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Introducao

If one would take statistics about which mathematical problem is
using up most of the computer time in the world, then ... the
answer would probably be linear programming. (Laszlo Lovasz)






1 Introducao

1.1 Exemplo

Exemplo 1.1 (No Ildo)

Antes da aula visito o Ildo para tomar um café e comer um Croissant. Ele me
conta: “Estou especializado em Croissants e Strudels. Tenho um lucro de 20
centavos por Croissant e 50 centavos por Strudel. Diariamente até 80 clientes
compram um Croissant e até 60 um Strudel. Mas infelizmente, o Ildo apenas
disponibiliza de 150 ovos e 6 kg de agicar por dia. Entre outros ingredientes,
preciso um ovo e 50g de agicar para cada Croissant e um ovo e meio e 50g
de acicar para cada Strudel. Agora, professor, quantas Croissants e Strudels
devo produzir para obter o maior lucro?”

Sejam c e s o numero de Croissants e Strudels, respectivamente. O lucro do
Ildo em Reais é 0.2¢+0.5s. Seria 6timo produzir todos 80 Croissants e 60 Stru-
dels, mas uma conta simples mostra que nao temos ovos e agucar suficientes.
Para produzir os Croissants e Strudels precisamos ¢ + 1.5s ovos e 50c + 50sg
de agicar que nao podem ultrapassar 150 ovos e 6000g. Com a condigao ébvia
que ¢ > 0 e s > 0 chegamos no seguinte problema de otimizagao:

maximiza 0.2¢ +0.5s (1.1)
sujeito a c+1.5s <150
50c¢ + 50s < 6000
c <80
s < 60
c,s>0

Como resolver esse problema? Com duas varidveis podemos visualizar a si-
tuagao num grafo com ¢ no eixo x e s no eixo y

No lldo



1 Introducao

Otimizando o lucro do bar

100
90 - (6000-50¢)/50 i

80 -| 2/3(150-0) -

70 r

s=60

s (strudels)

0 10 20 30 40 50 60 70 80 90 100
¢ (croissants)

que nesse caso permite resolver o problema graficamente. Desenhando diversos
conguntos de nivel (ingl. level set) com valor da funcao objetivo 10, 20, 30, 40
é facil observar que o lucro maximo se encontra no ponto ¢ = s = 60, e possui
um valor de 42 reais.

O

Isso é um exemplo de um problema de otimizagao. A forma geral de um
problema de otimizagdo (ou de programagdao matemdtica) é

opt f(x)
sujeito a xeV
com
e um objetivo opt € {max, min},
e uma fungao objetivo (ou fungao critério) f: V — R,
e um conjunto de solugdes vidveis (ou solugdes candidatas) V.

Falamos de um problema de otimizag¢do combinatoria, se V é discreto.
Nessa generalidade um problema de otimizacao é dificil de resolver. O exem-
plo 1.1 é um problema de otimizagdo linear (ou programagdo linear):
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1.1 Exemplo

e as variaveis da solugao sao x1,...,xn € R
e a funcgao de otimizacao é linear em X1,...,Xn:
f(X7,...,%n) =C1X1 + -+ CnXn (1.2)

e as solugoes vidveis sao dadas implicitamente por m restricoes lineares

arixy +ajzxz + -+ ainXxn X by (1.3)
az1x1 + azxy + -+ danxn X2 b (1.4)
(1.5)

Am1X1 + Qm2X2 + - + GmnXn DXy by (1.6)

com p<i € {<, =, >}

Exemplo 1.2 (O problema da dieta)

Suponha que temos uma tabela de nutrientes de diferentes tipos de alimentos.
Sabendo o valor didrio de referéncia (VDR) de cada nutriente (quantidade de
nutriente que deve ser ingerido) e o prego de cada unidade de alimento, qual
a dieta 6tima, i.e. que contém ao menos o valor didrio de referéncia, mas de
menor custo?

Com m nutrientes e n alimentos, seja ai; a quantidade do nutriente 1 no
alimento j (em g/g), i o valor didrio de referéncia do nutriente i (em g) e c;
o prego do alimento j (em R$/g). Queremos saber as quantidades x; de cada
alimento (em g) que

minimiza C1X1 + -+ CnXn

sujeito a anx) + -+ anXn > 11

Am1X1 + -+ QGmnXn 2 Tm
X1,.00yXn >0

Exemplo 1.3 (Problema de transporte)

Uma empresa agréria tem m depdsitos, cada um com um estoque de a; (1 <
1 <m) toneladas de milho. Ela quer encaminhar b; (1 <j < n) toneladas de
milho para n clientes diferentes. O transporte de uma tonelada do depdsito
i para cliente j custa R$ cij. Qual seria o esquema de transporte de menor
custo?

11



1 Introducao

Como problema de otimizacao linear, podemos introduzir como varidveis xi;
o peso dos produtos encaminhados pelo depédsito i para cliente j, e queremos
resolver

minimiza Z CijXij
ij
sujeito a Z x5 < a4 para todo fornecedor i
j
Z Xij = bj para todo cliente j
i
xi; >0 para todo fornecedor 1i e cliente j

Concretamente, suponha que temos a situacao da figura 1.1. A figura mostra

Cliente 1 Cliente 1 5

Fornecedor 1 k\ﬁﬁedor 1

1

Fornec&dor 2

Fornecedor 3

Cliente 3 Cliente 3

Figura 1.1: Esquerda: Instancia do problema de transporte. Direita: Solucao
otima dessa instancia.

as toneladas disponiveis de cada fornecedor, a demanda (em toneladas) de
cada cliente e as distancias (em km) entre eles. O transporte custa R$ 1000
por km e tonelada. Observe que um transporte do fornecedor 1 para cliente
3 e fornecedor 3 para cliente 1 nao é possivel. N6s usaremos uma distancia
grande de 100 km nesses casos (outra possibilidade seria usar restrigoes x13 =

12



1.2 Formas normais

X31 = 0.

minimiza 3x11 +x12 + 100x93 + 4x21 + 2x22

4+ 4x53 + 100x37 + 3x32 + 3x33
sujeito a X171 +x12+x%x13<5

X271 +x22 +x23 <7

X371 + %32 +x33 <3

X171 +Xx21 + %31 =7

X12 +x22 +x32 =3

X13 +x23 +x33 =5

xi; > 0

Qual seria a solucao 6tima? A figura da direita mostra o nimero 6timo de
toneladas transportadas. O custo minimo é 46 (em R$ 1000). O

Para simplificar a descrigdo, podemos usar matrizes e vetores. Usando A :=
(ay) € R™™ b= (by) € R™, c:=(ci) € R" e x = (x4) € R™ o problema
1.2-1.6), pode ser escrito de forma

opt c'x
sujeito a aix < by 1<i<m

(Denotamos com a; a i-ésima linha e como @’ a j-ésima coluna da matriz A.)

1.2 Formas normais

Conversoes
E possivel converter

e um problema de minimizacao para um problema de maximizacao
. t t
minc x <= —max—Cc x

(o sinal — em frente do max é uma lembranga que temos que negar a
solugdo depois.)

e uma restricio > para uma restrigao <

aix > by &= —ayx < —b;

e uma igualdade para desigualdades

aix = by &= aix < by A aix > by

13



1 Introducao

Conversoes

e uma desigualdade para uma igualdade

aix <b < aix + xn41 =bi Axny1 >0
aix > b &= aiXx —Xn41 =bi Axnp1 >0

usando uma nova varidvel de folga ou excesso xni1 (inglés: slack and
surplus variables).

e uma varidvel x; sem restricoes para duas positivas
xi >0Ax; >0
substituindo x; por x;” —x; .

1

Essas transformagoes permitem descrever cada problema linear em uma forma
padrao.

Forma padrao

maximiza c'x

sujeito a Ax <D

x>0
As restrigdes x > 0 se chamam triviais.
Exemplo 1.4
Dado o problema
minimiza 3x7 — 5% +x3
sujeito a X7 —%x2—x3 >0

5%1 4+ 3x2 +x3 < 200
2x1 4 8x2 + 2x3 < 500
x1,%2 >0

vamos substituir minimiza para maximiza, converter a primeira desigual-
dade de > para < e introduzir x3 = x; —x3 com duas varidveis positivas x;“

14



1.3 Notas histéricas
e x3 para obter a forma padrao

maximiza —3x1 +5%x2 — x;’ +x3
sujeito a —x1+x2+x3 —x3 <0
5%1 4 3x2 +x3 — x5 < 200
2x71 4+ 8x2 + 2x§ — 2x5 < 500
X1,%2,%3, %3 >0

Em notagao matricial temos

;3 0 -1 1 1 =1
c=| b= 200:;A=5 3 1 —1
500 2 8 2 =2

1.3 Notas histéricas

Histéria da programacao linear

o Jean Baptiste Joseph Fourier (1826): Método de re-
solver um sistema de desigualdades (eliminagao de
Fourier-Motzkin) Williams [1986].

e Leonid Kantorovich (1939): Programacao linear.

e George Bernard Dantzig (1948): Método Simplex.

e John von Neumann: Dualidade. Jean Baptiste
Joseph Fourier
e Leonid Khachiyan (1979): Método de ellipsoides. (*1768, +1830)

e Narendra Karmarkar (1984): Métodos de pontos inte-
riores.

Pesquisa operacional, otimizacao e “programacao”

15



1 Introducao

e “The discipline of applying advanced analytical
methods to help make better decisions” (INFORMS)

e A nocéao foi criada no segunda guerra mundial, para
métodos cientificos de andlise e predi¢ao de problemas
logisticos.

e Hoje se aplica para técnicas que ajudam decisoes de
execucgao e coordenagao de operagoes em organizagoes.

e Os problemas da pesquisa operacional sao problemas George Bernard
d imizacio. Dantzig (*1914,
e ot acao +2005)
e “Programagao” # “Programacao”

— Nao se refere a computagdo: a nogao significa
“planejamento” ou “agendamento”.

Técnicas da pesquisa operacional

e Em geral: Técnicas algoritmicas conhecidas como
— Modelagem matemética (equagoes, igualdades, desigualdades, mo-
delos probabilisticos,...)
— Algoritmos gulosos, randémicos, ...; programacao dinamica, linear,
convexo, ...
— Heuristicas e algoritmos de aproximagao.

e Algumas dessas técnicas se aplicam para muitos problemas e por isso
Sa0 mais comuns:

— Exemplo: Programacao linear.

16
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2 O método Simplex

Graficamente, é dificil resolver sistemas com mais de trés varidveis. Por-
tanto é necessario achar métodos que permitam resolver sistemas grandes.
Um método importante se chama Simplex. Nés vamos estudar esse método
primeiramente através da aplicacao a um exemplo.

2.1 Um exemplo

Comegamos com o seguinte sistema em forma padrao:

Exemplo: Simplex

maximiza z =6x%x71 + 8%2 + 5x3 + Ix4
sujeito a 2x1 +x2 +x3+3x4 <5
X1+ 3% +x3+2x4 <3
X1,X2,X3,%X4 >0

Introduzimos varidveis de folga e reescrevemos as equacoes:

Exemplo: Com variaveis de folga

maximiza z=6x7 + 8% +5%x3 + x4 (2.1)
sujeito a Wi =5—2x7 —x2 —x3 —3x4
Wy =3—x%x1 —3%x2 — X3 — 2x4 (2.3)

X1,X2,X3,X4, W1, W2 >0

Observagao 2.1

Nesse exemplo é facil obter uma solugao viavel, escolhendo x1 = x2 = x3 =
x4 = 0. Podemos verificar que w; = 5 e wy = 3 e todas as restrigoes sao
respeitadas. O valor da funcao objetivo seria 0. Uma outra solucao vidvel é
x1=1,%x2 =x3 =x4 =0, w; =3, w, =2 com valor z = 6.

17



2 O método Simplex

Com 6 variaveis e duas equacoes independentes o espago de solugoes do sistema
de equagoes lineares dado pelas restrigoes tem 6 — 2 = 4 graus de liberdade.
Uma solugao vidvel com esse nimero de varidveis nulas (igual a 0) se chama
uma solucdo bdsica vidvel. Logo nossa primeira solucao acima é uma solugao
bésica viavel.

A idéia do método Simplex é percorrer solucoes bésicas vidveis, aumentando
em cada passo o valor z da fungao objetivo.

Logo nosso préximo objetivo é aumentar o valor da funcao objetivo z. Para
esse fim, podemos aumentar o valor das varidveis xq, X2, X3 ou X4, pois o
coeficiente delas é positivo. Escolhemos x4, porque essa variavel tem o maior
coeficiente. Nao podemos aumentar x4 arbitrariamente: Para respeitar as
restricoes wi, w2 > 0 temos os limites

Limites

w1 =5—-3x4 >0 x4 <5/3
Wy =3—2x4 >0 &= x4 <3/2

ou seja x4 < 3/2. Aumentando x4 o maximo possivel, obtemos x4 = 3/2 e
wy = 0. Os valores das demais varidveis nao mudam. Essa solucao respeita
novamente todas as restrigoes, e portanto é wvidvel. Ainda, como trocamos
uma varigvel nula (x4) com uma outra nao-nula (w;) temos uma nova solugao
bésica viavel

Solucao basica viavel

X1 =%x2=%x3=0;% =3/2w1 =1/2;w, =0

com valor da fungao objetivo z = 13.5.

O que facilitou esse primeiro passo foi a forma especial do sistema de equagoes.
Escolhemos quatro varidveis independentes (x7, X2, X3 e x4) e duas varidveis
dependentes (wq e wy). Essas varidveis sdo chamadas ndo-bdsicas e bdsicas,
respectivamente. Na nossa solugao béasica vidvel todas varidveis nao-basicas
sao nulas. Logo, pode-se aumentar uma variavel nao-bésica cujo coeficiente
na fungéo objetivo seja positivo (para aumentar o valor da func¢do objetivo).
Inicialmente tem-se as seguintes variaveis béasicas e nao-bésicas

B={wi,wal, N ={x1,%2,x3,x4}.
Depois de aumentar x4 (e consequentemente zerar wy) podemos escolher

B={wi,xa}; N ={x1,x2,x3,W2}.

18



2.1 Um exemplo

A varidvel x4 se chama wvaridvel entrante, porque ela entra no conjunto de
varidveis basicas B. Analogamente w, se chama varidvel sainte.

Para continuar, podemos reescrever o sistema atual com essas novas varidveis
basicas e ndo-bdsicas. A segunda restrigdo 2.3 é ficil de reescrever

4% 23*)(1 *3X2*X3*2X4 & X4 :3/2*1/2)(1 73/2X271/2X371/2W2

Além disso, temos que reescrever a primeira restrigdo 2.2, porque a variavel
basica wi depende de x4 que agora é basica também. Nosso objetivo é escrever
todas varidveis bésicas em termos de varidveis nao-bésicas. Para esse fim,
podemos usar combinacoes lineares da linhas, que eliminam as varidveis nao-
bésicas. Em nosso exemplo, a combinagao (2.2)—3/2(2.3) elimina x4 e resulta
em

w1 —3/2wy =1/2—1/2x1 +7/2x +1/2x3

e colocando a variavel nao-basica w; no lado direto obtemos
w1 =1/2—1/2x1 +7/2x3 +1/2x3 + 3/2w>.

Temos que aplicar uma operacao semelhante a funcao objetivo que ainda de-
pende da varidvel bésica x4. Escolhemos (2.1)—9/2(2.3) para obter

2=27/243/2x1 — 11/2x5 +1/2x3 — 9/2w».

Novo sistema

maximiza z2=27/24+3/2x1 —11/2x3 + 1/2x3 — 9/2w>
sujeito a wy =1/2—1/2x1 +7/2x3 +1/2x3 + 3/2w;
x4 =3/2—1/2x7 —3/2x5 —1/2x3 — 1/2w;
X1,X2,X3,X4, W1, W2 > 0

que obtemos apds uma operacao de trocar as variaveis x4 e wy. Essa operacao
se chama um pivé. Observe que no novo sistema é facil recuperar toda
informacao atual: zerando as varidaveis nao-béasicas obtemos diretamente a
solugao x1 =x2 =x3 =wy =0, wy = 1/2 e x4 = 3/2 com fungao objetivo
z=27/2.

Antes de continuar “pivotando” introduzimos uma forma mais simples de
escrever o sistema

19



2 O método Simplex
Dicionario
z =27/2 43/2x7 —11/2x2 +1/2x3 —9/2w;

wy =1/2  =1/2x¢ +7/2x,  +1/2x3  +3/2w,
xa =3/2 —1/2%1 =3/2x2 —1/2x3 —1/2w;

que se chama diciondrio (inglés: dictionary).

Excurso 2.1

Alguns autores usam um tableau em vez de um diciondrio. Para n varidveis e
m restri¢goes, um tableau consiste em n+ 1 colunas e m+ 1 linhas. Igual a um
diciondrio, a primeira linha corresponde com a fungao objetivo, e as restantes
linhas com as restrigoes. Diferente do dicionario a primeira coluna contém os
constantes, e as restantes colunas correspondem com as varidveis, incluindo
as basicas. Nosso exemplo acima em forma de tableau é

base

X1 X2 X3 X4 w1 W
27/2[3/2 =112 12 0 0 92
1/211/2 =7/2 —-1/2 0 1 =3/2
3/2 1 1/2 3/2 1/2 1 0 1/2

¢

No préximo passo podemos aumentar somente X1 ou X3 porque somente elas
tém coeficientes positivos. Aumentado x; temos que respeitar x; < 1 (da
primeira restrigdo) e x; < 3 (da segunda). Logo a primeira restri¢do é mais
forte, x1 é a varidvel entrante, wy a variavel sainte, e depois do pivo obtemos

Segundo passo

z =15 —=3w; +5x, +2x3
x1 =1 —2w1  +7x2  +Xx3 +3w;
x4 =1 +wq —5x2 —x3 —2w>

No préximo pivo x, entra. A primeira restricdo néo fornece limite para xo,
porque o coeficiente de x, é positivol Mas a segunda x, < 1/5 e x4 sai da
base. O resultado do pivo é

20



2.1 Um exemplo

Terceiro passo

z =16 —2wq —X4 +Xx3 —2w>
x1 =12/5 —-3/5w; —7/5x4 —2/5x3 +1/5w»
x2 =1/5 +1/5w7 —1/5x4 —1/5x3 —2/5w;

O préximo pivo: x3 entra, x; sai:

Quarto passo

z =17 —w; —2x4 —-bx; —4w,
X] =2 —w; —xa +2x2  +wsy
x3 =1 +wr —Xxa —5x; —2w,

Agora, todos coeficientes da funcao objetivo sdo negativos. Isso significa, que
nao podemos mais aumentar nenhuma variavel nao-bédsica. Como esse sistema
é equivalente ao sistema original, qualquer solucao tem que ter um valor menor
ouigual a 17, pois todas as varidveis sao positivas. Logo chegamos no resultado
final: a solugao

W) =%x4 =%x2=wy =0;x1 =2;x3 =1

com valor objetivo 17, é étimal

Concluimos esse exemplo com mais uma observagdo. O numero de solugdes
bésicas viaveis é limitado. Em nosso exemplo, se escolhemos um subconjunto
de quatro varidveis nulas, as duas equacoes determinam as variaveis restantes.
Logo temos no maximo (g) = 15 solugoes béasicas vidveis. Em geral, com
m equagoes e n variaveis, uma solucao bésica vidvel possui n — m varidveis
nulas e o nimero delas é limitado por (nfm). Portanto, se aumentamos em
cada pivo o valor da fungao objetivo, o método termina em no maximo (nfm)
passos.

Exemplo 2.1 (Solugao do problema do Ildo)
Exemplo da solugao do problema do Ildo na pagina 9.

z= 0/1 +1/5¢c +1/2s

wi; = 150 —c —3/2s
wy; = 6000 —50c —50s
W3 = 80 —C

wy = 60 —S

Pivo s—wy
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2 O método Simplex

z= 30 +1/5¢ —1/2wy

w; = 60 —c  +3/2wy
wy = 3000 —50c  +50wy
w3 = 80 —C

S = 60 —Wy

Pivo c—w,

z= 42 —1/5w; —1/5wy
c= 60 —Wj +3/2wy

wy = +50w, —25wy
w3z = 20 +wWq —3/2wy
s= 60 —Wy

O resultado é um lucro total de R$ 42, com os seguintes valores de varidveis:
c=60,s =60, w; =0, w, =0, w3 =20ewy =0. A interpretagao das
variaveis de folga é como segue.

e wi: Numero de ovos sobrando: 0.
e wy: Quantidade de agucar sobrando: 0 g.
e wj: Croissants nao produzidos (abaixo da demanda): 20.

e wy: Strudels nao produzidos: 0.

2.2 O método resumido

Considerando n varidveis e m restrigoes:

Sistema inicial

maximiza z= Z CjX;
1<j<n
sujeito a Z aijx; < by 1<i<m
1<j<n
xj >0 T<j<n
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2.2 O método resumido

Preparacao
Introduzimos variaveis de folga

E aijXj + Xn4i = by 1<i<m
1<j<n
e escrevemos as variaveis de folga como dependentes das varidveis restantes

Xn+i = bi — E aijXj 1<i<m
1<j<n

Solucdo basica viavel inicial
Se todos b; > 0 (o caso contréario vamos tratar na préxima se¢do), temos uma
solugao bésica inicial

indices das variaveis

Depois do primeiro passo, os conjuntos de varidveis basicas e nao-basicas mu-
dam. Seja B o conjunto dos indices das varidveis basicas (ndo-nulas) e N/ o
conjunto das varidveis nulas. No comego temos

B=(n+1n+2...,n+m} N={12..n}

A forma geral do sistema muda para

z=z+ Z éij

jeN
XiZBi*Zainj ieB
jeN

As barras em cima dos coeficientes enfatizam que eles mudam ao longo da
aplicagao do método.

