INF05010 — Otimizacao combinatéria

45)

6

i /

4

5 r=1.8b
(1.85,3.01)/

2

1 /

1 2 3 4 bHx

Notas de aula

Marcus Ritt
marcus.ritt@inf.ufrgs.br

8 de Fevereiro de 2023
Universidade Federal do Rio Grande do Sul
Instituto de Informatica
Departamento de Informatica Tedrica

marcus.ritt@inf.ufrgs.br

ii

Versdo ccbdac compilada em 8 de Fevereiro de 2023. Obra estd licenciada
sob uma Licenca Creative Commons (Atribuicdo-Uso Nao-Comercial-Nao a
obras derivadas 4.0 ® ® ©).

Na parte I, as notas de aula seguem o livro “Linear programming: Foundati-
ons and extensions” de Robert J. Vanderbei, Universidade Princeton, disponi-
vel em http://www.princeton.edu/~rvdb/LPbook. Agradego contribui¢des
de Luciana Buriol e Alysson M. Costa as primeiras versdes dessas notas.

Fonte das imagens:

George Dantzig (18): INFORMS, Jean Baptiste Joseph Fourier (18): Wikipe-
dia, Xadrez (106): Wikipedia, Mauricio G. C. Resende (174): Pdgina pessoal,
Fred Glover (177): Pagina pessoal, Pierre Hansen (181): Pagina pessoal, Pablo
Moscato (194): Pagina pessoal.

http://creativecommons.org/licenses/by-nc-nd/4.0
http://www.princeton.edu/~rvdb/LPbook
http://www2.informs.org/Press/GeorgeDantzig.jpg
http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/wiki/Knight_(chess)
http://www.research.att.com/~mgcr
http://www.colorado.edu/law/eesi/Fred_Glover.htm
http://www.hec.ca/profs/pierre.hansen.html
http://livesite.newcastle.edu.au/cibm/People.page

Conteudo

I. Programacao linear

1. Introducao
1.1. Exemplo
1.2. Formasnormais o v i it i e
1.3. Solugdo por busca exaustiva
14. Notashistéricas
1.5. Exercicios. e

2. O método Simplex

21. Umexemplo L
22. Ométodoresumido,
2.3. Sistemas ilimitados L L oL
2.4. Encontrar uma solugdo inicial: o método de duas fases

2.4.1. Resumo do método de duas fases
2.5. Sistemas degenerados
2.6. Complexidade do método Simplex
2.7. Exercicios.

3. Dualidade

31. Introdugdo
3.2. Caracterfsticas
3.3. Dualidade em forma ndo-padrdo
3.4. Interpretagdiododual 0L
3.5. Método Simplexdual 0L
3.6. Os métodos em forma matricial

3.6.1. O diciondrio final em fungdo dosdados

3.6.2. Simplex em forma matricial
3.7. Andlise de sensibilidade
3.8. Exercicios.

4. Topicos
41. Centrode Chebyshev,

13
15
18
19

27
27
32
35
35
39
41
48
48

53
53
56
60
63
65
69
70
73
75
83

87

2 CONTEUDO
4.2. Fungdo objetivo convexa e linear por segmentos 88

Il. Programacao inteira 89
5. Introducao 91
5.1. Defini¢bes L 91
52. Motivagdoeexemplos L. 95
53. Aplicagbes 97

6. Formulacao 105
6.1. Exemplos. 105
6.2. Técnicas para formular programas inteiros 106
6.2.1. Formular restri¢des loégicas 107

6.2.2. Formular restri¢des condicionais 109

6.3. Formulagdes alternativas 112
6.4. EXercicios. e 113

7. Técnicas de solucao 123
71, Introducdo e 123
7.2. Problemas com solugdo eficiente 123
7.2.1. Critérios para solugdes inteiras 127

7.3. Desigualdades vdlidas 133
74. Planosdecorte 139
7.5. Algoritmos Branch-and-bound 143
7.6. Notas e 149
77. Exercicios. oo 149

8. Tépicos 153
I1l. Heuristicas 155
9. Introducdo 159
10. Heuristicas baseadas em Busca local 163
10.1. Buscalocal 163
10.2. Metropolis e Simulated Annealing 170
103. GRASP 173

104. BuscaTabu 177

CONTEUDO 3

10.5. Variable Neighborhood Search 181
10.6. Algoritmo Guloso Iterado 183
11. Heuristicas inspirados da natureza 187
11.1. Algoritmos Genéticos e meméticos 187
IV. Appéndice 197
A. Conceitos matematicos 199
B. Formatos 201
B.1. CPLEXLP 201
B.2. Julia/JuMP 203
B3. AMPL. e 205
C. Solucées dos exercicios 213
Bibliografia 239

indice 241

Parte |I.

Programacao linear

1. Introducao

Introducao

If one would take statistics about which mathematical problem
is using up most of the computer time in the world, then ...the
answer would probably be linear programming. (Laszlo Lovasz)

1.1. Exemplo

Exemplo 1.1 (No Ildo)

Antes da aula visito o Ildo! para tomar um café e comer um Croissant. Ele
me conta: “Estou especializado em Croissants e Strudels. Tenho um lucro
de 20 centavos por Croissant e 50 centavos por Strudel. Diariamente até
80 clientes compram um Croissant e até 60 um Strudel.” Mas infelizmente,
o Ildo apenas disponibiliza de 150 ovos e 6 kg de agucar por dia. Entre
outros ingredientes, preciso um ovo e 50g de agticar para cada Croissant e
um ovo e meio e 50g de agticar para cada Strudel. “Agora, professor, quantas
Croissants e Strudels devo produzir para obter o maior lucro?”

Sejam ¢ o niimero de Croissants e s o nimero de Strudels. O lucro do Ildo em
Reais é 0.2c + 0.5s. Seria 6timo produzir todos 80 Croissants e 60 Strudels,
mas uma conta simples mostra que nao temos ovos e agucar suficiente. Para
produzir os Croissants e Strudels precisamos c + 1.5s ovos e 50c + 50sg de
agtcar que ndo podem ultrapassar 150 ovos e 6000g. Com a condigdo 6bvia
que ¢ > 0 e s > 0 chegamos no seguinte problema de otimizacéo:

maximiza 0.2c 4+ 0.5s (1.1)
sujeitoa ¢+ 1.5s < 150,
50c + 50s < 6000,
c < 80,
s < 60,
c,s > 0.

1Uma lancheria que existia no Instituto de Informaética até 2012.

8 Capitulo 1. Introdugio

Como resolver esse problema? Com duas varidveis podemos visualizar a
situacdo num grafo com ¢ no eixo x e s no eixo y

No lldo

Otimizando o lucro do bar

100
50c + 50s = 6000

/

c+1.5s =150
s =60

o)
-}

s (strudels)

30

ucoes vidveis

0 20 40 60 80 100
¢ (croissants)

que nesse caso permite resolver o problema graficamente. Desenhando di-
versos conjuntos de nivel (ingl. level set com valor da fungdo objetivo 10, 20,
30, 40 é facil observar que o lucro maximo encontra-se no ponto ¢ = s = 60,
e possui um valor de 42 reais. O

1.1. Exemplo 9

Definic¢ao 1.1 (Conjunto de nivel (ingl. level set))
Para uma fungdo f(x), x € R" a conjunto de nivel ¢ € R é L.(f) = {x |

fx) = c}.
A forma geral de um problema de otimizacdo (ou de programacido matemdtica) é

opt f(x)

sujeito a xeV,

com
e um objetivo opt € {max, min},
* uma fungdo objetivo (ou fungao critério) f : V — R,
¢ um conjunto de solugdes vidveis (ou solugdes candidatas) V.

Falamos de um problema de otimizagio combinatdria, caso V é discreto.
Nessa generalidade um problema de otimizagdo é dificil ou impossivel de
resolver. O exemplo 1.1 é um problema de otimizagdo linear (ou programagio
linear):

® as varidveis de decisdo sdo reais: x1,...,x; € R
* a funcdo de otimizagdo € linear em x1, ..., Xy:

f(x1,...,x0) = c1x1+ -+ - + Xy (1.2)

* as solugoes vidveis sdo definidas implicitamente por m restrigdes lineares

a11x1 + appxy + - - -+ ay,x, <y by, (1.3)
Ax1X1 + axXp + - - - + A2, Xy < by, (1.4)
(1.5)

A1 X1 + ApoXo + -+« + Ay Xy >y by, (1.6)

com ;€ {<,=,>}.

Exemplo 1.2 (O problema da dieta (Dantzig))

Suponha que temos uma tabela de nutrientes de diferentes tipos de alimen-
tos. Sabendo o valor didrio de referéncia (VDR) de cada nutriente (quan-
tidade de nutriente que deve ser ingerido) e o prego de cada unidade de

10 Capitulo 1. Introdugio

alimento, qual a dieta 6tima, i.e. a dieta de menor custo que contém pelo
menos o valor didrio de referéncia?

Com m nutrientes e n alimentos, seja 4;; a quantidade do nutriente i no
alimento j (em g/g), r; o valor didrio de referéncia do nutriente i (em g) e ¢;
o prego do alimento j (em R$/g). Queremos saber as quantidades x; de cada
alimento (em g) que

minimiza cix1+ -+ cpxyp (1.7)
sujeitoa ayxy + - +ayx, > 1y, (1.8)
A1 X1 + -+ A Xn = Tm, (1.9)

X1,..., x5 > 0. (1.10)

O

Exemplo 1.3 (Problema de transporte (Hitchcock))

Uma empresa agraria tem m depdsitos, cada um com um estoque de g;,
i € [m] toneladas de milho. Ela quer encaminhar b;, j € [n] toneladas de
milho para 7 clientes diferentes. O transporte de uma tonelada do depésito
i para cliente j custa R$ ¢;j. Qual seria 0 esquema de transporte de menor
custo?

Para formular o problema linearmente, podemos introduzir variéveis x;; que
representam o peso dos produtos encaminhados do depésito i ao cliente j, e
queremos resolver

minimiza Y cixg (1.11)
ie[m],j€[n]
sujeitoa) x; <a para todo fornecedor i € [m], (1.12)
j€ln]
Y xjj=0bj, paratodo cliente j € [n], (1.13)
ie[m]
xjj > 0, para todo fornecedor i € [m] e cliente j € [n].

Concretamente, suponha que temos a situagdo da Figura 1.1. A figura mos-
tra as toneladas disponiveis de cada fornecedor, a demanda (em toneladas)
de cada cliente e as distancias (em km) entre eles. O transporte custa R$ 1000
por km e tonelada. Observe que um transporte do fornecedor 1 para cliente
3 e fornecedor 3 para cliente 1 ndo é possivel. N6s usaremos uma distan-
cia grande de 100 km nesses casos (uma outra possibilidade é usar restri¢des

1.1. Exemplo 11

Cliente 1 Cliente 1

Fornecedor 1 Fornecedor 1

1 Cliente 2 Cliente 2

Fornecedor 3

Forneceddy 2

Forkecedor 3
Fornecedor 2

Cliente 3 Cliente 3

Figura 1.1.: Esquerda: Instancia do problema de transporte. Direita: Solugao
6tima correspondente.

x13 = x31 = 0 ou remover as variaveis xi3 € x31 do modelo).

minimiza 3xq; + x12 + 100x13 + 4x21 + 2x22
+ 4x23 + 100x31 + 3x32 + 3x33
sujeitoa x1; +x20 +x13 <5,
X21 + X2+ x23 < 7,
x31 + x32 + x33 < 3,
x11+ X1 +X31 =7,
X12 + X2 +x32 =3,
X13 + X23 + X33 = 5,

X11, X12, X13, X21, X22, X23, X31, X32, X33 > 0.

Qual seria a solugdo 6tima? A Figura 1.1 (direita) mostra o ndmero 6timo de
toneladas transportadas. O custo minimo é 46 (em R$ 1000). %

Podemos simplificar a descricdo de um programa linear usando notagao
matricial. Com A := (a;) € R™", b := (b)) € R", ¢ := (¢;) € R" e

12 Capitulo 1. Introdugdo

x = (x;) € R" o problema 1.2-1.6), pode ser escrito de forma

opt c'x

sujeitoa a;x > b;, i€ [m]

(Denotamos com a; a i-ésima linha e como 4/ a j-ésima coluna da matriz A.)
Em caso todas restri¢cdes usam a mesma relacdo <, > ou = podemos escrever
t t t
opt cx opt c'x opt c'x

sujeito a Ax <b, sujeitoa Ax>b sujeito a Ax = b.

7 ou

Exemplo 1.4 (Problema do Ildo em forma matricial)
O problema 1.1 em forma matricial é

maximiza (0.2 0.5)(cs)’

1 15 150
50 50 c 6000
. . <
sujeito a 1 0 <s> < 80 ,
0 1 60
(cs) >0.

Observacao 1.1 (“Programar” linearmente)

Como explicado na secdo histérica 1.4, o termo “programacdo” em “pro-
gramacao linear” se refere a “agendamento” ou “planejamento”. Porém,
formular programas lineares é uma atividade muito similar a programagao
de computadores. Um programa linear consiste de declaragdes de varidveis,
constantes, uma fung¢do objetivo e uma série de restri¢des. Podemos escrever
um programa linear de forma mais “computacional” para enfatizar a simila-
ridade com programas. No caso do problema de Hitchcock 1.3, por exemplo,
podemos escrever

var x;, i€ [m],j€ [n] { declaragdo variaveis }
const a;, i€ [m] { estoques }

const b;, j€ [n] { demandas }

max Yiclm)jeln] CijXij

st Yiem Xij <a;, i €[m] { limite estoque }

st Yicpm %ij =Dbj, j€[n] { satisfagdo demanda }

1.2. Formas normais 13

Podemos ainda, igual a programagcdo, introduzir nomes para fungdes line-
ares para facilitar a formulagdo. Por exemplo enviado(i) = Yc[,) xij € a
quantidade total enviada pelo i-ésimo fornecedor. Similarmente, podemos
escrever recebido(j) = };c[,] xij para a quantidade total recebida pelo j-ésimo
cliente. Com isso nosso “programa” linear fica

var xij, i€ [m],je [n] { declaragdo variaveis }
const a;, i€ [m] { estoques }
const bj, j€ [n] { demandas }

const ¢, i€ [m],je[n] { custos }
function enviado(i) = Yjcpy i
function recebido(j) = Yicpm Xij

max Yicim],jeln] CijXij
st enviado(i) <a;, i€ [m] { limite estoque }
st recebido(j) =b;, j€ [n] { satisfagdo demanda }

Vamos conhecer linguagens reais para especificar programas lineares na parte
pratica. Um exemplo é Julia/JuMP explicado no appéndice B. A nossa es-
pecificagdo acima pode ser vista como “pseudo-cédigo” de uma linguagem
atual como Julia/JuMP. O

1.2. Formas normais

Conversoes
E possivel converter

¢ um problema de minimizagdo para um problema de maximizagao
minc’x <= —max —c'x

(o sinal — em frente do max é uma lembranca que temos que negar a
solugdo depois.)

* uma restri¢do “>" para uma restrigao “<”

ajx > b <— —a;x < —b;

* uma igualdade para desigualdades

a;x =b; <= a;x < b; Najx > b;

14 Capitulo 1. Introdugio

Conversoes

¢ uma desigualdade para uma igualdade

aix <b<=ajx+x,01=bANxp11 >0
ax>b<<ax—x,01=b;ANx;31 >0

usando uma nova varidvel de folga ou excesso x,41 (inglés: slack and
surplus variables).

* uma varidvel x; sem restri¢des para duas ndo-negativas

X >0Ax; >0

+

substituindo x; por x;” — x; .

Essas transformagdes permitem descrever cada problema linear em uma
forma padrdo.

Forma padrao

maximiza cfx
sujeitoa Ax <V,
x> 0.

As restri¢cdes x > 0 se chamam triviais.

Exemplo 1.5
Dado o problema

minimiza 3x; —5x; + x3
sujeitoa x; —x2 —x3 >0,
5x1 + 3xr + x3 < 200,
2x1 + 8x2 + 2x3 < 500,
x1,%x2 > 0.

1.3. Solugdo por busca exaustiva 15

vamos substituir “minimiza” por “maximiza”, converter a primeira desi-
gualdade de > para < e introduzir x3 = x; — x; com duas varidveis positi-
vas x; e x; para obter a forma padrdo

maximiza —3x;+5x; — x3+ + x5
sujeitoa —x;+x2+ x;r —x3 <0,
5x1 4 3x2 + x5 — x5 < 200,
2x1 +8xp + 2x5 — 2x5 < 500,

+ —
X1, X2,%3 ,%3 > 0.

Em notagdo matricial temos

_53 0 -1 11 -1
c= 1 ; b=1200]; A=[5 3 1 -1
. 500 2 8 2 -2

O

Definicido 1.2 (Solugdes vidveis, invidveis e 6timas)

Para um programa linear P em forma normal, um vetor x € R" é uma
solugdo vidvel, caso Ax < b e x > 0. P é vidvel caso existe alguma solugdo
vidvel, caso contrario P é invidvel. Um vetor x* € IR" é uma solucio 6tima caso
clx* = max{cx | Ax <b,x > 0}.

Definicdo 1.3 (Programas ilimitados)
Uma programa linear em forma normal é ilimitado caso existe um v € R tal
que para todo w > v existe uma solugdo vidvel x com ctx > w.

1.3. Solucao por busca exaustiva

Uma observagdo importante na solugdo de um programa linear é que a so-
lugdo 6tima, caso exista, somente ocorra na borda de regido das solugdes
vidveis (compara com a figura na pagina 8). Mais especifico a solugdo 6tima
ocorre num vértice (ou ponto extremo) dessa regido, definido pela intersecao
de n restrigdes linearmente independentes. Isso justifica tratar a programa-
¢do linear como problema de otimizacdo combinatéria, porque temos um
namero finito de (') candidatos para a solugdo 6tima. Procurando o melhor
entre todos candidatos nos também fornece um algoritmo (muito ineficiente)
para encontrar uma solu¢do 6tima de um programa linear, caso exista.

16 Capitulo 1. Introdugio

Definicido 1.4
Um conjunto C C IR" é convexo, caso para todo par de pontos x,y € C a sua
combinagio convexa Ax + (1 — A)y para A € [0,1] também pertence a C.

Proposicao 1.1
A regido de solugdes vidveis V = {x € R" | Ax < b} definido por um
programa linear é convexa.

Prova. Sejam x,y € V. Entao
AAx+ (1 —-A)y) =AAx+ (1 —-AN)Ay < Ab+ (1—-A)b=b.

Defini¢do 1.5
Um ponto x € C de uma regido C C IR" é um vértice ou ponto extremo, caso
ndo existeumy #Otalquex+y € Cex—y € C.

Proposicdo 1.2
Caso existe uma tnica solugdo 6tima de max{c’x | x € V} ela é um vértice
de V.

Prova. Supde que a solugdo 6tima x* ndo é um vértice de V. Entdo existe
um y tal que x +y € Vex—y € V. Por x* ser a tnica solugdo 6tima
temos ¢! (x* +y) < c'x* e !(x* —y) < c'x*, ie, 'y < 0e —c'y < 0, uma
contradicdo. []

Proposicao 1.3
Um vértice de V = {x € R" | Ax < b} é a interse¢do de n restri¢des linear-
mente independentes.

Prova. Para um vértice v € V, seja A, a matriz formado das linhas a; de A

tal que a;v = b;, e b, os lados direitos correspondentes.

Seja v € V aintersecdo de n restri¢des linearmente independentes, i.e. posto(A,) =
n. Supde v ndo é um vértice. Logo existe um y tal que x +y,x —y € V que sa-
tisfazem A,(x+y) < by e Ay(x —y) < by,. Como Ayx = b, obtemos A,y < 0

e —Ayy <0, ie Ayy =0, uma contradi¢gdo com posto(A,) = n.

Agora seja v € V um vértice e supde posto(Ay) < 1, i.e. existe um y tal que

Ayy = 0. Para as linhas 4; em A com a;v < b; existe um J > 0 tal que

a;(v+8y) < b; ea;(v—23y) <b

1.3. Solugdo por busca exaustiva 17

e logo
A(v+dy) <beA(v—4oy) <b,

porque A,y = 0, em contradigdo com o fato que v é um vértice. |

Proposicao 1.4
Caso existem multiplas solucdes 6timas de max{c’x | x € V} e V é limitado,
um vértice de V é uma solugdo 6tima.

Prova. Por inducdo sobre n — posto(A,). Caso n — posto(A,) = 0, v é
um vértice pela proposicdo (1.3). Para n — posto(A,) > 0 existe um y com
Apy = 0. Seja p = max{t | v+ty € V}. O valor y existe porque V é limitado
(e compacto). Como a;(v + py) < b; para cada linha i temos que

u = min{(b; — a;v)/a;y | a;y > 0} (+)

Seja i* o indice da linha que satisfaz (+) com igualdade. Define v/ = v + py.
Temos A,v" = Ayv + pAyy = Ayv = by, logo Ay contém as linhas de A, e
pelo menos a linha 4;- a mais. Ainda, como A,y = 0 mas a;+y # 0 temos que
posto(A,) > posto(A,). Logo, pela hipdtese da indugdo, existe um vértice
que é uma solugdo 6tima. |

Observacgao 1.2

Caso existem multiplas solugdes 6timas de max{c'x | x € V}, mas V ndo
é limitado, é possivel que ndo existe um vértice 6timo. Um exemplo é o
sistema max{x; | (x1,x) € R?,0 < x; < 1}. O

Aplicando a proposigdo 1.4 obtemos um algoritmo simples para resolver sis-
temas lineares, que enumera todos vértices e retorna o vértice de maior valor.

Algoritmo 1.1 (Solucao de programas linear por exaustiao)
Entrada Programa linear max{c’x | Ax <b,x € R" }.

x* :=null
m o . o . .
for todas @J selecdes de n restrigdes lin. indep.
determine a intersegdo X das n restrigdes
if Ax<b e cfx > cfx* then
x*
end if

=X

end for
if x* #null then

18 Capitulo 1. Introdugdo

return "Solugdo o6tima é x* ou sistema ilimitado"
else

return "N&o possui solugdo ou néo possui vértice"
end if

1.4. Notas historicas
Histéria da programacao linear

* Jean Baptiste Joseph Fourier (1826): Método de resolver um sistema de
desigualdades (eliminagdo de Fourier-Motzkin) (Williams 1986).

Leonid Kantorovich (1939): Programagdo linear.

George Bernard Dantzig (1948): Método Simplex.

John von Neumann: Dualidade.

Leonid Khachiyan (1979): Método de ellipsoides.

Narendra Karmarkar (1984): Métodos de pontos interiores.

Pesquisa operacional, otimizacao e “programacao”

Figura 1.2.: Jean Baptiste Jo-

seph Fourier (1768, +1830) ¢ “The discipline of applying advanced analytical methods to help make

better decisions” (INFORMS)

¢ O nome foi criado durante a segunda guerra mundial, para métodos
cientificos de andlise e predigdo de problemas logisticos.

* Hoje se aplica para técnicas que ajudam tomar decisdes sobre a execu-
¢do e coordenagdo de operagdes em organizagdes.

* Problemas da pesquisa operacional sdo problemas de otimizacao.

2

¢ “Programagdo” nado é “Programacado”

— Nao se refere a computagdo: a nogdo significa “planejamento” ou
“agendamento”.

Figura 1.3.: George Bernard
Dantzig (*1914, +2005)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Dantzig_George.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Dantzig_George.html

1.5. Exercicios 19

Técnicas da pesquisa operacional

* Em geral: Técnicas algoritmicas conhecidas como

— Modelagem matematica, e.g. equagdes, igualdades, desigualda-
des, modelos probabilisticos.

— Algoritmos gulosos, randdmicos, ...; programacdo dinamica, li-
near, convexa, ...

— Heuristicas e algoritmos de aproximagao.

* Algumas dessas técnicas se aplicam para muitos problemas e por isso
sS40 mais comuns:

— Exemplo: Programagcéao linear.

1.5. Exercicios

(Solugdes a partir da pagina 213.)

Exercicio 1.1
Na defini¢do da programagcao linear permitimos restri¢des lineares da forma

Aj1X1 + ApXp + - - - + AinXp > by
com ;€ {<,=,>}. Por que ndo permitimos b<;€ {<, >} também? Discute.

Exercicio 1.2
Procura a tabela nutricional de algum restaurante e resolve o problema da
dieta (exemplo 1.2).

Exercicio 1.3

Um investidor pode vender a¢des de suas duas empresas na bolsa de valores,
mas estd sujeito a um limite de 10.000 operagdes didrias (vendas por dia). Na
cotagdo atual, as a¢des da empresa A valorizaram-se 10% e agora cada uma
vale R$ 22. J& a empresa B teve valorizagdo de 2% e cada agdo vale R$ 51.
Sabendo-se que o investidor possui 6.000 acdes da Empresa A e 7.000 da
empresa B, maximize seu lucro na BOVESPA e diga qual o lucro obtido.

Exercicio 1.4
Dona Maria adora ver seus netinhos Marcos, Renato e Vinicius bem alimen-
tados. Sempre na hora de cozinhar ela leva em conta o quanto eles gostam

20 Capitulo 1. Introdugio

de cada prato para fazé-los comer o maximo possivel. Marcos gosta da lasa-
nha e comeria 3 pratos dela apds um prato de sopa; Renato prefere lanches,
e comeria 5 hamburgueres, ignorando a sopa; Vinicius gosta muita da massa
a bolonhesa, e comeria 2 pratos apds tomar dois pratos de sopa. Para fa-
zer a sopa, sdo necessdrios entre outros ingredientes, 70 gramas de queijo
por prato e 30 gramas de carne. Para cada prato de lasanha, 200 gramas de
queijo, e 100 gramas de carne. Para cada hamburguer sdo necessarios 100
gramas de carne, e 100 gramas de queijo. Para cada prato de massa a bo-
lonhesa sdo necessarios 100 gramas de carne e 30 gramas de queijo (ralado
para por sobre a massa). Seus netos vieram visitd-la de surpresa, e tendo
ela somente 800 gramas de carne e 1000 gramas de queijo em casa, como ela
poderia fazé-los comer o maior niimero de pratos, garantindo que cada um
deles comera pelo menos dois pratos, e usando somente os ingredientes que
ela possui?

Exercicio 1.5

A empresa “Luz para o mundo” produz dois tipos de lampadas, cada um
com partes metdlicos e partes eléctricos. A gerencia quer saber com quantas
unidades produzidas por tipo o lucro é maximizado. A produgdo de uma
unidade de produto 1, precisa uma unidade de partes metalicos e duas uni-
dades de componentes eléctricos. A producdo de uma unidade de produto
2, precisa trés unidades de partes metdlicos e duas unidades de componentes
eléctricos. A empresa tem um estoque de 200 unidades de partes metélicos e
300 unidades de componentes eléctricos. Cada unidade de produto um tem
um lucro de R$ 1 e cada unidade de produto 2, até um limite de 60 unida-
des, um lucro de R$ 2. (Cada unidade acima de 60 no caso do produto 2 ndo
rende nada.)

Exercicio 1.6

A empresa “Janela joia” com trés empregados produz dois tipos de jane-
las: com molduras de madeira e com molduras de aluminio. Eles tém um
lucro de 60 R$ para toda janela de madeira e 30R$ para toda janela de alu-
minio. Jodo produz as molduras de madeira. Ele consegue produzir até seis
molduras por dia. Sylvana é responsével pelas molduras de aluminio, e ela
consegue produzir até quatro por dia. Ricardo corta o vidro e é capaz de
produzir até 48 m? por dia. Uma janela de madeira precisa 6 m> de vidro, e
uma de aluminio 8 m2. A empresa quer maximizar o seu lucro.

Formule como programa linear.

1.5. Exercicios 21

R$ 2000/t
30t

R$ 1604/t

R$ 1100/t

Figura 1.4.: Rede de distribui¢do de uma empresa de ago.

Exercicio 1.7

Uma empresa de ago tem uma rede de distribuicdo conforme Figura 1.4.
Duas minas P; e P, produzem 40t e 60t de mineral de ferro, respectivamente,
que sdo distribuidos para dois estoques intermedidrios S; e Sp. A planta
de produgdo P tem uma demanda dem 100t de mineral de ferro. A vias
de transporte tem limites de toneladas de mineral de ferro que podem ser
transportadas e custos de transporte por tonelada de mineral de ferra (veja
figura). A direcdo da empresa quer determinar a transportagdo que minimiza
os custos. Formule o problema como programa linear.

Exercicio 1.8
Um importador de Whisky tem as seguintes restri¢des de importagao

* no méaximo 2000 garrafas de Johnny Ballantine por 70 R$ cada uma,
* no méximo 2500 garrafas de Old Gargantua por 50 R$ cada uma,
* no méximo 1200 garrafas de Misty Deluxe por 40 R$ cada uma.

Dos Whiskies importados ele produz trés misturas A, B, C, que ele vende
por 68 R$, 57 R$ e 45 R$, respectivamente. As misturas sdo

* A:no minimo 60% Johnny Ballantine, no méaximo 20% Misty Deluxe,
¢ B: no minimo 15% Johnny Ballantine, no méximo 60% Misty Deluxe,

¢ C: no maximo 50% Misty Deluxe.

22 Capitulo 1. Introdugio

Quais seriam as misturas 6timas, e quantas garrafas de cada mistura devem
ser produzidas para maximizar o lucro? Formule como programa linear.

Observagoes:

¢ Use como varidveis o nimero de garrafas x,; da marca m usadas na
mistura i.

* Desconsidere a integralidade das garrafas.

Exercicio 1.9

A empresa de televisdo “Boa vista” precisa decidir quantas TVs de 29"e
31"ela vai produzir. Uma analise do mercado descobriu que podem ser ven-
didas no maximo 40 TVs de 29"e 10 de 31"por més. O trabalho méximo
disponivel por més é 500h. A producdo de um TV de 29"precisa 20h de tra-
balho, e um TV de 31"precisa 10h. Cada TV de 29"rende um lucro de R$ 120
e cada de 31"um lucro de R$ 80.

Qual a producdo 6tima média de cada TV por més?

Exercicio 1.10 (da Costa)

Um certo 6leo é refinado a partir da mistura de outros 6leos, vegetais ou nao
vegetais. Temos 6leos vegetais V1 e V2 e 6leos ndo vegetais NV1 NV2 NV3.
Por restri¢des da fabrica, um maximo de 200 toneladas de Oleos vegetais
podem ser refinados por més, e um maximo de 250 toneladas de 6leos nao
vegetais. A acidez do 6leo desejado deve estar entre 3 e 6 (dada uma unidade
de medida) e a acidez depende linearmente das quantidades/acidez dos
6leos brutos usados. O prego de venda de uma tonelada do 6leo é R$ 150.
Calcule a mistura que maximiza o lucro, dado que:

Oleo V1l V2 NV1 NV2 NV3
Custo/ton 110 120 130 110 115
Acidez 88 61 20 42 50

Exercicio 1.11 (Campélo Neto)

Um estudante, na véspera de seus exames finais, dispde de 100 horas de es-
tudo para dedicar as disciplinas A, B e C. Cada um destes exames é formado
por 100 questdes, e o estudante espera acertar, alternativamente, uma ques-
tdo em A, duas em B ou trés em C, por cada hora de estudo. Suas notas nas
provas anteriores foram 6, 7 e 10, respectivamente, e sua aprovacdo depende

1.5. Exercicios 23

de atingir uma média minima de 5 pontos em cada disciplina. O aluno de-
seja distribuir seu tempo de forma a ser aprovado com a maior soma total
de notas.

Exercicio 1.12 (Dasgupta et al. (2009))

Moe esta decidindo quanta cerveja Duff regular e quanta cerveja Duff Forte
encomendar a cada semana. Duff regular custa a Moe $1 por caneco e ele
a vende por $2 por caneco; Duff Forte custa $1.50 por caneco e ele vende
por $3 por caneco. Entretanto, como parte de uma complicada fraude de
marketing, a companhia Duff somente vende um caneco de Duff Forte para
cada dois canecos ou mais de Duff regular que Moe compra. Além disso,
devido a eventos passados sobre os quais ¢ melhor nem comentar, Duff ndo
venderd Moe mais do que 3000 canecos por semana. Moe sabe que ele pode
vender tanta cerveja quanto tiver.

Formule um programa linear em duas varidveis para decidir quanto de Duff
regular e quanto de Duff Forte comprar, para maximizar o lucro de Moe.

Exercicio 1.13 (Dasgupta et al. (2009))

A companhia de produtos caninos oferece duas comidas para cachorro: Frisky
Pup e Husky Hound, que sdo feitas de uma mistura de cereais e carne. Um
pacote de Frisky Pup requer 1 quilo de cereal e 1.5 quilo de carne, e é ven-
dido por $7. Um pacote de Husky Hound usa 2 quilos de cereal e 1 quilo de
carne, e é vendido por $6. O cereal bruto custa $1 por quilo e a carne bruta,
$2 por quilo. H4 também o custo de $1.40 para empacotar o Frisky Pup e
$0.60 para o Husky Hound. Um total de 240000 quilos de cereal e 180000
quilos de carne estdo disponiveis a cada més. O tnico gargalo de produgao
estd no fato de a fdbrica poder empacotar apenas 110000 pacotes de Frisky
Pup por més. Desnecessdrio dizer, a geréncia gostaria de maximizar o lucro.
Formule o problema como um programa linear em duas variaveis.

Exercicio 1.14 (Vanderbei (2014))

Formule como problema de otimizagdo linear e resolve graficamente.

Uma empresa de ago produz placas ou canos de ferro. As taxas de produgdo
sdo 200t/ h para placas e 140t/h para canos. O lucro desses produtos e 25%/t
para placas e 30$/t para canos. Considerando a demanda atual, os limites de
producdo sdo 6000t de placas e 4000t de canos. Na semana atual sdo 40h de
tempo de producado disponivel. Quantas toneladas de placas e canos devem
ser produzidas para maximizar o lucro?

24 Capitulo 1. Introdugio

Exercicio 1.15 (Vanderbei (2014))
Formule como problema de otimizacao linear.

Uma pequena empresa aérea oferece um voo de Pelotas, com escala em Porto
Alegre para Torres. Logo tem trés tipos de clientes que voam Pelotas—Porto
Alegre, Pelotas—Torres e Porto Alegre-Torres. A linha também oferece trés
tipos de bilhetes:

¢ Tipo A: bilhete regular.

¢ Tipo B: sem cancelamento.

¢ Tipo C: sem cancelamento, pagamento trés semanas antes de viajar.

Os precos (em R$) dos bilhetes sado

Pelotas—Porto Alegre Porto Alegre—Torres Pelotas—Torres

A 600 320 720
B 440 260 560
C 200 160 280

Baseado na experiéncia com esse voo, o marketing tem a seguinte predigdo
de passageiros:

Pelotas-Porto Alegre Porto Alegre-Torres Pelotas-Torres

A 4 8 3
B 8 13 10
C 22 20 18

O objetivo da empresa e determinar o niimero 6timo de bilhetes para vender
de cada tipo, respeitando um limite de 30 passageiros em cada voo e o limite
dos passageiros previstos em cada categoria, que maximiza o lucro.

Exercicio 1.16
Resolva graficamente.

1.5. Exercicios

maximiza 4x;+ xo
sujeitoa —x;+x <2,
x1 + 8xp < 36,
x2 < 4,
x1 < 4.25,

x1,x2 2 0.
(a) Qual a solugao 6tima?
(b) Qual o valor da solugao 6tima?

Exercicio 1.17
Escreve em forma normal.

minimiza z = —5x; —5xp, —5x3
sujeitoa —6x7 —2x2 —9x3 <0,
—9x1 — 3x2 +3x3 = 3,
x1,%2,x3 > 0.

maximiza z = —6x7 —2xp — 6x3 + 4x4 + 4x5
sujeitoa —3x; —8xp —6x3 —7x4 —5x5 =3,
5x1 —7xp +7x3 +7x4 — 6x5 < 6,
1x1 —9x +5x3 + 7x4 — 10x5 = —6,

X1, X2, X3, X4, X5 > 0.

maximiza z = 7xy+4x; + 8x3 + 7x4 — 9x5
sujeitoa —4x; —1xp —7x3 —8x4 + 6x5 = —2,
X1 +4xy +2x3 +2x4 — 7x5 > —7,
—8x1 4+ 2xp +8x3 — 6x4 — 7x5 = —7,
X1,X2,X3,X4,x5 > 0.

