m + xO,m + xM,m m ∈ {A,B,C},

xm,n ≥ 0 m ∈ {J,O,M}, n ∈ {A,B,C}.

Sem considerar a integralidade a solução ótima é produzir 2544.44 garrafas da
mistura A, 3155.56 garrafas da mistura B e 0 garrafas da mistura C, com as
percentagens

• A: 60% Johnny Ballantine, 20% Old Gargantua, 20% Misty Deluxe
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• B: 15% Johnny Ballantine, 63% Old Gargantua, 22% Misty Deluxe

Solução do exercício 1.9.
Com t1 o número de TVs de 29" e t2 de 31" temos

maximiza 120t1 + 80t2,

sujeito a t1 ≤ 40,
t2 ≤ 10,
20t1 + 10t2 ≤ 500,
t1, t2 ≥ 0.

Solução do exercício 1.10.
Seja V = {V1, V2} e NV = {NV1, NV2, NV3} os conjuntos de óleas vegetais e não
vegetais e O = V ∪ NV o conjunto do todos óleos. Seja ainda ci o custo por
tonelada do óleo i ∈ O e ai a acidez do óleo i ∈ O. (Por exemplo cV1 = 110

e aNV2 = 4.2.) Com variáveis xi (toneladas refinadas do óleo i ∈ O) e xo
(quantidade total de óleo produzido) podemos formular

maximiza 150xo −
∑
i∈O

cixi,

sujeito a
∑
i∈V

xi ≤ 200, limite óleos vegetais∑
i∈NV

xi ≤ 250, limite óleos não vegetais

3xo ≤
∑
i∈O

aixi ≤ 6xo, Intervalo acidez∑
i∈O

xi = xo, Óleo total

xo, xi ≥ 0, ∀i ∈ O.

Solução do exercício 1.11.
Sejam xA, xB e xC o número de horas investidos para cada disciplina. Vamos
usar variáveis auxiliares nA, nB e nC para as notas finais das três disciplinas.
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Como isso temos o programa linear

maximiza nA + nB + nC,

sujeito a xA + xB + xC = 100, Total de estudo
nA = (6+ xA/10)/2, Nota final disc. A
nB = (7+ 2xB/10)/2, Nota final disc. B
nC = (10+ 3xC/10)/2, Nota final disc. C
nA ≥ 5, Nota mínima disc. A
nB ≥ 5, Nota mínima disc. B
nC ≥ 5, Nota mínima disc. C
nA ≤ 10, Nota máxima disc. A
nB ≤ 10, Nota máxima disc. B
nC ≤ 10, Nota máxima disc. C
nA, nB, nC ≥ 0.

Solução do exercício 1.12.
Sejam r ∈ R e f ∈ R o número de canecos do Duff regular e do Duff Forte,
respectivamente, encomendados por semana. Com isso podemos formular

maximiza r+ 1.5f, (C.1)
sujeito a 2f ≤ r, (C.2)

r+ f ≤ 3000, (C.3)
r, f ∈ R+. (C.4)

Solução do exercício 1.13.
Sejam f ∈ R e h ∈ R o número de pacotes de Frisky Pup e Husku Hound
produzidos, respectivamente. Com isso podemos formular

maximiza 1.6f+ 1.4h, (C.5)
sujeito a f+ 2h ≤ 240000, (C.6)

1.5f+ h ≤ 180000, (C.7)
f ≤ 110000, (C.8)
f, h ∈ R+. (C.9)
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C. Soluções dos exercícios

Solução do exercício 1.14.

maximiza 25p+ 30c,

sujeito a p/200+ c/140 ≤ 40⇐⇒ 7p+ 10c ≤ 56000,
p ≤ 6000,
c ≤ 4000,
c, p ≥ 0.

0 1000 2000 3000 4000 5000 6000 7000 8000
Placas p

0

1000

2000

3000

4000

5000

6000

C
an

os
 c

(56000-7*x)/10

c=4000

c=80

Soluções viáveis

Produzindo aço

192K

50K 100K 150K

A solução ótima é p = 6000, c = 1400 com valor 192000.

Solução do exercício 1.15.
Usamos índices 1, 2 e 3 para os vôos Pelotas–Porto Alegre, Porto Alegre–
Torres e Pelotas–Torres e variáveis a1, a2, a3 para a categoria A, b1, b2, b3 para
categoria B e c − 1, c2, c3 para categoria C. A função objetivo é maximizar o
lucro

z = 600a1 + 320a2 + 720a3 + 440b1 + 260b2 + 560b3 + 200c1 + 160c2 + 280c3.
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Temos que respeitar os limites de capacidade

a1 + b1 + c1 + a3 + b3 + c3 ≤ 30,
a2 + b2 + c2 + a3 + b3 + c3 ≤ 30,

e os limites da predição

a1 ≤ 4, a2 ≤ 8, a3 ≤ 3,
b1 ≤ 8, b2 ≤ 13, b3 ≤ 10,
c1 ≤ 22, c2 ≤ 20, c3 ≤ 18

Obviamente, todas variáveis também devem ser positivos.