Escolher variavel entrante
Em cada passo do método Simplex, escolhemos uma varidvel nao-bésica xy,
com k € N para aumentar o valor objetivo z. Isso somente é possivel para os
indices j tal que ¢; > 0, i.e.

{j€N|6j>O}.
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2 O método Simplex

Escolhemos um k desse conjunto, e xy é a variavel entrante. Uma heuristica
simples é a regra do maior coeficiente, que escolhe

k = argmax{C; | ¢; > 0,j € N}

Aumentar a variavel entrante
Seja xx a varidvel entrante. Se aumentamos xj para um valor positivo, as
varidveis basicas tém novos valores

Xi = Bi — Qik Xk ieB.

Temos que respeitar x; > 0 para 1 < i < n. Cada equacao com aj, > 0
fornece uma cota superior para xy:

xk < bi/dix.

Logo podemos aumentar xx ao maximo um valor

. i
o:= min — > 0.
i€B Qg

ajx >0
Podemos escolher a variavel sainte entre os indices

{ie Blbi/aw = ol

2.3 Sistemas ilimitados
Como pivotar?

e Considere o sistema

z =24 —x1 +2x
x3 =2 —X1  +%x2
X4 =05 +x1 +4x2

e Qual a préxima solucao bésica viavel?

e A duas equagbes nao restringem o aumento de x;: existem solugdes com
valor ilimitado.
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2.4 Encontrar uma solucgao inicial

2.4 Encontrar uma solucao inicial

Solucao basica inicial

e Nosso problema inicial é

maximiza z= Z CjX;
1<j<n
sujeito a Z aijx; < by 1<i<m
1<5<n
x>0 1<i<m

e com diciondrio inicial
z=z+ E éij
j
Xi:bi*E aijXj ieB
jeN
Solucao basica inicial
e A solucgao bésica inicial desse dicionario é

x=(0---0b7---by)t
e O que acontece se existe um b; < 07

e A solugédo bésica nao é mais viavell Sabe-se disso porque pelo menos
uma variavel béasica terd valor negativo.

Sistema auxiliar

e Um método para resolver o problema: resolver outro programa linear
— cuja solugao fornece uma solugao bésica vidavel do programa linear
original e
— que tem uma solugao bésica vidvel simples, tal que podemos aplicar
o método Simplex.

maximiza zZ=—Xg
sujeito a Z aijx; —xo < by 0<i<m
1<5<n
xi >0 1<i<n
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2 O método Simplex
Resolver o sistema auxiliar

e E facil achar uma solucao vidvel do sistema auxiliar:

— Escolhe x; = 0, para todos 1 <1i < n.

— Escolhe x¢ suficientemente grande: xp > maxj<i<m —bi.

e Isso corresponde com um primeiro pivoé com varidavel entrante xo apds
introduzir as variaveis de folga

— Podemos comecgar com a solugao nao-viavel xo =Xx1 = ... =Xxn =
0.

— Depois aumentamos xo tal que a varidvel de folga mais negativa
vire positiva.

— Xo e varidvel sainte xi tal que k = argmaxy «;<,, —bi-

Exemplo: Problema original

maximiza z=—2X1 — X2
sujeito a —x1 +x2 < —1
—x1 —2x2 <=2
x; <1
x1,%x2 20

Exemplo: Problema auxiliar

maximiza Z = —Xo
sujeito a —xX1+x2—%x0 <—1
—xX7] —2X) — X0 < =2
X2 —%Xo <1

X0,%1,%2 > 0
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2.4 Encontrar uma solucgao inicial

Exemplo: Dicionario inicial do problema auxiliar

z = —X0
w =—-1 +x7 —x2 +Xo0
wy =-—2 4+x7 +2x2 +xo
W3 = 1 —X2 +Xo

e Observe que a solugao bésica nao é viavel.

e Para achar uma solucdo bdsica vidvel: fazemos um primeiro pivé com
variavel entrante xo e varidvel sainte w.

Exemplo: Dicionario inicial viavel do sistema auxiliar

z =—2 +x1 +2x2 —wW»
w; =1 —3x2 4w
Xo =2 —Xx7 —2x2 +w;
wy =3 —Xx71 —3x2 +tw>
Primeiro pivo
z =—4/3 +x1 —2/3wi1 —1/3w,
x, =1/3 —1/3w; +1/3w;
xo =4/3 —x1  +2/3w;  +1/3w,
w3 = —X1  +Wj
Segundo pivd
z =0 —X0
x, =1/3 —1/3w;  +1/3w;
x1 =4/3 —xo +2/3w; +1/3w,

w3 :2/3 +xo +1/3W1 7]/3W2
Solugao étimal
Solucao do sistema auxiliar

e O que vale a solucao do sistema auxiliar?

e Obviamente, se o sistema original tem solucao, o sistema auxiliar também
tem uma solugao com xp = 0.
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2 O método Simplex

e Logo, apods aplicar o método Simplex ao sistema auxiliar, temos os casos

— xo > 0: O sistema original nao tem solugao.

— xp = 0: O sistema original tem solucao. Podemos descartar xq e
continuar resolvendo o sistema original com a solucao bésica viavel
obtida.

e A solucao do sistema auxiliar se chama fase I, a solugao do sistema
original fase II.

Sistema original

Reescreve-se a fungao objetivo original substituindo as varidveis bésicas do
sistema original pelas equacoes correspondentes do sistema auxiliar, de forma
que a fungao objetivo z nao contenha varidveis basicas. No exemplo, a funcao
objetivo é rescrita como:

Z:—2X1 —X2:—3—W] — W3.

z =-3 —W1 —W3

x2 =1/3 =1/3w; +1/3w;
x1 =4/3 +2/3w; +1/3w;
ws =2/3 +1/3w; —1/3w,

Nesse exemplo, o diciondrio original ja é 6timo!

2.5 Solucoes degeneradas
Solucao degenerada

e Um dicionério é degenerado se existe pelo menos um b; = 0.
e Qual o problema?

e Pode acontecer um pivo que nao aumenta a variavel entrante, e portanto
nao aumenta o valor da fung@o objetivo.

Exemplo 1

e Nem sempre é um problema.
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2.5 Solugoes degeneradas

z =5 +x3 —X4
X, =5 —2x3 —3x4
X1 =7 —4X4
w3 = +X4

e X, é a varidvel sainte e o valor da funcao objetivo aumenta.

Exemplo 2

z =3 —1/2x1 +2x2 —3/2w;
X3 =1 71/2)(1 71/2\/\)1
wy = X1 —x2 +wy

e Se a varidvel sainte é determinada pela equac¢ado com b; = 0, temos um

pivd degenerado.

e Nesse caso, a varidvel entrante nao aumenta: temos a mesma solucao

depois do pivo.

Exemplo 2: Primeiro pivo
e Pivo: xo-w>
z =3 +3/2x7 2wy +1/2w;

X3 =1 —1/2)(1 —1/2W1
Xy = X1 —wWy +wh

e O valor da fun¢ao objetivo ndo aumentou!

Exemplo 2: Segundo pivo

e Pivo: x1—x3

z =6 —3X3 —2W2 —W1
X1 =2 —2X3 —W1
X2 = 2 72X3 —W)

e A segunda iteragao aumentou o valor da funcao objetivo!
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2 O método Simplex

Ciclos
e O pior caso seria, se entramos em ciclos.
e E possivel? Depende da regra de selecao de varidveis entrantes e saintes.

e Nossas regras
— Escolha a varidvel entrante com o maior coeficiente.

— Escolha a varidvel sainte que restringe mais.

— Em caso de empate, escolha a varidvel com o menor indice.

e Ciclos sao possiveis: O seguinte sistema possui um ciclo de 6 pivos:
X1-W1, X2=W2, X3-X1, X4—X2, W1—X3, Wr—Xq.

z = 10x4 —57x%> —9%3 —24x4
w; = —1/2x7  +11/2xp  +5/2x3 —9x4
wy = —1/2x7 +3/2x2  +1/2x3 —x4
w3 = 1 —X1

Solucdes do problema

e Como resolver o problema?

e Duas solugoes

— Método lexicografico.
— Regra de Bland.

Método lexicografico

e Idéia: O fato que existe um by = 0 é por acaso.

e Se introduzimos uma pequena perturbacao € < 1

— o problema desaparece

— a solugdo serd (praticamente) a mesma.
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2.5 Solugoes degeneradas

Método lexicografico
e Ainda é possivel que duas perturbagoes numéricas se cancelem.
e Para evitar isso: Trabalha-se simbolicamente.
e Introduzimos perturbagoes simbdlicas
<k Ken
em cada equagao.

e Caracteristica: Todo €; é numa escala diferente dos outros tal que eles
nao se cancelam.

Exemplo
Exemplo 2.2
Sistema original degenerado e sistema perturbado
z =4 +2x7  —X2 z =4 +2x1  —X2
w1 = 1/2 —X2 w1 = 1/2 +€q —X2
wy, = —2x1  +4x; wy = €2 —2x1  +4x;
w3 = X1 —3x%2 w3 = €3 +X1 —3x%7
O

Comparar perturbacoes

e A linha com o menor limite l; = bi/aix (com xy entrante). define a
variavel sainte.

e A comparacao de limites respeita a ordem lexicografica das perturbagoes,
i.e. com

li=eier 4+ + eikex

L =fher +- +fuoey

temos i < 1y se k <k’ ou k =k’ e ejx < fix.
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2 O método Simplex

Caracteristicas
e Depois de chegar no valor étimo, podemos retirar as perturbagoes €;.

Teorema 2.1
O método Simplex sempre termina escolhendo as variaveis saintes usando
a regra lexicogréfica.

Prova. E suficiente mostrar que o sistema nunca vai ser degenerado: assim
o valor da funcao objetivo sempre cresce, e o método Simplex nao entra em
ciclo. A matriz de perturbagoes

€1
€2

€m

inicialmente tem posto m. As operagoes do método Simplex sdo operagoes
lineares que nao mudam o posto do matriz. Logo, em cada passo do método
Simplex temos uma matriz de perturbacoes

€11€q €12€2 -+ €1m€Em
€21€q €22€2 -+ €2m€Em
emi1€1 €m2€2 ' emm€m

que ainda tem posto m. Portanto, em cada linha i existe ao menos um ey; # 0
e assim uma perturbacao diferente de zero e o sistema nao é degenerado. M

Exemplo 2.3
Solugao do exemplo 2.2.

Pivo x1-wy. z =4 +e€2 —W) +3x%2
wr =1/2 +e —X2
X1 1/2¢; —1/2wy  +2x;
w3 1/2e; +e3 —1/2wy —x2

Pivd x;-w3. z =4 +5/2¢; +3e3 —5/2w; —3ws3
wy =1/2 +4e1 —1/2e2 —e3 +1/2wy +ws
X7 = 3/2¢; +2e3 —3/2w, —2wsg
X2 = 1/2¢5 +€3 —1/2w,  —ws3
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2.5 Solugoes degeneradas
Regra de Bland

e Outra solugao do problema: A regra de Bland.

e Escolhe como variavel entrante e sainte sempre a varidvel com o menor
indice (caso tiver mais que um candidato).

Teorema 2.2
O método Simplex sempre termina se as varidveis entrantes e saintes sao
escolhidas através da regra de Bland.

Prova. Prova por contradicdo: Suponha que exista uma sequéncia de di-
ciondrios que entra num ciclo Dy, Dy,...,Dx_1 usando a regra do Bland.
Nesse ciclo algumas varidveis, chamadas inconstantes, entram e saem nova-
mente da base, outras permanecem sempre como bésicas, ou como nao-bésicas.
Seja x¢ a varidvel inconstante com o maior indice. Sem perda de generali-
dade, seja x¢ a varidvel sainte do primeiro dicionario Dy. Seja xs a varidvel
entrante no Dy. Observe que xs também é inconstante e portanto s < t.
Seja D* o dicionario em que X entra na base. Temos a seguinte situagao

Xg entra Xt entra
Do, Dy, Dy, D*, Dy_1
Xt sal
com os sistemas correspondentes
Do . D*:
Z:ZO+ZCij z=z*+Zc§‘xj
JEN JEN™
_ . .. R : L * _ * A > *
X{ = by Zal,x) ieB Xi = bj Z aigx; i1e€eB
JEN jeEN™=

Como temos um ciclo, todas varidveis inconstantes tem valor 0 e o valor da
funcao objetivo é constante. Logo zp = z* e para D* temos

z=2z"+ Z cixjy =1zo + Z CiXy. (2.4)

jEN™ jEN™
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2 O método Simplex

Se aumentamos em Dy o valor do xs para y, qual é o novo valor da fungao
objetivo? Os valores das varidveis sdo

Xs =Y
x; =0 je N\ {s} (2.5)
xi:bi—aisy ieB

e temos no sistema D7 o novo valor
z=2z0+cCsy (2.6)

Nos vamos substituir os valores das varidveis (2.5) com {ndices em N'* N B na
equagdo (2.4). Para facilitar a substituigao, vamos definir ¢j :=0Oparaj ¢ N*,
que permite substituir todas varidveis x;,j € B e assim obtemos

z=z0+ Y cxj=z0+ciy+ ) ci(bj—ajy). (2.7)
jell,n+m] jeB

Equagbes (2.6) e (2.7) representam o mesmo valor, portanto

* * *
CS—CS+ZC]~C1]'5 y:chbj.

jeB jeB

Essa igualdade deve ser correta para qualquer aumento y, portanto os dois
lados sao 0, e em particular

cs—Ci+ E cjajs =0.
jeB

Como x¢ entra em Dy temos cg > 0. Em D* a varidvel x; entra, entao c} <0
senao pela regra de Bland s < t entraria. Logo,

Zc}kajs <0

jeB
e deve existir um r € B tal que cfa,s < 0. Isso tem uma série de consequéncias:
1. ¢ #0.
2. r € N'*, porque somente as varidveis nulas satisfazem ¢j #0em D™
3. x; é inconstante, porque ela é basica em Dy, mas nao-basica em D*.

4. r < t, porque t foi a varidvel inconstante com o maior indice.

34



2.6 Complexidade do método Simplex

5. T < t, porque ciais > 0: x¢ entra em D*, logo ci > 0, e x¢ sai em Dy,
logo ays > 0.

6. ¢ <0, sendo T e nao t entraria em D* seguindo a regra de Bland.
7. ars > 0.

8. b, = 0, porque x, é inconstante, mas todos varidveis inconstantes tem
valor 0 no ciclo, e x, é basica em Dy.

Os ultimos dois itens mostram que x, foi candidato ao sair em Dy com indice
T < t, uma contradicao a regra de Bland. |

Teorema fundamental

Teorema 2.3 (Teorema fundamental da programacao linear)
Para qualquer programa linear temos:

1. Se nao existe solucdo 6tima, o problema é invidvel ou ilimitado.
2. Se existe uma solucao vidvel, existe uma solugao bésica viavel.

3. Se existe uma solucao 6tima, existe uma solugao 6tima bésica.

2.6 Complexidade do método Simplex
Complexidade pessimista
e Com a regra de Bland o método Simplex sempre termina.
e Com n + m varidveis (de decisao e de folga) existem
(n + m) _ (n + m)
n m
solugoes basicas possiveis.

e Logo: No pior caso o método Simplex termina depois desse nimero de
pivos.
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2 O método Simplex

Complexidade pessimista

e Para n 4+ m constante, obtemos o maior valor de
n+m
m
e Os limites nesse caso sdo (exercicio 5.10)

LZZn < (ZTL) < 2211.

paran =m.

2n n

e Logo, o nimero de passos no pior caso pode ser exponencial no tamanho
da entrada.

Complexidade pessimista

e Se o ntimero de passos é exponencial depende da regra de pivo aplicada.

e FExemplo: Com a regra de maior coeficiente, existem sistemas que pre-
cisam um ndmero exponencial de pivés (Klee-Minty).

e Pergunta em aberto: Isso é o caso para qualquer regra de pivo?
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3 Dualidade

3.1 Introducao
Visao global

e Dualidade: Cada programa linear (chamada de primal) possui um pro-
grama linear correspondente, chamado de dual.

e Programas lineares duais tem varias aplicagdes como

— Estimar a qualidade de solugoes e convergéncia.
— Certificar a otimalidade de um programa linear.
— Anélise de sensibilidade e re-otimizagao de sistemas.

— Solucao mais simples ou eficiente com o Método Simplex dual.

e O programa dual frequentemente possui uma interpretacao relevante.

Introducao
e Considere o programa linear

maximiza z=4x1 +%x2 +3x3 (3.1)
sujeito a X1 +4x2 <1
31 —x2+x3 <3
X1,%X2,%X3 >0

e Cada solugao viavel fornece um limite inferior para o valor maximo.

X1 =x2=x3=0=2z=0
x1=3,x2=x3=0=>z=4

e Qual a qualidade da solugao atual?

e Nao sabemos, sem limite superior.
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3 Dualidade

Limites superiores

e Como obter um limite superior?
Observe: z =4x7 +x2 +3x3 < 10x7 +x2 +3x3 < 10

e Podemos construir uma combinacao linear das desigualdades, tal que o
coeficiente de cada x; ultrapasse o coeficiente da fungao objetivo.

e Nosso exemplo:
(x1 +4x2)+303% —x2+x3)<14+3-3=10
& 10x1 +x2 +3x3 < 10
e Como obter um limite superior para a fungao objetivo?

e Qual seria o menor limite superior que esse método fornece?

Exemplo 3.1
Para o sistema (3.1) obtemos:

minimiza Yy +3y2
sujeito a y; +3y2 >4

dyr —y2 > 1
Y2 >3
Y1,Y2,y3 >0
O
O menor limite superior
e Sejam yi,...,Yn os coeficientes de cada linha. Observagao: Eles devem

ser > 0 para manter a direcao das desigualdades.

e Entao queremos
minimiza Z biyi
i
sujeito a Z aijYi > Cj 1<ji<n
i
yi >0

e Isto é o problema dual com varidveis duais yi.
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3.2 Interpretacao do dual

Dualidade: Caracteristicas

e Em notagao matricial

maximiza c'x minimiza b'y
sujeitoa Ax<Db sujeito a ytA>ct
x>0 y>0

e O primeiro se chama primal e o segundo dual.

o Eles usam os mesmos pardmetros cj, aij, b;.

O dual do dual
e Observagao: O dual do dual é o primal.

e Forma normal do dual:

—maximiza —Db'y —maximiza —Db'y
sujeitoa —y'A<-—c' = sujeito a (—A')y < —c
y=>0 y=>0
e Dual do dual
—minimiza —c'x maximiza c"x
sujeito a x'(—A') > —b' = sujeitoa Ax <b
x>0 x>0

3.2 Interpretacao do dual

Exemplo: Dieta dual

e Problema da dieta: Minimiza custos de uma dieta x que alcance dados
VDR minimos.

minimiza ctx
sujeito a Ax >

e Unidades das varidveis e parametros
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3 Dualidade

— x: Quantidade do alimento [g]
— ¢: R$/alimento [R$/g]

— ayj: Nutriente/Alimento [g/g]
— 1: Quantidade de nutriente [g].

Exemplo: Dieta dual

e O problema dual é
maximiza  y'r
sujeito a ytA<ct
y=>0

Qual a unidade de y? Preco por nutriente [R$/g].

e Imagine uma empresa, que produz céapsulas que substituem os nutrien-
tes.

e Para vender no mercado, a empresa tem que garantir que uma dieta
baseado em capsulas custa menos que os alimentos correspondentes:

Z Yidiyj < ¢
i

e Além disso, ela define pregos por nutriente que maximizam o custo de
uma dieta adequada, para maximizar o préprio lucro.

maximiza y'r

Interpretacao do dual

40

e Outra interpretacdo: o valor de uma varidvel dual y; é o lucro marginal
de adicionar mais uma unidade b;.

Teorema 3.1
Se um sistema tem ao menos uma solugao bésica vidvel nao-degenerada,
existe um e tal que, se [tj] < e para 1 <j <m,

maximiza ctx
sujeito a Ax<b+t
x>0



3.3 Caracteristicas

tem uma solugao 6tima com valor
t
z=z"+y"'t

(com z* o valor 6timo do primal, é y* a solugdo 6tima do dual).

3.3 Caracteristicas

Teorema da dualidade fraca

Teorema 3.2 (Dualidade fraca)
Se X1,...,Xn € uma solugao viavel do sistema primal, e yi,...,Yym uma
solugao viavel do sistema dual, entao

Z cixi < Z b;y;.