25

26 Capitulo 1. Introdugio

minimiza z = —6x1 + 5xp + 8x3 + 7x4 — 8x5
sujeitoa —5x; —2xp +x3 —9x4 —7x5 =09,
7x1+ 7x2 +5x3 — 3x4 + x5 = =8,
—b5x1 —3xp — 5x3 + 9x4 + 8x5 <0,

X1, X2, X3, X4, x5 2> 0.

2. O método Simplex

Graficamente, é dificil resolver sistemas com mais que trés varidveis. Por-
tanto é necessario achar métodos que permitam resolver sistemas grandes.
Um dos mais importantes é o método Simplex. N6s vamos estudar esse mé-

todo primeiramente através da aplicagdo a um exemplo.

2.1. Um exemplo

Comegamos com o seguinte sistema em forma padrao:

Exemplo: Simplex

maximiza 2z = 6x1 + 8xy + 5x3 + 9xy
sujeito a 2x; + x2 + x3 +3x4 <5,
X1+ 3x2 4+ x3 +2x4 < 3,
X1,X2,X3,x4 > 0.

Introduzimos varidveis de folga e reescrevemos as equagdes:

Exemplo: Com variaveis de folga

maximiza 2z = 6x1 + 8xy + 5x3 + 9x4
sujeitoa w; =5—2x7 — xp — x3 — 3xy,
Wy =3 —x1 —3xp — X3 — 2Xxy,

X1, X2, X3, X4, W1, wp > 0.

Observacgio 2.1

(2.1)
(2.2)
(2.3)

Nesse exemplo é facil obter uma solugdo vidvel, escolhendo x; = x; = x3 =
x4 = 0. Podemos verificar que w; = 5 e wy = 3 e todas as restrigdes sdo
respeitadas. O valor da fungdo objetivo seria 0. Uma outra solugdo vidvel é

x1=1,x=x3=x4 =0, w; =3, w, =2 com valor z = 6.

O

28 Capitulo 2. O método Simplex

Com seis varidveis e duas equagdes lineares independentes o espaco de so-
lugdes do sistema de equagdes lineares dado pelas restri¢coes tem 6 —2 = 4
graus de liberdade. Uma solucédo vidvel com esse ntiimero de varidveis nulas
(igual a 0) se chama uma solugio bdsica vidvel. Logo nossa primeira solugdo
acima é uma solugao bdésica viavel.

A idéia do método Simplex é percorrer solucdes bdsicas vidveis, aumentando
em cada passo o valor z da fungdo objetivo.

Logo nosso préximo objetivo é aumentar o valor da fung¢do objetivo z. Para
esse fim, podemos aumentar o valor das varidveis xq, xp, X3 ou x4, pois o
coeficiente delas é positivo. Escolhemos x4, porque essa varidvel tem o maior
coeficiente. Ndo podemos aumentar x, arbitrariamente: Para respeitar as
restri¢cdes wy, wp > 0 temos os limites

Limites

w1 =5—-3x4>0<= x4 <5/3
Wy =3—-2x4 > 0<= x4 <3/2

ou seja x4 < 3/2. Aumentando x4 0 méximo possivel, obtemos x; = 3/2 e
wy = 0. Os valores das demais varidveis ndo mudam. Essa solugdo respeita
novamente todas as restri¢des, e portanto é vidvel. Ainda, como trocamos
uma varidvel nula (x4) com uma outra ndo-nula (w;) temos uma nova solugdo
bésica viavel

Solucao basica viavel

X1 = X2 = X3 :O;x4:3/2;w1 = 1/2,‘102 =0

com valor da fungédo objetivo z = 13.5.

O que facilitou esse primeiro passo foi a forma especial do sistema de equa-
¢des. Escolhemos quatro varidveis independentes (x1, x2, x3 e x4) e duas
varidveis dependentes (w; e wy). Essas varidveis sdo chamadas ndo-bdsicas
e bdsicas, respectivamente. Na nossa solugdo bésica vidvel todas varidveis
ndo-bdsicas sdo nulas. Logo, pode-se aumentar uma varidvel ndo-bésica cujo
coeficiente na fungdo objetivo seja positivo (para aumentar o valor da fungao
objetivo). Inicialmente tem-se as seguintes varidveis basicas e ndo-béasicas

B = {w,w}; N = {x1,x2,x3, x4 }.

2.1. Um exemplo 29

Depois de aumentar x4 (e consequentemente zerar w;) podemos escolher
B={wy,xs}; N ={x1,x,x3w}.

A variavel x4 se chama varidvel entrante, porque ela entra no conjunto de
varidveis basicas B. Analogamente w, se chama varidvel sainte.

Para continuar, podemos reescrever o sistema atual com essas novas varidveis
bésicas e ndo-bésicas. A segunda restri¢do 2.3 é facil de reescrever

W) =3—x1 —3xp — X3 —2x4 <= 2x4 =3 —x1 —3xp — X3 —wW»

> Xq4 = 3/2—1/23(1 —3/2x2 — 1/2.’){3 —1/2@02
Além disso, temos que reescrever a primeira restrigdo 2.2, porque a varidvel
bésica w; depende de x4 que agora é bédsica também. Nosso objetivo é es-
crever todas varidveis basicas em termos de varidveis ndo-bdsicas. Para esse
fim, podemos usar combinagdes lineares da linhas, que eliminam as varia-

veis ndo-bdsicas. Em nosso exemplo, a combinagéo (2.2)—3/2(2.3) elimina x4
e resulta em

w1 —3/2w, =1/2—1/2x1+7/2x2 +1/2x3
e colocando a varidvel ndo-bésica w, no lado direito obtemos
w1 =1/2—-1/2x1+7/2x, +1/2x3 + 3/2w,.

Temos que aplicar uma operagdo semelhante a fungdo objetivo que ainda
depende da varidvel bésica x4. Escolhemos (2.1)—9/2(2.3) para obter

z=27/2+3/2x1 —11/2xy +1/2x3 —9/2w>.

Novo sistema

maximiza z=27/2+3/2x1 —11/2x, +1/2x53 —9/2w,
sujeitoa w; =1/2—-1/2x1+7/2x2+1/2x3 4+ 3/2ws,
X4 23/2—1/2361 —3/23(2—1/23(3—1/27/02,

X1, X2, X3, X4, w1, wp > 0.

que obtemos ap6s uma operagdo de trocar as varidveis x4 e wy. Essa opera-
¢do se chama um pivd. Observe que no novo sistema é f4cil recuperar toda

30 Capitulo 2. O método Simplex

informagdo atual: zerando as varidveis ndo-bésicas obtemos diretamente a
solucdo x; = xp = x3 =wy =0, w1 = 1/2 e x4 = 3/2 com fungdo objetivo
z=27/2.

Antes de continuar “pivotando” introduzimos uma forma mais simples de
escrever o sistema

Dicionario

z =27/2 43/2x1 —11/2xp +1/2x3 —9/2w,
w =1/2 —=1/2x1 +7/2xy +1/2x3 +3/2w,
xg =3/2 —1/2x1 =-3/2xp, —1/2x3 —1/2w,

que se chama diciondrio (inglés: dictionary).

Excurso 2.1

Alguns autores usam um fableau em vez de um diciondrio. Para n varidveis
e m restri¢des, um tableau consiste em n + 1 colunas e m + 1 linhas. Igual
a um diciondrio, a primeira linha corresponde com a funcao objetivo, e as
restantes linhas com as restri¢des. Diferente do diciondrio a primeira coluna
contém as constantes, e as restantes colunas correspondem com as variaveis,
incluindo as bésicas. Nosso exemplo acima em forma de tableau é

base

X1 X2 X3 X4 W1 wy

27/2 | 3/2 —11/2 1/2 0 0 9/2
1/211/2 =7/2 —-1/2 0 1 -3/2

3/2|1/2 3/2 1/2 1 0 1/2

O

No préximo passo podemos aumentar somente x; ou x3 porque somente elas
tém coeficientes positivos. Aumentando x; temos que respeitar x; < 1 (da
primeira restri¢do) e x; < 3 (da segunda). Logo a primeira restri¢do é mais
forte, x; é a varidvel entrante, w; a varidvel sainte, e depois do pivod obtemos

Segundo passo

z =15 —-3w; 4+5xp +2x3
x1 =1 2wy, +7x0 +x3 +3w,
x4y =1 4wy —bx —x3 2w

2.1. Um exemplo 31

No préximo pivd x; entra. A primeira restricio ndo fornece limite para x»,
porque o coeficiente de x, é positivo! Mas a segunda x, < 1/5 e x4 sai da
base. O resultado do pivo é

Terceiro passo

z =16 —2wq —X4 +x3 —2w»
X1 = 12/5 —3/5ZU1 —7/5X4 —Z/SX3 +1/5w,
x, =1/5 +1/5w; —1/5x4 —1/5x3 —2/5w,

O préximo pivo: x3 entra, x; sai:

Quarto passo

z =17 —w; —2x4 —bxp —4w,
X1 = 2 —wW1 —X4 —|—ZX2 “+wy
x3 =1 +w1 —Xxy —5x, —2w,

Agora, todos coeficientes da fungdo objetivo sdo negativos. Isso significa,
que ndo podemos mais aumentar nenhuma varidvel ndo-bésica. Como esse
sistema € equivalente ao sistema original, qualquer solu¢do tem que ter um
valor menor ou igual a 17, pois todas as varidveis sdo positivas. Logo chega-
mos no resultado final: a solugao

W1:X4:X2:ZU2:0;X1:2;X3:1

com valor objetivo 17, é 6tima!

Concluimos esse exemplo com mais uma observac¢do. O ntimero de solugdes
bésicas vidveis é limitado. Em nosso exemplo, se escolhemos um subcon-
junto de quatro varidveis nulas, as duas equagdes determinam as varidveis
restantes. Logo temos no maximo (Z) = 15 solugdes bdésicas vidveis. Em
geral, com m equac0es e n varidveis, uma solugdo bésica vidvel possui n — m
variaveis nulas e o ntimero delas é limitado por (nf m) Portanto, se aumen-
tamos em cada pivo o valor da fungdo objetivo, o método termina em no

maximo (,") passos.

Exemplo 2.1 (Solucdo do problema do Ildo)
Exemplo da solugdo do problema do Ildo na pagina 7.

32 Capitulo 2. O método Simplex

z= 0/1 +1/5¢ +1/2s

w, = 150 —c —3/2s
wy, = 6000 —50c —50s
W3 = 80 —C
Wy = 60 —S
Pivd s—wy
z= 30 +4+1/5¢ —1/2w,
w = 60 —C +3/2wy
wr, = 3000 —50c +50wy
w3 = 80 —C
s= 60 —Wy
Pivb c—w;

z= 42 —1/5w; —1/5w,
c= 60 —un +3/2wy

Wy = +50w; —25wy
wy; = 20 4w, —3/2w,
s= 60 —Wy

O resultado é um lucro total de R$ 42, com os seguintes valores de varidveis:
c=260,5 =060 w =0 w, =0, w3 =20e wy = 0. A interpretacdo das
varidveis de folga é como segue.

¢ wy: Numero de ovos sobrando: 0.

* wy: Quantidade de agticar sobrando: 0 g.

¢ wj3: Croissants ndo produzidos (abaixo da demanda): 20.

* wy: Strudels ndo produzidos: 0.

2.2. O método resumido

Considerando n varidveis e m restri¢oes:

2.2. O método resumido 33

Sistema inicial

maximiza z = Z CjiXj

j€ln]
sujeitoa) a;x; < by, i€ [m],
j€ln]
xj >0, j € [n].

Preparacao
Introduzimos varidveis de folga

Z AjjXj + Xpyi = b;, i€ [ﬂ’l],

j€[n]

e escrevemos as varidveis de folga como dependentes das varidveis restantes

Xpti = b, — Z aijXj, i€ [ﬂ’l]
j€n]

Solucdo basica viavel inicial
Se todos b; > 0 (o caso contrdrio vamos tratar na proxima sec¢do), temos uma
solugédo bésica inicial

Xnti = bi/ i€ [m]/

xj =0, j € [n].

Indices das variaveis

Depois do primeiro passo, os conjuntos de varidveis bésicas e ndo-bésicas
mudam. Seja B o conjunto dos indices das varidveis bésicas (ndo-nulas) e N’
o conjunto das varidveis nulas. No comego temos

B={n+1,n+2,...,n+m}; N ={12,...,n}

34 Capitulo 2. O método Simplex

A forma geral do sistema muda para
z=2Z+ Z Cixj,
JEN
X; = Ei - Z aijx;, ieB.
jeN

As barras em cima dos coeficientes enfatizam que eles mudam ao longo
da aplicagdo do método. Os coeficientes ¢; sdo chamados custos reduzidos
(ingl. reduced costs).

Escolher variavel entrante (ingl. pricing)

Em cada passo do método Simplex, escolhemos uma varidvel ndo-bésica xy,
com k € N para aumentar o valor objetivo z. Isso somente é possivel para
os indices j tal que ¢; > 0, i.e.

{ieN]|¢ >0} (2.4)
Escolhemos um k desse conjunto, e x; é a varidvel entrante. Uma heuristica

simples é a regra do maior coeficiente, que escolhe

k = argmax{c; | ¢; > 0}
j€

Aumentar a variavel entrante
Seja x; a varidvel entrante. Se aumentarmos a varidvel x; para um valor
positivo, as varidveis basicas assumem novos valores
X; = 1_91' — Ajx Xk, ieB.
Temos que respeitar x; > 0 para i € [n]. Cada equagdo com a; > 0 fornece
uma cota superior
xx < bi/ay
para o aumento de x. Logo podemos aumentar x; no maximo por um valor
-1 -1
a:= min b;/dy = (max ﬁik/5i> = <maxﬁik/l_?,-> >0. (25)
ieBlag>0 ieBlag>0 ieB

E possivel que multiplas varidveis definem o mesmo limite: podemos esco-
lher a varidvel sainte entre os indices

{i eB ’ Ei/ﬁik = (X}. (2.6)

2.3. Sistemas ilimitados 35

2.3. Sistemas ilimitados

Como pivotar?

e Considere o sistema
z =24 —x1 +2x
X3 =2 —x1 +x
Xy =5 +x1 +4x

* Qual a préxima solugdo basica vidvel?

* A duas equagdes ndo restringem o aumento de x,: existem solugdes
com valor ilimitado.

2.4. Encontrar uma solucdo inicial: o método de duas fases

Solucao basica inicial
* Nosso problema inicial é

maximiza z = Z CjX;

j€ln]
sujeitoa) a;x; < b, i€ lm,
j€ln]
x; >0, i€ [n,
e com diciondrio inicial
z=2Z+) Cjxj
jeEN
X; = Ei — Z aijx;, iebB.
JEN

Solucao basica inicial
* A solugdo basica inicial desse dicionario é
x=1(0---0by---by)t
* O que acontece se existe um b; < 0?

* A solugdo basica ndo é mais vidvel! Sabe-se disso porque pelo menos
uma varidvel basica terd valor negativo.

36 Capitulo 2. O método Simplex

Sistema auxiliar

¢ Um método para resolver o problema: resolver outro programa linear
- cuja solucdo fornece uma solugéo bésica viavel do programa linear
original e
- que tem uma solucao bésica vidvel simples, tal que podemos apli-
car o método Simplex.

maximiza z = —Xxg
sujeito a Z aijxj — xo < b, 0<i<m,
j€n]
x; >0, i€ [1’1]

Resolver o sistema auxiliar

e E facil encontrar uma solugdo viavel do sistema auxiliar:
— Escolhe x; = 0, para todos i € [n].
— Escolhe x suficientemente grande: xo > max;c,, —b;.
¢ Isso corresponde com um primeiro pivd com varidvel entrante xo apds
introduzir as varidveis de folga (“pseudo-pivd”).
— Podemos comegar com a solugdo nao-viavel xo = x1 = ... = x, =
0.
- Depois aumentamos xg tal que a varidvel de folga mais negativa
vire positiva.

- Xp e variavel sainte xj tal que k = argmax;(,,| —b;.

Exemplo: Problema original

maximiza z = —2x; — X
sujeitoa —x;+x < -1,
—x1 —2x < =2,
x <1,

x1,x2 > 0.

2.4. Encontrar uma solugdo inicial: o método de duas fases 37

Exemplo: Problema auxiliar

maximiza z = —xg
sujeitoa —x;+x—x9 < -1,
—x1—2x —x0 < =2,
x2—x0 <1,

X0, x1,x2 > 0.

Exemplo: Dicionario inicial do problema auxiliar

z = —X0
w = -1 +x1 —X2 +Xp
wy = —2 —+x1 +2x2 +xg
wy =1 —X2 +Xxo

¢ Observe que a solugdo basica ndo é vidvel.

¢ Para achar uma solugdo bésica vidvel: fazemos um primeiro pivd com
varidvel entrante x(e varidvel sainte w,.

Exemplo: Dicionario inicial viavel do sistema auxiliar

z =-2 +x1 +2xp —wy
w =1 —3x, 4wy
Xg = 2 —X1 —2X2 “+wy
wy =3 —x1 —3xy2 +wp
Primeiro pivo
z =—-4/3 +4x1 —2/3w; —1/3w,
x» =1/3 —-1/3w; +1/3w,

xo =4/3 —x1 +2/3w; +1/3w;
w3 = —X1 +w;

38 Capitulo 2. O método Simplex

Segundo pivo

z = —X0

xy» =1/3 —1/3wy +1/3w,
x1 =4/3 —x9 +2/3w; +1/3w,
w3 = 2/3 +Xp —|—1/3ZU1 —1/3?1)2

Solucéo 6tima!

Solucao do sistema auxiliar

* O que podemos concluir da solugdo do sistema auxiliar?

¢ Obviamente, se o sistema original possui solugdo, o sistema auxiliar
também possui uma solugdo com xy = 0.

* Logo, ap6s aplicar o método Simplex ao sistema auxiliar, temos os ca-
SOs

— xp > 0: O sistema original ndo tem solugao.

- xo = 0: O sistema original tem solu¢do. Podemos descartar xg
e continuar resolvendo o sistema original com a solugado basica
viavel obtida.

* A solugdo do sistema auxiliar se chama fase I, a solugdo do sistema
original fase II.

Sistema original

Reescreve-se a funcado objetivo original substituindo as variaveis bésicas do
sistema original pelas equagdes correspondentes do sistema auxiliar, de forma
que a fungao objetivo z ndo contenha varidveis basicas. No exemplo, a fung¢ao
objetivo é rescrita como:

z=—-2x1—Xp = —3 — w1 — w».

z =-3 —-uw —wy

x, =1/3 —-1/3w; +1/3w»
xy =4/3 +2/3w; +1/3w;
ws =2/3 +1/3w; —1/3w;

Nesse exemplo, o diciondrio original ja é 6timo!

2.4. Encontrar uma solugdo inicial: o método de duas fases 39

Exemplo 2.2 (Sistema original inviavel)
O sistema

maximiza Xx;+ X
sujeitoa x; +x2 > 2,
x1+x <1,
x1,%x2 > 0.

obviamente ndo possui uma solugdo viavel. O diciondrio inicial do sistema
auxiliar (ap6s normalizac¢do e introdugdo das varidveis de folga) é

z= 0 —X
X3 = —2 +x1 +x2 +Xxp
X4 = 1 —X1 —X2 —+Xg

e o pseudo-pivd xp—x3 produz

z= -2 +4x +xp, —Xx3
Xg = 2 —Xq —X2 +Xx3
X4 = 3 =2x1 —2xp +Xx3

e 0 pivo x1—x4 produz o sistema 6timo

z= —=1/2 —1/2x4 —1/2x3
xo= 1/2 +1/2x4 +1/2x3
x1= 3/2 —=1/2x4 —xo» +1/2x3

O valor 6timo do sistema auxiliar é —z = x9 = 1/2, confirmando que o
sistema original ndo possui solugdo viavel. O

2.4.1. Resumo do método de duas fases

Fase | necessaria? Caso b; > 0 para todo i € [m]: inicia diretamente a fase
II.

Dicionario inicial Cria o dicionario inicial do sistema auxiliar

z =min{xy | Ax < b+ x,e}.

Pseudo-pivé Pivota xo—xi, sendo k = argmin
mais negativo.

ic[m] by o indice do lado direito

40 Capitulo 2. O método Simplex

Solucdo fase | Aplica o método Simplex regular ao diciondrio obtido no
passo anterior, com uma modificagdo: caso xg é empatado com outras
varidveis para sair da base, dé preferéncia para xo.

Fase Il necessaria? Caso a solugdo 6tima da fase I possui valor xg > 0: o
sistema original ndo possui solugado. Para.

Prepara fase Il Remove a coluna xp. Remove a fun¢do objetivo do sistema
auxiliar e introduz a fungdo objetivo do sistema original (escrita em
funcéo das variaveis nulas).

Fase Il Aplica o método Simplex no diciondrio inicial da fase II.

Observacao 2.2

A regra modificada na solucdo da fase I dando preferéncia para xp sair da
base, caso xp é candidato, evita um dicionério final com xg = 0 na base. Sem
aplicar essa regra é possivel que xp permanece na base com xp = 0 e ndo
podemos remover a coluna xg. Mas mesmo nessa caso sempre é possivel
neste caso tornar xp nula por pivotar xo—x; sendo x; alguma variavel nula tal

que ap, # 0. O

Exemplo 2.3 (Fase I termina com xy na base)
Considere

maximiza xi+ Xp
sujeitoa 2x; +x2 =4,
xp—x3=1,
x1,x2,x3 > 0.

Apos normalizagdo, a solugdo do sistema auxiliar na fase I passa pelo pseudo-
pivo xo—w; e o pivo x1—w3; depois o pivod wi—x3 produz:

z= 0 -1/2wy —1/2w,
x3= 1 4wz —1/2x, —-3/4w; —1/4w,
xo= 0 +1/2w; +1/2w,
x= 2 —1/2x, —1/4w, +1/4w,
wy= 0 —ws +wq “+woy

Neste caso a fase I encontrou uma solugdo factivel, mas com xp na base.
Variavel x¢ pode ser removida da base por um pivd xp—w; ou xg—w,. Ambos
ndo alteram a solucao. O

2.5. Sistemas degenerados 41

2.5. Sistemas degenerados

Sistemas, solucoes e pivos degenerados
* Um diciondrio é degenerado se existe um i € B tal que b; = 0.
* Qual o problema?

* Pode acontecer um pivd que ndo aumenta a varidvel entrante, e por-
tanto ndo aumenta o valor da fungdo objetivo.

* Tais pivos sdo degenerados.

Exemplo 1

* Nem sempre é um problema.

z =5 4+x3 —x4
Xy = 5 —ZX3 —3x4
X1 = 7 —4X4
ws3 =0 +X4

* X, é a variavel sainte e o valor da fungdo objetivo aumenta.

Exemplo 2
z =3 —-1/2x1 +2x» —3/2w;
x3 =1 —1/2x; —1/2uw,
wy, =0 +x1 —xp Hw

* Se a varidvel sainte é determinada pela equagdo com b; = 0, temos um
pivé degenerado.

e Nesse caso, a varidvel entrante ndo aumenta: temos a mesma solugéo
depois do pivo.

Exemplo 2: Primeiro pivo
e Pivo: Xo—Wp
z =3 +3/2x1 2w, +1/2un

x3 =1 —1/2x; —1/2uw,
x» =0 +x; —wy t+ws

¢ O valor da fungdo objetivo ndo aumentou!

42 Capitulo 2. O método Simplex

Exemplo 2: Segundo pivo

® Pivo: x1—x3

z =6 —3X3 —ZZU2 — w1
X1 =2 —2x3 —w1
Xy = 2 —2X3 — Wy

¢ A segunda iteragdo aumentou o valor da fungdo objetivo!

Ciclos

¢ O pior caso seria, se entramos em ciclos.

e F possivel? Depende da regra de selecio de variaveis entrantes e sain-
tes.
¢ Nossas regras
— Escolhe a varidvel entrante com o maior coeficiente.
— Escolhe a variavel sainte mais restrita.
- Em caso de empate, escolhe a varidvel com o menor indice.

¢ Ciclos sdo possiveis: O seguinte sistema possui um ciclo de seis pivos:
X1=W1, X2—W2, X3=X1, X4=X2, W1—X3, Wr—X4.

z = 10x1 —57x7 —9x3 —24x4
w =0 —=1/2x7 +11/2x2 +5/2x3 —9x4
wy = —1/2x1 +3/2x +1/2x3 —xy
wy =1 —xp

Solucdes do problema

¢ Como resolver o problema?

e Trés solugoes
- Ignora o problema (ou perturba numericamente).
- Meétodo lexicografico (perturba simbolicamente).
— Regra de Bland.

2.5. Sistemas degenerados 43

Método lexicografico

* Idéia: O fato que existe um b; = 0 é por acaso.

¢ Se introduzimos uma pequena perturbagdo € < 1
— o problema desaparece

- a solugdo serd (praticamente) a mesma.

Método lexicografico

* Ainda é possivel que duas perturbacdes numéricas se cancelem.
¢ Para evitar isso: Trabalha-se simbolicamente.
¢ Introduzimos perturbagdes simbdlicas
const. >e1 >e > >¢e,;, >0
em cada equagdo.

* Caracteristica: Todo €; é numa escala diferente dos outros tal que eles
ndo se cancelam.

Exemplo

Exemplo 2.4
Sistema original degenerado e sistema perturbado

z =4 +2x1 —Xxp z = +2x1 —Xxp
w, =1/2 —Xo w =1/2 +€¢ —Xo
w, =20 —2x1 +4xp wy = +€2 —2x7 +4xp
wz =10 +x1 —3x w3 = 4+e3 +x1 —3x

44 Capitulo 2. O método Simplex

Comparar perturbacoes

e Com varidvel entrante x;, a linha de menor limite b;/a; com a; > 0
define a variavel sainte.

¢ Os coeficientes agora contem constantes e perturbacdes.
* Podemos representé-los como vetores bie com
bi = (dien - eim)
ecome = (ley ..., en)).
e Com isso temos limites I; = b;/a; em cada linha i.
* A comparagdo de limites respeita a ordem lexicogréfica das perturba-

cOes: I; < I; sse o primeiro coeficiente ndo-nulo em /; — I; é negativo.

Caracteristicas

* Depois de chegar no valor 6timo, podemos retirar as perturbagdes e;.

Teorema 2.1
O método Simplex sempre termina escolhendo as varidveis saintes usando
a regra lexicogréfica.

Prova. E suficiente mostrar que o sistema nunca sera degenerado. Neste caso
o valor da fungdo objetivo sempre cresce, e 0 método Simplex ndo cicla. A
matriz de perturbagdes
€1
€2

€m

inicialmente tem posto m. As operagdes do método Simplex sdo operagdes
lineares que ndo mudam o posto do matriz. Logo, em cada passo do método
Simplex temos uma matriz de perturbagdes

€11€1 €12€2 - E€1m€m
€21€1 €262 - Ep€m

em1€1 €m2€2 - Cmm€Em

2.5. Sistemas degenerados 45

que ainda tem posto m. Portanto, em cada linha i existe pelo menos um e;; #
0 e assim uma perturbagdo diferente de zero e o sistema ndo é degenerado.

|

Exemplo 2.5

Solugdo do exemplo 2.4.

Pivd x1-ws3: z =4 +1ep —wy +3x;
w =1/2 +¢ —X3
x1 =20 +1/2e, +2e3 —1/2wy; —2x»
w3 =0 +1/2¢, +e3 —1/2wp, +3x

Pivo xo—ws3: z =4 +5/2¢; +3e¢3 —5/2w, —3w; O
w, =1/2 4€1 —1/2¢p —e3 +1/2wy +w;
x1 =0 +3/2¢; +2e3 —3/2w, —2ws
x, =0 +1/2¢r, +e3 —1/2w, —ws

Regra de Bland

* Outra solugdo do problema: A regra de Bland.

* Escolhe como varidvel entrante e sainte sempre a varidvel com o menor
indice (caso tiver mais que um candidato).

Teorema 2.2
O método Simplex sempre termina se as varidveis entrantes e saintes
sdo escolhidas através da regra de Bland.

Prova. Prova por contradi¢do: Suponha que exista uma sequéncia de dicio-
ndrios que entra num ciclo Dy, Dy, ..., Dx_1 usando a regra do Bland. Nesse
ciclo algumas varidveis, chamadas instdveis, entram e saem novamente da
base, outras permanecem sempre como bdsicas, ou como ndo-bésicas. Seja
x¢ a varidvel instavel com o maior indice. Sem perda de generalidade, seja
x; a variavel sainte do primeiro diciondrio Dy. Seja x; a varidvel entrante no
Dy. Observe que xs também é instavel e portanto s < t. Seja D* o diciondrio
em que x; entra na base. Temos a situagdo

Xs entra X¢ entra
Do, Dy, D, --- D*, --- Dga

!

X; sai

46 Capitulo 2. O método Simplex

com os sistemas correspondentes

Dy : D*:
z=1z0+) CjX; z=2"+) cfx
jeEN JEN™
xi:bi—Zaijxj ichB xi:b;‘—Za;‘jxj ic B*
jeN jEN*

Como temos um ciclo, todas variaveis instaveis tem valor 0 e o valor da
fungao objetivo é constante. Logo zgp = z* e para D* temos

z=2"+ eZ/\:/ cixj =20 + eZ/\:/ cixj. (2.7)
jEN* JEN*

Se aumentamos em Dy o valor do x; para y, qual é o novo valor da fungao
objetivo? Os valores das varidveis sdo

xS:y
xi=0 jeN\{s} (2.8)
x; = bi — ajsy iebB

e temos no sistema D7 o novo valor
zZ =20+ CsY (2.9)

Vamos substituir os valores das variaveis (2.8) com indices em N* N B na
equacao (2.7). Para facilitar a substitui¢do, vamos definir ¢j := Oparaj ¢ N+,
que permite substituir todas variaveis x;, j € B e assim obtemos

z=z0+), cxj=z0+cy+) (b —agy) (2.10)
jell,n+m) jeB

Equagoes (2.9) e (2.10) representam o mesmo valor, portanto
<cS -+) c]’-‘a]-s>y =) cjbj.
jeB jeB

Essa igualdade deve ser correta para qualquer aumento y, portanto os dois
lados sdo 0, em particular

cs—cit), cjajs = 0.
jeB

2.5. Sistemas degenerados 47

Como x; entra em Dy temos ¢; > 0. Em D* a variavel x; entra, entdo c; < 0
sendo pela regra de Bland s < t entraria. Logo,

Zc;a]-s =cf—cs<—cs <0
jeB

e deve existir um r € B tal que cja,s < 0. Isso tem uma série de consequén-
cias:

(i) c; #0.
(ii) r € N'*, porque somente as varidveis nulas satisfazem C;‘ # 0 em D*.

(iif) x, é instavel, porque ela é basica em Dy (r € BB), mas ndo-basica em D*

(r € N'%).
(iv) r <'t, porque t foi a varidvel instadvel com o maior indice.

(v) r < t, porque cja;s > 0: x; entra em D*, logo ¢ > 0, e x; sai em Dy,
logo a;s > 0.

(vi) ¢; <0, sendo r e ndo t entraria em D* seguindo a regra de Bland.
(vii) aps > 0.

(viii) b, = 0, porque x, é instdvel, mas todos varidveis instdveis tem valor O
no ciclo, e x, é béasica em Dy.

Os ultimos dois itens mostram que x, foi candidato ao sair em Dy com indice
r < t, uma contradi¢cdo com a regra de Bland. n

Teorema fundamental

Teorema 2.3 (Teorema fundamental da programacao linear)
Para qualquer programa linear temos:

(i) Se ndo existe solugdo 6tima, o problema é inviadvel ou ilimitado.
(ii) Se existe uma solugdo vidvel, existe uma solugao béasica viavel.

(iii) Se existe uma solucdo 6tima, existe uma solucao 6tima bésica.

48 Capitulo 2. O método Simplex

2.6. Complexidade do método Simplex

Usando a regra de Bland o método Simplex nunca repete uma base e o nu-
mero de pivos é limitado pelo nimero de bases. Com n + m varidveis (de
decisdo e de folga) existem no méximo

n—+m n—+m
n m
bases possiveis. Para n + m constante, essa expressdo é maximizada para
n = m. Os limites nesse caso sdo (exercicio 2.3)

Logo ¢é possivel que o método Simplex precisa um ntimero exponencial de
pivds. A existéncia de sistemas com um nimero de pivds exponencial de-
pende da regra de pivoteamento. Por exemplo, para a regra de maior coefici-
ente, existem sistemas que precisam um ndmero exponencial de pivos (Klee
e Minty 1972). A pergunta se isso é o caso para qualquer regra de pivotea-
mento estd em aberto. O melhor algoritmo para a programagdo linear precisa
tempo O((n%/ logn)L (Anstreicher 1999), supondo que uma operacdo arit-
meética custa O(1) e os dados sdo inteiros de L bits. Empiricamente o método
Simplex precisa O(m + n) pivds (Vanderbei 2014), e cada pivo custa O(mn)
operagdes, logo o tempo empirico, novamente supondo que uma operagao
aritmética custa O(1) do método Simplex é O((m + n)mn).

Observacao 2.3

Spielman e Teng (2004) mostram que o método Simplex possui complexidade
suavizada polinomial, i.e., 0 maximo do valor esperado do tempo de execu-
¢do sobre pequenos perturbagdes (Gaussianas) é polinomial no tamanho da
instancia e no inverso da perturbacao.

Sem perturbagdes o problema de encontrar a solugdo que o método Sim-
plex encontraria usando a regra de Dantzig é PSPACE-completo (Fearnley e
Savani 2014). O

2.7. Exercicios

(Solugoes a partir da pagina 220.)

2.7. Exercicios

Exercicio 2.1 (Maculan e Fampa (2006))
Resolve com o método Simplex.

maximiza z = 3x;+5xp
sujeitoa x; <4,
x2 <6,
3x1 4+ 2xp <18,
x1,x2 > 0.

Exercicio 2.2
Resolve o exercicio 1.7 usando o método Simplex.

Exercicio 2.3

Prova que
2 <Z”> <22,
2n — \n /)~

Exercicio 2.4
Resolve o sistema degenerado

z = 10x4 —57x7 —9x3 —24x,
w = —1/2x7 +11/2xp +5/2x35 —9x4
wy, = —1/2x1 +3/2xy +1/2x3 —x4
w3 =1 —xp

usando o método lexicografico e a regra de Bland.

Exercicio 2.5
Dado o problema de otimizagao

maximiza x;+ X
sujeito a ax; +bxy <1,

x1,%x2 2> 0,

49

determine condi¢des suficientes e necessdrias que a e b tem que satisfazer tal

que
(a) existe pelo menos uma solugdo 6tima,

(b) existe exatamente uma solugao 6tima,

50 Capitulo 2. O método Simplex

(c) existe nenhuma solugéo 6tima,
(d) o sistema é ilimitado.
ou demonstre que o caso nao é possivel.

Exercicio 2.6
Sabe-se que o diciondrio 6timo do problema

maximiza 2z = 3x;+ xp
sujeitoa —2x; 4 3x <5,
xp—x2 <1,

X1, X2 2 O/

[N

z¥ =31 —11w, —4uw,
Xy = 7 —ZZUZ — w1
X1 = 8 —37,(]2 — w1

(a) Se a fungdo objetivo passar a z = x1 + 2x2, a solugdo continua 6tima?
No caso de resposta negativa, determine a nova solugdo 6tima.

(b) Se a fungdo objetivo passar a z = x; — x2, a solugdo continua 6tima?
No caso de resposta negativa, determine a nova solugdo 6tima.

(c) Se afungdo objetivo passar a z = 2x1 — 2x, a solugdo continua 6tima?No
caso de resposta negativa, determine a nova solu¢do 6tima.

(d) Formular o dual e obter a solu¢do dual 6tima.

Exercicio 2.7

Prove ou mostre um contra-exemplo.

