
INF05010 - Otimização
combinatória
Notas de aula

Alysson M. Costa, Luciana Buriol, Marcus Ritt
{amcosta,buriol,mrpritt}@inf.ufrgs.br

26 de Abril de 2010

Universidade Federal do Rio Grande do Sul
Instituto de Informática

Departamento de Informática Teórica

Versão 3269 do 2010-04-26, compilada em 26 de Abril de 2010. Obra está licen-
ciada sob uma Licença Creative Commons (Atribuição-Uso Não-Comercial-
Não a obras derivadas 2.5 Brasil).

Na parte I, as notas de aula seguem o livro “Linear programming: Foundations
and extensions” do Robert J. Vanderbei, Universidade Princeton, dispońıvel
em http://www.princeton.edu/~rvdb/LPbook.

Fonte das imagens:
George Dantzig (16): INFORMS, Jean Baptiste Joseph Fourier (15): Wikipe-
dia, Xadrez (80): Wikipedia, Mauricio G. C. Resende (148): Página pessoal,
Fred Glover (151): Página pessoal, Pierre Hansen (155): Página pessoal, Pa-
blo Moscato (164): Página pessoal.

iii

http://creativecommons.org/licenses/by-nc-nd/2.5/br
http://www.princeton.edu/~rvdb/LPbook
http://www2.informs.org/Press/GeorgeDantzig.jpg
http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/wiki/Knight_(chess)
http://www.research.att.com/~mgcr
http://www.colorado.edu/law/eesi/Fred_Glover.htm
http://www.hec.ca/profs/pierre.hansen.html
http://livesite.newcastle.edu.au/cibm/People.page

Conteúdo

I Programação linear 5

1 Introdução 9
1.1 Exemplo . 9
1.2 Formas normais . 13
1.3 Notas históricas . 15

2 O método Simplex 17
2.1 Um exemplo . 17
2.2 O método resumido . 22
2.3 Sistemas ilimitados . 24
2.4 Encontrar uma solução inicial 25
2.5 Soluções degeneradas . 28
2.6 Complexidade do método Simplex 35

3 Dualidade 37
3.1 Introdução . 37
3.2 Interpretação do dual . 39
3.3 Caracteŕısticas . 41
3.4 Método Simplex dual . 45
3.5 Dualidade em forma não-padrão 48
3.6 Os métodos em forma matricial 49
3.7 Análise de sensibilidade . 54

4 Tópicos 63
4.1 Centro de Chebyshev . 63
4.2 Função objetivo convexa e linear por segmentos 64

5 Exerćıcios 67

II Programação inteira 73

6 Introdução 75

1

Conteúdo

6.1 Definições . 75
6.2 Motivação e exemplos . 81
6.3 Aplicações . 83

7 Formulação 95
7.1 Exemplos . 95
7.2 Técnicas . 97

8 Técnicas de solução 101
8.1 Introdução . 101
8.2 Problemas com solução eficiente 101
8.3 Desigualdades válidas . 108
8.4 Planos de corte . 113
8.5 Branch-and-bound . 117

9 Tópicos 121

10 Exerćıcios 123

III Heuŕısticas 131

11 Introdução 133

12 Heuŕısticas baseados em Busca local 137
12.1 Busca local . 137
12.2 Metropolis e Simulated Annealing 144
12.3 GRASP . 147
12.4 Busca Tabu . 151
12.5 Variable Neighborhood Search 155

13 Heuŕısticas inspirados da natureza 157
13.1 Algoritmos Genéticos e meméticos 157

IV Appéndice 167

A Conceitos matemáticos 169

B Formatos 171
B.1 CPLEX LP . 171
B.2 AMPL . 173

2

Conteúdo

C Soluções dos exerćıcios 179

3

Parte I

Programação linear

5

Conteúdo

Introdução

If one would take statistics about which mathematical problem is
using up most of the computer time in the world, then ... the
answer would probably be linear programming. (Laszlo Lovasz)

7

1 Introdução

1.1 Exemplo

Exemplo 1.1 (No Ildo)
Antes da aula visito o Ildo para tomar um café e comer um Croissant. Ele me
conta: “Estou especializado em Croissants e Strudels. Tenho um lucro de 20
centavos por Croissant e 50 centavos por Strudel. Diariamente até 80 clientes
compram um Croissant e até 60 um Strudel. Mas infelizmente, o Ildo apenas
disponibiliza de 150 ovos e 6 kg de açúcar por dia. Entre outros ingredientes,
preciso um ovo e 50g de açúcar para cada Croissant e um ovo e meio e 50g
de açúcar para cada Strudel. Agora, professor, quantas Croissants e Strudels
devo produzir para obter o maior lucro?”

Sejam c e s o número de Croissants e Strudels, respectivamente. O lucro do
Ildo em Reais é 0.2c+0.5s. Seria ótimo produzir todos 80 Croissants e 60 Stru-
dels, mas uma conta simples mostra que não temos ovos e açúcar suficientes.
Para produzir os Croissants e Strudels precisamos c + 1.5s ovos e 50c + 50sg
de açúcar que não podem ultrapassar 150 ovos e 6000g. Com a condição óbvia
que c ≥ 0 e s ≥ 0 chegamos no seguinte problema de otimização:

maximiza 0.2c+ 0.5s (1.1)
sujeito a c+ 1.5s ≤ 150

50c+ 50s ≤ 6000
c ≤ 80
s ≤ 60
c, s ≥ 0

Como resolver esse problema? Com duas variáveis podemos visualizar a si-
tuação num grafo com c no eixo x e s no eixo y

No Ildo

9

1 Introdução

0 10 20 30 40 50 60 70 80 90 100
c (croissants)

0

10

20

30

40

50

60

70

80

90

100

s
(s

tru
de

ls
)

2/3(150-c)

(6000-50c)/50

s=60

c=80

Soluções viáveis

Otimizando o lucro do bar

10

20

30
40

que nesse caso permite resolver o problema graficamente. Desenhando diversos
conjuntos de ńıvel (ingl. level set) com valor da função objetivo 10, 20, 30, 40
é fácil observar que o lucro máximo se encontra no ponto c = s = 60, e possui
um valor de 42 reais.

♦

Isso é um exemplo de um problema de otimização. A forma geral de um
problema de otimização (ou de programação matemática) é

opt f(x)

sujeito a x ∈ V

com

• um objetivo opt ∈ {max,min},

• uma função objetivo (ou função critério) f : V → R,

• um conjunto de soluções viáveis (ou soluções candidatas) V.

Falamos de um problema de otimização combinatória, se V é discreto.
Nessa generalidade um problema de otimização é dif́ıcil de resolver. O exem-
plo 1.1 é um problema de otimização linear (ou programação linear):

10

1.1 Exemplo

• as variáveis da solução são x1, . . . , xn ∈ R

• a função de otimização é linear em x1, . . . , xn:

f(x1, . . . , xn) = c1x1 + · · ·+ cnxn (1.2)

• as soluções viáveis são dadas implicitamente por m restrições lineares

a11x1 + a12x2 + · · ·+ a1nxn ./1 b1 (1.3)
a21x1 + a22x2 + · · ·+ a2nxn ./2 b2 (1.4)

· · · (1.5)
am1x1 + am2x2 + · · ·+ amnxn ./m bm (1.6)

com ./i∈ {≤,=,≥}.

Exemplo 1.2 (O problema da dieta)
Suponha que temos uma tabela de nutrientes de diferentes tipos de alimentos.
Sabendo o valor diário de referência (VDR) de cada nutriente (quantidade de
nutriente que deve ser ingerido) e o preço de cada unidade de alimento, qual
a dieta ótima, i.e. que contém ao menos o valor diário de referência, mas de
menor custo?
Com m nutrientes e n alimentos, seja aij a quantidade do nutriente i no
alimento j (em g/g), ri o valor diário de referência do nutriente i (em g) e cj

o preço do alimento j (em R$/g). Queremos saber as quantidades xj de cada
alimento (em g) que

minimiza c1x1 + · · ·+ cnxn

sujeito a a11x1 + · · ·+ a1nxn ≥ r1
· · ·
am1x1 + · · ·+ amnxn ≥ rm
x1, . . . , xn ≥ 0

♦

Exemplo 1.3 (Problema de transporte)
Uma empresa agrária tem m depósitos, cada um com um estoque de ai (1 ≤
i ≤ m) toneladas de milho. Ela quer encaminhar bj (1 ≤ j ≤ n) toneladas de
milho para n clientes diferentes. O transporte de uma tonelada do depósito
i para cliente j custa R$ cij. Qual seria o esquema de transporte de menor
custo?

11

1 Introdução

Como problema de otimização linear, podemos introduzir como variáveis xij

o peso dos produtos encaminhados pelo depósito i para cliente j, e queremos
resolver

minimiza
∑
ij

cijxij

sujeito a
∑

j

xij ≤ ai para todo fornecedor i

∑
i

xij = bj para todo cliente j

xij ≥ 0 para todo fornecedor i e cliente j

Concretamente, suponha que temos a situação da figura 1.1. A figura mostra

Figura 1.1: Esquerda: Instância do problema de transporte. Direita: Solução
ótima dessa instância.

as toneladas dispońıveis de cada fornecedor, a demanda (em toneladas) de
cada cliente e as distâncias (em km) entre eles. O transporte custa R$ 1000
por km e tonelada. Observe que um transporte do fornecedor 1 para cliente
3 e fornecedor 3 para cliente 1 não é posśıvel. Nós usaremos uma distância
grande de 100 km nesses casos (outra possibilidade seria usar restrições x13 =

12

1.2 Formas normais

x31 = 0.

minimiza 3x11 + x12 + 100x13 + 4x21 + 2x22

+ 4x23 + 100x31 + 3x32 + 3x33

sujeito a x11 + x12 + x13 ≤ 5
x21 + x22 + x23 ≤ 7
x31 + x32 + x33 ≤ 3
x11 + x21 + x31 = 7

x12 + x22 + x32 = 3

x13 + x23 + x33 = 5

xij ≥ 0

Qual seria a solução ótima? A figura da direita mostra o número ótimo de
toneladas transportadas. O custo mı́nimo é 46 (em R$ 1000). ♦

Para simplificar a descrição, podemos usar matrizes e vetores. Usando A :=
(aij) ∈ Rm×n, b := (bi) ∈ Rm, c := (ci) ∈ Rn e x = (xi) ∈ Rn o problema
1.2-1.6), pode ser escrito de forma

opt ctx

sujeito a aix ./i bi 1 ≤ i ≤ m

(Denotamos com ai a i-ésima linha e como aj a j-ésima coluna da matriz A.)

1.2 Formas normais

Conversões
É posśıvel converter

• um problema de minimização para um problema de maximização

min ctx⇐⇒ − max −ctx

(o sinal − em frente do max é uma lembrança que temos que negar a
solução depois.)

• uma restrição ≥ para uma restrição ≤

aix ≥ bi ⇐⇒ −aix ≤ −bi

• uma igualdade para desigualdades

aix = bi ⇐⇒ aix ≤ bi ∧ aix ≥ bi

13

1 Introdução

Conversões

• uma desigualdade para uma igualdade

aix ≤ b⇐⇒ aix+ xn+1 = bi ∧ xn+1 ≥ 0
aix ≥ b⇐⇒ aix− xn+1 = bi ∧ xn+1 ≥ 0

usando uma nova variável de folga ou excesso xn+1 (inglês: slack and
surplus variables).

• uma variável xi sem restrições para duas positivas

x+
i ≥ 0∧ x−

i ≥ 0

substituindo xi por x+
i − x−

i .

Essas transformações permitem descrever cada problema linear em uma forma
padrão.

Forma padrão

maximiza ctx

sujeito a Ax ≤ b
x ≥ 0

As restrições x ≥ 0 se chamam triviais.

Exemplo 1.4
Dado o problema

minimiza 3x1 − 5x2 + x3

sujeito a x1 − x2 − x3 ≥ 0
5x1 + 3x2 + x3 ≤ 200
2x1 + 8x2 + 2x3 ≤ 500
x1, x2 ≥ 0

vamos substituir minimiza para maximiza, converter a primeira desigual-
dade de ≥ para ≤ e introduzir x3 = x+

3 − x−
3 com duas variáveis positivas x+

3

14

1.3 Notas históricas

e x−
3 para obter a forma padrão

maximiza − 3x1 + 5x2 − x+
3 + x−

3

sujeito a − x1 + x2 + x+
3 − x−

3 ≤ 0
5x1 + 3x2 + x+

3 − x−
3 ≤ 200

2x1 + 8x2 + 2x+
3 − 2x−

3 ≤ 500
x1, x2, x

+
3 , x

−
3 ≥ 0

Em notação matricial temos

c =


−3
5

−1
1

 ;b =

 0

200

500

 ;A =

−1 1 1 −1
5 3 1 −1
2 8 2 −2

 .
♦

1.3 Notas históricas

História da programação linear

• Jean Baptiste Joseph Fourier (1826): Método de re-
solver um sistema de desigualdades (eliminação de
Fourier-Motzkin) Williams [1986].

• Leonid Kantorovich (1939): Programação linear.

• George Bernard Dantzig (1948): Método Simplex.

• John von Neumann: Dualidade.

• Leonid Khachiyan (1979): Método de ellipsoides.

• Narendra Karmarkar (1984): Métodos de pontos inte-
riores.

Jean Baptiste
Joseph Fourier
(*1768, +1830)

Pesquisa operacional, otimização e “programação”

15

1 Introdução

• “The discipline of applying advanced analytical
methods to help make better decisions” (INFORMS)

• A noção foi criada no segunda guerra mundial, para
métodos cient́ıficos de análise e predição de problemas
loǵısticos.

• Hoje se aplica para técnicas que ajudam decisões de
execução e coordenação de operações em organizações.

• Os problemas da pesquisa operacional são problemas
de otimização.

• “Programação” 6= “Programação”

– Não se refere à computação: a noção significa
“planejamento” ou “agendamento”.

George Bernard
Dantzig (*1914,
+2005)

Técnicas da pesquisa operacional

• Em geral: Técnicas algoŕıtmicas conhecidas como

– Modelagem matemática (equações, igualdades, desigualdades, mo-
delos probabiĺısticos,...)

– Algoritmos gulosos, randômicos, ...; programação dinâmica, linear,
convexo, ...

– Heuŕısticas e algoritmos de aproximação.

• Algumas dessas técnicas se aplicam para muitos problemas e por isso
são mais comuns:

– Exemplo: Programação linear.

16

http://www-history.mcs.st-andrews.ac.uk/Biographies/Dantzig_George.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Dantzig_George.html

2 O método Simplex

Graficamente, é dif́ıcil resolver sistemas com mais de três variáveis. Por-
tanto é necessário achar métodos que permitam resolver sistemas grandes.
Um método importante se chama Simplex. Nós vamos estudar esse método
primeiramente através da aplicação a um exemplo.

2.1 Um exemplo

Começamos com o seguinte sistema em forma padrão:

Exemplo: Simplex

maximiza z = 6x1 + 8x2 + 5x3 + 9x4

sujeito a 2x1 + x2 + x3 + 3x4 ≤ 5
x1 + 3x2 + x3 + 2x4 ≤ 3
x1, x2, x3, x4 ≥ 0

Introduzimos variáveis de folga e reescrevemos as equações:

Exemplo: Com variáveis de folga

maximiza z = 6x1 + 8x2 + 5x3 + 9x4 (2.1)
sujeito a w1 = 5− 2x1 − x2 − x3 − 3x4 (2.2)

w2 = 3− x1 − 3x2 − x3 − 2x4 (2.3)
x1, x2, x3, x4, w1, w2 ≥ 0

Observação 2.1
Nesse exemplo é fácil obter uma solução viável, escolhendo x1 = x2 = x3 =
x4 = 0. Podemos verificar que w1 = 5 e w2 = 3 e todas as restrições são
respeitadas. O valor da função objetivo seria 0. Uma outra solução viável é
x1 = 1, x2 = x3 = x4 = 0, w1 = 3, w2 = 2 com valor z = 6.

17

2 O método Simplex

Com 6 variáveis e duas equações independentes o espaço de soluções do sistema
de equações lineares dado pelas restrições tem 6 − 2 = 4 graus de liberdade.
Uma solução viável com esse número de variáveis nulas (igual a 0) se chama
uma solução básica viável. Logo nossa primeira solução acima é uma solução
básica viável.
A idéia do método Simplex é percorrer soluções básicas viáveis, aumentando
em cada passo o valor z da função objetivo.
Logo nosso próximo objetivo é aumentar o valor da função objetivo z. Para
esse fim, podemos aumentar o valor das variáveis x1, x2, x3 ou x4, pois o
coeficiente delas é positivo. Escolhemos x4, porque essa variável tem o maior
coeficiente. Não podemos aumentar x4 arbitrariamente: Para respeitar as
restrições w1, w2 ≥ 0 temos os limites

Limites

w1 = 5− 3x4 ≥ 0⇐⇒ x4 ≤ 5/3
w2 = 3− 2x4 ≥ 0⇐⇒ x4 ≤ 3/2

ou seja x4 ≤ 3/2. Aumentando x4 o máximo posśıvel, obtemos x4 = 3/2 e
w2 = 0. Os valores das demais variáveis não mudam. Essa solução respeita
novamente todas as restrições, e portanto é viável. Ainda, como trocamos
uma variável nula (x4) com uma outra não-nula (w2) temos uma nova solução
básica viável

Solução básica viável

x1 = x2 = x3 = 0; x4 = 3/2;w1 = 1/2;w2 = 0

com valor da função objetivo z = 13.5.
O que facilitou esse primeiro passo foi a forma especial do sistema de equações.
Escolhemos quatro variáveis independentes (x1, x2, x3 e x4) e duas variáveis
dependentes (w1 e w2). Essas variáveis são chamadas não-básicas e básicas,
respectivamente. Na nossa solução básica viável todas variáveis não-básicas
são nulas. Logo, pode-se aumentar uma variável não-básica cujo coeficiente
na função objetivo seja positivo (para aumentar o valor da função objetivo).
Inicialmente tem-se as seguintes variáveis básicas e não-básicas

B = {w1, w2}; N = {x1, x2, x3, x4}.

Depois de aumentar x4 (e consequentemente zerar w2) podemos escolher

B = {w1, x4}; N = {x1, x2, x3, w2}.

18

2.1 Um exemplo

A variável x4 se chama variável entrante, porque ela entra no conjunto de
variáveis básicas B. Analogamente w2 se chama variável sainte.
Para continuar, podemos reescrever o sistema atual com essas novas variáveis
básicas e não-básicas. A segunda restrição 2.3 é fácil de reescrever

w2 = 3− x1 − 3x2 − x3 − 2x4 ⇐⇒ x4 = 3/2− 1/2x1 − 3/2x2 − 1/2x3 − 1/2w2

Além disso, temos que reescrever a primeira restrição 2.2, porque a variável
básicaw1 depende de x4 que agora é básica também. Nosso objetivo é escrever
todas variáveis básicas em termos de variáveis não-básicas. Para esse fim,
podemos usar combinações lineares da linhas, que eliminam as variáveis não-
básicas. Em nosso exemplo, a combinação (2.2)−3/2(2.3) elimina x4 e resulta
em

w1 − 3/2w2 = 1/2− 1/2x1 + 7/2x2 + 1/2x3

e colocando a variável não-básica w2 no lado direto obtemos

w1 = 1/2− 1/2x1 + 7/2x2 + 1/2x3 + 3/2w2.

Temos que aplicar uma operação semelhante à função objetivo que ainda de-
pende da variável básica x4. Escolhemos (2.1)−9/2(2.3) para obter

z = 27/2+ 3/2x1 − 11/2x2 + 1/2x3 − 9/2w2.

Novo sistema

maximiza z = 27/2+ 3/2x1 − 11/2x2 + 1/2x3 − 9/2w2

sujeito a w1 = 1/2− 1/2x1 + 7/2x2 + 1/2x3 + 3/2w2

x4 = 3/2− 1/2x1 − 3/2x2 − 1/2x3 − 1/2w2

x1, x2, x3, x4, w1, w2 ≥ 0

que obtemos após uma operação de trocar as variáveis x4 e w2. Essa operação
se chama um pivô. Observe que no novo sistema é fácil recuperar toda
informação atual: zerando as variáveis não-básicas obtemos diretamente a
solução x1 = x2 = x3 = w2 = 0, w1 = 1/2 e x4 = 3/2 com função objetivo
z = 27/2.
Antes de continuar “pivotando” introduzimos uma forma mais simples de
escrever o sistema

19

2 O método Simplex

Dicionário

z = 27/2 +3/2x1 −11/2x2 +1/2x3 −9/2w2

w1 = 1/2 −1/2x1 +7/2x2 +1/2x3 +3/2w2

x4 = 3/2 −1/2x1 −3/2x2 −1/2x3 −1/2w2

que se chama dicionário (inglês: dictionary).

Excurso 2.1
Alguns autores usam um tableau em vez de um dicionário. Para n variáveis e
m restrições, um tableau consiste em n+1 colunas e m+1 linhas. Igual a um
dicionário, a primeira linha corresponde com a função objetivo, e as restantes
linhas com as restrições. Diferente do dicionário a primeira coluna contém os
constantes, e as restantes colunas correspondem com as variáveis, incluindo
as básicas. Nosso exemplo acima em forma de tableau é

base︷ ︸︸ ︷
x1 x2 x3 x4 w1 w2

27/2 3/2 −11/2 1/2 0 0 9/2

1/2 1/2 −7/2 −1/2 0 1 −3/2
3/2 1/2 3/2 1/2 1 0 1/2

♦

No próximo passo podemos aumentar somente x1 ou x3 porque somente elas
têm coeficientes positivos. Aumentado x1 temos que respeitar x1 ≤ 1 (da
primeira restrição) e x1 ≤ 3 (da segunda). Logo a primeira restrição é mais
forte, x1 é a variável entrante, w1 a variável sainte, e depois do pivô obtemos

Segundo passo

z = 15 −3w1 +5x2 +2x3

x1 = 1 −2w1 +7x2 +x3 +3w2

x4 = 1 +w1 −5x2 −x3 −2w2

No próximo pivô x2 entra. A primeira restrição não fornece limite para x2,
porque o coeficiente de x2 é positivo! Mas a segunda x2 ≤ 1/5 e x4 sai da
base. O resultado do pivô é

20

2.1 Um exemplo

Terceiro passo

z = 16 −2w1 −x4 +x3 −2w2

x1 = 12/5 −3/5w1 −7/5x4 −2/5x3 +1/5w2

x2 = 1/5 +1/5w1 −1/5x4 −1/5x3 −2/5w2

O próximo pivô: x3 entra, x2 sai:

Quarto passo

z = 17 −w1 −2x4 −5x2 −4w2

x1 = 2 −w1 −x4 +2x2 +w2

x3 = 1 +w1 −x4 −5x2 −2w2

Agora, todos coeficientes da função objetivo são negativos. Isso significa, que
não podemos mais aumentar nenhuma variável não-básica. Como esse sistema
é equivalente ao sistema original, qualquer solução tem que ter um valor menor
ou igual a 17, pois todas as variáveis são positivas. Logo chegamos no resultado
final: a solução

w1 = x4 = x2 = w2 = 0; x1 = 2; x3 = 1

com valor objetivo 17, é ótima!
Conclúımos esse exemplo com mais uma observação. O número de soluções
básicas viáveis é limitado. Em nosso exemplo, se escolhemos um subconjunto
de quatro variáveis nulas, as duas equações determinam as variáveis restantes.
Logo temos no máximo

(
6
4

)
= 15 soluções básicas viáveis. Em geral, com

m equações e n variáveis, uma solução básica viável possui n −m variáveis
nulas e o número delas é limitado por

(
n

n−m

)
. Portanto, se aumentamos em

cada pivô o valor da função objetivo, o método termina em no máximo
(

n
n−m

)
passos.

Exemplo 2.1 (Solução do problema do Ildo)
Exemplo da solução do problema do Ildo na página 9.

z = 0/1 +1/5c +1/2s

w1 = 150 −c −3/2s
w2 = 6000 −50c −50s
w3 = 80 −c
w4 = 60 −s

Pivô s–w4

21

2 O método Simplex

z = 30 +1/5c −1/2w4

w1 = 60 −c +3/2w4

w2 = 3000 −50c +50w4

w3 = 80 −c
s = 60 −w4

Pivô c–w1

z = 42 −1/5w1 −1/5w4

c = 60 −w1 +3/2w4

w2 = +50w1 −25w4

w3 = 20 +w1 −3/2w4

s = 60 −w4

O resultado é um lucro total de R$ 42, com os seguintes valores de variáveis:
c = 60, s = 60, w1 = 0, w2 = 0, w3 = 20 e w4 = 0. A interpretação das
variáveis de folga é como segue.

• w1: Número de ovos sobrando: 0.

• w2: Quantidade de açúcar sobrando: 0 g.

• w3: Croissants não produzidos (abaixo da demanda): 20.

• w4: Strudels não produzidos: 0.

♦

2.2 O método resumido

Considerando n variáveis e m restrições:

Sistema inicial

maximiza z =
∑

1≤j≤n

cjxj

sujeito a
∑

1≤j≤n

aijxj ≤ bi 1 ≤ i ≤ m

xj ≥ 0 1 ≤ j ≤ n

22

2.2 O método resumido

Preparação
Introduzimos variáveis de folga∑

1≤j≤n

aijxj + xn+i = bi 1 ≤ i ≤ m

e escrevemos as variáveis de folga como dependentes das variáveis restantes

xn+i = bi −
∑

1≤j≤n

aijxj 1 ≤ i ≤ m

Solução básica viável inicial
Se todos bi ≥ 0 (o caso contrário vamos tratar na próxima seção), temos uma
solução básica inicial

xn+i = bi 1 ≤ i ≤ m
xj = 0 1 ≤ j ≤ n

Índices das variáveis
Depois do primeiro passo, os conjuntos de variáveis básicas e não-básicas mu-
dam. Seja B o conjunto dos ı́ndices das variáveis básicas (não-nulas) e N o
conjunto das variáveis nulas. No começo temos

B = {n+ 1, n+ 2, . . . , n+m}; N = {1, 2, . . . , n}

A forma geral do sistema muda para

z = z̄+
∑
j∈N

c̄jxj

xi = b̄i −
∑
j∈N

āijxj i ∈ B

As barras em cima dos coeficientes enfatizam que eles mudam ao longo da
aplicação do método.

Escolher variável entrante
Em cada passo do método Simplex, escolhemos uma variável não-básica xk,
com k ∈ N para aumentar o valor objetivo z. Isso somente é posśıvel para os
ı́ndices j tal que c̄j > 0, i.e.

{j ∈ N | c̄j > 0}.

23

2 O método Simplex

Escolhemos um k desse conjunto, e xk é a variável entrante. Uma heuŕıstica
simples é a regra do maior coeficiente, que escolhe

k = argmax{c̄j | c̄j > 0, j ∈ N }

Aumentar a variável entrante
Seja xk a variável entrante. Se aumentamos xk para um valor positivo, as
variáveis básicas têm novos valores

xi = b̄i − āikxk i ∈ B.