1<i<n 1<j<m
Prova.
ctx
<(y*A)x =y'(Ax) pela restrigao dual (3.2)
<y'b pela restrigdo primal (3.3)
|
Situacao
Gap de otimalidade
Solugdes primais viaveis Solucdes duais viaveis
e Em aberto: Qual o tamanho desse intervalo em geral?
Teorema da dualidade forte
Teorema 3.3
Sex7,..., x5 é uma solugdo 6tima do sistema primal, existe uma solucao étima
Y7,..., Y, do sistema dual, e
Z CiXi* = Z bjy;‘.
1<i<n 1<j<m
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3 Dualidade

Prova. Seja x* uma solucao étima do sistema primal, que obtemos pelo
método Simplex. No inicio introduzimos varidveis de folga

Xnyp=bj— Y aixi 1<j<m
1<i<n

e a fungao objetivo final é

z=2z"+ Z Cixi

1<i<n+m

(supondo que ¢; = 0 para varidveis bésicas). Temos que construir uma solugao
otima dual y*. Pela optimalidade, na fungéo objetivo acima, todos ¢; devem
ser nao-positivos. Afirmamos que yj = —Cnyj > 0 para j € [1,m] é uma
solugao dual 6tima. Como z* o valor étimo do problema inicial, temos z* =

*
21 <i<n CiXq-
Reescrevendo a fungao objetivo temos

z
- Z Cixi sistema inicial
1<i<n

=z Z Cixi sistema final
1<i<n+m

=z Z Cixi + Z Cn+iXn+j separando indices
1<i<n 1<j<m

=z¥ 4+ E Cixi — E y}‘ b; — E ajiXq subst. solucdo e var. folga
1<i<n 1<j<m 1<i<n

_ * * _ N

(%~ Z Yj by | + z Ci + § Y5 i | Xi agrupando

1<G<m 1<i<n 1<j<m

Essa derivacao esta valida para x; qualquer, porque sao duas expressoes para
a mesma funcao objetivo, portanto

Z*: Z y;kb) € Ci:61+ Z y;ka]l ]glgn

1<5<m 1<5<m

Com isso sabemos que o primal e dual possuem o mesmo valor

Z yiby =z" = Z cix}

1<5<m 1<isn
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3.3 Caracteristicas

e como C; < 0 sabemos que a solugao y* satisfaz a restrigoes duais

Consequéncias: Solucdes primais e duais

e Com o teorema da dualidade forte, temos quatro possibilidades

Sistema primal Sistema dual Intervalo

Otima Otima Sem
Ilimitado Invidvel Sem
Invidvel Ilimitado Sem
Inviadvel Invidvel Infinito

Exemplo 3.2

Pelo teorema da dualidade forte, nao podemos concluir, que existe um caso
que tanto o sistema primal quanto o sistema dual sao invidveis. O seguinte
exemplo mostra que isso pode realmente acontecer. O sistema primal

maximiza X1
sujeito a +x1—x%x2 <0
—x1+x2 < -1

possui sistema dual correspondente

minimiza —Y2
sujeito a +yi—yz>1
—y1+y22>0

Os dois sistemas sao inviaveis. O

Consequéncias
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3 Dualidade

e Dado solucdes primais e duais x*,y* tal que ctx* = bty* podemos con-
cluir que ambas solugoes s@o 6timas (x*,y* é um certificado da optima-
lidade)'.

e A prova mostra: com o valor 6timo do sistema primal, sabemos também
o valor étima do sistema dual.

e Além disso: Podemos trocar livremente entre o sistema primal e dual.
= Método Simplex dual.

Outra consequéncia do Teorema da dualidade forte é o

Teorema 3.4 (Teorema das folgas complementares)
Se x*,y* sao solugdes 6timas do sistema primal e dual, respectivamente, temos

y*'(b—Ax) =0 (3.4)
(YA —c)x* =0 (3.5)

Prova. Pelo Teorema da dualidade forte as duas desigualdades 3.2 e 3.3
da prova do Teorema da dualidade fraca se tornam igualdades para solucoes
otimas:
CtX* _ y*tAX* _ y*tb

Reagrupando termos, o teorema segue. |
As igualdades 3.4 e 3.5 sao ainda validas em cada componente, porque tanto
as solucoes 6timas x*,y* quanto as folgas primas e duais b — Ax e y*'*A — ¢t
sempre sao positivos.

xi>0= Z Yjaji = C4 (36)
1<5<m

Z Yjaji > ¢ = x =0 (3.7)

1<<m
Y; > 0= bj = Z ajixq (38)

1<i<n
bj > Z ajiXy = Yj = 0 (39)
1<i<n

1Uma consequéncia é que o problema de decisdo correspondente, determinar se existe uma
solu¢do maior que um dado valor, possui um certificado que pode ser verificado em tempo
polinomial tanto para uma resposta positiva quanto uma resposta negativa. Portanto,
ja antes da descoberta de um algoritmo polinomial para esse problema, foi claro que ele
pertence a NP N co-NP.
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3.4 Método Simplex dual

Como consequéncia, podemos ver que, por exemplo, caso uma igualdade pri-
mal ndo possui folga, a varidvel dual correspondente é positiva, e, contraria-
mente, caso uma igualdade primal possui folga, a variavel dual correspondente
é zero. As mesmas relagoes se aplicam para as desigualdades no sistema dual.
Apés a introdugdo da forma matricial no segdo 3.6 vamos analisar a inter-
pretacao das varidveis duais com mais detalha no segao 3.7.

3.4 Método Simplex dual

Método Simplex dual

e Considere

maximiza — X1 — X2
sujeito a —2x1 —x2 <4
—2x1 +4x; < -8
—x1+3x < -7
X1,%X2 >0

e Qual o dual?
minimiza 4y1 — 8y — 7ys3
sujeito a —2y1 —2yz —y3z > —1
—y1 +4y2 +3yz2 > 1

Com diciondrios

z = —X1 —X2
W =4 +2x +x2
Wy = -8 +2X] 74X2
wy =—7 +x1 —3x
—-w = —Ay; +8y2 +7ys3
z1 =1 —2y1 —2y2 -—y3
zz =1 —yr +4y2 +3ys

e Observagao: O primal nao é vidvel, mas o dual é!

e Correspondéncia das varidveis:

Varidveis
principais de folga
Primal xq,...,Xn  Wi,..., W
Dual z1,...,zn, Yi1,..-,Ym
de folga principais
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3 Dualidade
e Primeiro pivo: y; entra, zq sai. No primal: w; sai, x; entra.

Primeiro pivo

z =4 —0.51/\)2 —3X2
w, =12 +wy  +5%,
X1 =4 +05w; +2x,
wsy =-3 +0.5w; —X2
—w =4 —12y; —4z4 +3y3
Y2 =05 —VYi —0.521 —0.5y3
z2 =3 Syr 2z +ys

e Segundo pivo: y3 entra, y; sai. No primal: w3 sai, w; entra.

Segundo pivo

z =—7 —W3 —4X2
wy =18 +2ws +7x;
X1 =7 +wsz  +3x;
Wy =6 42wz +2x
-w =7 —18y1 —7Z] —6y2
ys =1 —2y1 —-z1 2y
Z =4 —71_;1 —3Z] —Zyz

e Sistema dual é 6timo, e portanto o sistema primal também.

Método Simplex dual

e Observagao: Nao é necessario escrever o sistema dual. Ele é sempre o
negativo transposto do sistema primal.

z=Zz+ E éij

JeEN

Xi:Bi_Zainj ieB
jeN

e Mas é necessario modificar as regras para resolver o sistema dual.

Método Simplex dual: Viabilidade e otimalidade

e Pré-condicao: O dicionario é dualmente vidvel, i.e. os coeficientes das
variaveis nao-basicas na fungao objetivo tem quer ser nao-positivos.

¢; <0 para jEWN.
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3.4 Método Simplex dual

e Otimalidade: Todos varidveis basicas primais positivas

VieB:by >0
Método Simplex dual: Pivo

e Caso existe uma varidvel primal negativa: A solucao dual ndo é 6tima.

e Regra do maior coeficiente: A varidvel basica primal com menor valor
(que é negativo) sai da base primal.

i = argmin by
ieB

o A varidvel primal nula com fracdo di;/¢; maior entra.

. .G aij aij

) = argmin — = argmax — = argmax —
gJeN Q45 JeN Cj jeN Cj
aij <0 aij <0

Método Simplex dual
Resumo:

e Dualmente vidvel: ¢; < 0 para j € N.
e Otimalidade: Vi € B:b; > 0.

o Varidvel sainte: 1 = argmin;cp b;

Qs

e Varidvel entrante: j = argmax;c 5‘;.
Exemplo
maximiza z=—2X] — X2
sujeito a —x1 +x2 < -1
—x7 —2x2 <=2
xy <1
X1,%2 >0
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3 Dualidade

Exemplo: Dicionario inicial

z =
W1 =1
Wy = —2
4% =1

—2X1 —X2
+x1 —X2
+x71  +2xo

—X2

e O diciondario primal nao é vidvel, mais o dual é.

Exemplo: Primeiro pivo

z =—1
w1 = —2
X2 =1
4% =

—3/2X1 —]/ZWZ
+3/2%1  —1/2w,
—1/2x1  +1/2w;
+1/2X1 7]/2W2

Exemplo: Terceiro privot

z =-3

—Wi —W2

X1 :4/3 -|—2/3W1 +]/3W2

X2 :1/3

—1/3w;  +1/3w;

wsy =2/3 +1/3w; —1/3w,

3.5 Dualidade em forma nao-padrao

Dualidade em forma padrao

maximiza ctx

sujeitoa Ax<Db

x>0

minimiza b'y

sujeito a y'A > ¢!

y=>0

e O que acontece se o sistema nao é em forma padrao?

Igualdades

e Caso de igualdades: Substituindo desigualdades..
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3.6 Os métodos em forma matricial

e ... padronizar novamente, e formar o dual:

maximiza c'x minimiza b'yT —bly~
sujeitoa Ax <D sujeito a y+tA —y*t/-\ >c
—Ax < -b y" >0y >0
x>0 vt =(yi,. oyt
Yy = um)'
Igualdades

e Equivalente, usando varidveis nao-restritas y =y* —y~
minimiza b'y

sujeito a ytA>c¢

y'so
e Resumo
Primal Dual
Tgualdade Varidvel dual livre
Desigualdade (<) Varidvel dual ndo-negativa
Variavel primal livre Igualdade

Varidvel primal nao-negativa Desigualdade (>)

3.6 Os métodos em forma matricial

A forma matricial permite uma descricdo mais compacto do método Simplex.
A seguir vamos resumir os métodos Simplex primal e dual na forma matricial.
Mais importante, nesse forma é possivel expressar o dicionario correspondente
com qualquer base em termos das dados inicias (A, ¢, b). Na préxima se¢ao va-
mos usar essa forma para analisar a sensibilidade de uma solugao ao pequenas
perturbagoes dos dados (i.e. os coeficientes A,b, e c).

Sistema padrao
e O sistema padrao é

maximiza crx

sujeito a Ax <D
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3 Dualidade

e Com varidveis de folga xny1,

we oy Xntm € A,c,x novo (definigdo segue
abaixo)
maximiza ctx
sujeito a Ax=D
x>0
Matrizes
apr a2 e a1
a;  azp - Qn 1
A= ;
Am1 am2 Amn 1
C1 X1
C2 X2
b, )
b2
b= ic=|cn|jx= Xn
: 0 Xn+1
bm . .
0 Xn+m

Separacao das variaveis
e Em cada iteragao as variaveis estao separados em basicas e nao-bésicas.

e Conjuntos de indices correspondentes: B UN = [1,n +m].

e A componente i de Ax pode ser separado como

E aijXj = E (1in5+ E aijX;
1<j<n+m jeB jeN

Separacao das variaveis

e Para obter a mesma separacao na forma matricial: Reordenamos as
colunas e separamos as matrizes e vetores:

A=(BN);x= (;E) ;C= (;i)

e com B € R™*™ N e R™" ¢ g RMM,
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3.6 Os métodos em forma matricial

Forma matricial das equacoes

e Agora, Ax = b é equivalente com

(BN) <"B) —Bxg +Nxn =)
XN

e Numa solugao bésica, a matriz B tem posto m tal que as colunas de B
formam uma base do R™. Logo B tem inversa e

xg =BT (b—Nxn) =B "b—B "Nxn

Forma matricial da funcao objetivo

e A fungao objetivo é
X
z=c% = (c§ cN) ( B) = CpXB + CNXN
N

e e usando xg = B~ 'b — B~ 'Nxp obtemos

z=ch(B7'b — B 'Nxn) + ckxn
=cEB 7o — (c5BTIN — ek )xn
=cB b —((B""N)'cp — en)'xn

Dicionario em forma matricial

e Logo, o dicionario em forma matricial é

z=cEB b — ((B""N)tcpg —cn)txn

XBp = B 'b— BilNXN

e Compare com a forma em componentes:

Z:Z-I—Z(_:jx] z=2z+C'xy
jeEN

xlfBI—Zaﬁxj ieB xg =b—Axyx
JEN
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3 Dualidade

Dicionario em forma matricial

e Portanto, vamos identificar
—((B""N)'cg —cn)

zZ=c5B by c=
b=B'b; A =(a;)=B""N
e para obter o dicionério
z=7z4Cc'xN
XB = B — AXN

Sistema dual

e As varidveis primais sao
X =(X1... X0 Xnt1 -+ Xntm)

original folga

e Para manter indices correspondentes, escolhemos varidveis duais da forma

Y=(Y1. - UnYnt1---Ynim)"
—_—

folga dual

e O dicionéario do dual correspondente entao é

Primal Dual
z2=7Z+Cc'xN —w=—z—b'yp
yn =—C+ AtUB

XB :BfAXN

Primal e dual
e A solugao bésica do sistema primal é
X =0, x53=b=B"Tb

e A solugdo dual correspondente é
=—C= (B_]N)tCB —CN

yp =0, yny=-—
e Com isso temos os diciondrios
z=2z—(yn)'xn —w=—-Z— (x3)'ys
xg = x5 — (B7"N)xn yn =ux + (B7'N) 'y
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3.6 Os métodos em forma matricial

Método Simplex em forma matricial

e Comecamos com uma particao B UN = [1,n 4+ m].

e Em cada iteracao selecionamos uma varidvel sainte i € B e entrante

jeN.
e Fazemos o pivd x; com X;.

e Depois a nova base é B\ {i}U {j}.

Método Simplex em forma matricial

S1: Verifique solucdo 6tima Se yy, > 0 a solugao atual é 6tima. Pare.

S2: Escolhe varidvel entrante Escolhe j € N com y; < 0. x; é a varidvel
entrante.

S$3: Determine passo basico Aumentando x; uma unidade temos novas varidveis
= £l % _ t
nao-bésicas xn = x§; + Axn com Axy = (0---010---0)* =ej e g5 0
vetor nulo com somente 1 na posicao correspondente com indice j. Como

XB = XE — BilNXN

a diminuigao correspondente das varidveis bdsicas é Axg = B~ Ne;.

Método Simplex em forma matricial

S4: Determine aumento maximo O aumento maximo de x; é limitado por
XB > 0, i.e.

xp = X — tAxp > 0 & x§ > tAxg.

Com t,x§ > 0 temos

. X{

t <t = min
ies  Axy

Ax; >0

S5: Escolhe variavel sainte Escolhe um i € B com xj = t*Ax;.
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3 Dualidade

Método Simplex em forma matricial

S5: Determine passo dual A varidvel entrante dual é y;. Aumentando uma
unidade, as varidveis yn diminuem Ayn = —(B~'N)te;.

S$6: Determina aumento maximo Com varidvel sainte yj, sabemos que yi
pode aumentar ao maximo

Yj
§=-—.
Ay;
S7: Atualiza solucao
Xj =t yi=s
Xp = xp — tAxp YN = yN — sAyn

B:=B\{i}U{j}

3.7 Analise de sensibilidade
Motivacao

e Na solugao da programas lineares tratamos os parametros como ser fi-
xados.

e Qual o efeito de uma perturbagao
ci=c+Ac; b:=b+Ab; A:=A+AA?

(Imagina erros de medida, pequenas flutuacoes, etc.)

Andlise de sensibilidade
e Apés a solugao de um sistema linear, temos o dicionario 6timo
z=2"—(yn)'x
NJ XN
* —1
xg =xg — B~ 'Nxn
e com
* _ p—1
xg=B"'b
* (B—lN)t _
Un = CB —CN

2" =ckB b
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3.7 Anélise de sensibilidade

Moadificar ¢

e Mudarmos ¢ para €, mantendo a base B.
3 ~ M * *
e x} nao muda, mas temos que reavaliar yy, e z*.
e Depois, xj; ainda é uma solugao basica vidvel do sistema primal.

e Logo, podemos continuar aplicando o método Simplex primal.

Modificar b

e Da mesma forma, modificamos b para b (mantendo a base).
* = M * *
e Yy} nao muda, mas temos que reavaliar xg e z*.
e Depois, y¥, ainda é uma solugao bésica vidvel do sistema dual.

e Logo, podemos continuar aplicando o método Simplex dual.

Vantagem dessa abordagem

e Nos dois casos, esperamos que a solugao inicial ja é perto da solugao
6tima.

e Experiéncia prética confirma isso.

e O que acontece se queremos modificar tanto b quanto ¢ ou ainda A?

A solugao atual nao necessariamente é viavel no sistema primal ou dual.

e Mas: Mesmo assim, a convergéncia na pratica é mais rapido.

Estimar intervalos

e Pergunta estendida: Qual o intervalo de t € R tal que o sistema com
€ = ¢ + tAc permanece 6timo?

e Parat=1:y} = (B""'N)tcg—cn aumenta Ay := (B7'N)*Acg—Acn.
e Em geral: Aumento tAyy.

e Condigao para manter a viabilidade dual:

yn +tAyn >0
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3 Dualidade

e Para t > 0 temos

. Y;
t < mlj\Ifl _2
A]g€j<0 y]
e Para t < 0 temos
*k
m%( - <t
A)yEi>0 y)

Estimar intervalos

Agora seja b =b + tAb.

Para t = 1: x}; = B~'b aumenta Axg := B~'Ab.

Em geral: Aumento tAb.

Condigao para manter a viabilidade primal:

xp + tAxg > 0

Para t > 0 temos

. X}
t < min —
ieB Ax;
Axi<0
e Para t < 0 temos
*
max ——— <t
ieB X
Ax;>0

Exemplo 3.3
Considere o problema da empresa de ago (vista na aula pratica, veja também
execicio 5.5).

maximiza 25p + 30c
sujeito a 7p + 10c < 56000
p < 6000
¢ <4000

Qual o intervalo em que o valor do lucro das placas de 25R $ pode variar sem
alterar a solucao 6tima?
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3.7 Anélise de sensibilidade

Exemplo: Empresa de aco

e Sistema étimo

2
*7/ 10‘11)2

e Base B = {p,ws,c}, varidveis nao-bdsicas N' = {wy,w;}. (Observe:
Usamos conjuntos de varigveis, ao invés de conjuntos de indices).
Exemplo: Variaveis

e Vetores ¢ e Ac. Observe que reordenamos dos dados do sistema inicial
de forma correspondente com a ordem das varidveis do sistema final.

25

0 25 0
c=|30];cg=1]0 ;CN—<0>;

0 30

0

1

0 1 0
Ac=|0]|;Acg = 1[0 ;ACN:(O)

0 0

0

Exemplo: Aumentos

e Aumento das varidveis duais

Ayn = (B7'N)*Acg — Acn = (BT 'N)*Acs

® COom
0 1
B~ 'N=|-1/10 7/10
1/10  —7/10
e temos

=)
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3 Dualidade

Exemplo: Limites

e Limites em geral

* *
j . j
max ———— <t< min ——
AN Ay e Ay
e Logo
—4 <t < 0.
e Uma variacdo do preco entre 25 + [—4, co] = [21, 00] preserve a otimali-

dade da solugao atual.
e O novo valor da fungao objetivo é

6000
z==¢yB b= (25+t 0 30) | 2600 | = 192000 + 6000t
1400

e os valores das varidveis p e ¢ permanecem 0s mesmos.

Exemplo 3.4

Qual o intervalo em que o lucro das placas (R$ 25) e dos canos (R$ 30) podem
variar sem que a solugao 6tima seja alterada?

Exemplo: Variacao do lucro dos placas e canos

e Neste caso, os vetores c, cg, N € Acn permanecem os mesmos do
exemplo anterior. Enquanto que:

Ac sAcg = (0]

I
co =0 =

e Neste caso, o valor de Ayy é

]
o /0 1710 1/10 110\ |
‘WN_B]NVN*_<1 7/10 -JAQ 0 —<ym>
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3.7 Anélise de sensibilidade

e Logo —40/3<t< 0

e Ou seja, uma variagao do lucro das placas entre R$ 11.67 e oo, e do lucro
dos canos entre R$ 16.67 e 0o, nao altera a solugdo 6tima do sistema.

O

Exemplo: Modificacao

e Qual o intervalo em que o lucro dos canos (R$ 30) podem variar sem
que a solugao 6tima seja alterada?

e Neste caso, os vetores ¢, cg, CN € Acn permanecem os mesmos do
exemplo anterior. Enquanto que:

0
Ac = Acg = (0]
1

S O = O O

e Neste caso, o valor de Ayy é:

(110
Acg = (7/10) *

o Logo —30 < t < 40/7

e Ou seja, uma variacao do lucro dos canos entre R$ 0 e R$ 35.71, néao
altera a solucao 6tima do sistema.