Solução do exercício 1.16.
A solução gráfica é

0 1 2 3 4 5 6
x1

0

1

2

3

4

5

6

x 2

Soluções viáveis

-x1+x2≤ 2

x1+8x2≤ 36

x2≤ 4

x1≤ 4.25

10

20

(a) A solução ótima é x1 = 4.25, x2 ≈ 4 (valor exato x2 = 3.96875).

(b) O valor da solução ótima é ≈ 21 (valor exato 20.96875).

Solução do exercício 1.17.
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C. Soluções dos exercícios

maximiza z = 5x1 + 5x2 + 5x3,

sujeito a − 6x1 − 2x2 − 9x3 ≤ 0,
− 9x1 − 3x2 + 3x3 ≤ 3,
9x1 + 3x2 − 3x3 ≤ −3,

x1, x2, x3 ≥ 0.

maximiza z = −6x1 − 2x2 − 6x3 + 4x4 + 4x5,

sujeito a − 3x1 − 8x2 − 6x3 − 7x4 − 5x5 ≤ 3,
3x1 + 8x2 + 6x3 + 7x4 + 5x5 ≤ −3,

5x1 − 7x2 + 7x3 + 7x4 − 6x5 ≤ 6,
x1 − 9x2 + 5x3 + 7x4 − 10x5 ≤ −6,

− x1 + 9x2 − 5x3 − 7x4 + 10x5 ≤ 6,
x1, x2, x3, x4, x5 ≥ 0.

maximiza z = 7x1 + 4x2 + 8x3 + 7x4 − 9x5,

sujeito a − 4x1 − 1x2 − 7x3 − 8x4 + 6x5 ≤ −2,

4x1 + x2 + 7x3 + 8x4 − 6x5 ≤ 2,
− x1 − 4x2 − 2x3 − 2x4 + 7x5 ≤ 7,
− 8x1 + 2x2 + 8x3 − 6x4 − 7x5 ≤ −7,

8x1 − 2x2 − 8x3 + 6x4 + 7x5 ≤ 7,
x1, x2, x3, x4, x5 ≥ 0.

maximiza z = 6x1 − 5x2 − 8x3 − 7x4 + 8x5,

sujeito a − 5x1 − 2x2 + x3 − 9x4 − 7x5 ≤ 9,
5x1 + 2x2 − x3 + 9x4 + 7x5 ≤ −9,

7x1 + 7x2 + 5x3 − 3x4 + x5 ≤ −8,

− 7x1 − 7x2 − 5x3 + 3x4 − x5 ≤ 8,
− 5x1 − 3x2 − 5x3 + 9x4 + 8x5 ≤ 0,
x1, x2, x3, x4, x5 ≥ 0.
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Solução do exercício 2.1.
Solução com método Simplex, escolhendo como variável entrante sempre aquela
com o maior coeficiente positivo (em negrito):

z = 25p +30c

w1 = 56000 −7p −10c
w2 = 6000 −p
w3 = 4000 −c

z = 120000 +25p −30w3
w1 = 16000 −7p +10w3
w2 = 6000 −p
c = 4000 −w3

z = 1240000/7 −25/7p +40/7w3
p = 16000/7 −1/7w1 +10/7w3
w2 = 26000/7 +1/7w1 −10/7w3
c = 4000 −w3

z = 192000 −3w1 −4w2
p = 6000 −w2
w3 = 2600 +1/10w1 −7/10w2
c = 1400 −1/10w1 +7/10w2

Solução do exercício 2.3.
Temos (

2(n+ 1)

n+ 1

)
=

(
2n

n

)
(2n+ 2)(2n+ 1)

(n+ 1)2
=

(
2n

n

)
2(2n+ 1)

n+ 1

e logo
22n

n+ 1

(
2n

n

)
≤
(
2(n+ 1)

n+ 1

)
≤ 22

(
2n

n

)
.

Logo, por indução (1/2n)22n ≤
(
2n
n

)
≤ 22n.

Solução do exercício 2.6.

(a) Substituindo x1 e x2 obtemos a nova função objetivo z = x1 + 2x2 =
22 − 7w2 − 3w1. Como todos coeficientes são negativos, a solução básica
atual permanece ótima.