Temos que respeitar xi ≥ 0 para 1 ≤ i ≤ n. Cada equação com āik > 0

fornece uma cota superior para xk:

xk ≤ b̄i/āik.

Logo podemos aumentar xk ao máximo um valor

α := min
i∈B
āik>0

b̄i

āik
> 0.

Podemos escolher a variável sainte entre os ı́ndices

{i ∈ B | b̄i/āik = α}.

2.3 Sistemas ilimitados

Como pivotar?

• Considere o sistema

z = 24 −x1 +2x2

x3 = 2 −x1 +x2

x4 = 5 +x1 +4x2

• Qual a próxima solução básica viável?

• A duas equações não restringem o aumento de x2: existem soluções com
valor ilimitado.

24

2.4 Encontrar uma solução inicial

2.4 Encontrar uma solução inicial

Solução básica inicial

• Nosso problema inicial é

maximiza z =
∑

1≤j≤n

cjxj

sujeito a
∑

1≤j≤n

aijxj ≤ bi 1 ≤ i ≤ m

xi ≥ 0 1 ≤ i ≤ m

• com dicionário inicial

z = z̄+
∑

j

c̄jxj

xi = b̄i −
∑
j∈N

āijxj i ∈ B

Solução básica inicial

• A solução básica inicial desse dicionário é

x = (0 · · · 0 b1 · · ·bm)t

• O que acontece se existe um bi < 0?

• A solução básica não é mais viável! Sabe-se disso porque pelo menos
uma variável básica terá valor negativo.

Sistema auxiliar

• Um método para resolver o problema: resolver outro programa linear
– cuja solução fornece uma solução básica viável do programa linear

original e
– que tem uma solução básica viável simples, tal que podemos aplicar

o método Simplex.

maximiza z = −x0

sujeito a
∑

1≤j≤n

aijxj − x0 ≤ bi 0 ≤ i ≤ m

xi ≥ 0 1 ≤ i ≤ n

25

2 O método Simplex

Resolver o sistema auxiliar

• É fácil achar uma solução viável do sistema auxiliar:

– Escolhe xi = 0, para todos 1 ≤ i ≤ n.
– Escolhe x0 suficientemente grande: x0 ≥ max1≤i≤m −bi.

• Isso corresponde com um primeiro pivô com variável entrante x0 após
introduzir as variáveis de folga

– Podemos começar com a solução não-viável x0 = x1 = . . . = xn =
0.

– Depois aumentamos x0 tal que a variável de folga mais negativa
vire positiva.

– x0 e variável sainte xk tal que k = argmax1≤i≤m −bi.

Exemplo: Problema original

maximiza z = −2x1 − x2

sujeito a − x1 + x2 ≤ −1

− x1 − 2x2 ≤ −2

x2 ≤ 1
x1, x2 ≥ 0

Exemplo: Problema auxiliar

maximiza z = −x0

sujeito a − x1 + x2 − x0 ≤ −1

− x1 − 2x2 − x0 ≤ −2

x2 − x0 ≤ 1
x0, x1, x2 ≥ 0

26

2.4 Encontrar uma solução inicial

Exemplo: Dicionário inicial do problema auxiliar

z = −x0

w1 = −1 +x1 −x2 +x0

w2 = −2 +x1 +2x2 +x0

w3 = 1 −x2 +x0

• Observe que a solução básica não é viável.

• Para achar uma solução básica viável: fazemos um primeiro pivô com
variável entrante x0 e variável sainte w2.

Exemplo: Dicionário inicial viável do sistema auxiliar

z = −2 +x1 +2x2 −w2

w1 = 1 −3x2 +w2

x0 = 2 −x1 −2x2 +w2

w3 = 3 −x1 −3x2 +w2

Primeiro pivô

z = −4/3 +x1 −2/3w1 −1/3w2

x2 = 1/3 −1/3w1 +1/3w2

x0 = 4/3 −x1 +2/3w1 +1/3w2

w3 = 2 −x1 +w1

Segundo pivô

z = 0 −x0

x2 = 1/3 −1/3w1 +1/3w2

x1 = 4/3 −x0 +2/3w1 +1/3w2

w3 = 2/3 +x0 +1/3w1 −1/3w2

Solução ótima!

Solução do sistema auxiliar

• O que vale a solução do sistema auxiliar?

• Obviamente, se o sistema original tem solução, o sistema auxiliar também
tem uma solução com x0 = 0.

27

2 O método Simplex

• Logo, após aplicar o método Simplex ao sistema auxiliar, temos os casos

– x0 > 0: O sistema original não tem solução.
– x0 = 0: O sistema original tem solução. Podemos descartar x0 e

continuar resolvendo o sistema original com a solução básica viável
obtida.

• A solução do sistema auxiliar se chama fase I, a solução do sistema
original fase II.

Sistema original
Reescreve-se a função objetivo original substituindo as variáveis básicas do
sistema original pelas equações correspondentes do sistema auxiliar, de forma
que a função objetivo z não contenha variáveis básicas. No exemplo, a função
objetivo é rescrita como:

z = −2x1 − x2 = −3−w1 −w2.

z = −3 −w1 −w2

x2 = 1/3 −1/3w1 +1/3w2

x1 = 4/3 +2/3w1 +1/3w2

w3 = 2/3 +1/3w1 −1/3w2

Nesse exemplo, o dicionário original já é ótimo!

2.5 Soluções degeneradas

Solução degenerada

• Um dicionário é degenerado se existe pelo menos um b̄i = 0.

• Qual o problema?

• Pode acontecer um pivô que não aumenta a variável entrante, e portanto
não aumenta o valor da função objetivo.

Exemplo 1

• Nem sempre é um problema.

28

2.5 Soluções degeneradas

z = 5 +x3 −x4

x2 = 5 −2x3 −3x4

x1 = 7 −4x4

w3 = +x4

• x2 é a variável sainte e o valor da função objetivo aumenta.

Exemplo 2

z = 3 −1/2x1 +2x2 −3/2w1

x3 = 1 −1/2x1 −1/2w1

w2 = x1 −x2 +w1

• Se a variável sainte é determinada pela equação com b̄i = 0, temos um
pivô degenerado.

• Nesse caso, a variável entrante não aumenta: temos a mesma solução
depois do pivô.

Exemplo 2: Primeiro pivô

• Pivô: x2–w2

z = 3 +3/2x1 −2w2 +1/2w1

x3 = 1 −1/2x1 −1/2w1

x2 = x1 −w2 +w1

• O valor da função objetivo não aumentou!

Exemplo 2: Segundo pivô

• Pivô: x1–x3

z = 6 −3x3 −2w2 −w1

x1 = 2 −2x3 −w1

x2 = 2 −2x3 −w2

• A segunda iteração aumentou o valor da função objetivo!

29

2 O método Simplex

Ciclos

• O pior caso seria, se entramos em ciclos.

• É posśıvel? Depende da regra de seleção de variáveis entrantes e saintes.

• Nossas regras

– Escolha a variável entrante com o maior coeficiente.
– Escolha a variável sainte que restringe mais.
– Em caso de empate, escolha a variável com o menor ı́ndice.

• Ciclos são posśıveis: O seguinte sistema possui um ciclo de 6 pivôs:
x1–w1, x2–w2, x3–x1, x4–x2, w1–x3, w2–x4.

z = 10x1 −57x2 −9x3 −24x4

w1 = −1/2x1 +11/2x2 +5/2x3 −9x4

w2 = −1/2x1 +3/2x2 +1/2x3 −x4

w3 = 1 −x1

Soluções do problema

• Como resolver o problema?

• Duas soluções

– Método lexicográfico.
– Regra de Bland.

Método lexicográfico

• Idéia: O fato que existe um b̄i = 0 é por acaso.

• Se introduzimos uma pequena perturbação ε� 1

– o problema desaparece
– a solução será (praticamente) a mesma.

30

2.5 Soluções degeneradas

Método lexicográfico

• Ainda é posśıvel que duas perturbações numéricas se cancelem.

• Para evitar isso: Trabalha-se simbolicamente.

• Introduzimos perturbações simbólicas

0 < ε1 � ε2 � · · · � εm

em cada equação.

• Caracteŕıstica: Todo εi é numa escala diferente dos outros tal que eles
não se cancelam.

Exemplo

Exemplo 2.2
Sistema original degenerado e sistema perturbado

z = 4 +2x1 −x2

w1 = 1/2 −x2

w2 = −2x1 +4x2

w3 = x1 −3x2

z = 4 +2x1 −x2

w1 = 1/2 +ε1 −x2

w2 = ε2 −2x1 +4x2

w3 = ε3 +x1 −3x2

♦

Comparar perturbações

• A linha com o menor limite li = b̄i/aik (com xk entrante). define a
variável sainte.

• A comparação de limites respeita a ordem lexicográfica das perturbações,
i.e. com

li = ei1ε1 + · · ·+ eikεk

lj = fj1ε1 + · · ·+ fik ′ε ′k

temos li < lj se k < k ′ ou k = k ′ e eik < fik.

31

2 O método Simplex

Caracteŕısticas

• Depois de chegar no valor ótimo, podemos retirar as perturbações εi.

Teorema 2.1
O método Simplex sempre termina escolhendo as variáveis saintes usando
a regra lexicográfica.

Prova. É suficiente mostrar que o sistema nunca vai ser degenerado: assim
o valor da função objetivo sempre cresce, e o método Simplex não entra em
ciclo. A matriz de perturbações

ε1

ε2

· · ·
εm


inicialmente tem posto m. As operações do método Simplex são operações
lineares que não mudam o posto do matriz. Logo, em cada passo do método
Simplex temos uma matriz de perturbações

e11ε1 e12ε2 · · · e1mεm

e21ε1 e22ε2 · · · e2mεm

· · · · · ·
em1ε1 em2ε2 · · · emmεm


que ainda tem posto m. Portanto, em cada linha i existe ao menos um eij 6= 0

e assim uma perturbação diferente de zero e o sistema não é degenerado. �

Exemplo 2.3
Solução do exemplo 2.2.
Pivô x1–w2. z = 4 +ε2 −w2 +3x2

w1 = 1/2 +ε1 −x2

x1 1/2ε2 −1/2w2 +2x2

w3 1/2ε2 +ε3 −1/2w2 −x2

Pivô x2–w3. z = 4 +5/2ε2 +3ε3 −5/2w2 −3w3

w1 = 1/2 +ε1 −1/2ε2 −ε3 +1/2w2 +w3

x1 = 3/2ε2 +2ε3 −3/2w2 −2w3

x2 = 1/2ε2 +ε3 −1/2w2 −w3

♦

32

2.5 Soluções degeneradas

Regra de Bland

• Outra solução do problema: A regra de Bland.

• Escolhe como variável entrante e sainte sempre a variável com o menor
ı́ndice (caso tiver mais que um candidato).

Teorema 2.2
O método Simplex sempre termina se as variáveis entrantes e saintes são
escolhidas através da regra de Bland.

Prova. Prova por contradição: Suponha que exista uma sequência de di-
cionários que entra num ciclo D0, D1, . . . , Dk−1 usando a regra do Bland.
Nesse ciclo algumas variáveis, chamadas inconstantes, entram e saem nova-
mente da base, outras permanecem sempre como básicas, ou como não-básicas.
Seja xt a variável inconstante com o maior ı́ndice. Sem perda de generali-
dade, seja xt a variável sainte do primeiro dicionário D0. Seja xs a variável
entrante no D0. Observe que xs também é inconstante e portanto s < t.
Seja D∗ o dicionário em que xt entra na base. Temos a seguinte situação

xs entra
��

xt entra

��
D0,

��

D1, D2, · · · D∗, · · · Dk−1

xt sai
com os sistemas correspondentes

D0 : D∗ :

z = z0 +
∑
j∈N

cjxj z = z∗ +
∑

j∈N∗
c∗jxj

xi = bi −
∑
j∈N

aijxj i ∈ B xi = b∗i −
∑

j∈N∗
a∗ijxj i ∈ B∗

Como temos um ciclo, todas variáveis inconstantes tem valor 0 e o valor da
função objetivo é constante. Logo z0 = z∗ e para D∗ temos

z = z∗ +
∑

j∈N∗
c∗jxj = z0 +

∑
j∈N∗

c∗jxj. (2.4)

33

2 O método Simplex

Se aumentamos em D0 o valor do xs para y, qual é o novo valor da função
objetivo? Os valores das variáveis são

xs = y

xj = 0 j ∈ N \ {s}

xi = bi − aisy i ∈ B
(2.5)

e temos no sistema D1 o novo valor

z = z0 + csy (2.6)

Nos vamos substituir os valores das variáveis (2.5) com ı́ndices em N ∗ ∩ B na
equação (2.4). Para facilitar a substituição, vamos definir c∗j := 0 para j 6∈ N ∗,
que permite substituir todas variáveis xj, j ∈ B e assim obtemos

z = z0 +
∑

j∈[1,n+m]

c∗jxj = z0 + c∗sy+
∑
j∈B

c∗j (bj − ajsy). (2.7)

Equações (2.6) e (2.7) representam o mesmo valor, portantocs − c∗s +
∑
j∈B

c∗jajs

y =
∑
j∈B

c∗jbj.

Essa igualdade deve ser correta para qualquer aumento y, portanto os dois
lados são 0, e em particular

cs − c∗s +
∑
j∈B

c∗jajs = 0.

Como xs entra em D0 temos cs > 0. Em D∗ a variável xt entra, então c∗s ≤ 0
senão pela regra de Bland s < t entraria. Logo,∑

j∈B

c∗jajs < 0

e deve existir um r ∈ B tal que c∗rars < 0. Isso tem uma série de consequências:

1. c∗r 6= 0.

2. r ∈ N ∗, porque somente as variáveis nulas satisfazem c∗j 6= 0 em D∗.

3. xr é inconstante, porque ela é básica em D0, mas não-básica em D∗.

4. r ≤ t, porque t foi a variável inconstante com o maior ı́ndice.

34

2.6 Complexidade do método Simplex

5. r < t, porque c∗tats > 0: xt entra em D∗, logo c∗t > 0, e xt sai em D0,
logo ats > 0.

6. c∗r ≤ 0, senão r e não t entraria em D∗ seguindo a regra de Bland.

7. ars > 0.

8. br = 0, porque xr é inconstante, mas todos variáveis inconstantes tem
valor 0 no ciclo, e xr é básica em D0.

Os últimos dois itens mostram que xr foi candidato ao sair em D0 com ı́ndice
r < t, uma contradição à regra de Bland. �

Teorema fundamental

Teorema 2.3 (Teorema fundamental da programação linear)
Para qualquer programa linear temos:

1. Se não existe solução ótima, o problema é inviável ou ilimitado.

2. Se existe uma solução viável, existe uma solução básica viável.

3. Se existe uma solução ótima, existe uma solução ótima básica.

2.6 Complexidade do método Simplex

Complexidade pessimista

• Com a regra de Bland o método Simplex sempre termina.

• Com n+m variáveis (de decisão e de folga) existem(
n+m

n

)
=

(
n+m

m

)
soluções básicas posśıveis.

• Logo: No pior caso o método Simplex termina depois desse número de
pivôs.

35

2 O método Simplex

Complexidade pessimista

• Para n+m constante, obtemos o maior valor de(
n+m

m

)
para n = m.

• Os limites nesse caso são (exerćıcio 5.10)

1

2n
22n ≤

(
2n

n

)
≤ 22n.

• Logo, o número de passos no pior caso pode ser exponencial no tamanho
da entrada.

Complexidade pessimista

• Se o número de passos é exponencial depende da regra de pivô aplicada.

• Exemplo: Com a regra de maior coeficiente, existem sistemas que pre-
cisam um número exponencial de pivôs (Klee-Minty).

• Pergunta em aberto: Isso é o caso para qualquer regra de pivô?

36

3 Dualidade

3.1 Introdução

Visão global

• Dualidade: Cada programa linear (chamada de primal) possui um pro-
grama linear correspondente, chamado de dual.

• Programas lineares duais tem várias aplicações como

– Estimar a qualidade de soluções e convergência.
– Certificar a otimalidade de um programa linear.
– Análise de sensibilidade e re-otimização de sistemas.
– Solução mais simples ou eficiente com o Método Simplex dual.

• O programa dual frequentemente possui uma interpretação relevante.

Introdução

• Considere o programa linear

maximiza z = 4x1 + x2 + 3x3 (3.1)
sujeito a x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3
x1, x2, x3 ≥ 0

• Cada solução viável fornece um limite inferior para o valor máximo.

x1 = x2 = x3 = 0⇒ z = 0

x1 = 3, x2 = x3 = 0⇒ z = 4

• Qual a qualidade da solução atual?

• Não sabemos, sem limite superior.

37

3 Dualidade

Limites superiores

• Como obter um limite superior?

Observe: z = 4x1 + x2 + 3x3 ≤ 10x1 + x2 + 3x3 ≤ 10

• Podemos construir uma combinação linear das desigualdades, tal que o
coeficiente de cada xj ultrapasse o coeficiente da função objetivo.

• Nosso exemplo:

(x1 + 4x2) + 3(3x1 − x2 + x3) ≤ 1+ 3 · 3 = 10⇐⇒10x1 + x2 + 3x3 ≤ 10

• Como obter um limite superior para a função objetivo?

• Qual seria o menor limite superior que esse método fornece?

Exemplo 3.1
Para o sistema (3.1) obtemos:

minimiza y1 + 3y2

sujeito a y1 + 3y2 ≥ 4
4y1 − y2 ≥ 1
y2 ≥ 3
y1, y2, y3 ≥ 0

♦

O menor limite superior

• Sejam y1, . . . , yn os coeficientes de cada linha. Observação: Eles devem
ser ≥ 0 para manter a direção das desigualdades.

• Então queremos

minimiza
∑

i

biyi

sujeito a
∑

i

aijyi ≥ cj 1 ≤ j ≤ n

yi ≥ 0

• Isto é o problema dual com variáveis duais yi.

38

3.2 Interpretação do dual

Dualidade: Caracteŕısticas

• Em notação matricial

maximiza ctx minimiza bty

sujeito a Ax ≤ b sujeito a ytA ≥ ct

x ≥ 0 y ≥ 0

• O primeiro se chama primal e o segundo dual.

• Eles usam os mesmos parâmetros cj, aij, bi.

O dual do dual

• Observação: O dual do dual é o primal.

• Forma normal do dual:

−maximiza − bty −maximiza − bty

sujeito a − ytA ≤ −ct = sujeito a (−At)y ≤ −c

y ≥ 0 y ≥ 0

• Dual do dual

−minimiza − ctx maximiza ctx

sujeito a xt(−At) ≥ −bt = sujeito a Ax ≤ b
x ≥ 0 x ≥ 0

3.2 Interpretação do dual

Exemplo: Dieta dual

• Problema da dieta: Minimiza custos de uma dieta x que alcance dados
VDR mı́nimos.

minimiza ctx

sujeito a Ax ≥ r
x ≥ 0

• Unidades das variáveis e parâmetros

39

3 Dualidade

– x: Quantidade do alimento [g]

– c: R$/alimento [R$/g]
– aij: Nutriente/Alimento [g/g]

– r: Quantidade de nutriente [g].

Exemplo: Dieta dual

• O problema dual é

maximiza ytr

sujeito a ytA ≤ ct

y ≥ 0

• Qual a unidade de y? Preço por nutriente [R$/g].

• Imagine uma empresa, que produz cápsulas que substituem os nutrien-
tes.

• Para vender no mercado, a empresa tem que garantir que uma dieta
baseado em cápsulas custa menos que os alimentos correspondentes:∑

i

yiaij ≤ cj

• Além disso, ela define preços por nutriente que maximizam o custo de
uma dieta adequada, para maximizar o próprio lucro.

maximiza ytr

Interpretação do dual

• Outra interpretação: o valor de uma variável dual yj é o lucro marginal
de adicionar mais uma unidade bj.

Teorema 3.1
Se um sistema tem ao menos uma solução básica viável não-degenerada,
existe um ε tal que, se |tj| ≤ ε para 1 ≤ j ≤ m,

maximiza ctx

sujeito a Ax ≤ b+ t

x ≥ 0

40

3.3 Caracteŕısticas

tem uma solução ótima com valor

z = z∗ + y∗
t
t

(com z∗ o valor ótimo do primal, é y∗ a solução ótima do dual).

3.3 Caracteŕısticas

Teorema da dualidade fraca

Teorema 3.2 (Dualidade fraca)
Se x1, . . . , xn é uma solução viável do sistema primal, e y1, . . . , ym uma
solução viável do sistema dual, então∑

1≤i≤n

cixi ≤
∑

1≤j≤m

bjyj.

Prova.

ctx

≤(ytA)x = yt(Ax) pela restrição dual (3.2)

≤ytb pela restrição primal (3.3)

�

Situação

• Em aberto: Qual o tamanho desse intervalo em geral?

Teorema da dualidade forte

Teorema 3.3
Se x∗1, . . . , x

∗
n é uma solução ótima do sistema primal, existe uma solução ótima

y∗1, . . . , y
∗
m do sistema dual, e∑

1≤i≤n

cix
∗
i =

∑
1≤j≤m

bjy
∗
j .

41

3 Dualidade

Prova. Seja x∗ uma solução ótima do sistema primal, que obtemos pelo
método Simplex. No ińıcio introduzimos variáveis de folga

xn+j = bj −
∑

1≤i≤n

ajixi 1 ≤ j ≤ m

e a função objetivo final é

z = z∗ +
∑

1≤i≤n+m

c̄ixi

(supondo que c̄i = 0 para variáveis básicas). Temos que construir uma solução
ótima dual y∗. Pela optimalidade, na função objetivo acima, todos ci devem
ser não-positivos. Afirmamos que y∗j = −cn+j ≥ 0 para j ∈ [1,m] é uma
solução dual ótima. Como z∗ o valor ótimo do problema inicial, temos z∗ =∑

1≤i≤n cix
∗
i .

Reescrevendo a função objetivo temos

z

=
∑

1≤i≤n

cixi sistema inicial

= z∗ +
∑

1≤i≤n+m

c̄ixi sistema final

= z∗ +
∑

1≤i≤n

c̄ixi +
∑

1≤j≤m

cn+jxn+j separando ı́ndices

= z∗ +
∑

1≤i≤n

c̄ixi −
∑

1≤j≤m

y∗j

bj −
∑

1≤i≤n

ajixi

 subst. solução e var. folga

=

z∗ −
∑

1≤j≤m

y∗jbj

+
∑

1≤i≤n

c̄i +
∑

1≤j≤m

y∗jaji

 xi agrupando

Essa derivação está válida para xi qualquer, porque são duas expressões para
a mesma função objetivo, portanto

z∗ =
∑

1≤j≤m

y∗jbj e ci = c̄i +
∑

1≤j≤m

y∗jaji 1 ≤ i ≤ n.

Com isso sabemos que o primal e dual possuem o mesmo valor∑
1≤j≤m

y∗jbj = z∗ =
∑

1≤i≤n

cix
∗
i

42

3.3 Caracteŕısticas

e como c̄i ≤ 0 sabemos que a solução y∗ satisfaz a restrições duais

ci ≤
∑

1≤j≤m

y∗jaji 1 ≤ i ≤ n

y∗i ≥ 0 1 ≤ i ≤ m

�

Consequências: Soluções primais e duais

• Com o teorema da dualidade forte, temos quatro possibilidades

Sistema primal Sistema dual Intervalo

Ótima Ótima Sem
Ilimitado Inviável Sem
Inviável Ilimitado Sem
Inviável Inviável Infinito

Exemplo 3.2
Pelo teorema da dualidade forte, não podemos concluir, que existe um caso
que tanto o sistema primal quanto o sistema dual são inviáveis. O seguinte
exemplo mostra que isso pode realmente acontecer. O sistema primal

maximiza x1

sujeito a + x1 − x2 ≤ 0
− x1 + x2 ≤ −1

possui sistema dual correspondente

minimiza − y2

sujeito a + y1 − y2 ≥ 1
− y1 + y2 ≥ 0

Os dois sistemas são inviáveis. ♦

Consequências

43

3 Dualidade

• Dado soluções primais e duais x∗, y∗ tal que ctx∗ = bty∗ podemos con-
cluir que ambas soluções são ótimas (x∗, y∗ é um certificado da optima-
lidade)1.

• A prova mostra: com o valor ótimo do sistema primal, sabemos também
o valor ótima do sistema dual.

• Além disso: Podemos trocar livremente entre o sistema primal e dual.⇒ Método Simplex dual.

Outra consequência do Teorema da dualidade forte é o

Teorema 3.4 (Teorema das folgas complementares)
Se x∗, y∗ são soluções ótimas do sistema primal e dual, respectivamente, temos

y∗
t
(b−Ax) = 0 (3.4)

(y∗
t
A− ct)x∗ = 0 (3.5)

Prova. Pelo Teorema da dualidade forte as duas desigualdades 3.2 e 3.3
da prova do Teorema da dualidade fraca se tornam igualdades para soluções
ótimas:

ctx∗ = y∗
t
Ax∗ = y∗

t
b

Reagrupando termos, o teorema segue. �
As igualdades 3.4 e 3.5 são ainda válidas em cada componente, porque tanto
as soluções ótimas x∗, y∗ quanto as folgas primas e duais b−Ax e y∗tA− ct

sempre são positivos.

xi > 0⇒ ∑
1≤j≤m

yjaji = ci (3.6)

∑
1≤j≤m

yjaji > ci ⇒ xi = 0 (3.7)

yj > 0⇒ bj =
∑

1≤i≤n

ajixi (3.8)

bj >
∑

1≤i≤n

ajixi ⇒ yj = 0 (3.9)

1Uma consequência é que o problema de decisão correspondente, determinar se existe uma
solução maior que um dado valor, possui um certificado que pode ser verificado em tempo
polinomial tanto para uma resposta positiva quanto uma resposta negativa. Portanto,
já antes da descoberta de um algoritmo polinomial para esse problema, foi claro que ele
pertence a NP∩ co-NP.

44

3.4 Método Simplex dual

Como consequência, podemos ver que, por exemplo, caso uma igualdade pri-
mal não possui folga, a variável dual correspondente é positiva, e, contraria-
mente, caso uma igualdade primal possui folga, a variável dual correspondente
é zero. As mesmas relações se aplicam para as desigualdades no sistema dual.
Após a introdução da forma matricial no seção 3.6 vamos analisar a inter-
pretação das variáveis duais com mais detalha no seção 3.7.

3.4 Método Simplex dual

Método Simplex dual

• Considere

maximiza − x1 − x2

sujeito a − 2x1 − x2 ≤ 4
− 2x1 + 4x2 ≤ −8

− x1 + 3x2 ≤ −7

x1, x2 ≥ 0

• Qual o dual?

minimiza 4y1 − 8y2 − 7y3

sujeito a − 2y1 − 2y2 − y3 ≥ −1

− y1 + 4y2 + 3y2 ≥ −1

Com dicionários
z = −x1 −x2

w1 = 4 +2x1 +x2

w2 = −8 +2x1 −4x2

w3 = −7 +x1 −3x2

−w = −4y1 +8y2 +7y3

z1 = 1 −2y1 −2y2 −y3

z2 = 1 −y1 +4y2 +3y3

• Observação: O primal não é viável, mas o dual é!