O problema max{c'x | Ax < b} possui uma solugdo viavel sse min{xy |
Ax —exp < b} possui uma solugdo vidvel com xp = 0. Observagdo: e é um
vetor com todos compentes igual 1 da mesma dimensao que b.

Exercicio 2.8

Prove ou mostre um contra-exemplo.

Se x é a varidvel sainte em um pivo, x ndo pode ser variavel entrante no pivo
seguinte.

2.7. Exercicios 51

Exercicio 2.9

Demonstramos na segdo 2.5 que existem sistemas em que o método Simplex
entra em ciclos. No exemplo o método Simplex ficou sempre na mesma
solucdo, representada por bases diferentes. Agora supde que temos solugdes
diferentes com o mesmo valor da funcio objetivo. E possivel que o método
Simplex entra num ciclo sempre visitando solugdes diferentes?

Exercicio 2.10

Supde que temos um diciondrio com uma base infactivel, com um candidato
para a variavel entrante x, (i.e. c, > 0) tal que todos coeficientes na coluna
correspondente sdo negativos (i.e. a;, < 0 para todo i € B). Caso a base fosse
vidvel podemos concluir que o sistema € ilimitado. Podemos concluir isso
também com a base infactivel?

3. Dualidade

3.1. Introducdo

Visao global

* Dualidade: Cada programa linear (chamada de primal) possui um pro-
grama linear correspondente, chamado de dual.
¢ A dualidade tem vdrias aplicagdes como

— Estimar a qualidade de solugdes e a convergéncia do método Sim-
plex.

— Certificar a otimalidade de um programa linear.
— Analisar a sensibilidade e re-otimizar sistemas.

— Resolver programas lineares mais eficiente com o Método Simplex
dual.

¢ O programa linear dual possui uma interpretagdo relevante.

Introducao
* Considere o programa linear

maximiza z = 4x1 + x7 + 3x3, (3.1)
sujeitoa x; +4x; <1,
3x1 —xp+x3 <3,
x1,%2,x3 2 0.
* Cada solugdo vidvel fornece um limite inferior para o valor maximo.
x1=x=x3=0=>2z=0
x1=1Lx=x3=0=>z=4
* Qual a qualidade da solugéo atual?

¢ Nao sabemos, sem limite superior.

54 Capitulo 3. Dualidade

Limites superiores

¢ Como obter um limite superior?

Observe: z = 4x1 + x2 + 3x3 < 10x7 + xp + 3x3 < 10

Podemos construir uma combinagdo linear das desigualdades, tal que
o coeficiente de cada x; ultrapasse o coeficiente da fungao objetivo.

* Nosso exemplo:

(x1+4x2) +308x1 —x2+x3) <1+3-3=10
<—10x1 +x2 +3x3 < 10

Como obter um limite superior para a fungao objetivo?

Qual seria 0 menor limite superior que esse método fornece?

O menor limite superior

¢ Sejam vy, ..., Y, os coeficientes de cada linha. Observacado: Eles devem
ser > 0 para manter a direcdo das desigualdades.

¢ Entdo queremos
minimiza Z biyi
ie[m]

sujeitoa) a;iy; > ¢j, Vj € [n],
i€[m]

Yi > 0.
¢ Isto é o problema dual com varidveis duais ou multiplicadores duais v;.
Exemplo 3.1
Para o sistema (3.1) obtemos:
minimiza y; + 3y
sujeitoa y; + 3y, >4,

4]/1 - yz Z 1/

Y2 Z 3/

Y1,y2,y3 2 0.

3.1. Introdugio 55

Dualidade: Caracteristicas

¢ Em notacdo matricial

maximiza cx, minimiza bty,
sujeitoa Ax <b. sujeitoa y'A >c.
x > 0. y=>0.

¢ O primeiro se chama primal e o segundo dual.

* Eles usam os mesmos parametros cj, a;;, ;.

O dual do dual

* Observagao: O dual do dual é o primal.

e Forma normal do dual:

—maximiza — b'y, —maximiza — by,
sujeitoa —y A< -, = sujeitoa (—A")y < —c,
y > 0. y > 0.

e Dual do dual

—minimiza —c'z, maximiza c'z,
sujeitoa z'(—A") > —¥, = sujeitoa Az <),
z > 0. z > 0.
Exemplo 3.2

Qual o dual do problema de transporte (1.11)? Com variaveis duais 7;, i € [1]
para as das restri¢des de estoque (1.12) e variaveis duais p;, j € [m] para as
restricdes de demanda (1.13) obtemos

maximiza Z a;7; + Z bjp; (3.2)
i€ln] j€lm]
sujeitoa 71+ p; > cjj, Vi€ [n],j € m],
i, 0; > 0, Vi€ [n],j € [m].

56 Capitulo 3. Dualidade

3.2. Caracteristicas

Teorema da dualidade fraca

Teorema 3.1 (Dualidade fraca)
Se x1,...,x, é uma solugdo vidvel do sistema primal, e y1,...,y,; uma solu-
¢do viavel do sistema dual, entdo

ZH CiXi S 2 b]y]
en

j€lm]
Prova.
c'x < (y'A)x = y' (Ax) pela restricdo dual (3.3)
<y'b pela restricdo primal (3.4)
|
Situacao

Gap de otimalidade?

I e

Solugdes primais vidveis Soluc¢des duais viaveis
* Em aberto: Qual o tamanho desse intervalo em geral?

Teorema da dualidade forte

Teorema 3.2
Se xj,...,x; é uma solucdo 6tima do sistema primal, existe uma solugdo
6tima yj, ..., y,, do sistema dual com

Y axf=) by

i€[n] j€m]

Prova. Seja x* uma solugdo 6tima do sistema primal. Considere um diciona-
rio inicial do método Simplex com variaveis de folga

Xptj = b] — Z ajixi, V] S [T}’l]

i€(n]

3.2. Caracteristicas 57

e a fungdo objetivo de um diciondrio que corresponde com a solugdo 6tima

z=2z"+ Z

i€[n+m)

(com ¢; = 0 para varidveis bésicas). Temos que construir uma solugdo 6tima
dual y*. Pela optimalidade, na fun¢do objetivo acima, todos ¢; devem ser
~ o oA . . ~
ndo-positivos. Provaremos que Yj = —Cnyj > 0 para j € [m] é uma solugdo
dual 6tima. Como z* € o valor 6timo do problema, temos z* =}, X}

Reescrevendo a fungdo objetivo temos

z= Z CiX; sistema inicial
ie[n]
=z"+ Z CiX; sistema final
ie[n+m]
=z"+ Z Cixi + 2 c‘n+]-xn+]- separando indices
ie[n] j€[m]
=z"+ Z Cix; — Z y}k <b]' — Z ajixi> subst. solugdo e var. folga
ien] j€m] ien]
< Z y]) + Z (Cl + Z Y; aﬂ> X; agrupando
j€m] ie(n]

Essa derivagdo estd valida para qualquer valor das variaveis x;, portanto

* Z y]*b] e ¢ =¢(+ Z y;ﬂjl‘, 1€ [1’1]
j€[m j€[m]

Logo o primal e dual possuem o mesmo valor

Z y]’fbj =z* = Z cix;
i€[n]

j€lm]

e como ¢; < 0 sabemos que a solugdo y* satisfaz as restri¢cdes duais

¢ <Y, Y aji, i€ [n],
j€lm]
y; >0, j € [m].

58 Capitulo 3. Dualidade

Consequéncias: Solucdes primais e duais

¢ Com o teorema da dualidade forte, temos quatro possibilidades

Sistema primal Sistema dual Intervalo

Otimo Otimo Sem
Ilimitado Invidvel Sem
Inviavel Ilimitado Sem
Invidvel Invidvel Infinito

Exemplo 3.3 (Primal e dual invidvel)

Nao segue do teorema da dualidade forte que existe um caso em que tanto
o sistema primal quanto o sistema dual sdo invidveis. O seguinte exemplo
mostra que isso pode acontecer. O sistema primal

maximiza x;

sujeitoa +x; —x <0,

—xp+x < -1,
x1,x2 20,
possui sistema dual correspondente
minimiza —»

sujeitoa +y; —y2 > 1,
—1y1+y2 > 0.

Ambos os sistemas sdo inviaveis. O

Podemos resumir as possibilidades na seguinte tabela:

Dual
Primal Invidvel Otimo Ilimitado
Inviavel vV X vV
Otimo X v X
Ilimitado Vv X X

3.2. Caracteristicas 59

Consequéncias

* Dado solugdes primais e duais x*,y* tal que c'x* = b'y* podemos con-
cluir que ambas solugdes sdo 6timas (x*,y* é um certificado da optima-
lidade)!.

* A prova mostra: com o valor 6timo do sistema primal, sabemos tam-
bém o valor 6timo do sistema dual.

¢ Além disso: Podemos trocar livremente entre o sistema primal e dual.
= Método Simplex dual.

Outra consequéncia do Teorema da dualidade forte é o

Teorema 3.3 (Teorema das folgas complementares)
Os vetores x*,y* sdo solugdes 6timas do sistema primal e dual, respectiva-
mente, se e somente se

y*(b— AxY)
(]/*tA o ct)x*

(3.5)

0
0 (3.6)

Prova. Pelo Teorema da dualidade forte as duas desigualdades (3.3) e (3.4)
da prova do Teorema da dualidade fraca se tornam igualdades para solugoes
Otimas:

Ctx* — y*iAx* — y*tb

Reagrupando termos, o teorema segue. Conversamente, caso (3.5) e (3.6)
estdo satisfeitos, as solu¢des primais e duais possuem o mesmo valor e assim
tem que ser 6timas. |
As igualdades 3.5 e 3.6 sdo ainda validas em cada componente, porque tanto
as solucdes 6timas x*,y* quanto as folgas primas e duais b — Ax e y*'A — ¢!
sempre sao positivos.

!Uma consequéncia é que o problema de decisio correspondente, determinar se existe uma
solugdo maior que um dado valor, possui um certificado que pode ser verificado em tempo
polinomial tanto para uma resposta positiva quanto uma resposta negativa. Portanto, ja
antes da descoberta de um algoritmo polinomial para esse problema, foi claro que ele
pertence a NP N co-NP.

60 Capitulo 3. Dualidade

x;i>0= Z Yjaji = ¢
jem]
Z y]-a]-i>ci:>xi:0
et
yj>0:>b]'= Zaﬁxi
ien]
b]'> Z ajixi:>y]-:0

i€[n]

(3.7)
(3.8)

(3.9)

(3.10)

Como consequéncia podemos ver que, por exemplo, caso uma igualdade
primal ndo possui folga, a varidvel dual correspondente é positiva, e, con-
trariamente, caso uma igualdade primal possui folga, a varidvel dual cor-
respondente é zero. As mesmas relagdes se aplicam para as desigualdades
no sistema dual. Apés a introdugdo da forma matricial no se¢do 3.6 vamos
analisar a interpretacdo das varidveis duais com mais detalha no secdo 3.7.
O teorema das folgas complementares pode ser usado ainda para obter a

solucdo dual dado a solugdo primal:

Exemplo 3.4
A solugdo 6tima de

maximiza z = 6x1 + 8xy +5x3 + 9x4
sujeitoa 2x; +xp +x3+3x4 <5,
x1+3x2 +x3+2x4 <3,

X1,X2,X3, X4 > 0/
é x; =2 e x3 = 1 com valor 17. Pela equagdo (3.7) sabemos que

21 +y2 =6
y1+y2=5.

Portanto a solugdo dual é y; =1 ey, = 4.

3.3. Dualidade em forma nao-padrao

Dualidade em forma padrao

3.3. Dualidade em forma ndo-padrio

maximiza c'x, minimiza bty,
sujeitoa Ax < b, sujeitoa y'A >,
x > 0. y=0.

* O que acontece se o sistema ndo é em forma padrao?

Igualdades

¢ Caso de igualdades: Substituindo desigualdades..

maximiza c'x maximiza cfx

sujeitoa Ax =0, sujeitoa Ax <V,
x> 0. Ax > b,
x> 0.

* ... padronizar novamente, e formar o dual:

maximiza c'x minimiza byt — by~
sujeitoa Ax <b, sujeito a y*tA — y’tA >,
— Ax < —b, yT >0,y >0,
x > 0. y =)

yo= Wy

Igualdades

 Equivalente, usando varidveis irrestritas y = y* —y~

minimiza b'y
sujeitoa y'A >,
y'so.

e Resumo

61

62 Capitulo 3. Dualidade

Primal (max) Dual (min)

Igualdade Varidvel dual livre
Desigualdade (<) Varidvel dual ndo-negativa
Desigualdade (>) Variavel dual nao-positiva
Variével primal livre Igualdade

Variavel primal ndo-negativa Desigualdade (>)
Varidvel primal ndo-positiva Desigualdade (<)

Exemplo 3.5 (Exemplo dualidade ndo-padrao)
O dual de

maximiza 3x; + xp + 4x3
sujeitoa x; +5xp +9x3 =2,
6x1 4+ 5x2 +3x3 <5,
x1,%3 2 0,%2 50,

[N

minimiza 2y; + 51>
sujeitoa y; + 6y, > 3,
5y1+5y2 =1,
9y1 +3y2 > 4,
y1s0,y2 20

O

Exemplo 3.6 (Dual do problema de transporte)

O dual do problema de transporte num grafo direcionado G = (V, A) com
custos nas arestas c,, limites inferiores e superiores para o fluxo I, e 1, em
cada arco, e demandas b, em cada vértice

minimiza Z CaXg

aceA

sujeito a Z X(up) — Z X (o) = bo, YoeV,
(u,ZJ)EA (z;,u)eA
Xg > 1y, Va e A,
Xg < Ug, Va e A,

x; >0, Va e A,

3.4. Interpretagio do dual 63

usando varidveis duais 7, <0, v € V,p, >0,a € Aeo, <0,a € A para as
trés restricdes é

maximiza Y bomty +) Lupa + a0y

veV acA

sujeitoa — 71, + 7Ty + pa + 04 < 4, Va = (u,v) € A,
T, € R, YoeV,
Pa >0, Va € A,
0, <0, Va € A.

3.4. Interpretacao do dual

Exemplo: Dieta dual

* Problema da dieta: Minimiza custos de uma dieta x que alcance dados
VDR minimos.

minimiza c'x
sujeitoa Ax >,
x> 0.

¢ Unidades das varidveis e parametros

x € R": Quantidade do alimento [g]

c € R™: R$/alimento [R$/g]

- a;; € R™*": Nutriente/ Alimento [g/g]

r € R™: Quantidade de nutriente [g].

Exemplo: Dieta dual

* O problema dual é
maximiza y'r
sujeitoa y'A < ¢,
y > 0.

64 Capitulo 3. Dualidade

Qual a unidade de y? Preco por nutriente [R$/g].

¢ Imagine uma empresa, que produz cdpsulas que substituem os nutri-
entes.

* Para vender no mercado, a empresa tem que garantir que uma dieta
baseado em cdpsulas custa menos que os alimentos correspondentes:

Z Yiaij < Cj, V] S [m]

i€[m]

¢ Além disso, ela define precos por nutriente que maximizam o custo de
uma dieta adequada, para maximizar o préprio lucro.

maximiza y'r
Interpretacao do dual

* Outra interpretacdo: o valor de uma variavel dual y; é o custo marginal
de adicionar mais uma unidade b;.

Teorema 3.4

Se um sistema possui pelo menos uma solugdo bésica 6tima ndo-degenerada,

existe um € > 0 tal que, se |tj| < € para j € [m],

maximiza c'x
sujeitoa Ax <b+t,
x>0,

tem uma solucdo 6tima com valor
ok xt
z=z +yt

(com z* o valor 6timo do primal, é y* a solu¢do 6tima do dual).

Uma outra forma de ver o teorema é que para uma base ndo-degenerada as
varidveis duais representam as derivadas parciais pelos lados direitos:

az(b) _ .
b, 7"

3.5. Método Simplex dual 65

Observacio 3.1
Os custos marginais (ingl. marginal cost) também sdo chamados pregos ou
pregos sombra (ingl. price, shadow price). O

Exemplo 3.7
Considere uma modificagdo do sistema do Ildo

maximiza 0.2c¢ + 0.5¢ (3.11)
sujeitoa ¢+ 1.55 < 150, (3.12)
50c 4 50s < 6000, (3.13)

c < 80, (3.14)

s <70, (3.15)

c,s > 0. (3.16)

(O sistema foi modificado para a solugdo 6tima atender as condigdes do
teorema 3.4.) A solugdo 6tima do sistema primal é x* = (4570) com valor 44,
a solugdo 6tima do dual y*(1/5001/5)". A figura 3.1 mostra a solu¢do 6tima
com as varidveis duais associadas com as restri¢des. O valor da varidvel dual
correspondente com uma restri¢do é o lucro marginal de um aumento do lado
direito da restricdo por um.

O

3.5. Método Simplex dual

Método Simplex dual

¢ Considere

maximiza — x;— Xp
sujeitoa —2x; —xp <4,
—2x1 +4x, < =8,

—x1+3x < -7,
x1,x2 > 0.

66 Capitulo 3. Dualidade

100

80

(o}
o

s (strudels)

0 20 40 60 80 100
¢ (croissants)

Figura 3.1.: Solugdo 6tima do sistema (3.11) com varidveis duais.

¢ Qual o dual?

minimiza 4y; — 8y, — 7y3
sujeitoa —2y; — 2y, —y3 > —1,
—y1+4y2+3y2 > -1,
Y1, 92,43 2 0.

Com dicionarios

z = X1 —X —w = -4y +8yx +7y3
w1 =4 +2x1 +x Z1 =1 -2y1 -2y, —y3
wy = -8 +2x1 —4x z =1 —y1 +4y2 +3y;3
w3 =-7 +x1 —3x

¢ Observacao: O primal ndo é viavel, mas o dual é!

¢ Correspondéncia das varidveis:

3.5. Método Simplex dual 67

Variaveis

principais de folga
Primal xq,...,x;, w1,..., Wy

Dual zi,...,24, Yi,--.,Ym
de folga principais

¢ Primeiro pivd: ¥, entra, z; sai. No primal: w, sai, x1 entra.

Primeiro pivo

z =-—4 —0b5w, —3x —w =4 —12y; —4z; +3y3
w =12 +wy; +5x2 Y2 =05 —-y1 —0.5z1 —0.5y3
X1 =4 +05w, —+2x; Zy =3 -5y —27z1 +y3
w3 = -3 —|—0.57/(J2 —X2

¢ Segundo pivd: y3 entra, y, sai. No primal: w3 sai, w; entra.

Segundo pivo

z =-=7 —wz —4x; —w =7 —=18y; —7z1 —6y2
w, =18 2wz +7x y3 =1 =211 —z1 =2y
X1 =7 4wz +3x Z =4 —7y1 —3z1 —2i»
Wy =6 42wz —+2x

* Sistema dual é 6timo, e portanto o sistema primal também.

Método Simplex dual

* Observagao: Nao é necessdrio escrever o sistema dual. Ele é sempre o
negativo transposto do sistema primal.

z=2Z+) jxj,
jEN
xi:Ei—Zﬁijxj, iebB
jEN

* Mas é necessdrio modificar as regras para resolver o sistema dual.

68 Capitulo 3. Dualidade

Método Simplex dual: Viabilidade e otimalidade

e Pré-condi¢do: O diciondrio é dualmente vidvel, i.e. os coeficientes das
varidveis ndo-bdsicas na fung¢do objetivo tem quer ser nado-positivos.

¢i<0 para jeN.

¢ Otimalidade: Todos varidveis basicas primais positivas

VieB: Ei >0
Método Simplex dual: Pivd

¢ Caso existe uma varidvel primal negativa: A solugdo dual ndo é 6tima.

* Regra do maior coeficiente: A varidvel basica primal de menor valor
(que é negativo) sai da base primal.

i = argmin b;
ieB

* A varidvel primal nula com fragdo ;;/¢; maior entra.

, .G ajj a@jj

j = argmin —— = argmax — = argmax —
jen jj jen G jeN G
a;;<0 2;;<0

g]

Método Simplex dual
Resumo:

* Dualmente viavel: ¢; < 0 paraj € N.
e Otimalidade: Vi € B: b; > 0.
* Variavel sainte: i = argmin, g b;

., . G
® Variavel entrante: j = argmax;c s C—”
]

3.6. Os métodos em forma matricial

Exemplo

maximiza

sujeito a

Exemplo: Dicionario inicial

z = =2x1 —Xp
w, =-1 +x1 —x
wy, = -2 +4x1 +2xp
w3 =1 —X2

69

z=—2x1— Xp
—x1+x < -1,
— X1 —2x < =2,
x2 <1,

x1,x2 > 0.

* O diciondrio primal ndo é viavel, mas o dual é.

Exemplo: Primeiro pivo

z =-1 -3/2x1 —-1/2w,
w = -2 +3/2X1 —1/2@02
X2 =1 —-1/2x1 +1/2w;
w3 = +1/2x; —-1/2w,

Exemplo: Segundo pivo

z =-3 —w1 — Wy
xy =4/3 +2/3w; +1/3w;
X2 = 1/3 —]/3ZU1 +1/3ZU2
wy =2/3 +1/3w; —1/3w;

3.6. Os métodos em forma matricial

A forma matricial permite uma descri¢ao mais sucinta do método Simplex. A
seguir vamos resumir os métodos Simplex primal e dual na forma matricial.
Mais importante, nessa forma é possivel expressar o diciondrio correspon-
dente com qualquer base em termos dos dados inicias (A, ¢, b). Na préoxima
se¢do vamos usar essa forma para analisar a sensibilidade de uma solugdo a
pequenas perturbag¢des dos dados (i.e. os coeficientes A,b, e c).

70 Capitulo 3. Dualidade

3.6.1. O dicionario final em funcao dos dados

Sistema padrao
¢ O sistema padrdo é

maximiza cfx
sujeitoa Ax <V,
x> 0.

¢ Com variaveis de folga x,41,...,Xu4m € A,c,x novo (definicdo segue

abaixo)
maximiza c'x
sujeitoa Ax =0,
x > 0.
Matrizes
apn app - a1
a1 axp -+ Ay 1
A= ;
ﬂm1 ﬂmz . e amn 1
1 X1
(6] X2
by .
bz :
b= =l | sx= Xn
’ 0 Xn+1
b
0 Xn+m

Separacdo das variaveis

* Em cada iteragdo as varidveis estdo separados em bésicas e ndo-bdsicas.

* Conjuntos de indices correspondentes: B U N = [1,n + m].

3.6. Os métodos em forma matricial 71

* A componente i de Ax pode ser separado como

Y apxi=) axi+) aix;.
jEN

j€n+m] jeB

Separacdo das variaveis

¢ Para obter a mesma separagdo na forma matricial: Reordenamos as
colunas e separamos as matrizes e vetores:

A= (BN); x:<xB); c:<cB>
XN cN
e com B € R™" N ¢ R"™", ¢ ¢ R,

Forma matricial das equacdes
e Agora Ax = b é equivalente com

XB
XN

(BN)(>:BxB+NxN:b

* Numa solucdo basica, a matriz B tem posto m tal que as colunas de B
formam uma base do R™. Logo B possui inversa e

xg =B '(b—Nxy) =B 'b— B 'Nxy

Forma matricial da funcao objetivo

* A fungdo objetivo é

x
z=clx = (chck) (B) = chxp + chan
AN

e e usando xg = B~'b — B~ Nxy obtemos

z=ch(B~'b — B~'Nxy) + clyxn
= chB7b — (chB7IN — c\))xy

= chB7b — ((B7IN)fcp —en)ixn

72 Capitulo 3. Dualidade

Dicionario em forma matricial

¢ Logo, o dicionario em forma matricial é

z=chB b — ((B7IN)icp — on)'xn
xp =B 'b—B 'Nxy

¢ Compare com a forma em componentes:

z=2+ Y Gxj z=z4+cxy
JEN

xi:Ei—Zﬁi]’x]' ieB XB:E—AXN
JEN

Dicionario em forma matricial

e Portanto, vamos identificar
= ctBB_lb; c
=B p; A= (a;)=B"'N

SN
I

* para obter o diciondrio

Sistema dual
¢ As varidveis primais sdo
_ t
X=(X1. . Xp Xpt1--Xnim)
——

original folga

¢ Para manter indices correspondentes, escolhemos varidveis duais da

forma
t
V= (yl o YnYn+ ---yn+m)
S——
folga dual

¢ O diciondrio do dual correspondente entdo é

Primal Dual
z=z+cxN —w:—z'—l_vtyg
xp=b— Axy yn = —C¢+ Alygp

3.6. Os métodos em forma matricial 73

Primal e dual

* A solugdo bésica do sistema primal é

o %
Il
(ol
I
os]
R
S

an=0 «x

e Com isso temos os dicionérios

z=2—(yn) 2N —w=—z— (x3)'ys
xg =xp— (B"'N)xy yn =yn+ (B7'N)'yp

Observagio 3.2

A solugdo dual completa é y' = cykB71A — ¢! (isso pode ser visto como?), ou
y; = chB~la' — ¢; para cada indice i € [n + m]. As varidveis duais originais
com indice i € [n + 1,m] correspondem com as colunas a’ = ¢; das variaveis
de folga e possuem coeficientes ¢; = 0. Logo vy, = c;B~! é a solugdo do
sistema dual sem as variaveis de folga, e podemos escrever y = (y{ A —c')! =
Aly, — ¢ e para os custos reduzidos ¢ = ¢ — Aly,. O

3.6.2. Simplex em forma matricial

Método Simplex em forma matricial

e Comecamos com uma parti¢io B U N = [1,n + m].

Em cada iteragdo selecionamos uma varidvel sainte i € B e entrante

jeN.
* Fazemos o pivd x; com x;.

e Depois a nova base é B\ {i} U {j}.

74 Capitulo 3. Dualidade

Método Simplex em forma matricial
S1: Verifique solucdo 6tima Se y}; > 0 a solucdo atual é 6tima. Pare.

S2: Escolhe variavel entrante Escolhe j € N com y; < 0. A varidvel en-
trante € x;.

S3: Determine passo basico Aumentando x; uma unidade temos novas va-
ridveis nao-basicas xy = x3; + Axy com Axy = (0---010---0)" = ¢; e
ej o vetor nulo com somente 1 na posic¢do correspondente com indice j.
Como
Xp = Xp — B 'Nuxy,

a diminuigdo correspondente das varidveis basicas é Axg = B~IN ej.

Método Simplex em forma matricial

S4: Determine aumento maximo O aumento maximo de xj é limitado por
XB > 0, i.e.
xp = xp — tAxp > 0 <= x5 > tAxp.

Com t,x; > 0 temos

S5: Escolhe variavel sainte Escolhe um i € B com x} = t*Ax;.

Método Simplex em forma matricial

$5: Determine passo dual A varidvel entrante dual é ;. Aumentando uma
unidade, as varidveis yy diminuem Ayy = —(B~IN)'e;.

S6: Determina aumento maximo Com varidvel sainte y;, sabemos que y;
pode aumentar ao méximo

_Y
Ay;
S7: Atualiza solucdo
xj =t yi=s
Xp = xp — tAxp YN = YN — SAYN

B:=B\{i} U{j}

3.7. Andlise de sensibilidade 75

3.7. Analise de sensibilidade
Motivacao
* Na solugdo da programas lineares os parametros sdo fixos.
* Qual o efeito de uma perturbagao
c:=c+Ac; b:=b+Ab;, A:=A+AA?

(Imagina erros de medida, pequenas flutuacdes, etc.)

Anadlise de sensibilidade
* Apbs a solugdo de um sistema linear, temos o diciondrio 6timo

2= 2" — (yi) o

Xp = Xp — B !Nxy

e com
Xp = B~ b
yn = (B7'N)'ep —cn
z* = chB b
Modificar ¢

* Mudarmos c para ¢, mantendo a base B.
* x; ndo muda, mas temos que reavaliar vy e z*.
* Depois, x; ainda é uma solugdo basica vidvel do sistema primal.

* Logo, podemos continuar aplicando o método Simplex primal.

Modificar b
* Da mesma forma, modificamos b para b (mantendo a base).
* y) ndo muda, mas temos que reavaliar xj; e z*.

* Depois, y}, ainda é uma solugédo bésica vidvel do sistema dual.

Logo, podemos continuar aplicando o método Simplex dual.

76 Capitulo 3. Dualidade

Vantagem dessa abordagem

* Nos dois casos, esperamos que a solugdo inicial ja é perto da solugdo
Otima.

* Experiéncia prética confirma isso.

¢ O que acontece se queremos modificar tanto b quanto ¢ ou ainda A?

A solucdo atual ndo necessariamente é vidvel no sistema primal ou
dual.

Mas: Mesmo assim, a convergéncia na prética é mais répido.

Estimar intervalos

¢ Pergunta estendida: Qual o intervalo de t € R tal que o sistema com
¢ = ¢ + tAc permanece 6timo?

e Parat =1: y}; = (B"!N)'cg — cy aumenta por Ayy := (B"IN)'Acp —
ACN.

¢ Em geral: Aumento tAyy.

¢ Condicdo para manter a viabilidade dual:

y}‘q+tAyN >0

e Parat > 0 temos
< 1% .
t r{;}\p Yi / Ay]

Ay]-<0

e Parat < 0 temos
max —y;/Ay; <t

JEN
ij>0

Estimar intervalos

e Agora seja b = b + tAb.

e Parat =1: xj = B~1'b aumenta por Axp := B~ 1Ab.

3.7. Andlise de sensibilidade 77

Em geral: Aumento tAxp.

Condigao para manter a viabilidade primal:

xp + tAxg >0

Para t > 0 temos
t < min —x; /Ax;
1€

Ax;<0

Para t < 0 temos
max —x;/Ax; <t
1S

Ax;>0

Observacao 3.3
A matriz B~! é formada pelas colunas do dicionario final que correspondem
com as varidveis de folga. O

Exemplo 3.8 (Variacdo de um coeficiente)
Considere o problema da empresa de aco (veja também execicio 1.7).

maximiza 25p + 30c
sujeitoa 7p + 10c < 56000,
p < 6000,
¢ <4000,
p,c > 0.

Qual o intervalo em que o valor do lucro das placas de R$25 pode variar
sem alterar a solugdo 6tima?

Exemplo: Empresa de aco

e Sistema 6timo

—7/ 10ws

78 Capitulo 3. Dualidade

* Base B = {p,ws,c}, varidveis ndo-bésicas N' = {w;,wp}. (Observe:
usamos conjuntos de variaveis, ao invés de conjuntos de indices).

Exemplo: Coeficientes

* Vetores ¢ e Ac. Nota que reordenamos os dados do sistema inicial de
forma correspondente com a ordem das varidveis do sistema final.

25

0 25 0
c=130];cg=1]10];en= <0>; (3.17)

0 30

0

1

0 1 0
Ac=[0|;Acg=10];Acy = (O)

0 0

0

Exemplo: Aumentos

e Aumento das varidveis duais

Ayn = (B"'N)!Acg — Acy = (B"IN)Acg

® Ccom
0 1
BIN=[-1/10 7/10
1/10 —7/10
® temos

= ()

3.7. Andlise de sensibilidade 79

Exemplo: Limites

Limites em geral

max —y; /Ay; < t < min —y;/Ay;

Ayi>0 Ayi<0

]]

* Logo
—4 <t < oo

e Uma variagdo do prego ¢ € 25+ [—4, 00| = |21, 0] preserve a otimali-
dade da solugéo atual.

O novo valor da fungdo objetivo é

6000
z=2¢B b= 25+t 0 30) [2600 | = 192000 + 6000t
1400

e os valores das varidveis p e c permanecem 0s mesmos.

Exemplo 3.9 (Variacao de dois coeficientes nas mesmas proporcdes)

Qual o intervalo em que o lucro das placas (R$ 25) e dos canos (R$ 30) podem
variar sem que a solugdo 6tima seja alterada? Nos vamos assumir que ao
aumentar o lucro das placas por uma unidade, o lucro dos canos também
aumenta por uma unidade, i.e. eles aumentam na proporcao 1 : 1.

Exemplo: Variacdao do lucro dos placas e canos

* Os vetores ¢, cp, cy permanecem os mesmos do exemplo anterior (Eq. (3.17)),
enquanto que

Ac =

oo R o R
>
)
w
I
o
>
)
Z
I
Y
o
N———

80 Capitulo 3. Dualidade

¢ Neste caso, o valor de Ayy é

1

i (0 =1/10 1/10 ~(1/10
Ayn = (B N)ACB_<1 7/10 —7/10) (1) _<3/10)'

* Logo —40/3 <t < oo.

¢ Ou seja, uma variagdo do lucro das placas entre R$ 11.67 e o (e do
lucro dos canos entre R$ 16.67 e co proporcionalmente), ndo altera a
solugdo 6tima do sistema.

Exemplo 3.10 (Variacdo de dois coeficientes em proporcdes diferentes)
Qual o intervalo em que o lucro das placas (R$ 25) e dos canos (R$ 30) podem
variar na propor¢do 3 : 2 sem que a solucdo 6tima seja alterada? Agora nos
vamos assumir que ao aumentar o lucro das placas por trés unidades, o lucro
dos canos aumenta por duas unidade, i.e. eles aumentam na proporcao 3 : 2.
Os vetores ¢, cp, cy permanecem os mesmos do exemplo anterior (Eq. (3.17)),
enquanto que

Ac

3 0
;Acg = | 0] ;Acy = (>
N 0

I
coNOoO W

Neste caso, o valor de Ayy é

0 —1/10 1/10> 8 _(2/10)

_ (p-1an\t _
Ayn = (BTIN) Acg = (1 7710 =7/10)] ~ \16/10
Logo —5/2 <t < o0, ou seja, uma variagdo do lucro das placas entre R$ 17.5
e o (e do lucro dos canos entre R$ 25 e co proporcionalmente) ndo altera a
solugdo 6tima do sistema. O

Exemplo 3.11 (Modificacao de um coeficiente para um novo valor)
O que acontece se mudarmos o lucro das placas para R$ 20?

3.7. Andlise de sensibilidade 81

Exemplo: Placas com lucro R$ 20

e Novos coeficientes

e Nova soluc¢do dual
in = (B7IN)'¢g — ey = (B7IN)'¢p

(0 —=1/10 1/10 200 B
~\1 7/10 -7/10 30 N

Novas variaveis
e Com
6000
B~'b = | 2600
1400

¢ Novo valor da fungdo objetivo

6000
2=¢5B'b=(20 0 30) [2600 | = 162000
1400

Exemplo: Novo dicionario

* Novo sistema primal vidvel, mas nao 6timo:

z = 162000 —3wq +w;

= 6000 —wW»y
wy = 2600 +1/10w; —7/10w,
c = 1400 —1/10w; +7/10w,

82 Capitulo 3. Dualidade

* Depois um pivo: Sistema 6timo.

z =1657142/7 —-20/7w; —10/7ws3

=22855/7 —1/7wy +10/7ws3
w, =237142/7 +1/7wy —10/7w,
c = 4000 —ws3

O

Exemplo 3.12 (Modificacao de dois coeficientes para um novo valor)
O que acontece se mudarmos o lucro das placas de R$ 25 para R$ 35 e dos
canos de R$ 30 para R$ 10?

Exemplo: Placas e canos com lucro R$ 35 e R$ 10

e Novos vetores

35

0 35 0
= 10 ; @B(O); 6N2<0)

0 10

0

¢ Nova solugdo dual

35
) o 0 —1/10 1/10 1
in = ((B 1N)tCB—CN) = (1 7//10 _7//10> (0) - (28>
10

Novas variaveis e novo dicionario

¢ Novo valor da fungdo objetivo

6000
2=2¢5B b =¢hxp = (35 0 10) (2600 | = 224000
1400
¢ O novo sistema primal viavel é
z = 224000 —lw, —28w»;
= 6000 —wy

w3 = 2600 +1/10w1 —7/10w2
¢ =1400 —1/10w; +7/10w,

3.8. Exercicios 83

e (O sistema é 6timo.