209



C. Soluções dos exercícios

(b) A nova função objetivo é 1−w2 e o sistema mantem-se ótimo.

(c) A nova função objetivo é 2− 2w2 e o sistema mantem-se ótimo.

(d) O dicionário dual é
z∗ = 31 −7z2 −8z1
y2 = 11 +2z2 +3z1
y1 = 4 +z2 +z1

e a solução dual ótima é (y1 y2)
t = (4 11)t.

Solução do exercício 2.9.
Não, porque nessa situação o valor da variável entrante aumento para um valor
xe > 0 e por definição de variável entrante temos ce > 0, i.e. o valor da função
objetivo aumenta.

Solução do exercício 2.10.
Sim. Supõe que xs, s ∈ B é a variável básica negativa. Com xs = b̄s − āsexe e
ase < 0 temos xs > 0 caso xe > bs/āse. Logo para xe > maxi∈B,b̄s<0 b̄i/āie a
solução é factível.

Solução do exercício 3.1.

maximiza 10y1 + 6y2,

sujeito a y1 + 5y2 ≤ 7,
− y1 + 2y2 ≤ 1,
3y1 − y2 ≤ 5,
y1, y2 ≥ 0.

Solução do exercício 3.2.
Com variáveis duais ye para cada e ∈ U temos

maximiza
∑
e∈U

ye,

sujeito a
∑
e:e∈S

ye ≤ c(S), S ∈ S,

ye ≥ 0, e ∈ U.

Solução do exercício 3.3.
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(a) Temos B = {4, 1, 2} (variáveis básicas x4, x1 e x2) e N = {5, 6, 3} (variáveis
nulas x5, x6 e x3). No que segue, vamos manter essa ordem das variáveis
em todos vetores e matrizes. O vetor de custos nessa ordem é

cB = (0 2 − 1)t; cN = (0 0 1)t

e com

∆c = (0 1 0 0 0 0)t

temos

∆y∗N = (B−1N)t∆cB − ∆cN = (B−1N)t∆cB

=

−1 1/2 −1/2
−2 1/2 1/2

1 1/2 −3/2

01
0

 =

1/21/2
1/2

 .
Com y∗N = (3/2 1/2 3/2)t obtemos os limites −1 ≤ t ≤∞ e 1 ≤ c1 ≤∞.

(b) Temos ∆xb = B−1∆b e ∆b = (0 1 0)t. Para determinar ∆xB precisamos
calcular B−1 pela inversão de

B =

1 3 1

0 1 −1
0 1 1


(observe que as colunas estão na ordem de B) que é

B−1 =

1 −1 −2
0 1/2 1/2

0 −1/2 1/2


Assim ∆xB = (−1 1/2 − 1/2)t, e com x∗B = (10 15 5)t e pela definição

max
i∈B
∆xi>0

−
x∗i
∆xi
≤ t ≤ min

i∈B
∆xi<0

−
x∗i
∆xi

obtemos os limites −30 ≤ t ≤ 10 e −20 ≤ b2 ≤ 20.

(c) Com b̂ = (70 20 10)t temos B−1b̂ = (30 15 − 5)t. Portanto, a solução
básica não é mais víavel e temos que reotimizar. O novo valor da função
objetivo é

ctB(B
−1b̂) =

(
0 2 −1

)3015
−5

 = 35
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C. Soluções dos exercícios

e temos o dicionário

z = 35 −3/2x5 −1/2x6 −3/2x3
x4 = 30 +x5 +2x6 −x3
x1 = 15 −1/2x5 −1/2x6 −1/2x3
x2 = −5 +1/2x5 −1/2x6 +3/2x3

O dicionário é dualmente viável, e após pivô x2–x3 temos o novo sistema
ótimo

z = 30 −x5 −x6 −x2
x4 = 80/3 +4/3x5 +5/3x6 −2/3x2
x1 = 40/3 −1/3x5 −2/3x6 −1/3x2
x3 = 10/3 −1/3x5 +1/3x6 +2/3x2

(d) Temos ĉ = (0 3 − 2 0 0 3)t (em ordem B,N ) e com isso

ŷ∗N = (B−1N)tĉB − ĉN =

−1 1/2 −1/2
−2 1/2 1/2

1 1/2 −3/2

 0

3

−2

−

00
3

 =

5/21/2
3/2


Portanto, a solução ainda é ótima. O novo valor da função objetivo é

ĉtB(B
−1b) =

(
0 3 −2

)1015
5

 = 35.

Solução do exercício 6.2.