• Correspondência das variáveis:
Variáveis

principais de folga
Primal x1, . . . , xn w1, . . . , wm

Dual z1, . . . , zn, y1, . . . , ym

de folga principais

45

3 Dualidade

• Primeiro pivô: y2 entra, z1 sai. No primal: w2 sai, x1 entra.

Primeiro pivô
z = −4 −0.5w2 −3x2

w1 = 12 +w2 +5x2

x1 = 4 +0.5w2 +2x2

w3 = −3 +0.5w2 −x2

−w = 4 −12y1 −4z1 +3y3

y2 = 0.5 −y1 −0.5z1 −0.5y3

z2 = 3 −5y1 −2z1 +y3

• Segundo pivô: y3 entra, y2 sai. No primal: w3 sai, w2 entra.

Segundo pivô
z = −7 −w3 −4x2

w1 = 18 +2w3 +7x2

x1 = 7 +w3 +3x2

w2 = 6 +2w3 +2x2

−w = 7 −18y1 −7z1 −6y2

y3 = 1 −2y1 −z1 −2y2

z2 = 4 −7y1 −3z1 −2y2

• Sistema dual é ótimo, e portanto o sistema primal também.

Método Simplex dual

• Observação: Não é necessário escrever o sistema dual. Ele é sempre o
negativo transposto do sistema primal.

z = z̄+
∑
j∈N

c̄jxj

xi = b̄i −
∑
j∈N

āijxj i ∈ B

• Mas é necessário modificar as regras para resolver o sistema dual.

Método Simplex dual: Viabilidade e otimalidade

• Pré-condição: O dicionário é dualmente viável, i.e. os coeficientes das
variáveis não-básicas na função objetivo tem quer ser não-positivos.

c̄j ≤ 0 para j ∈ N .

46

3.4 Método Simplex dual

• Otimalidade: Todos variáveis básicas primais positivas

∀i ∈ B : b̄i ≥ 0

Método Simplex dual: Pivô

• Caso existe uma variável primal negativa: A solução dual não é ótima.

• Regra do maior coeficiente: A variável básica primal com menor valor
(que é negativo) sai da base primal.

i = argmin
i∈B

b̄i

• A variável primal nula com fração āij/c̄j maior entra.

j = argmin
j∈N
āij<0

c̄j

āij
= argmax

j∈N
āij<0

āij

c̄j
= argmax

j∈N

āij

c̄j

Método Simplex dual
Resumo:

• Dualmente viável: c̄j ≤ 0 para j ∈ N .

• Otimalidade: ∀i ∈ B : b̄i ≥ 0.

• Variável sainte: i = argmini∈B b̄i

• Variável entrante: j = argmaxj∈N
āij
c̄j

.

Exemplo

maximiza z = −2x1 − x2

sujeito a − x1 + x2 ≤ −1

− x1 − 2x2 ≤ −2

x2 ≤ 1
x1, x2 ≥ 0

47

3 Dualidade

Exemplo: Dicionário inicial
z = −2x1 −x2

w1 = −1 +x1 −x2

w2 = −2 +x1 +2x2

w3 = 1 −x2

• O dicionário primal não é viável, mais o dual é.

Exemplo: Primeiro pivô
z = −1 −3/2x1 −1/2w2

w1 = −2 +3/2x1 −1/2w2

x2 = 1 −1/2x1 +1/2w2

w3 = +1/2x1 −1/2w2

Exemplo: Terceiro privot
z = −3 −w1 −w2

x1 = 4/3 +2/3w1 +1/3w2

x2 = 1/3 −1/3w1 +1/3w2

w3 = 2/3 +1/3w1 −1/3w2

3.5 Dualidade em forma não-padrão

Dualidade em forma padrão

maximiza ctx minimiza bty

sujeito a Ax ≤ b sujeito a ytA ≥ ct

x ≥ 0 y ≥ 0

• O que acontece se o sistema não é em forma padrão?

Igualdades

• Caso de igualdades: Substituindo desigualdades..

maximiza ctx maximiza ctx

sujeito a Ax = b sujeito a Ax ≤ b
x ≥ 0 Ax ≥ b

x ≥ 0

48

3.6 Os métodos em forma matricial

• ... padronizar novamente, e formar o dual:

maximiza ctx minimiza bty+ − bty−

sujeito a Ax ≤ b sujeito a y+t
A− y−t

A ≥ c
−Ax ≤ −b y+ ≥ 0, y− ≥ 0
x ≥ 0 y+ = (y+

1 , . . . , y
+
m)t

y− = (y−
1 , . . . , y

−
m)t

Igualdades

• Equivalente, usando variáveis não-restritas y = y+ − y−

minimiza bty

sujeito a ytA ≥ c
yt ≶ 0

• Resumo
Primal Dual
Igualdade Variável dual livre
Desigualdade (≤) Variável dual não-negativa
Variável primal livre Igualdade
Variável primal não-negativa Desigualdade (≥)

3.6 Os métodos em forma matricial

A forma matricial permite uma descrição mais compacto do método Simplex.
A seguir vamos resumir os métodos Simplex primal e dual na forma matricial.
Mais importante, nesse forma é posśıvel expressar o dicionário correspondente
com qualquer base em termos das dados inicias (A, c, b). Na próxima seção va-
mos usar essa forma para analisar a sensibilidade de uma solução ao pequenas
perturbações dos dados (i.e. os coeficientes A,b, e c).

Sistema padrão

• O sistema padrão é

maximiza ctx

sujeito a Ax ≤ b
x ≥ 0

49

3 Dualidade

• Com variáveis de folga xn+1, . . . , xn+m e A,c,x novo (definição segue
abaixo)

maximiza ctx

sujeito a Ax = b

x ≥ 0

Matrizes

A =


a11 a12 · · · a1n 1

a21 a22 · · · a2n 1
...

...
...

. . .
am1 am2 . . . amn 1

 ;

b =


b1

b2

...
bm

 ; c =



c1

c2

...
cn

0
...
0


; x =



x1

x2

...
xn

xn+1

...
xn+m



Separação das variáveis

• Em cada iteração as variáveis estão separados em básicas e não-básicas.

• Conjuntos de ı́ndices correspondentes: B
.
∪ N = [1, n+m].

• A componente i de Ax pode ser separado como∑
1≤j≤n+m

aijxj =
∑
j∈B

aijxj +
∑
j∈N

aijxj

Separação das variáveis

• Para obter a mesma separação na forma matricial: Reordenamos as
colunas e separamos as matrizes e vetores:

A = (BN) ; x =

(
xB

xN

)
; c =

(
cB

cN

)
• com B ∈ Rm×m, N ∈ Rm×n, c ∈ Rn+m.

50

3.6 Os métodos em forma matricial

Forma matricial das equações

• Agora, Ax = b é equivalente com

(BN)

(
xB

xN

)
= BxB +NxN = b

• Numa solução básica, a matriz B tem posto m tal que as colunas de B
formam uma base do Rm. Logo B tem inversa e

xB = B−1(b−NxN) = B−1b− B−1NxN

Forma matricial da função objetivo

• A função objetivo é

z = ctx = (ct
B c

t
N)

(
xB

xN

)
= ct

BxB + ct
NxN

• e usando xB = B−1b− B−1NxN obtemos

z = ct
B(B−1b− B−1NxN) + ct

NxN

= ct
BB

−1b− (ct
BB

−1N− ct
N)xN

= ct
BB

−1b− ((B−1N)tcB − cN)txN

Dicionário em forma matricial

• Logo, o dicionário em forma matricial é

z = ct
BB

−1b− ((B−1N)tcB − cN)txN

xB = B−1b− B−1NxN

• Compare com a forma em componentes:

z = z̄+
∑
j∈N

c̄jxj z = z̄+ c̄txN

xi = b̄i −
∑
j∈N

āijxj i ∈ B xB = b̄− ĀxN

51

3 Dualidade

Dicionário em forma matricial

• Portanto, vamos identificar

z̄ = ct
BB

−1b; c̄ = −((B−1N)tcB − cN)

b̄ = B−1b; Ā = (āij) = B−1N

• para obter o dicionário

z = z̄+ c̄txN

xB = b̄− ĀxN

Sistema dual

• As variáveis primais são

x = (x1 . . . xn︸ ︷︷ ︸
original

xn+1 . . . xn+m︸ ︷︷ ︸
folga

)t

• Para manter ı́ndices correspondentes, escolhemos variáveis duais da forma

y = (y1 . . . yn︸ ︷︷ ︸
folga

yn+1 . . . yn+m︸ ︷︷ ︸
dual

)t

• O dicionário do dual correspondente então é

Primal Dual

z = z̄+ c̄txN −w = −z̄− b̄tyB

xB = b̄− ĀxN yN = −c̄+ ĀtyB

Primal e dual

• A solução básica do sistema primal é

x∗N = 0; x∗B = b̄ = B−1b

• A solução dual correspondente é

y∗B = 0; y∗N = −c̄ = (B−1N)tcB − cN

• Com isso temos os dicionários

z = z̄− (y∗N)txN −w = −z̄− (x∗B)tyB

xB = x∗B − (B−1N)xN yN = y∗N + (B−1N)tyB

52

3.6 Os métodos em forma matricial

Método Simplex em forma matricial

• Começamos com uma partição B
.
∪ N = [1, n+m].

• Em cada iteração selecionamos uma variável sainte i ∈ B e entrante
j ∈ N .

• Fazemos o pivô xi com xj.

• Depois a nova base é B \ {i} ∪ {j}.

Método Simplex em forma matricial

S1: Verifique solução ótima Se y∗N ≥ 0 a solução atual é ótima. Pare.

S2: Escolhe variável entrante Escolhe j ∈ N com y∗j < 0. xj é a variável
entrante.

S3: Determine passo básico Aumentando xj uma unidade temos novas variáveis
não-básicas xN = x∗N + ∆xN com ∆xN = (0 · · · 010 · · · 0)t = ej e ej o
vetor nulo com somente 1 na posição correspondente com ı́ndice j. Como

xB = x∗B − B−1NxN

a diminuição correspondente das variáveis básicas é ∆xB = B−1Nej.

Método Simplex em forma matricial

S4: Determine aumento máximo O aumento máximo de xj é limitado por
xB ≥ 0, i.e.

xB = x∗B − t∆xB ≥ 0⇐⇒ x∗B ≥ t∆xB.

Com t, x∗B ≥ 0 temos

t ≤ t∗ = min
i∈B
∆xi>0

x∗i
∆xi

S5: Escolhe variável sainte Escolhe um i ∈ B com x∗i = t∗∆xi.

53

3 Dualidade

Método Simplex em forma matricial

S5: Determine passo dual A variável entrante dual é yi. Aumentando uma
unidade, as variáveis yN diminuem ∆yN = −(B−1N)tei.

S6: Determina aumento máximo Com variável sainte yj, sabemos que yi

pode aumentar ao máximo

s =
y∗j

∆yj
.

S7: Atualiza solução

x∗j := t y∗i := s

x∗B := x∗B − t∆xB y∗N := y∗N − s∆yN

B := B \ {i} ∪ {j}

3.7 Análise de sensibilidade

Motivação

• Na solução da programas lineares tratamos os parâmetros como ser fi-
xados.

• Qual o efeito de uma perturbação

c := c+ ∆c; b := b+ ∆b; A := A+ ∆A?

(Imagina erros de medida, pequenas flutuações, etc.)

Análise de sensibilidade

• Após a solução de um sistema linear, temos o dicionário ótimo

z = z∗ − (y∗N)txN

xB = x∗B − B−1NxN

• com

x∗B = B−1b

y∗N = (B−1N)tcB − cN

z∗ = ct
BB

−1b

54

3.7 Análise de sensibilidade

Modificar c

• Mudarmos c para ĉ, mantendo a base B.

• x∗B não muda, mas temos que reavaliar y∗N e z∗.

• Depois, x∗B ainda é uma solução básica viável do sistema primal.

• Logo, podemos continuar aplicando o método Simplex primal.

Modificar b

• Da mesma forma, modificamos b para b̂ (mantendo a base).

• y∗N não muda, mas temos que reavaliar x∗B e z∗.

• Depois, y∗N ainda é uma solução básica viável do sistema dual.

• Logo, podemos continuar aplicando o método Simplex dual.

Vantagem dessa abordagem

• Nos dois casos, esperamos que a solução inicial já é perto da solução
ótima.

• Experiência prática confirma isso.

• O que acontece se queremos modificar tanto b quanto c ou ainda A?

• A solução atual não necessariamente é viável no sistema primal ou dual.

• Mas: Mesmo assim, a convergência na prática é mais rápido.

Estimar intervalos

• Pergunta estendida: Qual o intervalo de t ∈ R tal que o sistema com
ĉ = c+ t∆c permanece ótimo?

• Para t = 1: y∗N = (B−1N)tcB−cN aumenta ∆yN := (B−1N)t∆cB−∆cN.

• Em geral: Aumento t∆yN.

• Condição para manter a viabilidade dual:

y∗N + t∆yN ≥ 0

55

3 Dualidade

• Para t > 0 temos

t ≤ min
j∈N
∆yj<0

−
y∗j

∆yj

• Para t < 0 temos

max
j∈N
∆yj>0

−
y∗j

∆yj
≤ t

Estimar intervalos

• Agora seja b̂ = b+ t∆b.

• Para t = 1: x∗B = B−1b aumenta ∆xB := B−1∆b.

• Em geral: Aumento t∆b.

• Condição para manter a viabilidade primal:

x∗B + t∆xB ≥ 0

• Para t > 0 temos

t ≤ min
i∈B
∆xi<0

−
x∗i
∆xi

• Para t < 0 temos

max
i∈B
∆xi>0

−
x∗i
∆xi

≤ t

Exemplo 3.3
Considere o problema da empresa de aço (vista na aula prática, veja também
exećıcio 5.5).

maximiza 25p+ 30c

sujeito a 7p+ 10c ≤ 56000
p ≤ 6000
c ≤ 4000

Qual o intervalo em que o valor do lucro das placas de 25R $ pode variar sem
alterar a solução ótima?

56

3.7 Análise de sensibilidade

Exemplo: Empresa de aço

• Sistema ótimo

• Base B = {p,w3, c}, variáveis não-básicas N = {w1, w2}. (Observe:
Usamos conjuntos de variáveis, ao invés de conjuntos de ı́ndices).

Exemplo: Variáveis

• Vetores c e ∆c. Observe que reordenamos dos dados do sistema inicial
de forma correspondente com a ordem das variáveis do sistema final.

c =


25

0

30

0

0

 ; cB =

250
30

 ; cN =

(
0

0

)
;

∆c =


1

0

0

0

0

 ;∆cB =

10
0

 ;∆cN =

(
0

0

)

Exemplo: Aumentos

• Aumento das variáveis duais

∆yN = (B−1N)t∆cB − ∆cN = (B−1N)t∆cB

• com

B−1N =

 0 1

−1/10 7/10

1/10 −7/10


• temos

∆yN =

(
0

1

)

57

3 Dualidade

Exemplo: Limites

• Limites em geral

max
j∈N
∆yj>0

−
y∗j

∆yj
≤ t ≤ min

j∈N
∆yj<0

−
y∗j

∆yj

• Logo
−4 ≤ t ≤∞.

• Uma variação do preço entre 25+ [−4,∞] = [21,∞] preserve a otimali-
dade da solução atual.

• O novo valor da função objetivo é

z == ĉt
BB

−1b =
(
25+ t 0 30

)60002600

1400

 = 192000+ 6000t

e os valores das variáveis p e c permanecem os mesmos.

♦

Exemplo 3.4
Qual o intervalo em que o lucro das placas (R$ 25) e dos canos (R$ 30) podem
variar sem que a solução ótima seja alterada?

Exemplo: Variação do lucro dos placas e canos

• Neste caso, os vetores c, cB, cN e ∆cN permanecem os mesmos do
exemplo anterior. Enquanto que:

∆c =


1

0

1

0

0

 ;∆cB =

10
1

 ;

• Neste caso, o valor de ∆yN é

∆yN = (B−1N)t∆cB =

(
0 −1/10 1/10

1 7/10 −7/10

)10
1

 =

(
1/10

3/10

)
;

58

3.7 Análise de sensibilidade

• Logo −40/3 ≤ t ≤∞
• Ou seja, uma variação do lucro das placas entre R$ 11.67 e∞, e do lucro

dos canos entre R$ 16.67 e ∞, não altera a solução ótima do sistema.

♦

Exemplo: Modificação

• Qual o intervalo em que o lucro dos canos (R$ 30) podem variar sem
que a solução ótima seja alterada?

• Neste caso, os vetores c, cB, cN e ∆cN permanecem os mesmos do
exemplo anterior. Enquanto que:

∆c =


0

0

1

0

0

 ;∆cB =

00
1

 ;

• Neste caso, o valor de ∆yN é:

∆cB =

(
1/10

−7/10

)
;

• Logo −30 ≤ t ≤ 40/7

• Ou seja, uma variação do lucro dos canos entre R$ 0 e R$ 35.71, não
altera a solução ótima do sistema.

Exemplo 3.5
O que acontece se mudarmos o lucro das placas para R$ 20?

Exemplo: Placas com lucro R$ 20

• Novos vetores

ĉ =


20

0

30

0

0

 ; ĉB =

200
30

 ; ĉN =

(
0

0

)

59

3 Dualidade

• Aumento

ŷ∗N = (B−1N)tĉB − ĉN = (B−1N)tĉB

=

(
0 −1/10 1/10

1 7/10 −7/10

)200
30

 =

(
3

−1

)

Novas variáveis

• Com

B−1b =

60002600

1400


• Novo valor da função objetivo

ẑ∗ = ĉt
BB

−1b =
(
20 0 30

)60002600

1400

 = 162000

Exemplo: Novo dicionário

• Novo sistema primal viável, mas não ótimo:

z = 162000 −3w1 +w2

p = 6000 −w2

w3 = 2600 +1/10w1 −7/10w2

c = 1400 −1/10w1 +7/10w2

• Depois um pivô: Sistema ótimo.

z = 165714 2/7 −20/7w1 −10/7w3

p = 2285 5/7 −1/7w1 +10/7w3

w2 = 3714 2/7 +1/7w1 −10/7w2

c = 4000 −w3

♦

Exemplo 3.6
O que acontece se mudarmos o lucro das placas de R$ 25 para R$ 35 e dos
canos de R$ 30 para R$ 10?

60

3.7 Análise de sensibilidade

Exemplo: Placas e canos com lucro R$ 35 e R$ 10

• Novos vetores

ĉ =


35

0

10

0

0

 ; ĉB =

350
10

 ; ĉN =

(
0

0

)

• Aumento

ŷ∗N = ((B−1N)tcB − cN) =

(
0 −1/10 1/10

1 7/10 −7/10

)350
10

 =

(
1

28

)

Novas variáveis e novo dicionário

• Novo valor da função objetivo

ẑ∗ = ĉt
BB

−1b = ĉt
Bx
∗
B =

(
35 0 10

)60002600

1400

 = 224000

• O novo sistema primal viável é

z = 224000 −1w1 −28w2

p = 6000 −w2

w3 = 2600 +1/10w1 −7/10w2

c = 1400 −1/10w1 +7/10w2

• O sistema é ótimo.

♦

61

4 Tópicos

4.1 Centro de Chebyshev

Seja B(c, r) = {c + u | ||u|| ≤ r} a esfera com centro c e raio r. Para um
poĺıgono convexo aix ≤ bi, para 1 ≤ i ≤ n, queremos achar o centro e o raio
da maior esfera, que cabe dentro do poĺıgono, i.e. resolver

maximiza r

sujeito a sup
p∈B(c,r)

aip ≤ bi ∀1 ≤ i ≤ n.

Temos
sup

p∈B(c,r)

aip = cai + sup
||u||≤r

aiu = cai + ||ai||r

porque o último supremo é atingido por u = rai/||ai||. Assim obtemos uma
formulação linear

maximiza r

sujeito a aic+ r||ai|| ≤ bi ∀1 ≤ i ≤ n.

Exemplo 4.1
O poĺıgono da Fig. 4.1 possui a descrição

2x1 + 4x2 ≤ 24
4x1 − x2 ≤ 12− x1 ≤ 0− x2 ≤ 0

Portanto o programa linear para achar a o centro e o raio do maior ćırculo é

maximiza r

sujeito a 2c1 + 4c2 + 4.47r ≤ 24
4c1 − c2 + 4.12r ≤ 12
− c1 + r ≤ 0
− c2 + r ≤ 0

♦

63

4 Tópicos

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 2

x1

Figura 4.1: Exemplo do centro de Chebyshev

4.2 Função objetivo convexa e linear por segmentos

Uma função f é convexa se f(tx+(1− t)y) ≤ tf(x)+(1− t)f(y) para qualquer
x e y e 0 ≤ t ≤ t. Funções convexas são importantes na otimização, porque
eles possuem no máximo um mı́nimo no interior do domı́nio deles, e portanto
o mı́nimo de uma função convexa pode ser obtido com métodos locais.
Seja fi(x), 1 ≤ i ≤ n uma coleção de funções lineares. O máximo f(x) =
maxi fi(x) é uma função convexa linear por segmentos. O problema de oti-
mização

maximiza max
i
fi(x)

é equivalente com o programa linear

minimiza x0 (4.1)
sujeito a fi(x) ≤ x0 ∀1 ≤ i ≤ n. (4.2)

Portanto podemos minimizar uma função convexa linear por segmentos usando
programação linear. De forma similar, f é concava se f(tx + (1 − t)y) ≥
tf(x) + (1 − t)f(y). (Observe que uma função convexa e concavo é afina.) O

64

4.2 Função objetivo convexa e linear por segmentos

sistema

maximiza x0

sujeito a fi(x) ≥ x0 ∀1 ≤ i ≤ n.

maximiza uma função concava linear por segmentos.

65

5 Exerćıcios

(Soluções a partir da página 179.)

Exerćıcio 5.1
Na definição da programação linear permitimos restrições lineares da forma

ai1x1 + ai2x2 + · · ·+ ainxn ./i bi

com ./i∈ {≤,=,≥}. Por que não permitimos ./i∈ {<,>} também? Discute.

Exerćıcio 5.2
Procura a tabela nutricional de algum restaurante e resolve o problema da
dieta (exemplo 1.2).

Exerćıcio 5.3
Um investidor pode vender ações de suas duas empresas na bolsa de valores,
mas está sujeito a um limite de 10.000 operações diárias (vendas por dia).
Na cotação atual, as ações da empresa A valorizaram-se 10% e agora cada
uma vale R$ 22. Já a empresa B teve valorização de 2% e cada ação vale R$
51. Sabendo-se que o investidor possui 6.000 ações da Empresa A e 7.000 da
empresa B, maximize seu lucro na BOVESPA e diga qual o lucro obtido.

Exerćıcio 5.4
Dona Maria adora ver seus netinhos Marcos, Renato e Vinicius bem alimen-
tados. Sempre na hora de cozinhar ela leva em conta o quanto eles gostam de
cada prato para fazê-los comer o máximo posśıvel. Marcos gosta da lasanha
e comeria 3 pratos dela após um prato de sopa; Renato prefere lanches, e
comeria 5 hambúrgueres, ignorando a sopa; Vinicius gosta muita da massa a
bolonhesa, e comeria 2 pratos após tomar dois pratos de sopa. Para fazer a
sopa, são necessários entre outros ingredientes, 70 gramas de queijo por prato
e 30 gramas de carne. Para cada prato de lasanha, 200 gramas de queijo, e
100 gramas de carne. Para cada hambúrguer são necessários 100 gramas de
carne, e 100 gramas de queijo. Para cada prato de massa a bolonhesa são
necessários 100 gramas de carne e 30 gramas de queijo (ralado para por sobre
a massa). Seus netos vieram visitá-la de surpresa, e tendo ela somente 800
gramas de carne e 1000 gramas de queijo em casa, como ela poderia fazê-los
comer o maior número de pratos, garantindo que cada um deles comerá pelo
menos dois pratos, e usando somente os ingredientes que ela possui?

67

5 Exerćıcios

Exerćıcio 5.5 (Vanderbei [2001])
Formule como problema de otimização linear e resolve graficamente.
Uma empresa de aço produz placas ou canos de ferro. As taxas de produção
são 200t/h para placas e 140t/h para canos. O lucro desses produtos e 25$/t
para placas e 30$/t para canos. Considerando a demanda atual, os limites de
produção são 6000t de placas e 4000t de canos. Na semana atual são 40h de
tempo de produção dispońıvel. Quantas toneladas de placas e canos devem
ser produzidas para maximizar o lucro?

Exerćıcio 5.6 (Vanderbei [2001])
Formule como problema de otimização linear.
Uma pequena empresa aérea oferece um vôo de Pelotas, com escala em Porto
Alegre para Torres. Logo tem três tipos de clientes que voam Pelotas–Porto
Alegre, Pelotas–Torres e Porto Alegre–Torres. A linha também oferece três
tipos de bilhetes:

• Tipo A: bilhete regular.

• Tipo B: sem cancelamento.

• Tipo C: sem cancelamento, pagamento três semanas antes de viajar.

Os preços (em R$) dos bilhetes são os seguintes
Pelotas–Porto Alegre Porto Alegre–Torres Pelotas–Torres

A 600 320 720
B 440 260 560
C 200 160 280

Baseado em experiência com esse vôo, o marketing tem a seguinte predição
de passageiros:

Pelotas–Porto Alegre Porto Alegre–Torres Pelotas–Torres
A 4 8 3
B 8 13 10
C 22 20 18

O objetivo da empresa e determinar o número ótimo de bilhetes para vender
de cada tipo, respeitando um limite de 30 passageiros em cada vôo e o limite
dos passageiros previstos em cada categoria, que maximiza o lucro.

68

Exerćıcio 5.7
Escreve em forma normal.

minimiza z = −5x1 − 5x2 − 5x3

sujeito a − 6x1 − 2x2 − 9x3 ≤ 0
− 9x1 − 3x2 + 3x3 = 3

xj ≥ 0

maximiza z = −6x1 − 2x2 − 6x3 + 4x4 + 4x5

sujeito a − 3x1 − 8x2 − 6x3 − 7x4 − 5x5 = 3

5x1 − 7x2 + 7x3 + 7x4 − 6x5 ≤ 6
1x1 − 9x2 + 5x3 + 7x4 − 10x5 = −6

xj ≥ 0

maximiza z = 7x1 + 4x2 + 8x3 + 7x4 − 9x5

sujeito a − 4x1 − 1x2 − 7x3 − 8x4 + 6x5 = −2

x1 + 4x2 + 2x3 + 2x4 − 7x5 ≥ −7

− 8x1 + 2x2 + 8x3 − 6x4 − 7x5 = −7

xj ≥ 0

minimiza z = −6x1 + 5x2 + 8x3 + 7x4 − 8x5

sujeito a − 5x1 − 2x2 + x3 − 9x4 − 7x5 = 9

7x1 + 7x2 + 5x3 − 3x4 + x5 = −8

− 5x1 − 3x2 − 5x3 + 9x4 + 8x5 ≤ 0
xj ≥ 0

Exerćıcio 5.8 (Maculan and Fampa [2006])
Resolve com o método Simplex.

maximiza z = 3x1 + 5x2

sujeito a x1 ≤ 4
x2 ≤ 6
3x1 + 2x2 ≤ 18
xj ≥ 0

69

5 Exerćıcios

Exerćıcio 5.9
Resolve o exerćıcio 5.5 usando o método Simplex.