O

Exemplo 3.13 (Variag¢ao de um lado direito)

Qual o efeito de uma variagdo do lado direito 6000 da segunda restri¢cdo?
Para estudar essa variagdo escolhemos Ab = (010)!. Temos, pela Observ-
¢do0 3.3

0 10 0
B l=1/101-1 7 10
1 -7 0

e logo Axg = B"1Ab=1/10(107 — 7)'. Obtemos a nova solugio bésica

6000 10
£p= 12600) +t/10(7
1400 -7

e a condicdo de otimalidade £5 > 0 é satisfeita para
—26000/7 <t < 2000.
O valor da fungdo objetivo dentro desses limites é

6000 + ¢
2 =chtp = (25030)" | 2600 +7/10¢ | = 192000 + 4¢.
1400 — 7/10¢t

3.8. Exercicios

(Solugdes a partir da pagina 222.)
Exercicio 3.1
Qual o sistema dual de
minimiza 7x; + xp + 5x3
sujeitoa x; —x2 +3x3 > 10,
5x1 +2x3 — x3 > 6,
x1,Xp,x3 > 0?

Exercicio 3.2
Considere o problema

84 Capitulo 3. Dualidade

COBERTURA POR CONJUNTOS PONDERADOS (WEIGHTED SET COVER)

Instancia Um universo U, uma familia S de subconjuntos do universo,
ie. paratodo S € S, S C U, e custos ¢(S) para cada conjunto S € S.

Solucdo Uma cobertura por conjuntos, i.e. uma selecdo de conjuntos
7T C S tal que para cada elemento e € U existe pelo menos um
SeT comee€S.

Objetivo Minimizar o custo total dos conjuntos selecionados.

Uma formulagéo inteira do problema é

minimiza) _ ¢(S)xs

Ses

sujeitoa) xs>1, ec U,
S:eeS
xs € B, Ses.

O problema com restri¢cdes de integralidade é NP-completo. Substituindo as
restrigdes de integralidade x5 € B por restrigdes triviais xs > 0 obtemos um
programa linear. Qual o seu dual?

Exercicio 3.3
O sistema

maximiza 2x; — xp + x3
sujeitoa 3x; + xp + x3 < 60,
x1 — xp + 2x3 < 10,
x1+x2 —x3 <20,

x1,%2,x3 2 0.
possui diciondrio 6timo

z= 25 -=3/2xs5 —1/2x¢ —3/2x3
x4 = 10 +x5 +2x¢ —X3
X1 = 15 —1/23(5 —1/2x6 —1/2X3
xp= 5 +1/2x5 —1/2x¢ +3/2x3

a) Em qual intervalo o coeficiente c; = 2 pode variar?

3.8. Exercicios 85

b) Em qual intervalo o coeficiente b, = 10 pode variar?

¢) Modifique o lado direito de (60 10 20)" para (70 20 10)!: o sistema
mantém-se 6timo? Caso contrario, determina a nova solugdo 6tima.

d) Modifique a fungdo objetivo para 3x; — 2x, + 3x3: 0 sistema mantém-se
6timo? Caso contrario, determina a nova solugao 6tima.

4. Topicos

4.1. Centro de Chebyshev

Seja B(c,r) = {c+u | ||u|| < r} a esfera com centro c e raio r. Para um
poligono convexo a;x < b;, para i € [n], queremos encontrar o centro e o raio
da maior esfera, que cabe dentro do poligono, i.e. resolver

maximiza r

sujeitoa sup a;p <U;, Vi € [n].
peB(c,r)

Temos
sup a;p = ca;+ sup a;u = ca; + ||a;||r
pEB(cr) [fuf|<r
porque o segundo supremo ¢é atingido por u = ra;/||a;||. Assim obtemos
uma formulacgéo linear

maximiza 7

sujeito a a;c + r||a;|| < b;, Vi € [n].
Exemplo 4.1
O poligono da Fig. 4.1 possui a descrigao
x
21 + 4y < 24,) ’
dx1 —xp < 12,
1— X2 = 5 /
—X1 S 0/
4
—x2 < 0. r=1.85
3
Portanto o programa linear para encontrar o centro e o raio do maior circulo 5 (1:85,8.01) /
é
1 /
maximiza r
1 2 3 4 b5«
sujeito a 2c; +4c; + V20r < 24, !
4oy — 17r < 12 Figura 4.1.. Exemplo do
et TS centro de Chebyshev

—c1+r <0,
—c+r<o0.

88 Capitulo 4. Tépicos

O

4.2. Funcdo objetivo convexa e linear por segmentos

Uma funcgéo f é convexa se f(tx+ (1 —t)y) < tf(x)+ (1 —t)f(y) para qual-
quer x ey e 0 < t < t. Fungdes convexas sdo importantes na otimizagao,
porque eles possuem no maximo um minimo no interior do dominio deles,
e portanto o minimo de uma fungdo convexa pode ser obtido com métodos
locais.

Seja fi(x),i € [n] uma cole¢do de fungdes lineares. O maximo f(x) =
max;e[, fi(x) € uma fungéo convexa linear por segmentos. O problema de
otimizacgdo

minimiza max f;(x)
ien]

é equivalente com o programa linear
minimiza x (4.1)
sujeito a fi(x) < x, Vi € [n].
Portanto podemos minimizar uma func¢do convexa linear por segmentos
usando programagcdo linear. De forma similar, f é concava se f(tx + (1 —

Hy) > tf(x)+ (1 —t)f(y). (Observe que uma fungdo convexa e concava é
afina.) O sistema

maximiza xg
sujeito a fi(x) > xo,
xVi € [n].

maximiza uma fungdo concava linear por segmentos.

Parte II.

Programacao inteira

5. Introducao

5.1. Definicoes
Problema da dieta

e Problema da dieta

minimiza c'x
sujeitoa Ax >,
x> 0.

* Uma solugdo (laboratério): 5 McDuplos, 3 magds, 2 casquinhas mista
para R$ 24.31

* Mentira! Solugdo correta: 5.05 McDuplos, 3.21 magas, 2.29 casquinhas
mistas.

* Observagao: Correto somente em média sobre vérias refei¢des.

Como resolver?
¢ Com saber o valor 6tima para uma tnica refeicao?
* Restringe as varidveis x ao conjunto Z.
* Serd que método Simplex ainda funciona?

* Nao. Pior: O problema torna-se NP-completo.

Problemas de otimizacao
¢ Forma geral

optimiza f(x),
sujeito a xeV.

92 Capitulo 5. Introdugio

Programacao inteira
¢ Programagdo linear (PL)
maximiza c'x
sujeitoa Ax <),
x € R%;
* Programacdo inteira pura (PI)
maximiza h'y
sujeitoa Gy <,
yezZ.

Programacao inteira
¢ Programagdo (inteira) mista (PIM)
maximiza c'x +h'y
sujeitoa Ax+ Gy <b,
xeR,yeZ;
* Programagdo linear e inteira pura sdo casos particulares da programa-
¢do mista.
¢ Qutro caso particular: 0-1-PIM e 0-1-PL
x € B"
Observacao 5.1

Nota que as defini¢des acima sdo apresentados em forma normal, mas for-
mulagdes, em geral ndo precisam ser em forma normal. O

Exemplo
Considera
maximiza x;+ X
sujeitoa 2x; +7xp <49,
5x1 + 3x, < 50.

5.1. Definigdes 93

Exemplo

e Sorte: A soluc¢ido 6tima é inteira! x1 =7, x, =5, V = 12.

* Observagao: Se a solugdo 6tima é inteira, um problema de PI(M) pode
ser resolvido com o método Simplex.

Exemplo

maximiza xi+ Xp
sujeitoa 1.8x1 4+ 7xp <49,
5x1 + 2.8xp < 50.

Exemplo

94 Capitulo 5. Introdugio

14

]
|

¢ Solugdo 6tima agora: x1 ~ 7.10, x ~ 5.17, V = 12.28.

e Serd que |x1],|x2] é a solugdo 6tima do PI?

Exemplo

maximiza — x1+7.5x
sujeitoa — x1 +7.2x, <504,
5x1 4+ 2.8xp < 62.

Exemplo

5.2. Motivagio e exemplos 95

14

12

10

—x1 +7.2% = 50.4

X2

¢ Solugdo 6tima agora: x1 ~ 7.87, xo ~ 8.09, V = 52.83.

o Lle =7, LXZJ = 8.

e Solugdo 6tima inteira: x; = 0,x; = 7!

¢ Infelizmente a solugdo 6tima inteira pode ser arbitrariamente distante!
Meétodos para resolver Pl

* Prove que a solugdo da relaxagdo linear sempre é inteira.
* Insere cortes.

¢ Branch-and-bound.

5.2. Motivacao e exemplos

Motivacao

96

Capitulo 5. Introdugio

Otimizagdo combinatéria é o ramo da ciéncia da computagdo que es-
tuda problemas de otimiza¢do em conjuntos (wikipedia).

“The discipline of applying advanced analytical methods to help make
better decisions” (INFORMS)

Tais problemas sdo extremamente frequentes e importantes.

Maquina de fazer dinheiro

Imagine uma maquina com 10 botdes, cada botdo podendo ser ajustado
em um numero entre 0 e 9.

Maquina de fazer dinheiro

Iooooon) — O

ha uma configuracdo que retorna R$ 10.000.
total de combinacoes: 10'°.
dez testes por segundo

em um ano:= 10 x 60 x 60 x 24 x 365 = 3 x 108

5.3. Aplicagdes 97

Explosao combinatéria
Fungoes tipicas:

n logn n%5 n? 2" n!

10 332 3.16 10> 1.02 x 10° 3.6 x 10°
100 6.64 10.00 10* 1.27 x10% 9.33 x 10'%
1000 9.97 31.62 10° 1.07 x 10%1 4.02 x 10%°¢7

“Conclusoes”

I000000) —

* Melhor ndo aceitar a maquina de dinheiro.

¢ Problemas combinatoérios sdo dificeis.

5.3. Aplicacoes

Apanhado de problemas de otimizacao combinatéria

¢ Caixeiro viajante

¢ Roteamento

* Projeto de redes

¢ Alocagéo de horérios
* Tabelas esportivas

¢ Gestdo da produgao

* efc.

Lretirado de Integer Programming - Wolsey (1998)

98 Capitulo 5. Introdugio

Caixeiro Viajante

°

° ° °
°

°
°

[
Caixeiro Viajante
<—o/

{

Caixeiro Viajante

* Humanos sdo capazes de produzir boas solu¢des em pouco tempo!

¢ Humanos ?

Caixeiro Viajante

Figure 1.40 Chimpanzes tour (Bido).

5.3. Aplicagoes 99

Fonte: Applegate et al. (2007)

Caixeiro Viajante

Figure 1,41 Pigeon solving a TSP, Images courtesy of Brett Gibson

Fonte: Applegate et al. (2007)

Caixeiro Viajante

Pt oo s o mevense soc

Fonte: Applegate et al. (2007)

Caixeiro Viajante

Business leads the traveling salesman here and there, and there is
not a good tour for all occurring cases; but through an expedient
choice division of the tour so much time can be won that we feel
compelled to give guidelines about this. Everyone should use as
much of the advice as he thinks useful for his application. We
believe we can ensure as much that it will not be possible to plan
the tours through Germany in consideration of the distances and

100 Capitulo 5. Introdugio

the traveling back and fourth, which deserves the traveler’s spe-
cial attention, with more economy. The main thing to remember
is always to visit as many localities as possible without having to
touch them twice.

Der . . .
; “Der Handlungsreisende wie er sein soll und was er zu tun hat,
Handlungsreifende . . s ..
wie et fein foll um Auftrage zu erhalten und eines gliicklichen Erfolgs in seinen
i e e e S5 2 ol Geschiften gewiss zu sein. Von einem alten Commis-Voyageur”
gu echalten und eined gliclichen Crfolgs O . . o o 1 d 1 d f
in fenen Geffien genif gu fein (O caixeiro viajante, como ele deve ser e o que ele deve fazer para
b obter encomendas e garantir um sucesso feliz dos seus negdcios.
teep, i S - Teagess Por um caixeiro viajante experiente).

First brought to the attention of the TSP research community in 1983 by

e rr— Heiner Muller-Merbach [410]. The title page of this small book is shown

B g e D B in Figure 1.1. The Commis-Voyageur [132] explicitly described the need for

Fonte: Applegate et al. good tours in the following passage, translated from the German original by
(2007) Linda Cook.

Miteinem Titelbupfer,

Caixeiro Viajante

[
AccrGH PCCECH

10°

10*

Size

10°

102

T \\\5\\
s}

| | | |

1960 1980 2000 2020
Year

Fonte: Applegate et al. (2007)

Formulando matematicamente o PCV

¢ Associar uma varidvel a cada possivel decisao.

5.3. Aplicagdes 101
/ .\
o—©O ®

Formulando matematicamente o PCV

* Associar uma variavel a cada possivel decisao.

minimiza E CijYij
i,jeV
I sujeitoa) x;j+) x;=2 VieV,

jev jev
./ Xij € B, Vl,] ceV.

Formulando matematicamente o PCV

¢ Associar uma varidvel a cada possivel decisao.

102 Capitulo 5. Introdugio

.\ minimiza Z CijYij
/ ijeVvV

sujeitoa) x;j+) x;j=2, VieV
jev jev

T xij € B, Vi,j e V.
./. + restri¢des de eliminacdo de sub-
ciclos!

Problemas de roteamento

AN
)

Problemas de roteamento
ol

Etc.

b

J

bolo

Problemas em arvores

5.3. Aplicagoes

Problemas em arvores

° /7
Problemas em arvores - aplicacées

¢ Telecomunicacoes
e Redes de acesso local

¢ Engenharias elétrica, civil, etc..

Alocacao de tripulacoes

103

104 Capitulo 5. Introdugio

Tabelas esportivas

Proximos Adversarios

Fla Vasco Paysandu Criciuma Vitdria
JUVENTUDE Fonte Coritiba GALO CORINTHIANE
Guarani CRUZEIRO PALMEIRAS Santos Juventude
GALO Séo Paulo Parana FURACAQ GUARANI
Botafogo GOIAS CRICIUMA Paysandu Grémio
PALMEIRAS Juventude Santos PONTE COXA
Coritiba CORINTHIANS GALO Parana Sao Paulo

5. PAULO Furacdio Guarani PALMEIRAS CRUZEIRO
Cruzeiro SANTOS JUVENTUDE Coxa Ponte
Botafogo Galo Parana |Grémio Guarani
Cruzeiro Criciima S.CAETANO Palmeiras Goigs

5. PAULO GOIAS Grémio PARANA FLA

Coxa Fla PAYSANDU Fonte Vitdria

FLA PARANA Galo VITORIA PALMEIRAS
Guarani FIGUEIRA Goigs Furacdo BOTAFOGO
JUVENTUDE Paysandu CRICIOMA, SANTOS Figueira
Corinthians GREMIO Flu Galo PAYSANDU
FURACAQ 5. Caelano INTER GUARANI Grémio

Gestdo da producao

Etc.

* programagdo de projetos

¢ rotacdo de plantagdes

alocacgdo de facilidades (escolas, centros de comércio, ambulancias...)

projeto de circuitos integrados

portfolio de agdes

etc, etc, etc, etc...

6. Formulacao

6.1. Exemplos

“Regras de formulacao”
¢ Criar (boas) formulacbes é uma arte.

¢ Algumas diretivas béasicas:
- escolha das varidveis de decisao.
— escolha do objetivo.

— ajuste das restricoes.
Exemplo: 0-1-Knapsack

PROBLEMA DA MocHILA (KNAPSACK)

Instancia Um conjunto de 7 itens com valores v; e pesos p;, i € [n]. Um
limite de peso P do mochila.

Solugdo Um conjunto S C [n] de itens que cabe na mochila, i.e. } ;o5 p; <
P.

Objetivo Maximizar o valor) ;.5 v;.

* Observagdo: Existe uma solugdo (pseudo-polinomial) com programa-
¢do dindmica em tempo O(Pn) usando espago O(P).

< 7
) . L
Formulacao — Problema da mochila ==
L))=z
&

maximiza Z VX
i€[n]
sujeito a Z pix; < P,
i€n]

x; € B.

Figura 6.1.: Os campos ata-
cados por um cavalo num
tabuleiro de xadrez.

106 Capitulo 6. Formulagio

Exemplo 6.1 (Maximizar cavalos num tabuleiro de xadrez)

Qual o nimero méximo de cavalos que cabe num tabuleiro de xadrez, tal
que nenhum ameaca um outro?

Formulagao do problema dos cavalos com varidveis indicadores x;;:

maximiza E Xij

ije8]

sujeitoa x;j +x; 541 <1, 3<i<8jel7,
Xij+ X 1j2 <1, 2<i<8,jel6],
Xij + Xit2,j+1 < 1, S [6]/j € [7]r
Xij+ Xip1j42 < 1, iel7],jele]

Ntumero de solugdes do problema dos cavalos (A030978)

n‘123456789101112131415

k‘145813182532415061728598113 0

6.2. Técnicas para formular programas inteiros

Um problema recorrente com indicadores x1,...,x, € B e selecionar no ma-
ximo, exatamente, ou no minimo k dos 7 itens. As restri¢des

Y xi<k Y xi=k Y x>k

ien] ien] ien]

conseguem isso.

Exemplo 6.2 (Localizagao de facilidades simples 1)

Em n cidades dadas queremos instalar no maximo k fébricas (k < n) de
modo a minimizar o custo da instalagdo das fébricas. A instalacdo na cidade
j € [n] custa f;. Podemos usar indicadores para y; € B para a instalacdo da
uma fabrica na cidade j e formular

minimiza) fjy;

jé€ln]

sujeito a Z yi=k

j€ln]
yj € B, j€ [n]

http://www.research.att.com/~njas/sequences/A030978

6.2. Técnicas para formular programas inteiros 107

(Obviamente para resolver este problema ¢é suficiente escolher as k cidades
de menor custo. No exemplo 6.3 estenderemos esta formulagdo para incluir
custos de transporte.) O

6.2.1. Formular restricées logicas

Formulacao: Indicadores

* Varidveis indicadores x,y € B: Selecdo de um objeto.

Implicacdo (limitada): Se x for selecionado, entdo y deve ser selecio-

nado
x <y, x,y € B
* Ou (disjungdo):
x+y=>1, x,y € B
¢ Qu-exlusivo:
x+y=1, x,y€B

Exemplo 6.3 (Localizagao de facilidades nao-capacitado)

Queremos incluir no exemplo 6.2 clientes. Suponha que em cada cidade tem
um cliente, e queremos, junto com os custos das fébricas instaladas, mini-
mizar o custo de atendimento dos clientes. Entre cada par de cidade, i e j,
o custo de transporte é dado por ¢;; (ver Figura 6.2). Para formulagédo esco-
lhemos varidveis de decisdo x;; € B, que indicam se o cliente i for atendido
pela fabrica em j. E importante “vincular” as variéveis de decisio: o cliente
i pode ser atendido pela cidade j somente se na cidade j foi instalada uma
fabrica, i.e. Xij — Yj-

108 Capitulo 6. Formulagdo

clientes

[] l:l fabricas
. . []

[}
[]
(a) Exemplo de uma instancia (b) Exemplo de uma solucdo

Figura 6.2.: Localizagdo de facilidades.

minimiza E fivi+ E CijXij
j€ln]]

ij€ln
sujeitoa) x;=1, i€ [n], (s6 uma fabrica atende)
j€[n]
Z yj<m, (no méaximo m fébricas)
j€ln]
xij < yj, i € [n],j€[n], (s6féb.existentes atendem)
xjj € B, i€n],je [n],
Yi € B,] S [1’1]
¢
Formulacao: Indicadores
Para x,y,z€ B
e Conjungdo x =yz =y Az
x < (y+2)/2 (6.1)
x>y+z—-1
* Disjungdox =y Vz
x> (y+2z)/2 (6.2)
x<y+z

¢ Negagdo x = —y
x=1-y (6.3)

6.2. Técnicas para formular programas inteiros 109

e Implicagdo: z=x — y
z<1l—-x+y (6.4)
z>(1—x+y)/2 (6.5)

Exemplo 6.4 (Max-3-SAT)

Seja @(x1,...,x,) = Niejm) ¢i uma féormula em forma normal conjuntiva, com
clausulas da forma ¢; = Ij; VI V l;3. Queremos encontrar uma atribuigao
x; € {f,v} maximizando o namero de cldusulas satisfeitas.

Seja ¢; € B uma varidvel que indica que cldusula c; é satisfeita. Também
vamos introduzir uma variavel bindria X; € B para cada variavel x; do pro-
blema, e uma variavel auxiliar [j; para literal /;; do problema.

maximiza 2 Iof

sujeitoa ¢; < Iy + I+ 13,
l_ij = Xy, caso ljj = xi,
lij=1—1%, caso ljj = g,
¢ € B, % € B,[; € B.

6.2.2. Formular restricoes condicionais

Indicadores para igualdades satisfeitas Queremos definir uma varidvel y €

B que indica se uma dada restricdo ¢ satisfeita.
* Para) [, aix; < b: Escolhe um limite superior M para } [, aiX; — b,
um limite inferior m para) ;c(, 4;x; — b e uma constante € > 0 pequena.

Z a;x; <b+M(1-y) (6.6)
i€[n]

Y aixi >b+my+(1—y)e

i€[n]

* Para x > 0: Escolhe um limite superior M para x e uma constante €
pequena.
x > ey, (6.7)
x < My.

Figura 6.3.: Fungdo objetivo
néo-linear

110 Capitulo 6. Formulagdo

Exemplo 6.5 (Custos fixos)
Uma aplicagdo para problemas de minimizagdo com uma funcdo objetivo
nao-linear. Queremos minimizar custos, com uma “entrada” fixa ¢ da forma

f(x):{o casox =0

c+1(x) caso0<x<x

e I(x) uma fungdo linear (ver Figura 6.3). Com uma y € B indica a positivi-
dade de x, i.e. y = 1 sse x > 0 podemos definir a fung¢do objetivo por

f(x) = ey +1(x)

e a técnica da equagdo (6.7) resolve o problema. Como o objetivo é minimizar
f(x) a primeira equagdo x > ey é redundante: caso y = 1 ndo faz sentido
escolher uma solugdo com x = 0, porque para x = 0 existe a solucdo de
menor custo x =y = 0. Logo

x < Xy,
xeR,yeB,

é suficiente neste caso.

Exemplo
Planejamento de produgao (ingl. uncapacitated lot sizing)

¢ Objetivo: Planejar a futura produgdo no préximos 7 semanas.

* Parametros: Para cada semana i € [n]
— Custo fixo f; para produzir,
— Custo p; para produzir uma unidade,
— Custo h; por unidade para armazenar,

— Demanda d;

Exemplo
Seja

¢ x; a quantidade produzida,

6.2. Técnicas para formular programas inteiros

d d d d
Semana 1 f 2 f 3 f f
Estoque S0 $1 S S3 S4
Custos fi/p f2/p2 fa/p3 fa/pa

Figura 6.4.: Planejamento de produgéo.

* s; a quantidade no estoque no final da semana i,

¢ y; = 1 sem tem produgdo na semana 7, 0 sendo.
Problema:

* Fungdo objetivo tem custos fixos, mas x; ndo tem limite.

e Determina ou estima um valor limite M.

Exemplo

minimiza) pix; + his; + fiyi

ie(n]

sujeitoa s; =s; 1+ x; —d;, i€ [nl,
so =0,
xi < My;, i€ [n],
x € R", yeB"

Disjuncao de equacodes

* Queremos que aplica-se uma das equagdes

fi < fo,
g1 < 9.

111

X2

X1

Figura 6.5.: Diferentes for-
mulagdes lineares que defi-
nem o mesmo conjunto de
solugdes inteiras.

112 Capitulo 6. Formulagdo

¢ Solucdo, com constante M suficientemente grande

f1 < fo+ Mx,
g1 < g+ M(1—x),
x € B.

6.3. Formulacoes alternativas

Uma problema de programagcao linear ou inteira geralmente possui mais que
uma formulacdo. A Figura 6.5 mostra diversas formula¢bes que definem o
mesmo conjunto de solugdes inteiras.

Na programacéo linear existe pouca diferenca entre as formulagdes: a so-
lugdo é a mesma e o tempo para resolver o problema é comparéavel, para
um nimero comparével de restri¢des e varidveis. Na programagédo inteira
uma formulac¢do boa é mais importante. Como a solugdo de programas in-
teiras € NP-completo, frequentemente a relaxagdo linear é usada para obter
uma aproximacao. Diferentes formulacdo de um programa inteiro possuem
diferentes qualidades da relaxagdo linear. Uma maneira de quantificar a qua-
lidade de uma formulacédo é o gap de integralidade(ingl. integrality gap). Para
um problema P e uma instancia i € P seja OPT(i) a solugdo 6tima inteira e
LP(i) a solugdo da relaxagao linear. O gap de integralidade é

LP(i)
8(P) = sup OPT(i)

ieP

6.8)

(para um problema de maximizag¢do.) O gap de integralidade d4 uma garan-
tia para qualidade da solugdo da relaxagdo linear: caso o gap é g, a solugdo
ndo é mais que um fator ¢ maior que a solugéo integral 6tima.

Exemplo 6.6 (Conjunto independente maximo)
Uma formulagdo do problema de encontrar o conjunto independente ma-
ximo num grafo ndo-direcionado G = (V, A) é

maximiza Z Xo, (CIM)
veV
sujeitoa x, +x, <1, V{u,v} € E,
Xy € B, Yo e V.

No grafo completo com n vértices K, a relaxagdo linear possui um valor pelo
menos 1/2 (porque a solucdo x, = 1/2,v € V possui valor n/2), enquanto

6.4. Exercicios 113

a solugdo 6tima inteira é 1. Por isso, o programa (CIM) possui um gap de
integralidade ilimitado. O

6.4. Exercicios

(Solugdes a partir da pagina 224.)

Exercicio 6.1

A empresa “Festa fulminante” organiza festas. Nos préximos n dias, ela
precisa p; pratos, 1 <i < n. No comego de cada dia gerente tem os seguintes
opgoes:

¢ Comprar um prato para um preco de c reais.

* Mandar lavar um prato devagarmente em d; dias, por um prego de
reais.

* Mandar lavar um prato rapidamente em d> < d; dias, por um preco de
I, > [reais.

O gerente quer minimizar os custos dos pratos. Formule como programa
inteira.

Exercicio 6.2
Para os problemas abaixo, encontra uma formulagdo como programa inteira.

CONJUNTO INDEPENDENTE MAXIMO
Instancia Um grafo ndo-direcionado G = (V, A).

Solucao Um conjunto independente I, ie. I C V tal que para vértices
v1,02 € 1, {v1, 02} € A.

Objetivo Maximiza |I|.

EMPARELHAMENTO PERFEITO COM PESO MAXIMO

Instancia Um grafo nado-direcionado bi-partido G = (V; U V3, A) (a fato
de ser bi-partido significa que A C V; x V,) com pesos p : A — R
Nos arcos.

Solucao Um emparelhamento perfeito, i.e. um conjunto de arcos C C A tal

114 Capitulo 6. Formulagdo

que todos noés no sub-grafo G[C] = (V3 U V,,C) tem grau 1.

Objetivo Maximiza o peso total }_..c p(c) do emparelhamento.

PROBLEMA DE TRANSPORTE

Instancia n depdsitos, cada um com um estoque de p; produtos, i € [n],
e m clientes, cada um com uma demanda d;, j € [m] produtos.
Custos de transporte a;; de cada depésito i € [n] para cada cliente

j € [m].

Solucdo Um decisdo quantos produtos x;; devem ser transportados do
deposito i € [n] ao cliente j € [m], que satisfaz (i) Cada dep6sito
manda todo seu estoque (ii) Cada cliente recebe exatamente a sua
demanda. (Observe que o nimero de produtos transportados deve
ser integral.)

Objetivo Minimizar os custos de transporte Y ;c(,] jc[m] %ijXij-

CONJUNTO DOMINANTE
Instancia Um grafo ndo-direcionado G = (V, A).

Solucdo Um conjunto dominante, i.e. um conjunto D C V, tal que Vv €
V:veDV(3u e D: {uv} € A) (cada vértice faz parte do
conjunto dominante ou tem um vizinho no conjunto dominante).

Objetivo Minimizar o tamanho do conjunto dominante |D|.

Exercicio 6.3
Acha uma formulagao inteira para todos os 21 problemas que o Karp provou
NP-completo (Karp. 1972).

Exercicio 6.4

Juliano é fa do programa de auditério Apagando e Ganhando, um programa
no qual os participantes sdo selecionados atrdves de um sorteio e recebem
prémios em dinheiro por participarem. No programa, o apresentador escreve
um ndmero de N digitos em uma lousa. O participante entdo deve apagar
exatamente D digitos do nimero que esta na lousa; o nimero formado pelos

6.4. Exercicios 115

digitos que restaram é entdo o prémio do participante. Juliano finalmente
foi selecionado para participar do programa, e pediu que vocé escrevesse
um programa inteira que, dados o ntimero que o apresentador escreveu na
lousa, e quantos digitos Juliano tem que apagar, determina o valor do maior
prémio que Juliano pode ganhar.

(Fonte: Maratona de programacao regional 2008, RS)

Exercicio 6.5

Set é um jogo jogado com um baralho no qual cada carta pode ter uma,
duas ou trés figuras. Todas as figuras em uma carta sdo iguais, e podem ser
circulos, quadrados ou tridngulos. Um set é um conjunto de trés cartas em
que, para cada caracteristica (niimero e figura), u ou as trés cartas sdo iguais,
ou as trés cartas sdo diferentes. Por exemplo, na figura abaixo, (a) é um set
vélido, ja que todas as cartas tém o mesmo tipo de figura e todas elas tém
numeros diferentes de figuras. Em (b), tanto as figuras quanto os ntiimeros
sdo diferentes para cada carta. Por outro lado, (c) ndo é um set, jd que as
duas ultimas cartas tém a mesma figura, mas esta é diferente da figura da
primeira carta.

4 N 4 N 4 N
° AN O

. J . J N\ J

4 N 4 N 4 N
o0 mimlm VAVAVAN

. J . J N\ J

4 N 4 N 4 N
Y X o0 AN

S J S J N\ J

O objetivo do jogo é formar o maior nimero de sets com as cartas que estdo
na mesa; cada vez que um set é formado, as trés cartas correspondentes sdo
removidas de jogo. Quando héd poucas cartas na mesa, é facil determinar o
maior nimero de sets que podem ser formados; no entanto, quando hd mui-
tas cartas ha muitas combinagdes possiveis. Seu colega quer treinar para o
campeonato mundial de Set, e por isso pediu que vocé fizesse um programa
inteira e que calcula o maior niimero de sets que podem ser formados com
um determinado conjunto de cartas.

(Fonte: Maratona de programacao regional 2008, RS)

116 Capitulo 6. Formulagio

Exercicio 6.6
Para os problemas abaixo, acha uma formulagdo como programa inteiro.

COBERTURA POR ARCOS

Instancia Um grafo ndo-direcionado G = (V,E) com pesos ¢ : E — Q
nos arcos.

Solucdo Uma cobertura por arcos, i.e. um subconjunto E’ C E dos arcos
tal que todo vértice faz parte de ao menos um arco selecionado.

Objetivo Minimiza o custo total dos arcos selecionados em E’.

CON]UNTO DOMINANTE DE ARCOS

Instancia Um grafo ndo-direcionado G = (V,E) com pesos ¢ : E — Q
nos arcos.

Solugdo Um conjunto dominante de arcos, i.e. um subconjunto E' C E
dos arcos tal que todo arco compartilha um vértico com ao menos
um arco em E’.

Objetivo Minimiza o custo total dos arcos selecionados em E’.

COLORAGAO DE GRAFOS
Instancia Um grafo ndo-direcionado G = (V,E).

Solucdo Uma coloracdo do grafo, i.e. uma atribui¢ao de cores nas vér-
tices ¢ : V — Z tal que cada par de vértices ligando por um arco
recebe uma cor diferente.

Objetivo Minimiza o ntimero de cores diferentes.

CLIQUE MINIMO PONDERADO

Instancia Um grafo ndo-direcionado G = (V,E) com pesos ¢ : V — Q
nos vértices.

Solucdo Uma cligue, i.e. um subconjunto V' C V de vértices tal que

6.4. Exercicios 117

existe um arco entre todo par de vértices em V.

Objetivo Minimiza o peso total dos vértices selecionados V’.

SUBGRAFO CUBICO
Instancia Um grafo nado-direcionado G = (V, E).

Solucao Uma subgrafo ctbico, i.e. uma sele¢do E’ C E dos arcos, tal que
cada vértice em G’ = (V, E’) possui grau 0 ou 3.

Objetivo Minimiza o namero de arcos selecionados |E’|.

Exercicio 6.7

Uma empresa tem que decidir quais de sete investimentos devem ser feitos.
Cada investimento pode ser feito somente uma tnica vez. Os investimentos
tem lucros (ao longo prazo) e custos iniciais diferentes como segue.

Investimento
1 2 3 4 5 6 7

Lucro estimado [MR$] 17 10 15 19 7 13 9
Custos iniciais [MR$] 43 28 34 48 17 32 23

A empresa tem 100 MR$ capital disponivel. Como maximizar o lucro total
(ao longo prazo, ndo considerando os investimentos atuais), respeitando que
os investimentos 1, 2 e 3, 4 sdo mutualmente exclusivas, e nem o investimento
3 nem o investimento 4 pode ser feita, sem ao menos um investimento em 1
ou 2 (as outros investimentos ndo tem restrigdes).

Exercicio 6.8

Um produtor de brinquedos projetou dois novos brinquedos para Natal. A
preparagdo de uma fabrica para produzir custaria R$ 50000 para a primeiro
brinquedo e R$80000 para o segundo. Apds esse investimento inicial, o
primeiro brinquedo rende R$ 10 por unidade e o segundo R$ 15.

O produtor tem duas fabricas disponiveis mas pretende usar somente uma,
para evitar custos de preparagdo duplos. Se a decisdo for tomada de produzir
os dois brinquedos, a mesma fébrica seria usada.

118 Capitulo 6. Formulagdo

Por hora, a fébrica 1 é capaz de produzir 50 unidades do brinquedo 1 ou 40
unidades do brinquedo 2 e tem 500 horas de produgado disponivel antes de
Natal. A fébrica 2 é capaz de produzir 40 unidades do brinquedo 1 ou 25
unidades do brinquedo 2 por hora, e tem 700 horas de produgdo disponivel
antes de Natal.

Como nédo sabemos se os brinquedos serdo continuados depois Natal, a pro-
blema é determinar quantas unidades de cada brinquedo devem ser produ-
zidas até Natal (incluindo o caso de um brinquedo ndo sendo produzido) de
forma que maximiza o lucro total.

Exercicio 6.9

Uma empresa produz pequenos avides para gerentes. Os gerentes frequen-
temente precisam um avido com caracteristicas especificas que gera custos
inicias altos no comeco da producdo. A empresa recebeu encomendas para
trés tipos de avides de trés clientes, mas como ela estd com capacidade de
producéo limitada, ela tem que decidir quais das trés avides ela vai produzir.
Os seguintes dados sdo relevantes

Avides Cliente

produzidas 1 2 3
Custo inicial [MR$] 3 2 0
Lucro [MR$/avido] 2 3 08
Capacidade usada [%/avido] 20 40 20
Demanda méxima [avides] 3 2 5

Os clientes aceitam qualquer nimero de avides até a demanda maxima. A
empresa tem quer decidir quais e quantas avides ela vai produzir. As avides
serdo produzidos em paralelo.

Exercicio 6.10 (Winkler)

Uma fechadura de combinagdo com trés discos, cada um com ntmeros entre
1 e 8, possui um defeito, tal que precisa-se somente dois niimeros corretos
dos trés para abri-la. Qual o nimero minimo de combinagdes (de trés ntime-
ros) que precisa-se testar, para garantidamente abrir a fechadura?

Formule um programa inteiro e resolva-o.

Exercicio 6.11
Formule o problema

6.4. Exercicios 119

MAX-k-SAT

Entrada Uma férmula em forma normal conjuntiva com m varidveis e n
clausulas ¢(x1,...,x,) = C1 A--- A C, tal que cada cldusula possui
no méaximo k literais

Solucdao Uma atribuigdo x; — B.

Objetivo Maximizar o nimero de clausulas satisfeitas.

(Dica: Usa as desigualdades (6.1)—(6.3). Comega com k = 3.)