Conjunto independente máximo Com variáveis indicadores xv, v ∈ V temos
o programa inteiro

maximiza
∑
v∈V

xv,

sujeito a xu + xv ≤ 1, ∀{u, v} ∈ A, (C.10)
xv ∈ B, ∀v ∈ V.

A equação C.10 garante que cada aresta possui no máximo um nó incidente.
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Emparelhamento perfeito com peso máximo Sejam xa, a ∈ A variáveis
indicadores para a seleção de cada aresta. Com isso, obtemos o programa
inteiro

maximiza
∑
a∈A

p(a)xa,

sujeito a
∑
u∈N(v)

x{u,v} = 1, ∀v ∈ V, (C.11)

xa ∈ B, ∀v ∈ V.

A equação C.11 garante que cada nó possui exatamente um vizinho.

Problema de transporte Sejam xij variáveis inteiras, que correspondem com
o número de produtos transportados do depósito i para cliente j. Então

minimiza
∑
i∈[n]
j∈[m]

cijxij,

sujeito a
∑
j∈[m]

xij = pi, ∀i ∈ [n], cada depósito manda todo estoque

∑
i∈[n]

xij = dj, ∀j ∈ [m], cada cliente recebe a sua demanda

xij ∈ Z+.

Conjunto dominante Sejam xv, v ∈ V variáveis indicadores para seleção de
vértices. Temos o programa inteiro

minimiza
∑
v∈V

xv,

sujeito a xv +
∑
u∈N(v)

xu ≥ 1, ∀v ∈ V, nó ou vizinho selecionado

xv ∈ B, ∀v ∈ V.

Solução do exercício 6.4.
Seja d1d2 . . . dn a entrada, e o objetivo selecionar m ≤ n dígitos da entrada.
Seja xij ∈ B um indicador que o dígito i ∈ [n] da entrada seria selecionado
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C. Soluções dos exercícios

como dígito j ∈ [m] da saida. Então

maximiza
∑

i∈[n],j∈[m]

xijdi10
m−j,

sujeito a
∑
i∈[n]

xij = 1, ∀j ∈ [m], (C.12)

∑
j∈[m]

xij ≤ 1, ∀i ∈ [n], (C.13)

xij = 0, ∀i ∈ [n], j ∈ [m], j > i, (C.14)
xkl ≤ 1− xij, ∀i, k ∈ [n], l, j ∈ [m], k > i, l < j. (C.15)

A função das restrições é a seguinte:

• Restrição (C.12) garante que tem exatamente um dígito em cada posição.

• Restrição (C.13) garante que cada dígito é selecionado no máximo uma
vez.

• Restrição (C.14) garante que dígito i aparece somente a partir da posição
j.

• Restrição (C.13) proibe inversões.

Solução do exercício 6.5.
Existem 21 sets diferentes, cada um com consumo diferente das 9 cartas. Seja
AR9×21 uma matriz, que contém em cada das 21 coluna o número de cartas
de cada set. Além disso, seja b ∈ R9 o número de cartas disponíveis. Usando
variáveis inteiros x ∈ Z21 que representam o número de sets formandos de cada
tipo de set diferentes, temos a formulação

maximiza
∑
i∈[21]

xi,

sujeito a Ax ≤ b,
x ≥ 0.

Solução do exercício 6.6.
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Cobertura por arcos

minimiza
∑
e∈E

cexe,

sujeito a
∑
u∈N(v)

xuv ≥ 1, ∀v ∈ V,

xe ∈ B.

Conjunto dominante de arcos

maximiza
∑
e∈E

cexe,

sujeito a
∑
e ′∈E
e∩e ′ 6=∅

xe ′ ≥ 1, ∀e ∈ E

xe ∈ B.

Coloração de grafos Seja n = |V |.

minimiza
∑
j∈[n]

cj,

sujeito a
∑
j∈[n]

xvj = 1, ∀v ∈ V, (C.16)

xui + xvi ≤ 1, ∀{u, v} ∈ E, i ∈ [n], (C.17)

ncj ≥
∑
v∈V

xvj, ∀j ∈ [n], (C.18)

xvi, cj ∈ B.

• Restrição C.16 garante que todo vértice recebe exatamente uma cor.

• Restrição C.17 garante que vértices adjacentes recebem cores diferentes.

• Restrição C.18 garante que cj = 1 caso cor j for usada.

Clique mínimo ponderado

minimiza
∑
v∈V

cvxv,

sujeito a xu + xv ≤ 1, ∀{u, v} 6∈ E, (C.19)
xv ∈ B.
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Restrição C.19 garante que não existe um par de vértices selecionados que não
são vizinhos.