Exerćıcio 5.10
Prova que

22n

2n
≤
(
2n

n

)
≤ 22n.

Exerćıcio 5.11
Resolve o sistema degenerado

z = 10x1 −57x2 −9x3 −24x4

w1 = −1/2x1 +11/2x2 +5/2x3 −9x4

w2 = −1/2x1 +3/2x2 +1/2x3 −x4

w3 = 1 −x1

usando o método lexicográfico e o regra de Bland.

Exerćıcio 5.12
Dado o problema de otimização

maximiza x1 + x2

sujeito a ax1 + bx2 ≤ 1
x1, x2 ≥ 0

determine condições suficientes e necessárias ao respeita de a e b tal que

1. existe ao menos uma solução ótima,

2. existe exatamente uma solução ótima,

3. existe nenhuma solução ótima,

4. o sistema é ilimitado.

ou demonstre que o caso não é posśıvel.

Exerćıcio 5.13
Sabe-se que o dicionário ótimo do problema

maximiza z = 3x1 + x2

sujeito a − 2x1 + 3x2 ≤ 5
x1 − x2 ≤ 1
x1, x2 ≥ 0

70

é
z∗ = 31 −11w2 −4w1

x2 = 7 −2w2 −w1

x1 = 8 −3w2 −w1

1. Se a função objetivo passar a z = x1 + 2x2, a solução continua ótima?
No caso de resposta negativa, determine a nova solução ótima.

2. Se a função objetivo passar a z = x1 −x2, a solução continua ótima? No
caso de resposta negativa, determine a nova solução ótima.

3. Se a função objetivo passar a z = 2x1−2x2, a solução continua ótima?No
caso de resposta negativa, determine a nova solução ótima.

4. Formular o dual e obter a solução dual ótima.

Exerćıcio 5.14
Prove ou mostre um contra-exemplo.
O problema max{ctx | Ax ≤ b} possui uma solução viável sse min{x0 | Ax −
ex0 ≤ b} possui uma solução viável com x0 = 0. Observação: e é um vetor
com todos compentes igual 1 da mesma dimensão que b.

Exerćıcio 5.15
Prove ou mostre um contra-exemplo.
Se x é a variável sainte em um pivô, x não pode ser variável entrante no pivô
seguinte.

Exerćıcio 5.16
Qual o sistema dual de

minimiza 7x1 + x2 + 5x3

sujeito a x1 − x2 + 3x3 ≥ 10
5x1 + 2x2 − x3 ≥ 6
x1, x2, x3 ≥ 0.

Exerćıcio 5.17
Considere o problema

Cobertura por conjuntos ponderados (weighted set cover)

Instância Um universo U, a uma familia S de subconjuntos do uni-
verso,i.e.,para todo S ∈ S, S ⊆ U, e custos c(S) para cada conjunto.

71

5 Exerćıcios

Solução Uma cobertura por conjuntos,i.e.,uma seleção de conjuntos T ⊆
S tal que para cada elemento e ∈ U existe ao menos um S ∈ T com
e ∈ S.

Objetivo Minimizar o custo total dos conjuntos selecionados.

Uma formulação inteira do problema é

minimiza
∑
S∈S

c(S)xS

sujeito a
∑

S:e∈S

xS ≥ 1 e ∈ U

xS ∈ {0, 1} S ∈ S.

O problema com restrições de integralidade é NP-completo. Substituindo as
restrições de integralidade xS ∈ {0, 1} por restrições trivias xS ≥ 0 obtemos
um programa linear. Qual o seu dual?

72

Parte II

Programação inteira

73

6 Introdução

6.1 Definições

Problema da dieta

• Problema da dieta

minimiza ctx

sujeito a Ax ≥ r
x ≥ 0

• com limites quantidade de comida x.

• Uma solução (laboratório): 5 McDuplos, 3 maçãs, 2 casquinhas mista
para R$ 24.31

• Mentira! Solução correta: 5.05 McDuplos, 3.21 maças, 2.29 casquinhas
mistas.

• Observação: Correto somente em média sobre várias refeições.

Como resolver?

• Única refeição? Como resolver?

• Restringe a variáveis x ao Z.

• Será que metodo Simplex ainda funciona?

• Não. Pior: O problema torna-se NP-completo.

Problemas de otimização

• Forma geral

optimiza f(x)

sujeito a x ∈ V

75

6 Introdução

Programação inteira

• Programação linear (PL)

maximiza ctx

sujeito a Ax ≤ b
x ∈ Rn ≥ 0

• Programação inteira pura (PI)

maximiza hty

sujeito a Gy ≤ b
y ∈ Zn ≥ 0

Programação inteira

• Programção (inteira) mista (PIM)

maximiza ctx+ hty

sujeito a Ax+Gy ≤ b
x ∈ Rn ≥ 0, y ∈ Zn ≥ 0

• Programação linear e inteira pura são casos particulares da programação
mista.

• Outro caso particular: 0-1-PIM e 0-1-PI.

x ∈ Bn

Exemplo

maximiza x1 + x2

sujeito a 2x1 + 7x2 ≤ 49
5x1 + 3x2 ≤ 50

76

6.1 Definições

Exemplo

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x 2 2x1+7x2≤ 49

5x1+3x2≤ 50Soluções viáveis
3

6

9

12

• Sorte: A solução ótima é inteira! x1 = 7, x2 = 5, V = 12.

• Observação: Se a solução ótima é inteira, um problema de PI(M) pode
ser resolvido com o método Simplex.

Exemplo

maximiza x1 + x2

sujeito a 1.8x1 + 7x2 ≤ 49
5x1 + 2.8x2 ≤ 50

Exemplo

77

6 Introdução

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x 2 1.8x1+7x2≤ 49

5x1+2.8x2≤ 50Soluções viáveis
3

6

9

12

• Solução ótima agora: x1 ≈ 7.10, x2 ≈ 5.17, V = 12.28.

• Será que bx1c , bx2c é a solução ótima do PI?

Exemplo

maximiza − x1 + 7.5x2

sujeito a − x1 + 7.2x2 ≤ 50.4
5x1 + 2.8x2 ≤ 62

Exemplo

78

6.1 Definições

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
x 2

-x1+7.2x2≤ 50.4

5x1+2.8x2≤ 62

Soluções viáveis
10

20

30

40

50

• Solução ótima agora: x1 ≈ 7.87, x2 ≈ 8.09, V = 52.83.

• bx1c = 7, bx2c = 8.

• Solução ótima inteira: x1 = 0, x2 = 7!

• Infelizmente a solução ótima inteira pode ser arbitrariamente distante!

Métodos

• Prove que a solução da relaxação linear sempre é inteira.

• Insere cortes.

• Branch-and-bound.

Exemplo: 0-1-Knapsack

79

6 Introdução

Problema da Mochila (Knapsack)

Instância Um conjunto de n itens I = {i1, . . . , in} com valores vi e pesos
wi. Um limite de peso K do mochila.

Solução Um conjunto S ⊆ I de elementos que cabem na mochila, i.e.∑
i∈Swi ≤ K.

Objetivo Maximizar o valor
∑

i∈S vi.

• Observação: Existe um solução com programação dinâmica que possui
complexidade de tempo O(Kn) (pseudo-polinomial) e de espaço O(K).

Exemplo: Maximizar cavalos

• Qual o número máximo de cavalos que cabe num tabuleiro de xadrez,
tal que nenhum ameaça um outro?

Exemplo 6.1
Formulação do problema da mochila, com variáveis indicadores xi, 1 ≤ i, j ≤

80

6.2 Motivação e exemplos

8:

maximiza
∑

i

vixi

sujeito a
∑

i

wixi ≤ L

xi ∈ B

Formulação do problema dos cavalos com variáveis indicadores xij:

maximiza
∑
i,j

xij

sujeito a xij + xi−2,j+1 ≤ 1 3 ≤ i ≤ 8, 1 ≤ j ≤ 7
xij + xi−1,j+2 ≤ 1 2 ≤ i ≤ 8, 1 ≤ j ≤ 6
xij + xi+2,j+1 ≤ 1 1 ≤ i ≤ 6, 1 ≤ j ≤ 7
xij + xi+1,j+2 ≤ 1 1 ≤ i ≤ 7, 1 ≤ j ≤ 6

Soluções do problema dos cavaleiros (A030978)
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

k 1 4 5 8 13 18 25 32 41 50 61 72 85 98 113 128
♦

6.2 Motivação e exemplos

Motivação

• Otimização combinatória é o ramo da ciência da computação que estuda
problemas de otimização em conjuntos (wikipedia).

• “The discipline of applying advanced analytical methods to help make
better decisions” (INFORMS)

• Tais problemas são extremamente frequentes e importantes.

Máquina de fazer dinheiro

• Imagine uma máquina com 10 botões, cada botão podendo ser ajustado
em um número entre 0 e 9.

81

http://www.research.att.com/~njas/sequences/A030978

6 Introdução

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

Máquina de fazer dinheiro

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

• há uma configuração que retorna R$ 10.000.

• total de combinações: 1010.

• dez testes por segundo

• em um ano:⇒ 10× 60× 60× 24× 365 ∼= 3× 108

Explosão combinatória
Funções t́ıpicas:

n log n n0.5 n2 2n n!

10 3.32 3.16 102 1.02× 103 3.6× 106

100 6.64 10.00 104 1.27× 1030 9.33× 10157

1000 9.97 31.62 106 1.07× 10301 4.02× 102567

“Conclusões”

1retirado de Integer Programming - Wolsey (1998)

82

6.3 Aplicações

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

2

4
5

7 3

0
1

6

8

9

• Melhor não aceitar a máquina de dinheiro.

• Problemas combinatórios são dif́ıceis.

6.3 Aplicações

Apanhado de problemas de otimização combinatória

• Caixeiro viajante

• Roteamento

• Projeto de redes

• Alocação de horários

• Tabelas esportivas

• Gestão da produção

• etc.

Caixeiro Viajante

83

6 Introdução

Caixeiro Viajante

Caixeiro Viajante

• Humanos são capazes de produzir boas soluções em pouco tempo!

• Humanos ?

Caixeiro Viajante

Caixeiro Viajante

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvátal & William J. Cook. Princeton University
Press

84

6.3 Aplicações

Caixeiro Viajante

Caixeiro Viajante

• Business leads the traveling salesman here and there, and there is not a
good tour for all occurring cases; but through an expedient choice divi-
sion of the tour so much time can be won that we feel compelled to give
guidelines about this. Everyone should use as much of the advice as he
thinks useful for his application. We believe we can ensure as much that

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvátal & William J. Cook. Princeton University
Press

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvátal & William J. Cook. Princeton University
Press

85

6 Introdução

it will not be possible to plan the tours through Germany in considera-
tion of the distances and the traveling back and fourth, which deserves
the traveler’s special attention, with more economy. The main thing to
remember is always to visit as many localities as possible without having
to touch them twice.

“Der Handlungsreisende wie er sein soll und was er zu tun hat, um Aufträge
zu erhalten und eines glücklichen Erfolgs in seinen Geschäften gewiss zu sein.
Von einem alten Commis-Voyageur” (O caixeiro viajante, como ele deve ser
e o que ele deve fazer para obter encomendas e garantir um sucesso feliz dos
seus negócios. Por um caixeiro viajante experiente).

First brought to the attention of the TSP research community in 1983 by
Heiner Muller-Merbach [410]. The title page of this small book is shown in
Figure 1.1. The Commis-Voyageur [132] explicitly described the need for good
tours in the following passage, translated from the German original by Linda
Cook.

Caixeiro Viajante

Caixeiro Viajante

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvátal & William J. Cook. Princeton University
Press

86

6.3 Aplicações

Formulando matemáticamente o PCV

• Associar uma variável a cada posśıvel decisão.

Formulando matemáticamente o PCV

• Associar uma variável a cada posśıvel decisão.

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvátal & William J. Cook. Princeton University
Press

87

6 Introdução

minimiza cijyij

sujeito a
∑
j∈N

xij +
∑
j∈N

xji = 2, ∀i ∈ N

xij ∈ {0, 1}, ∀i, j ∈ N.

Formulando matemáticamente o PCV

• Associar uma variável a cada posśıvel decisão.

minimiza cijyij

sujeito a
∑
j∈N

xij +
∑
j∈N

xji = 2, ∀i ∈ N

xij ∈ {0, 1}, ∀i, j ∈ N.

+ restrições de eliminação de subci-
clos!

Apanhado de problemas de otimização combinatória

• Caixeiro viajante

• Roteamento

• Projeto de redes

• Alocação de horários

• Tabelas esportivas

• Gestão da produção

• etc.

88

6.3 Aplicações

Problemas de roteamento

Problemas de roteamento
(10−12)

(10−12)

(Tercas e quintas)

(Tercas e quintas)

(segundas e quartas)

Etc.

Apanhado de problemas de otimização combinatória

• Caixeiro viajante

• Roteamento

• Projeto de redes

• Alocação de horários

• Tabelas esportivas

• Gestão da produção

• etc.

89

6 Introdução

Problemas em árvores

Problemas em árvores

Problemas em árvores - aplicações

• Telecomunicações

• Redes de acesso local

• Engenharias elétrica, civil, etc..

90

6.3 Aplicações

Apanhado de problemas de otimização combinatória

• Caixeiro viajante

• Roteamento

• Projeto de redes

• Alocação de horários

• Tabelas esportivas

• Gestão da produção

• etc.

Alocação de tripulações

Apanhado de problemas de otimização combinatória

• Caixeiro viajante

• Roteamento

• Projeto de redes

• Alocação de horários

• Tabelas esportivas

• Gestão da produção

• etc.

91

6 Introdução

Tabelas esportivas

Apanhado de problemas de otimização combinatória

• Caixeiro viajante

• Roteamento

• Projeto de redes

• Alocação de horários

• Tabelas esportivas

• Gestão da produção

• etc.

Gestão da produção

92

6.3 Aplicações

Etc.

• programação de projetos

• rotação de plantações

• alocação de facilidades (escolas, centros de comércio, ambulâncias...)

• projeto de circuitos integrados

• portfolio de ações

• etc, etc, etc, etc...

93

7 Formulação

7.1 Exemplos

“Regras de formulação”

• Criar (boas) formulações é uma arte.

• Algumas diretivas básicas:

– escolha das variáveis de decisão.
– escolha do objetivo.
– ajuste das restrições.

Formulação - Problema da mochila

• itens N = {1, 2, ...n}

• peso de cada ı́tem: pi, valor de cada ı́tem: vi

• Levar o maior valor posśıvel, dada a restrição de peso.

• Variáveis de decisão ?

Formulação - Problema da mochila

Max vixi

95

7 Formulação

s.t. ∑
i∈N

pixi ≤ P

xi ∈ {0, 1}

Formulação - Problema de locação de facilidades não-capacitado

• Alocar fábricas a cidades, de modo a minimizar o custo total de ins-
talação das fábricas e custo de transporte do produto até o cliente

clientes

fabricas

• Cada ponto i = {1, 2, ...n} apresenta um custo de instalação da fábrica
fi

• Entre cada par de cidade, (i, j), o custo de transporte é dado por cij

Formulação - Problema de locação de facilidades não-capacitado

• Exemplo:

• Variáveis de decisão ?

Para formulação escolhemos variáveis de decisão xij ∈ B, que indicam se o
cliente i for atendido pela fábrica em j.

96

7.2 Técnicas

Formulação - Problema de locação de facilidades não-capacitado

minimiza
∑

1≤j≤n

fjyj +
∑

1≤i,j≤n

cijxij

sujeito a
∑

1≤j≤n

xij = 1, 1 ≤ i ≤ n (só uma fábrica atende)

∑
1≤j≤n

yj,≤ m (no máximo m fábricas)

xij ≤ yj, 1 ≤ i, j ≤ n (só fábricas existentes atendem)
xij ∈ B, 1 ≤ i, j ≤ n
yj ∈ B, 1 ≤ j ≤ n.

Alternativas:

• Para instalar exatamente m fábricas:
∑
yj = m.

7.2 Técnicas

Formulação: Indicadores

• Variáveis indicadores x ∈ B: Seleção de um objeto.

• Implicação (limitada): Se x for selecionado, então y deve ser selecionado

x ≤ y x, y ∈ B

• Ou:
x+ y ≥ 1 x, y ∈ B

• Ou-exlusivo:
x+ y = 1 x, y ∈ B

• Em geral: Seleciona n de m itens x1, . . . , xm ∈ B∑
i

xi

{
=

≥

}
n

97

7 Formulação

Formulação: Indicadores
Para x, y, z ∈ B

• Conjunção x = yz = y∧ z

x ≤ (y+ z)/2 (7.1)
x ≥ y+ z− 1

• Disjunção x = y∨ z

x ≥ (y+ z)/2 (7.2)
x ≤ y+ z

• Negação x = ¬y

x = 1− y (7.3)

Formulação: Função objetivo não-linear

• Queremos minimizar custos, com uma “entrada” fixa c

f(x) =

{
0 x = 0

c+ l(x) 0 < x ≤ x̄

com l(x) linear.

• Solução?

f(x) = cy+ l(x)

x ≤ x̄y
x ∈ R, y ∈ B

• Disjunção de equações: Queremos que aplica-se uma das equações

f1 ≤ f2
g1 ≤ g2

• Solução, com constante M suficientemente grande

f1 ≤ f2 +Mx

g1 ≤ g2 +M(1− x)

x ∈ B

98

7.2 Técnicas

Exemplo

Planejamento de produção (ingl. uncapacitated lot sizing)

• Objetivo: Planejar a futura produção no próximos n semanas.

• Parâmetros: Para cada semana i

– Custo fixo fi para produzir,
– Custo pi para produzir uma unidade,
– Custo hi por unidade para armazenar,
– Demanda di

Exemplo

Seja

• xi a quantidade produzido,

• si a quantidade no estoque no final da semana i,

• yi = 1 sem tem produção na semana i, 0 senão.

Problema:

• Função objetivo tem custos fixos, mas xi não tem limite.

• Determina ou estima um valor limite M.

Exemplo

minimiza
∑

i

pixi +
∑

i

hisi +
∑

i

fiyi

sujeito a si = si−1 + xi − di, 1 ≤ i ≤ n
s0 = 0

xi ≤Myi, 1 ≤ i ≤ n
x ∈ Rn, y ∈ Bn.

99

7 Formulação

Formulações diferentes

0 1 2 3 4 5
x1

0

1

2

3

4

5

x 2

Uma problema de programação linear ou inteira geralmente possui mais que
uma formulação. Na programação linear existe pouca diferença entre as
formulações: a solução é a mesma e o tempo para resolver o problema é
comparável, para um número comparável de restrições e variáveis. Na pro-
gramação inteira uma formulação boa é mais importante. Como a solução de
programas inteiras é NP-completo, frequentemente a relaxação linear é usada
para obter uma aproximação. Diferentes formulação de um programa inteiro
possuem diferentes qualidades da relaxação linear. Uma maneira de quantifi-
car a qualidade de uma formulação é o gap de integralidade. Para um problema
P e uma instância i ∈ P seja OPT(i) a solução ótima inteira e LP(i) a solução
da relaxação linear. O gap de integralidade é

g(P) = sup
i∈P

LP(i)

OPT(i)
(7.4)

(para um problema de maximização.) O gap de integralidade é dá uma garan-
tia para qualidade da solução da relaxação linear: caso o gap é g, a solução
não é mais que um fator g maior que a maior solução integral.

100

8 Técnicas de solução

8.1 Introdução

Limites

• Exemplo: Problema de maximização.

• Limite inferior (limite primal): Cada solução viável.

– Qualquer técnica construtiva, p.ex. algoritmos gulosos, heuŕısticas
etc.

• Limite superior (limite dual): Essencialmente usando uma relaxação

– Menos restrições ⇒ conjunto maior de solução viáveis.
– Nova função objetivo que é maior ou igual.

• Importante: Relaxação linear: x ∈ Z⇒ x ∈ R.

8.2 Problemas com solução eficiente

Relaxação inteira

• Solução simples: A relaxação linear possui solução ótima inteira.

• Como garantir?

• Com base B temos a solução x = (xB xN)t = (B−1b, 0)t.

• Observação: Se b ∈ Zm e | det(B)| = 1 para a base ótima, então o PL
resolve o PI.

Lembrança: Determinante usando Laplace

det(A) =
∑

1≤i≤n

(−1)i+jaij det(Aij) =
∑

1≤j≤n

(−1)i+jaij det(Aij)

com Aij a submatriz sem linha i e coluna j.

101

8 Técnicas de solução

Relaxação inteira

• Para ver isso: Regra de Cramer.

• A solução de Ax = b é

xi =
det(Ai)

det(A)

com Ai a matriz resultante da substituição da i-gésima coluna de A por
b.

Prova. Seja Ui a matriz identidade com a i-gésima coluna substitúıdo por x,
i.e. 

1 x1

1 x2

. . .
...

xn−1
. . .

xn 1


Temos que AUi = Ai e com det(Ui) = xi e det(A) det(Ui) = det(Ai) temos
o resultado. �

Exemplo: Regra de Cramer

3 2 1

5 0 2

2 1 2

x1

x2

x3

 =

11
1



Exemplo: Regra de Cramer

∣∣∣∣∣∣
3 2 1

5 0 2

2 1 2

∣∣∣∣∣∣ = −13;

∣∣∣∣∣∣
1 2 1

1 0 2

1 1 2

∣∣∣∣∣∣ = −1

∣∣∣∣∣∣
3 1 1

5 1 2

2 1 2

∣∣∣∣∣∣ = −3;

∣∣∣∣∣∣
3 2 1

5 0 1

2 1 1

∣∣∣∣∣∣ = −4

Logo x1 = 1/13; x2 = 3/13; x3 = 4/13.

102

8.2 Problemas com solução eficiente

Aplicação da regra de Cramer

• Como garantir que x = B−1b é inteiro?

• Cramer:

xi =
det(Bi)

det(B)

• Condição posśıvel: (a) det(Bi) inteiro, (b) det(B) ∈ {−1, 1}.

• Garantir (a): A ∈ Zm×n e b ∈ Zm.

• Garantir (b): Toda submatriz quadrada não-singular de A tem determi-
nante {−1, 1}.

Exemplo 8.1
Observe que essas condições são suficientes, mas não necessárias. É posśıvel
que Bx = b possui solução inteira sem essas condições ser satisfeitas. Por
exemplo

(
2 2

1 0

)(
x1

x2

)
=

(
1

1

)
tem a solução inteira (x1x2) = (10), mesmo que det(A) = −2. ♦

A relaxação é inteira

Definição 8.1
Uma matriz quadrada inteira A ∈ Rn×n é unimodular se | det(A)| = 1. Uma
matriz arbitráriaA é totalmente unimodular (TU) se cada submatriz quadrada
não-singular A ′ de A é modular, i.e. det(A ′) ∈ {0, 1,−1}.

Uma consequência imediata dessa definição: aij ∈ {−1, 0, 1}.

Exemplo

Quais matrizes são totalmente unimodular?

103

8 Técnicas de solução

(
1 −1
1 1

)
;

1 1 0

0 1 1

1 0 1


 1 −1 −1 0

−1 0 0 1

0 1 0 −1

 ;


0 1 0 0 0

0 1 1 1 1

1 0 1 1 1

1 0 0 1 0

1 0 0 0 0



Critérios

Proposição 8.1
Se A é TU então

1. At é TU.

2. (A I) com matriz de identidade I é TU.

3. Uma matriz B que é uma permutação das linhas ou colunas de A é TU.

4. Multiplicando uma linha ou coluna com −1 resulta numa matriz TU.

Prova. (i) Qualquer submatriz quadrada Bt de At e uma submatriz B de A
também. Com det(B) = det(Bt), segue que At é totalmente unimodular. (ii)
Qualquer submatriz de (AI) tem a forma (A ′I ′) com A ′ submatriz de A e I ′

submatriz de I. Com | det(A ′I ′)| = | det(A ′)| segue que (AI) é TU. (iii) Cada
submatriz de B é uma submatriz de A. (iv) A determinante troca no máximo
o sinal. �

Critérios

Proposição 8.2
Uma matriz A é totalmente unimodular se

1. aij ∈ {+1,−1, 0}

2. Cada coluna contém no máximo dois coeficientes não-nulos.

3. Existe uma partição de linhas M1

.
∪ M2 = [1,m] tal que cada coluna

com dois coeficientes não-nulos satisfaz∑
i∈M1

aij −
∑

i∈M2

aij = 0

Observe que esse critério é suficiente, mas não necessário.

104

8.2 Problemas com solução eficiente

Exemplo

 1 −1 −1 0

−1 0 0 1

0 1 0 −1


• Coeficientes ∈ {−1, 0, 1}: Sim.

• Cada coluna no máximo dois coeficientes não-nulos: Sim.

• Partição M1,M2? Sim, escolhe M1 = [1, 3],M2 = ∅.

Exemplo

A =

(
1 −1
1 1

)
TU?
Não: det(A) = 2.

A =

1 1 0

0 1 1

1 0 1


TU?
Não: det(A) = 2.


0 1 0 0 0

0 1 1 1 1

1 0 1 1 1

1 0 0 1 0

1 0 0 0 0


TU? Sim. Mas nossa regra não se aplica!
Prova. (Proposição 8.2). Prova por contradição. Seja A uma matriz que
satisfaz os critérios da proposição 8.2, e seja B o menor submatriz quadrada
de A tal que det(B) 6∈ {0,+1,−1}. B não contém uma coluna com um único
coeficiente não-nula: seria uma contradição com a minimalidade do B (re-
movendo a linha e a coluna que contém esse coeficiente, obtemos uma matriz
quadrada menor B∗, que ainda satisfaz det(B∗) 6∈ {0,+1,−1}). Logo, B contém

105

8 Técnicas de solução

dois coeficientes não-nulos em cada coluna. Aplicando a condição (3) acima,
subtraindo as linhas com ı́ndice em M1 das linhas com ı́ndice em M2 podemos
ver as linhas do B são linearmente dependentes e portanto temos det(B) = 0,
uma contradição. �

Consequências

Teorema 8.1 (Hoffman,Kruskal)
Se a matriz A de um programa linear é totalmente unimodular e o vetor b é
inteiro, todas soluções básicas são inteiras. Em particular as regiões

{x ∈ Rn | Ax ≤ b}
{x ∈ Rn | Ax ≥ b}

{x ∈ Rn | Ax ≤ b, x ≥ 0}
{x ∈ Rn | Ax = b, x ≥ 0}

tem pontos extremos inteiros.

Prova. Considerações acima. �

Exemplo 8.2 (Caminhos mais curtos)

Exemplo: Caminhos mais curtos

• Dado um grafo não-direcionado G = (V,A) com custos c : A → Z nos
arcos.

• Qual o caminho mais curto entre dois nós s, t ∈ V?