Exercicio 6.12

A Secdo 6.2.1 mostrava como expressar a restricdo logica z = x Ay line-
armente. A formulagdo linear precisava duas restri¢des lineares. Mostra
que ndo existe uma tUnica restricdo linear que é suficiente para expressar
zZ=XxNY.

(Dica: Supde que z = ax + by +c (ou z > ax + by + ¢, ou z < ax + by + ¢c)
com constantes a4, b, ¢ e mostra que as restricdes que resultam de uma anélise
caso a caso levam a uma contradi¢do ou nao sdo suficientes para garantir a

restri¢do logica.)

Exercicio 6.13
Considere o problema de coloracdo de grafos:

COLORAGAO DE GRAFOS
Instancia Um grafo ndo-direcionado G = (V, E).

Solucdo Uma coloragdo do grafo, i.e. uma atribuigdo de cores as vértices
c:V = Z, tal que cada par de vértices ligado por uma aresta
recebe uma cor diferente.

Objetivo Minimiza o ntimero de cores diferentes.

Uma formulagdo possivel é introduzir uma variavel x,. € B tal que x,, = 1
caso o vértice v € V recebe a cor c. Como nunca tem mais que n = |V| cores,
podemos escolher C = [n]. Temos a condigdo

Z Xpe = 1, Yo e V. (6.9)

ceC

120 Capitulo 6. Formulagio

Uma coloragdo valida ainda tem que satisfazer
Xue + Xpe < 1, V{u,v} € E,c € C. (6.10)

Para contar o nimero de cores vamos usar varidveis auxiliares 1. € B com
u, = 1 caso a cor ¢ € C foi usada. Eles satisfazem

Ue > Y Xoc/m, Ve e C. (6.11)

veV

Com isso obtemos

(C1) minimiza) _ u,
ceC

sujeito a (6.9),(6.10),(6.11)
Xoe € B,u, € B, Vv e V,ceC.

Um outro modelo é minimizar a soma das cores. Seja f, € Z, a cor do
vértice v € V, que pode ser definida por

fv = Z CXoc, Yo e V. (6.12)

ceC

Com isso podemos formular

(C2) minimiza) f,

veV
sujeito a (6.9),(6.10),(6.12),
XUC E]B,fc €Z+, VUE V,CEC.

Os modelos (C7) e (Cz) sdo equivalentes?

Exercicio 6.14
Considere o problema de posicionar os nimeros 1, ...,10 nas posi¢des P =

{a,...,j} do tridngulo
©® WO
@@
®©
@

6.4. Exercicios 121

Um colega afirma que podemos usar variaveis xg, .. ., xj € Z. e as restricOes

1<x, <10, Vp € P,
Z xp = 55,

peP

[]xp =10

peP

Ele tem razao?

Exercicio 6.15
Aplica as técnicas da Segdo 6.2.1 para derivar uma formulagdo do problema
MAX-3-SAT discutido no Exemplo 6.4. Compara as duas formulagdes.

7. Técnicas de solucao

7.1. Introducao

Limites
¢ Exemplo: Problema de maximizacao.

¢ Limite inferior (limite primal): Cada solugdo viavel.
— Qualquer técnica construtiva, p.ex. algoritmos gulosos, heuristicas
etc.

¢ Limite superior (limite dual): Essencialmente usando uma relaxagao
— Menos restri¢des = conjunto maior de solugdo viaveis.

— Nova funcédo objetivo que é maior ou igual.

* Importante: Relaxacdo linear: x € Z = x € R.

7.2. Problemas com solucao eficiente

Observacao 7.1 (Regra de Laplace)
Lembranca: A determinante de uma matriz pela regra de Laplace é

det(A) = Z (—1)i+jﬁlij det(A,‘]') = Z (—1)i+ja,‘]' det(Al']')

ic[n] j€n]
com j € [n] arbitrdrio para a primeira variante, e i € [n] arbitrdrio para a
segunda, e com A;; a submatriz sem linha i e coluna j. O
Relaxacao linear
* Solugdo simples: A relaxagdo linear possui solu¢do 6tima inteira.
¢ Como garantir?
e Com base B temos a solucdo x = (xp xn)' = (B~1b,0)".

e Observacdo: Se b € Z™ e | det(B)| = 1 para a base 6tima, entdo o PL
resolve o PL.

124 Capitulo 7. Técnicas de solugio

Relaxacao inteira

* Para ver isso: Regra de Cramer.

e Asolugdode Ax =0bé
ciet(zﬁi)
X; =
det(A)

com A; a matriz resultante da substituicdo da i-ésima coluna de A por
b.

Prova. Seja U; a matriz identidade com a i-ésima coluna substituido por x,
ie.

X2

Xn—1
Xn 1

Temos que AU; = A; e com det(U;) = x; temos

det(A;) = det(AU;) = det(A) det(U;) = det(A)x;.

Exemplo: Regra de Cramer

3 2 1\ /x 1
502 |xn|l=]1
2 1 2) \xs 1

Exemplo: Regra de Cramer

7.2. Problemas com solugio eficiente 125

N Ol W N O W
[S e T)
m ON R, ODN
— R =, NN R

NDNRFE NN
N U1 W = ==

Logo x1 =1/13; x, =3/13; x3=4/13.

Aplicacdo da regra de Cramer

» Como garantir que x = B~'b é inteiro?

e Cramer:
= det(Bi)
' det(B)

e Condigdo possivel: (a) det(B;) inteiro, (b) det(B) € {—1,1}.
e Garantir (a): A€ Z™"ebec Z™.

¢ Garantir (b): Toda submatriz quadrada ndo-singular de A tem deter-
minante {—1,1}.

Exemplo 7.1
Observe que essas condi¢Oes sdo suficientes, mas ndo necessdrias. E possivel

que Bx = b possui solugdo inteira sem essas condi¢des ser satisfeitas. Por
exemplo

GO-06)

tem a solugdo inteira (x; x2) = (1 0), mesmo que det(A) = —2. O

126 Capitulo 7. Técnicas de solugio

A relaxacado € inteira

Defini¢ao 7.1

Uma matriz quadrada inteira A € R"*" é unimodular se | det(A)| = 1. Uma
matriz arbitraria A é totalmente unimodular (TU) se cada submatriz quadrada
ndo-singular A’ de A é modular, i.e. det(A’) € {0,1, —1}.

Uma consequéncia imediata dessa definigao: a;; € {—1,0,1}.

Exemplo

Quais matrizes sdo totalmente unimodulares?

110
G‘ll>;011
101
01000
1 -1 -1 0 01111
(10 0 1];]/1 0111
0 1 0 -1 10010
10000

Exemplo

TU? Nao: det(A) = 2.

TU? Nao: det(A) = 2.

7.2. Problemas com solugio eficiente 127

7.2.1. Critérios para solucées inteiras
Critérios
Proposicao 7.1
Se A é TU entdo
(i) A'éTU.
(i) (A I) com matriz de identidade I é TU.

(iii) Uma matriz B que é uma permutacado das linhas ou colunas de A é TU.

(iv) Multiplicando uma linha ou coluna por —1 produz uma matriz TU.

Prova. (i) Qualquer submatriz quadrada B' de A’ e uma submatriz B de A
também. Com det(B) = det(B'), segue que A’ é totalmente unimodular. (ii)
Qualquer submatriz de (AI) tem a forma (A’'I’) com A’ submatriz de A e
I’ submatriz de I. Com |det(A'l")| = | det(A’)| segue que (AI) é TU. (iii)
Cada submatriz de B é uma submatriz de A. (iv) A determinante troca no
maximo o sinal. |

Exercicio 7.1 pede generalizar a proposigao 7.1.

Critérios
Proposigao 7.2 (Critério de particao de linhas)
Uma matriz A é totalmente unimodular caso

(1) aij € {+1r _110}
(i) Cada coluna contém no maximo dois coeficientes nao-nulos.

(iii) Existe uma parti¢do de linhas M; U M, = [1,m] tal que cada coluna
com dois coeficientes ndo-nulos satisfaz

Y, =), aij=0

€M ieMy

Prova. (da proposicdo 7.2). Prova por contradi¢do. Seja A uma matriz que
satisfaz os critérios da proposi¢do 7.2, e B a menor submatriz quadrada de
A tal que det(B) ¢ {0,+1,—1}. B ndo contém uma coluna com um tnico
coeficiente ndo-nulo: seria uma contradi¢do com a minimalidade do B (re-
movendo a linha e a coluna que contém esse coeficiente, obtemos uma matriz

128 Capitulo 7. Técnicas de solugio

quadrada menor B*, que ainda satisfaz det(B*) ¢ {0,+1, —1}). Logo, B con-
tém dois coeficientes ndo-nulos em cada coluna. Aplicando a condigédo (3)
acima, subtraindo as linhas com indice em M; das linhas com indice em M,
podemos ver as linhas do B sdo linearmente dependentes e portanto temos
det(B) = 0, uma contradigao. [
Observacgao 7.2

O critério de partigdo da linhas é suficiente, mas ndo necessério. A matriz

111
11 1]},
111
por exemplo, é totalmente unimodular, mas o critério nao se aplica. O
Exemplo 7.2
A matriz
1 -1 -1 0
-1 0 0 1

0 1 0 -1

claramente satisfaz os critérios i) e ii) e todas particdes possiveis das suas
m = 3 linhas sdo

Ml M2 M1 M2

© {1,2,3} {1,2} {3}
{1y {234 {13} {2}
2y {L3p {23} {1}
{3} {1,2} @) {1,2,3}
Obviamente, por simetria, temos que considerar somente a primeira metade

das possibilidades. Logo em geral um teste exaustivo do critério iii) tem que
considerar 2"~! particdes. O

Observacao 7.3

O critério ii) permite somente 6 tipos de colunas, caracterizados pelos coe-
ficientes diferentes de 0: dois coeficientes 1, ou dois coeficientes —1, ou um
coeficiente 1 e outro —1, ou somente um coeficiente 1, ou —1, ou completa-
mente 0.

1 -1 1 1 -10

1 -1 -1 0 0 O

7.2. Problemas com solugio eficiente 129

Os coeficientes podem ocorrer em qualquer linha. Somente os primeiros trés
tipos precisam satisfazer o critério iii). Eles restringem as parti¢des possiveis:
as linhas dos coeficientes de uma coluna do tipo (}) ou (~]) tem que ficar
em partes diferentes, aqueles de uma coluna do tipo (') no mesmo parte.

O

Exemplo 7.3 (Matriz TU pelo critério de linhas)
A matriz

1 -1 -1 0

satisfaz o critério i), porque tem coeficientes em {—1,0,1}, o critério ii) por-
que cada coluna tem no maximo dois coeficientes ndo-nulos, e o critério iii)
com My = [1,3], My = @. O

Exemplo 7.4 (Matriz TU, mas o critério de particao de linhas nao se aplica)
A matriz

01000
01111
10111
10010
10000
é TU (ver exemplo 7.5) mas a regra de parti¢do de linhas nao se aplica! ¢

Uma caracterizagdo (i.e. um critério necessério e suficiente) das matrizes to-
talmente unimodulares é

Teorema 7.1 (Ghouila-Houri (1962))
Um matriz A € Z™*" é TU sse para todo subconjunto R C [m] de linhas

existe uma particio R; U R, tal que

> 4=)

i€ERy i€ERy

<1 (7.1)

para todas colunas j € [n].

Observe que a proposicdo 7.2 implica o critério acima: dado uma partigdo das
linhas de acordo com 7.2, para todo R C [m], a partigdo (M; N R) U (My N R)
satisfaz (7.1).

O OO R O = OO
QOO R RFkR OO
O R =k OO OO o O
__- 0 OO OO oo
_ o = O O O o O

11
10
10
01
00
00
00
00

Figura 7.1.: Exemplo de
uma instancia do problema
de cobertura por conjuntos
e a matriz A da formulagdo
inteira correspondente.

130 Capitulo 7. Técnicas de solugio

Definicio 7.2
Uma matriz A € B"*" possui a propriedade de uns consecutivos se para cada
coluna j € [n], a;; =1 e ay; =1 comi < i implica ay; = 1 para k € [, i'].

Uma aplicagdo do critério de Ghouila-Houri é a

Proposicdo 7.3
Uma matriz que satisfaz a propriedade de uns consecutivos é totalmente
unimodular.

Prova. A matriz formada por um subconjunto de linhas R C [m] também
possui a propriedade de uns consecutivos. Seja R = {iy,..., ik} com i; <
-+ <'ir. A particdo em M = {iy,i3,...} e My = {ip,is,...} satisfaz (7.1). W

Exemplo 7.5

A matriz
01000
01111
10111
10010
100 0O

do exemplo 7.4 satisfaz a propriedade de uns consecutivos. Logo ela é TU. ¢

Exemplo 7.6

Para um universo U = {ujy, ..., Uy}, e uma familia de conjuntos Cy,...,C, C
U com pesos p1, ..., Pn uma cobertura é uma sele¢do de conjuntos S C [n]
tal que cada elemento do universo é coberto, i.e. para todo u € U existe um
i € Scomu € C;. O problema de encontrar a cobertura de menor peso total
pode ser formulado por

minimiza Z piXi
i€n]

sujeitoa Ax >1,

x € B".

com a;; = 1 sse u; € C;. (Figura 7.1 mostra um exemplo de uma instancia
e a matriz A correspondente.) Este problema em geral é NP-completo. Pela
propriedade de uns consecutivos, podemos ver que no caso de um universo
U = [m] com subconjuntos que sdo intervalos o problema pode ser resolvido
em tempo polinomial. O

7.2. Problemas com solugio eficiente 131

Consequéncias

Teorema 7.2 (Hoffman e Kruskal (1956))
Se a matriz A de um programa linear é totalmente unimodular e o vetor b é
inteiro, todas solugdes bdsicas sdo inteiras. Em particular as regides

{x e R" | Ax < b}
{x e R" | Ax > b}
{x e R" | Ax < b,x > 0}
{x e R"| Ax =0b,x > 0}

possuem pontos extremos inteiros.

Prova. Considerag¢des acima. |

Exemplo 7.7 (Caminhos mais curtos)

Exemplo: Caminhos mais curtos

e Dado um grafo direcionado G = (V, A) com custos ¢ : A — Z nos
arcos.

¢ Qual o caminho mais curto entre dois nés s, € V?

Exemplo: Caminhos mais curtos

minimiza Z CaXa

acA
sujeito a Yo oxa— Y wm=1,
aeNT(s) aeN—(s)
Y xa—), =0, Vo e V\ {s,t},
aeN+(v) aeN—(v)
Z xd — Z xd = _1,
aeNT(t) aeN—(t)
x, € BB, Va € A.

A matriz do sistema acima de forma explicita:

132 Capitulo 7. Técnicas de solugio

s 1 N — | Xa, 1
1 0

1 1 0

t 1 .. % 1

m

Como cada arco ¢é incidente a dois vértices, cada coluna contém um coefi-
ciente 1 e —1, e a Proposicdo 7.2 é satisfeito pela partigao trivial @ U V.

O

Exemplo 7.8 (Fluxo em redes)

Exemplo: Fluxo em redes

* Dado: Um grafo direcionado G = (V, A)
— com arcos de capacidade limitada ! : A — Z™,
— demandas d : V — Z dos vértices,

\0N y — (com d, < 0 para destino e d, > 0 nos fonte)
2—3

N
S~ L/

PR

- ecustos c : A — R por unidade de fluxo nos arcos.

¢ Qual o fluxo com custo minimo?

Exemplo: Fluxo em redes

Figura 7.2.: Exemplo de
uma instancia de um pro-

blema de fluxo. minimiza Z CaXa

acA

sujeito a Y, xa—) xa=d,, YoeV
aeN*(v) aeN—(v)
0<x, <1, Va e A.

com conjunto de arcos entrantes N~ (v) e arcos saintes N™(v).

7.3. Desigualdades vdlidas 133

Exemplo: Fluxo

* A matriz que define um problema de fluxo é totalmente unimodular.

¢ Consequéncias
— Cada ponto extremo da regido viavel é inteira.

— A relaxagdo PL resolve o problema.

* Existem vérios subproblemas de fluxo minimo que podem ser resolvi-
dos também, p.ex. fluxo maximo entre dois vértices.

Exemplo 7.9 (Emparelhamentos)

EMPARELHAMENTO MAXIMO (EM)
Entrada Um grafo G = (V, E) ndo-direcionado.

Solucao Um emparelhamento M C E, i.e. um conjunto de arcos, tal que
para todos vértices v temos |N(v) N M| < 1.

Objetivo Maximiza |M|.

Uma formulagédo é

maximiza 2 CeXe (7.2)
ecE
sujeito a Z Xup <1, YoeV, (7.3)
ueN(v)
x. € B.

A matriz de coeficientes dessa formulagdo é TU para grafos bipartidos. Por
qué? Isso ainda é vélido para grafos ndo-bipartidos? O

7.3. Desigualdades validas

Desigualdades validas

X2

X1

Figura 7.3.: Diferentes for-
mulagdes dos mesmo PI.

134 Capitulo 7. Técnicas de solugio

¢ Problema inteiro
max{c'x | Ax < b,x € Z"}

¢ Relaxagdo linear
max{c'x | Ax <b,x € R}

Desigualdades validas

Definiciao 7.3
Uma desigualdade mx < g é vdlida para um conjunto P, se Vx € P : tx <
770.

¢ Como encontrar desigualdades (restri¢des) vélidas para o conjunto da
solugdes vidveis {x | Ax < b,x € Z" } de um problema inteiro?

— Técnicas de construcdo (p.ex. método de Chvéatal-Gomory)
— Observar e formalizar caracteristicas especificas do problema.

- “The determination of families of strong valid inequalities is more
of an art than a formal methodology” Nemhauser e Wolsey (1999,
p. 259)

Exemplo 7.10 (Localizacao de facilidades nao-capacitado)

Temos um conjunto de cidades C = [n] em que podemos abrir facilidades
para um custo fixo f;,j € C. Em cada cidade i existe um demanda que pode
ser satisfeito por uma facilidade na cidade j com custo c;j, caso existe um
facilidade na cidade j. Com x;; € B indicando que a demanda da cidade i é
satisfeito pela facilidade na cidade j podemos formular

minimiza) fiy;+) cijx; (7.4)
j€ln] i€[n]jen]
sujeitoa) x;=1, Vi € [n], (7.5)
j€ln]
Xij < Yj, Vie [n],je€ n], (7.6)
xij € B, Vie [n],je [n], (7.7)

y; €B, Vj € [n]. (7.8)

7.3. Desigualdades vdlidas 135

Ao invés de

podemos formular
Z xi]- < Vly] (7.10)
ien]
Essa formulacio ainda é correta, mas usa n restricdes ao invés de n?. Entre-
tanto, a qualidade da relacéo linear é diferente. E simples ver que podemos
obter (7.10) somando (7.9) sobre todos i. Portanto, qualquer solugdo que
satisfaz (7.9) satisfaz (7.10) também, e dizemos que (7.9) domina (7.10).
O seguinte exemplo mostra que o contrdrio ndo é verdadeiro. Com custos
de instalagdo f; = 1, de transporte c;j = 5 para i # j e ¢;; = 0, duas cidades e
uma fébrica obtemos as duas formulagdes (sem restri¢des de integralidade)

minimiza y; + vy + 5x12 + 5xp1, Y1+ Y2 +5x12 + 5xo1
sujeitoa x11 +x12 =1, x11+xpp =1,
X1+ x22 =1, X1 +x22 =1,
n+ty <1, n+y2<1,
x11 < Y1, x11 + X21 < 2y,
X12 < Yo,
X21 < Y1, X21 + X2 < 2.
X2 < .

A solugdo 6tima do primeiro sistema é y; = 1,x11 = x21 = 1 com valor 6,
que é a solucdo 6tima inteira. Do outro lado, a solugdo 6tima da segunda
formulagdo é y; = y2 = 0.5 com x1; = x»» = 1, com valor 1, i.e. ficam
instaladas duas “meia-fabricas” nas duas cidades! O

Exemplo 7.11 (Problema do caixeiro viajante)
Na introdugéo discutimos a formulacdo basica do PCV

minimiza Z cz-]-xz-]-,

i,jeN

sujeitoa) x;j=1, Vie N, (7.11)
jEN
Y xi=1, Vie N, (7.12)
jEN
Xij € BB, Vl,] € N, (713)

+ restri¢des de eliminagdo de subciclos!

1/3
N
S~ 7

1/3

2/3 2/32/3 2/3

1/3

LN

\/
1/3

Figura 7.4.: Uma solucdo
fraciondria de uma instan-
cia do PCV com 4 cidades
da formulagao Ps, que nédo
é valida na formulagéo Ps,.
O valor p; = 0 para todos
i€ N.

136 Capitulo 7. Técnicas de solugio

Uma ideia de eliminar subciclos é a seguinte: considere um subconjunto
S C N de cidades: entre cidades em S ndo podemos selecionar mais que
|S| — 1 arestas, sendo vai formar um subciclo. Logo uma forma de eliminar
subciclos é pelas restri¢des
Y X <181, VSCN,S#©,5#N. (51)
ijes
Uma outra forma pode ser obtida como segue: associa um “potencial” (uma
altura) p; a cada cidade i € N e forga o sucessor de 7 na rota ter um potencial
pelo menos p; + 1. Isso ndo tem como satisfazer em ciclos. Para permitir um
ciclo global, vamos excluir uma cidade fixa s € S dessa restri¢do. Logo, as
restricdes

pi+n(x1-]-—1) +1< Pj, VZ,] € N\{S}, (S2)

também eliminam os subciclos.
Quais restri¢des sdao melhores? Considere as solu¢des

Ps, = {x | x satisfaz (7.11), (7.12), (7.13), (51)}
da primeira formulacéo e as solugdes
Ps, = {x | existem valores p tal que x satisfaz (7.11), (7.12), (7.13), (S2)}

da segunda. Nao ¢ dificil de ver que existem solugdes fraciondrias x € Ps,
que ndo pertencem a Ps,: um exemplo é dado na Figura 7.4.
E possivel mostrar que Ps, C Ps,. Logo a formulagdo (S1) domina a formu-
lacdo (S»).

0

Exemplo: 0-1-Mochila

maximiza Z VX
ie(n]

sujeito a Z pixi < P,

ie[n]

x; € B.

Exemplo: 79x1 + 53x2 + 53x3 + 45x4 + 45x5 < 178.
Exemplo 7.12 (Problema da mochila)

7.3. Desigualdades vdlidas 137

Exemplo: 0-1-Mochila

e Observag¢do: Para um subconjunto S C [1,n]:
Se Yicspi > Pentdo Y gx; < |S| —1.

¢ Exemplos:

X1 +x2+x3 <2,

X1+ x+ x4+ x5 <3,
X1+ x3+ x4+ x5 <3,
X2+ x3+ x4 + x5 < 3.

Um conjunto S tal) ;o5 p; > P se chama uma cobertura e a desigualdades
obtidos por tais conjuntos desigualdades de cobertura (ingl. cover inequalities).

O

Exemplo 7.13 (Emparelhamentos)
Continuando exemplo 7.9.

Exemplo: Emparelhamentos

¢ Escolhe um subconjunto arbitrario de vértices U C V.
e Observacdo: O ntimero de arestas internas é < | |U|/2].

e Portanto:

Y x < ||ul/2) (7.14)

aclU?nA

é uma desigualdade vélida.

Observacgao 7.4
A envoltéria convexa do problema de emparelhamentos é dado pelas restri-
¢Oes (7.3) e (7.14) para todo conjunto U de cardinalidade impar maior que 1.

O

138 Capitulo 7. Técnicas de solugio

Método de Chvatal-Gomory
Dado uma restri¢ao

Z a;x; < b

i€[n]

também temos, para u € R, u > 0 as restri¢des validas

Y uapx; < ub (multiplicagdo com u)
ien]
Y uai| x; < ub porque |y| <ye0 < x;
i€[n]
Y uai] x; < [ub] porque o lado da esquerda é inteira
i€[n]

O método de Chvatal-Gomory funciona igualmente para combinagdes line-
ares de colunas. Com A = (a! a® ---a") e u € R™ obtemos

) {uta"J x; < |u'b] (7.15)
ien]
Teorema 7.3

Cada desigualdade vélida pode ser construida através de um ntimero finito
de aplicag¢des do método de Chvatal-Gomory (7.15).

(Uma prova do teorema encontra-se, por exemplo, em Nemhauser e Wolsey
(1999, p. I1.1.2) ou, para o caso de variadveis 0-1, em Wolsey (1998, Th. 8.4).)

Observacgio 7.5
Para desigualdades Yic[n) 4iXi = b obtemos similarmente

Z [uta"-| x; > [u'b]

ie(n]

Exemplo 7.14 (Problema da mochila)
A relaxagdo linear do problema da mochila acima possui as restri¢des

79x1 +53xp +53x3 +4bxy +45xs5
X1

178,

7

X2

~

X3
X4

~

A VARVA VAN VAN PAN
el enie

~

X5

7.4. Planos de corte 139

Comu = (1/79026/7926/79 0 0)! obtemos a desigualdade vélida

X1+x+x3 < 2.

Exemplo 7.15 (Emparelhamentos)

Aplicando o método de Chvatal-Gomory paral C Vcomu = (1/21/2---

RIUI as desigualdades

Y xw <1, Vo el
ueN(v)
para obter
Y 1/2 2 Xw=), X+ Y, 1/2x,<|U|/2
vel ueN(v aclU?nA aeN(U)

e depois aplicar os pisos com Y ey) [1/2] X =0

Z X, < |u’/2J

aclU?NA

7.4. Planos de corte

Como usar restricoes validas?

¢ Adicionar a formulacdo antes de resolver.

- Vantagens: Resolucdo com ferramentas padrao.

1/2)t e

— Desvantagens: Ntumero de restrigdes pode ser muito grande ou

demais.

¢ Adicionar ao problema se necessario: Algoritmos de plano de corte.

- Vantagens: Somente cortes que ajudam na solugdo da instancia

sdao usados.

140 Capitulo 7. Técnicas de solugio

Planos de corte
Problema inteiro
max{c'x | Ax < b,x e Z"}

* O que fazer, caso a relaxacdo linear ndo produz solugdes 6timas?

¢ Um método: Introduzir planos de corte.

Defini¢io 7.4
Um plano de corte (ingl. cutting plane) é uma restricdo valida (ingl.
valid inequality) que todas solugdes inteiras satisfazem.

Algoritmo de planos de corte

Algoritmo 7.1 (Planos de corte)
Entrada Programa inteiro max{c’x | Ax <b,x € Z" }.

Saida Solucdo inteira 6tima.
V.={x| Ax < b} { regido viavel }
x* := argmax{cx | x € V} { resolve relaxagio }
while (x* ¢ Z") do
encontra um corte a‘x <d tal que atx* > d
V:=Vn{x|a'x <d} { nova regifo viavel }
x* ;= argmax{c’x | x € V} { nova solugdo étima }
end while

Método de Gomory

¢ Podemos garantir que sempre existe um novo corte na linha 4? Como
achar esse novo corte?

* A solugdo 6tima atual é representado pelo dicionério

ZZZ_+ZEJ'X]'
j
xi=bi—) ayxj i€B
JEN

* Se a solucdo ndo é inteira, existe um indice i tal que x; € Z,, ie.
bi ¢ Z..

7.4. Planos de corte 141

Cortes de Chvatal-Gomory

x; = b — Z ajjx; Linha fraciondria (7.16)
JEN
xp <bi— Y |a] xj Definicdo de | -] (7.17)
JEN
xi < |bi] = Y |ai] % Integralidade de x (7.18)
jeN
0> {bi}— Y {ai}x (7.16) — (7.18) (7.19)
JEN
Xpi1 = — {Ei} + Z {E_li]'} X; Nova variavel (7.20)
JEN
Xyi1 €2, (7.21)

Para solugdes inteiras, a diferenca do lado esquerdo e do lado direito na
equacdo (7.18) é inteira. Como uma solugdo inteira também satisfaz a equa-
¢do (7.16) podemos concluir que x,41 também ¢ inteira.

Observagio 7.6

Lembra que o parte fraciondrio de um numero é definido por {x} = x —
|x], sendo o piso |x| o maior nimero inteiro menor que x. Por exemplo,
{0.25} = 0.25e {—0.25} = 0.75. (Ver defini¢do A.1 na pégina 199.) O

A solugdo basica atual ndo satisfaz (7.19), porque com x; = 0,j € N temos
que satisfazer

{bi} <0,
uma contradi¢do com a defini¢do de {-} e o fato que b; é fracionario. Por-
tanto, provamos

Proposicao 7.4
O corte (7.19) satisfaz os critérios da linha 4 do algoritmo PLANOS DE CORTE.

Exemplo 7.16
Queremos resolver o problema

maximiza x1+ X
sujeitoa —x1+3x2 <9,
10x; <27,

X1,X2 € Zy.

142 Capitulo 7. Técnicas de solugio

A solugdo da relaxagdo linear produz a série de diciondrios

1) z = X1 +xo (2) z =3 +4/3x7 —1/3w;
w1 =9 +x1 —3xp X2 =3 +1/3x1 —1/3w;
wy, =27 —10x; wy, =27 —10xq

B3z =66 —4/30w, —1/3w;
x» =39 —-1/30w, —1/3wy
X1 = 2.7 —1/10?/02
A solugdo 6tima x; = 2.7, xp = 3.9 é fraciondria. Correspondendo com a
segunda linha
Xy = 3.9 —1/307/()2 —1/3ZU1
temos o corte

w3 =-09 +1/30w, +1/3w;
e 0 novo sistema é
4) z =66 —4/30w, —1/3un
X2 = 39 —1/30?,{)2 —1/3?,01
X1 =27 —1/10w,
w3 =—09 +1/30w, +1/3wq
Substituindo w, e wy no corte w3 = —0.9 +1/30w, +1/3w; > 0 podemos

reescrever o corte sando as varidveis originais do sistema, obtendo x; < 3.
Esse sistema ndo é mais 6timo, e temos que re-otimizar. Pior, a solugdo bésica
atual ndo é vidvel! Mas como na fungdo objetivo todos coeficientes ainda sdao
negativos, podemos aplicar o método Simplex dual. Um pivo dual gera a
nova solugédo 6tima
5)z =57 —=1/10w, —w;

X2 =3 — W3

x; =27 —1/10w,

w, =27 —1/10w, +3ws
com xp = 3 inteiro agora, mas x; ainda fraciondrio. O préximo corte, que
corresponde com x; é

6) z =57 —1/10w, —ws 7)z =5 —wy —W3
X2 =3 — w3 Xy = 3 — W3
X1 =27 —1/1Ow2 X1 =2 — Wy
w1 =27 —1/10w, +3w; w, =2 —wy +3ws
wy = —0.7 —|—1/10W2 wy, =7 +1OZU4
cuja solugdo é inteira e 6tima. (O tltimo corte inserido wy = —0.74+1/10w;, >

0 corresponde com x; < 2.) O

7.5. Algoritmos Branch-and-bound 143

X2
4+ Segundo corte x5 = 27
39
3 »— Primeiro corte
. (2 . (27
273 1703
2“
1<.
} } } X1

1 2 3 4

Figura 7.5.: Visualizagdo do exemplo 7.16.

Observacgio 7.7

Nosso método se aplica somente para sistemas puros (ver pagina 114) e temos
que garantir que as varidveis de folga sdo varidveis inteiras. Por isso os
coeficientes de um sistema original em forma normal tem que ser niimeros
inteiros, i.e., A€ Z"*" e b € Z™. O

Resumo: Algoritmos de planos de corte

¢ O algoritmo de planos de corte, usando os cortes de Gomory termina
sempre, i.e. é correto.

¢ O algoritmos pode ser modificado para programas mistos.
* A técnica é considerado inferior ao algoritmos de branch-and-bound.
e Mas: Planos de corte em combinacdo com branch-and-bound é uma

técnica poderosa: Branch-and-cut.

7.5. Algoritmos Branch-and-bound

Branch-and-bound
Ramifica-e-limite (ingl. branch-and-bound, Land e Doig (1960))

144 Capitulo 7. Técnicas de solugio

¢ Técnica geral para problemas combinatoriais.

Branch and Bound is by far the most widely used tool for
solving large scale NP-hard combinatorial optimization pro-
blems. (Clausen 1999)

¢ Ideia bésica:

— Particiona um problema em subproblemas disjuntos e procura so-
lugdes recursivamente.

— Evite percorrer toda arvore de busca, calculando limites e cor-
tando sub-arvores.

¢ Particularmente efetivo para programas inteiras: a relaxacao linear for-
nece os limites.
Limitar

¢ Para cada sub-arvore mantemos um limite inferior e um limite superior.
— Limite inferior: Valor da melhor solugao encontrada na sub-arvore.

— Limite superior: Estimativa (p.ex. valor da relaxagdo linear na PI)

¢ Observacao: A eficiéncia do método depende crucialmente da quali-
dade do limite superior.

Cortar sub-arvores
Podemos cortar ...

(1) por inviabilidade: Sub-problema é inviavel.

(2) por limite: Limite superior da sub-arvore z; menor que limite inferior
global z (o valor da melhor solucdo encontrada).

(3) por otimalidade: Limite superior z; igual limite inferior z; da sub-
arvore.

Observagdo: Como os cortes dependem do limite z, uma boa solugdo inicial
pode reduzir a busca consideravelmente.

7.5. Algoritmos Branch-and-bound 145

Ramificar

¢ Nao tem como cortar mais? Escolhe um né e particiona.
¢ Qual a melhor ordem de busca?

* Busca por profundidade
- V: Limite superior encontrado mais rdpido.

- V: Pouca memoéria (O(éd), para § subproblemas e profundidade

d).
- V: Re-otimizagdo eficiente do pai (método Simplex dual)
— D: Custo alto, se solugdo 6tima encontrada tarde.
* Melhor solugdo primeiro (“best-bound rule”)
- V: Procura ramos com maior potencial.

— V: Depois encontrar solu¢do 6tima, ndo produz ramificagdes su-
pérfluas.

¢ Busca por largura? Demanda de memoéria é impraticével.

Em resumo: um algoritmo de branch-and-bound consiste de quatro compo-
nentes principais:

* Uma heuristica que encontra uma boa solucao inicial;

¢ um limite inferior (no caso de minimizagdo) ou superior (para maximi-
zagdo) do valor de um subproblema;

* uma estratégia de ramificagdo, que decompde um problema em sub-
problemas;

* uma estratégia de selecdo, que escolhe o préximo subproblema entre
os subproblemas ativos.

Algoritmos B&B

Algoritmo 7.2 (B&B)
Instancia Programa inteiro P = max{c’x | Ax < b,x € Z" }.

Saida Solugdo inteira 6tima.

146 Capitulo 7. Técnicas de solugio

{ com Z(P) um limite superior para problema P }
Z:=—00 { limite inferior }
A:= {(P,Z(P))} { ns ativos }
while A#Q do
Escolhe: (P,z(P)) € A; A:=A\(P,z(P))
Ramifique: Gera subproblemas Pi,...,P;.
for all P, 1<i<n do
{ adiciona, se permite melhor soluo }
if Z(P;)) >z then
A= AU{(P,z(P))}
end if
{ atualize melhor soluo }
if (soluo Z(P;) vivel) then
z:=2(P)
end if
end for
end while

Exemplo 7.17 (Aplica¢do Branch-and-Bound no PCV)
Considera uma aplicagdo do PCV no grafo da Figura 7.6.
Aplicando somente backtracking obtemos a seguinte drvore de busca:

Figura 7.6.: Exemplo de S 5
uma instancia do PCV.
3 1
3 3 4
4 2
5 7 5
3.3 3.4
575 576
5.5 4

7.5. Algoritmos Branch-and-bound 147

A &rvore de backtracking completa possui 65 vértices (por nivel: 1,4,12,24,24).
Usando como limite inferior o custo atual mais o ntimero de arcos que faltam
vezes a distancia minima e aplicando branch-and-bound obtemos os custos
parciais e limites indicados na direita de cada vértice. Com isso podemos
aplicar uma série de cortes: busca da esquerda para direito obtemos

e uma nova solugido 7 em 2345;

* um corte por limite em 235;

* um corte por otimalidade em 243;
* um corte por otimalidade em 2453;
* um corte por limite em 253;

* um corte por otimalidade em 2543;
e uma nova solugido 6 em 3245;

* um corte por otimalidade em 32;

* um corte por otimalidade em 3;

* um corte por limite em 4;

¢ um corte por otimalidade em 5234;
* um corte por otimalidade 5243;

* um corte por limite em 53;

* um corte por otimalidade 543.