Subgrafo cúbico xe indica se o arco e é selecionado, e ye indica se ele possui
grau 0 (caso contrário grau 3).

minimiza
∑
e∈E

xe,

sujeito a
∑
e∈N(v)

xe ≤ 0+ |E|(1− ye),∑
e∈N(v)

xe ≤ 3+ |E|ye,

−
∑
e∈N(v)

xe ≤ −3+ 3ye.

Observe que o grau de cada vértice é limitado por |E|.

Solução do exercício 6.7.
Sejam xi ∈ B, i ∈ [7] variáveis que definem a escolha do projeto i. Então temos

maximiza 17x1 + 10x2 + 15x3

+ 19x4 + 7x5 + 13x6 + 9x7,

sujeito a 43x1 + 28x2 + 34x3 + 48x4,

+ 17x5 + 32x6 + 23x7 ≤ 100, Limite do capital
x1 + x2 ≤ 1, Projetos 1,2 mutualmente exclusivos
x3 + x4 ≤ 1, Projetos 3,4 mutualmente exclusivos
x3 + x4 ≤ x1 + x2, Projeto 3 ou 4 somente se 1 ou 2

http://www.inf.ufrgs.br/~mrpritt/e6q2.mod

set projetos := 1 .. 7;
param lucro { projetos };
param custo { projetos };

var fazer { projetos } binary;

maximize M:
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sum { i in projetos } lucro[i]*fazer[i];
subject to S1:

sum { i in projetos } custo[i]*fazer[i] <= 100;
subject to S2:

fazer[1]+fazer[2] <= 1;
subject to S3:

fazer[3]+fazer[4] <= 1;
subject to S4:

fazer[3]+fazer[4] <= fazer[1]+fazer[2];

data;
param lucro := 1 17 2 10 3 15 4 19 5 7 6 13 7 9;
param custo := 1 43 2 28 3 34 4 48 5 17 6 32 7 23;
end;

Solução: Selecionar projetos 1,3,7 com lucro de MR$ 41.

Solução do exercício 6.8.
Seja f ∈ B uma variável que determina qual fábrica vai ser usada (fábrica 1,
caso f = 0, fábrica 2, caso f = 1), bi ∈ B uma variável binária que determina,
se brinquedo i vai ser produzido e ui ∈ Z as unidades produzidas de brinquedo
i (sempre com i ∈ [2]).

maximiza 10u1 + 15u2

− 50000b1 − 80000b2,

sujeito a ui ≤Mbi, Permitir unidades somente se tem produção
u1/50+ u2/40 ≤ 500+ fM, Limite fábrica 1, se selecionada
u1/40+ u2/25 ≤ 700+ (1− f)M, Limite fábrica 2, se selecionada
ai ∈ B, ui ∈ Z, i ∈ [3].

A constante M deve ser suficientemente grande tal que ela efetivamente não
restringe as unidades. Dessa forma, se a fábrica 1 está selecionada, a terceira
restrição (da fábrica 2) não se aplica e vice versa.

http://www.inf.ufrgs.br/~mrpritt/e6q3.mod

set brinquedos := 1..2;
var f binary;
var b { brinquedos } binary;
var u { brinquedos } integer, >= 0;
param inicial { brinquedos };
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param lucro { brinquedos };
param prodfab1 { brinquedos };
param prodfab2 { brinquedos };
param M := 35000;

maximize Lucro:
sum { i in brinquedos } u[i]*lucro[i]
- ( sum { i in brinquedos } inicial[i]*b[i] );

subject to PermitirProducao { i in brinquedos }:
u[i] <= M*b[i];

subject to LimiteFab1 :
sum { i in brinquedos }

u[i]*prodfab1[i] <= 500 + f*M;
subject to LimiteFab2 :

sum { i in brinquedos }
u[i]*prodfab2[i] <= 700 + (1-f)*M;

data;
param inicial := 1 50000 2 80000;
param lucro := 1 10 2 15;
param prodfab1 := 1 0.020 2 0.025;
param prodfab2 := 1 0.025 2 0.040;

Solução: Produzir 28000 unidades do brinquedo 1 na fábrica 2, com lucro
230KR$.