Exemplo: Caminhos mais curtos

106

8.2 Problemas com solução eficiente

minimiza
∑
a∈A

caxa

sujeito a
∑

a∈N+(s)

xa −
∑

a∈N−(s)

xa = 1

∑
a∈N+(v)

xa −
∑

a∈N−(a)

xa = 0, ∀v ∈ V \ {s, t}

∑
a∈N+(t)

xa −
∑

a∈N−(t)

xa = −1

xa ∈ B, ∀a ∈ A.

A matriz do sistema acima de forma explicita:

s

...

t


1 · · · · · · −1

1
...

−1 −1
−1 · · ·




xa1

...

xam

 =


1

0
...
0

1


Como cada arco é adjacente ao no máximo dois vértices, e cada coluna contém
um coeficiente 1 e −1, a Proposição 8.2 é satisfeito com a partição trivial. ♦

Exemplo 8.3 (Fluxo em redes)

Exemplo: Fluxo em redes

• Dado: Um grafo direcionado G = (V,A)

– com arcos de capacidade limitada l : A→ Z+,
– demandas d : V → Z dos vértices,
– (com dv < 0 para destino e dv > 0 nos fonte)
– e custos c : A→ R por unidade de fluxo nos arcos.

• Qual o fluxo com custo mı́nimo?