Exemplo 3.5
O que acontece se mudarmos o lucro das placas para R$ 207

Exemplo: Placas com lucro R$ 20

e Novos vetores
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3 Dualidade

e Aumento

0% = (B7'N)'es —en = (B7'N)¢g
__G 110 1ﬂ0> ? _<3>
1710 =7/10) { 5, -1
Novas variaveis

e Com
6000
B 'b = | 2600
1400

e Novo valor da funcao objetivo

6000
2 =etB 'b=(20 0 30) [2600 | = 162000
1400

Exemplo: Novo dicionario

e Novo sistema primal vidvel, mas nao 6timo:

z = 162000 —3wq +w;
P = 6000 —W»
wsz = 2600 +1/10w;  —7/10wo
c = 1400 —1/10wy  +7/10w,

e Depois um pivd: Sistema 6timo.

z =1657142/7 —20/7wy; —10/7ws3
P =22855/7 —1/7wy  +10/7w3
wy =37142/7 +1/7wy —=10/7w;
c = 4000 —w3

Exemplo 3.6
O que acontece se mudarmos o lucro das placas de R$ 25 para R$ 35 e dos
canos de R$ 30 para R$ 10?
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3.7 Anélise de sensibilidade

Exemplo: Placas e canos com lucro R$ 35 e R$ 10

e Novos vetores

35

0 (35) 0
c=110f;eg=10 ;éN—(())

0 10

0

e Aumento

35
. it 0 —1/10 1/10 1

@z((B'N)c—c)=< ) 0 =()
N BTN 17710 =7/10) | 4, 28

Novas variaveis e novo dicionario

e Novo valor da funcao objetivo

6000
2" =¢yB 'b=2¢5xy = (35 0 10) [ 2600 | = 224000
1400
e O novo sistema primal vidvel é

z = 224000 —Iw, —28w;

P = 6000 —W»

ws = 2600 +1/10w; —7/10w>

c = 1400 —1/10w;  +7/10w,

e O sistema é 6timo.
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4 Toépicos

4.1 Centro de Chebyshev

Seja B(c,r) = {c +u | |lu]] < r} a esfera com centro ¢ e raio r. Para um
poligono convexo a;x < by, para 1 <1i < n, queremos achar o centro e o raio
da maior esfera, que cabe dentro do poligono, i.e. resolver

maximiza T
sujeito a sup aip < b vVl <i<n.
pEB(c,7)
Temos
sup aip =ca;+ sup aju=cai + |lailr
pEB(c,r) [luf|<r

porque o ultimo supremo ¢é atingido por u = ra;/|lai||. Assim obtemos uma
formulacao linear

maximiza T
sujeito a aic + 1llai|] < by vVl <i<n.
Exemplo 4.1

O poligono da Fig. 4.1 possui a descri¢ao

2xq +4x, <24
Ix; —x <12—x1<0—-—%x2<0

Portanto o programa linear para achar a o centro e o raio do maior circulo é

maximiza T
sujeito a 2cq) +4cy, +4.47r <24
ey —cr +412r <12
—c1+1r<0
—c24+1<0
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4 Topicos

Figura 4.1: Exemplo do centro de Chebyshev

4.2 Funcao objetivo convexa e linear por segmentos

Uma funcao f é convezxa se f(tx+ (1—t)y) < tf(x)+ (1 —1t)f(y) para qualquer
x ey e 0 <t <t Fungoes convexas sao importantes na otimizagao, porque
eles possuem no maximo um minimo no interior do dominio deles, e portanto
o minimo de uma fun¢ao convexa pode ser obtido com métodos locais.

Seja fi(x),T < 1 < n uma colecdo de funcgoes lineares. O méximo f(x) =
max; fi(x) é uma funcdo convexa linear por segmentos. O problema de oti-
mizacao

maximiza max fi(x)
1
é equivalente com o programa linear

minimiza %o (4.1)
sujeito a fi(x) < xo Vi<i<n. (4.2)
Portanto podemos minimizar uma fungao convexa linear por segmentos usando

programacao linear. De forma similar, f é concava se f(tx + (1 — t)y) >
tf(x) + (1 — t)f(y). (Observe que uma fungdo convexa e concavo é afina.) O
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4.2 Funcgao objetivo convexa e linear por segmentos

sistema

maximiza X0

sujeito a fi(x) > xo vVl <i<n.

maximiza uma funcao concava linear por segmentos.
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5 Exercicios

(Solugoes a partir da pagina 179.)

Exercicio 5.1
Na definicao da programacao linear permitimos restri¢oes lineares da forma

ai1X1 +ai2x2 + - + GinXn D by
com ;€ {<, =, >}. Por que ndo permitimos ;€ {<, >} também? Discute.

Exercicio 5.2
Procura a tabela nutricional de algum restaurante e resolve o problema da
dieta (exemplo 1.2).

Exercicio 5.3

Um investidor pode vender agoes de suas duas empresas na bolsa de valores,
mas estd sujeito a um limite de 10.000 operagoes didrias (vendas por dia).
Na cotacao atual, as acoes da empresa A valorizaram-se 10% e agora cada
uma vale R$ 22. J4 a empresa B teve valorizacao de 2% e cada agao vale R$
51. Sabendo-se que o investidor possui 6.000 a¢oes da Empresa A e 7.000 da
empresa B, maximize seu lucro na BOVESPA e diga qual o lucro obtido.

Exercicio 5.4

Dona Maria adora ver seus netinhos Marcos, Renato e Vinicius bem alimen-
tados. Sempre na hora de cozinhar ela leva em conta o quanto eles gostam de
cada prato para fazé-los comer o maximo possivel. Marcos gosta da lasanha
e comeria 3 pratos dela apés um prato de sopa; Renato prefere lanches, e
comeria 5 hamburgueres, ignorando a sopa; Vinicius gosta muita da massa a
bolonhesa, e comeria 2 pratos apds tomar dois pratos de sopa. Para fazer a
sopa, sao necessarios entre outros ingredientes, 70 gramas de queijo por prato
e 30 gramas de carne. Para cada prato de lasanha, 200 gramas de queijo, e
100 gramas de carne. Para cada hambirguer sao necessarios 100 gramas de
carne, e 100 gramas de queijo. Para cada prato de massa a bolonhesa sao
necessarios 100 gramas de carne e 30 gramas de queijo (ralado para por sobre
a massa). Seus netos vieram visitd-la de surpresa, e tendo ela somente 800
gramas de carne e 1000 gramas de queijo em casa, como ela poderia fazé-los
comer o maior nimero de pratos, garantindo que cada um deles comera pelo
menos dois pratos, e usando somente os ingredientes que ela possui?
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5 Exercicios

Exercicio 5.5 ( [ D
Formule como problema de otimizacao linear e resolve graficamente.

Uma empresa de ago produz placas ou canos de ferro. As taxas de produgao
sdo 200t/h para placas e 140t/h para canos. O lucro desses produtos e 25%/t
para placas e 308/t para canos. Considerando a demanda atual, os limites de
producao sao 6000t de placas e 4000t de canos. Na semana atual sao 40h de
tempo de producao disponivel. Quantas toneladas de placas e canos devem
ser produzidas para maximizar o lucro?

Exercicio 5.6 ( [ D
Formule como problema de otimizagao linear.

Uma pequena empresa aérea oferece um voo de Pelotas, com escala em Porto
Alegre para Torres. Logo tem trés tipos de clientes que voam Pelotas—Porto
Alegre, Pelotas—Torres e Porto Alegre—Torres. A linha também oferece trés
tipos de bilhetes:

e Tipo A: bilhete regular.
e Tipo B: sem cancelamento.
e Tipo C: sem cancelamento, pagamento trés semanas antes de viajar.

Os pregos (em R$) dos bilhetes sao os seguintes
Pelotas—Porto Alegre Porto Alegre-Torres Pelotas—Torres

A 600 320 720
B 440 260 560
C 200 160 280

Baseado em experiéncia com esse voo, o marketing tem a seguinte predicao
de passageiros:

Pelotas—Porto Alegre Porto Alegre—Torres Pelotas—Torres

A 4 8 3
B 8 13 10
C 22 20 18

O objetivo da empresa e determinar o nimero étimo de bilhetes para vender
de cada tipo, respeitando um limite de 30 passageiros em cada voo e o limite
dos passageiros previstos em cada categoria, que maximiza o lucro.
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Exercicio 5.7
Escreve em forma normal.

minimiza z = —5x7 —5xy — 5x3
sujeito a —6xX7 — 2% —9%x3 <0
— 9% —3x2 +3x3 =3
x5 >0
maximiza z = —6X7 — 2x2 — 6x3 + 4x4 + 4x5
sujeito a —3x7 — 8%y —6x3 —7x4 —5x5 =3

5x1 —7x2 +7x3 + 7x4 — 6x5 < 6
Tx1 — 9% +5%x3 + 7x4 — 10x5 = —6

X5 Z 0
maximiza z=7x1 +4x2 + 8x3 + 7x4 — 9x5
sujeito a —4x7 —Ixy — 7x3 — 8x4 + 6X5 = —2

X1 + 4%y + 2x3 + 2x4 — 7x5 > —7
—8%1 4+ 2x2 + 8x3 — 6X4 — 7xX5 = —7
X]'ZO

minimiza z = —6x1 + 5% + 8x3 + 7x4 — 8x5

sujeito a —5%1 — 2% +x3 — %4 —7x5 =9
7x1 + 7x2 +5%x3 —3x4 + x5 = —8
—5x7 —3x2 —5x3 + x4 +8x5 <0

Xj > 0
Exercicio 5.8 ( [ D
Resolve com o método Simplex.
maximiza z=23x1 +5%x2
sujeito a x1 <4

X2 S 6

3x1 +2x, <18

X5 2 0
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5 Exercicios

Exercicio 5.9
Resolve o exercicio 5.5 usando o método Simplex.

Exercicio 5.10
Prova que

Exercicio 5.11
Resolve o sistema degenerado

z = 10x4 —57x> —9%3 —24x4
wy = —1/2x7  +11/2xy +5/2x3 —9%x4
wy = —1/2x7 +3/2x2  +1/2x3 —x4
w3 = 1 —X1

usando o método lexicografico e o regra de Bland.

Exercicio 5.12
Dado o problema de otimizagao

maximiza X1 + %2
sujeito a axj +bxy <1
x1,x2 >0

determine condigoes suficientes e necessarias ao respeita de a e b tal que
1. existe ao menos uma solugao 6tima,
2. existe exatamente uma solucao 6tima,
3. existe nenhuma solucao étima,
4. o sistema ¢é ilimitado.

ou demonstre que o caso nao é possivel.

Exercicio 5.13
Sabe-se que o dicionéario 6timo do problema

maximiza z=23%x1 +%x2
sujeito a —2x1 +3x2 <5
X1 —x%x2 <1
X1,%2 >0

70



[©N

z¢ =31 —1 1W2 —4W]
X2 = 7 —2W2 —W1
X1 =8 *31/\)2 —W1

1. Se a fungao objetivo passar a z = x1 + 2x2, a solugao continua 6tima?
No caso de resposta negativa, determine a nova solucao étima.

2. Se a funcao objetivo passar a z = x; —x3, a solugao continua étima? No
caso de resposta negativa, determine a nova solugao 6tima.

3. Se a fungao objetivo passar a z = 2x7 —2x3, a solu¢ao continua 6tima?No
caso de resposta negativa, determine a nova solugao étima.

4. Formular o dual e obter a solugao dual 6tima.

Exercicio 5.14

Prove ou mostre um contra-exemplo.

O problema max{c*x | Ax < b} possui uma solucdo vidvel sse min{xo | Ax —
exo < b} possui uma solucao vidvel com xo = 0. Observacdo: e é um vetor
com todos compentes igual 1 da mesma dimensao que b.

Exercicio 5.15

Prove ou mostre um contra-exemplo.

Se x é a varidvel sainte em um pivo, x nao pode ser variavel entrante no pivo
seguinte.

Exercicio 5.16
Qual o sistema dual de

minimiza 7X1 + X2 + 5x3

sujeito a X1 —X2 +3x3 > 10
5x1 +2x2 —x3 > 6
X1,%2,%3 > 0.

Exercicio 5.17
Considere o problema

COBERTURA POR CONJUNTOS PONDERADOS (WEIGHTED SET COVER)

Instancia Um universo U, a uma familia & de subconjuntos do uni-
verso,i.e.,para todo S € S, S C U, e custos ¢(S) para cada conjunto.
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5 Exercicios

Solugcao Uma cobertura por conjuntos,i.e.,uma sele¢gdo de conjuntos 7 C
S tal que para cada elemento e € U existe ao menos um S € 7 com
ecS.

Objetivo Minimizar o custo total dos conjuntos selecionados.

Uma formulagao inteira do problema é

minimiza Z c(S)xs
Ses

sujeito a Z xs > 1 eclu
S:e€S
xs € {0,1} Ses.

O problema com restricoes de integralidade é NP-completo. Substituindo as
restrigoes de integralidade xs € {0, 1} por restri¢oes trivias xs > 0 obtemos
um programa linear. Qual o seu dual?
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Parte |l

Programacao inteira
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6 Introducao

6.1 Definicoes
Problema da dieta
e Problema da dieta

minimiza c'x

sujeito a Ax>r

e com limites quantidade de comida x.

e Uma solucdo (laboratério): 5 McDuplos, 3 magas, 2 casquinhas mista
para R$ 24.31

e Mentira! Solugao correta: 5.05 McDuplos, 3.21 magas, 2.29 casquinhas
mistas.

e Observagao: Correto somente em média sobre varias refeicoes.

Como resolver?

e Unica refeicao? Como resolver?
e Restringe a varidveis x ao Z.
e Serda que metodo Simplex ainda funciona?

e Nao. Pior: O problema torna-se NP-completo.

Problemas de otimizacao
e Forma geral

optimiza f(x)

sujeito a x eV

(0]



6 Introducao

Programacao inteira
e Programacao linear (PL)

maximiza c'x
sujeito a Ax <D
xeR™" >0

e Programacio inteira pura (PI)

maximiza h'y
sujeito a Gy<b
yezZ- >0

Programacao inteira
e Programcao (inteira) mista (PIM)

maximiza  c¢'x+h'y
sujeito a Ax+ Gy <b
x€ER">0,yeZ* >0

e Programacao linear e inteira pura sao casos particulares da programagao
mista.

e Outro caso particular: 0-1-PIM e 0-1-PI.

x € B™
Exemplo
maximiza X1 + X2
sujeito a 2x1 + 7x3 <49
5x1 4+ 3x2 <50

76



Exemplo
15 \
14
13
12
11 =

6.1 Definigoes

10 -
9 - L
e I
7 - L
6 L
5 L
4 L
3 L
2 5X1+3X,< 50 L
1 L
0 N B
01 2 3 45 6 7 8 9 101112 1314 15
X1
e Sorte: A solugdo 6tima é inteiral x; =7, x2 =5, V =12.
e Observagao: Se a solugdo étima é inteira, um problema de PI(M) pode
ser resolvido com o método Simplex.
Exemplo
maximiza X1 + X2
sujeito a 1.8x7 +7x3 <49
5%1 4+ 2.8x, <50
Exemplo
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6 Introducao

15
14 u
13 u
12 u
11 u

=
o
l

X

5%, +2.8%,< 50

O P N W b O O N 0 ©
T

I I f I I
01 2 3 45 6 7 8 91011121314 15
X1

e Solucédo 6tima agora: x7 =~ 7.10, x, = 5.17, V =12.28.

e Serd que |x1],|x2] é a solugao étima do PI?

Exemplo
maximiza —x1+7.5%;
sujeito a —x1+7.2x2 <504
5%x1 +2.8x; <62
Exemplo

78



6.1 Definigoes

-X1+7.2X,< 50.4 L

X3

01 2 3 45 6 7 8 9 101112131415

e Solugdo 6tima agora: x; = 7.87, x2 ~ 8.09, V = 52.83.

o LX]J = 7, LXzJ =38.

e Solucao 6tima inteira: x; = 0,x2 = 7!

e Infelizmente a solucdo 6tima inteira pode ser arbitrariamente distante!
Métodos

e Prove que a solugao da relaxacao linear sempre € inteira.
e Insere cortes.

e Branch-and-bound.

Exemplo: 0-1-Knapsack
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6 Introducao

PROBLEMA DA MOCHILA (KNAPSACK)

Instancia Um conjunto de n itens I = {i;,...,in} com valores v; e pesos
w;i. Um limite de peso K do mochila.

Solugcao Um conjunto S C I de elementos que cabem na mochila, i.e.
2 iesWi <K

Objetivo Maximizar o valor } ; ¢ vi.

e Observagao: Existe um solugao com programacao dinamica que possui
complexidade de tempo O(Kn) (pseudo-polinomial) e de espago O(K).

Exemplo: Maximizar cavalos

e Qual o nimero maximo de cavalos que cabe num tabuleiro de xadrez,

tal que nenhum ameaga um outro?
a b o d e i of h

Exemplo 6.1
Formulagao do problema da mochila, com varidveis indicadores xi, 1 <1,j <
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6.2 Motivacao e exemplos

maximiza E ViXi
i
sujeito a E wixiy < L
i
xi € B

Formulagao do problema dos cavalos com varidveis indicadores xi;:

maximiza inj
i,j

sujeito a Xij +Xi—2,j4+1 < 1 3<i<8,1<5<7
Xij +Xi—1,542 < 1 2<i<8,1<j<e
xij +Xi4254+1 <1 1<i<6,1<j<7
Xij + Xig1,512 <1 1<i<7,1<j<6

Solugbes do problema dos cavaleiros (A030978)
n|1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16

k‘145813 18 25 32 41 50 61 72 8 98 113
¢

6.2 Motivacao e exemplos
Motivacao

e Otimizacao combinatéria é o ramo da ciéncia da computagao que estuda
problemas de otimizagdo em conjuntos (wikipedia).

e “The discipline of applying advanced analytical methods to help make
better decisions” (INFORMS)

e Tais problemas sao extremamente frequentes e importantes.

Maquina de fazer dinheiro

e Imagine uma maquina com 10 botdes, cada botao podendo ser ajustado
em um numero entre 0 e 9.
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http://www.research.att.com/~njas/sequences/A030978

6 Introducao

Maquina de fazer dinheiro

e h4 uma configuragao que retorna R$ 10.000.

e total de combinacoes: 10'°.

dez testes por segundo

e em um ano:=> 10 x 60 x 60 x 24 x 365 =3 x 108

Explosao combinatéria
Funcoes tipicas:

n  logn n°5 n? AR n!

10 332 316 107 1.02 x 103 3.6 x 10°
100 6.64 10.00 10* 1.27 x10%° 933 x 107
1000 9.97 31.62 10° 1.07 x 103°7 4,02 x 102°¢7

“Conclusoes”

Iretirado de Integer Programming - Wolsey (1998)
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6.3 Aplicagées

Iooon.on O

e Melhor nao aceitar a maquina de dinheiro.

e Problemas combinatérios sao dificeis.

6.3 Aplicacoes
Apanhado de problemas de otimizacao combinatéria

e Caixeiro viajante

e Roteamento

Projeto de redes

Alocacgao de horarios

e Tabelas esportivas

Gestao da produgao

e etc.

Caixeiro Viajante
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6 Introducao

Caixeiro Viajante

\

Caixeiro Viajante

e Humanos sao capazes de produzir boas solugdes em pouco tempo!
e Humanos 7

Caixeiro Viajante
i 8

= ey
\ ",1J_h:]“‘n
o y‘; — —(J-H,____/
_Q. § a
3

o

Figure 1.40 Chimpanzse tour (Bida),

Caixeiro Viajante

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University
Press
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6.3 Aplicagées

Figura 1.41 Pigeon solving a TSP, Images courtesy of Brett Gibson.

Caixeiro Viajante
Der

Handlungsreifende

wie er fein {oll

und wad er ju thun Hat, um Auftedge
gu exhalten und cined glidlihen Grfolgs
in feinen Gefddften gewif au fein,

Bon
¢inem alten Commis - Voyageur.

@
Miteinem Titelbupfer
————

Jlmenau 1832,
Drud und Berlag von B, Fr, Voigt.

Caixeiro Viajante

e Business leads the traveling salesman here and there, and there is not a
good tour for all occurring cases; but through an expedient choice divi-
sion of the tour so much time can be won that we feel compelled to give
guidelines about this. Everyone should use as much of the advice as he
thinks useful for his application. We believe we can ensure as much that

IRetirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University
Press

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University
Press
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6 Introducao

it will not be possible to plan the tours through Germany in considera-
tion of the distances and the traveling back and fourth, which deserves
the traveler’s special attention, with more economy. The main thing to
remember is always to visit as many localities as possible without having
to touch them twice.

“Der Handlungsreisende wie er sein soll und was er zu tun hat, um Auftrage
zu erhalten und eines gliicklichen Erfolgs in seinen Geschiften gewiss zu sein.
Von einem alten Commis-Voyageur” (O caixeiro viajante, como ele deve ser
e o que ele deve fazer para obter encomendas e garantir um sucesso feliz dos
seus negdcios. Por um caixeiro viajante experiente).

First brought to the attention of the TSP research community in 1983 by
Heiner Muller-Merbach [410]. The title page of this small book is shown in
Figure 1.1. The Commis-Voyageur [132] explicitly described the need for good
tours in the following passage, translated from the German original by Linda
Cook.

Caixeiro Viajante

HELP “CAR 54”...AND WIN CASH
54...51,000 PRIZES 5
ONE...410.000 GRAND PRIZE »y

Caixeiro Viajante

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University
Press
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Figure |.45 Further progress in the TSP, log scale.

Formulando matematicamente o PCV

e Associar uma varidvel a cada possivel decisao.

Formulando matematicamente o PCV

e Associar uma varidvel a cada possivel decisao.

6.3 Aplicagoes

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University

Press
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6 Introducao

K/‘ minimiza ¢y
sujeito a E Xij + E Xji = 2,

jEN jEN
Xij S {O) ]}>

Formulando matematicamente o PCV

e Associar uma variavel a cada possivel decisao.

\ minimiza CijVYij
sujeito a E Xij + E Xji = 2,

jEN jEN
/ xij €1{0,1},

+ restrigoes de eliminagao de subci-
clos!

Apanhado de problemas de otimizacao combinatdria

e Caixeiro viajante

e Roteamento

Projeto de redes

Alocagao de horérios

Tabelas esportivas

Gestao da producgao

e etc.
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6.3 Aplicagoes

Problemas de roteamento

ool ool

Problemas de roteamento

olo oo oo

Etc.

oo

Apanhado de problemas de otimizacao combinatéria
e Caixeiro viajante
e Roteamento

e Projeto de redes

Alocacgao de horarios

Tabelas esportivas

Gestao da produgao

e etc.
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6 Introducao

Problemas em arvores

Problemas em arvores

Problemas em arvores - aplicacoes

e Telecomunicagoes
e Redes de acesso local

e Engenharias elétrica, civil, etc..
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6.3 Aplicagoes

Apanhado de problemas de otimizacao combinatéria

e (Caixeiro viajante

e Roteamento

e Projeto de redes

e Alocacao de horérios

e Tabelas esportivas

e Gestao da produgao

e ctc.