Solução do exercício 6.9.
Sejam ai ∈ B uma variável que determina se avião i vai ser produzido e ui ∈ Z
as unidades produzidas.

maximiza 2u1 + 3u2 + 0.2u3

− 3a1 − 2a2,

sujeito a 0.2u1 + 0.4u3 + 0.2u3 ≤ 1, Limite de capacidade
ui ≤ 5ai, Permitir unidades somente se for

produzido, limite 5 aviões
u1 ≤ 3, Limite avião 1
u2 ≤ 2, Limite avião 2
u3 ≤ 5, Limite avião 3
ai ∈ B, ui ∈ Z.
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http://www.inf.ufrgs.br/~mrpritt/e6q4.mod

set avioes := 1..3;
param custo { avioes };
param lucro { avioes };
param capacidade { avioes };
param demanda { avioes };
var produzir { avioes } binary;
var unidades { avioes } integer, >= 0;

maximize Lucro:
sum { i in avioes }

(lucro[i]*unidades[i]-custo[i]*produzir[i]);
subject to LimiteCapacidade:

sum { i in avioes } unidades[i]*capacidade[i] <= 1;
subject to PermitirProducao { i in avioes }:

unidades[i] <= 5*produzir[i];
subject to LimiteDemanda { i in avioes }:

unidades[i] <= demanda[i];

data;
param : custo lucro capacidade demanda :=
1 3 2 0.2 3
2 2 3 0.4 2
3 0 0.8 0.2 5;

Solução: Produzir dois aviões para cliente 2, e um para cliente 3, com lucro 4.8
MR$.

Solução do exercício 6.10.
Seja xijk ∈ B um indicador do teste com a combinação (i, j, k) para 1 ≤ i, j, k ≤
8. Cada combinação (i, j, k) testada cobre 22 combinações: além de (i, j, k)mais
7 para cada combinação que difere somente na primeira, segunda ou terceira
posição. Portanto, uma formulação é

minimiza
∑

(i,j,k)∈[8]3
xi,j,k,

sujeito a xi,j,k +
∑
i ′ 6=i

xi ′jk +
∑
j ′ 6=j

xij ′k +
∑
k ′ 6=k

xijk ′ ≥ 1, ∀i, j, k ∈ [8],

xi,j,k ∈ B, ∀i, j, k ∈ [8].

219

http://www.inf.ufrgs.br/~mrpritt/e6q4.mod


C. Soluções dos exercícios

A solução ótima desse sistema é 32, i.e. 32 testes são suficientes para abrir a
fechadura. Uma solução é testar as combinações

(1, 2, 4), (1, 3, 8), (1, 5, 5), (1, 8, 7), (2, 1, 1), (2, 4, 3), (2, 6, 6), (2, 7, 2),

(3, 1, 3), (3, 4, 2), (3, 6, 1), (3, 7, 6), (4, 1, 2), (4, 4, 6), (4, 6, 3), (4, 7, 1),

(5, 1, 6), (5, 4, 1), (5, 6, 2), (5, 7, 3), (6, 2, 7), (6, 3, 5), (6, 5, 4), (6, 8, 8),

(7, 2, 5), (7, 3, 7), (7, 5, 8), (7, 8, 4), (8, 2, 8), (8, 3, 4), (8, 5, 7), (8, 8, 5)

Solução do exercício 6.11.
Sejam xi ∈ B, i ∈ [k] as variáveis de entrada, e ci ∈ B, i ∈ [n] variáveis que
indicam se a cláusula ci está satisfeita. Para aplicar a regra (6.2) diretamente,
vamos usar uma variável auxiliar di. i ∈ [n], que representa a disjunção dos
primeiros dois literais da cláusula i.

maximiza
∑
i∈[n]

ci,

sujeito a lij =

{
xk literal j na cláusula i é xk,
1− xk literal j na cláusula i é ¬xk,

di ≥ (li1 + li2)/2,

di ≤ li1 + li2,
ci ≥ (di + li3)/2,

ci ≤ di + li3,
ci, di, xi ∈ B.

Como é um problema de maximização, pode ser simplificado para

maximiza
∑
i∈[n]

ci,

sujeito a lij =

{
xk literal j na cláusula i é xk,
1− xk literal j na cláusula i é ¬xk,

ci ≤ li1 + li2 + li3,
ci, xi ∈ B.

A segunda formulação possui uma generalização simples para o caso k > 3.

Solução do exercício 6.13.
Não. Uma explicação: http://nbviewer.jupyter.org/url/www.inf.ufrgs.
br/~mrpritt/oc/greedy-independent-set.ipynb.
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Solução do exercício 6.14.
Não. Primeiramente, a restrição ∏

p∈P
xp = 10! (C.20)

não é linear. Mas mesmo ignorando isso as restrições não definem uma bijeção
entre números e posições. O conjunto completo de soluções é

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

1, 2, 3, 4, 6, 6, 6, 7, 10, 10

1, 2, 4, 4, 4, 5, 7, 9, 9, 10

1, 3, 3, 3, 4, 6, 7, 8, 10, 10

1, 3, 3, 4, 4, 4, 7, 9, 10, 10

2, 2, 2, 3, 4, 6, 7, 9, 10, 10

Solução do exercício 7.2.