107

8 Técnicas de solução

0

 @@@@@@@@

0~~~~~~~~~~

2 // 3

��

��=======

wwpppppppppppppp

3 // 1

@@�������

��======= 6
5 //

���������

4 //

2
~~~~~~~~~~

5

OO

ggNNNNNNNNNNNNNN

4

``@@@@@@@@

Exemplo: Fluxo em redes

minimiza
∑
a∈A

caxa

sujeito a
∑

a∈N+(v)

xa −
∑

a∈N−(v)

xa = dv, ∀v ∈ V

0 ≤ xa ≤ la, ∀a ∈ A.

com conjunto de arcos entrantes N−(v) e arcos saintes N+(v).

Exemplo: Fluxo

• A matriz que define um problema de fluxo é totalmente unimodular.

• Consequências

– Cada ponto extremo da região v́ıavel é inteira.
– A relaxação PL resolve o problema.

• Existem vários subproblemas de fluxo mı́nimo que podem ser resolvidos
também, p.ex. fluxo máximo entre dois vértices.

♦

8.3 Desigualdades válidas

Desigualdades válidas

108



8.3 Desigualdades válidas

• Problema inteiro
max{ctx | Ax ≤ b, x ∈ Zn

+}

• Relaxação linear
max{ctx | Ax ≤ b, x ∈ Rn

+}

0 1 2 3 4 5
x1

0

1

2

3

4

5

x 2

Desigualdades válidas

Definição 8.2
Uma desigualdade πx ≤ π0 é válida para um conjunto P, se ∀x ∈ P : πx ≤ π0.

• Como achar desigualdades (restrições) válidas para o conjunto da soluções
viáveis {x | Ax ≤ b, x ∈ Zn

+} de um problema inteiro?

– Técnicas de construção (p.ex. método de Chvátal-Gomory)
– Observar e formalizar caracteŕısticas espećıficas do problema.
– “The determination of families of strong valid inequalities is more

of an art than a formal methodology” [Wolsey and Nemhauser,
1999, p. 259]

109



8 Técnicas de solução

Exemplo 8.4 (Locação de facilidades não-capacitado)

minimiza
∑

1≤j≤n

fjyj +
∑

1≤i,j≤n

cijxij (8.1)

sujeito a
∑

1≤j≤n

xij = 1, ∀i = 1...n (8.2)

xij ≤ yj, ∀i, j = 1...n (8.3)
xij ∈ B, i, j = 1, ..., n (8.4)
yj ∈ B, j = 1, ..., n. (8.5)

Ao invés de
xij ≤ yj (8.6)

podemos pensar em ∑
1≤i≤n

xij ≤ nyj. (8.7)

Essa formulação ainda é correto, mas usa n restrições ao invés de n2. Entre-
tanto, a qualidade da relação linear é diferente. É simples ver que podemos
obter (8.7) somando (8.6) sobre todos i. Portanto, qualquer solução que sa-
tisfaz (8.6) satisfaz (8.7) também, e dizemos que (8.6) domina (8.7).
Que o contrário não é verdadeiro, podemos ver no seguinte exemplo: Com
custos de instalação fj = 1, de transporte cij = 5 para i 6= j e cii = 0,
duas cidades e uma fábrica obtemos as duas formulações (sem restrições de
integralidade)

minimiza y1 + y2 + 5c12 + 5c21 y1 + y2 + 5c12 + 5c21

sujeito a x11 + x12 = 1 x11 + x12 = 1

x21 + x22 = 1 x21 + x22 = 1

y1 + y2 ≤ 1 y1 + y2 ≤ 1
x11 ≤ y1 x11 + x21 ≤ 2y1

x12 ≤ y2

x21 ≤ y1 x21 + x22 ≤ 2y2

x22 ≤ y2

A solução ótima da primeira é y1 = 1, x11 = x21 = 1 com valor 6, que é a
solução ótima inteira. Do outro lado, a solução ótima da segunda formulação
é y1 = y2 = 0.5 com x11 = x22 = 1, com valor 1, i.e. ficam instaladas duas
“meia-fábricas” nas duas cidades!

♦

110



8.3 Desigualdades válidas

Exemplo: 0-1-Knapsack

maximiza
∑

1≤i≤n

vixi

sujeito a
∑

1≤i≤n

pixi ≤ P

xi ∈ B

Exemplo: 79x1 + 53x2 + 53x3 + 45x4 + 45x5 ≤ 178.

Exemplo: 0-1-Knapsack

• Observação: Para um subconjunto S ⊂ [1, n]: Se
∑

S pi > P então∑
S xi ≤ |S| − 1.

• Exemplos:

x1 + x2 + x3 ≤ 2
x1 + x2 + x4 + x5 ≤ 3
x1 + x3 + x4 + x5 ≤ 3
x2 + x3 + x4 + x5 ≤ 3

Exemplo: Emparelhamento

• Dado um grafo G = (V,A) procuramos um emparelhamento máximo,
i.e. um subconjunto C ⊆ A tal que δC(v) ≤ 1 para v ∈ V.

• Programa inteiro

maximiza
∑
A

xa

sujeito a
∑

u∈N(v)

x(u,v) ≤ 1, ∀v ∈ V

xa ∈ B, ∀a ∈ A.

111



8 Técnicas de solução

Exemplo: Emparelhamento

• Escolhe um subconjunto de nós U ⊆ V arbitrário.

• Observação: O número de arestas internas é ≤ b|U|/2c.

• Portanto: ∑
a∈U2∩A

xa ≤ b|U|/2c

é uma desigualdade válida.

Método de Chvátal-Gomory
Dado ∑

i

aixi ≤ b

também temos, para u ∈ R, u > 0 as restrições válidas∑
i

uaixi ≤ ub (multiplicação)∑
i

buaic xi ≤ ub byc ≤ y, 0 ≤ xi∑
i

buaic xi ≤ bubc Lado esquerda é inteira.

Método de Chvátal-Gomory

Teorema 8.2
Todas desigualdades válidadas pode ser constrúıda através de um número
finito de aplicações do método de Chvátal-Gomory.

Exemplo: Emparelhamento

• Para um U ⊆ V podemos somar as desigualdades∑
u∈N(v)

x(u,v) ≤ 1 ∀v ∈ V

112



8.4 Planos de corte

com peso 1/2, obtendo∑
a∈U2∩A

xa +
1

2

∑
a∈N(U)

xa ≤
1

2
|U|

• Também temos

1

2

∑
a∈N(U)

xa ≥ 0

• Portanto ∑
a∈U2∩A

xa ≤
1

2
|U|

∑
a∈U2∩A

xa ≤
⌊
1

2
|U|

⌋
Lado esquerdo inteiro

8.4 Planos de corte

Como usar restrições válidas?

• Adicionar à formulação antes de resolver.

– Vantagens: Resolução com ferramentas padrão.
– Desvantagens: Número de restrições pode ser grande ou demais.

• Adicionar ao problema se necessário: Algoritmos de plano de corte.

– Vantagens: Somente cortes que ajudam na solução da instância são
usados.

Planos de corte
Problema inteiro

max{ctx | Ax ≤ b, x ∈ Zn
+}

• O que fazer, caso a relaxação linear não produz soluções ótimas?

• Um método: Introduzir planos de corte.

113



8 Técnicas de solução

Definição 8.3
Um plano de corte (ingl. cutting plane) é uma restrição válida (ingl.
valid inequality) que todas soluções inteiras satisfazem.

Algoritmo de planos de corte

Algoritmo 8.1 (Planos de corte)
Entrada Programa inteiro max{ctx | Ax ≤ b, x ∈ Zn

+}.

Saida Solução inteira ótima ou “Não existe corte.”.

1 V := {x | Ax ≤ b} { região viável }
2 x∗ := argmax{ctx | x ∈ V} { resolve relaxação }
3 while (x∗ 6∈ Zn

+ ) do
4 i f ( e x i s t e co r t e atx ≤ d com atx∗ > d) then
5 V := V ∩ {x | atx ≤ d} { nova região viável }
6 x∗ := argmax{ctx | x ∈ V} { nova solução ótima }
7 else
8 return ”Não e x i s t e c o r t e . ”
9 end i f

10 end while

Método de Gomory

• Como achar um novo corte na linha 4 do algoritmo?

• A solução ótima atual é representado pelo dicionário

z = z̄+
∑

j

c̄jxj

xi = b̄i −
∑
j∈N

āijxj i ∈ B

• Se a solução não é inteira, existe um ı́ndice i tal que xi 6∈ Z+, i.e.
b̄i 6∈ Z+.

114



8.4 Planos de corte

Cortes de Chvátal-Gomory

xi = b̄i −
∑
j∈N

āijxj Linha fracionária (8.8)

xi ≤ b̄i −
∑
j∈N

bāijc xj Definição de b·c (8.9)

xi ≤
⌊
b̄i

⌋
−
∑
j∈N

bāijc xj Integralidade de x (8.10)

0 ≥
{
b̄i

}
−
∑
j∈N

{āij} xj (8.8) − (8.10) (8.11)

xn+1 = −
{
b̄i

}
+
∑
j∈N

{āij} xj Nova variável (8.12)

xn+1 ∈ Z+ (8.13)

(Para soluções inteiras, a diferença do lado esquerdo e do lado direito na
equação (8.10) é inteira. Portanto xn+1 também é inteira.)
A solução básica atual não satisfaz (8.11), porque com xj = 0, j ∈ N temos
que satisfazer {

b̄i

}
≤ 0,

uma contradição com a definição de {·} e o fato que b̄i é fracionário. Portanto,
provamos

Proposição 8.3
O corte (8.11) satisfaz os critérios da linha 4 do algoritmo Planos de corte.
Em particular, sempre existe um corte e o caso da linha 8 nunca se aplica.

Exemplo 8.5
Queremos resolver o problema

maximiza x1 + x2

sujeito a − x1 + 3x2 ≤ 9
10x1 ≤ 27
x1, x2 ∈ Z+

A solução da relaxação linear produz a série de dicionários
(1) z = x1 +x2

w1 = 9 +x1 −3x2

w2 = 27 −10x1

(2) z = 3 +4/3x1 −1/3w1

x2 = 3 +1/3x1 −1/3w1

w2 = 27 −10x1

115



8 Técnicas de solução

(3) z = 6.6 −4/30w2 −1/3w1

x2 = 3.9 −1/30w2 −1/3w1

x1 = 2.7 −1/10w2

A solução ótima x1 = 2.7, x2 = 3.9 é fracionária. Correspondendo com a
segunda linha
x2 = 3.9 −1/30w2 −1/3w1

temos o corte
w3 = −0.9 +1/30w2 +1/3w1

e o novo sistema é
(4) z = 6.6 −4/30w2 −1/3w1

x2 = 3.9 −1/30w2 −1/3w1

x1 = 2.7 −1/10w2

w3 = −0.9 +1/30w2 +1/3w1

Esse sistema não é mais ótimo, e temos que re-otimizar. Pior, a solução básica
atual não é viável! Mas como a na função objetivo todos coeficientes ainda
são negativos, podemos aplicar o método Simplex dual. Um pivô dual gera a
nova solução ótima
(5) z = 5.7 −1/10w2 −w3

x2 = 3 −w3

x1 = 2.7 −1/10w2

w1 = 2.7 −1/10w2 +3w3

com x2 = 3 inteiro agora, mas x1 ainda fracionário. O próximo corte, que
corresponde com x1 é
(5) z = 5.7 −1/10w2 −w3

x2 = 3 −w3

x1 = 2.7 −1/10w2

w1 = 2.7 −1/10w2 +3w3

w4 = −0.7 +1/10w2

(6) z = 5 −w4 −w3

x2 = 3 −w3

x1 = 2 −w4

w1 = 2 −w4 +3w3

w2 = 7 +10w4

cuja solução é inteira e ótima. ♦

Resumo: Algoritmos de planos de corte

• O algoritmo de planos de corte, usando os cortes de Gomory termina
sempre, i.e. é correto.

• O algoritmos pode ser modificado para programas mistos.

• A técnica pura é considerado inferior ao algoritmos de branch-and-
bound.

• Mas: Planos de corte em combinação com branch-and-bound é uma
técnica poderosa: Branch-and-cut.

116



8.5 Branch-and-bound

Figura 8.1: Visualização do exemplo 8.5.

8.5 Branch-and-bound

Branch-and-bound
Ramifica-e-limite (ingl. branch-and-bound)

• Técnica geral para problemas combinatoriais.

Branch and Bound is by far the most widely used tool for
solving large scale NP-hard combinatorial optimization pro-
blems. Clausen [1999]

• Idéia básica:

– Particiona um problema em subproblemas disjuntos e procura soluções
recursivamente.

– Evite percorrer toda árvore de busca, calculando limites e cortando
sub-árvores.

• Particularmente efetivo para programas inteiras: a relaxação linear for-
nece os limites.

Branch-and-bound

• Problema PI (puro): {max ctx | x ∈ S, x ∈ Zn
+}.

• Resolve a relaxação linear.

117



8 Técnicas de solução

• Solução inteira? Problema resolvido.

• Caso contrário: Escolhe uma variável inteira xi, com valor b̄i fracionário.

• Heuŕıstica: Variável mais fracionária: argmini | {xi} − 0.5|.

• Particione o problema S = S1

.
∪ S2 tal que

S1 = S ∩ {x | xi ≤ bvic}; S2 = S ∩ {x | xi ≥ dvie}

• Em particular com variáveis xi ∈ B:

S1 = S ∩ {x | xi = 0}; S2 = S ∩ {x | xi = 1}

Limitar

• Para cada sub-árvore mantemos um limite inferior e um limite superior.

– Limite inferior: Valor da melhor solução encontrada na sub-árvore.
– Limite superior: Valor da relaxação linear.

• Observação: A eficiência do método depende crucialmente da qualidade
do limite superior.

• Preferimos formulações mais “ŕıgidos”.

Cortar sub-árvores

1. Corte por inviabilidade: Sub-problema é inviável.

2. Corte por limite: Limite superior da sub-árvore zi menor que limite
inferior global z (o valor da melhor solução encontrada).

3. Corte por otimalidade: Limite superior zi igual limite inferior zi da
sub-árvore.

4. Observação: Como os cortes dependem do limite z, uma boa solução
inicial pode reduzir a busca consideravelmente.

118



8.5 Branch-and-bound

Ramificar

• Não tem como cortar mais? Escolhe um nó e particiona.

• Qual a melhor ordem de busca?

• Busca por profundidade

– V: Limite superior encontrado mais rápido.
– V: Pouca memória (O(δd), para δ subproblemas e profundidade
d).

– V: Re-otimização eficiente do pai (método Simplex dual)
– D: Custo alto, se solução ótima encontrada tarde.

• Melhor solução primeiro (“best-bound rule”)

– V: Procura ramos com maior potencial.
– V: Depois encontrar solução ótima, não produz ramificações supérfluas.

• Busca por largura? Demanda de memória é impraticável.

Algoritmos B&B

Algoritmo 8.2 (B&B)
Instância Programa inteiro P = max{ctx | Ax ≤ b, x ∈ Zn

+}.

Saida Solução inteira ótima.

1 { usando função z para estimar limite superior }
2 z:=−∞ { l imite infer ior }
3 A:= {(P, g(P))} { nós ativos }
4 while A 6= ∅ do
5 Escolhe : (P, g(P) ∈ A ; A := A \ (P, g(P))

6 Ramifique : Gera subproblemas P1, . . . , Pn .
7 for a l l Pi , 1 ≤ i ≤ n do
8 { adiciona , se permite melhor solução }
9 i f z(Pi) > z then

10 A := A ∪ {(Pi, z(Pi))}

11 end i f
12 { atualize melhor solução }
13 i f ( so lu ç ã o z(Pi) é v i á v e l ) then
14 z := z(Pi)

119



8 Técnicas de solução

15 end i f
16 end for
17 end while

120



9 Tópicos

Outras técnicas

• Branch-and-cut.

Começa com menos restrições (relaxação) e insere restrições (cortes) nos
sub-problemas da busca com branch-and-bound.

• Branch-and-price.

Começa com menos variáveis e insere variáveis (“geração de colunas”)
nos sub-problemas da busca com branch-and-bound.

121





10 Exerćıcios

(Soluções a partir da página 184.)

Exerćıcio 10.1 (Formulação)
A empresa “Festa fulminante” organiza festas. Nos próximos n dias, ela pre-
cisa pi pratos, 1 ≤ i ≤ n. No começo de cada dia gerente tem os seguintes
opções:

• Comprar um prato para um preço de c reais.

• Mandar lavar um prato devagarmente em d1 dias, por um preço de l1
reais.

• Mandar lavar um prato rapidamente em d2 < d1 dias, por um preço de
l2 > l1 reais.

O gerente quer minimizar os custos dos pratos. Formule como programa
inteira.

Exerćıcio 10.2 (Planos de corte)
Resolve

maximiza x1 + 3x2

sujeito a − x1 ≤ −2

x2 ≤ 3
− x1 − x2 ≤ −4

3x1 + x2 ≤ 12
xi ∈ Z+

e

maximiza x1 − 2x2

sujeito a − 11x1 + 15x2 ≤ 60
4x1 + 3x2 ≤ 24
10x1 − 5x2 ≤ 49
x1, x2 ∈ Z+

com o algoritmo de planos de corte using cortes de Chvátal-Gomory.

123



10 Exerćıcios

Exerćıcio 10.3 (Formulação)
Para os problemas abaixo, acha uma formulação como programa inteira.

Conjunto independente máximo

Instância Um grafo não-direcionado G = (V,A).

Solução Um conjunto independente I, i.e. I ⊆ V tal que para vértices
v1, v2 ∈ I, {v1, v2} 6∈ A.

Objetivo Maximiza |I|.

Emparelhamento perfeito com peso máximo

Instância Um grafo não-direcionado bi-partido G = (V1

.
∪ V2, A) (a fato

de ser bi-partido significa que A ⊆ V1 × V2) com pesos p : A → R
nos arcos.

Solução Um emparelhamento perfeito, i.e. um conjunto de arcos C ⊆ A
tal que todos nós no sub-grafo G[C] = (V1 ∪ V2, C) tem grau 1.

Objetivo Maximiza o peso total
∑

c∈C p(c) do emparelhamento.

Problema de transporte

Instância n depósitos, cada um com um estoque de pi (1 ≤ i ≤ n)
produtos, e m clientes, cada um com uma demanda de dj (1 ≤ j ≤
m) produtos. Custos de transporte aij de cada depósito para cada
cliente.

Solução Um decisão quantos produtos xij devem ser transportados do
depósito i ao cliente j, que satisfaz (i) Cada depósito manda todo
seu estoque (ii) Cada cliente recebe exatamente a sua demanda.
(Observe que o número de produtos transportados deve ser integral.)

Objetivo Minimizar os custos de transporte
∑

i,j aijxij.

124



Conjunto dominante

Instância Um grafo não-direcionado G = (V,A).

Solução Um conjunto dominante, i.e. um conjunto D ⊆ V, tal que ∀v ∈
V : v ∈ D∨(∃u ∈ D : {u, v} ∈ A) (cada vértice faz parte do conjunto
dominante ou tem um vizinho no conjunto dominante).

Objetivo Minimizar o tamanho do conjunto dominante |D|.

Exerćıcio 10.4 (Formulação)
Acha uma formulação inteira para todos os 21 problemas que o Karp provou
NP-completo [Karp., 1972].

Exerćıcio 10.5 (Formulação: Apagando e ganhando)
Juliano é fã do programa de auditório Apagando e Ganhando, um programa
no qual os participantes são selecionados atráves de um sorteio e recebem
prêmios em dinheiro por participarem. No programa, o apresentador escreve
um número de N d́ıgitos em uma lousa. O participante então deve apagar
exatamente D d́ıgitos do número que está na lousa; o número formado pelos
d́ıgitos que restaram é então o prêmio do participante. Juliano finalmente
foi selecionado para participar do programa, e pediu que você escrevesse um
programa inteira que, dados o número que o apresentador escreveu na lousa,
e quantos d́ıgitos Juliano tem que apagar, determina o valor do maior prêmio
que Juliano pode ganhar.
(Fonte: Maratona de programação regional 2008, RS)

Exerćıcio 10.6 (Formulação: Set)
Set é um jogo jogado com um baralho no qual cada carta pode ter uma,
duas ou três figuras. Todas as figuras em uma carta são iguais, e podem ser
ćırculos, quadrados ou triângulos. Um set é um conjunto de três cartas em
que, para cada caracteŕıstica (número e figura), u ou as três cartas são iguais,
ou as três cartas são diferentes. Por exemplo, na figura abaixo, (a) é um set
válido, já que todas as cartas têm o mesmo tipo de figura e todas elas têm
números diferentes de figuras. Em (b), tanto as figuras quanto os números são
diferentes para cada carta. Por outro lado, (c) nào é um set, já que as duas
ultimas cartas têm a mesma figura, mas esta é diferente da figura da primeira
carta.

125



10 Exerćıcios

• 4 �

• • ��� 444
• • • •• 44
(a) (b) (c)

O objetivo do jogo é formar o maior número de sets com as cartas que estão
na mesa; cada vez que um set é formado, as três cartas correspondentes são
removidas de jogo. Quando há poucas cartas na mesa, é fácil determinar
o maior número de sets que podem ser formados; no entanto, quando há
muitas cartas há muitas combinações posśıveis. Seu colega quer treinar para
o campeonato mundial de Set, e por isso pediu que você fizesse um programa
inteira e que calcula o maior número de sets que podem ser formados com um
determinado conjunto de cartas.
(Fonte: Maratona de programação regional 2008, RS)

Exerćıcio 10.7 (Matrizes totalmente unimodulares)
Para cada um dos problemas do exerćıcio 10.3 decide, se a matriz de coefici-
entes é totalmente unimodular.

Exerćıcio 10.8 (Formulação)
Para os problemas abaixo, acha uma formulação como programa inteira.

Cobertura por arcos

Instância Um grafo não-direcionado G = (V, E) com pesos c : E→ Q nos
arcos.

Solução Uma cobertura por arcos, i.e. um subconjunto E ′ ⊆ E dos arcos
tal que todo vértice faz parte de ao menos um arco selecionado.

Objetivo Minimiza o custo total dos arcos selecionados em E ′.

Conjunto dominante de arcos

Instância Um grafo não-direcionado G = (V, E) com pesos c : E→ Q nos
arcos.

Solução Um conjunto dominante de arcos, i.e. um subconjunto E ′ ⊆ E
dos arcos tal que todo arco compartilha um vértice com ao menos
um arco em E ′.

126



Objetivo Minimiza o custo total dos arcos selecionados em E ′.

Coloração de grafos

Instância Um grafo não-direcionado G = (V, E).

Solução Uma coloração do grafo, i.e. uma atribuição de cores nas vértices
c : V → Z] tal que cada par de vértices ligando por um arco recebe
uma cor diferente.

Objetivo Minimiza o número de cores diferentes.

Clique ḿınimo ponderado

Instância Um grafo não-direcionado G = (V, E) com pesos c : V → Q nos
vértices.

Solução Uma clique, i.e. um subconjunto V ′ ⊆ V de vértices tal que
existe um arco entre todo par de vértices em V ′.

Objetivo Maximiza o peso total dos vértices selecionados V ′.

Subgrafo cúbico

Instância Um grafo não-direcionado G = (V, E).

Solução Uma subgrafo cúbico, i.e. uma seleção E ′ ⊆ E dos arcos, tal que
cada vértice em G ′ = (V, E ′) possui grau 0 ou 3.

Objetivo Maximiza o número de arcos selecionados |E ′|.

Exerćıcio 10.9 (Formulação e implementação: Investimento)
Uma empresa tem que decidir quais de sete investimentos devem ser feitos.
Cada investimento pode ser feito somente uma única vez. Os investimentos
tem lucros (ao longo prazo) e custos iniciais diferentes como segue

127



10 Exerćıcios

Investimento
1 2 3 4 5 6 7

Lucro estimado [MR$] 17 10 15 19 7 13 9
Custos iniciais [MR$] 43 28 34 48 17 32 23

A empresa tem 100 MR$ capital dispońıvel. Como maximizar o lucro total
(ao longo prazo, não considerando os investimentos atuais), respeitando que
os investimentos 1, 2 e 3, 4 são mutualmente exclusivas, e nem o investimento
3 nem o investimento 4 pode ser feita, sem ao menos um investimento em 1

ou 2 (as outros investimentos não tem restrições).

Exerćıcio 10.10 (Formulação e implementação: Brinquedos)
Um produtor de brinquedos projetou dois novos brinquedos para Natal. A
preparação de uma fábrica para produzir custaria 50000R$ para a primeiro
brinquedo e 80000R$ para o segundo. Após esse investimento inicial, o pri-
meiro brinquedo rende 10R$ por unidade e o segundo 15R$.
O produtor tem duas fábricas dispońıveis mas pretende usar somente uma,
para evitar custos de preparação duplos. Se a decisão for tomada de produzir
os dois brinquedos, a mesma fábrica seria usada.
Por hora, a fábrica 1 é capaz de produzir 50 unidades do brinquedo 1 e 40
unidades do brinquedo 2 e tem 500 horas de produção dispońıvel antes de
Natal. A fábrica 2 é capaz de produzir 40 unidades do brinquedo 1 e 25
unidades do brinquedo 2 por hora, e tem 700 horas de produção dispońıvel
antes de Natal.
Como não sabemos se os brinquedos serão continuados depois Natal, a pro-
blema é determinar quantas unidades de cada brinquedo deve ser produzido
até Natal (incluindo o caso que um brinquedo não é produzido) de forma que
maximiza o lucro total.

Exerćıcio 10.11 (Formulação e implementação: aviões)
Uma empresa produz pequenos aviões para gerentes. Os gerentes frequen-
temente precisam um avião com caracteŕısticas espećıficas que gera custos
inicias altos no começo da produção.
A empresa recebeu encomendas para três aviões, mas como ela está com ca-
pacidade de produção limitada, ela tem que decidir quais das três aviões ela
vai produzir. Os seguintes dados são relevantes

128



Aviões Cliente
produzidas 1 2 3
Custo inicial [MR$] 3 2 0
Lucro [MR$/avião] 2 3 0.8
Capacidade usada [%/avião] 20% 40% 20%
Demanda máxima [aviões] 3 2 5

Os clientes aceitam qualquer número de aviões até a demanda máxima. A
empresa tem quer decidir quais e quantas aviões ela vai produzir. As aviões
serão produzidos em paralelo.

Exerćıcio 10.12 (Desigualdades válidas (Nemhauser,Wolsey))
Uma formulação do problema do conjunto independente máximo é

maximiza
∑
v∈V

xv (10.1)

sujeito a xu + xv ≤ 1 ∀{u, v} ∈ E (10.2)
xv ∈ B ∀v ∈ V. (10.3)

Considere a instância

1

2

3

4 5

6

7

.

Mostra que
∑

1≤i≤7 xi ≤ 2 é uma desigualdade válida.

Exerćıcio 10.13 (Formulação (Winkler))
Uma fechadura de combinação com três discos, cada um com números entre
1 e 8, possui um defeito, tal que precisa-se somente dois números corretos dos
três para abri-la. Qual o número mı́nimo de combinações (de três números)
que precisa-se testar, para garantidamente abrir a fechadura?
Formule um programa inteiro e resolve-o.

129



10 Exerćıcios

Exerćıcio 10.14 (Desigualdades válidas)
Considere a instância

6

7

8 9

10

1

2

3

4

5

do problema do caixeiro viajante (os números nas arestas representam os
ı́ndices das variáveis correspondentes). Mostra que

x1 + x2 + x5 + x6 + x7 + x9 ≤ 4

é uma desigualdade válida.

Exerćıcio 10.15 (Formulação)
Formule o problema

MAX-k-SAT

Entrada Uma fórmula em forma normal conjuntiva sobre variáveis
x1, . . . , xk com n claúsulas ϕ(x1, . . . , xk) = C1 ∧ · · ·∧ Cn.

Solução Uma atribuição xi 7→ {0, 1}.

Objetivo Maximizar o número de claúsulas satisfeitas.

(Dica: Usa as desigualdades (7.1)-(7.3). Começa com k = 3.)

130



Parte III

Heuŕısticas

131





11 Introdução

Resolução de Problemas

• Problemas Polinomiais

1. Programação Dinâmica
2. Divisão e Conquista
3. Algoritmos Gulosos

• Problemas Combinatórios

– Técnicas Exatas: Programação Dinâmica, Divisão e Conquista back-
tracking, branch & bound

– Programação não-linear: Programação semi-definida, etc.
– Algoritmos de aproximação: garantem solução aproximada
– Heuŕısticas e metaheuŕısticas: raramente provêem aproximação

Heuŕısticas

• O que é uma heuŕıstica?
Practice is when it works and nobody knows why.

• Grego heuŕısko: eu acho, eu descubro.

• Qualquer procedimento que resolve um problema

– bom em média
– bom na prática (p.ex. Simplex)
– não necessáriamente comprovadamente.

• Nosso foco

– Heuŕısticas construtivas: Criam soluções.
– Heuŕısticas de busca: Procumra soluções.

133



11 Introdução

Heuŕısticas de Construção

• Constróem uma solução, escolhendo um elemento a ser inserido na solução
a cada passo.

• Geralmente são algoritmos gulosos.

• Podem gerar soluções infact́ıveis.

– Solução infact́ıvel: não satisfaz todas as restrições do problema.
– Solução fact́ıvel: satisfaz todas as restrições do problema, mas não

é necessariamente a ótima.

Exemplo: Heuŕıstica construtiva

• Problema do Caixeiro Viajante (PCV) – Heuŕıstica do vizinho mais
próximo.

Algoritmo 11.1 (HVizMaisProx)
Entrada Matriz de distâncias completa D = (dij), número de cidades n.

Sáıda Uma solução fact́ıvel do PCV: Ciclo Hamiltaneo C com custo c.

1 HVizMaisProx (D ,n)=
2 { cidade in i c i a l randômica }
3 u := s e l e c i o n a uniformemente de [1, n]

4 w := u

5 { representação de caminhos : sequência de vértices }
6 C := u { c ic lo in i c i a l }
7 c := 0 { custo do cic lo }
8 repeat n − 1 vezes
9 s e l e c i o n a v /∈ C com d i s t â n c i a mı́nima de u

10 C := C v

11 c := c + duv

12 u := v

13 end repeat
14 C := C w { fechar c ic lo }
15 c := c + duw

16 return (C, c)

134



Meta-heuŕısticas

• Heuŕısticas genéricas: meta-heuŕısticas.

Motivação: quando considera-se a possibilidade de usar heuŕısticas

• Para gerar i,a solução fact́ıvel num tempo pequeno, muito menor que
uma solução exata pudesse ser fornecida.

• Para aumentar o desempenho de métodos exatos. Exemplo: um limi-
tante superior de um Branch-and-Bound pode ser fornecido por uma
heuŕıstica.

Desvantagens do uso de heuŕısticas

• No caso de metaheuŕısticas, não há como saber o quão distante do ótimo
a solução está

• Não há garantia de convergência

• Dependendo do problema e instância, não há nem como garantir uma
solução ótima

Problema de otimização em geral

• Um problema de otimização pode ser representado por uma quádrupla

(I, S, f, obj)

– I é o conjunto de posśıveis instâncias.
– S(i) é o conjunto de soluções fact́ıveis (espaço de soluções fact́ıveis)

para a instância i.
– Uma função objetivo (ou fitness) f(·) avalia a qualidade de uma

dada solução.
– Um objetivo obj = min ou max: s∗ ∈ S para o qual f(s∗) seja

mı́nimo ou máximo.

• Alternativa

optimiza f(x)

sujeito a x ∈ S

• S discreto: problema combinatorial.

135



11 Introdução

Técnicas de solução

• Resolver o problema nessa geralidade: enumeração.

• Frequentemente: Uma solução x ∈ S possui uma estrutura.

• Exemplo: x é um tuplo, um grafo, etc.

• Permite uma enumeração por componente: branch-and-bound.

136



12 Heuŕısticas baseados em Busca local

12.1 Busca local

Busca Local

• Frequentemente: O espaço de soluções possui uma topologia.

• Exemplo da otimização (cont́ınua): max{x2 + xy | x, y ∈ R}

-10
-5

 0
 5

 10-10

-5

 0

 5

 10

-50

 0

 50

 100

 150

 200

x*x+x*y

• Espaço euclidiano de duas dimensões.

• Isso podemos aproveitar: Busca localmente!

Vizinhanças

• O que fazer se não existe uma topologia natural?

• Exemplo: No caso do TSP, qual o vizinho de um ciclo Hamiltaneo?

• Temos que definir uma vizinhança.

137



12 Heuŕısticas baseados em Busca local

• Notação: Para x ∈ S
N (x)

denota o conjunto de soluções vizinhos.

• Uma vizinhança defina a paisagem de otimização (ingl. optimization
landscape): Espaço de soluções com valor de cada solução.

Relação de vizinhança entre soluções

• Uma solução s ′ é obtida por uma pequena modificação na solução s.

• Enquanto que S e f são fornecidos pela especificação do problema, o
projeto da vizinhança é livre.

Busca Local k-change e inserção

• k-change: mudança de k componentes da solução.

• Cada solução possui vizinhança de tamanho O(nk).

• Exemplo: 2-change, 3-change.

• TSP: 2-change (inversão).

• Inserção/remoção: inserção de um componente da solução, seguido da
factibilização da solução

• Vertex cover: 1-change + remoção.

Exemplo: Vizinhança mais elementar

• Suponha um problema que possue como soluções fact́ıveis S = Bn (por
exemplo, uma instância do problema de particionamento de conjuntos).

• Então, para n = 3 e s0={0,1,0}, para uma busca local 1-flip, N(s0) =
{(1, 1, 0), (0, 0, 0), (0, 1, 1)}.

138



12.1 Busca local

Exemplo: Vizinhanças para TSP

• 2-opt: Para cada par de arcos (u1, v1) e (u2, v2) não consecutivos,
remova-os da rota, e insira os arcos (u1, u2) e (v1, v2).

• Para uma solução s e uma busca k-opt |N (s)| ∈ O(nk).

Caracteŕısticas de vizinhanças
É desejável que uma vizinhança é

• simétrica (ou reverśıvel)

y ∈ N (x)⇒ x ∈ N (y)

• conectada (ou completa)

∀x, y ∈ S ∃z1, . . . , zk ∈ S z1 ∈ N (x)

zi+1 ∈ N (zi) 1 ≤ i < k
y ∈ N (zk)

Busca Local: Idéıa

• Inicia a partir de uma solução s0

• Se move para soluções vizinhas melhores no espaço de busca.

• Para, se não tem soluções melhores na vizinhança.

• Mas: Repetindo uma busca local com soluções inicias randômicas, acha-
mos o mı́nimo global com probabilidade 1.

139



12 Heuŕısticas baseados em Busca local

Busca local – Caso cont́ınuo

Algoritmo 12.1 (Busca local cont́ınua)
Entrada Solução inicial s0 ∈ Rn, tamanho inicial α de um passo.

Sáıda Solução s ∈ Rn tal que f(s) ≤ f(s0).

Nome Gradient descent.

1 BuscaLocal (s0 ,α)=
2 s := s0
3 while ∇f(x) 6= 0 do
4 s ′ := s− α∇f(s)
5 i f f(s ′) < f(s) then
6 s := s ′

7 else
8 diminui α
9 end i f

10 end while
11 return s

Busca local – Caso cont́ınuo

• Gradiente

∇f(x) =

(
δf

δx1
(x), . . . ,

δf

δxn
(x)

)t

sempre aponta na direção do crescimento mais alto de f (Cauchy).

• Necessário: A função objetivo f é diferenciável.