Alocacao de tripulacoes

Apanhado de problemas de otimizacao combinatéria
e Caixeiro viajante
o Roteamento
e Projeto de redes
e Alocagao de horarios
e Tabelas esportivas
e Gestao da produgao

e etc.
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6 Introducao

Tabelas esportivas

Proximos Adversarios

Fla Vasco Paysandu Criciuma  Vitdria
JUVENTUDE Ponte Coritiba GALO CORINTHIANE
Guarani CRUZEIRO PALMEIRAS  Sanios Juventude
GALO Sao Paulo Parana FURACAO GUARANI
Botafogo GOIAS CRICIOMA Paysandu Grémio
PALMEIRAS  Juventude Santos PONTE COXA
Coritiba CORINTHIANS GALO Parana Sao Paulo

5. PAULO Furaciio Guarani PALMEIRAS  CRUZEIRO
Cruzeiro SANTOS JUVENTUDE Coxa Ponte
Botafogo  Galo Parana |Grémio Guarani
Cruzeiro Criciima S.CAETANO Falmeiras Goids

S. PAULOD GOIAS Grémio PARANA FLA

Coxa Fla PAYSANDU Ponte Vitoria

FLA PARANA Galo VITORIA PALMEIRAS
Guarani FIGUEIRA Goias Furacéio BOTAFOGO
JUVENTUDE Paysandu CRICIOMA SANTOS Figuaira
Corinthians GREMIO Flu Galo PAYSANDU
FURACAO S. Caelano INTER GUARANI Grémio

Apanhado de problemas de otimizacao combinatéria

e Caixeiro viajante

e Roteamento

Projeto de redes

Alocacéao de horarios

Tabelas esportivas

Gestao da producao

e etc.

Gestao da producao
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6.3 Aplicagoes

Etc.
e programacao de projetos
e rotagao de plantagoes
e alocagao de facilidades (escolas, centros de comércio, ambuléncias...)
e projeto de circuitos integrados
e portfolio de acoes

e etc, etc, etc, etc...
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7 Formulacao

7.1 Exemplos
“Regras de formulacao”

e Criar (boas) formulagoes é uma arte.

e Algumas diretivas bésicas:

— escolha das varidveis de decisao.
— escolha do objetivo.

— ajuste das restrigoes.

Formulacao - Problema da mochila

<= 7
R

15K9
L)

Ep)

itens N ={1,2,..n}

peso de cada item: pi, valor de cada item: v;
e Levar o maior valor possivel, dada a restricao de peso.

Varidveis de decisao 7

Formulacao - Problema da mochila

< 7
"Iﬂ :
e
D)
&
Max ViXi
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7 Formulacao

s.t.

Z pixi <P
iEN
Xi € {O) 1}

Formulacao - Problema de locacao de facilidades nao-capacitado

e Alocar fabricas a cidades, de modo a minimizar o custo total de ins-
talacao das fabricas e custo de transporte do produto até o cliente

clientes

[ ] l:l fabricas
. . [ ]

e Cada ponto 1 = {1,2,...n} apresenta um custo de instalacdo da fdbrica
fi

e Entre cada par de cidade, (i,j), o custo de transporte é dado por ci;

Formulagao - Problema de locacao de facilidades nao-capacitado

e Exemplo:

N

Para formulacao escolhemos varidveis de decisao xi; € B, que indicam se o
cliente 1 for atendido pela fabrica em j.

e Varidveis de decisao ?
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7.2 Técnicas

Formulacao - Problema de locacao de facilidades nao-capacitado

L
N

minimiza E fiy; + E CijXij

1<i<n 1<ij<n
sujeito a Z x5 =1, 1<i<n  (sé uma fibrica atende)
1<5<n
Z yj, <m (no maximo m fabricas)
1<5<n
xij < Yj, 1<1,j <n (s6 fabricas existentes atendem’
xi; € B, 1<i,j<n

Alternativas:

e Para instalar exatamente m fébricas: )} y; = m.

7.2 Técnicas

Formulacao: Indicadores
e Variaveis indicadores x € B: Selecao de um objeto.
e Implicagao (limitada): Se x for selecionado, entéo y deve ser selecionado

x<y xyeB

e Ou:
x+y>1 x,y €B

o QOu-exlusivo:
x+y=1 x,y € B

Em geral: Seleciona n de m itens xq,...,Xm € B

SxfSfn

i il
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7 Formulacao

Formulacao: Indicadores
Para x,y,z € B

e Conjungdo x =yz=y Az

x<(y+z)/2
x>y+z—1
e Disjuncao x =yVz
x> (y+z)/2
x<y-+z
e Negacao x =y
x=1—y

Formulacao: Funcao objetivo nao-linear

e Queremos minimizar custos, com uma “entrada” fixa c

0 x=0
f(x) = _
c+1l(x) 0<x<x
com 1(x) linear.

e Solugao?

e Disjuncao de equagoes: Queremos que aplica-se uma das equagoes
f1 <12
g1 <92

e Solucao, com constante M suficientemente grande

f1 <f,+Mx
g1 <g2+M(1—x)
xe€B
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7.2 Técnicas

Exemplo
Planejamento de produgéo (ingl. uncapacitated lot sizing)

e Objetivo: Planejar a futura produgao no préximos n semanas.

e Parametros: Para cada semana i

Custo fixo f; para produzir,
— Custo p; para produzir uma unidade,

— Custo hy por unidade para armazenar,

Demanda d;

Exemplo
Seja

e X; a quantidade produzido,

e s; a quantidade no estoque no final da semana i,

e y; = 1 sem tem produgao na semana i, 0 senao.
Problema:

e Funcao objetivo tem custos fixos, mas x; nao tem limite.

e Determina ou estima um valor limite M.

Exemplo

minimiza Z Pixi + Z hisi + Z fiyi
i i i

sujeito a Si = Si_1 +xi — di, 1<i<n
S():O
xi < Myy, 1<i<n

x € R",y € B™.
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7 Formulacao

Formulacgoes diferentes

5 |

4 — L
3+ - —

! >
2 — L
1 - + + + —
0 I I I I
0 1 2 3 4 5

X1
Uma problema de programacao linear ou inteira geralmente possui mais que
uma formulacao. Na programacao linear existe pouca diferenca entre as
formulagoes: a solugao é a mesma e o tempo para resolver o problema é
comparavel, para um numero comparavel de restricoes e varidveis. Na pro-
gramagao inteira uma formulagao boa é mais importante. Como a solugao de
programas inteiras é NP-completo, frequentemente a relaxacao linear é usada
para obter uma aproximagao. Diferentes formulagao de um programa inteiro
possuem diferentes qualidades da relaxacao linear. Uma maneira de quantifi-
car a qualidade de uma formulacao é o gap de integralidade. Para um problema
P e uma instancia i € P seja OPT(i) a solugdo 6tima inteira e LP(i) a solucao
da relaxagao linear. O gap de integralidade é
LP(i)

g(P) SUD SPT(0) (7.4)
(para um problema de maximizacdo.) O gap de integralidade é d4 uma garan-
tia para qualidade da solucao da relaxacao linear: caso o gap € g, a solugao
nao é mais que um fator g maior que a maior solucao integral.
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8 Técnicas de solucao

8.1 Introducao
Limites
e Exemplo: Problema de maximizacao.

e Limite inferior (limite primal): Cada solucao vidvel.

— Qualquer técnica construtiva, p.ex. algoritmos gulosos, heuristicas
etc.

e Limite superior (limite dual): Essencialmente usando uma relaxacao

— Menos restricoes = conjunto maior de solucao vidveis.

— Nova fungao objetivo que é maior ou igual.

e Importante: Relaxagao linear: x € Z = x € R.

8.2 Problemas com solucao eficiente

Relaxacao inteira
e Solucao simples: A relaxagao linear possui solugdo 6tima inteira.
e Como garantir?
e Com base B temos a solucao x = (xg xn)t = (B~ 'b,0).

e Observagao: Se b € Z™ e |det(B)| = 1 para a base 6tima, entdo o PL
resolve o PIL.

Lembranga: Determinante usando Laplace

det(A) = Y (=1)"aydet(Ay) = Y  (=1)"ay;det(Ay)

1<i<n 1<j<n

com Ajj a submatriz sem linha i e coluna j.
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8 Técnicas de solucao

Relaxacao inteira
e Para ver isso: Regra de Cramer.

e A solugdo de Ax =Db é

. det(Ay)
Y det(A)
com A; a matriz resultante da substituicao da i-gésima coluna de A por
b.
Prova. Seja U; a matriz identidade com a i-gésima coluna substituido por x,
ie.
1 X1
1 X2
Xn—1
Xn 1

Temos que AU; = A e com det(U;) = x; e det(A) det(U;) = det(A;) temos
o resultado. |

Exemplo: Regra de Cramer

3 21 X1 1
5 0 2 X2 = 1
2 1 2/ \x3 1
Exemplo: Regra de Cramer
3 21 1 21
5 0 2 |=-13 10 2 |=-1
21 2 11 2
311 3 21
2 1 2 2 11

Logo x1 =1/13;%x, = 3/13;x3 = 4/13.
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8.2 Problemas com solucao eficiente
Aplicacao da regra de Cramer
e Como garantir que x = B~'b é inteiro?
e Cramer:

o det(Bi)
~ det(B)

Xi

Condicao possivel: (a) det(B;) inteiro, (b) det(B) € {—1,1}.

Garantir (a): A€ Z™* ™" eb e Z™.

Garantir (b): Toda submatriz quadrada nao-singular de A tem determi-
nante {—1,1}.

Exemplo 8.1
Observe que essas condigoes sao suficientes, mas nao necesséarias. E possivel
que Bx = b possui solugao inteira sem essas condicoes ser satisfeitas. Por

exemplo
2 2\ (x1\ _ (1
1 0 X2 - 1
tem a solucdo inteira (x1x2) = (10), mesmo que det(A) = —2. %

A relaxacdo é inteira

Definicao 8.1

Uma matriz quadrada inteira A € R™*™ é unimodular se |det(A)] = 1. Uma
matriz arbitrdria A é totalmente unimodular (TU) se cada submatriz quadrada
nao-singular A’ de A é modular, i.e. det(A’) €{0,1,—1}.

Uma consequéncia imediata dessa definigao: ay; € {—1,0,1}.

Exemplo
Quais matrizes sao totalmente unimodular?
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8 Técnicas de solucao

1T 10
(}]1);011
10 1
01 000
T =1 =1 0 01 1 11
-1 0 0 1 ]:;l1 0 1 11
o 1 0 =1/ 100 10
10000

Critérios
Proposigao 8.1
Se A é TU entao
1. At é TU.
2. (A I) com matriz de identidade I é TU.

3. Uma matriz B que é uma permutacao das linhas ou colunas de A é TU.

4. Multiplicando uma linha ou coluna com —1 resulta numa matriz TU.

Prova. (i) Qualquer submatriz quadrada B* de A" e uma submatriz B de A
também. Com det(B) = det(B"), segue que A' é totalmente unimodular. (i)
Qualquer submatriz de (Al) tem a forma (A’l’) com A’ submatriz de A e I’
submatriz de I. Com |det(A’l’)| =|det(A’)| segue que (AI) é TU. (iii) Cada
submatriz de B é uma submatriz de A. (iv) A determinante troca no maximo
o sinal. |

Critérios
Proposicao 8.2
Uma matriz A é totalmente unimodular se

1. aij € {+1,-1,0}
2. Cada coluna contém no maximo dois coeficientes nao-nulos.

3. Existe uma partigao de linhas M; U M, = [1,m] tal que cada coluna
com dois coeficientes nao-nulos satisfaz

Z ai; — Z aij:()

ieM; ieM;

Observe que esse critério é suficiente, mas nao necessario.
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8.2 Problemas com solucao eficiente

Exemplo

e Coeficientes € {—1,0,1}: Sim.
e Cada coluna no maximo dois coeficientes nao-nulos: Sim.

e Particao M1,M>? Sim, escolhe M; = [1,3], M = 0.

Exemplo

TU?
Nao: det(A) = 2.

TU?
Nao: det(A) = 2.

N X =)
coo —= —
co = =0
== a0
o= =0

TU? Sim. Mas nossa regra nao se aplical

Prova. (Proposi¢ao 8.2). Prova por contradigdo. Seja A uma matriz que
satisfaz os critérios da proposicao 8.2, e seja B o menor submatriz quadrada
de A tal que det(B) & {0,+1,—1}. B ndo contém uma coluna com um tnico
coeficiente ndo-nula: seria uma contradicdo com a minimalidade do B (re-
movendo a linha e a coluna que contém esse coeficiente, obtemos uma matriz
quadrada menor B*, que ainda satisfaz det(B*) ¢ {0,+1,—1}). Logo, B contém
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8 Técnicas de solucao

dois coeficientes nao-nulos em cada coluna. Aplicando a condigéo (3) acima,
subtraindo as linhas com indice em M; das linhas com indice em M, podemos
ver as linhas do B s&o linearmente dependentes e portanto temos det(B) = 0,
uma contradigao. |

Consequéncias

Teorema 8.1 (Hoffman,Kruskal)
Se a matriz A de um programa linear é totalmente unimodular e o vetor b é
inteiro, todas solugoes bésicas sao inteiras. Em particular as regioes

{x e R"| Ax < b}
{x e R™ | Ax > b}
xeR"| Ax <b,x >0}
xeR" | Ax =b,x > 0}

tem pontos extremos inteiros.

Prova. Consideragoes acima. |

Exemplo 8.2 (Caminhos mais curtos)

Exemplo: Caminhos mais curtos

e Dado um grafo nao-direcionado G = (V, A) com custos ¢ : A — Z nos
arcos.

e Qual o caminho mais curto entre dois nés s,t € V7

Exemplo: Caminhos mais curtos

106



8.2 Problemas com solucao eficiente

minimiza Z CaXa
acA
sujeito a Z Xq — Z Xq =1
aeN+*(s) aeN~—(s)
Z Xaq — Z Xq =0, Y e V\{s,t}
aeN+(v) aeN-(a)
A
aeNt(t) aeN—(t)
Xq € B, Va € A.

A matriz do sistema acima de forma explicita:

S 1 ... cee 1 Xa, 1

—_ O

t 1 . Xa,.

Como cada arco é adjacente ao no méximo dois vértices, e cada coluna contém
um coeficiente 1 e —1, a Proposicao 8.2 é satisfeito com a particao trivial. ¢

Exemplo 8.3 (Fluxo em redes)

Exemplo: Fluxo em redes

e Dado: Um grafo direcionado G = (V, A)

— com arcos de capacidade limitada 1: A — Z%,

— demandas d : V — Z dos vértices,

— (com d, < 0 para destino e d,, > 0 nos fonte)

— e custos ¢ : A — R por unidade de fluxo nos arcos.

e Qual o fluxo com custo minimo?
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8 Técnicas de solucao

Exemplo: Fluxo em redes

minimiza Z CaXa
acA

sujeito a Z Xa — Z Xq = dy, YvevVv
aeNT (v) aeN—(v)
0 <xq <lg, Va € A.

com conjunto de arcos entrantes N~ (v) e arcos saintes N (v).

Exemplo: Fluxo

e A matriz que define um problema de fluxo é totalmente unimodular.

e Consequéncias

— Cada ponto extremo da regiao viavel é inteira.
— A relaxacdo PL resolve o problema.

e Existem varios subproblemas de fluxo minimo que podem ser resolvidos
também, p.ex. fluxo méaximo entre dois vértices.

8.3 Desigualdades validas

Desigualdades validas
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8.3 Desigualdades validas

e Problema inteiro
max{c*x | Ax < b,x € ZT}

e Relaxacao linear
max{c*x | Ax < b,x € R}

5 | | | |
47 -
3 - - -
=
27 |-
1 - N . . L
0 I I I I
0 1 2 3 4 5

Desigualdades validas

Definigao 8.2
Uma desigualdade mx < 11g é vdlida para um conjunto P, se Vx € P : tx < 7.

e Como achar desigualdades (restri¢oes) vélidas para o conjunto da solugoes
vidveis {x | Ax < b,x € Z'} de um problema inteiro?
— Técnicas de construgao (p.ex. método de Chvétal-Gomory)
— Observar e formalizar caracteristicas especificas do problema.
— “The determination of families of strong valid inequalities is more

of an art than a formal methodology” | ,
, P- 259]
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8 Técnicas de solucao

Exemplo 8.4 (Locagao de facilidades nao-capacitado)

minimiza Z f5u; + Z CijXij (8.1)
1<5<n 1<ij<n

sujeito a Z x5 =1, Vi=1.n (8.2)
1<5<n
Xy < Yj, vi,j=1..n (8.3)
xi; € B, i,j=1,..,n (8.4)
y; € B, =1, (8.5)

Ao invés de
Xij < Yj (8.6)

podemos pensar em

Z Xij < Nyj. (8.7)

1<i<n

Essa formulacdo ainda é correto, mas usa n restricoes ao invés de n?. Entre-
tanto, a qualidade da relacao linear é diferente. E simples ver que podemos
obter (8.7) somando (8.6) sobre todos i. Portanto, qualquer solugdo que sa-
tisfaz (8.6) satisfaz (8.7) também, e dizemos que (8.6) domina (8.7).
Que o contrario nao é verdadeiro, podemos ver no seguinte exemplo: Com
custos de instalacdo f; = 1, de transporte ciyj = 5 para i # j e ¢y3 = 0,
duas cidades e uma fabrica obtemos as duas formulagoes (sem restrigoes de
integralidade)

minimiza y1 +yz2 +5¢cy12 +5¢co y1 +yz2 +5¢12 +5¢p
sujeito a X171 +x12 =1 X11 +x12 =1

x21 +x22 =1 x21 +x22 =1

yi+ty2<1 y1+y2<1

x11 < Yi x11 +x21 < 2yq

x12 < Y2

x21 <Y1 x21 +x22 < 2>

x22 < Y2

A solugao 6tima da primeira é y; = 1,x71 = x27 = 1 com valor 6, que é a
solugao Otima inteira. Do outro lado, a solugao 6tima da segunda formulacao
éyy =y2 = 0.5 com x17 = x22 = 1, com valor 1, i.e. ficam instaladas duas
“meia-fabricas” nas duas cidades!

O
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8.3 Desigualdades validas

Exemplo: 0-1-Knapsack

< ?
el
on &P
-5
( &=
2
e
maximiza Z ViXi
1<i<n
sujeito a Z pixi <P
1<i<n
xi €B

Exemplo: 79x7 + 53x2 + 53x3 + 45%x4 + 45%x5 < 178.

Exemplo: 0-1-Knapsack

e Observagdo: Para um subconjunto S C [1,n]: Se Zspi > P entao
ZS Xi S ‘S‘ — 1

e Exemplos:
X1 +x2+x3<2
X1 +x2+%x4+x5 <3
X1 +%x3+ %4 +%x5 <3
X2 +%x3+x4+x5 <3

Exemplo: Emparelhamento

e Dado um grafo G = (V, A) procuramos um emparelhamento méximo,
i.e. um subconjunto C C A tal que d¢(v) < 1 parav € V.

e Programa inteiro

maximiza Z Xa
A
sujeito a Z X)) <1, wevVv
ueN(v)
Xq € B, Va € A.
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8 Técnicas de solucao

Exemplo: Emparelhamento
e Escolhe um subconjunto de nés U C V arbitrario.
e Observagao: O nimero de arestas internas é < |[U|/2].

e Portanto:

Y xa < LUl/2

acUZnA

é uma desigualdade vélida.

Método de Chvatal-Gomory
Dado

Zaixi < b
i

também temos, para u € R, u > 0 as restrigoes validas

Z uaix; < ub (multiplicacao)
i
ZLuQiJ xi <ub vl <y,0<x;
Z [luai] xi < [ub] Lado esquerda é inteira.

i

Método de Chvatal-Gomory
Teorema 8.2

Todas desigualdades validadas pode ser construida através de um ntmero
finito de aplicagbes do método de Chvétal-Gomory.

Exemplo: Emparelhamento

e Para um U C V podemos somar as desigualdades

Z X (u,v) <1 YvevVv

UeEN(v)
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8.4 Planos de corte

com peso 1/2, obtendo

Y xaty Y )xas;u

acUZnA aeN (U

e Também temos

aeN(U)
e Portanto
> xa< 1\u\
“=2
acUZnA
1
Z Xq < {ZUJ Lado esquerdo inteiro
acUZnA

8.4 Planos de corte
Como usar restricées validas?

e Adicionar a formulacao antes de resolver.

— Vantagens: Resolugao com ferramentas padrao.
— Desvantagens: Numero de restrigoes pode ser grande ou demais.

e Adicionar ao problema se necessario: Algoritmos de plano de corte.

— Vantagens: Somente cortes que ajudam na solugao da instancia sao
usados.

Planos de corte
Problema inteiro
max{c*x | Ax < b,x € ZT}

e O que fazer, caso a relaxacao linear nao produz solugoes 6timas?

e Um método: Introduzir planos de corte.
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8 Técnicas de solucao
Definicao 8.3

Um plano de corte (ingl. cutting plane) é uma restri¢ao valida (ingl.
valid inequality) que todas solugoes inteiras satisfazem.

Algoritmo de planos de corte

Algoritmo 8.1 (Planos de corte)
Entrada Programa inteiro max{c'x | Ax < b,x € Z}}.

Saida Solugdo inteira étima ou “Nao existe corte.”.

1 V:i={x]Ax <b} { regido viavel }

2 x*:=argmax{c'x|x € V} { resolve relaxacdo }

3 while (x*¢Z%) do

4 if (existe corte a'x <d com a'x* >d) then

5 V:=VNn{x|a'*x <d} { nova regido viavel }

6 x* = argmax{c'x | x € V} { nova solugdo 6tima }
7 else

8 return ”"Nao existe corte.”