Conjunto independente máximo Amatriz de coeficientes contém dois coefici-
entes igual 1 em cada linha, que correspondem com uma aresta, mas geralmente
não é totalmente unimodular. Por exemplo, o grafo completo com três vértices
K3

1

2 3

gera a matriz de coeficientes 1 1 0

1 0 1

0 1 1


cuja determinante é −2. A solução ótima da relaxação inteira 0 ≤ xi ≤ 1 é
x1 = x2 = x3 = 1/2 com valor 3/2, a Fig. C.1 mostra o polítopo correspon-
dente. (Observação: A transposta dessa matriz satisfaz os critérios (i) e (ii) da
nossa proposição, e caso o grafo é bi-partido, também o critério (iii). Portanto
Conjunto independente máximo pode ser resolvido em tempo polinomial em
grafos bi-partidos).

Figura C.1.: Polítopo {x ∈
R3 | x1 + x2 ≤ 1, x1 + x3 ≤
1, x2 + x3 ≤ 1, 0 ≤ xi ≤ 1}.
(O visualizador usa os eixos
x = x1, y = x2, z = x3.)

221



C. Soluções dos exercícios

Emparelhamento perfeito com peso máximo A matriz de coeficientes satis-
faz critério (i). Ela tem uma linha para cada vértice e uma coluna para cada
aresta do grafo. Como cada aresta é incidente a exatamente dois vértices, ela
também satisfaz (ii). Finalmente, a bi-partição V1

.
∪ V2 do grafo gera uma

bi-partição das linhas que satisfaz (iii). Portanto, a matriz é TU, e o Empa-
relhamento perfeito com peso máximo pode ser resolvido em tempo polinomial
usando a relaxação linear.

Problema de transporte A matriz de coeficientes satisfaz critério (i). Po-
demos representar o problema como grafo bi-partido completo Kn,m entre os
depósitos e os clientes. Desta forma, com o mesmo argumento que no último
problema, podemos ver, que os critérios (ii) e (iii) são satisfeitos.

Conjunto dominante A matriz de coeficientes satisfaz critério (i), mas não
critério (ii): cada linha e coluna correspondente com vértice v contém |N(v)|+1
coeficientes não-nulos. Mas, não é obviou se a matriz mesmo assim não é TU
(lembra que o critério é suficiente, mas não necessário). O K3 acima, por
exemplo, gera a matriz 1 1 1

1 1 1

1 1 1


que é TU. Um contra-exemplo seria o grafo bi-partido K1,3

1 2

3 4

que gera a matriz de coeficientes
1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1


com determinante −2. Isso não prova ainda que a relaxação linear não produz
resultados inteiros ótimos. De fato, nesse exemplo a solução ótima da relaxação
inteira é a solução ótima inteira D = {1}.
Um verdadeiro contra-exemplo é um ciclo com cinco vértices C5
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1

2
3

4
5

com matriz 
1 0 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 1 1 0

1 1 0 0 1


(cuja determinante é 3). A relaxação linear desse sistema tem a solução ótima
x1 = x2 = x3 = x4 = x5 = 1/3 com valor 5/3 que não é inteira.

Solução do exercício 7.4.
A formulação possui 14 restrições, correspondendo com as 14 arestas. Como o
grafo é 4-regular, cada vértice ocorre 4 vezes no lado esquerdo de uma restrição,
e somando todas restrições obtemos

4
∑
i∈[7]

xi ≤ 14

⇒∑
i∈[7]

xi ≤ 14/4

⇒∑
i∈[7]

xi ≤ b14/4c = 3,

que não é suficiente. Para obter uma desigualdade mais forte, vamos somar
sobre todos triângulos. Somando primeiro as restrições das arestas de cada
triângulo (u, v,w) obtemos

2xu + 2xv + 2xw ≤ 3⇒xu + xv + xw ≤ b3/2c = 1.
Somando agora as restrições obtidas desta forma de todos 14 triângulos do
grafo (cada vértice é parte de 6 triângulos) obtemos a desigualdade desejada

6
∑
i∈[7]

xi ≤ 14

⇒∑
i∈[7]

xi ≤ b14/6c = 2.
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C. Soluções dos exercícios

(Outra abordagem: Supõe, sem perda de generalidade, que x1 = 1 na solução
ótima. Pelas restrições x1 + xi ≤ 2 temos xi = 0 para i ∈ {3, 4, 5, 6}. Pela
restrição x2 + x7 ≤ 1, portanto

∑
1≤i≤7 xi ≤ 2.)