• Diversas técnicas para diminuir (aumentar) α.

• Opção: Line search na direção −∇f(x) para diminuir o número de gra-
dientes a computar.

140



12.1 Busca local

Busca Local – Best Improvement

Algoritmo 12.2 (Busca Local BI)
Entrada Solução inicial s0.

Sáıda Solução s tal que f(s) ≤ f(s0).

Nomes Steepest descent, steepest ascent.

1 BuscaLocal (s0)=
2 s := s0
3 while t rue
4 s ′ := argminy{f(y) | y ∈ N (s)}

5 i f f(s ′) < f(s) then s := s ′

6 else break
7 end while
8 return s

Busca Local – First Improvement

Algoritmo 12.3 (Busca Local FI)
Entrada Solução inicial s0.

Sáıda Solução s ′ tal que f(s ′) ≤ f(s).

Nomes Hill descent, hill climbing.

1 BuscaLocal (s0)=
2 s := s0
3 repeat
4 S e l e c t any s ′ ∈ N (s) not yet cons ide r ed
5 i f f(s ′) < f(s) then s := s ′

6 until a l l s o l u t i o n s in N (s) have been v i s i t e d
7 return s

141



12 Heuŕısticas baseados em Busca local

Projeto de uma busca local

• Como gerar uma solução inicial? Aleatória, via método construtivo, etc.

• Quantas soluções inicias devem ser geradas?

• Importante: Definição da função de vizinhança N .

• Vizinhança grande ou pequena? (grande= muito tempo e pequena=menos
vizinhos)

• Estratégia de seleção de novas soluções

– examine todas as soluções vizinhas e escolha a melhor
– assim que uma solução melhor for encontrada, reinicie a busca.

Neste caso, qual a sequência de soluções examinar?

• Importante: Método eficiente para avaliar a função objetivo de vizinhos.

Exemplo: 2-change TSP

• Vizinhança: Tamanho O(n2).

• Avaliação de uma solução: O(n) (somar n distâncias).

• Atualizando a valor da solução atual: O(1) (somar 4 distâncias)

• Portanto: Custo por iteração de “best improvement”

– O(n3) sem avaliação diferential.
– O(n2) com avaliação diferential.

Avaliação de buscas locais
Como avaliar a busca local proposta?

• Poucos resultados teóricos.

• Dif́ıcil de saber a qualidade da solução resultante.

• Depende de experimentos.

Problema Dif́ıcil

• É fácil de gerar uma solução aleatória para o TSP, bem como testar sua
factibilidade

• Isso não é verdade para todos os problemas

• Exemplo dif́ıcil: Atribuição de pesos a uma rede OSPF

142



12.1 Busca local

Busca local

• Desvantagem obvia: Podemos parar em mı́nimos locais.

• Exceto: Função objetivo convexa (caso minimização) ou concava (caso
maximização).

• Técnicas para superar isso baseadas em busca local

– Multi-Start
– Busca Tabu
– Algoritmos Metropolis e Simlated Annealing
– Variable neighborhood search

Multi-Start Metaheuristic

• Gera uma solução aleatória inicial e aplique busca local nesta solução.

• Repita este procedimento por n vezes.

• Retorne a melhor solução encontrada.

• Problema: soluções aleatoriamente geradas em geral possuem baixa qua-
lidade.

Multi-Start

Algoritmo 12.4 (Multi-Start)
Entrada Número de repetições n.

143



12 Heuŕısticas baseados em Busca local

Sáıda Solução s.

1 Multi Start (n) :=
2 s∗ := ∅
3 f∗ :=∞
4 repeat n vezes
5 gera so lu ç ã o randômica s

6 s := BuscaLocal(s)
7 i f f(s) < f∗ then
8 s∗ := s

9 f∗ := f(s)
10 end i f
11 end repeat
12 return s∗

Cobrimento de Vértices

• Definição de vizinhança

• grafo sem vértices

• grafo estrela

• clique bipartido Ki,j

• grafo linha

12.2 Metropolis e Simulated Annealing

O algoritmo Metropolis

• Proposto em 1953 por Metropolis, Rosenbluth, Rosenbluth, Teller e Tel-
ler

• simula o comportamento de um sistema f́ısico de acordo com a mecânica
estat́ıstica

• supõe temperatura constante

– Um modelo básico define que a probabilidade de obter um sistema
num estado com energia E é proporcional à função e− E

kT de Gibbs-
Boltzmann, onde T > 0 é a temperatura, e k > 0 uma constante

144



12.2 Metropolis e Simulated Annealing

– a função é monotônica decrescente em E: maior probabilidade de
estar em um sistema de baixa energia

– para T pequeno, a probabilidade de um sistema em estado de baixa
energia é maior que um em estado de alta energia

– para T grande, a probabilidade de passar para outra configuração
qualquer do sistema é grande

A distribuição de Boltzmann

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10

exp(-x/0.1)
exp(-x/2)

exp(-x/10)
exp(-x/20)

exp(-x/500)

Algoritmo Metropolis

• Estados do sistema são soluções candidatas

• A energia do sistema é representada pelo custo da solução

• Gere uma perturbação na solução s gerando uma solução s ′.

• Se E(s ′) ≤ E(s) atualize a nova solução para s ′.

• Caso contrário, 4E = E(s ′) − E(s) > 0.

• A solução s ′ passa ser a solução atual com probabilidade e−4EkT

• Caracteŕıstica marcante: permite movimentos de melhora e, com baixa
probabilidade, também de piora

145



12 Heuŕısticas baseados em Busca local

Metropolis

Algoritmo 12.5 (Metropolis)
Entrada Solução inicial s, uma temperatura T , uma constante k.

Sáıda Solução s ′ : c(s ′) ≤ c(s)

1 Metropo l i s (s , T , k)=
2 while STOP1 times do
3 S e l e c t any u n v i s i t e d s ′ ∈ N (s)
4 i f c(s ′) ≤ c(s) then update s := s ′

5 else

6 with p r o b a b i l i t y e−
(c(s ′)−c(s))

kT update s := s ′

7 end while
8 return s

Considerações sobre o algoritmo

• O algoritmo Metropolis pode resolver problemas que o gradiente descen-
dent não conseguia

• Mas em muitos casos o comportamento deste algoritmo não é desejado
(vertex cover para grafo sem arcos)

• Alta probabilidade de saltos quando próximo de um mı́nimo local

• T pode ser manipulada: se T for alta, o algoritmo Metropolis funciona
de forma similar a um passeio aleatório (ingl. random walk) e se T for
baixa (próxima a 0), o algoritmo Metropolis funciona de forma similar
ao gradiente descendente.

Simulated Annealing

• Simula um processo de recozimento.

• Recozimento: processo da f́ısica que aquece um material a uma tem-
peratura bem alta e resfria aos poucos, dando tempo para o material
alcançar seu estado de equiĺıbrio

146



12.3 GRASP

• Recozimento simulado: parte de uma alta temperatura e baixa gradual-
mente. Para cada temperatura, permite um número máximo de saltos
(dois laços encadeados)

Simulated Annealing

Algoritmo 12.6 (Simulated Annealing)
Entrada Solução inicial s, temperatura T , constante k, fator de esfria-

mento r ∈ [0, 1], dois números inteiros STOP1, STOP2.

Sáıda Solução s ′ tal que f(s ′) ≤ f(s).

1 SimulatedAnneal ing (s , T , k , r , STOP1, STOP2) :=
2 repeat STOP2 vezes
3 repeat STOP1 vezes
4 s e l e c i o n a s ′ ∈ N (s) que ainda não f o i v i s i t a d o
5 i f f(s ′) ≤ f(s) then
6 s := s ′

7 else
8 Com probab i l i dade e−(f(s ′)−f(s))/kT : s := s ′

9 end f i
10 end repeat
11 T := T × r
12 end repeat
13 return s

12.3 GRASP

GRASP

147



12 Heuŕısticas baseados em Busca local

• GRASP: greedy randomized adaptive search proce-
dure

• Proposto por Mauricio Resende e Thomas Feo (1989).

• Mauricio Resende: Pesquisador da AT&T por 20 anos,
Departamento de Algoritmos e Otimização

Mauricio G. C.
Resende

GRASP

• Método multi-start, em cada iteração

1. Gera soluções com um procedimento guloso-randomizado.
2. Otimiza as soluções geradas com busca local.

Algoritmo 12.7 (GRASP)
Entrada Solução inicial s, parametro α.

Sáıda Solução s ′ : c(s ′) ≤ c(s)

1 GRASP(s0 , α , . . . ) =
2 s := s0
3 do
4 s ′ := greedy randomized solution(α)
5 s ′ := BuscalLocal(s ′)
6 s := s ′ i f f(s ′) < f(s)
7 until a stopping c r i t e r i o n i s s a t i s f i e d
8 return s

Construção gulosa-randomizada

• Motivação: Um algoritmo guloso gera boas soluções inicias.

• Problema: Um algoritmo determińıstico produz sempre a mesma solução.

148



12.3 GRASP

• Logo: Aplica um algoritmo guloso, que não escolhe o melhor elemento,
mas escolhe randomicamente entre os α% melhores candidatos.

• O conjunto desses candidatos se chama restricted candidate list (RCL).

Construção gulosa-randomizada: Algoritmo guloso

1 Guloso ( ) :=
2 S := ()
3
4 while S = (s1, . . . , si) com i < n do
5 ent re todos candidatos C para si+1 :
6 e s c o l h e o melhor s ∈ C
7 S := (s1, . . . , si, s)
8 end while

Construção gulosa-randomizada: Algoritmo guloso

1 Guloso−Randomizado (α) :=
2 S := ()
3
4 while S = (s1, . . . , si) com i < n do
5 ent re todos candidatos C para si+1 :
6 forma a RCL com os α\% melhores candidatos em C

7 e s c o l h e randomicamente um s ∈ RCL
8 S := (s1, . . . , si, s)
9 end while

GRASP

Algoritmo 12.8 (GRASP)
Entrada Solução inicial s, parametro α.

Sáıda Solução s ′ : c(s ′) ≤ c(s)

1 GRASP(s0 , α , . . . ) =
2 x := s0
3 do
4 y := greedy randomized solution(α)

149



12 Heuŕısticas baseados em Busca local

5 y := BuscalLocal(y)
6 a t u a l i z a x caso y é s o lu ç ã o melhor
7 until a stopping c r i t e r i o n i s s a t i s f i e d
8 return s

GRASP: Variações

• long term memory : hash table (para evitar otimizar soluções já vistas)

• Parâmetros: s0, N (x), α ∈ [0, 1] (para randomização), tamanho das
listas (conj. elite, rcl, hash table), número de iterações,

GRASP com memória

• O GRASP original não havia mecanismo de memória de iterações pas-
sadas

• Atualmente toda implementação de GRASP usa conjunto de soluções
elite e religação por caminhos (path relinking)

• Conjunto de soluções elite: conjunto de soluções diversas e de boa qua-
lidade

– uma solução somente é inserida se for melhor que a melhor do
conjunto ou se for melhor que a pior do conjunto e diversa das
demais

– a solução a ser removida é a de pior qualidade

• Religação por Caminhos: a partir de uma solução inicial, modifique um
elemento por vez até que se obtenha uma solução alvo (do conjunto elite)

• soluções intermediárias podem ser usadas como soluções de partida

Comparação entre as metaheuŕısticas apresentadas

• Metaheuŕısticas: Simulated annealing (SA), Multi-Start Search (MS),
GRASP

• SA tem apenas um ponto de partida, enquanto que os outros dois
métodos testa diversos

150



12.4 Busca Tabu

• SA permite movimento de piora, enquanto que os outros dois métodos
não

• SA é baseado em um processo da natureza, enquanto que os outros dois
não

12.4 Busca Tabu

Busca Tabu (Tabu Search)
• Proposto por Fred Glover em 1986 (prinćıpios básicos

do método foram propostos por Glover ainda em 1977)

• Professor da Universidade do Colorado, EUA

Fred Glover

Busca Tabu (BT)

• Assim como em simulated annealing (SA) e VNS, TB é baseada inteira-
mente no processo de busca local, movendo-se sempre de uma solução s
para uma solução s ′

• Assim com em SA, também permite movimentos de piora

• Diferente de SA que permite movimento de piora por randomização, tal
movimento na BT é determińıstico

• A base do funcionamento de Busca Tabu é o uso de memória segundo
algumas regras

• O nome Tabu tem origem na proibição de alguns movimentos durante a
busca

Busca Tabu (BT)

• Mantém uma lista T de movimentos tabu

• A cada iteração se move para o melhor vizinho, desde que não faça
movimentos tabus

151



12 Heuŕısticas baseados em Busca local

• Permite piora da solução: o melhor vizinho pode ser pior que o vizinho
atual!

• São inseridos na lista tabu elementos que provavelmente não direcionam
a busca para o ótimo local desejado. Ex: último movimento executado

• o tamanho da lista tabu é um importante parâmetro do algoritmo

• Critérios de parada: quando todos movimentos são tabus ou se x movi-
mentos foram feitos sem melhora

Busca Tabu: Conceitos Básicos e notação

• s: solução atual

• s∗: melhor solução

• f∗: valor de s*

• N (s): Vizinhança de s.

• Ñ (s) ⊂ N (s): posśıveis (não tabu) soluções vizinhas a serem visitadas

• Soluções: inicial, atual e melhor

• Movimentos: atributos, valor

• Vizinhança: original, modificada (reduzida ou expandida)

Movimentos Tabu

• Um movimento é classificado como tabu ou não tabu pelas regras de
ativação tabu

• em geral, as regras de ativação tabu classificam um movimento como
tabu se o movimento foi recentemente realizado

• Memória de curta duração (MCD) - também chamada de lista tabu:
usada para armazenar os movimentos tabu

• duração tabu (tabu tenure) é o número de iterações em que o movimento
permanecerá tabu

• dependendo do tamanho da MCD um movimento pode deixar de ser
tabu antes da duração tabu estabelecida

152



12.4 Busca Tabu

• A MCD em geral é implementada como uma lista circular

• O objetivo principal da MCD é evitar ciclagem e retorno a soluções já
visitadas

• os movimentos tabu também colaboram para a busca se mover para
outra parte do espaço de soluções, em direção a um outro mı́nimo local

Busca Tabu

Algoritmo 12.9 (BuscaTabu)
Entrada uma solução s

Sáıda uma solução s ′ : f(s ′) ≤ f(s)

1 BuscaTabu()=
2 I n i c i a l i z a ç ã o :
3 s := S0 ; f∗ := f(s0) ; s∗ := s0 ; T := ∅
4 while not STOP
5 s ′ := s e l e c t s ′ ∈ Ñ (s) com min f(s)
6 i f f(s) < f∗ then
7 f∗ := f(s) ; s∗ := s

8 i n s i r a movimento em T ( a l i s t a tabu )
9 end while

Busca Tabu (BT)

• critérios de parada:

– número de iterações (Nmax)
– número interações sem melhora
– quando s∗ atinge um certo valor mı́nimo (máximo) estabelecido

• Um movimento não é executado se for tabu, ou seja, se possuir um ou
mais atributos tabu-ativos

• Pode ser estabelecida uma regra de uso de um movimento tabu (critério
de aspiração)

153



12 Heuŕısticas baseados em Busca local

– Critério de aspiração por objetivo: se o movimento gerar uma
solução melhor que s∗, permite uso do movimento tabu

– Critério de aspiração por direção: o movimento tabu é liberado se
for na direção da busca (de melhora ou piora)

Busca Tabu: mecanismos auxiliares

• intensificação: a idéia é gastar mais “esforço” em regiões do espaço de
busca que parece mais promissores. Isso pode ser feito de diversas manei-
ras (exemplo, guardar o número de interações com melhora consecutiva).
Nem sempre este a intensificação traz benef́ıcios.

• Diversificação: recursos algoŕıtmicos que forçam a busca para um espaço
de soluções ainda não explorados.

– uso de memória de longo prazo (exemplo, número de vezes que a
inserção de um elemento provocou melhora da solução)

– Estratégia básica: forçar a inserção de alguns poucos movimentos
pouco executados e reiniciar a busca daquele ponto

– Estratégia usada para alguns problemas: permitir soluções infact́ıveis
durante algumas interações

Busca Tabu: variações

• Várias listas tabus podem ser utilizadas (com tamanhos, duração, e
regras diferentes)

• BT probabiĺıstico: os movimentos são avaliados para um conjunto se-
lecionado aleatoriamente N ′(s) ∈ Ñ(s). Permite usar uma lista tabu
menor, acontece menos ciclagem.

• A duração tabu pode variar durante a execução

Comparação entre as metaheuŕısticas apresentadas até então

• Metaheuŕısticas: Simulated annealing (SA), Multi-Start Search (MSS),
GRASP, BT

• SA e BT têm apenas um ponto de partida, enquanto que os outros dois
métodos testa diversos

• SA e BT permitem movimentos de piora, enquanto que os outros dois
métodos não

154



12.5 Variable Neighborhood Search

• SA é baseado em um processo da natureza, enquanto que os outros
métodos não

Parâmetros e decisões das metaheuŕısticas

• SA:

– Parâmetros: temperatura inicial, critério de parada, variável de
resfriamento

– Decisões: vizinhança, solução inicial

• GRASP:

– Parâmetros: s0, N(x), α ∈[0,1] (para randomização), tamanho das
listas (conj. elite, rcl, hash table), critério de parada

– Decisões: vizinhança, solução inicial (s0), randomização da s0, atu-
alizações do conjunto elite

• BT:

– Parâmetros: tamanho da lista tabu, critério de parada
– Decisões: vizinhaça, critérios para classificar movimento tabu

12.5 Variable Neighborhood Search

Variable Neighborhood Search
• Pierre Hansen e Mladenović, 1997

• Hansen é Professor na HEC Montréal, Canadá

Pierre Hansen

Variable Neighborhood Search

• Método multi-start que explora mais de uma vizinhaça.

• Explora sistematicamente as seguintes propriedades:

– O mı́nimo local de uma vizinhança não é necessariamente mı́nimo
para outra vizinhança

155



12 Heuŕısticas baseados em Busca local

– Um mı́nimo global é um mı́nimo local com respeito a todas as
vizinhanças

– Para muitos problemas, os mı́nimos locais estão localizados relati-
vamente próximos no espaço de busca para todas as vizinhanças

Variable Neighborhood Search

Algoritmo 12.10 (VNS)
Entrada Solução inicial s0, um conjunto de vizinhanças Ni, 1 ≤ i ≤ m.

Sáıda uma solução s : f(s) ≤ f(s0)

1 VNS(s0 , {Ni})=
2 x := s0
3 do ( at é chegar a um mı́nimo l o c a l
4 para todas as buscas l o c a i s )
5 k := 1

6 while k < m do
7 e s c o l h e y ∈ Nk(x) randomicamente
8 y := BuscaLocal (y)
9 i f f(y) < f(x) then

10 x := y

11 k := 1

12 else
13 k := k+ 1
14 end i f
15 end while
16 end do
17 return x

156



13 Heuŕısticas inspirados da natureza

13.1 Algoritmos Genéticos e meméticos

Algoritmos Genéticos
• Proposto na década de 60 por Henry Holland.

• Professor da Faculdade de Engenharia Elétrica e de
Computação da Universidade de Michigan/EUA.

• Seu livro: Adaptation in Natural and Artificial Sys-
tems (1975).

John Henry
Holland (+1929)

Algoritmos genéticos

• Foi proposto com o objetivo de projetar software de sistemas artificiais
que reproduzem processos naturais.

• Baseados na evolução natural das espécies.

• Por Darwin: indiv́ıduos mais aptos têm mais chances de perpetuar a
espécie.

• Mantém uma população de soluções e não uma única solução por vez.

• Usa regras de transição probabiĺısticas, e não determińısticas.

• Procedimentos: avaliação, seleção, geração de novos indiv́ıduos (recom-
binação), mutação.

• Parada: número x de gerações total, número y de gerações sem melhora.

Algoritmos genéticos: Caracteŕısticas

• Varias soluções (“população”).

• Operações novas: Recombinação e mutação.

• Separação da representação (“genótipo”) e formulação “natural” (fenótipo).

157



13 Heuŕısticas inspirados da natureza

Algoritmos Genéticos: Noções

• Genes: Representação de um elemento (binário, inteiro, real, arco, etc)
que determine uma caracteŕıstica da solução.

• Alelo: Instância de uma gene.

• Cromossomo: Uma string de genes que compõem uma solução.

• Genótipo: Representação genética da solução (cromossomos).

• Fenótipo: Representação “f́ısica” da solução.

• População: Conjunto de cromossomos.

Algoŕıtmos genéticos: Representação e Solução

Algoritmos Genéticos: exemplos

• Problema de partição de conjuntos

Gens: 0 ou 1

Cromossomo: 0001101010101011110110

• Problema do Caixeiro viajante

Gens: valores inteiros entre 1 e n

Cromossomo: 1 5 3 6 8 2 4 7

Procedimentos dos Algoritmos Genéticos

• Codificação: genes e cromossomos.

• Initialização: geração da população inicial.

• Função de Avaliação (fitness): função que avalia a qualidade de uma
solução.

158



13.1 Algoritmos Genéticos e meméticos

• Seleção de pais: seleção dos indiv́ıduos para crossover.

• Operadores genéticos: crossover, mutação

• Parâmetros: tamanho da população, percentagem de mutação, critério
de parada

Algoritmos Genéticos

Algoritmo 13.1 (AlgoritmoGenético)
Entrada Parâmetros do algoritmo.

Sáıda Melhor solução encontrada para o problema.

1 I n i c i a l i z a ç ã o e a v a l i ç ã o i n i c i a l
2 while ( c r i t é r i o de parada não s a t i s f e i t o ) do
3 repeat
4 i f ( c r i t é r i o para recombinaç ão ) then
5 s e l e c i o n e pa i s
6 recombina e gera um f i l h o
7 end i f
8 i f ( c r i t é r i o para mutação ) then
9 a p l i c a mutação

10 end i f
11 until ( descendentes s u f i c i e n t e s )
12 s e l e c i o n e nova populaç ão
13 end while

População Inicial: geração

• Soluções aleatórias.

• Método construtivo (ex: vizinho mais próximo com diferentes cidades
de partida).

• Heuŕıstica construtiva com perturbações da solução.

• Pode ser uma mistura das opções acima.

159



13 Heuŕısticas inspirados da natureza

População inicial: tamanho

• População maior: Custo alto por iteração.

• Populaçao menor: Cobertura baixa do espaço de busca.

• Critério de Reeves: Para alfabeto binário, população randômica: Cada
ponto do espaço de busca deve ser alcancável através de recombinações.

• Consequencia: Probabilidade que cada alelo é presente no gene i: 1 −
21−n.

• Probabilidade que alelo é presente em todos gene: (1− 21−n)l.

• Exemplo: Com l = 50, para garantir cobertura com probabilidade 0.999:

n ≥ 1− log2

(
1−

50
√
0.999

)
≈ 16.61

Terminação

• Tempo.

• Número de avaliações.

• Diversidade. Exemplo: Cada gene é dominado por um alelo, i.e. 90%
dos indiv́ıduos tem o mesmo alelo.

Próxima Geração

• Gerada por recombinação e mutação (soluções aleatórias ou da po-
pulação anterior podem fazer parte da próxima geração).

• Estratégias:

– Recombinação e mutação.
– Recombinação ou mutação.

• Regras podem ser randomizadas.

• Exemplo: Taxa de recombinação e taxa de mutação.

• Exemplo: Número de genes mutados.

160



13.1 Algoritmos Genéticos e meméticos

Mutação

• Objetivo: Introduzir elementos diversificados na população e com isso
possibilitar a exploração de uma outra parte do espaçõ de busca.

• Exemplo para representação binária: flip de k bits.

• Exemplo para o PCV: troca de posição entre duas cidades.

Recombinação

• Recombinação (ingl. crossover): combinar caracteŕısticas de duas soluções
para prover uma nova solução potencialmente com melhor fitness.

• Explora o espaço entre soluções.

• Crossover clássicos: one-point recombinação e two-points recombinação.

One-point crossover

Escolha um número aleatório k entre 1 e n. Gere um filho com os primeiros
k bits do pai A e com os últimos n− k bits do pai B

• Problema de particação: aplicação direta do conceito

• Problema do Caixeiro Viajante: copie os primeiros k elementos do pai
A e as demais n−k posições preenche com as cidades faltantes, segundo
a ordem em que elas aparecem no pai B

161



13 Heuŕısticas inspirados da natureza

Recombinação de dois pontos

Exemplo: Strategic Arc Crossover

• Selecione todos os pedaçõs de rotas (string) com 2 ou mais cidades que
são iguais nas duas soluções

• Forme uma rota através do algoritmo de vizinho mais próximo entre os
pontos extremos dos strings

Recombinação: Seleção dos pais

• A probabilidade de uma solução ser pai num processo de crossover deve
depender do seu fitness.

• Variações:

– Probabilidade proporcional com fitness.
– Probabilidade proporcional com ordem.

162



13.1 Algoritmos Genéticos e meméticos

Estratégia adotada pelos operadores
Inúmeros operadores podem ser propostos para cada problema. O ideal é
combinar caracteŕısticas do operador usado, com outros operadores (mutação,
busca local) usados no GA. Basicamente um crossover é projetado da seguinte
forma:

• Encontre similaridades entre A e B e insira S = A ∩ B no filho.

• Defina conjuntos Sin e Sout de caracteŕısticas desejáveis e não desejáveis.

• Projete um operador que mantenha ao máximo elementos de S e Sin,
minimizando o uso de elementos de Sout.

Nova População

• Todos os elementos podem ser novos.

• Alguns elementos podem ser herdados da população anterior.

• Elementos novos podem ser gerados.

• Exemplos, com população de tamanho λ que gera µ filhos. (λ, µ)
Seleciona os λ melhores dos filhos. (λ + µ) Seleciona os λ melhores
em toda população.

Estrutura da População
Em geral, população estruturada garante melhores resultados. A estrutura
da população permite selecionar pais para crossover de forma mais criteriosa.
Algumas estruturas conhecidas

• Divisão em Castas: 3 partições A, B e C (com tamanhos diferentes),
sendo que os melhores indiv́ıduos estão em A e os piores em C.

• Ilhas: a população é particionada em subpopulações que evoluem em
separado, mas trocam indiv́ıduos a cada peŕıodo de número de gerações.

• População organizada como uma árvore.

Exemplo: População em castas

• Recombinação: Somente entre indiv́ıduos da casta A e B ou C para
manter diversidade.

• Nova população: Manter casta ”elite” A, re-popular casta B com filhos,
substituir casta C com soluções randômicas.

163



13 Heuŕısticas inspirados da natureza

Exemplo: População em árvore

• Considere uma árvore ternária completa, em que cada nó possui duas
soluções (pocket e current).

• A solução current é a solução atual armazenada naquela posição da
árvore.

• A solução pocket é a melhor já tida naquela posição desde a primeira
geração.

• A cada solução aplique exchange (se a solução current for melhor que a
pocket, troque-as de posição)

• Se a solução pocket de um filho for melhor que a do seu pai, troque o
nó de posição.

Algoritmos Meméticos
• Proposto por Pablo Moscato, Newcastle, Austrália.

• Idéıa: Informação “cultural” pode ser adicionada a um
indiv́ıduo, gerando um algoritmo memético.

• Meme: unidade de informação cultural.

Pablo Moscato

Algoritmos Meméticos

• Um procedimento de busca local pode inserir informação de boa quali-
dade, e não genética (memes).

• Faz uso de um procedimento de busca local (em geral aplicado à solução
gerada pelo procedimento de recombinação).

• Geralmente trabalha com populações menores.

Comparação entre as Metaheuŕısticas Apresentadas

• Quais que dependem de randomização? SA, GRASP, GA

• Quais que geram apenas uma solução inicial em todo processo? BT, SA

164



13.1 Algoritmos Genéticos e meméticos

• Quais mantêm um conjunto de soluções, em vez de considerar apenas
uma? GA

• Quais são inspiradas em processos da natureza? GA, BT

• Qual gera os melhores resultados?

Existem outras Metaheuŕısticas
Handbook of Metaheuristics, por Fred W. Glover (Editor), Gary A. Kochen-
berger (Editor) Kluwer 2002.

Considerações Finais

• O desempenho de uma metaheuŕıstica depende muito de cada imple-
mentação

• As metaheuŕısticas podem ser usadas de forma hibridizada

• Técnicas de otimização multiobjetivo tratam os casos de problemas com
mais de um objetivo (Curva de pareto)

Exerćıcio

• Problema de alocação: atender n clientes por m postos de atendimento
(um posto é instalado no local onde se encontra um cliente)

• Entrada: distâncias entre cada par de clientes

• Problema: Determinar em que locais instalar os postos, de forma a mini-
mizar a soma das distâncias de cada cliente a um ponto de atendimento

165



13 Heuŕısticas inspirados da natureza

• Propor uma heuŕıstica construtiva e uma busca local.

Comparação entre as Metaheuŕısticas

• Quais que permitem movimento de piora? BT, SA

• Quais que não dependem de randomização? BT

• Quais que geram apenas uma solução inicial em todo processo? BT, SA

• Quais mantêm um conjunto de soluções, em vez de considerar apenas
uma?

• Qual gera os melhores resultados?

166



Parte IV

Appéndice

167





A Conceitos matemáticos

N, Z, Q e R denotam os conjuntos dos números naturais sem 0, inteiros,
racionais e reais, respectivamente. Escrevemos também N0 = N ∪ {0}, e para
um dos conjuntos C acima, C+ := {x ∈ C|x > 0} e C− := {x ∈ C|x < 0}. Por
exemplo

R+ = {x ∈ R|x > 0}.

Para um conjunto finito S, P(S) denota o conjunto de todos subconjuntos de
S.
A = (aij) ∈ Fm×n denota uma matriz de m linhas e n colunas com elementos
em F, ai, com at

i ∈ Fn a i-ésigma linha e aj ∈ Fm a j-ésima coluna de A.

Definição A.1 (Pisos e tetos)
Para x ∈ R o piso bxc é o maior número inteiro menor que x e o teto dxe é o
menor número inteiro maior que x. Formalmente

bxc = max{y ∈ Z|y ≤ x}
dxe = min{y ∈ Z|y ≥ x}

O parte fracionário de x é {x} = x− bxc.

Observe que o parte fracionário sempre é positivo, por exemplo {−0.3} = 0.7.

Proposição A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem

x ≤ dxe < x+ 1 (A.1)
x− 1 < bxc ≤ x (A.2)

169





B Formatos

Essa caṕıtulo contém um breve resumo de dois formatos usados para descre-
ver problemas de otimização linear. CPLEX LP é um formato simples, en-
quanto AMPL (A modeling language for mathematical programming) é uma
linguagem completa para definir problemas de otimização, com elementos de
programação, comandos interativos e um interface para diferentes “solvers”
de problemas.
CPLEX LP serve bom para experimentos rápidos. Aprender AMPL precisa
mais investimento, que rende em aplicações maiores. AMPL tem o apoio da
maioria das ferramentas dispońıveis.
Vários outros formatos são em uso, a maioria deles comerciais. Exemplos são
MPS (Mathematical programming system), um formato antigo e pouco usável
do IBM), LINGO, ILOG, GAMS e ZIMPL.

B.1 CPLEX LP

Uma gramática simplificada1 do formato CPLEX LP é

〈specification〉 ::= 〈objective〉
〈restrictions〉?
〈bounds〉
〈general〉?
〈binary〉?
‘End’

〈objective〉 ::= 〈goal〉 〈name〉? 〈linear expression〉

〈goal〉 ::= ‘MINIMIZE’ | ‘MAXIMIZE’ | ‘MIN’ | ‘MAX’