9 end if

10 end while

Método de Gomory

e Como achar um novo corte na linha 4 do algoritmo?

e A solucao 6tima atual é representado pelo dicionério

e Se a solugdo ndo é inteira, existe um indice i tal que x4 € Z,, i.e.
bi ¢ Z+.
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8.4 Planos de corte

Cortes de Chvatal-Gomory

=b; — Z aij%; Linha fraciondria (8.8)
JeEN
L<bi— Y lag)x Definicéo de || (8.9)
JeEN
xi < |bi] — Z | aij | x; Integralidade de x (8.10)
JEN
0> {bi} —> {aylx (8.8) — (8.10) (8.11)
JEN
Xnitl = — {Bl} + Z {aij} x5 Nova variavel (8.12)
jeN
Xn+1 € Z+ (813)

(Para solugbes inteiras, a diferenca do lado esquerdo e do lado direito na
equagao (8.10) é inteira. Portanto xn 41 também é inteira.)
A solugao bésica atual nao satisfaz (8.11), porque com x; = 0,j € N temos
que satisfazer

{b:i} <0,

uma contradicio com a definicio de {-} e o fato que by é fracionério. Portanto,
provamos

Proposicao 8.3
O corte (8.11) satisfaz os critérios da linha 4 do algoritmo PLANOS DE CORTE.
Em particular, sempre existe um corte e o caso da linha 8 nunca se aplica.

Exemplo 8.5
Queremos resolver o problema
maximiza X1 + X2
sujeito a —x1+3x <9
10x; <27
X1,X2 € Z4+

A solucao da relaxacdo linear produz a série de dicionarios

(1) z = x1 +x2 (2) z =3 +4/3x1 —1/3w,
Wi =9 +x1  —3x2 X2 =3 +1/3x%7 —1/3w;
wy =27 —10xq wy =27 —10x3
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8 Técnicas de solucao

3)z =66 —4/30w, —1/3w,
X2 =39 —1/30W2 —1/3W1
X1 =27 —1/]01/\)2
A solugao otima x7 = 2.7, x; = 3.9 é fracionaria. Correspondendo com a
segunda linha
x2 =39 —1/30w, —1/3w;
temos o corte

wiy =-0.9 +4+1/30wy; +1/3w;
e 0 novo sistema é
(4) z =6.6 —4/30w, —1/3w;
X2 =39 —1/30w; —1/3w;
X1 =27 -1 /1 Oow,
wsy =-0.9 +1/30w, +1/3w;

Esse sistema nao é mais 6timo, e temos que re-otimizar. Pior, a solugao bésica
atual nao é vidvell Mas como a na funcao objetivo todos coeficientes ainda
sao negativos, podemos aplicar o0 método Simplex dual. Um pivo dual gera a
nova solugao 6tima
(5) r4 =57 —1/10\/\)2 — W3

X2 =3 —Ww3

X1 =27 —1/]01/\)2

w; =27 —=1/10w, +3ws
com X = 3 inteiro agora, mas x; ainda fracionario. O proximo corte, que
corresponde com X7 é

(5) z =57 —1 /10Wz —W3 (6) z =5 —Wy —W3
X2 =3 —Ww3 x; =3 —W3
X1 =27 —1/10w; X7 =2 —Wy
w1 =27 —1/10w, +3ws w; =2 w4  +3w;
wy =-0.7 +1/10w, wy =7 +10wy
cuja solugao ¢ inteira e 6tima. O

Resumo: Algoritmos de planos de corte

e O algoritmo de planos de corte, usando os cortes de Gomory termina
sempre, i.e. é correto.

e O algoritmos pode ser modificado para programas mistos.

e A técnica pura é considerado inferior ao algoritmos de branch-and-
bound.

e Mas: Planos de corte em combinagao com branch-and-bound é uma
técnica poderosa: Branch-and-cut.

116



8.5 Branch-and-bound

Segundo corte

==(%)

Primeiro corte

1 3

Figura 8.1: Visualiza¢ao do exemplo 8.5.

8.5 Branch-and-bound

Branch-and-bound
Ramifica-e-limite (ingl. branch-and-bound)
e Técnica geral para problemas combinatoriais.

Branch and Bound is by far the most widely used tool for
solving large scale NP-hard combinatorial optimization pro-
blems. Clausen [1999]

e Idéia bésica:

— Particiona um problema em subproblemas disjuntos e procura solugoes
recursivamente.

— Evite percorrer toda arvore de busca, calculando limites e cortando
sub-arvores.

e Particularmente efetivo para programas inteiras: a relaxacao linear for-
nece os limites.

Branch-and-bound
e Problema PI (puro): {maxc'x|[x € S,x € Z}.

e Resolve a relaxagao linear.
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8 Técnicas de solucao

e Solucao inteira? Problema resolvido.

Caso contrario: Escolhe uma varidvel inteira xi, com valor b; fracionéario.

Heuristica: Varidvel mais fraciondria: argmin; [{x;} —0.5|.
e Particione o problema S =S; U S, tal que

Si=Sn{x[x < [vi]ly S2=SN{xIxi>[vi]}

Em particular com varidveis x; € B:

S1=Sn{x|x=0}; S,=SNn{x|xg=1}

Limitar

e Para cada sub-arvore mantemos um limite inferior e um limite superior.

— Limite inferior: Valor da melhor solugao encontrada na sub-arvore.

— Limite superior: Valor da relaxacao linear.

e Observagao: A eficiéncia do método depende crucialmente da qualidade
do limite superior.

e Preferimos formulacoes mais “rigidos”.

Cortar sub-arvores

1. Corte por inviabilidade: Sub-problema é invidvel.

2. Corte por limite: Limite superior da sub-arvore zZ; menor que limite
inferior global z (o valor da melhor solucéo encontrada).

3. Corte por otimalidade: Limite superior z;i igual limite inferior z; da
sub-arvore.

4. Observagao: Como os cortes dependem do limite z, uma boa solugao
inicial pode reduzir a busca consideravelmente.
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8.5 Branch-and-bound

Ramificar

e Nao tem como cortar mais? Escolhe um né e particiona.
e Qual a melhor ordem de busca?

e Busca por profundidade

— V: Limite superior encontrado mais rapido.

— V: Pouca meméria (O(8d), para & subproblemas e profundidade
d).

— V: Re-otimizagao eficiente do pai (método Simplex dual)

— D: Custo alto, se solugao étima encontrada tarde.

Melhor solugao primeiro (“best-bound rule”)

— V: Procura ramos com maior potencial.
— V: Depois encontrar solugao 6tima, nao produz ramificagoes supérfluas.

e Busca por largura? Demanda de memoéria é impraticavel.

Algoritmos B&B

Algoritmo 8.2 (B&B)
Instancia Programa inteiro P = max{c'x | Ax <b,x € Z}}.
Saida Solugdo inteira étima.
1 { usando funcgdo Z para estimar limite superior }
2 z:=—00 { limite inferior }
3 A:= {(P,g(P))} { nés ativos }
4 while A#0 do
5 Escolhe: (P,g(P)eA; A:=A\(P,g(P))
6 Ramifique: Gera subproblemas Pj,...,Pn.
7 for all P;, 1<i<n do
8 { adiciona, se permite melhor solugao }
9 if z(Pi) >z then
10 A=A U{(P:,Z(Pi))}
11 end if
12 { atualize melhor solucao }
13 if (solugdo Z(P;) é vidvel) then
14 z:=Z(Pi)
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8 Técnicas de solucao

15 end if
16 end for
17 end while
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9 Tépicos

Outras técnicas

e Branch-and-cut.

Comega com menos restrigoes (relaxagao) e insere restrigdes (cortes) nos
sub-problemas da busca com branch-and-bound.

e Branch-and-price.

Comega com menos varidveis e insere varigveis (“geragdo de colunas”)
nos sub-problemas da busca com branch-and-bound.

121






10 Exercicios

(Solugoes a partir da pdgina 184.)

Exercicio 10.1 (Formulagao)

A empresa “Festa fulminante” organiza festas. Nos préximos n dias, ela pre-
cisa pi pratos, 1 < i < n. No comego de cada dia gerente tem os seguintes

opgoes:

e Comprar um prato para um pr

eco de c reais.

e Mandar lavar um prato devagarmente em d; dias, por um preco de 14

reais.

e Mandar lavar um prato rapidamente em d; < d; dias, por um preco de

1, > 1 reais.

O gerente quer minimizar os custos dos pratos.

inteira.

Exercicio 10.2 (Planos de corte)
Resolve

maximiza

sujeito a

maximiza

sujeito a

com o algoritmo de planos de corte using cortes de Chvatal-Gomory.

X1 + 3x2

—x1 <=2

x2 <3
—x1—x2 <4
3x1 +x2 <12
Xi € Z4

X1 —ZXZ

—T1x7 + 15%, <60
dx1 +3xy <24
10x7 — 5%y <49
X1,X2 €Z+

Formule como programa
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10 Exercicios

Exercicio 10.3 (Formulacgao)
Para os problemas abaixo, acha uma formulagao como programa inteira.

CONJUNTO INDEPENDENTE MAXIMO
Instancia Um grafo ndo-direcionado G = (V, A).

Solugdao Um conjunto independente 1, i.e. I C V tal que para vértices
vi,v2 €1 {vi,va} & A

Objetivo Maximiza |I|.

EMPARELHAMENTO PERFEITO COM PESO MAXIMO

Instancia Um grafo nio-direcionado bi-partido G = (V7 U V3, A) (a fato
de ser bi-partido significa que A C V7 x V) com pesos p: A — R
nos arcos.

Solugao Um emparelhamento perfeito, i.e. um conjunto de arcos C C A
tal que todos nds no sub-grafo G[C] = (V; U V;,C) tem grau 1.

Objetivo Maximiza o peso total } .. p(c) do emparelhamento.

PROBLEMA DE TRANSPORTE

Instdncia n depdsitos, cada um com um estoque de p; (1 < i < n)
produtos, ¢ m clientes, cada um com uma demanda de d; (1 <j <
m) produtos. Custos de transporte ai; de cada depdsito para cada
cliente.

Solugdo Um decisao quantos produtos xi; devem ser transportados do
depésito 1 ao cliente j, que satisfaz (i) Cada depésito manda todo
seu estoque (ii) Cada cliente recebe exatamente a sua demanda.
(Observe que o ntimero de produtos transportados deve ser integral.)

Objetivo Minimizar os custos de transporte 3 ; ; aijXij.
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CONJUNTO DOMINANTE
Instancia Um grafo ndo-direcionado G = (V, A).

Solugdao Um conjunto dominante, i.e. um conjunto D C V| tal que Vv €
V:veDV(Jue D :{u,v} e A) (cada vértice faz parte do conjunto
dominante ou tem um vizinho no conjunto dominante).

Objetivo Minimizar o tamanho do conjunto dominante |D|.

Exercicio 10.4 (Formulacao)
Acha uma formulagao inteira para todos os 21 problemas que o Karp provou
NP-completo [ , ].

Exercicio 10.5 (Formulagao: Apagando e ganhando)

Juliano é fa do programa de auditério Apagando e Ganhando, um programa
no qual os participantes sao selecionados atraves de um sorteio e recebem
prémios em dinheiro por participarem. No programa, o apresentador escreve
um numero de N digitos em uma lousa. O participante entao deve apagar
exatamente D digitos do niimero que estd na lousa; o nimero formado pelos
digitos que restaram é entao o prémio do participante. Juliano finalmente
foi selecionado para participar do programa, e pediu que vocé escrevesse um
programa inteira que, dados o niimero que o apresentador escreveu na lousa,
e quantos digitos Juliano tem que apagar, determina o valor do maior prémio
que Juliano pode ganhar.

(Fonte: Maratona de programagao regional 2008, RS)

Exercicio 10.6 (Formulagao: Set)

Set é um jogo jogado com um baralho no qual cada carta pode ter uma,
duas ou trés figuras. Todas as figuras em uma carta sao iguais, e podem ser
circulos, quadrados ou triangulos. Um set é um conjunto de trés cartas em
que, para cada caracteristica (ndmero e figura), u ou as trés cartas sdo iguais,
ou as trés cartas sao diferentes. Por exemplo, na figura abaixo, (a) é um set
valido, j& que todas as cartas tém o mesmo tipo de figura e todas elas tém
numeros diferentes de figuras. Em (b), tanto as figuras quanto os niimeros sao
diferentes para cada carta. Por outro lado, (¢) nao é um set, j& que as duas
ultimas cartas tém a mesma figura, mas esta é diferente da figura da primeira
carta.
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10 Exercicios

12 | B ]
[ee ] [O0O] [2oA
[eee] [eo] [£A
(a) (b) ()

O objetivo do jogo é formar o maior nimero de sets com as cartas que estao
na mesa; cada vez que um set é formado, as trés cartas correspondentes sao
removidas de jogo. Quando héa poucas cartas na mesa, é facil determinar
0 maior numero de sets que podem ser formados; no entanto, quando ha
muitas cartas ha muitas combinagoes possiveis. Seu colega quer treinar para
o campeonato mundial de Set, e por isso pediu que voceé fizesse um programa
inteira e que calcula o maior niimero de sets que podem ser formados com um
determinado conjunto de cartas.

(Fonte: Maratona de programagao regional 2008, RS)

Exercicio 10.7 (Matrizes totalmente unimodulares)
Para cada um dos problemas do exercicio 10.3 decide, se a matriz de coefici-
entes é totalmente unimodular.

Exercicio 10.8 (Formulagao)
Para os problemas abaixo, acha uma formulagdo como programa inteira.

COBERTURA POR ARCOS

Instancia Um grafo nao-direcionado G = (V,E) com pesos ¢ : E — Q nos
arcos.

Solucdo Uma cobertura por arcos, i.e. um subconjunto E’ C E dos arcos
tal que todo vértice faz parte de ao menos um arco selecionado.

Objetivo Minimiza o custo total dos arcos selecionados em E’.

CONJUNTO DOMINANTE DE ARCOS

Instancia Um grafo ndo-direcionado G = (V,E) com pesos ¢ : E — Q nos
arcos.

Solucdo Um conjunto dominante de arcos, i.e. um subconjunto E/ C E
dos arcos tal que todo arco compartilha um vértice com ao menos
um arco em E’.
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Objetivo Minimiza o custo total dos arcos selecionados em E’.

COLORAGAO DE GRAFOS
Instdncia Um grafo nao-direcionado G = (V,E).

Solucao Uma coloragao do grafo, i.e. uma atribuicao de cores nas vértices
c:V — Z] tal que cada par de vértices ligando por um arco recebe
uma cor diferente.

Objetivo Minimiza o nimero de cores diferentes.

CLIQUE MINIMO PONDERADO

Instancia Um grafo nao-direcionado G = (V, E) com pesos ¢ : V — Q nos
vértices.

Solugdo Uma clique, i.e. um subconjunto V' C V de vértices tal que
existe um arco entre todo par de vértices em V.

Objetivo Maximiza o peso total dos vértices selecionados V'.

SUBGRAFO CUBICO
Instancia Um grafo nao-direcionado G = (V, E).

Solugdo Uma subgrafo ciibico, i.e. uma selegdo E/ C E dos arcos, tal que
cada vértice em G’ = (V,E’) possui grau 0 ou 3.

Objetivo Maximiza o nimero de arcos selecionados |E’|.

Exercicio 10.9 (Formulagao e implementacao: Investimento)

Uma empresa tem que decidir quais de sete investimentos devem ser feitos.
Cada investimento pode ser feito somente uma tinica vez. Os investimentos
tem lucros (ao longo prazo) e custos iniciais diferentes como segue
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Investimento
1 2 3 4 5 6 7

Lucro estimado [MR$] 17 10 15 19 7 13
Custos iniciais [MR$] 43 28 34 48 17 32 23

A empresa tem 100 MR$ capital disponivel. Como maximizar o lucro total
(ao longo prazo, nao considerando os investimentos atuais), respeitando que
os investimentos 1,2 e 3,4 sdo mutualmente exclusivas, e nem o investimento
3 nem o investimento 4 pode ser feita, sem ao menos um investimento em 1
ou 2 (as outros investimentos ndo tem restrigoes).

Exercicio 10.10 (Formulacao e implementagao: Brinquedos)

Um produtor de brinquedos projetou dois novos brinquedos para Natal. A
preparacao de uma fabrica para produzir custaria 50000 R$ para a primeiro
brinquedo e 80000 R$ para o segundo. Apds esse investimento inicial, o pri-
meiro brinquedo rende 10 R$ por unidade e o segundo 15RS$.

O produtor tem duas fabricas disponiveis mas pretende usar somente uma,
para evitar custos de preparagao duplos. Se a decisao for tomada de produzir
os dois brinquedos, a mesma fabrica seria usada.

Por hora, a fabrica 1 é capaz de produzir 50 unidades do brinquedo 1 e 40
unidades do brinquedo 2 e tem 500 horas de producao disponivel antes de
Natal. A fabrica 2 é capaz de produzir 40 unidades do brinquedo 1 e 25
unidades do brinquedo 2 por hora, e tem 700 horas de produgao disponivel
antes de Natal.

Como nao sabemos se os brinquedos serao continuados depois Natal, a pro-
blema é determinar quantas unidades de cada brinquedo deve ser produzido
até Natal (incluindo o caso que um brinquedo nao é produzido) de forma que
maximiza o lucro total.

Exercicio 10.11 (Formulacdo e implementacio: avides)

Uma empresa produz pequenos avioes para gerentes. Os gerentes frequen-
temente precisam um aviao com caracteristicas especificas que gera custos
inicias altos no comecgo da produgao.

A empresa recebeu encomendas para trés avides, mas como ela estd com ca-
pacidade de producao limitada, ela tem que decidir quais das trés avices ela
vai produzir. Os seguintes dados sao relevantes
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Avioes Cliente

produzidas 1 2 3
Custo inicial [MR$] 3 2 0
Lucro [MR$/aviao] 2 3 0.8
Capacidade usada [%/avido] 20% 40% 20%
Demanda méxima [avides] 3 2 5

Os clientes aceitam qualquer nimero de avides até a demanda méaxima. A
empresa tem quer decidir quais e quantas avides ela vai produzir. As avioes
serao produzidos em paralelo.

Exercicio 10.12 (Desigualdades validas (Nemhauser,Wolsey))
Uma formulacao do problema do conjunto independente méximo é

maximiza Z Xy (10.1)
vev

sujeito a Xu+x <1 viu,v} € E (10.2)

Xy € B Yv e V. (10.3)

Considere a instancia

Mostra que ) ;_.;-7%i <2 é uma desigualdade valida.

Exercicio 10.13 (Formulacao (Winkler))

Uma fechadura de combinacao com trés discos, cada um com niimeros entre
1 e 8, possui um defeito, tal que precisa-se somente dois nimeros corretos dos
trés para abri-la. Qual o nimero minimo de combinagoes (de trés niimeros)
que precisa-se testar, para garantidamente abrir a fechadura?

Formule um programa inteiro e resolve-o.
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Exercicio 10.14 (Desigualdades vélidas)
Considere a instancia

do problema do caixeiro viajante (os nimeros nas arestas representam os
indices das varidveis correspondentes). Mostra que

X1 +X2+ X5 +%x6+ X7 +%0 <4
é uma desigualdade vélida.

Exercicio 10.15 (Formulagao)
Formule o problema

MAX-k-SAT

Entrada Uma férmula em forma normal conjuntiva sobre varidveis
X1,...,Xx com n cladsulas @(xq,...,xx) = Cy A--- A Cy.

Solucdao Uma atribuicao x; — {0, 1}.

Objetivo Maximizar o nimero de claisulas satisfeitas.

(Dica: Usa as desigualdades (7.1)-(7.3). Comega com k = 3.)
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11 Introducao

Resolucao de Problemas

e Problemas Polinomiais

1. Programacao Dindmica
2. Divisao e Conquista

3. Algoritmos Gulosos

e Problemas Combinatoérios

— Técnicas Exatas: Programagao Dinamica, Divisao e Conquista back-
tracking, branch & bound

Programacao nao-linear: Programacao semi-definida, etc.
— Algoritmos de aproximacao: garantem solugao aproximada

— Heuristicas e metaheuristicas: raramente provéem aproximacgao

Heuristicas

e O que é uma heuristica?
Practice is when it works and nobody knows why.

e Grego heurisko: eu acho, eu descubro.

e Qualquer procedimento que resolve um problema

— bom em média
— bom na prética (p.ex. Simplex)

— nao necessariamente comprovadamente.

e Nosso foco

— Heuristicas construtivas: Criam solucoes.

— Heuristicas de busca: Procumra solugoes.
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11 Introducao

Heuristicas de Construcao

e Constréem uma solucao, escolhendo um elemento a ser inserido na solugao

a cada passo.

e Geralmente sao algoritmos gulosos.

e Podem gerar solugoes infactiveis.

— Solugdo infactivel: ndo satisfaz todas as restrigdes do problema.

— Solucao factivel: satisfaz todas as restrigoes do problema, mas nao

¢ necessariamente a 6tima.

Exemplo: Heuristica construtiva

e Problema do Caixeiro Viajante (PCV) — Heuristica do vizinho mais

proximo.

Algoritmo 11.1 (HVizMaisProx)
Entrada Matriz de distancias completa D = (dy;), ntimero de cidades n.

Saida Uma solugao factivel do PCV: Ciclo Hamiltaneo C com custo c.

HVizMaisProx (D ,n)=

{ cidade inicial randdmica }

u:= seleciona uniformemente de [1,n]

wi=1u

{ representacdo de caminhos: sequéncia de vértices }
C:=u { ciclo inicial }

c:=0 { custo do ciclo }

repeat n—1 vezes
seleciona v¢ C com distdncia minima de u
C:=Cv
c:=c+duv
u:=v
end repeat
C:=Cw { fechar ciclo }
c:=c+duw
return (C,c)
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Meta-heuristicas

e Heuristicas genéricas: meta-heuristicas.