Solução do exercício 7.5.
Seja S̄ = [n]\S e m = maxi∈S ai e m̄ = maxi∈S ai. A idéia é somar desigualda-
des xi ≤ 1 para i ∈ S até o corte de Gomory obtido pela divisão pelo coeficiente
máximo em S rende a desigualdade desejada. Seja δ = max{m̄+1,m}. Somando
(δ− ai)xi ≤ δ− ai obtemos∑

i∈S
δxi +

∑
i∈S̄

aixi ≤ b+
∑
i∈S

(δ− ai)xi < δ|S| ≤ δ|S|− 1.

Aplicando o corte de Gomory com multiplicador 1/δ obtemos∑
i∈S
xi ≤ b|S|− 1/δc = |S|− 1

porque ai ≤ m̄ < max{m̄+ 1,m} = δ e logo bai/δc = 0 para i ∈ S̄.

Solução do exercício 7.6.
x1+x6+x7 ≤ 2 porque uma rota não contém subrotas. Portanto x1+x2+x5+
x6+x7+x9 ≤ 5. Supõe x1+x2+x5+x6+x7+x9 = 5. Temos três casos: x1 = 0,
x6 = 0 ou x7 = 0. Em todos os casos, as restantes variáveis possuem valor 1, e
no grafo resultante sempre existe um vértice de grau 3 (o vértice no centro, da
esquerda, de acima, respectivamente), que não é possível numa solução válida.

Solução do exercício 7.8.
O sistema inicial

z = x1 +3x2
w1 = −2 +x1
w2 = 3 −x2
w3 = −4 +x1 +x2
w4 = 12 −3x1 −x2

não é primalmente nem dualmente viável. Aplicando a fase I (pivôs x0–w3,
x0–x1) e depois fase II (pivôs x2–w1, w3–w2, w1–w4) gera o dicionário final

z = 12 −8/3w2 −1/3w4
x2 = 3 −w2
w3 = 2 −2/3w2 −1/3w4
x1 = 3 +1/3w2 −1/3w4
w1 = 1 +1/3w2 −1/3w4
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cuja solução x1 = 3, x2 = 3 já é inteira.
No segundo sistema começamos com o dicionário

z = x1 −2x2
w1 = 60 +11x1 −15x2
w2 = 24 −4x1 −3x2
w3 = 59 −10x1 +5x2

e um pivô x1–w3 gera a solução ótima fracionária

z = 4.9 −0.1w3 −1.5x2
w1 = 113.9 −1.1w3 −9.5x2
w2 = 4.4 +0.4w3 −5x2
x1 = 4.9 −0.1w3 +0.5x2

e a linha terceira linha (x1) gera o corte

w4 = −0.9 +0.1w3 +0.5x2

Com o pivô w4–w3 obtemos a solução ótima inteira

z = 4 −w4 −x2
w1 = 104 −11w4 −4x2
w2 = 8 +4w4 −7x2
x1 = 4 −w4 +1x2
w3 = 9 +10w4 −5x2
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Nomenclatura

[n,m] conjunto {n,n+ 1, . . . ,m}, página 42

[n] conjunto {1, 2, . . . , n}, página 111

argmax valor para que uma função atinge o máximo, página 31

argmin valor para que uma função atinge o mínimo, página 59

B conjunto booleano {0, 1}, página 80(
n
k

)
coeficiente binomial, página 16

dxe menor número inteiro maior ou igual a x, página 130

co-NP classe de problemas de decisão com certificados polinomiais para instân-
cias negativas, página 52

.
∪ união disjunta, página 62

bxc maior número inteiro menor ou igual a x, página 82

� significadamente menor que, página 38

Z conjunto de números inteiros, página 79

B conjunto de variáveis básicas, página 26

N conjunto de variáveis nulas, página 26

NP classe de problemas de decisão com certificados polinomiais para instân-
cias positivas, página 52

R conjunto de números reais, página 10

sup supremo, menor limite superior de um conjunto, página 75

aj Coluna j da matrix A = (aij), página 13

At matriz transposta, página 49

ai Linha i da matrix A = (aij), página 13
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Cn espaço vetorial com vetores de n componentes sobre o campo C, pá-
gina 13

Cn×m grupo de matrizes de tamanho n×m sobre o campo C, página 13

N+(v) conjunto de arcos saintes de v, página 114

N−(v) conjunto de arcos saintes de v, página 114

Z+ conjunto de números inteiros não-negativos, página 132
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indicador, 95, 96
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