O

Exemplo 7.18 (Escalonamento de tarefas)

Considera o problema de escalonamento 1 | 7; | Lmax: temos # tarefas a serem
executadas numa tinica maquina. Cada tarefa possui um tempo de execugdo
p;j e € disponivel a partir do tempo 7; (release date) e idealmente tem que
terminar antes do prazo d; (due date). Caso a tarefa j termina no tempo C;
o seu atraso é Lj = max{0, C]' — dj}. Uma tarefa tem que ser executada sem
interrupgdo. Queremos encontrar uma sequenciamento das tarefas tal que o
atraso maximo é minimizado. (Observe que uma solugdo é uma permutagao
das tarefas.)

Um exemplo de uma instdncia com quatro tarefas é

148 Capitulo 7. Técnicas de solugio

Tarefa 1 2 3 4

pj 4 2 6 5
7 0 1 3 5
d 8 12 11 11

Uma abordagem via branch-and-bound é explorar todas permutagdes pos-
siveis. Um limite inferior bom para a fungdo objetivo pode ser obtido como
segue: o problema sem release dates 1 || Lmax possui uma solugdo simples
polinomial, conhecida como EDD (earliest due date): ordene as tarefas por
due date. No nosso caso é possivel que durante a execu¢do de uma tarefa
passamos o release de uma outra tarefa com due date menor. Para considerar
isso, o nosso limite inferior serd o sequenciamento obtido pela regra EDD,
permitindo interrupgdes. O

Branch-and-bound e PI

 Problema PI (puro): {maxc'x | x € S,x € Z"}.
* Resolve a relaxacdo linear.
¢ Solugdo inteira? Problema resolvido.

e Caso contrario: Escolhe uma variavel inteira x;, com valor b; fraciona-
rio.

* Heuristica: Variavel mais fraciondria: argmin, | {x;} — 0.5].
e Particione o problema S = S; U S, tal que

Si=SN{x|x;<|vi|l}; Sa=SN{x|x > [vi]}

¢ Em particular com varidveis x; € B:

S1=SN{x|x=0}, S2=Sn{x|x=1}

* Preferimos formula¢des mais “rigidas”.

7.6. Notas 149

7.6. Notas

E possivel testar se uma matriz é totalmente unimodular em tempo polino-
mial O((n + m)3) (Truemper 1990)!. Porém decidir se uma matriz possui
uma submatriz que satisfaz a propriedade de uns consecutivos, ou pode ser
particionado em duas matrizes com essa propriedade, bem como encontrar o
menor nimero de altera¢des de uma matriz que torna-1a ter essa propriedade
é NP-completo (Garey e Johnson 1979, SR14-16). Clausen (1999) d4 uma
boa introducgdo em algoritmos de branch-and-bound, com mais exemplos e
exercicios. O artigo do Cook (2012) relata a histéria do método. Concorde
atualmente é o melhor solver exato para o problema do caixeiro viajante.
Exemplos de solugdes e codigo aberto do solver é disponivel na sua pagina
web (Cook 2011). A aplicacdo do método branch-and-bound para PI segue
Dakin (1965).

7.7. Exercicios

(Solugdes a partir da pagina 233.)

Exercicio 7.1 (Matrizes totalmente unimodulares)

Mostra que a seguinte generalizacdo do item 2 da proposicdo 7.1 é valido:
Para uma matriz arbitraria A € {—1,0,1}"*" e uma matriz B € {—1,0,1}"*°
com no méximo um coeficiente ndo-nulo em cada coluna, a matriz (A B) é
totalmente unimodular sse a matriz A é totalmente unimodular.

Exercicio 7.2 (Matrizes totalmente unimodulares)
Para cada um dos problemas do exercicio 6.2 decide, se a matriz de coefici-
entes é totalmente unimodular.

Exercicio 7.3 (Matrizes totalmente unimodulares)
Prove ou mostre um contra—exemplo.

a) Se A é totalmente unimodular, entdo (4 $) também.

b) Se A é totalmente unimodular, entdo (4 a') também.

¢) Se A é totalmente unimodular, entdo (‘2 ‘3) também.

10 problema consta como “aberto” em Garey e Johnson (1979, OPEN10).

Figura 7.7.: Instancia do
problema do conjunto inde-
pendente maximo.

Figura 7.8.: Exemplo de
uma instancia do PCV.

150 Capitulo 7. Técnicas de solugio

Exercicio 7.4 (Desigualdades validas (Nemhauser,Wolsey))
Uma formulacdo do problema do conjunto independente maximo é

maximiza Z Xy (7.22)
veV

sujeitoa x, +x, <1, V{u,v} € E, (7.23)

Xy € B, YoeV. (7.24)

Considere a instancia da Figura 7.7. Mostra que }_;c[y x; < 2 é uma desigual-
dade vélida.
Exercicio 7.5 (Desigualdades validas)
O exemplo 7.15 mostra como obter as desigualdades validas do exemplo 7.13
usando cortes de Gomory. Mostra como obter as desigualdades vélidas
le' < ’S‘ -1
ieS
paraum S C [n] com Y ;c5 p; > P do problema da mochila usando cortes de
Gomory.

Exercicio 7.6 (Desigualdades validas)
Considere a instancia da Figura 7.8 do problema do caixeiro viajante (os
nimeros nas arestas representam os indices das varidveis correspondentes).
Mostra que

X1+x2o+x5+ x5+ x7+x9 < 4

é uma desigualdade vélida.
Exercicio 7.7 (Desigualdades validas)
Para cada uma das desigualdades validas do exemplo 7.12 mostra como ele

pode ser obtida via uma aplicagdo (um nimero finito de aplica¢des) do mé-
todo de Chvatal-Gomory (7.15).

Exercicio 7.8 (Planos de corte)
Resolve com o algoritmo de planos de corte using cortes de Chvatal-Gomory.

maximiza x; + 3x;
sujeitoa —x; < -2,
x2 <3,
—x1—x2 < —4,
3x1+x2 <12,
x, €24,

7.7. Exercicios 151

maximiza x; — 2xp
sujeitoa — 11x; + 15x2 < 60,
4x1 + 3xp < 24,
10x1 — 5xp < 49,

x1,x2 €24,

Exercicio 7.9 (Desigualdades validas)
Gera uma desigualdade vélida similar com a desigualdade (7.15) para a res-
tricdo

Z a;X; > b.

i€[n]

8. Tépicos

Outras técnicas

¢ Branch-and-cut.
Comega com menos restri¢des (relaxagdo) e insere restri¢des (cortes)
nos sub-problemas da busca com o algoritmo branch-and-bound.

¢ Branch-and-price.

Comeca com menos varidveis e insere varidveis (“geracdo de colunas”)
nos sub-problemas da busca com o algoritmo branch-and-bound.

Parte III.

Heuristicas

157

(Observagdo: isto é um capitulo antigo; sugiro consultar a notas de aula da
disciplina “Técnicas de busca heuristica”.)

https://www.inf.ufrgs.br/~mrpritt/lib/exe/fetch.php?media=cmp268:notas-11799.pdf
https://www.inf.ufrgs.br/~mrpritt/lib/exe/fetch.php?media=cmp268:notas-11799.pdf

9. Introducao

Resolucao de Problemas

¢ Problemas Polinomiais
1. Programacdo Dinamica
2. Divisdo e Conquista

3. Algoritmos Gulosos

e Problemas Combinatoérios

Técnicas Exatas: Programacao Dinamica, Divisdo e Conquista back-
tracking, branch & bound

Programacgdo nio-linear: Programagdo semi-definida, etc.

Algoritmos de aproximagdo: garantem solucdo aproximada

Heuristicas e metaheuristicas: raramente provéem aproximagao

Heuristicas

* O que é uma heuristica?

Practice is when it works and nobody knows why. Grego heurisko:

acho, eu descubro.

* Qualquer procedimento que resolve um problema
— bom em média
— bom na prética (p.ex. Simplex)

— ndo necessdriamente comprovadamente.

e Nosso foco
— Heuristicas construtivas: Criar solugdes.

— Heuristicas de busca: Procurar solugdes.

eu

160 Capitulo 9. Introdugio

Heuristicas de Construcao

¢ Constréem uma solugdo, escolhendo um elemento a ser inserido na
solucdo a cada passo.

¢ Geralmente sdo algoritmos gulosos.

* Podem gerar solugdes infactiveis.
- Solugdo infactivel: ndo satisfaz todas as restri¢des do problema.

— Solugdo factivel: satisfaz todas as restri¢des do problema, mas ndo
é necessariamente 6tima.

Exemplo: Heuristica construtiva

¢ Problema do Caixeiro Viajante (PCV) — Heuristica do vizinho mais pré-
ximo.

Algoritmo 9.1 (Vizinho mais préximo)
Entrada Matriz de distdncias completa D = (d;;), nimero de cidades .
Saida Uma solugao factivel do PCV: Ciclo Hamiltoniano C com custo c.

HVizMaisProx (D ,n)=
{ cidade inicial aleatdria }

u:= seleciona uniformemente de [l,1]

wi=u

{ representagdo de caminhos: sequéncia de vértices }
C:=u { ciclo inicial }

c:=0 { custo do ciclo }

repeat n—1 vezes
seleciona v C com distdncia minima de u

C:=Cvo
C::C+duz;
u:.=o

end repeat

C:=Cw { fechar ciclo }
c:=c+dyyw

return (C,c)

161

Meta-heuristicas

* Heuristicas genéricas: meta-heuristicas.

Motivacao: quando considera-se a possibilidade de usar heuristicas

* Para gerar uma solugdo factivel num tempo pequeno, muito menor que
uma solugdo exata pudesse ser fornecida.

¢ Para aumentar o desempenho de métodos exatos. Exemplo: um limi-
tante superior de um Branch-and-Bound pode ser fornecido por uma
heuristica.

Desvantagens do uso de heuristicas

* No caso de metaheuristicas, ndo hd como saber o quao distante do
6timo a solugdo esta.

* Nao hd garantia de convergéncia.

* Dependendo do problema e instancia, ndo hd como garantir uma solu-
¢do Gtima.

Problema de otimizacao em geral

* Um problema de otimizagdo pode ser representado por uma quadrupla

(IS, f,0bj)

- I é o conjunto de possiveis instancias.

- S(i) é o conjunto de solugdes factiveis (espaco de solugdes facti-
veis) para a instancia i.

- Uma fungéo objetivo (ou fitness) f(-) avalia a qualidade de uma
dada solugao.

— Um objetivo obj = min ou max: s* € S para o qual f(s*) seja
minimo ou maximo.

162 Capitulo 9. Introdugio

e Alternativa

optimiza f(x),

sujeitoa x € S.

¢ S discreto: problema combinatorial.

Técnicas de solucao

¢ Resolver o problema nessa geralidade: enumeragao.
¢ Frequentemente: Uma solucdo x € S possui uma estrutura.
¢ Exemplo: x é uma tupla, um grafo, etc.

¢ Permite uma enumeracdo por componente: branch-and-bound.

10. Heuristicas baseadas em Busca local

10.1. Busca local
Busca Local

* Frequentemente: O espaco de solugdes possui uma topologia.

¢ Exemplo de otimizagdo (continua): max{x? + xy | x,y € R}

P

200

100 |

10-10 y

¢ Espaco Euclidiano de duas dimensdes.

¢ Isso podemos aproveitar: Busca localmente!

Vizinhancas
* O que fazer se ndo existe uma topologia natural?
¢ Exemplo: No caso do PCV, qual o vizinho de um ciclo Hamiltoniano?

¢ Temos que definir uma vizinhanga.

[|
| /
/

[} [
\"0—>0/

Figura 10.1.. Um movi-
mento na vizinhanga 2-
exchange.

164 Capitulo 10. Heuristicas baseadas em Busca local

* Notagdo: O conjunto de solugdes vizinhas de x € S é N (x).

* Uma vizinhanga defina a paisagem de otimizagdo (ingl. optimization lands-
cape): Espaco de solugdes com valor de cada solugao.

Relacdo de vizinhanca entre solucoes

e Uma solugdo s’ é obtida por uma pequena modificagdo na solugéo s.

¢ Enquanto que S e f sdo fornecidos pela especificacdo do problema, o
projeto da vizinhanga é livre.

Busca Local k-change e insercao

¢ k-change: mudanga de k componentes da solugdo.

Cada solugdo possui vizinhanca de tamanho O(nF).

Exemplo: 2-change, 3-change.

TSP: 2-change (inversao).

Inserc¢do/remocdo: inser¢do de um componente da solugdo, seguido da
factibilizacdo da solucédo

Vertex cover: 1-change + remocao.

Exemplo: Vizinhanca mais elementar

¢ Suponha um problema que possue como solugdes factiveis S = B"
(por exemplo, uma instancia do problema de particionamento de con-
juntos).

e Entdo, paran =3 e sy = (0,1,0), para uma busca local 1-flip, N(sp) =
{(1,1,0),(0,0,0),(0,1,1)}.

Exemplo: Vizinhancas para TSP

e 2-exchange: Para cada par de arcos (u1,v1) e (42,v2) ndo consecutivos,
remova-os da rota, e insira os arcos (u1, 1) e (v1,02).

e Para uma solugio s e uma busca k-exchange |\ (s)| € O(n").

10.1. Busca local 165

Caracteristicas de vizinhancas
E desejavel que uma vizinhanga é

e simétrica (ou reversivel)

yeN(x)=xeN(y)

* conectada (ou completa)

Vx,y€S: 3z1,..., 2k €S: z1 € N(x),
Zit1 EN(Zi), 1<i<k,
Y GN(Zk).

Busca Local: Ideia

¢ Inicia a partir de uma solugao sy

* Se move para solugdes vizinhas melhores no espago de busca.

e Para, se ndo tem solugdes melhores na vizinhanca.

* Mas: Repetindo uma busca local com solugdes inicias randdmicas,

achamos o minimo global com probabilidade 1.

Exemplo 10.1 (Método Simplex)
O método Simplex pode ser visto como busca local no espaco de vértices
com uma vizinhanga definido por arestas no politopo. O

Busca local — Caso continuo

Algoritmo 10.1 (Busca local continua)
Entrada Solucdo inicial sy € R", tamanho inicial « de um passo.

Saida Solugdo s € R” tal que f(s) < f(so)-

Nome Gradient descent.

166 Capitulo 10. Heuristicas baseadas em Busca local

Buscalocal (sp,a)=

S =19
while Vf(s) #0 do
s’ i=s5—aVf(s)
if f(s') < f(s) then
s:=¢
else

diminui w«
end if
end while
return s

Busca local — Caso continuo

¢ Gradiente

_(of of '
Ve = (5w L)

sempre aponta na dire¢do do crescimento mais alto de f (Cauchy).
* Necessdrio: A fungdo objetivo f é diferencidvel.

¢ Diversas técnicas para diminuir (aumentar) a.

* Opgédo: Line search na diregdo —V f(x) para diminuir o namero de
gradientes a computar.

Busca Local — Best Improvement

Algoritmo 10.2 (Busca Local BI)
Entrada Solugdo inicial s.

Saida Solugdo s tal que f(s) < f(sp).

Nomes Steepest descent, steepest ascent.

10.1. Busca local 167

Buscalocal (sp)=
S =15
while true
= argmin, {f() | y € N(5)}
if f(s’) < f(s) then s:=s' else break
end while
return s

Busca Local — First Improvement

Algoritmo 10.3 (Busca Local FI)
Entrada Solucéo inicial sp.

Saida Solugéo s’ tal que f(s") < f(s).

Nomes Hill descent, hill climbing.

Buscalocal (sp)=
S =15
repete
seleciona s’ € N(s) no vista ainda
if f(s') < f(s) then s:=3s
at todas solues em N(s) vistas
returna S

Projeto de uma busca local

¢ Como gerar uma solugdo inicial? Aleatéria, via método construtivo,
etc.

* Quantas solugdes inicias devem ser geradas?
e Importante: Defini¢do da fungdo de vizinhanga N.

* Vizinhanga grande ou pequena? (grande= muito tempo e pequena=menos
vizinhos)

168 Capitulo 10. Heuristicas baseadas em Busca local

* Estratégia de selecdo de novas solugdes
— examine todas as solugdes vizinhas e escolha a melhor

— assim que uma solugdo melhor for encontrada, reinicie a busca.
Neste caso, qual a sequéncia de solu¢des examinar?

¢ Importante: Método eficiente para avaliar a fungdo objetivo de vizi-
nhos.

Exemplo: 2-change TSP

* Vizinhanga: Tamanho O(n?).
e Avaliacdo de uma solugdo: O(n) (somar n distancias).
e Atualizando a valor da solugdo atual: O(1) (somar 4 distancias)

¢ Portanto: Custo por iteracdo de “best improvement”
- O(n®) sem avaliacio diferential.

— O(n?) com avaliacdo diferential.

Avaliacao de buscas locais
Como avaliar a busca local proposta?

* Poucos resultados tedricos.
¢ Dificil de saber a qualidade da solucédo resultante.

* Depende de experimentos.

Problema Dificil

e F facil de gerar uma solucdo aleatéria para o TSP, bem como testar sua
factibilidade.

¢ Isso ndo é verdade para todos os problemas.

¢ Exemplo dificil: Atribui¢do de pesos a uma rede OSPF.

10.1. Busca local 169

Busca local

* Desvantagem obvia: Podemos parar em minimos locais.
* Exceto: Funcgdo objetivo convexa (caso minimiza¢do) ou concava (caso
maximizacao).
e Técnicas para superar isso baseadas em busca local
— Multi-Start
— Busca Tabu
— Algoritmos Metropolis e Simulated Annealing

- Variable neighborhood search

Multi-Start Metaheuristic
* Gera uma solugdo aleatodria inicial e aplique busca local nesta solugéo.
* Repita este procedimento por n vezes.

e Retorne a melhor solucdo encontrada.

* Problema: solugdes aleatoriamente geradas em geral possuem baixa
qualidade.

Multi-Start

Algoritmo 10.4 (Multi-Start)
Entrada Numero de repeti¢des 7.

Saida Solucao s.
Multi_Start(n) :=
{ mantm a melhor soluo s* }
repete n vezes
gera soluo aleatria s
s := BuscaLocal(s)
end repeat
return s*

Fungéo objetivo

Solugao

Figura 10.2.: Busca local e
minimos locais é globais.

170 Capitulo 10. Heuristicas baseadas em Busca local

Cobrimento de Vértices

¢ Definicdo de vizinhanga

¢ grafo sem vértices

grafo estrela

clique bipartido K; ;

grafo linha

10.2. Metropolis e Simulated Annealing

O algoritmo Metropolis

¢ Proposto por Metropolis et al. (1953).

¢ Simula o comportamento de um sistema fisico de acordo com a meca-
nica estatistica.

* Supode temperatura constante

— Um modelo basico define que a probabilidade de obter um sis-
tema num estado com energia E é proporcional a e E/KT (distri-
buicdo de Boltzmann), onde T > 0 é a temperatura, e k > 0 uma
constante.

- A fungdo é monotdnica decrescente em E: maior probabilidade de
estar em um sistema de baixa energia.

- Para T pequeno, a probabilidade de um sistema estar num estado
de baixa energia é maior que ele estar num em estado de alta
energia.

- Para T grande, a probabilidade de passar para outra configuracao
qualquer do sistema é grande.

10.2. Metropolis e Simulated Annealing 171

A distribuicao de Boltzmann

e—x/O.l e—x/2 _e—x/10 - e—x/ZO - e—x/500

| I S I
6 7 8 9 10

Algoritmo Metropolis

Estados do sistema sdo solugdes candidatas.
A energia do sistema é representada pelo custo da solugao.

Perturba a solugdo s gerando uma solucgdo s’. Forma mais simples:
seleciona um vizinho aleatério s’ € N (s).

Se E(s') < E(s) atualize a nova solugdo para s’.
Caso contrério, AE = E(s') — E(s) > 0.
AE/KT

A solugdo s’ passa ser a solugdo atual com probabilidade e~

Caracteristica marcante: permite movimentos de melhora e, com baixa
probabilidade, também de piora.

Metropolis

172 Capitulo 10. Heuristicas baseadas em Busca local

Algoritmo 10.5 (Metropolis)
Entrada Uma solucdo inicial s e uma temperatura T.

Saida Solugédo s’ com ¢(s’) < c(s).
Metropolis(s, T, k)=
do
seleciona s € N(s) aleatoriamente
seja A= f(s)) — £(s)
if A<0 then
atualiza s:=5¢
else
atualiza s:=s' com probabilidade e~/
end if
until critério de parada satisfeito
return s

Observacgio 10.1
Para T — oo o algoritmo executa um passeio aleatério no grafo das solugdes
com a vizinhanga definida. Para T — 0 o algoritmo se aproxima a uma busca

local. O

Simulated Annealing

¢ Proposto por Cerny (1985) e Kirkpatrick et al. (1983).
¢ Simula um processo de recozimento.

* Recozimento: processo da fisica que aquece um material a uma tem-
peratura bem alta e resfria aos poucos, dando tempo para o material
alcangar seu estado de equilibrio

* Recozimento simulado: parte de uma alta temperatura e baixa gradual-
mente. Para cada temperatura, permite um ntiimero méximo de saltos
(dois lagos encadeados)

Simulated Annealing

10.3. GRASP 173

Algoritmo 10.6 (Simulated Annealing)
Entrada Solugéo inicial s, temperatura T, fator de esfriamento r € (0,1),
nuamero inteiro [.

Saida Solugdo s’ tal que f(s") < f(s).
SimulatedAnnealing(s, T, k, r, I) :=
repeat até sistema ~“esfriado''

repeat [vezes
seleciona s € N(s) aleatoriamente
seja A:=f(s') — f(s)
if A<0 then
s:=s
else
s:=s' com probabilidade e 2/T
end fi
end repeat
T:=1rT
end repeat
return S

Determinando uma temperatura inicial e final adequada é importante para
ndo gastar tempo desnecessario com temperaturas em que o algoritmo se
comporta como passeio aleatério ou busca local.

Exemplo 10.2 (Temperatura inicial)

Define uma probabilidade p;. Executa uma versdo rapida (I pequeno) do
algoritmo para determinar uma temperatura inicial tal que um movimento é
aceito com probabilidade p;. O

Exemplo 10.3 (Temperatura final)

Define uma probabilidade py. Para cada nivel de temperatura em que os
movimentos foram aceitos com probabilidade menos que p; incrementa um
contador. Zera o contador caso uma nova melhor solucédo é encontrada. Caso
o contador chega em 5, termina. O

10.3. GRASP

GRASP

174 Capitulo 10. Heuristicas baseadas em Busca local

* GRASP: greedy randomized adaptive search procedure
* Proposto por Mauricio Resende e Thomas Feo (1989).

* Mauricio Resende: Pesquisador da AT&T, Departamento de Algorit-
mos e Otimizagado

GRASP

Figura 10.3.: Mauricio G. C. e Método multi-start, em cada iteracdo
Resende 1. Gera solugdes com um procedimento guloso-randomizado.

2. Otimiza as solugdes geradas com busca local.

Algoritmo 10.7 (GRASP)
Entrada Parametro «.

Saida A melhor solugédo encontrada.

GRASP (&, ...)=
{ a busca mantém a melhor solugio encontrada s* }
do

s := Guloso — Randomizado(«)

s := BuscaLocal(s)

atualiza s* caso f(s) < f(s)
until critério de parada satisfeito
return s*

Construcao gulosa-randomizada

* Motivagdo: Um algoritmo guloso gera boas solugdes inicias.

¢ Problema: Um algoritmo deterministico produz sempre a mesma solu-
¢éo.

* Logo: Aplica um algoritmo guloso, que ndo escolhe o melhor elemento,
mas escolhe randomicamente entre os x% melhores candidatos.

* O conjunto desses candidatos se chama restricted candidate list (RCL).

10.3. GRASP 175

Construcao gulosa-randomizada: Algoritmo guloso

Guloso () :=

5:=()

while S=(sq,...,s;) com i<mn do
entre todos candidatos C para S;i1:
escolhe o melhor se€C
S:=(s1,...,8;,9)
end while

Construcao gulosa-randomizada: Algoritmo guloso

Guloso-Randomizado (a) :=

5:=()

while S=(sq,...,s;) com i<mn do
entre todos candidatos C para S;i1:
forma a RCL com os «\) melhores candidatos em C
escolhe randomicamente um s & RCL
S:=(s1,...,5i,5)
end while

GRASP

Algoritmo 10.8 (GRASP)
Entrada Parametro «.

Saida Uma solugao s*.

GRASP (a)=
do
y := Guloso — Randomizado(«)
y := BuscalLocal(y)
atualiza a melhor solugio s*
until critério de parada satisfeito
return s*

176 Capitulo 10. Heuristicas baseadas em Busca local

GRASP: Variacoes

¢ long term memory: hash table (para evitar otimizar solugdes ja vistas)

e Parametros: sp, N (x), « € [0,1] (para randomizacdo), tamanho das
listas (conj. elite, rcl, hash table), nimero de iteragdes,

GRASP com memédria

¢ O GRASP original ndo havia mecanismo de memoria de iteragdes pas-
sadas

¢ Atualmente toda implementacdo de GRASP usa conjunto de solucdes
elite e religagdo por caminhos (path relinking)

¢ Conjunto de solugdes elite: conjunto de solugdes diversas e de boa quali-
dade

— uma solugdo somente é inserida se for melhor que a melhor do
conjunto ou se for melhor que a pior do conjunto e diversa das
demais

- a solugdo a ser removida é a de pior qualidade

* Religacdo por Caminhos: a partir de uma solucdo inicial, modifique um
elemento por vez até que se obtenha uma solugdo alvo (do conjunto
elite)

* solugdes intermedidrias podem ser usadas como solugdes de partida

Comparacao entre as metaheuristicas apresentadas

* Metaheuristicas: Simulated annealing (SA), Multi-Start Search (MS),
GRASP

¢ SA tem apenas um ponto de partida, enquanto que os outros dois mé-
todos testa diversos

¢ SA permite movimento de piora, enquanto que os outros dois métodos
nao

* SA é baseado em um processo da natureza, enquanto que os outros
dois ndo

10.4. Busca Tabu 177

10.4. Busca Tabu

Busca Tabu (Tabu Search)

Proposto por Fred Glover em 1986 (principios basicos do método foram
propostos por Glover ainda em 1977)

Professor da Universidade do Colorado, EUA

Busca Tabu (BT)

Assim como em simulated annealing (SA) e VNS, TB é baseada inteira-
mente no processo de busca local, movendo-se sempre de uma solucdo
s para uma solugéo s’

Assim com em SA, também permite movimentos de piora

Diferente de SA que permite movimento de piora por randomizacao,
tal movimento na BT é deterministico

A base do funcionamento de Busca Tabu é o uso de meméria segundo
algumas regras

O nome Tabu tem origem na proibi¢do de alguns movimentos durante
a busca

Busca Tabu (BT)

Mantém uma lista T de movimentos tabu

A cada iteracdo se move para o melhor vizinho, desde que ndo faca
movimentos tabus

Permite piora da solugdo: o melhor vizinho pode ser pior que o vizinho
atual!

Sao inseridos na lista tabu elementos que provavelmente ndo direci-
onam a busca para o 6timo local desejado. Ex: dltimo movimento
executado

o tamanho da lista tabu é um importante pardmetro do algoritmo

Critérios de parada: quando todos movimentos sdo tabus ou se x mo-
vimentos foram feitos sem melhora

Figura 10.4.:
(*1937)

Fred Glover

178

Capitulo 10. Heuristicas baseadas em Busca local

Busca Tabu: Conceitos Basicos e notacao

s: solugdo atual

s*: melhor solucao

f*: valor de s*

N (s): Vizinhanga de s.

N (s) C N (s): possiveis (ndo tabu) solugdes vizinhas a serem visitadas
Solucdes: inicial, atual e melhor

Movimentos: atributos, valor

Vizinhanga: original, modificada (reduzida ou expandida)

Movimentos Tabu

Um movimento é classificado como tabu ou ndo tabu pelas regras de
ativacdo tabu

em geral, as regras de ativagdo tabu classificam um movimento como
tabu se 0 movimento foi recentemente realizado

Meméria de curta duracio (MCD) - também chamada de lista tabu: usada
para armazenar os movimentos tabu

duragdo tabu (tabu tenure) é o namero de iteragdes em que o movimento
permanecerd tabu

dependendo do tamanho da MCD um movimento pode deixar de ser
tabu antes da duracdo tabu estabelecida

A MCD em geral é implementada como uma lista circular

O objetivo principal da MCD ¢ evitar ciclagem e retorno a solugdes ja
visitadas

os movimentos tabu também colaboram para a busca se mover para
outra parte do espaco de solugdes, em direcdo a um outro minimo
local

10.4. Busca Tabu 179

Busca Tabu

Algoritmo 10.9 (BuscaTabu)
Entrada uma solugéo s

Saida uma solugdo s’ : f(s") < f(s)

BuscaTabu(s)=
{ mantém a melhor solugio s* }
Inicializacgéo:

T:=0Q
while critério de parada n&o satisfeito
s := seleciona s € N(s) com min f(s)

insira movimento em T (a lista tabu)
end while

return s*

Busca Tabu (BT)

e critérios de parada:
— namero de iteracdes (Nyqx)
— numero intera¢des sem melhora
* : P 2. .
- quando s* atinge um certo valor minimo (méximo) estabelecido

¢ Um movimento ndo é executado se for tabu, ou seja, se possuir um ou
mais atributos tabu-ativos

* Pode ser estabelecida uma regra de uso de um movimento tabu (critério
de aspiragao)

— Critério de aspiracdo por objetivo: se o movimento gerar uma solugdo
melhor que s*, permite uso do movimento tabu

— Critério de aspiragio por diregdo: o movimento tabu é liberado se for
na direcdo da busca (de melhora ou piora)

Busca Tabu: mecanismos auxiliares

* intensificacdo: a idéia é gastar mais “esfor¢o” em regides do espaco de
busca que parece mais promissores. Isso pode ser feito de diversas

180 Capitulo 10. Heuristicas baseadas em Busca local

maneiras (exemplo, guardar o ntiimero de interacdes com melhora con-
secutiva). Nem sempre este a intensificacdo traz beneficios.

* Diversificagio: recursos algoritmicos que forgam a busca para um espago
de solugdes ainda nado explorados.

— uso de memoria de longo prazo (exemplo, nimero de vezes que a
insercao de um elemento provocou melhora da solugao)

— Estratégia bésica: forgar a inser¢do de alguns poucos movimentos
pouco executados e reiniciar a busca daquele ponto

- Estratégia usada para alguns problemas: permitir solu¢des infac-
tiveis durante algumas intera¢oes

Busca Tabu: variacoes

¢ Virias listas tabus podem ser utilizadas (com tamanhos, duragdo, e
regras diferentes)

¢ BT probabilistico: os movimentos sdo avaliados para um conjunto se-
lecionado aleatoriamente N'(s) € N(s). Permite usar uma lista tabu
menot, acontece menos ciclagem.

¢ A duragédo tabu pode variar durante a execugao

Comparacao entre as metaheuristicas apresentadas até entao

* Metaheuristicas: Simulated annealing (SA), Multi-Start Search (MSS),
GRASP, BT

¢ SA e BT tém apenas um ponto de partida, enquanto que os outros dois
métodos testa diversos

* SA e BT permitem movimentos de piora, enquanto que os outros dois
métodos ndo

* SA é baseado em um processo da natureza, enquanto que os outros
métodos ndo

10.5. Variable Neighborhood Search 181

Parametros e decisbes das metaheuristicas

e SA:

— Pardmetros: temperatura inicial, critério de parada, varidvel de res-
friamento

— Decisoes: vizinhanca, solucdo inicial
e GRASP:

— Pardmetros: sy, N(x), « €[0,1] (para randomizagdo), tamanho das
listas (conj. elite, rcl, hash table), critério de parada

— Decisoes: vizinhanga, solucdo inicial (sg), randomizacdo da s, atu-
alizagdes do conjunto elite
e BT:
— Pardmetros: tamanho da lista tabu, critério de parada

— Decisoes: vizinhaga, critérios para classificar movimento tabu

10.5. Variable Neighborhood Search
Variable Neighborhood Search

¢ Proposto por Hansen e Mladenovi¢ (1997).
* Método que explora mais que uma vizinhanga.

¢ Explora sistematicamente as seguintes propriedades:

— O minimo local de uma vizinhanga ndo é necessariamente minimo
para outra vizinhanga

— Um minimo global é um minimo local com respeito a todas as
vizinhangas

- Para muitos problemas, os minimos locais estdo localizados relati-
vamente préximos no espago de busca para todas as vizinhangas

Os métodos usando k vizinhangas N7, ..., N, sempre voltam a usar a pri-
meira vizinhancga, caso um movimento melhora a solugdo atual. Caso contra-
rio eles passam para préxima vizinhanca. Isso é o movimento basico:

Figura 10.5.: Pierre Hansen

182 Capitulo 10. Heuristicas baseadas em Busca local

Algoritmo 10.10 (Movimento)
Entrada Solucdo atual s, nova solucéo s/, vizinhanca atual k.

Saida Uma nova solugdo s e uma nova vizinhanga k.

GRASP(a, ...)=
{ a busca mantém a melhor solugdo encontrada s* }
do

s := Guloso — Randomizado(«)

s := BuscaLocal(s)

atualiza s* caso f(s) < f(s*)
until critério de parada satisfeito
return s*

Com isso podemos definir uma estratégia simples, chamada Variable Neigh-
borhood Descent (VND).

Algoritmo 10.11 (VND)
Entrada Solugéo inicial s, conjunto de vizinhangas N;, i € [m].

Saida Solugéo s.
VND (s,{N;})=
k:=1
// até chegar num minimo local

// para todas vizinhangas

while k<m
encontra o melhor vizinho s € Ni(s)
(s, k) :== Movimento(s, s’, k)

end while

return s

Uma versao randomizada é o reduced variable neighborhood search.

Algoritmo 10.12 (rVNS)
Entrada Solugéo inicial s, conjunto de vizinhangas N;, i € [m].

Saida Solugéo s.

10.6. Algoritmo Guloso Iterado 183

VNS (s,{N;})=
until critério de parada satisfeito
k:=1
while k<m do
seleciona vizinho aleatério s € Ni(s) { shake }
(s,k) := Movimento(s, s, k)
end while
end until
return s

Uma combinagdo do rVNS com uma busca local é o Variable Neighborhood
Search (VNS) bésico.

Algoritmo 10.13 (VNS)
Entrada Solucdo inicial s, um conjunto de vizinhancgas N, i€ [m].

Saida Solucéo s.

VNS (s,{N;})=
until critério de parada satisfeito
k:=1
while k<m do
seleciona vizinho aleatério s’ € Ny(s) { shake }
s” := Buscalocal (s")
(s, k) := Movimento(s, s”, k)
end until
return S

Observacgao 10.2

A busca local em VNS pode usar uma vizinhanga diferente das vizinhangas
que perturbam a solugdo atual. Também é possivel usar o VND no lugar da
busca local. O

10.6. Algoritmo Guloso Iterado

Algoritmos de construgdo repetida independente como GRASP e Multi-Start
criam diversas solu¢des durante a execugdo, mas nao utilizam a informacgao
obtida por iteragdes anteriores para ajudar na composigdo de novas solugdes.
O algoritmo guloso iterado proposto por Ruiz e Stiitzle (2007) utiliza parte

184 Capitulo 10. Heuristicas baseadas em Busca local

da solugdo encontrada anteriormente para tentar achar uma nova solugdo
melhor.

O algoritmo guloso iterado cria uma solugéo inicial e iterativamente destréi
e reconstréi solugdes de forma a gerar solugdes novas. A cada etapa parte da
solugdo é removida. tornando a solugao parcial, entdo o algoritmo gera uma
nova solugdo completa de forma gulosa a partir dessa solugdo parcial. Uma
vez gerada a solugdo nova verificamos se a solugdo serd aceita ou descartada.
Caso ela seja melhor que a solugdo atual ela é aceita, caso seja pior é aceita
com chance dada pela perda de qualidade utilizando o critério de Metropolis.
O pseudo-codigo estd no Algoritmo 10.14.