Motivacao: quando considera-se a possibilidade de usar heuristicas

e Para gerar i,a solugao factivel num tempo pequeno, muito menor que
uma solugao exata pudesse ser fornecida.

e Para aumentar o desempenho de métodos exatos. Exemplo: um limi-
tante superior de um Branch-and-Bound pode ser fornecido por uma
heuristica.

Desvantagens do uso de heuristicas

e No caso de metaheuristicas, nao ha como saber o quao distante do 6timo
a solugao estd

e Nao ha garantia de convergéncia
e Dependendo do problema e instancia, ndao ha nem como garantir uma
solugao 6tima
Problema de otimizacao em geral
e Um problema de otimizacao pode ser representado por uma quadrupla
(L, S, f, obj)

— I é o conjunto de possiveis instancias.

— S(i) é o conjunto de solugoes factiveis (espago de solugdes factiveis)
para a instancia i.

— Uma fungao objetivo (ou fitness) f(-) avalia a qualidade de uma
dada solugao.

*

— Um objetivo obj = min ou max: s* € S para o qual f(s*) seja

minimo ou maximo.
e Alternativa

optimiza f(x)

sujeitoa x €S

e S discreto: problema combinatorial.
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Técnicas de solucao
e Resolver o problema nessa geralidade: enumeragao.
e Frequentemente: Uma solugdo x € S possui uma estrutura.
e Exemplo: x é um tuplo, um grafo, etc.

e Permite uma enumeracao por componente: branch-and-bound.
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12 Heuristicas baseados em Busca local

12.1 Busca local

Busca Local

e Frequentemente: O espacgo de solugoes possui uma topologia.

e Exemplo da otimizacdo (continua): max{x? +xy | x,y € R}

XEXEXRY

e Espaco euclidiano de duas dimensoes.

e Isso podemos aproveitar: Busca localmente!

Vizinhancas

e O que fazer se ndo existe uma topologia natural?
e Exemplo: No caso do TSP, qual o vizinho de um ciclo Hamiltaneo?

e Temos que definir uma vizinhanga.
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12 Heuristicas baseados em Busca local

e Notacao: Parax € S
N(x)

denota o conjunto de solugoes vizinhos.

e Uma vizinhanca defina a paisagem de otimizagao (ingl. optimization
landscape): Espaco de solugoes com valor de cada solugao.

Relacao de vizinhanca entre solucoes

e Uma solugdo s’ é obtida por uma pequena modificagdo na solugéo s.

e Enquanto que S e f sao fornecidos pela especificagao do problema, o
projeto da vizinhanga é livre.

Busca Local k-change e insercao

e k-change: mudanca de k componentes da solugao.

Cada solucdo possui vizinhanca de tamanho O(nk).

Exemplo: 2-change, 3-change.

TSP: 2-change (inversdo).

Inser¢ao/remogao: inser¢ao de um componente da solugdo, seguido da
factibilizagao da solugao

Vertex cover: 1-change + remogao.

Exemplo: Vizinhanca mais elementar

e Suponha um problema que possue como solugoes factiveis S = B™ (por
exemplo, uma instancia do problema de particionamento de conjuntos).

e Entao, para n = 3 e sp={0,1,0}, para uma busca local 1-flip, N(so) =
{(1,1,0),(0,0,0), (0,1, 1)}
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12.1 Busca local

Exemplo: Vizinhancas para TSP

e 2-0pt: Para cada par de arcos (uy,vq) e (uz,v2) nao consecutivos,
remova-os da rota, e insira os arcos (u,uz) e (vi,vz).

e Para uma solugdo s e uma busca k-opt [NV (s)| € O(n¥).

Caracteristicas de vizinhancas
E desejavel que uma vizinhanga é

e simétrica (ou reversivel)
yeN((X) = xeN(y)

e conectada (ou completa)

Vx,y €S3zy,...,zk €S z1 € N(x)
zit1 € N(zy) 1<i<k
y € N(z)

Busca Local: Ideia
e Inicia a partir de uma solugao sg
e Se move para solucoes vizinhas melhores no espago de busca.

e Para, se nao tem solucoes melhores na vizinhanca.

e Mas: Repetindo uma busca local com solugoes inicias randomicas, acha-
mos o minimo global com probabilidade 1.
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Busca local — Caso continuo

Algoritmo 12.1 (Busca local continua)
Entrada Solugao inicial sy € R™, tamanho inicial « de um passo.

Saida Solucdo s € R™ tal que f(s) < f(so).

Nome Gradient descent.

1 BuscaLocal (s ,x)=

2 S$:=Sp

3 while Vf(x)#0 do
4 s’ :=s— aVf(s)

5 if f(s’) < f(s) then
6 s:=s’

7 else

8 diminui «

9 end if

10 end while

11 return s

Busca local — Caso continuo

o Gradiente

Vi(x) = < of (x),...,éf(x))

% OXn

sempre aponta na dire¢ido do crescimento mais alto de f (Cauchy).
e Necessario: A funcao objetivo f é diferencidvel.
e Diversas técnicas para diminuir (aumentar) «.

e Opcao: Line search na direcdo —Vf(x) para diminuir o nimero de gra-
dientes a computar.
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Busca Local — Best Improvement

Algoritmo 12.2 (Busca Local BI)
Entrada Solucao inicial sg.

Saida Solucao s tal que f(s) < f(sp).

Nomes Steepest descent, steepest ascent.

1 BuscaLocal (so)=

S:=S$g

while true
s’ == argmin, {f(y) |y € N(s)}
if f(s’) < f(s) then s:=s’
else break

end while

return s

00 J O U = W N

Busca Local — First Improvement

Algoritmo 12.3 (Busca Local FI)
Entrada Solucao inicial sg.

Saida Solucao s’ tal que f(s’) < f(s).
Nomes Hill descent, hill climbing.

1 BuscaLocal (so)=
s =S
repeat
Select any s’ € N(s) not yet considered
if f(s’)<f(s) then s:=s’
until all solutions in A(s) have been visited
return s

~N O Uk W N
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Projeto de uma busca local
e Como gerar uma solugéo inicial? Aleatdria, via método construtivo, etc.
e Quantas solugoes inicias devem ser geradas?

Importante: Definicao da funcdo de vizinhanca N.

Vizinhanga grande ou pequena? (grande= muito tempo e pequena=menos
vizinhos)

Estratégia de selecao de novas solugoes
— examine todas as solugoes vizinhas e escolha a melhor

— assim que uma solucao melhor for encontrada, reinicie a busca.
Neste caso, qual a sequéncia de solugoes examinar?

Importante: Método eficiente para avaliar a fungao objetivo de vizinhos.

Exemplo: 2-change TSP
e Vizinhanca: Tamanho O(n?).
e Avaliagdo de uma solugao: O(n) (somar n distancias).
e Atualizando a valor da solugao atual: O(1) (somar 4 distancias)

e Portanto: Custo por iteragdo de “best improvement”

— 0O(n?) sem avaliacdo diferential.
— O(n?) com avaliacao diferential.

Avaliacao de buscas locais
Como avaliar a busca local proposta?

e Poucos resultados tedricos.
e Dificil de saber a qualidade da solucao resultante.

e Depende de experimentos.

Problema Dificil

o L facil de gerar uma solucgao aleatéria para o TSP, bem como testar sua
factibilidade

e Isso nao é verdade para todos os problemas

e Exemplo dificil: Atribuig¢ao de pesos a uma rede OSPF
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12.1 Busca local

Busca local

e Desvantagem obvia: Podemos parar em minimos locais.

Valor
A

» Solucdo

e Exceto: Funcio objetivo convexa (caso minimizagao) ou concava (caso
maximizagao).

e Técnicas para superar isso baseadas em busca local
— Multi-Start

— Busca Tabu
— Algoritmos Metropolis e Simlated Annealing
— Variable neighborhood search
Multi-Start Metaheuristic
e Gera uma solucao aleatdria inicial e aplique busca local nesta solucao.
e Repita este procedimento por n vezes.
e Retorne a melhor solucao encontrada.

e Problema: solugoes aleatoriamente geradas em geral possuem baixa qua-
lidade.

Multi-Start

Algoritmo 12.4 (Multi-Start)
Entrada Numero de repetigoes n.
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12 Heuristicas baseados em Busca local

Saida Solucao s.

1 Multi_Start(n) :=

2 s =10

3 f* =00

4 repeat n vezes

) gera solucao randomica s
6 s := BuscaLocal(s)
7 if f(s) <f* then
8 s*i=s

9 f* .= 1(s)
10 end if
11 end repeat

12 return s*

Cobrimento de Vértices
e Definicao de vizinhanca
e grafo sem vértices
e grafo estrela
e clique bipartido Kj ;

e grafo linha

12.2 Metropolis e Simulated Annealing

O algoritmo Metropolis

e Proposto em 1953 por Metropolis, Rosenbluth, Rosenbluth, Teller e Tel-

ler

e simula o comportamento de um sistema fisico de acordo com a mecéanica

estatistica

e supoe temperatura constante

— Um modelo bésico define que a probabilidade de obter um sistema
. ) . R ~  _E .
num estado com energia E é proporcional a fungao e” x7 de Gibbs-
Boltzmann, onde T > 0 é a temperatura, e k > 0 uma constante
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12.2 Metropolis e Simulated Annealing

— a func¢ado é monotonica decrescente em E: maior probabilidade de
estar em um sistema de baixa energia

— para T pequeno, a probabilidade de um sistema em estado de baixa
energia é maior que um em estado de alta energia

— para T grande, a probabilidade de passar para outra configuracao
qualquer do sistema é grande

A distribuicao de Boltzmann

1.2 T
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exp(-x/2)
exp(-x/10) --------
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Algoritmo Metropolis

e Estados do sistema sao solugoes candidatas

A energia do sistema é representada pelo custo da solugao
x X = /
e Gere uma perturbagao na solucao s gerando uma solugao s’.

e Se E(s’) < E(s) atualize a nova solugéo para s’.

e Caso contrario, AE = E(s’) — E(s) > 0.
e A solucao s’ passa ser a solugao atual com probabilidade S
[ ]

Caracteristica marcante: permite movimentos de melhora e, com baixa
probabilidade, também de piora
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12 Heuristicas baseados em Busca local

Metropolis

Algoritmo 12.5 (Metropolis)
Entrada Solucao inicial s, uma temperatura T, uma constante k.

Saida Solucao s’ : c(s’) < c(s)

1 Metropolis(s, T, k)=

2 while STOP1 times do

3 Select any unvisited s’ & AN(s)

4 if c(s’) <c(s) then update s:=s’

5 else

6 with probability efw update s:=s’
7 end while

8 return s

Consideragdes sobre o algoritmo

e O algoritmo Metropolis pode resolver problemas que o gradiente descen-
dent nao conseguia

e Mas em muitos casos o comportamento deste algoritmo nao é desejado
(vertex cover para grafo sem arcos)

e Alta probabilidade de saltos quando préximo de um minimo local

e T pode ser manipulada: se T for alta, o algoritmo Metropolis funciona
de forma similar a um passeio aleatério (ingl. random walk) e se T for
baixa (préxima a 0), o algoritmo Metropolis funciona de forma similar
ao gradiente descendente.

Simulated Annealing

e Simula um processo de recozimento.

e Recozimento: processo da fisica que aquece um material a uma tem-
peratura bem alta e resfria aos poucos, dando tempo para o material
alcancar seu estado de equilibrio
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12.3 GRASP

e Recozimento simulado: parte de uma alta temperatura e baixa gradual-
mente. Para cada temperatura, permite um nimero maximo de saltos
(dois lagos encadeados)

Simulated Annealing

Algoritmo 12.6 (Simulated Annealing)
Entrada Solucao inicial s, temperatura T, constante k, fator de esfria-
mento 1 € [0, 1], dois nimeros inteiros STOP1, STOP2.

Saida Solucgao s’ tal que f(s’) < f(s).
1 SimulatedAnnealing(s, T, k, r, STOP1, STOP2) :=

2 repeat STOP2 vezes

3 repeat STOP1 vezes

4 seleciona s’ € M(s) que ainda nao foi visitado
5 if f(s’) <f(s) then

6 s:=s’

7 else

8 Com probabilidade e (fls)=f(s)/kT . ¢._ ¢/

9 end fi

10 end repeat

11 T=Txr

12 end repeat
13 return s

12.3 GRASP

GRASP
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12 Heuristicas baseados em Busca local
e GRASP: greedy randomized adaptive search proce-
dure
e Proposto por Mauricio Resende e Thomas Feo (1989).

e Mauricio Resende: Pesquisador da AT&T por 20 anos,
Departamento de Algoritmos e Otimizagao

Mauricio G. C.
Resende

GRASP

e Método multi-start, em cada iteragao

1. Gera solugoes com um procedimento guloso-randomizado.

2. Otimiza as solugoes geradas com busca local.

Algoritmo 12.7 (GRASP)
Entrada Solucao inicial s, parametro «.

Saida Solucao s’ :c(s’) < c(s)

1 GRASP(so, «, ...)=

2 S:=Sp

3 do

4 s’ := greedy randomized solution(x)

5 s’ := BuscalLocal(s’)

6 s:=s’ if f(s’) < f(s)

7 until a stopping criterion is satisfied
8 return s

Construcao gulosa-randomizada

e Motivacao: Um algoritmo guloso gera boas solugoes inicias.

e Problema: Um algoritmo deterministico produz sempre a mesma solugao.
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12.3 GRASP

e Logo: Aplica um algoritmo guloso, que nao escolhe o melhor elemento,

mas escolhe randomicamente entre os % melhores candidatos.

e O conjunto desses candidatos se chama restricted candidate list (RCL).

Construcao gulosa-randomizada: Algoritmo guloso

Guloso () :=
S=0

while S=(sy,...,si) com i<n do
entre todos candidatos C para siyi:
escolhe o melhor se€C
S:=(s1,...,8i,5)
end while

Construcao gulosa-randomizada: Algoritmo guloso

Guloso—Randomizado (&) :=
S=0

while S = (s7,...,si) com i<n do
entre todos candidatos C para si;1:
forma a RCL com os o\% melhores candidatos em C
escolhe randomicamente um s € RCL
S:=(s1,...,8i,5)
end while

GRASP

Algoritmo 12.8 (GRASP)
Entrada Solucao inicial s, parametro «.

Saida Solucao s’ : c(s’) < c(s)
1 GRASP(so, «, ...)=

2 X 1= Sy
3 do
4 y := greedy randomized solution()
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12 Heuristicas baseados em Busca local

o~ S Ot

y := BuscalLocal(y)

atualiza x caso y é solucao melhor
until a stopping criterion is satisfied
return s

GRASP: Variacoes

e long term memory: hash table (para evitar otimizar solugdes ja vistas)

e Parametros: so, N(x), a € [0,1] (para randomizagdo), tamanho das

listas (conj. elite, rcl, hash table), niimero de iteragoes,

GRASP com memoéria

e O GRASP original ndo havia mecanismo de memoria de iteragoes pas-

sadas

Atualmente toda implementacdo de GRASP usa conjunto de solugdes
elite e religagdo por caminhos (path relinking)

Conjunto de solucoes elite: conjunto de solugoes diversas e de boa qua-
lidade

— uma solucao somente é inserida se for melhor que a melhor do
conjunto ou se for melhor que a pior do conjunto e diversa das
demais

— a solucao a ser removida é a de pior qualidade

Religacao por Caminhos: a partir de uma solugao inicial, modifique um
elemento por vez até que se obtenha uma solucao alvo (do conjunto elite)

solugdes intermediarias podem ser usadas como solugoes de partida

Comparacao entre as metaheuristicas apresentadas
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e Metaheuristicas: Simulated annealing (SA), Multi-Start Search (MS),

GRASP

e SA tem apenas um ponto de partida, enquanto que os outros dois

métodos testa diversos



12.4 Busca Tabu

e SA permite movimento de piora, enquanto que os outros dois métodos
nao

e SA é baseado em um processo da natureza, enquanto que os outros dois

nao

12.4 Busca Tabu

Busca Tabu (Tabu Search)
e Proposto por Fred Glover em 1986 (principios bésicos
do método foram propostos por Glover ainda em 1977)

e Professor da Universidade do Colorado, EUA

Fred Glover

Busca Tabu (BT)

e Assim como em simulated annealing (SA) e VNS, TB é baseada inteira-
mente no processo de busca local, movendo-se sempre de uma solucao s
para uma solugao s’

e Assim com em SA, também permite movimentos de piora

e Diferente de SA que permite movimento de piora por randomizagao, tal
movimento na BT é deterministico

e A base do funcionamento de Busca Tabu é o uso de memoria segundo
algumas regras

e O nome Tabu tem origem na proibicao de alguns movimentos durante a
busca

Busca Tabu (BT)

e Mantém uma lista T de movimentos tabu

e A cada iteracdo se move para o melhor vizinho, desde que nao faga
movimentos tabus
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Heuristicas baseados em Busca local

Permite piora da solucao: o melhor vizinho pode ser pior que o vizinho
atual!

Sao inseridos na lista tabu elementos que provavelmente nao direcionam
a busca para o 6timo local desejado. Ex: ultimo movimento executado

e o0 tamanho da lista tabu é um importante parametro do algoritmo

e Critérios de parada: quando todos movimentos sao tabus ou se x movi-
mentos foram feitos sem melhora

Busca Tabu: Conceitos Basicos e notacao

e s: solugao atual

o s*:

melhor solugao

e f*: valor de s*

e N(s): Vizinhanca de s.

e N(s) C N(s): possiveis (nao tabu) solugbes vizinhas a serem visitadas
e Solugoes: inicial, atual e melhor

e Movimentos: atributos, valor

e Vizinhanca: original, modificada (reduzida ou expandida)

Movimentos Tabu
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e Um movimento é classificado como tabu ou nao tabu pelas regras de
ativacdo tabu

e em geral, as regras de ativagdo tabu classificam um movimento como
tabu se o movimento foi recentemente realizado

e Memdria de curta duracao (MCD) - também chamada de lista tabu:
usada para armazenar os movimentos tabu

e duragao tabu (tabu tenure) é o niimero de iteragoes em que o movimento
permanecera tabu

e dependendo do tamanho da MCD um movimento pode deixar de ser
tabu antes da duragao tabu estabelecida



12.4 Busca Tabu

e A MCD em geral é implementada como uma lista circular

e O objetivo principal da MCD ¢ evitar ciclagem e retorno a solugoes ja
visitadas

e 0s movimentos tabu também colaboram para a busca se mover para
outra parte do espago de solugoes, em direcao a um outro minimo local

Busca Tabu

Algoritmo 12.9 (BuscaTabu)
Entrada uma solucao s

Saida uma solugao s’ : f(s’) < f(s)

1 BuscaTabu()=

2 Inicializacao:

3 s:=Sg; f*:=1(sp); s*i=s0 ; T:=0

4 while not STOP

5 s’ := select s’ €N(s) com min f(s)

6 if f(s) <fx then

7 f*:=1(s); s*:=s

8 insira movimento em T (a lista tabu)
9 end while

Busca Tabu (BT)

e critérios de parada:

— numero de iteragoes (N qax)
— numero interagoes sem melhora

— quando sx atinge um certo valor minimo (mdximo) estabelecido

e Um movimento nao é executado se for tabu, ou seja, se possuir um ou
mais atributos tabu-ativos

e Pode ser estabelecida uma regra de uso de um movimento tabu (critério
de aspiragao)

153



12 Heuristicas baseados em Busca local

— Critério de aspiracao por objetivo: se o movimento gerar uma
solucao melhor que s*, permite uso do movimento tabu

— Critério de aspiracao por direcao: o movimento tabu é liberado se
for na direcdo da busca (de melhora ou piora)

Busca Tabu: mecanismos auxiliares

e intensificagao: a idéia é gastar mais “esfor¢o” em regides do espago de
busca que parece mais promissores. Isso pode ser feito de diversas manei-
ras (exemplo, guardar o nimero de interagoes com melhora consecutiva).
Nem sempre este a intensificacao traz beneficios.

e Diversificagao: recursos algoritmicos que forcam a busca para um espago
de solugoes ainda nao explorados.

— uso de memdria de longo prazo (exemplo, nimero de vezes que a
insergdo de um elemento provocou melhora da solugéo)

— Estratégia bésica: forgar a insercao de alguns poucos movimentos
pouco executados e reiniciar a busca daquele ponto

— Estratégia usada para alguns problemas: permitir solugoes infactiveis
durante algumas interagoes

Busca Tabu: variacoes

e Virias listas tabus podem ser utilizadas (com tamanhos, duragao, e
regras diferentes)

e BT probabilistico: os movimentos sao avaliados para um conjunto se-
lecionado aleatoriamente N’(s) € N(s). Permite usar uma lista tabu
menor, acontece menos ciclagem.

e A duragdo tabu pode variar durante a execugao

Comparacao entre as metaheuristicas apresentadas até entao

e Metaheuristicas: Simulated annealing (SA), Multi-Start Search (MSS),
GRASP, BT

e SA e BT tém apenas um ponto de partida, enquanto que os outros dois
métodos testa diversos

e SA e BT permitem movimentos de piora, enquanto que os outros dois
métodos nao
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12.5 Variable Neighborhood Search

e SA é baseado em um processo da natureza, enquanto que os outros
métodos nao

Parametros e decisoes das metaheuristicas

e SA:

— Parametros: temperatura inicial, critério de parada, variavel de
resfriamento

— Decisoes: vizinhanga, solugao inicial
e GRASP:

— Parametros: sgp, N(x), « €[0,1] (para randomizagao), tamanho das
listas (conj. elite, rcl, hash table), critério de parada

— Decisbes: vizinhanga, solugao inicial (sp), randomizagao da sg, atu-
alizagoes do conjunto elite

o BT:

— Parametros: tamanho da lista tabu, critério de parada
— Decisoes: vizinhaca, critérios para classificar movimento tabu

12.5 Variable Neighborhood Search

Variable Neighborhood Search
e Pierre Hansen e Mladenovi¢, 1997

e Hansen é Professor na HEC Montréal, Canadé

Pierre Hansen

Variable Neighborhood Search
e Método multi-start que explora mais de uma vizinhaca.

e Explora sistematicamente as seguintes propriedades:

— O minimo local de uma vizinhanga ndo é necessariamente minimo
para outra vizinhanca
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12 Heuristicas baseados em Busca local

— Um minimo global é um minimo local com respeito a todas as
vizinhangas

— Para muitos problemas, os minimos locais estao localizados relati-
vamente préximos no espago de busca para todas as vizinhangas

Variable Neighborhood Search

Algoritmo 12.10 (VNS)
Entrada Solucdo inicial sg, um conjunto de vizinhancas Vi, 1 <i < m.
Saida uma solucao s : f(s) < f(sp)
1 VNS(so,{Ni})=
2 X = S0
3 do (até chegar a um minimo local
4 para todas as buscas locais)
5 k =1
6 while k<m do
7 escolhe y € Ny (x) randomicamente
8 y := BuscaLocal(y)
9 if f(y) <f(x) then
10 X =y
11 k =1
12 else
13 k = k+1
14 end if
15 end while
16 end do
17 return x
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13 Heuristicas inspirados da natureza

13.1 Algoritmos Genéticos e meméticos

Algoritmos Genéticos
e Proposto na década de 60 por Henry Holland.

e Professor da Faculdade de Engenharia Elétrica e de
Computagao da Universidade de Michigan/EUA.

e Seu livro: Adaptation in Natural and Artificial Sys-
tems (1975).