〈restrictions〉 ::= ‘SUBJECT TO’ 〈restriction〉+

〈restriction〉 ::= 〈name〉? 〈linear expression〉 〈cmp〉 〈number〉

〈cmp〉 ::= ‘<’ | ‘<=’ | ‘=’ | ‘>’ | ‘>=’

1A gramática não contém as especificações “semi-continuous” e “SOS”.

171

http://www.ampl.com


B Formatos

〈linear expression〉 ::= 〈number〉 〈variable〉 ( (’+’ | ’-’) 〈number〉 〈variable〉 )*

〈bounds〉 ::= ‘BOUNDS’ 〈bound〉+

〈bound〉 ::= 〈name〉? ( 〈limit〉 ‘<=’ 〈variable〉 ‘<=’ 〈limit〉
| 〈limit〉 ‘<=’ 〈variable〉
| 〈variable〉 ‘<=’ 〈limit〉
| 〈variable〉 ‘=’ 〈number〉
| 〈variable〉 ‘free’ )

〈limit〉 ::= ‘infinity’ | ‘-infinity’ | 〈number〉

〈general〉 ::= ‘GENERAL’ 〈variable〉+

〈binary〉 ::= ‘BINARY’ 〈variable〉+

Todas variáveis x tem a restrição padrão 0 ≤ x ≤ +∞. Caso outras limites
são necessárias, eles devem ser informados na seção “BOUNDS”. A seções
“GENERAL” e “BINARY” permitem restringir variáveis para Z e {0, 1}, res-
pectivamente.
As palavras-chaves também podem ser escritos com letras minúsculas: o for-
mato permite algumas abreviações não listadas acima (por exemplo, escrever
“s.t” ao invés de “subject to”).

Exemplo B.1
Problema (1.1) no formato CPLEX LP.

1 Maximize
2 lu c ro : 0 . 2 c + 0 .5 s
3
4 Subject To
5 ovo : c + 1 .5 s <= 150
6 acucar : 50 c + 50 s <= 6000
7 c l i e n t 1 : c <= 80
8 c l i e n t 2 : s <= 60
9

10 Bounds
11 0 <= c
12 0 <= s
13 End

♦

172



B.2 AMPL

Exemplo B.2
Problema de mochila 0-1 com 11 itens em formato CPLEX LP.

1 max 19x1+87x2+97x3+22x4+47x5+22x6+30x7+5x8+32x9+54x10+75x11
2 s . t
3 1x1+96x2+67x3+90x4+13x5+74x6+22x7+86x8+23x9+63x10+89x11<= 624
4 binary x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
5 end

♦

Observação B.1
CPLEX LP permite constantes como 0.5e6 que representa 0.5 × 106. Ou-
tra interpretação dessa expressão é 0.5 vezes a variável e6. Para evitar essa
ambiguidade, variáveis não podem começar com a letra e.

B.2 AMPL

Objetos de modelagem

• Um modelo em AMPL consiste em

– parâmetros,
– variáveis,
– restrições, e
– objetiovos

• AMPL usa conjuntos (ou arrays de múltiplas dimensões)

A : I→ D

mapeiam um conjunto de ı́ndices I = I1 × · · · × In para valores D.

Formato

• Parte do modelo

<s1>
...
<sn>
end;

com si é um comando ou uma declaração.

173



B Formatos

• Parte de dados

data
<d1>
...
<dn>
end;

Tipo de dados

• Números: 2.0,-4

• Strings: ’Comida’

• Conjuntos: {2,3,4}

Expressões numéricas

• Operações básicas: +,−,∗,/,div,mod,less,∗∗
Exemplo: x less y

• Funções: abs, ceil , floor ,exp

Exemplo: abs(−3)

• Condicional: if x>y then x else y

Expressões sobre strings

• AMPL converte números automaticamente em strings

• Concatenação de strings: &

Exemplo: x & ’ unidades’

Expressões para conjuntos de ı́ndices

• Única dimensão

– t in S: variável “dummy” t, conjunto S
– (t1 ,... tn) in S: para conjuntos de tuplos
– S: sem nomear a variável

• Multiplas dimensões

174



B.2 AMPL

– {e1 ,..., en} com ei uma dimensão (acima).

• Variáveis dummy servem para referenciar e modificar.

Exemplo: ( i−1) in S

Conjuntos

• Conjunto básico: {v1 ,..., vn}

• Valores: Considerados como conjuntos com conjunto de ı́ndices de di-
mensão 0

• Índices: [ i1 ,..., in]

• Sequências: n1 ... n2 by d ou n1 ... n2

• Construção: setof I e: {e(i1, . . . , in) | (i1, . . . , in) ∈ I}
Exemplo: setof {j in A} abs(j)

Operações de conjuntos

• X union Y: União X ∪ Y

• X diff Y: Diferença X \ Y

• X symdiff Y: Diferença simétrica (X \ Y) ∪ (Y \ X)

• X inter Y: Intersecção X ∩ Y

• X cross Y: Produto cartesiano X× Y

Expressões lógicas

• Interpretação de números: n vale “v”, sse n 6= 0.

• Comparações simples <,<=,= ou ==,>=,>,<> ou !=

• Pertinência x in Y, x not in Y, x !in Y

• Subconjunto X within Y, X !within Y, X not within Y

• Operadores lógicos: && ou and, || ou or, ! ou not

• Quantificação: com ı́ndices I, expressão booleana b

forall I b:
∧

(i1,...,in)∈I b(i1, . . . , in)

exists I b
∨

(i1,...,in)∈I b(i1, . . . , in)

175



B Formatos

Declarações: Conjuntos
set N I [dimen n] [within S] [ default e1] [:= e2]
param N I [in S] [<=,>=,!=,... n] [ default e1] [:= e2]

• Nome N

• Conjunto de ı́ndices I (opcional)

• Conjunto de valores S

• Valor default e1

• Valor inicial e2

Declarações: Restrições e objetivos
subject to N I : e1 = e2 | e1 <= e2, e1 >= e2
minimize [I ] : e
maximize [I] : e

Comandos

• solve: Resolve o sistema.

• check [ I ] : b: Valida expressão booleana b, erro caso falso.

• display [ I ] : e1 ,... en: Imprime expressões e1, . . . , en.

• printf [ I ] : fmt,e1 ,..., en: Imprime expressões e − 1, . . . , en usando
formato fmt.

• for I : c, for I : {c1 ... cn}: Laços.

Dados: Conjuntos
set N r1 ,... rn
Com nome N e records r1, . . . , rn, cada record

• um tuplo: v1, . . . , v|n Exemplo: 1 2, 1 3, 2 2, 2 7

• a definição de uma fatia (v1|∗, v2|∗, . . . , vn|∗): depois basta de listar os
elementos com ∗. Exemplo: (1 *) 2 3, (2 *) 2 7

• uma matriz

176



B.2 AMPL

Dados: Parâmetros
param N r1,...rn
Com nome N e records r1, . . . , rn, cada record

• um valor i1, . . . , in, v

• a definição de uma fatia [i1|∗, i2|∗, . . . , in|∗): depois basta definir ı́ndices
com ∗.

• uma matriz

• uma tabela

Exemplo B.3 (Exemplo 1.1 em AMPL)
1 var c ; # número de c r o i s s a n t s
2 var s ; # número de s t r u d e l s
3 param l u c r o c r o i s s a n t ; # o l u c r o por c r o i s s a n t
4 param l u c ro s t rude l ; # o l u c r o por s t r u d e l
5 maximize l u c r o : l u c r o c r o i s s a n t ∗c+luc ro s t rude l ∗ s ;
6 subject to ovo : c +1.5∗ s <= 150 ;
7 subject to acucar : 50∗ c+50∗ s <= 6000 :
8 subject to c r o i s s a n t : c <= 80 ;
9 subject to s t r u d e l : s <= 60 ;

♦

177





C Soluções dos exerćıcios

Solução do exerćıcio 5.5.

maximiza 25p+ 30c

sujeito a p/200+ c/140 ≤ 40⇐⇒ 7p+ 10c ≤ 56000
p ≤ 6000
c ≤ 4000
c, p ≥ 0

0 1000 2000 3000 4000 5000 6000 7000 8000
Placas p

0

1000

2000

3000

4000

5000

6000

C
an

os
 c

(56000-7*x)/10

c=4000

c=80

Soluções viáveis

Produzindo aço

192K

50K 100K 150K

A solução ótima é p = 6000, c = 1400 com valor 192000.

Solução do exerćıcio 5.3.

179



C Soluções dos exerćıcios

maximiza 2A+ B

sujeito a A <= 6000

B <= 7000

A+ B <= 10000

Resposta: A=6000 e B=4000 e Z=16000

Solução do exerćıcio 5.4.
São necessárias cinco variáveis:

• x1: número de pratos de lasanha comidos por Marcio

• x2: número de pratos de sopa comidos por Marcio

• x3: número de pratos de hambúrgueres comidos por Renato

• x4: número de pratos de massa comidos por vini

• x5: números de pratos de sopa comidos por vini

Formulação:

maximiza x1+ x2+ x3+ x4+ x5

sujeito a 4 ≥ x1+ x2 ≥ 2
5 ≥ x3 ≥ 2
4 ≥ x4+ x5 ≥ 2
70(x2+ x5) + 200x1+ 100x3+ 30x4 ≤ 1000
30(x2+ x5) + 100x1+ 100x3+ 100x4 ≤ 800

Solução do exerćıcio 5.6.
Usamos ı́ndices 1, 2 e 3 para os vôos Pelotas–Porto Alegre, Porto Alegre–
Torres e Pelotas–Torres e variáveis a1, a2, a3 para a categoria A, b1, b2, b3

para categoria B e c−1, c2, c3 para categoria C. A função objetivo é maximizar
o lucro

z = 600a1 + 320a2 + 720a3 + 440b1 + 260b2 + 560b3 + 200c1 + 160c2 + 280c3.

180



Temos que respeitar os limites de capacidade

a1 + b1 + c1 + a3 + b3 + c3 ≤ 30
a2 + b2 + c2 + a3 + b3 + c3 ≤ 30

e os limites da predição

a1 ≤ 4; a2 ≤ 8; a3 ≤ 3
b1 ≤ 8; b2 ≤ 13; b3 ≤ 10
c1 ≤ 22; c2 ≤ 20; c3 ≤ 18

Obviamente, todas variáveis também devem ser positivos.

Solução do exerćıcio 5.7.

maximiza z = 5x1 + 5x2 + 5x3

sujeito a − 6x1 − 2x2 − 9x3 ≤ 0
− 9x1 − 3x2 + 3x3 ≤ 0
9x1 + 3x2 − 3x3 ≤ 0
xj ≥ 0

maximiza z = −6x1 − 2x2 − 6x3 + 4x4 + 4x5

sujeito a − 3x1 − 8x2 − 6x3 − 7x4 − 5x5 ≤ 3
3x1 + 8x2 + 6x3 + 7x4 + 5x5 ≤ −3

5x1 − 7x2 + 7x3 + 7x4 − 6x5 ≤ 6
x1 − 9x2 + 5x3 + 7x4 − 10x5 ≤ −6

− x1 + 9x2 − 5x3 − 7x4 + 10x5 ≤ 6
xj ≥ 0

maximiza z = 7x1 + 4x2 + 8x3 + 7x4 − 9x5

sujeito a − 4x1 − 1x2 − 7x3 − 8x4 + 6x5 ≤ −2

4x1 + x2 + 7x3 + 8x4 − 6x5 ≤ 2
− x1 − 4x2 − 2x3 − 2x4 + 7x5 ≤ 7
− 8x1 + 2x2 + 8x3 − 6x4 − 7x5 ≤ −7

8x1 − 2x2 − 8x3 + 6x4 + 7x5 ≤ 7
xj ≥ 0

181



C Soluções dos exerćıcios

maximiza z = 6x1 − 5x2 − 8x3 − 7x4 + 8x5

sujeito a − 5x1 − 2x2 + x3 − 9x4 − 7x5 ≤ 9
5x1 + 2x2 − x3 + 9x4 + 7x5 ≤ −9

7x1 + 7x2 + 5x3 − 3x4 + x5 ≤ −8

− 7x1 − 7x2 − 5x3 + 3x4 − x5 ≤ 8
− 5x1 − 3x2 − 5x3 + 9x4 + 8x5 ≤ 0
xj ≥ 0

Solução do exerćıcio 5.8.
Solução com método Simplex, escolhendo como variável entrante sempre aquela
com o maior coeficiente positivo (em negrito):

z = 25p +30c

w1 = 56000 −7p −10c
w2 = 6000 −p
w3 = 4000 −c

z = 120000 +25p −30w3

w1 = 16000 −7p +10w3

w2 = 6000 −p
c = 4000 −w3

z = 1240000/7 −25/7p +40/7w3

p = 16000/7 −1/7w1 +10/7w3

w2 = 26000/7 +1/7w1 −10/7w3

c = 4000 −w3

z = 192000 −3w1 −4w2

p = 6000 −w2

w3 = 2600 +1/10w1 −7/10w2

c = 1400 −1/10w1 +7/10w2

Solução do exerćıcio 5.10.
Temos (

2(n+ 1)

n+ 1

)
=

(
2n

n

)
(2n+ 2)(2n+ 1)

(n+ 1)2
=

(
2n

n

)
2(2n+ 1)

n+ 1

182



e logo
22n

n+ 1

(
2n

n

)
≤
(
2(n+ 1)

n+ 1

)
≤ 22

(
2n

n

)
.

Logo, por indução (1/2n)22n ≤
(
2n
n

)
≤ 22n.

Solução do exerćıcio 5.13.

1. Substituindo x1 e x2 obtemos a nova função objetivo z = x1 + 2x2 =
22−7w2 −3w1. Como todos coeficientes são negativos, a solução básica
atual permanece ótima.

2. A nova função objetivo é 1−w2 e o sistema mantem-se ótimo.

3. A nova função objetivo é 2− 2w2 e o sistema mantem-se ótimo.

4. O dicionário dual é

z∗ = 31 −7z2 −8z1
y2 = 11 +2z2 +3z1
y1 = 4 +z2 +z1

e a solução dual ótima é (y1 y2)t = (4 11)t.

Solução do exerćıcio 5.16.

maximiza 10y1 + 6y2

sujeito a y1 + 5y2 ≤ 7
− y1 + 2y2 ≤ 1
3y1 − y2 ≤ 5
y1, y2 ≥ 0.

Solução do exerćıcio 5.17.
Com variáveis duais ye para cada e ∈ U temos

maximiza
∑
e∈U

ye

sujeito a
∑

e:e∈S

ye ≤ c(S) S ∈ S

ye ≥ 0 e ∈ U.

183



C Soluções dos exerćıcios

Solução do exerćıcio 10.2.
O sistema inicial

z = x1 +3x2

w1 = −2 +x1

w2 = 3 −x2

w3 = −4 +x1 +x2

w4 = 12 −3x1 −x2

não é primalmente nem dualmente viável. Aplicando a fase I (pivôs x0–w3,
x0–x1) e depois fase II (pivôs x2–w1, w3–w2, w1–w4) gera o dicionário final

z = 12 −8/3w2 −1/3w4

x2 = 3 −w2

w3 = 2 −2/3w2 −1/3w4

x1 = 3 +1/3w2 −1/3w4

w1 = 1 +1/3w2 −1/3w4

cuja solução x1 = 3, x2 = 3 já é inteira.
No segundo sistema começamos com o dicionário

z = x1 −2x2

w1 = 60 +11x1 −15x2

w2 = 24 −4x1 −3x2

w3 = 59 −10x1 +5x2

e um pivô x1–w3 gera a solução ótimo fracionária

z = 4.9 −0.1w3 −1.5x2

w1 = 113.9 −1.1w3 −9.5x2

w2 = 4.4 +0.4w3 −5x2

x1 = 4.9 −0.1w3 +0.5x2

e a linha terceira linha (x1) gera o corte

w4 = −0.9 +0.1w3 +0.5x2

Com o pivô w4–w3 obtemos a solução ótima inteira

z = 4 −w4 −x2

w1 = 104 −11w4 −4x2

w2 = 8 +4w4 −7x2

x1 = 4 −w4 +1x2

w3 = 9 +10w4 −5x2

184



Solução do exerćıcio 10.3.

Conjunto independente máximo Com variáveis indicadores xv, v ∈ V temos
o programa inteiro

maximiza
∑
v∈V

xv

sujeito a xu + xv ≤ 1, ∀{u, v} ∈ A (C.1)
xv ∈ B, ∀v ∈ V.

A equação C.1 garante que cada aresta possui no máximo um nó incidente.

Emparelhamento perfeito com peso máximo Sejam xa, a ∈ A variáveis
indicadores para a seleção de cada aresta. Com isso, obtemos o programa
inteiro

maximiza
∑
a∈A

p(a)xa

sujeito a
∑

u∈N(v)

x{u,v} = 1, ∀v ∈ V (C.2)

xa ∈ B, ∀v ∈ V.

A equação C.2 garante que cada nó possui exatamente um vizinho.

Problema de transporte Sejam xij variáveis inteiras, que correspondem com
o número de produtos transportados do depósito i para cliente j. Então

minimiza
∑
1≤i≤n
1≤j≤m

cijxij

sujeito a
∑

1≤j≤m

xij = pi, ∀1 ≤ i ≤ n cada depósito manda todo estoque

∑
1≤i≤n

xij = dj, ∀1 ≤ j ≤ m cada cliente recebe a sua demanda

xij ∈ Z+.

185



C Soluções dos exerćıcios

Conjunto dominante Sejam xv, v ∈ V variáveis indicadores para seleção de
vértices. Temos o programa inteiro

minimiza
∑
v∈V

xv

sujeito a xv +
∑

u∈N(v)

xu ≥ 1, ∀v ∈ V nó ou vizinho selecionado

xv ∈ B, ∀v ∈ V.

Solução do exerćıcio 10.5.
Seja d1d2 . . . dn a entrada, e o objetivo selecionar m ≤ n d́ıgitos da entrada.
Seja xij ∈ B um indicador que o d́ıgito i da entrada seria selecionado como
d́ıgito j da saida, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Então

maximiza
∑
i,j

xijdi10
m−j

sujeito a
∑

i

xij = 1, ∀j (C.3)∑
j

xij ≤ 1, ∀i (C.4)

xij = 0, ∀j > i, (C.5)
xkl ≤ 1− xij, ∀k > i, l < j. (C.6)

A função das equações é a seguinte:

• Equação C.3 garante que tem exatamente um d́ıgito em cada posição.

• Equação C.4 garante que cada d́ıgito é selecionado no máximo uma vez.

• Equação C.5 garante que d́ıgito i aparece somente a partir da posição j.

• Equação C.4 proibe inversões.

Solução do exerćıcio 10.6.
Existem 21 sets diferentes, cada um com consumo diferente das 9 cartas. Seja
AR9×21 uma matriz, que contém em cada das 21 coluna o número de cartas
de cada set. Além disso, seja b ∈ R9 o número de cartas dispońıveis. Usando
variáveis inteiros x ∈ Z21 que representam o número de sets formandos de

186



cada tipo de set diferentes, temos a formulação

maximiza
∑

1≤i≤21

xi

sujeito a Ax ≤ b
x ≥ 0.

Solução do exerćıcio 10.7.

Conjunto independente máximo A matriz de coeficientes contém dois co-
eficientes igual 1 em cada linha, que correspondem com uma aresta, mas
geralmente não é totalmente unimodular. Por exemplo, o grafo completo com
três vértices K3 ?>=<89:;1

���������

>>>>>>>>>

?>=<89:;2 ?>=<89:;3
gera a matriz de coeficientes 1 1 0

1 0 1

0 1 1


cuja determinante é −2. A solução ótima da relaxação inteira 0 ≤ xi ≤ 1 é
x1 = x2 = x3 = 1/2 com valor 3/2. (Observação: A transposta dessa matriz
satisfaz os critérios (i) e (ii) da nossa proposição, e caso o grafo é bi-partido,
também o critério (iii). Portanto Conjunto independente máximo pode ser
resolvido em tempo polinomial em grafos bi-partidos).

Emparelhamento perfeito com peso máximo A matriz de coeficientes sa-
tisfaz critério (i). Ela tem uma linha para cada vértice e uma coluna para cada
aresta do grafo. Como cada aresta é incidente a exatamente dois vértices, ela
também satisfaz (ii). Finalmente, a bi-partição V1

.
∪ V2 do grafo gera uma

bi-partição das linhas que satisfaz (iii). Portanto, a matriz é TU, e o Empare-
lhamento perfeito com peso máximo pode ser resolvido em tempo polinomial
usando a relaxação linear.

187



C Soluções dos exerćıcios

Problema de transporte A matriz de coeficientes satisfaz critério (i). Po-
demos representar o problema como grafo bi-partido completo Kn,m entre os
depósitos e os clientes. Desta forma, com o mesmo argumento que no último
problema, podemos ver, que os critérios (ii) e (iii) são satisfeitos.

Conjunto dominante A matriz de coeficientes satisfaz critério (i), mas não
critério (ii): cada linha e coluna correspondente com vértice v contém |N(v)|+1
coeficientes não-nulos. Mas, não é obviou se a matriz mesmo assim não é TU
(lembra que o critério é suficiente, mas não necessário). O K3 acima, por
exemplo, gera a matriz 1 1 1

1 1 1

1 1 1


que é TU. Um contra-exemplo seria o grafo bi-partido K1,3?>=<89:;1

>>>>>>>>>
?>=<89:;2

?>=<89:;3 ?>=<89:;4
que gera a matriz de coeficientes

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1


com determinante −2. Isso não prova ainda que a relaxação linear não pro-
duz resultados inteiros ótimos. De fato, nesse exemplo a solução ótima da
relaxação inteira é a solução ótima inteira D = {1}.
Um verdadeiro contra-exemplo é um ciclo com cinco vértices C5?>=<89:;1

���������

>>>>>>>>>

?>=<89:;2 ?>=<89:;5

?>=<89:;3 ?>=<89:;4

188



com matriz


1 0 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 1 1 0

1 1 0 0 1


(cuja determinante é 3). A relaxação linear desse sistema tem a solução ótimo
x1 = x2 = x3 = x4 = x5 = 1/3 com valor 5/3 que não é inteira.

Solução do exerćıcio 10.8.

Cobertura por arcos

maximiza
∑
e∈E

cexe

sujeito a
∑

u∈N(v)

xuv ≥ 1, ∀v ∈ V

xe ∈ B.

Observe que esse problema é redut́ıvel a um emparalhamento perfeito máximo
e portanto possui solução em tempo polinomial.

Conjunto dominante de arcos

maximiza
∑
e∈E

cexe

sujeito a
∑
e ′∈E
e∩e ′ 6=∅

xe ′ ≥ 1, ∀e ∈ E

xe ∈ B.

189



C Soluções dos exerćıcios

Coloração de grafos Seja n = |V |.

minimiza
∑

1≤j≤n

cj

sujeito a
∑

1≤j≤n

xvj = 1, ∀v ∈ V (C.7)

xui + xvi ≤ 1, ∀{u, v} ∈ E, 1 ≤ i ≤ n (C.8)

ncj ≥
∑
v∈V

xvj, ∀1 ≤ j ≤ n (C.9)

xvi, cj ∈ B.

• Equação C.7 garante que todo vértice recebe exatamente uma cor.

• Equação C.8 garante que vértices adjacentes recebem cores diferentes.

• Equação C.9 garante que cj = 1 caso cor j for usada.

Clique ḿınimo ponderado

minimiza
∑
v∈V

cvxv

sujeito a xu + xv ≤ 1, ∀{u, v} 6∈ E (C.10)
xv ∈ B.

Equação C.10 garante que não existe um par de vértices selecionados que não
são vizinhos.

Subgrafo cúbico xe indica se o arco e é selecionado, e ye indica se ele possui
grau 0 (caso contrário grau 3).

minimiza
∑
e∈E

xe

sujeito a
∑

e∈N(v)

xe ≤ 0+ |E|(1− ye)

∑
e∈N(v)

xe ≤ 3+ |E|ye

−
∑

e∈N(v)

xe ≤ −3+ 3ye

190



Observe que o grau de cada vértice é limitado por |E|.

Solução do exerćıcio 10.9.
Sejam xi ∈ B, 1 ≤ i ≤ 7 variáveis que definem a escolha do projeto i. Então
temos

maximiza 17x1 + 10x2 + 15x3

+ 19x4 + 7x5 + 13x6 + 9x7

sujeito a 43x1 + 28x2 + 34x3 + 48x4

+ 17x5 + 32x6 + 23x7 ≤ 100 Limite do capital
x1 + x2 ≤ 1 Projetos 1,2 mutualmente exclusivos
x3 + x4 ≤ 1 Projetos 3,4 mutualmente exclusivos
x3 + x4 ≤ x1 + x2 Projeto 3 ou 4 somente se 1 ou 2

http://www.inf.ufrgs.br/~mrpritt/e6q2.mod

1 set p r o j e t o s := 1 . . 7 ;
2 param l u c r o { p r o j e t o s } ;
3 param custo { p r o j e t o s } ;
4
5 var f a z e r { p r o j e t o s } binary ;
6
7 maximize M: sum { i in p r o j e t o s } l u c r o [ i ]∗ f a z e r [ i ] ;
8 subject to S1 :
9 sum { i in p r o j e t o s } custo [ i ]∗ f a z e r [ i ] <= 100 ;

10 subject to S2 : f a z e r [1 ]+ f a z e r [ 2 ] <= 1 ;
11 subject to S3 : f a z e r [3 ]+ f a z e r [ 4 ] <= 1 ;
12 subject to S4 : f a z e r [3 ]+ f a z e r [ 4 ] <= f a z e r [1 ]+ f a z e r [ 2 ] ;
13
14 data ;
15 param l u c r o := 1 17 2 10 3 15 4 19 5 7 6 13 7 9 ;
16 param custo := 1 43 2 28 3 34 4 48 5 17 6 32 7 23 ;
17 end ;

Solução: Selecionar projetos 1,3,7 com lucro de 41MR$.

Solução do exerćıcio 10.10.
Seja f ∈ B uma variável que determina qual fábrica vai ser usada (fábrica 1,
caso f = 0, fábrica 2, caso f = 1), bi ∈ B uma variável binária que determina,

191

http://www.inf.ufrgs.br/~mrpritt/e6q2.mod


C Soluções dos exerćıcios

se brinquedo i vai ser produzido e ui ∈ Z as unidades produzidas de brinquedo
i (sempre com 1 ≤ i ≤ 2).

maximiza 10u1 + 15u2 − 50000b1 − 80000b2

sujeito a ui ≤Mbi Permitir unidades somente se tem produção
u1/50+ u2/40 ≤ 500+ fM Limite fábrica 1, se selecionada
u1/40+ u2/25 ≤ 700+ (1− f)M Limite fábrica 2, se selecionada

A constante M deve ser suficientemente grande tal que ela efetivamente não
restringe as unidades. Dessa forma, se a fábrica 1 está selecionada, a terceira
restrição (da fábrica 2) não se aplica e vice versa.

http://www.inf.ufrgs.br/~mrpritt/e6q3.mod

1 var f b inary ;
2 var b { br inquedos } binary ;
3 var u { br inquedos } i n t ege r , >= 0 ;
4 param i n i c i a l { br inquedos } ;
5 param l u c r o { br inquedos } ;
6 param prodfab1 { br inquedos } ;
7 param prodfab2 { br inquedos } ;
8 param M := 35000 ;
9

10 maximize Lucro :
11 sum { i in br inquedos } u [ i ]∗ l u c r o [ i ]
12 − ( sum { i in br inquedos } i n i c i a l [ i ]∗b [ i ] ) ;
13 subject to PermitirProducao { i in br inquedos } :
14 u [ i ] <= M∗b [ i ] ;
15 subject to LimiteFab1 :
16 sum { i in br inquedos }
17 u [ i ]∗ prodfab1 [ i ] <= 500 + f ∗M;
18 subject to LimiteFab2 :
19 sum { i in br inquedos }
20 u [ i ]∗ prodfab2 [ i ] <= 700 + (1− f )∗M;
21
22 data ;
23 param i n i c i a l := 1 50000 2 80000 ;
24 param l u c r o := 1 10 2 15 ;
25 param prodfab1 := 1 0 .020 2 0 . 0 2 5 ;

192

http://www.inf.ufrgs.br/~mrpritt/e6q3.mod


26 param prodfab2 := 1 0 .025 2 0 . 0 4 0 ;

Solução: Produzir 28000 unidades do brinquedo 1 na fábrica 2, com lucro
230KR$.

Solução do exerćıcio 10.11.
Sejam ai ∈ B uma variável que determina se avião i vai ser produzido e ui ∈ Z
as unidadas produzidas.

maximiza 2u1 + 3u2 + 0.2u3 − 3a1 − 2a2

sujeito a 0.2u1 + 0.4u3 + 0.2u3 ≤ 1 Limite de capacidade
ui ≤ 5bi Permitir unidades somente se for produzido, limite 5 aviões
u1 ≤ 3 Limite avião 1
u2 ≤ 2 Limite avião 2
u3 ≤ 5 Limite avião 3

http://www.inf.ufrgs.br/~mrpritt/e6q4.mod

27 param custo { av i o e s } ;
28 param l u c r o { av i o e s } ;
29 param capacidade { av i o e s } ;
30 param demanda { av i o e s } ;
31 var produz i r { av i o e s } binary ;
32 var unidades { av i o e s } i n t ege r , >= 0 ;
33
34 maximize Lucro :
35 sum { i in av i o e s }
36 ( l u c ro [ i ]∗ unidades [ i ]− custo [ i ]∗ produz i r [ i ] ) ;
37 subject to LimiteCapacidade :
38 sum { i in av i o e s } unidades [ i ]∗ capacidade [ i ] <= 1 ;
39 subject to PermitirProducao { i in av i o e s } :
40 unidades [ i ] <= 5∗ produz i r [ i ] ;
41 subject to LimiteDemanda { i in av i o e s } :
42 unidades [ i ] <= demanda [ i ] ;
43
44 data ;
45 param : custo l u c ro capacidade demanda :=

193

http://www.inf.ufrgs.br/~mrpritt/e6q4.mod


C Soluções dos exerćıcios

46 1 3 2 0 .2 3
47 2 2 3 0 .4 2
48 3 0 0 .8 0 .2 5
49 ;

Solução: Produzir dois aviões para cliente 2, e um para cliente 3, com lucro
4.8 MR$.

Solução do exerćıcio 10.12.
A formulação possui 14 restrições, correspondendo com as 14 arestas. Como
o grafo é 4-regular, cada vértice ocorre 4 vezes no lado esquerdo de uma
restrição, e somando todas restrições obtemos

4
∑

1≤i≤7

xi ≤ 14

⇒ ∑
1≤i≤7

xi ≤ 14/4

⇒ ∑
1≤i≤7

xi ≤ b14/4c = 3,

que não é suficiente. Para obter uma desigualdade mais forte, vamos somar
sobre todos triângulos. Somando primeiro as restrições das arestas de cada
triângulo (u, v,w) obtemos

2xu + 2xv + 2xw ≤ 3⇒xu + xv + xw ≤ b3/2c = 1.

Somando agora as restrições obtidas desta forma de todos 14 triângulos do
grafo (cada vértice é parte de 6 triângulos) obtemos a desigualdade desejada

6
∑

1≤i≤7

xi ≤ 14

⇒ ∑
1≤i≤7

xi ≤ b14/6c = 2.

(Outra abordagem: Supõe, sem perda de generalidade, que x1 = 1 na solução
ótima. Pelas restrições x1 + xi ≤ 2 temos xi = 0 para i ∈ {3, 4, 5, 6}. Pela
restrição x2 + x7 ≤ 1, portanto

∑
1≤i≤7 xi ≤ 2.)

194



Solução do exerćıcio 10.13.
Seja xijk ∈ B um indicador do teste com a combinação (i, j, k) para 1 ≤
i, j, k ≤ 8. Cada combinação (i, j, k) testada cobre 22 combinações: além de
(i, j, k) mais 7 para cada combinação que difere somente na primeira, segunda
ou terceira posição. Portanto, uma formulação é

minimiza
∑
i,j,k

xi,j,k

sujeito a xi,j,k +
∑
i ′ 6=i

xi ′jk +
∑
j ′ 6=j

xij ′k +
∑

k ′ 6=k

xijk ′ ≥ 1 ∀i, j, k

xi,j,k ∈ B ∀i, j, k.

A solução ótima desse sistema é 32, i.e. 32 testes são suficientes para abrir a
fechadura.

Solução do exerćıcio 10.14.
x1 + x6 + x7 ≤ 2 porque uma rota não contém subrotas. Portanto x1 + x2 +
x5 + x6 + x7 + x9 ≤ 5. Supõe x1 + x2 + x5 + x6 + x7 + x9 = 5. Temos três
casos: x1 = 0, x6 = 0 ou x7 = 0. Em todos os casos, as restantes variáveis
possuem valor 1, e no grafo resultante sempre existe um vértice de grau 3 (o
vértice no centro, da esquerda, de acima, respectivamente), que não é posśıvel
numa solução válida.

Solução do exerćıcio 10.15.
Sejam xi ∈ B, 1 ≤ i ≤ k as variáveis de entrada, e ci ∈ B, 1 ≤ i ≤ n

variáveis que indicam se a claúsula ci está satisfeita. Para aplicar a regra
(7.2) diretamente, vamos usar uma variável auxiliar di. 1 ≤ i ≤ n, que
representa a disjunção dos primeiros dois literais da claúsula i.

maximiza
∑

1≤i≤n

ci

sujeito a lij =

{
xk literal j na claúsula i é xk

1− xk literal j na claúsula i é ¬xk

di ≥ (li1 + li2)/2

di ≤ li1 + li2

ci ≥ (di + li3)/2

ci ≤ di + li3

ci, di, xi ∈ B.

195



C Soluções dos exerćıcios

Como é um problema de maximização, pode ser simplificado para

maximiza
∑

1≤i≤n

ci

sujeito a lij =

{
xk literal j na claúsula i é xk

1− xk literal j na claúsula i é ¬xk

ci ≤ li1 + li2 + li3

ci, xi ∈ B.

A segunda formulação possui uma generalização simples para o caso k > 3.

196



Bibliografia

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi. Complexity and approximation – Combinatorial Optimiza-
tion Problems and their Approximability Properties. Springer-Verlag, 1999.
URL http://www.nada.kth.se/~viggo/approxbook. INF 510.5 C737.

Jens Clausen. Branch and bound algorithms – principles and examples, 1999.

Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, pages
85–103. New York: Plenum, 1972.

Nelson Maculan and Marcia H. Costa Fampa. Otimização linear. Editora
UnB, 2006. INF 65.012.122 M175o.

Robert J. Vanderbei. Linear programming: Foundations and Extensions.
Kluwer, 2nd edition, 2001. URL http://www.princeton.edu/~rvdb/
LPbook.

H. P. Williams. Fourier’s method of linear programming and its dual. The
American Mathematical Monthly, 93(9):681–695, 1986.

Laurence A. Wolsey and George L. Nemhauser. Integer and Combinatorial
Optimization. Wiley, 1999.

197

http://www.nada.kth.se/~viggo/approxbook
http://www.princeton.edu/~rvdb/LPbook
http://www.princeton.edu/~rvdb/LPbook




Índice

0-1-Knapsack, 92, 107, 169
0-1-Mochila, 92, 107, 169

algoritmo de planos de corte, 110
algoritmos Branch-and-bound, 116
AMPL, 169

Bland
regra de, 33

Boltzmann, 141
branch-and-bound, 113
branch-and-cut, 117
branch-and-price, 117
busca local, 135
busca por melhor solução, 115
busca por profundidade, 115

caixeiro viajante, 79
caminhos mais curtos, 103
certificado, 44
ciclo, 30
complexidade

do método Simplex, 36
conjunto de ńıvel, 10
corte

de Chvátal-Gomory, 108
de Gomory, 110
por inviabilidade, 114
por limite, 114
por otimalidade, 114

CPLEX LP, 167

Dantzig, George Bernard, 15, 16
desigualdade válida, 105

dicionário, 20
degenerado, 28

distribuição de Boltzmann, 141
dual

sistema, 43
dualidade, 37

emparelhamento máximo, 107

fase I, 28
fase II, 28
fitness, 131
fluxo em redes, 104
folgas complementares, 44
forma padrão, 14
Fourier, Jean Baptiste Joseph, 15
função objetivo, 10

não-linear, 94

gradient descent, 136
gradiente, 136

heuŕıstica, 129
hill climbing, 137
hill descent, 137

Kantorovich, Leonid, 15
Karmarkar, Narendra, 15
Khachiyan, Leonid, 15
Klee-Minty, 36

limite
inferior, 114
superior, 114

199



Índice

line search, 136
locação de facilidades não-capacitado,

92, 93
lucro marginal, 41

método
de Chvátal-Gomory, 108
de duas fases, 28
de Gomory, 110
lexicográfico, 30
Simplex

complexidade, 36
Simplex dual, 45

método Simplex, 17
matriz totalmente unimodular, 99
matriz unimodular, 99, 100
meta-heuŕıstica, 131
Metropolis, 141, 142
multi-start, 139

passeio aleatório, 142
perturbação, 31
pivô, 19

degenerado, 29
plano de corte, 109
problema da dieta, 11, 71

dual, 40
problema de otimização, 10
problema de otimização combinatória,

10
problema de transporte, 11
problema dual, 38
problema primal, 38
programação inteira, 72
programação inteira mista, 72
programação inteira pura, 72
programação linear, 7
programação matemática, 10

random walk, 142
regra de Bland, 33

regra de Cramer, 98
relaxação inteira, 97
restrição, 10
restrição trivial, 14

shortest paths, 103
sistema auxiliar, 25
sistema dual, 38, 43
sistema ilimitado, 24
sistema primal, 38
solução

básica, 25
básica viável, 18
degenerada, 28
viável, 10, 18

steepest ascent, 137
steepest descent, 137

tableau, 20
teorema da dualidade forte, 42
teorema da dualidade fraca, 41
teorema das folgas complementa-

res, 44
teorema fundamental, 35
totalmente unimodular, 99

uncapacitated lot sizing, 95
unimodular, 99, 100

variável
0-1, 93, 94
básica, 19
booleana, 93
dual, 38
entrante, 19
indicador, 93, 94
não-básica, 19
nula, 18
sainte, 19

von Neumann, John, 15

200


	Programação linear
	Introdução
	Exemplo
	Formas normais
	Notas históricas

	O método Simplex
	Um exemplo
	O método resumido
	Sistemas ilimitados
	Encontrar uma solução inicial
	Soluções degeneradas
	Complexidade do método Simplex

	Dualidade
	Introdução
	Interpretação do dual
	Características
	Método Simplex dual
	Dualidade em forma não-padrão
	Os métodos em forma matricial
	Análise de sensibilidade

	Tópicos
	Centro de Chebyshev
	Função objetivo convexa e linear por segmentos

	Exercícios

	Programação inteira
	Introdução
	Definições
	Motivação e exemplos
	Aplicações

	Formulação
	Exemplos
	Técnicas

	Técnicas de solução
	Introdução
	Problemas com solução eficiente
	Desigualdades válidas
	Planos de corte
	Branch-and-bound

	Tópicos
	Exercícios

	Heurísticas
	Introdução
	Heurísticas baseados em Busca local
	Busca local
	Metropolis e Simulated Annealing
	GRASP
	Busca Tabu
	Variable Neighborhood Search

	Heurísticas inspirados da natureza
	Algoritmos Genéticos e meméticos


	Appéndice
	Conceitos matemáticos
	Formatos
	CPLEX LP
	AMPL

	Soluções dos exercícios