Algoritmo 10.14 (Busca Gulosa Iterada)
Entrada: Numero de repeti¢des n, temperatura T, uma solugdo
inicial s. Saida: Melhor solucdo encontrada s*.

IG(s):=
{ manter melhor solugdo s* }
for n vezes
s'=s
Destr6i parte de s
Reconstréi s’ gulosamente.
A= f() — £(s)
s=¢ com probabilidade min{l,e %/}
end for
return s*

No algoritmo utilizamos um ntmero fixo de iteracdes mas podemos utilizar
a qualidade da solucdo ou o tempo de execugdo como critério de parada.
Note que utilizamos o a mesma estratégia que o algoritmo de Metropolis
para permitir solugdes a transi¢do para solugdes qualidade pior que a an-
terior, entretanto ndo utilizamos resfriamento (como utilizado na Témpera
Simulada). A destruigdo e reconstrucdo em sequencia podem ser considera-
das uma perturbagdo da solugdo atual, pois podemos ter uma solugdo nova
de qualidade melhor ou pior, portanto pode ser ttil colocar algum método
de melhoria, como uma busca local, apds a reconstrucao.

No caso do caixeiro viajante podemos fazer a destrui¢cdo removendo um nu-
mero constante de arestas aleatérias do ciclo hamiltoniano, e a reconstrugdo
com a heuristica do vizinho mais préximo. No caso da max-SAT podemos

10.6. Algoritmo Guloso Iterado 185

tornar alguns bits aleatérios ndo definidos para destruir parte da solugao,
entdo construimos uma nova solugdo completa re-definindo estes bit em (or-
dem aleatdria), cada vez maximizando o nimero de cldusulas satisfeitas.

11.

Heuristicas inspirados da natureza

11.1. Algoritmos Genéticos e meméticos

Algoritmos Genéticos

Proposto na década de 60 por Henry Holland.

Professor da Faculdade de Engenharia Elétrica e de Computagdo da
Universidade de Michigan/EUA.

Seu livro: Adaptation in Natural and Artificial Systems (1975).

Algoritmos genéticos

Foi proposto com o objetivo de projetar software de sistemas artificiais
que reproduzem processos naturais.

Baseados na evolugdo natural das espécies.

Por Darwin: individuos mais aptos tém mais chances de perpetuar a
espécie.

Mantém uma populagdo de solugdes e ndo uma tinica solugdo por vez.
Usa regras de transicao probabilisticas, e ndo deterministicas.

Procedimentos: avaliagdo, selecdo, geracdo de novos individuos (re-
combinagdo), mutagao.

Parada: ntimero x de geracdes total, nimero y de geragdes sem me-
lhora.

Algoritmos genéticos: Caracteristicas

Varias solugdes (“populagdo”).
Operagdes novas: Recombinagdo e mutagéo.

Separagdo da representacdo (“gendétipo”) e formulagdo “natural” (fené-
tipo).

Figura 11.1.: John Henry
Holland (*1929,+2015)

188 Capitulo 11. Heuristicas inspirados da natureza

Algoritmos Genéticos: Nocdes

* Genes: Representagdo de um elemento (bindrio, inteiro, real, arco, etc)
que determine uma caracteristica da solucéo.

e Alelo: Instancia de uma gene.

* Cromossomo: Uma string de genes que compdem uma solugéo.
* Gendtipo: Representagdo genética da solugdo (cromossomos).

¢ Fendtipo: Representagdo “fisica” da solugao.

* Populagio: Conjunto de cromossomos.

Algoritmos genéticos: Representacao e Solucao

Representacdo A’ Solugdo S
Cromossomo

[1]o[1]ol1][0]1]0[1]0[1[0]1]O]

Mapeamento

gene com alelos 0,1

Algoritmos Genéticos: exemplos

* Problema de particdo de conjuntos
Alelos: 0 ou 1
Cromossomo: 0001101010101011110110

¢ Problema do Caixeiro viajante
Alelos: valores inteiros entre 1 e n

Cromossomo: 15368247

11.1. Algoritmos Genéticos e meméticos 189

Procedimentos dos Algoritmos Genéticos

* Codificagdo: genes e cromossomos.
e [nitializagdo: geracdo da populagdo inicial.

* Fungdo de Avaliagio (fitness): fungdo que avalia a qualidade de uma so-
lucéo.

* Selecio de pais: selegdo dos individuos para crossover.
* Operadores genéticos: crossover, mutagao

* Parametros: tamanho da populacdo, percentagem de mutagdo, critério
de parada

Algoritmos Genéticos

Algoritmo 11.1 (AlgoritmoGenético)
Entrada Parametros do algoritmo.

Saida Melhor soluc¢do encontrada para o problema.

Inicializagdo e avaliagdo inicial
while (critério de parada n#o satisfeito) do
repeat
if (critério para recombinag&o) then
selecione pais
recombina e gera um filho
end if
if (critério para mutag&do) then
aplica mutacgédo
end if
until (descendentes suficientes)
selecione nova populacgéo
end while

Populacao Inicial: geracao

e Solugdes aleatérias.

190 Capitulo 11. Heuristicas inspirados da natureza

¢ Método construtivo (ex: vizinho mais préximo com diferentes cidades
de partida).

¢ Heuristica construtiva com perturbagdes da solugdo.

¢ Pode ser uma mistura das opg¢des acima.

Populacao inicial: tamanho

¢ Populagdo maior: Custo alto por iteracgao.
¢ Populagao menor: Cobertura baixa do espago de busca.

¢ Critério de Reeves: Para alfabeto bindrio, populagdo randdmica:
Cada ponto do espago de busca deve ser alcancavel através de recom-
binagoes.

¢ Consequencia: Probabilidade que cada alelo é presente no gene i: 1 —
21-n,

e Probabilidade que alelo é presente em todos gene: (1 —217")%.

¢ Exemplo: Com ! = 50, para garantir cobertura com probabilidade
0.999:
n>1-log, (1 V099) ~ 1661

Terminacao

¢ Tempo.
e Numero de avaliagdes.

* Diversidade. Exemplo: Cada gene é dominado por um alelo, i.e. 90%
dos individuos tem o mesmo alelo.

Préxima Geracao

¢ Gerada por recombinagdo e mutagdo (solugdes aleatérias ou da popu-
lacdo anterior podem fazer parte da proxima geracao).

¢ Estratégias:

11.1. Algoritmos Genéticos e meméticos 191

— Recombinagio e mutagéao.

— Recombinacdo ou mutagéao.
* Regras podem ser randomizadas.
¢ Exemplo: Taxa de recombinagao e taxa de mutagéo.

¢ Exemplo: Numero de genes mutados.

Mutacao

* Objetivo: Introduzir elementos diversificados na populagdo e com isso
possibilitar a exploracdo de uma outra parte do espa¢d de busca.

* Exemplo para representacio bindria: flip de k bits.

¢ Exemplo para o PCV: troca de posicdo entre duas cidades.

Recombinacao

* Recombinagdo (ingl. crossover): combinar caracteristicas de duas solu-
¢des para prover uma nova solugdo potencialmente com melhor fitness.

* Explora o espago entre solucdes.
* Crossover cldssicos: one-point recombinacdo e two-points recombina-

¢do.

One-point crossover
Escolha um ntimero aleatério k entre 1 e n. Gere um filho com os primeiros
k bits do pai A e com os tltimos n — k bits do pai B

* Problema de particagdo: aplicacdo direta do conceito

* Problema do Caixeiro Viajante: copie os primeiros k elementos do pai A e
as demais 1 — k posi¢des preenche com as cidades faltantes, segundo a
ordem em que elas aparecem no pai B

Recombinacao de dois pontos

Figura 11.2.: Recombinacdo
de um ponto.

OO0
OO0

Figura 11.3.: Recombinagdo
de dois pontos.

192 Capitulo 11. Heuristicas inspirados da natureza

Exemplo: Strategic Arc Crossover

* Selecione todos os pedacds de rotas (string) com 2 ou mais cidades que
sdo iguais nas duas solugdes

¢ Forme uma rota através do algoritmo de vizinho mais préximo entre

os pontos extremos dos strings

Recombinacdo: Selecdo dos pais

* A probabilidade de uma solugdo ser pai num processo de crossover
deve depender do seu fitness.

® VariagOes:
— Probabilidade proporcional com fitness.

— Probabilidade proporcional com ordem.

Estratégia adotada pelos operadores

Intmeros operadores podem ser propostos para cada problema. O ideal é
combinar caracteristicas do operador usado, com outros operadores (muta-
¢do, busca local) usados no GA. Basicamente um crossover é projetado da
seguinte forma:

¢ Encontre similaridades entre A e B e insira S = A N B no filho.
* Defina conjuntos S;;, e Syt de caracteristicas desejaveis e ndo desejdveis.
* Projete um operador que mantenha ao méximo elementos de S e S;;,,

minimizando o uso de elementos de S,,;.

Nova Populacao

* Todos os elementos podem ser novos.
¢ Alguns elementos podem ser herdados da populacado anterior.
¢ Elementos novos podem ser gerados.

¢ Exemplos, com populagdo de tamanho A que gera y filhos.
(A, u) Seleciona os A melhores dos filhos.
(A+u) Seleciona os A melhores em toda populagao.

11.1. Algoritmos Genéticos e meméticos 193

Estrutura da Populacao

Em geral, populacdo estruturada garante melhores resultados. A estrutura
da populagdo permite selecionar pais para crossover de forma mais criteri-
osa. Algumas estruturas conhecidas

* Divisdo em Castas: 3 particdes A, B e C (com tamanhos diferentes), sendo
que os melhores individuos estdo em A e os piores em C.

* [lhas: a populagdo é particionada em subpopulagdes que evoluem em
separado, mas trocam individuos a cada periodo de ntimero de gera-
coes.

* Populagio organizada como uma drvore.

Exemplo: Populacao em castas

* Recombinagdo: Somente entre individuos da casta A e B ou C para
manter diversidade.

* Nova populagdo: Manter casta “elite” A, re-popular casta B com filhos,
substituir casta C com solug¢des randdmicas.

Exemplo: Populacao em arvore

* Considere uma arvore terndria completa, em que cada né possui duas
solugdes (pocket e current).

* A solucdo current é a solugdo atual armazenada naquela posi¢do da
arvore.

* A solugdo pocket é a melhor ja tida naquela posicao desde a primeira
geragao.

* A cada solugdo aplique exchange (se a solugdo current for melhor que a
pocket, troque-as de posicao)

* Se a solucdo pocket de um filho for melhor que a do seu pai, troque o
né de posicao.

194 Capitulo 11. Heuristicas inspirados da natureza

Algoritmos Meméticos

* Proposto por Pablo Moscato, Newcastle, Australia.

¢ Idefa: Informacado “cultural” pode ser adicionada a um individuo, ge-
rando um algoritmo memético.

e Meme: unidade de informacgao cultural.

Algoritmos Meméticos

Figura 11.4.: Pablo Moscato
¢ Um procedimento de busca local pode inserir informagdo de boa qua-
lidade, e ndo genética (memes).

* Faz uso de um procedimento de busca local (em geral aplicado a solu-
¢do gerada pelo procedimento de recombinacao).

¢ Geralmente trabalha com popula¢des menores.

Comparacao entre as Metaheuristicas Apresentadas

* Quais que dependem de randomizagdo? SA, GRASP, GA
¢ Quais que geram apenas uma solugao inicial em todo processo? BT, SA

¢ Quais mantém um conjunto de solugdes, em vez de considerar apenas
uma? GA

¢ Quais sdo inspiradas em processos da natureza? GA, BT

Qual gera os melhores resultados?

HANDROOK OF
METAHELIRISTICS

Existem outras Metaheuristicas

Handbook of Metaheuristics, por Fred W. Glover (Editor), Gary A. Kochen-
berger (Editor) Kluwer 2002.

11.1. Algoritmos Genéticos e meméticos 195

Consideracoes Finais

* O desempenho de uma metaheuristica depende muito de cada imple-
mentacao

* As metaheuristicas podem ser usadas de forma hibridizada

* Técnicas de otimizacdo multiobjetivo tratam os casos de problemas com
mais de um objetivo (Curva de Pareto)

Exercicio

* Problema de alocacdo: atender n clientes por m postos de atendimento
(um posto ¢é instalado no local onde se encontra um cliente)

¢ Entrada: distancias entre cada par de clientes

* Problema: Determinar em que locais instalar os postos, de forma a
minimizar a soma das distancias de cada cliente a um ponto de atendi-
mento

* Propor uma heuristica construtiva e uma busca local.

Comparacdo entre as Metaheuristicas

* Quais que permitem movimento de piora? BT, SA
* Quais que ndo dependem de randomizacdo? BT
* Quais que geram apenas uma solugdo inicial em todo processo? BT, SA

* Quais mantém um conjunto de solugdes, em vez de considerar apenas
uma?

* Qual gera os melhores resultados?

Parte V.

Appéndice

A. Conceitos matematicos

N, Z, Q e R denotam os conjuntos dos niimeros naturais sem 0, inteiros,
racionais e reais, respectivamente. Escrevemos também INg = IN U {0}, para
qualquer conjunto C, C; = {x € C|]x > 0} e C_ = {x € C | x < 0}. Por
exemplo

R, ={xeR|x>0}!

Para um conjunto finito S, P(S) denota o conjunto de todos subconjuntos de
S.

Denotamos por A = (a;;) € F"*" uma matriz de m linhas e n colunas com
elementos em F. A i-ésima linha é a;, com a! € F" e a j-ésima coluna de A é
al € F™.

Definicdo A.1 (Pisos e tetos)

Para x € R o piso | x| é o maior nimero inteiro menor que x e o teto [x] é o
menor nimero inteiro maior que x. Formalmente

|x] =max{y € Z |y < x}
[¥] =minf{y € Z |y > 1}

O parte fraciondrio de x é {x} = x — |x].
Observe que o parte fraciondrio sempre é positivo, por exemplo {—0.3} =
0.7.
Proposicao A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem
x<[x] <x+1 (A1)
x—1<|x| <x (A.2)

1Alguns autores usam RT.

B. Formatos

Este capitulo contém um breve resumo dos formatos CPLEX lp, Julia/JuMP
e AMPL/MathProg usados para especificar problemas de otimizagdo linear.
CPLEX LP é um formato simples, AMPL! é uma linguagem completa para
definir problemas de otimizagdo, com elementos de programacdo, coman-
dos interativos e um interface para diferentes resolvedores de problemas.
Por isso CPLEX LP serve para modelos pequenos. Aprender AMPL precisa
mais investimento, que rende em aplica¢gdes maiores. AMPL tem o apoio da
maioria das ferramentas disponiveis.

Vérios outros formatos estdo em uso, a maioria deles comerciais. Exemplos
sdo ZIMPL, GAMS, LINGO, e MPS (Mathematical programming system).

B.1. CPLEX LP
Uma gramatica simplificada® do formato CPLEX LP ¢é
(specification) ::= (objective)

(restrictions)?

(bounds)

(general)?

(binary)?

‘End’
objective) ::= (goal) (name)? (linear expression

] 8 p

(goal) ::= 'MINIMIZE' | ‘MAXIMIZE' | ‘MIN’ | ‘MAX’

(restrictions) ::= ‘SUBJECT TO’ (restriction)+

(restriction) ::= (name)? (linear expression) (cmp) (number)

1A sigla AMPL significa “A mathematical programming language”. O nome também sugere
uma funcionalidade “ampla” (“ample” em inglés).
2A gramatica ndo contém as especificaces “semi-continuous” e “SOS”.

http://www.ampl.com

202 Capitulo B. Formatos

<Cmp> ::: /</ | I<=/ | I=/ | I>/ | l>=/
(linear expression) ::= (number) (variable) ("+ | ’-’) (number) (variable))*
(bounds) ::= ‘BOUNDS’ (bound)+

(bound) := (name)? ((limit) ‘<=" (variable) ‘<=" (limit)
| (limit) ‘<=" (variable)
| (variable) ‘<=" (limit)
| (variable) ‘=" (number)
| (variable) ‘free’)

/

(limit) = ‘infinity’ | ‘~infinity’ | (number)
(general) ::= ‘GENERAL’ (variable)+
(binary) ::= ‘BINARY’ (variable)+

Todas varidveis x tem a restrigdo padrdo 0 < x < +4oco. Caso outros limites
sdo necessdrias, eles devem ser informados na secao “BOUNDS”. As secoes
“GENERAL” e “BINARY” permitem restringir varidveis para Z e B, respec-
tivamente.

As palavras-chaves também podem ser escritas com letras mintsculas: o for-
mato permite algumas abreviagdes ndo listadas acima (por exemplo, escrever
“s.t” ou “st” ao invés de “subject to”).

Um comentdrio até o final da linha inicia com “\”. Uma alternativa sdo
comentdrios entre “*” e “*\”.

Exemplo B.1 (Problema (1.1) no formato CPLEX LP)

Maximize
lucro: 0.2 ¢c + 0.5 s

Subject To

ovo: c + 1.5 s <= 150 \ um comentrio
acucar: 50 ¢ + 50 s <= 6000

clientl:c <= 80

client2:s <= 60

Bounds

B.2. Julia/[TuMP 203

0 <=
0 <=
End
O
Exemplo B.2

Problema de mochila 0-1 com 11 itens em formato CPLEX LP.

max 19x1+87x2+97x3+22x4+47x5+22x6+30x7+5x8+32x9+54x10+75x11
s.t

1x1+96x2+67x3+90x4+13x5+74x6+22x7+86x8+23x9+63x10+89x11<= 624
binary x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

end

O

Observacgio B.1

CPLEX LP permite constantes como 0.5e6 que representa 0.5 x 10%. Ou-
tra interpretagdo dessa expressdo é 0.5 vezes a varidvel es. Para evitar essa
ambiguidade, varidveis ndo podem comecar com a letra e. O

B.2. Julia/JuMP

Julia é uma linguagem para programagcao cientifica e JuMP (Julia for Mathe-
matical Programming) uma biblioteca que permite embutir programas ma-
tematicos diretamente em cédigo Julia. Isso tem a vantagem de poder ler e
processar os dados antes da solucdo, resolver, e continuar trabalhar com o
resultado no mesmo programa.

Exemplo B.3 (Problema (1.1) em Julia/JuMP)
#!1/usr/bin/env julia

using JuMP
using GLPKMathProgInterface

m = Model(solver=GLPKSolverMIP())

Ovariable(m, c)
@variable(m, s)

@objective(m, Max, 0.2%c+0.5%s)

204 Capitulo B. Formatos

Q@constraint(m, c + 1.5%s <= 150)
Q@constraint(m, 50*c + b50*s <= 6000)
@constraint(m, c <= 80)
@constraint (m, s <= 60)

status = solve(m)

if status == :0Optimal
println("A soluo tima c=%$(getvalue(c)) e s=$(getvalue(s))
— de valor $(getobjectivevalue(m)).")

end

O
Diferente do CPLEX lp, Julia/JuMP permite expressar um tinico modelo para
um problema e resolver para diferentes instancias.

Exemplo B.4 (Exemplo (1.3) em Julia/JuMP)
#1/usr/bin/env julia

using JuMP
using GLPKMathProgInterface

3

3

= [5,7,3]

[7,3,5]

[[3,4,100] [1,2,3] [100,4,3]1]

o o B B
|

mm = Model (solver=GLPKSolverMIP())
@variable(mm, x[1:m,1:n] >= 0)
Q@objective(mm, Min, sum(c[i,jl*x[i,j] for i=1:m, j=1:n))

Qconstraint (mm, [i=1:m], sum(x[i,j] for j=1:n) <= a[il)
Qconstraint (mm, [j=1:n], sum(x[i,j] for i=1:m) == b[j])

B.3. AMPL 205

status = solve(mm)
if status == :0Optimal
println("A soluo tima =x=$(getvalue(x)) de valor

— $(getobjectivevalue(mm)).")
end

B.3. AMPL

Objetos de modelagem

e Um modelo em AMPL consiste em

parametros,

variaveis,

restricdes, e

objetivos
* AMPL usa conjuntos (ou arrays de multiplas dimensdes)
A:1—=D

que mapeiam um conjunto de indices I = I; x - -- x I, para valores D.

Formato

e Parte do modelo

s1

sn
end;

com s; sendo um comando ou uma declaragao.

e Parte de dados

206 Capitulo B. Formatos

data
di

dn
end;

com d; sendo uma especificagdo de dados.

Tipo de dados
e Numeros: 2.0,-4
¢ Strings: 'Comida’
¢ Conjuntos: {2,3,4}
Expressdoes numéricas

¢ Operagdes basicas: +,-,*,/,div,mod,less, **

Exemplo: x less y

® Fungdes: abs,ceil,floor,exp

Exemplo: abs(-3)

¢ Condicional: if x>y then x else y

Expressoes sobre strings

¢ AMPL converte nimeros automaticamente em strings

¢ Concatenagdo de strings: &

Exemplo: x & ' unidades'

B.3. AMPL 207

Expressoes para conjuntos de indices

* Uma dimensao
- t in S: varidvel “"dummy” ¢, conjunto S
- (t1,...tn) in S: para conjuntos de tuplos

— S: sem nomear a variavel

* Multiplas dimensdes

- {e1,...,en} com ¢; uma dimensio (acima).

* Varidveis “dummy” servem para referenciar e modificar.
Exemplo: (i-1) in 8

Conjuntos

¢ Conjunto bésico: {v1,...,vn}

* Valores: Considerados como conjuntos com conjunto de indices de di-
mensao 0

e indices: [i1,...,in]
* Sequéncias: n1 ... n2 by dounl ... n2

e Construgdo: setof I e: {e(i1,..., i) | (i1,...,1n) € I}
Exemplo: setof {j in A} abs(j)

Operacoes de conjuntos

* X union Y: Unido XUY

e X diff Y: Diferenca X\ Y

e X symdiff Y: Diferenca simétrica (X \Y)U (Y \ X)
e X inter Y: Interseccdo XNY

e X cross Y: Produto cartesiano X x Y

208 Capitulo B. Formatos

Expressoes logicas
¢ Interpretacdo de nimeros: n vale “v”, sse n # 0.
e Comparagoes simples: <,<=,= ou ==,>=,>,<> ou !=
e Pertinéncia: x in Y, x not in Y, x !in Y
® Subconjunto: X within Y, X !within Y, X not within Y
¢ Operadores logicos: &% ou and, || ou or, ! ou not

* Quantificagdo: com indices I, expressdo booleana b
forall I b: Ag,, ierb(it, .-, in)

exists I bV, iyerb(i, ..., in)

Declaracées: Conjuntos
set N I [dimen n] [within S] [default el] [:= e2]

param N I [in 8] [<=,>=,!=,... n] [default el] [:= e2]

Nome N

Conjunto de indices I (opcional)

Conjunto de valores S

Valor default e;

Valor inicial e,

Declaracoes: Restricoes e objetivos
subject to N I : el = e2 | el <= e2, el >= e2

minimize [I] : e

maximize [I] : e

B.3. AMPL 209

Comandos

* solve: Resolve o sistema.
® check [I] : b: Valida expressdao booleana b, erro caso falso.
e display [I] : el,...en: Imprime expressoes ey,...,e;,.

e printf [I] : fmt,el,...,en: Imprime expressdese—1,...,e, usando
formato fmt.

e for T : ¢, for I : {cl ... cn}: Lagos.

Dados: Conjuntos
set Nrl,...rn

Com nome N e records 74, ...,*,, cada record

¢ um tuplo: vy,...,0,
Exemplo: 12,13,22,27

e a defini¢do de uma fatia (v, va|*,...,v,|*): depois basta de listar os
elementos com .
Exemplo: (1*)23,(2%27

* uma matriz

clc2 ... cn :=
rl all al2 ... aln
r2 a21 a22 ... a2n
rm aml am2 ... amn

com aij “+”/”-” para inclusdo/exclusdo do par “ri cj” do conjunto.

Dados: Parametros
param N rl,...rn

Com nome N e records 74, ...,*,, cada record

e um valoriy,..., i, 0

210 Capitulo B. Formatos

* adefini¢do de uma fatia [i1|*, i2|*, ..., 1,|*): depois basta definir indices
com *.

e uma matriz

:clc2 ... cn :=
rl all al2 ... aln
r2 a21 a22 ... a2n
rm aml am2 ... amn

com aij o valor do par “ri cj”.

e uma tabela

param default v : s : pl p2 ... pk :=
t11 t12 ... tin all al2 ... alk
t21 t22 ... t2n a21 a22 ... a2k
tml tm2 tmn aml am2 ... amk

para definir simultaneamente o conjunto
set s := (t11 t12 ... tin), ... , (tml tm2 ... tmn);

e 0s parametros

param pl default v := [t11l t12 ... tin] all, ..., [tml
< tm2 ... tmn] aml;

param p2 default v := [t11l t12 ... tin] al2, ..., [tml
< tm2 ... tmn] am?2;

param pk default v := [t11l t12 ... tin] alk, ..., [tml

< tm2 ... tmn] amk;

Exemplo B.5 (Exemplo (1.1) em AMPL)

var c; # nmero de croissants

var s; # mnmero de strudels

param lucro_croissant; # o lucro por croissant
param lucro_strudel; # o lucro por strudel
maximize lucro: lucro_croissant*ct+lucro_strudels*s;
subject to ovo: c+1.5%s <= 150;

subject to acucar: 50*%c+50%s <= 6000:

subject to croissant: c <= 80;

subject to strudel: s <= 60;

B.3. AMPL 211

Exemplo B.6 (Exemplo (1.3) em AMPL)
param n; # mmero de clientes
param m; # mmero de fornecedores

param a { 1..m }; # estoque

param b { 1..n }; # demanda

param ¢ { 1..m, 1..n }; # custo transporte
var x { 1..m,1..n } >= 0;

minimize custo:

sum { 1 in 1..m, j in 1..n } c[i,jl*x[i,j];
subject to limiteF { i in 1..m }:

sum { j in 1..n } x[i,j] <= alil;
subject to limiteC { j in 1..n }:

sum { 1 in 1..m } x[i,j] = b[jl;

g
o
:
o o B B
I

C. Solucoes dos exercicios

Soluc¢do do exercicio 1.3.

maximiza 2A+ B
sujeitoa A < 6000,
B < 7000,
A+ B <10000,
A,B>0.

Resposta: A = 6000, B = 4000, e Z = 16000.

Solucio do exercicio 1.4.
S30 necessarias cinco variaveis:

* x1: nimero de pratos de lasanha comidos por Marcio

* xo: nimero de pratos de sopa comidos por Marcio

¢ x3: nimero de pratos de hambtrgueres comidos por Renato

* x4: nimero de pratos de massa comidos por vini

* xs5: nimeros de pratos de sopa comidos por vini
Formulacgéo:

maximiza xq1+ xp + X3+ x4 + X5
sujeitoa 4 > x; +x2 > 2,
5>x3>2,
4> x4+ x5 > 2,
70(x2 + x5) + 200x7 + 100x3 + 30x4 < 1000,
30(x + x5) + 100x1 4+ 100x3 + 100x4 < 800.

214 Capitulo C. Solugdes dos exercicios

Solugio do exercicio 1.5.
Sejam I; € R el € R o nimero de lampadas produzidas do tipo 1 e 2,
respectivamente. Com isso podemos formular

maximiza [; +2b
sujeitoa [<60,
I 4+ 3l <200,
211 4+ 21, < 300,
I, > 0.

Soluc¢do do exercicio 1.6.
Sejam m € R e a € R o niimero de janelas de madeira e de aluminio, respec-
tivamente. Com isso podemos formular

maximiza 60m + 30a
sujeitoa m <6,
a <4,
6m + 8a < 48,
m,a > 0.

Solug¢do do exercicio 1.8.
Com marcas J,0,M (Johnny Ballantine, Old Gargantua, Misty Deluxe) e
misturas A, B, C temos as varidveis

X1,ArX],B, X],Cr X0,Ar XO,B» XO,Csr XM,As XM,B, XM,C

que denotam o niimero de garrafas usadas por mistura.
Vamos introduzir ainda as varidveis auxiliares para o nimero de garrafas
usadas de cada marca

X;=X;A+ X8+ X5c, Xo=X0A+X0B+X0cC, Xm=2Xma+tXMB+XMC
e varidveis auxiliares para o nimero de garrafas produzidas de cada mistura

XA = Xj,A+X0,A+XMA, XB=XjB+X0B+XMB Xc=Xjc+Xoc+XMmcC-
Queremos maximizar o lucro em reais

68x4 + 57xp + 45x¢c — (703(] + 50xp + 40xM)

215

respeitando os limites de importacao
x; <2000, xp <2500, xp <1200
e os limites de percentagem

XJ,A > 0.6XA, XM, A S O.ZXA,
Xj B > 0.15xB, XM,B < 0.6XB,
XM,C < 0.5XC.

Portanto, o sistema final é

maximiza 68x4 + 57xp + 45x¢
— (70x7 + 50x0 + 40x1)
sujeito a cx; < 2000,
xo < 2500,
am < 1200,
x7,4 = 0.6x4,
xma < 0.2x4,
xy,8 = 0.15xp,
xmB < 0.6xp,
xmc < 0.5xc,

xm = xm,A + xm,B + xm,C/ m 6 {]/ O/ M}/
Xm = x],m + xO,m + xM,mr m e {A/ B/ C}I
Xmn >0, me{J],0,M},ne {A,B,C}.

Sem considerar a integralidade a solucdo 6tima é produzir 2544.44 garrafas
da mistura A, 3155.56 garrafas da mistura B e 0 garrafas da mistura C, com
as percentagens

* A:60% Johnny Ballantine, 20% Old Gargantua, 20% Misty Deluxe

* B: 15% Johnny Ballantine, 63% Old Gargantua, 22% Misty Deluxe

Solu¢do do exercicio 1.9.

216 Capitulo C. Solugdes dos exercicios

Com #; o nimero de TVs de 29" e t, de 31" temos

maximiza 120t + 80t
sujeito a t; < 40,
t, <10,
20t 4+ 10t, < 500,
t1,tr > 0.

Soluc¢do do exercicio 1.10.

Sejam V = {V3,V,} e NV = {NV;, NV,, NV3} os conjuntos de 6leos vegetais
e ndo vegetais e O = VU NV o conjunto do todos 6leos. Seja ainda c; o
custo por tonelada do 6leo i € O e 4; a acidez do 6leo i € O. (Por exemplo
cy, = 110 e any, = 4.2.) Com varidveis x; (toneladas refinadas do 6leo i € O)
e x, (quantidade total de 6leo produzido) podemos formular

maximiza 150x, — Z CiXi

icO
sujeito a Z x; <200, limite 6leos vegetais,
iev
Z x; < 250, limite 6leos ndo vegetais,
iENV
3%, < Y aix; < 6x,, Intervalo acidez,
ieO
Z Xi = Xo, Oleo total,
€O
Xo,Xx; > 0, Vi e 0.

Soluc¢do do exercicio 1.11.
Sejam x4, xg e xc o nimero de horas investidos para cada disciplina. Vamos
usar varidveis auxiliares 114, np e nc para as notas finais das trés disciplinas.

Como isso temos o programa linear

maximiza

sujeito a

nag+ng+nc

XA+ xg+ xc = 100,
na=(6+x4/10)/2,
ng = (7+2xp/10)/2,
ne = (10 + 3x¢/10) /2,
nag =5,

ng > 5,

nc > 5,

na <10,

ng < 10,

nc <10,

na,ng,nc > 0.

Solu¢do do exercicio 1.12.
Sejam r € R e f € R o ntimero de canecos do Duff regular e do Duff Forte,
respectivamente, encomendados por semana. Com isso podemos formular

maximiza

r+15f
sujeitoa 2f <,

Total de estudo,

Nota final disc. A,
Nota final disc. B,
Nota final disc. C,
Nota minima disc. A,
Nota minima disc. B,
Nota minima disc. C,
Nota méxima disc. A,
Nota méxima disc. B,

Nota méxima disc. C,

r+ f < 3000,

r,f S IR+.

Soluc¢do do exercicio 1.13.
Sejam f € R e h € R o nimero de pacotes de Frisky Pup e Husky Hound
produzidos, respectivamente. Com isso podemos formular

maximiza 1.6f + 1.4h

sujeitoa f + 2h < 240000,
1.5f 4+ h < 180000,

£ < 110000,
f,heR,.

217

218 Capitulo C. Solugdes dos exercicios

Soluc¢do do exercicio 1.14.
Sejam p e ¢ o nimero de toneladas de placas e canos produzidos.

maximiza 25p + 30c
sujeitoa p/200+ c/140 < 40, <= 7p + 10c < 56000
p < 6000,
c <4000,
c,p=>0.

Produzindo aco

6,000

4,000

Canos ¢

2,000

0 2,000 4,000 6,000 8,000
Placas p

A solugédo 6tima é p = 6000, c = 1400 com valor 192000.

Solu¢do do exercicio 1.15.

Usamos indices 1, 2 e 3 para os voos Pelotas—Porto Alegre, Porto Alegre—
Torres e Pelotas—Torres e varidveis a1,a», a3 para a categoria A, by, by, bz para
categoria B e c — 1, ¢, c3 para categoria C. A fungdo objetivo é maximizar o
lucro

z = 600ay + 320a; + 720a3 + 44001 + 260b, + 560b3 + 200c; + 160c; + 280c3.
Temos que respeitar os limites de capacidade

a1+ by +c1+asz+ by +c3 <30,
ar + by + ¢y +az + by +c3 <30,

219

e os limites da predigdo

[l1§4, 112§8r a3S3/
by <8, by <13, b3 <10,
cp <22, ¢y < 20, c3 <18

Obviamente, todas varidveis também devem ser positivos.

Solu¢do do exercicio 1.16.
A solugao gréfica é

6 i

\

X2

X1

(a) A solugdo 6tima é x; = 4.25, x, ~ 4 (valor exato x, = 3.96875).

(b) O valor da solugdo 6tima é ~ 21 (valor exato 20.96875).

Soluc¢do do exercicio 1.17.

maximiza 2z = 5x; + 5x, + 5x3
sujeitoa —6x7 —2x3 —9x3 <0,
—9x1 — 3xy +3x3 < 3,
9x1 +3x, — 3x3 < =3,

X1, %x2,x3 2 0.

220 Capitulo C. Solugdes dos exercicios

maximiza z = —6x; —2xp — 6x3 + 4x4 + 4x5
sujeitoa —3x; —8xp —6x3 —7x4 —5x5 < 3,
3x1 + 8xp + 6x3 + 7x4 + 5x5 < =3,
5x1 —7x04+7x3+7x4 —6x5 < 6,
X1 —9xp + 5x3 + 7x4 — 10x5 < —6,
— X1+ 9% — 5x3 — 7x4 + 10x5 < 6,

X1, X2, X3, X4, x5 > 0.

maximiza z = 7xq+4xy + 8x3 + 7x4 — 9x5
sujeitoa —4x; —1xp —7x3 — 8x4 + 6x5 < =2,
4x1 + xp +7x3 + 8x4 — 6x5 < 2,
— X1 —4xy —2x3 — 2x4 +7x5 < 7,
—8x1 +2xp +8x3 —6x4 —7x5 < =7,
8x1 —2xp —8x3+ 6x4 +7x5 < 7,

X1, X2, X3, X4, X5 > 0.

maximiza z = 6x; —5xp —8x3 — 7x4 + 8x5
sujeitoa —5x; —2x2+x3 —9x4 —7x5 <9,
5x1+2xp —x3+9x4+7x5 < =9,
7x1 + 7x2 +5x3 — 3x4 + x5 < =8,
—7x1—7x3 —5x3+3x4 — x5 <8,
—5x1 —3xp —5x3+9x4 4+ 8x5 <0,

X1, X2, X3, X4, x5 > 0.

Soluc¢do do exercicio 2.1.
Solugdo com método Simplex, escolhendo como varidvel entrante sempre

221

aquela com o maior coeficiente positivo (em negrito):

z = 25p +30c
w; =56000 —7p —10c
wy, =6000 —p

ws = 4000 —C

z =120000 +25p —30ws
w; =16000 —7p +10w3
wy, = 6000 —p

c = 4000 —ws3

z =1240000/7 —25/7p +40/7ws
= 16000/7 —-1/7w,; +10/7ws
wy, = 26000/7 +1/7wy —10/7w3

c = 4000 —ws3
z =192000 —3uw, —4w,
= 6000 —W»
w3 = 2600 —|—1/10ZU1 —7/107,02
¢ =1400 —1/10w; +7/10w,

Soluc¢do do exercicio 2.3.
Temos

<2(n+1)> _ <2n) (2n+2)@n+1) _ <2n> 2(2n +1)

n+1 n (n+1)2 n) n+l

20 < () =22

Logo, por indugao (1/2n)2%" < (*") < 22,

e logo

Soluc¢do do exercicio 2.6.

(a) Substituindo x; e x» obtemos a nova funcdo objetivo z = x; +2xy =
22 — 7w, — 3w;. Como todos coeficientes sdo negativos, a solugdo basica
atual permanece 6tima.

(b) A nova fungao objetivo é 1 — w, e o sistema mantem-se 6timo.

222 Capitulo C. Solugdes dos exercicios

() A nova fungao objetivo é 2 — 2w, e o sistema mantem-se 6timo.
(d) O dicionario dual é

z¥ =31 —7zp —8z
Y = 11 —|—222 +3Zl
vi =4 +z 4z

e a solugdo dual 6tima é (y; y2)! = (411)".

Solugio do exercicio 2.9.
Nao, porque nessa situacdo o valor da varidvel entrante aumento para um
valor x, > 0 e por defini¢do de variavel entrante temos ¢, > 0, i.e. o valor da
fungdo objetivo aumenta.

Solugdo do exercicio 2.10.

Sim. Supde que x;, s € B é a variavel basica negativa. Com x5 = by — s X,
e a5 < 0 temos xs > 0 caso x, > bs/a,. Logo para x, > mMaXx;cg 5 <0 bj/a; a
solucdo é factivel.

Solugdo do exercicio 3.1.

maximiza 10y; + 61>
sujeitoa Y1 +5y; <7,
—y1+2y <1,
3y1—y2 <5,
y1,y2 > 0.

Soluc¢do do exercicio 3.2.
Com variaveis duais y, para cada e € U temos

maximiza Z Ye

ecU

sujeitoa Y . < c(S), SeSs,
e:e€S
yC Z 0/ e E U

Soluc¢do do exercicio 3.3.

(a)

223

Temos B = {4,1,2} (varidveis bésicas x4, x1 e x2) e N = {5,6,3} (va-
ridveis nulas x5, x € x3). No que segue, vamos manter essa ordem das
variaveis em todos vetores e matrizes. O vetor de custos nessa ordem é
cg=(02 -1 cny=(001)
e com
Ac=(010000)

temos

Ayy = (BT'N) Acg — Acy = (B7IN)Acg

-1 1/2 -1/2 0 1/2
=|-2 1/2 1/2 11 =11/2
1 1/2 -3/2 0 1/2

Com y} = (3/21/2 3/2)" obtemos os limites —1 <t <o el < ¢ <
Q0.

Temos Ax, = B~'Ab e Ab = (01 0). Para determinar Axg precisamos
calcular B~! pela inversio de

1 3 1
B=(0 1 -1
01 1

(observe que as colunas estdo na ordem de B) que é

1 -1 -2
Bl=1[(0 1/2 1,2
0 —-1/2 1/2

Assim Axg = (=11/2 —1/2)!, e com x} = (10 15 5)" e pela definigdo

* *
Xi . i
max — <t < min—

icB xX;i — ieB Ax;
Ax;>0 Ax;<0

obtemos os limites —30 < < 10e —20 < b, < 20.

224

()

(d)

Capitulo C. Solugdes dos exercicios

Com b = (70 20 10)! temos B~'h = (30 15 — 5)t. Portanto, a solucio
béasica ndo é mais viavel e temos que reotimizar. O novo valor da fungao
objetivo é
30
ck(Bh)=(0 2 -1)| 15| =35

e temos o dicionario

z= 35 —=3/2x5 —1/2x¢ —3/2x3

x4 = 30 +x5 +2x¢ —X3
X1 = 15 —1/ZX5 —1/2x6 —1/23(3
xp= —5 +1/2x5 —1/2x¢ +3/2x3

O diciondrio é dualmente vidvel, e apds pivd xo—x3 temos o novo sis-
tema 6timo

z= 30 —X5 —Xg —X7
x4 = 80/3 +4/3xs +5/3x¢ —2/3x
X1 = 40/3 —1/3)65 —2/3x6 —1/32@
X3 = 10/3 —1/3X5 —|—1/3x6 +2/3x>

Temos ¢ = (03 —2003)! (em ordem B, N) e com isso

-1 1/2 -1/2 0 0 5/2
7y = (BIN)¢g—én = (2 1/2 1/2) (3) — (o) = (1/2)
1 1/2 —-3/2) \-2 3 3/2

Portanto, a solugdo ainda é 6tima. O novo valor da fun¢ado objetivo é

10
¢3(B7'h) = (0 3 —2) (15| =35.
5

Soluc¢do do exercicio 6.2.

225

Conjunto independente maximo Com varidveis indicadores x,, v € V te-
mos o programa inteiro

maximiza 2 Xo,

veV
sujeitoa x, +x, <1, V{u,v} € A, (C.1)
X, € B, Yo e V.

A equacdo C.1 garante que cada aresta possui no maximo um né incidente.

Emparelhamento perfeito com peso maximo Sejam x,, a € A variaveis
indicadores para a selecdo de cada aresta. Com isso, obtemos o programa

inteiro

maximiza) p(a)x,

aeA

sujeito a Z Xy =1, Yo eV, (C2)
ueN(v)
X, € B, Yo e V.

A equagdo C.2 garante que cada né possui exatamente um vizinho.

Problema de transporte Sejam x;; varidveis inteiras, que correspondem com
o nimero de produtos transportados do depésito i para cliente j. Entao

minimiza Z CijXij
i€(n]
j€[m]
sujeitoa) x;j=p;, Vie[n], cada deposito manda todo estoque
j€lm]
Y xij=dj, Vje[m], cada cliente recebe a sua demanda
i€[n]
Xij ceZ".

226 Capitulo C. Solugdes dos exercicios

Conjunto dominante Sejam x,, v € V varidveis indicadores para selegdo de
vértices. Temos o programa inteiro

minimiza Z Xy
veV
sujeitoa x, + Z x, > 1, VveV, nbouvizinho selecionado
ueN(v)

Xy € B, Yo e V.

Solug¢io do exercicio 6.4.

Seja did; ...d, a entrada, e o objetivo selecionar m < n digitos da entrada.
Seja x;; € B um indicador que o digito i € [n] da entrada seria selecionado
como digito j € [m] da saida. Entdo

maximiza E xz-]»dl-mm—f,
ie[n],je[m]
sujeitoa) x;=1, Vj e [m], (C.3)
i€n]
Z Xij <1, Vi e [1’1], (C4)
jElm]
X,‘j =0, Vi e [ﬂ],j € [m],] > i, (C5)
xp <1 — x5, Vik € [n],l,j € [m],k>il<j (C.6)

A fungdo das restri¢des é a seguinte:
* Restrigdo (C.3) garante que tem exatamente um digito em cada posicao.

¢ Restricdo (C.4) garante que cada digito é selecionado no maximo uma
vez.

¢ Restrigdo (C.5) garante que digito i aparece somente a partir da posigdo
j-

* Restrigdo (C.4) proibe inversoes.

Solugio do exercicio 6.5.

Existem 21 sets diferentes, cada um com consumo diferente das 9 cartas. Seja
AR%*?! uma matriz, que contém em cada das 21 coluna o ntimero de cartas
de cada set. Além disso, seja b R? o ntimero de cartas disponiveis. Usando

227

variaveis inteiros x € Z*' que representam o ntimero de sets formandos de
cada tipo de set diferentes, temos a formulagao

maximiza Z X;
ie[21]

sujeitoa Ax <9,

x> 0.
Solu¢do do exercicio 6.6.
Cobertura por arcos
minimiza Z CeXe
ecE
sujeitoa) x> 1, Yo eV,
ueN(v)
X, € B.
Conjunto dominante de arcos
maximiza Z CeXe
ecE
sujeito a Z X > 1, Ve € E,
e/cE
ene! #@
x. € B.

Coloracgio de grafos Seja n = |V|; uma coloragdo nunca precisa mais que n
cores.

minimiza 2 Cj

j€ln]
sujeitoa) x, =1, YoevV, (C.7)
j€[n]
Xyi + X0 <1, V{u,v} € E,i € [n], (C.8)
nej > Y xy, Vj € [n], (C.9)
veV
Xois Cj € B.

* Restrigdo (C.7) garante que todo vértice recebe exatamente uma cor.

228 Capitulo C. Solugdes dos exercicios

* Restrigdo (C.8) garante que vértices adjacentes recebem cores diferen-
tes.

* Restricdo (C.9) garante que ¢; = 1 caso cor j for usada.
Clique minimo ponderado

minimiza Z CoXyp
veV

sujeitoa x, +x, <1, V{u,v} € E, (C.10)
X, € B.

Restrigdo C.10 garante que ndo existe um par de vértices selecionados que
nio sdo vizinhos.
Subgrafo ctibico x, indica a sele¢do da aresta e € E, e y, indica se o vértice

v € V ele possui grau 0 (caso contrério grau 3).

minimiza E Xe

ecE

sujeitoa) x, =3y, YoeV,
eeN(v)
x. € B, Ve € E,
Yo € B, YoeV.

Solu¢do do exercicio 6.7.
Sejam x; € B,i € [7] varidveis que definem a escolha do projeto i. Entdo
temos

maximiza 17x7 + 10x, + 15x3
+ 19x4 + 7x5 + 13x6 + 9x7
sujeito a 43x; + 28xp + 34x3 + 48xy,
+17x5 + 32x6 +23x7 < 100, Limite do capital

x1+x <1, Projetos 1,2 mutualmente exclusivos

x3+ x4 <1, Projetos 3,4 mutualmente exclusivos

x3+ x4 < x14 x2, Projeto 3 ou 4 somente se 1 ou 2

229

Solucio do exercicio 6.8.

Seja f € B uma varidvel que determina qual fébrica vai ser usada (fdbrica
1, caso f = 0, fabrica 2, caso f = 1), b; € B uma varidvel bindria que
determina, se brinquedo i vai ser produzido e u; € Z as unidades produzidas
de brinquedo i (sempre com i € [2]).

maximiza 10u; + 15u,
— 500006, — 800000,
sujeito a u; < Mb;, Permitir unidades somente se tem producdo
u1/50 4 uy/40 <500 + fM, Limite fabrica 1, se selecionada
u1/40 4+ up/25 <700+ (1 — f)M, Limite fabrica 2, se selecionada
a; € B,u; € Z,i € [3].
A constante M deve ser suficientemente grande tal que ela efetivamente nao

restringe as unidades. Dessa forma, se a fabrica 1 esta selecionada, a terceira
restri¢do (da fébrica 2) ndo se aplica e vice versa.

http://www.inf .ufrgs.br/~mrpritt/e6q3.mod

set brinquedos := 1..2;

var f binary;

var b { brinquedos } binary;

var u { brinquedos } integer, >= 0;
param inicial { brinquedos };
param lucro { brinquedos };

param prodfabl { brinquedos };
param prodfab2 { brinquedos 1};
param M := 35000;

maximize Lucro:
sum { i in brinquedos } ul[i]*lucro[i]
- (sum { i in brinquedos } inicial[il*b[i]);
subject to PermitirProducao { i in brinquedos }:
uli] <= Mxb[i];
subject to LimiteFabl
sum { i in brinquedos }
uli]*prodfab1[i] <= 500 + f*M;
subject to LimiteFab2 :

http://www.inf.ufrgs.br/~mrpritt/e6q3.mod

230 Capitulo C. Solugdes dos exercicios

sum { i in brinquedos }
ulil*prodfab2[i] <= 700 + (1-f)=*M;

data;

param inicial := 1 50000 2 80000;
param lucro := 1 10 2 15;

1 0.020 2 0.025;
1 0.025 2 0.040;

param prodfabl

param prodfab2 :

Solugdo: Produzir 28000 unidades do brinquedo 1 na fabrica 2, com lucro
230KR$.

Solu¢do do exercicio 6.9.
Sejam a; € B uma varidvel que determina se avido i vai ser produzido e
u; € Z as unidades produzidas.

maximiza 2uq + 3u> +0.2u3
—3a1 — 2ap
sujeito a 0.2u; 4 0.4u3 4+ 0.2uz <1, Limite de capacidade
u; < ba;, Permitir unidades somente se for

produzido, limite 5 avides

u; <3, Limite avido 1
uy <2, Limite avido 2
uz <5, Limite avido 3
a; € B,u; € Z.

http://www.inf.ufrgs.br/~mrpritt/e6q4.mod

set avioes := 1..3;

param custo { avioes };

param lucro { avioes };

param capacidade { avioes };

param demanda { avioes };

var produzir { avioes } binary;

var unidades { avioes } integer, >= O;

maximize Lucro:

http://www.inf.ufrgs.br/~mrpritt/e6q4.mod

231

sum { i in avioes }
(lucro[il*unidades[i]-custo[i]*produzir[i]);

subject to LimiteCapacidade:

sum { i in avioes } unidades[i]*capacidade[i] <= 1;
subject to PermitirProducao { i in avioes }:

unidades[i] <= G*produzir[i];
subject to LimiteDemanda { i in avioes }:

unidades[i] <= demandalil;

data;

param : custo lucro capacidade demanda :=
132 0.23

223 0.42

300.80.25;

Solugdo: Produzir dois avides para cliente 2, e um para cliente 3, com lucro
4.8 MR$.

Soluc¢do do exercicio 6.10.

Seja x;x € B um indicador do teste com a combinagio (i,j,k) para 1 <
i,j,k < 8. Cada combinacdo (i,j k) testada cobre 22 combinagdes: além
de (i,j, k) mais 7 para cada combinagdo que difere somente na primeira,
segunda ou terceira posigao. Portanto, uma formulacéo é

minimiza Z Xijk
(i,jk) €8
sujeito a Xijk + Z Xitjk + E Xij'k + Z Xijk >1, Vi, j ke 8],
i #i J'# k' #k
Xijk € B, Vi,j,k € [8]

A solugdo 6tima desse sistema ¢é 32, i.e. 32 testes sdo suficientes para abrir a
fechadura. Uma solugéo é testar as combinagoes

(1,2,4),(1,3,8),(1,5,5),(1,8,7),(2,1,1), (2,4,3), (2,6,6), (2,7,2),
(3,1,3),(3,4,2),(3,6,1),(3,7,6), (4,1,2), (4,4,6), (4,6,3), (4,7,1),
(5,1,6),(5,4,1),(5,6,2),(5,7,3),(6,2,7),(6,3,5), (6,5,4), (6,8,8),
(7,2,5),(7,3,7),(7,5,8),(7,8,4), (8,2,8), (8,3,4), (8,5,7), (8,8,5)

232 Capitulo C. Solugdes dos exercicios

Solugio do exercicio 6.11.

Sejam x; € B, i € [k] as varidveis de entrada, e ¢; € B, i € [n] varidveis que
indicam se a cldusula c; estd satisfeita. Para aplicar a regra (6.2) diretamente,
vamos usar uma varidvel auxiliar d;. i € [n], que representa a disjunc¢do dos
primeiros dois literais da clausula i.

maximiza Z C;
ie[n]
. Xj literal j na cldusula i é xy,
sujeitoa [;; =]] .
1 —x; literal j na clausula i é —xy,
di > (In+12)/2,
di <l +1lp,
ci > (di+13)/2,
¢ <di+ls,
Ci, di, x; € B.

Como é um problema de maximizagado, pode ser simplificado para

maximiza Z C;
ien]
Xy literal j na clausula i é xy,

sujeito a [; =) i '
1 —x; literal j na clausula i é —xy,

ci <l + I+ 1,

¢, x; € B.

A segunda formulagdo possui uma generalizacdo simples para o caso k > 3.

Soluc¢do do exercicio 6.13.
Nao. Uma explicagdo: http://nbviewer. jupyter.org/url/www.inf .ufrgs.
br/~mrpritt/oc/greedy-independent-set.ipynb.

Soluc¢do do exercicio 6.14.
Nao. Primeiramente, a restricdo

[]x =10 (C.11)
peP

http://nbviewer.jupyter.org/url/www.inf.ufrgs.br/~mrpritt/oc/greedy-independent-set.ipynb
http://nbviewer.jupyter.org/url/www.inf.ufrgs.br/~mrpritt/oc/greedy-independent-set.ipynb

233

ndo é linear. Mas mesmo ignorando isso as restri¢gdes ndo definem uma
bijecdo entre nliimeros e posi¢des. O conjunto completo de solugdes é

1,2,3,4,5,6,7,8,9,10
1,2,3,4,6,6,6,7,10,10
1,2,4,4,4,5,7,9,9,10
1,3,3,3,4,6,7,8,10,10
1,3,3,4,4,4,7,9,10,10
2,2,2,3,4,6,7,9,10,10

Solu¢do do exercicio 7.1.

Se (A B) é TU, entdo trivialmente A é TU. Agora caso A é TU, considere
uma submatriz quadrada (A’ B’) de (A B). Como B somente possui um
coeficiente ndo-nulo por coluna temos det(A’ B') = £ det(A). Logo (A’ B)
é TU.

Soluc¢do do exercicio 7.2.

Conjunto independente maximo A matriz de coeficientes contém dois co-
eficientes igual 1 em cada linha, que correspondem com uma aresta, mas
geralmente ndo é totalmente unimodular. Por exemplo, o grafo completo
com trés vértices K3

gera a matriz de coeficientes

[R
[e R
_ = o

cuja determinante é —2. A solucdo 6tima da relaxagdo inteira 0 < x; <1 é
X1 = xp = x3 = 1/2 com valor 3/2, a Fig. C.1 mostra o politopo correspon-
dente. (Observagdo: A transposta dessa matriz satisfaz os critérios (i) e (ii)

Figura C.1.: Politopo {x €
]R3 | X1+ X2 < 1,x1+x3 <
Lxy4+x3<1,0<x < 1}.
(O visualizador usa os eixos
X =X1,Y =Xy, z=X3.)

234 Capitulo C. Solugdes dos exercicios

da nossa proposigdo, e caso o grafo é bi-partido, também o critério (iii). Por-
tanto Conjunto independente mdximo pode ser resolvido em tempo polinomial
em grafos bi-partidos).

Emparelhamento perfeito com peso maximo A matriz de coeficientes satis-
faz critério (i). Ela tem uma linha para cada vértice e uma coluna para cada
aresta do grafo. Como cada aresta é incidente a exatamente dois vértices, ela
também satisfaz (ii). Finalmente, a bi-particio V; U V5 do grafo gera uma
bi-particdo das linhas que satisfaz (iii). Portanto, a matriz é TU, e o Empa-
relhamento perfeito com peso mdximo pode ser resolvido em tempo polinomial
usando a relaxagdo linear.

Problema de transporte A matriz de coeficientes satisfaz critério (i). Po-
demos representar o problema como grafo bi-partido completo K, ,;, entre os
depositos e os clientes. Desta forma, com o mesmo argumento que no tltimo
problema, podemos ver, que os critérios (ii) e (iii) sdo satisfeitos.

Conjunto dominante A matriz de coeficientes satisfaz critério (i), mas nao
critério (ii): cada linha e coluna correspondente com vértice v contém |N(v)| +
1 coeficientes ndo-nulos. Mas, ndo é obviou se a matriz mesmo assim nao é
TU (lembra que o critério é suficiente, mas ndo necessario). O K3 acima, por
exemplo, gera a matriz

111
111
111
que é TU. Um contra-exemplo seria o grafo bi-partido Kj 3

que gera a matriz de coeficientes

[S T G -
OO R
o O
_ O O =

235

com determinante —2. Isso ndo prova ainda que a relaxagdo linear nado pro-
duz resultados inteiros 6timos. De fato, nesse exemplo a solu¢do 6tima da
relaxacdo inteira é a solugdo 6tima inteira D = {1}.

Um verdadeiro contra-exemplo é um ciclo com cinco vértices Cs

com matriz

==
= =
O R Rk Rk O
O R Rk O -
[e Rl s R T S

(cuja determinante é 3). A relaxagdo linear desse sistema tem a solugdo 6tima
X1 = X2 = X3 = X4 = x5 = 1/3 com valor 5/3 que nao é inteira.

Soluc¢do do exercicio 7.4.

A formulacdo possui 14 restrigdes, correspondendo com as 14 arestas. Como
o grafo é 4-regular, cada vértice ocorre 4 vezes no lado esquerdo de uma
restricdo, e somando todas restri¢des obtemos

4) x <14
i€[7]
=) x <14/4
i€l7]
= Y x < [14/4] =3,
i€l7]

que ndao é suficiente. Para obter uma desigualdade mais forte, vamos somar
sobre todos triangulos. Somando primeiro as restri¢des das arestas de cada
triangulo (1, v, w) obtemos

2xy, + 2xy + 2% < 3
=Xy + X+ X < [3/2] = 1.

236 Capitulo C. Solugdes dos exercicios

Somando agora as restri¢des obtidas desta forma de todos 14 tridngulos do
grafo (cada vértice é parte de 6 tridngulos) obtemos a desigualdade desejada

6) x <14
i€(7]
=) x < [14/6) =2.
i€[7]

(Outra abordagem: Supde, sem perda de generalidade, que x; = 1 na solugdo
6tima. Pelas restrigdes x1 + x; < 2 temos x; = 0 para i € {3,4,5,6}. Pela
restrigdo x; + x7 < 1, portanto } 1<y x; < 2)

Soluc¢do do exercicio 7.5.

Seja S = [n]\ S e m = maxjes a; e M = max;g ;. A idéia é somar desigualda-
des x; <1 parai € S até o corte de Gomory obtido pela divisado pelo coefici-
ente maximo em S rende a desigualdade desejada. Seja 6 = max{m + 1, m}.
Somando (6 — a;)x; < § — a; obtemos

Zéxi+2aixi <b+ Z((S—ai)xi < 5’S| < 5|S| —1.

i€S i€S i€S
Aplicando o corte de Gomory com multiplicador 1/ obtemos

Y ox < [IS|—1/6] =S| -1

i€S
porque a; < M < max{m +1,m} = 6 elogo |a;/6| = 0 parai € S.

Solu¢do do exercicio 7.6.

x1 + X6 + x7 < 2 porque uma rota ndo contém subrotas. Portanto x; + xp +
X5 4+ X6 + X7 + x9 < 5. Supde x1 + x2 + x5 + x5 + x7 + x9 = 5. Temos trés
casos: x1 = 0, x¢ = 0 ou x = 0. Em todos os casos, as restantes varidveis
possuem valor 1, e no grafo resultante sempre existe um vértice de grau
3 (o vértice no centro, da esquerda, de acima, respectivamente), que ndo é
possivel numa solugdo vélida.

Solucao do exercicio 7.8.
O sistema inicial

z = X1 +3x;
w = -2 4+x
Wy = 3 —X2
w3 = —4 +x1 —+Xx2

wy= 12 =3x7 —x

237

ndo é primalmente nem dualmente vidvel. Aplicando a fase I (pivos xp—ws3,
xo—x1) e depois fase II (pivds xpo—wq, ws—ws, w1—ws4) gera o diciondrio final

z= 12 —8/3wy, —1/3w;y
Xp = 3 — w7
w3 = 2 —2/37/02 —1/3ZU4
x1= 3 +1/3w, —1/3wy,
w = 1 +1/3w, —1/3w,

cuja solugdo x; = 3, x, = 3 ja é inteira.
No segundo sistema comegamos com o diciondrio

z = X1 —2X7
w1 = 60 +11x; —15xp
Wy = 24 —4.X1 —3XQ
w3 = 59 —1OX1 +5x7

e um pivo x1—-ws3 gera a solugdo 6tima fraciondria

z= 49 —0.1ws —1.5x7
w1 = 1139 —11ws —9.5x;
w, = 4.4 +0.4w3 —5x;
X1 = 49 —0.1”(1)3 +0.5X2
e a linha terceira linha (x1) gera o corte
wy = —09 401wz +0.5x,

Com o pivd ws—w3 obtemos a solugdo 6tima inteira

z= 4 — Wy —X7
w = 104 —11ZU4 —4x2
wy = 8 +4wy, —7x
x1= 4 —Wy +1x7
w3 = 9 +10wys —5xp

Bibliografia

Anstreicher, K. M. (1999). “Linear programming in O((n®logn)L) operati-
ons”. Em: SIAM]. Opt. 9.4, pp. 803-812 (ver p. 48).

Applegate, D. L., R. E. Bixby, V. Chvétal e W. J. Cook (2007). The Traveling
Salesman Problem: A Computational Study. Princeton University Press (ver
pp- 99, 100).

Ausiello, G., P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela e
M. Protasi (1999). Complexity and approximation — Combinatorial Optimiza-
tion Problems and their Approximability Properties. INF 510.5 C737. Springer-
Verlag. URL: http://www.nada.kth.se/~viggo/approxbook.

Cerny, V. (1985). “Thermodynamical approach to the travelling salesman pro-
blem: An efficient simulation algorithm”. Em: J. Opt. Theor. Appl. 45, pp. 41—
51 (ver p. 172).

Clausen, J. (1999). Branch and Bound Algorithms — Principles and examples (ver
pp. 144, 149).

Cook, W. (dez. de 2011). Concorde TSP solver (ver p. 149).

- (2012). “Markovitz and Manne + Eastman + Land and Doig = Branch and
bound”. Em: Document Mathematica Special volume 21st ISMP, pp. 227-238
(ver p. 149).

Dakin, R. J. (1965). “A tree-search algorithm for mixed integer program-
ming problems”. Em: The Computer Journal 8.3, pp. 250-255. por: 10.1093/
comjnl/8.3.250 (ver p. 149).

Dasgupta, S., C. Papadimitriou e U. Vazirani (2009). Algoritmos. McGraw-Hill
(ver p. 23).

Fearnley, J. e R. Savani (2014). “The Complexity of the Simplex Method”. Em:
Arxiv (ver p. 48).

Garey, M. R. e D. S. Johnson (1979). Computers and intractability: A guide to the
theory of NP-completeness. Freeman (ver p. 149).

Ghouila-Houri, A. (1962). “Caractérisation des matrices totalement unimo-
dulaires”. Em: Comptes Rendus Hebdomadaires des Séances de I’Académie des
Sciences 254, pp. 1192-1194 (ver p. 129).

http://www.nada.kth.se/~viggo/approxbook
https://doi.org/10.1093/comjnl/8.3.250
https://doi.org/10.1093/comjnl/8.3.250

240 Capitulo C. Bibliografia

Hoffman, A. J. e J. B. Kruskal (1956). “Linear Inequalities and Related Sys-
tems”. Em: ed. por H. W. Kuhn e A. J. Tucker. Princeton University Press.
Cap. Integral boundary points of convex polyhedra, pp. 223-246 (ver p. 131).

Karp., R. M. (1972). “Reducibility Among Combinatorial Problems”. Em:
Complexity of Computer Computations. Ed. por R. E. Miller e J. W. Thatcher.
New York: Plenum, pp. 85-103 (ver p. 114).

Kirkpatrick, S., C. D. Gelatt e M. P. Vecchi (1983). “Optimization by simulated
annealing”. Em: Science 220, pp. 671-680 (ver p. 172).

Klee, V. e G. J. Minty (1972). “How good is the simplex algorithm”. Em:
Inequalities 3.3, pp. 159-175 (ver p. 48).

Land, A. H. e A. G. Doig (1960). “An automatic method of solving dis-
crete programming problems”. Em: Econometrica 28.3, pp. 497-520. por:
10.2307/1910129 (ver p. 143).

Maculan, N. e M. H. C. Fampa (2006). Otimizagdo linear. INF 65.012.122 M1750.
Editora UnB (ver p. 49).

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller e E. Teller (1953).
“Equation of state calculations by fast computing machines”. Em: Journal
of Chemical Physics 21, pp. 1087-1092 (ver p. 170).

Nembhauser, G. L. e L. A. Wolsey (1999). Integer and Combinatorial Optimiza-
tion. Wiley. por: 10.1002/9781118627372 (ver pp. 134, 138).

Papadimitriou, C. H. e K. Steiglitz (1982). Combinatorial optimization: Algo-
rithms and complexity. Dover. INF 681.3.01 P213co. Prentice-Hall.

Ruiz, R. e T. Stiitzle (2007). “A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem”. Em: Eur. |. Oper. Res.
177.3, pp- 2033-2049. por: 10.1016/j.ejor.2005.12.009 (ver p. 183).

Spielman, D. A. e S. H. Teng (mai. de 2004). “Smoothed analysis of algo-
rithms: Why the simplex algorithm usually takes polynomial time”. Em:
J. ACM 51.3, pp. 385-463. 1ssN: 0004-5411. por: 10.1145/990308.990310.
URL: http://dx.doi.org/10.1145/990308.990310 (ver p. 48).

Truemper, K. (1990). “A decomposition theory for matroids. V. Testing of
matrix total unimodularity”. Em: J. Comb. Theory, Ser. B 49, pp. 241-281
(ver p. 149).

Vanderbei, R.]. (2014). Linear programming: Foundations and Extensions. 4th.
INF 65.012.122 V228l. Kluwer. por: 10.1007/978-1-4614-7630-6. URL:
http://www.princeton.edu/~rvdb/LPbook (ver pp. 23, 24, 48).

Williams, H. P. (1986). “Fourier’s method of linear programming and its
dual”. Em: The American Mathematical Monthly 93.9, pp. 681-695 (ver p. 18).

Wolsey, L. A. (1998). Integer programming. Wiley (ver p. 138).

https://doi.org/10.2307/1910129
https://doi.org/10.1002/9781118627372
https://doi.org/10.1016/j.ejor.2005.12.009
https://doi.org/10.1145/990308.990310
http://dx.doi.org/10.1145/990308.990310
https://doi.org/10.1007/978-1-4614-7630-6
http://www.princeton.edu/~rvdb/LPbook

Indice

0-1-Knapsack, ver 0-1-Mochila, ver
0-1-Mochila, ver 0-1-Mochila
0-1-Mochila, 106, 137, 203

algoritmo de planos de corte, 140
algoritmos Branch-and-bound, 146
AMPL, 205

Bland

regra de, 46
Boltzmann, 171
branch and bound, 144
branch-and-cut, 153
branch-and-price, 153
busca local, 165
busca por melhor solugdo, 145
busca por profundidade, 145

caixeiro viajante, 97, 98, 151, 160,
188, 191

caminhos mais curtos, 132
certificado, 60
ciclo, 42
combinagdo convexa, 16
complexidade

do método Simplex, 48
conjunto de nivel, 8
conjunto independente maximo, 112
convexo, 16
corte

de Chvétal-Gomory, 138

de Gomory, 141
por inviabilidade, 145
por limite, 145
por otimalidade, 145
cover inequalities, ver desigualda-
des de cobertura
CPLEX LP, 201
custo marginal, 65
custos reduzidos, 34, 74

Dantzig, George Bernard, 18
desigualdade valida, 134
desigualdades de cobertura, 137
dicionério, 30

degenerado, 41
distribui¢do de Boltzmann, 171
dual

sistema, 59
dualidade, 53

emparelhamento, 139
emparelhamento méximo, 133, 137

fase I, 38

fase II, 38

fitness, 162

fluxo em redes, 133

folgas complementares, 60
forma padrao, 14

Fourier, Jean Baptiste Joseph, 18
fungao objetivo, 9

242

nio-linear, 110

gap de integralidade, 112
gradient descent, 166
gradiente, 166

heuristica, 159

hill climbing, 167
hill descent, 167
Hoffman, A.J., 131

integrality gap, ver gap de integra-
lidade

Julia, 203
JuMP, 203

Kantorovich, Leonid, 18
Karmarkar, Narendra, 18
Khachiyan, Leonid, 18
Kruskal, J. B., 131

level set, 8
limite
inferior, 145
superior, 145
line search, 166
localizagdo de facilidades, 106

locagéo de facilidades ndo-capacitado,

108

matriz totalmente unimodular, 126
matriz unimodular, 126, 127
meta-heuristica, 161
Metropolis, 170, 172
multi-start, 169
multiplicador dual, 54
método
de Chvatal-Gomory, 138
de duas fases, 38

INDICE

de Gomory, 141
lexicografico, 43
Simplex
complexidade, 48
Simplex dual, 66
método Simplex, 27

objetivo, 9
otimizagdo combinatoéria, 9
otimizagdo linear, 9

passeio aleatdrio, 172
perturbagdo, 43
piso, 199
pivo, 29
degenerado, 41
plano de corte, 140
ponto extremo, 15, 16
preco, 65
preco sombra, 65
price, 65
pricing, 34
problema da dieta, 9, 91
dual, 64
problema da mochila, 137, 139
problema de otimizacao, 9
problema de transporte, 10
problema dual, 54
problema primal, 54
programacao inteira, 92
programacdo inteira mista, 92
programacao inteira pura, 92
programacdo linear, 7, 9
pseudo-pivo, 36

random walk, 172
reduced costs

custos reduzidos, 34
regra de Bland, 45

INDICE

regra de Cramer, 124
relaxagdo linear, 124
restricdo, 9

restrigdo trivial, 14

shadow price, 65
shortest paths, 132
sistema auxiliar, 36
sistema dual, 54, 59
sistema ilimitado, 35
sistema primal, 54
solucdo

bésica, 28, 35

bésica viavel, 28

vigvel, 9, 28
steepest ascent, 167
steepest descent, 167

tableau, 30
teorema

de Hoffman e Kruskal, 131
teorema da dualidade forte, 57
teorema da dualidade fraca, 56
teorema das folgas complementa-

res, 60

teorema fundamental, 48
teto, 199
totalmente unimodular, 126
transposta

de uma matriz TU, 127

uncapacitated lot sizing, 110
unimodular, 126, 127
uns consecutivos, 130

variavel
0-1, 107, 109
booleana, 107
bésica, 29

243

de decisdo, 9
dual, 54
entrante, 29
indicador, 107, 109
nula, 28
nao-bésica, 29
sainte, 29
von Neumann, John, 18
vértice, 15, 16

	Conteúdo
	Programação linear
	Introdução
	Exemplo
	Formas normais
	Solução por busca exaustiva
	Notas históricas
	Exercícios

	O método Simplex
	Um exemplo
	O método resumido
	Sistemas ilimitados
	Encontrar uma solução inicial: o método de duas fases
	Resumo do método de duas fases

	Sistemas degenerados
	Complexidade do método Simplex
	Exercícios

	Dualidade
	Introdução
	Características
	Dualidade em forma não-padrão
	Interpretação do dual
	Método Simplex dual
	Os métodos em forma matricial
	O dicionário final em função dos dados
	Simplex em forma matricial

	Análise de sensibilidade
	Exercícios

	Tópicos
	Centro de Chebyshev
	Função objetivo convexa e linear por segmentos

	Programação inteira
	Introdução
	Definições
	Motivação e exemplos
	Aplicações

	Formulação
	Exemplos
	Técnicas para formular programas inteiros
	Formular restrições lógicas
	Formular restrições condicionais

	Formulações alternativas
	Exercícios

	Técnicas de solução
	Introdução
	Problemas com solução eficiente
	Critérios para soluções inteiras

	Desigualdades válidas
	Planos de corte
	Algoritmos Branch-and-bound
	Notas
	Exercícios

	Tópicos

	Heurísticas
	Introdução
	Heurísticas baseadas em Busca local
	Busca local
	Metropolis e Simulated Annealing
	GRASP
	Busca Tabu
	Variable Neighborhood Search
	Algoritmo Guloso Iterado

	Heurísticas inspirados da natureza
	Algoritmos Genéticos e meméticos

	Appéndice
	Conceitos matemáticos
	Formatos
	CPLEX LP
	Julia/JuMP
	AMPL

	Soluções dos exercícios

	Bibliografia
	Índice
	Índice