John Henry
Holland (+1929)

Algoritmos genéticos

e Foi proposto com o objetivo de projetar software de sistemas artificiais
que reproduzem processos naturais.

e Baseados na evolugao natural das espécies.

e Por Darwin: individuos mais aptos tém mais chances de perpetuar a
espécie.

e Mantém uma populagao de solugoes e nao uma unica solugao por vez.
e Usa regras de transicao probabilisticas, e nao deterministicas.

e Procedimentos: avaliagao, sele¢do, geragdo de novos individuos (recom-
binagao), mutagcao.

e Parada: numero x de geragoes total, numero y de geragoes sem melhora.

Algoritmos genéticos: Caracteristicas
e Varias solugoes (“populacido”).
e Operagoes novas: Recombinagao e mutagao.

e Separagao da representacao (“gendtipo”) e formulagao “natural” (fendtipo).
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13 Heuristicas inspirados da natureza

Algoritmos Genéticos: Nocoes

e Genes: Representagdo de um elemento (bindrio, inteiro, real, arco, etc)
que determine uma caracteristica da solucao.

Alelo: Instancia de uma gene.

e Cromossomo: Uma string de genes que compoem uma solugao.

Gendtipo: Representagdo genética da solugdo (cromossomos).

Fenotipo: Representacao “fisica” da solugao.

Populagao: Conjunto de cromossomos.

Algoritmos genéticos: Representacdo e Solucao

Representagao Solugao
Al S
mapeamento
[of1T3T1]1To]o o 10 1]1]0[0] T\
U J @)

~ /

cromossomo
gene com alelos 0,1

Algoritmos Genéticos: exemplos

e Problema de particao de conjuntos
Gens: O ou 1
Cromossomo: 0001101010101011110110

e Problema do Caixeiro viajante
Gens: valores inteiros entre 1 e n

Cromossomo: 15368247
Procedimentos dos Algoritmos Genéticos
e Codificacao: genes e cromossomos.
e Initializacao: geracao da populagao inicial.

e Fungao de Avaliagao (fitness): funcdo que avalia a qualidade de uma
solucao.
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13.1 Algoritmos Genéticos e meméticos

e Selecao de pais: selecao dos individuos para crossover.

e Operadores genéticos: crossover, mutacao

e Parametros: tamanho da populagao, percentagem de mutacao, critério

de parada

Algoritmos Genéticos

Algoritmo 13.1 (AlgoritmoGenético)
Entrada Parametros do algoritmo.

Saida Melhor solugdo encontrada para o problema.

1 Inicializag¢dao e avalicao inicial

2 while (critério de parada nao satisfeito) do
3 repeat

4 if (critério para recombinacdo) then
5 selecione pais

6 recombina e gera um filho

7 end if

8 if (critério para mutagao) then

9 aplica mutagao

10 end if

11 until (descendentes suficientes)

12 selecione nova populacgao

13 end while

Populacao Inicial: geracao

e Solugoes aleatérias.

e Método construtivo (ex: vizinho mais préximo com diferentes cidades

de partida).
e Heuristica construtiva com perturbagoes da solugao.

e Pode ser uma mistura das opgoes acima.
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13 Heuristicas inspirados da natureza

Populacao inicial: tamanho

Populagao maior: Custo alto por iteragao.
Populagao menor: Cobertura baixa do espaco de busca.

Critério de Reeves: Para alfabeto bindrio, populagao randémica: Cada
ponto do espaco de busca deve ser alcancével através de recombinacoes.

Consequencia: Probabilidade que cada alelo é presente no gene i: 1 —
21—,

Probabilidade que alelo é presente em todos gene: (1 —2'~™)L

Exemplo: Com 1 = 50, para garantir cobertura com probabilidade 0.999:

n>1-log, (1 _ %Y 0.999) ~ 16.61

Terminacao

Tempo.
Ntumero de avaliagoes.

Diversidade. Exemplo: Cada gene é dominado por um alelo, i.e. 90%
dos individuos tem o mesmo alelo.

Préoxima Geracao
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Gerada por recombinagdo e mutagdo (solucgdes aleatérias ou da po-
pulagdo anterior podem fazer parte da préxima geragao).

Estratégias:

— Recombinagao e mutagao.

— Recombinagao ou mutacao.
Regras podem ser randomizadas.
Exemplo: Taxa de recombinacao e taxa de mutagao.

Exemplo: Numero de genes mutados.



13.1 Algoritmos Genéticos e meméticos
Mutacao

e Objetivo: Introduzir elementos diversificados na populagao e com isso
possibilitar a exploragao de uma outra parte do espago de busca.

e Exemplo para representagao bindria: flip de k bits.

e Exemplo para o PCV: troca de posicao entre duas cidades.

Recombinacao

e Recombinagao (ingl. crossover): combinar caracteristicas de duas solugoes
para prover uma nova solucao potencialmente com melhor fitness.

e Explora o espago entre solugoes.

e Crossover clédssicos: one-point recombinagao e two-points recombinagao.

One-point crossover

Escolha um niimero aleatério k entre 1 e n. Gere um filho com os primeiros
k bits do pai A e com os dltimos n — k bits do pai B

e Problema de particagao: aplicacao direta do conceito

e Problema do Caixeiro Viajante: copie os primeiros k elementos do pai
A e as demais n—k posigoes preenche com as cidades faltantes, segundo
a ordem em que elas aparecem no pai B
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13 Heuristicas inspirados da natureza

Recombinacao de dois pontos

OO
ole.

Exemplo: Strategic Arc Crossover

e Selecione todos os pedagos de rotas (string) com 2 ou mais cidades que
sao iguais nas duas solugoes

e Forme uma rota através do algoritmo de vizinho mais préoximo entre os
pontos extremos dos strings

Recombinacdo: Selecdo dos pais

e A probabilidade de uma solucao ser pai num processo de crossover deve
depender do seu fitness.

e Variagoes:
— Probabilidade proporcional com fitness.
— Probabilidade proporcional com ordem.
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13.1 Algoritmos Genéticos e meméticos

Estratégia adotada pelos operadores

Intimeros operadores podem ser propostos para cada problema. O ideal é
combinar caracteristicas do operador usado, com outros operadores (mutagao,
busca local) usados no GA. Basicamente um crossover é projetado da seguinte
forma:

e Encontre similaridades entre A e B e insira S = A N B no filho.
e Defina conjuntos Si e Sout de caracteristicas desejaveis e nao desejaveis.
e Projete um operador que mantenha ao maximo elementos de S e Siy,
minimizando o uso de elementos de Sgt.
Nova Populacao
e Todos os elementos podem ser novos.
e Alguns elementos podem ser herdados da populagao anterior.
e Elementos novos podem ser gerados.

e Exemplos, com populagdo de tamanho A que gera p filhos. o
Seleciona os A melhores dos filhos. (A + ) Seleciona os A melhores
em toda populacao.

Estrutura da Populacao

Em geral, populagao estruturada garante melhores resultados. A estrutura
da populacao permite selecionar pais para crossover de forma mais criteriosa.
Algumas estruturas conhecidas

e Divisao em Castas: 3 particoes A, B e C (com tamanhos diferentes),
sendo que os melhores individuos estao em A e os piores em C.

e [lhas: a populacao é particionada em subpopulacoes que evoluem em
separado, mas trocam individuos a cada periodo de niimero de geracoes.

e Populacao organizada como uma arvore.

Exemplo: Populacdao em castas

e Recombinagao: Somente entre individuos da casta A e B ou C para
manter diversidade.

e Nova populagao: Manter casta ”elite” A, re-popular casta B com filhos,
substituir casta C com solucoes randomicas.
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13 Heuristicas inspirados da natureza

Exemplo: Populacao em arvore

e Considere uma &rvore terndria completa, em que cada né possui duas
solugdes (pocket e current).

e A solucao current é a solucao atual armazenada naquela posicao da
arvore.

e A solugdo pocket é a melhor ja tida naquela posi¢do desde a primeira
geracao.

e A cada solugao aplique ezchange (se a solucdo current for melhor que a
pocket, troque-as de posigao)

e Se a solugao pocket de um filho for melhor que a do seu pai, troque o
né de posicao.
Algoritmos Meméticos

e Proposto por Pablo Moscato, Newcastle, Austrélia.

e Idefa: Informacao “cultural” pode ser adicionada a um
individuo, gerando um algoritmo memético.

e Meme: unidade de informagao cultural.

Pablo Moscato

Algoritmos Meméticos

e Um procedimento de busca local pode inserir informagao de boa quali-
dade, e nado genética (memes).

e Faz uso de um procedimento de busca local (em geral aplicado & solugao
gerada pelo procedimento de recombinagao).

e Geralmente trabalha com populagoes menores.

Comparacao entre as Metaheuristicas Apresentadas

e Quais que dependem de randomizagao? SA, GRASP, GA

e Quais que geram apenas uma solugao inicial em todo processo? BT, SA
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13.1 Algoritmos Genéticos e meméticos
e (Quais mantém um conjunto de solucgoes, em vez de considerar apenas
uma? GA
e Quais sdo inspiradas em processos da natureza? GA, BT
e Qual gera os melhores resultados?
Existem outras Metaheuristicas

Handbook of Metaheuristics, por Fred W. Glover (Editor), Gary A. Kochen-
berger (Editor) Kluwer 2002.

HANDBOOK OF
METAHEURISTICS

T
Fomd Cdornin
Lo & Rin hemerge

Consideracoes Finais

e O desempenho de uma metaheuristica depende muito de cada imple-
mentagao

e As metaheuristicas podem ser usadas de forma hibridizada
e Técnicas de otimizacao multiobjetivo tratam os casos de problemas com
mais de um objetivo (Curva de pareto)
Exercicio

e Problema de alocagao: atender n clientes por m postos de atendimento
(um posto é instalado no local onde se encontra um cliente)

e Entrada: distancias entre cada par de clientes

e Problema: Determinar em que locais instalar os postos, de forma a mini-
mizar a soma das distancias de cada cliente a um ponto de atendimento
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13 Heuristicas inspirados da natureza

Propor uma heuristica construtiva e uma busca local.

Comparacao entre as Metaheuristicas

166

Quais que permitem movimento de piora? BT, SA
Quais que nao dependem de randomizagao? BT
Quais que geram apenas uma solugao inicial em todo processo? BT, SA

Quais mantém um conjunto de solugoes, em vez de considerar apenas
uma?

Qual gera os melhores resultados?



Parte IV

Appéndice
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A Conceitos matematicos

N, Z, Q e R denotam os conjuntos dos nimeros naturais sem 0, inteiros,
racionais e reais, respectivamente. Escrevemos também Ny = N U {0}, e para
um dos conjuntos C acima, C, :={x € C|x > 0} e C_ :={x € C|x < 0}. Por
exemplo

R, ={x € Rlx > 0}.

Para um conjunto finito S, P(S) denota o conjunto de todos subconjuntos de
S.

A = (aij) € F™*™ denota uma matriz de m linhas e n colunas com elementos
em F, ai, com a} € F* a i-ésigma linha e @) € F™ a j-ésima coluna de A.

Defini¢ao A.1 (Pisos e tetos)
Para x € R o piso [x] é o maior nimero inteiro menor que x e o teto [x] é o
menor nimero inteiro maior que x. Formalmente

[x] = max{y € Zly < x}
[x] = min{y € Zly > x}

O parte fraciondrio de x é {x} =x — |x].
Observe que o parte fracionério sempre é positivo, por exemplo {—0.3} = 0.7.

Proposicao A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem

x < [x] <x+1 (A1)
x—1<[x] <x (A.2)
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B Formatos

Essa capitulo contém um breve resumo de dois formatos usados para descre-
ver problemas de otimizacgao linear. CPLEX LP é um formato simples, en-
quanto AMPL (A modeling language for mathematical programming) é uma
linguagem completa para definir problemas de otimizacao, com elementos de
programacao, comandos interativos e um interface para diferentes “solvers”
de problemas.

CPLEX LP serve bom para experimentos rapidos. Aprender AMPL precisa
mais investimento, que rende em aplicagoes maiores. AMPL tem o apoio da
maioria das ferramentas disponiveis.

Varios outros formatos sdo em uso, a maioria deles comerciais. Exemplos sao
MPS (Mathematical programming system), um formato antigo e pouco usével
do IBM), LINGO, ILOG, GAMS e ZIMPL.

B.1 CPLEX LP
Uma gramética simplificada' do formato CPLEX LP é

(specification) ::= (objective)

(restrictions)?

(bounds)

(general)?

(binary)?

‘End’
(objective) ::= (goal) (name)? (linear expression)
(goal) ::= ‘MINIMIZE’ | ‘MAXIMIZE | ‘MIN’ | ‘MAX’
(restrictions) ::= ‘SUBJECT TQ’ (restriction)+
(restriction) := (name)? (linear expression) (cmp) (number)
<Cmp> = (<7 | ‘<=7 | (=) | (>7 | (>=7

LA gramética ndo contém as especificacdes “semi-continuous” e “SOS”.
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B Formatos

(linear expression) ::= (number) (variable) ( '+ |’-’) (number) (variable) )*
(bounds) ::= ‘BOUNDS’ (bound)+

(bound) ::= (name)? ( (limit) ‘<=" (variable) ‘<=" (limit)
(limit) ‘<=" (variable)

(variable) ‘<=" (limit)

(variable) ‘=" (number)

(variable) ‘free’)

(limit) ::= ‘infinity’ | ‘-infinity’ | (number)
(general) ::= ‘GENERAL’ (variable)+
(binary) ::= ‘BINARY’ (variable)+

Todas varidveis x tem a restricao padrao 0 < x < 4o0. Caso outras limites
sao necessdarias, eles devem ser informados na secao “BOUNDS”. A segoes
“GENERAL” e “BINARY” permitem restringir varidveis para Z e {0, 1}, res-
pectivamente.

As palavras-chaves também podem ser escritos com letras mintsculas: o for-
mato permite algumas abreviagoes nao listadas acima (por exemplo, escrever
“s.t” ao invés de “subject to”).

Exemplo B.1
Problema (1.1) no formato CPLEX LP.

Maximize
lucro: 0.2 ¢ + 0.5 s

Subject To
ovo: c+ 1.5 s <= 150
acucar: 50 c + 50 s <= 6000
clientl:c <= 80
client2:s <= 60
Bounds
0 <=c
0 <= s
End
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B.2 AMPL

Exemplo B.2
Problema de mochila 0-1 com 11 itens em formato CPLEX LP.

max 19x1487x2497x34-22x4+47x5+22x6+30x7+5x8+32x9+54x104-75x11
s.t

1x1496x2467x3+90x4+13x5+74x6+22x74+86x84+23x9+63x10+89x11<= 624
binary x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

end

Observagao B.1

CPLEX LP permite constantes como 0.5e6 que representa 0.5 x 10°. Ou-
tra interpretagao dessa expressao é 0.5 vezes a varidvel eg. Para evitar essa
ambiguidade, varidveis nao podem comecar com a letra e.

B.2 AMPL
Objetos de modelagem

e Um modelo em AMPL consiste em
— parametros,
— variaveis,

— restricoes, e

objetiovos

e AMPL usa conjuntos (ou arrays de multiplas dimensoes)
A:1-D
mapeiam um conjunto de indices I =1y x --- x I, para valores D.
Formato
e Parte do modelo
<s1>
<sn>
end;

com s; € um comando ou uma declaragao.
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B Formatos

e Parte de dados

data
<d1>

<dn>
end;
Tipo de dados
e Numeros: 2.0,-4
e Strings: ’Comida’

e Conjuntos: {2,3,4}

Expressdes numéricas
e Operagoes bésicas: +,—*,/,div,mod,less *x
Exemplo: x less y

e Fungoes: abs, ceil , floor ,exp

Exemplo: abs(—3)

e Condicional: if x>y then x else y

Expressoes sobre strings
e AMPL converte niimeros automaticamente em strings
e Concatenacao de strings: &

Exemplo: x & ’ unidades’

Expressoes para conjuntos de indices

e Unica dimensao
— t in S: varidvel “dummy” t, conjunto S
— (t1 ,... tn) in S: para conjuntos de tuplos

— S: sem nomear a varidvel

e Multiplas dimensoes
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— {el ..., en} com e; uma dimenséo (acima).

Varidveis dummy servem para referenciar e modificar.

Exemplo: (i—1) in S

B.2 AMPL

Conjuntos
e Conjunto bésico: {v1 ,..., vn}
e Valores: Considerados como conjuntos com conjunto de indices de di-
mensao 0
e Indices: [il ,..., in]
e Sequéncias: nl ... n2 by d ounl ... n2
e Construcao: setof I e: {e(i1,...,in) | (11,...,in) €I}

Exemplo: setof {j in A} abs(j)

Operacoes de conjuntos

X union Y: Uniao XUY

X diff Y: Diferenga X\ Y

X symdiff Y: Diferenca simétrica (X \ Y)U (Y \ X)
X inter Y: Interseccao XNY

X cross Y: Produto cartesiano X x Y

Expressoes légicas

Interpretacao de nimeros: n vale “v”, sse n # 0.
Comparagoes simples <,<=,= ou ==,>=,>,<> ou !|=
Pertinéncia x in Y, xnot in Y, x lin Y

Subconjunto X within Y, X !within Y, X not within Y
Operadores 16gicos: && ou and, || ou or, ! ou not

Quantificagao: com indices I, expressao booleana b
forall I b: /\(11 imer Pl tn)
exists I b \/( b(iy,...,1in)

i1,.in )€l
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B Formatos

Declaracées: Conjuntos

set NI [dimen n] [within S] [default el] [:= e2]
param N I [in S] [<=,>=,!=,... n] [default el] [:= e2]
e Nome N

Conjunto de indices I (opcional)

Conjunto de valores S
e Valor default e

e Valor inicial e»

Declaracoes: Restricoes e objetivos

subject to NT1: el =e2 | el <= €2, el >=e2
minimize [I] : e

maximize [I] : e

Comandos

e solve: Resolve o sistema.

e check [I] : b: Valida expressao booleana b, erro caso falso.

display [I] : el ,... en: Imprime expressoes eq,...,en.

printf [I] : fmt,el ,..., en: Imprime expressoes e — 1,..., e, usando
formato fmt.

e for T : ¢c,for I : {c1l ... cn}: Lagos.

Dados: Conjuntos
set Nrl.,..rm
Com nome N e records r1,...,Th, cada record

e um tuplo: vy,...,vjn Exemplo: 12,13,22, 27

e a definicdo de uma fatia (vq]*,Vva*,...,vn|*): depois basta de listar os
elementos com *. Exemplo: (1 *)23,(2*)27

e uma matriz
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B.2 AMPL

Dados: Parametros
param N rl,...rn

Com nome N e records r1,...,Th, cada record
e um valor i,...,1i,,V
e a definicdo de uma fatia [i7]*,12|*,...,1in|*): depois basta definir indices
com .

e uma matriz

uma tabela

Exemplo B.3 (Exemplo 1.1 em AMPL)
var c; # numero de croissants

var s; # numero de strudels
param lucro croissant; # o lucro por croissant
param lucro strudel; # o lucro por strudel

maximize lucro: lucro croissant*c+lucro strudelxs;
subject to ovo: c+1.5%s <= 150;

subject to acucar: 50%c+50%xs <= 6000:

subject to croissant: ¢ <= 80;

subject to strudel: s <= 60;
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C Solucoes dos exercicios

Solucao do exercicio 5.5.

maximiza 25p + 30c
sujeito a /200 + ¢/140 < 40 < 7p + 10c < 56000
p < 6000
¢ <4000
¢,p>0

Produzindo ago

5000 (56000-7*X)/1 0

4000

3000

Canos ¢

2000 goes viaveis

1000

0
0 1000 2000 3000 4000 5000 6000 7000 8000
Placas p

A solugdo étima é p = 6000, ¢ = 1400 com valor 192000.

Solugao do exercicio 5.3.
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C Solugées dos exercicios

maximiza 2A+B
sujeito a A <= 6000
B <=7000

A 4+ B <= 10000

Resposta: A=6000 e B=4000 e Z=16000

Solugao do exercicio 5.4.
Sao necessarias cinco variaveis:

e x1: ntimero de pratos de lasanha comidos por Marcio

e x2: numero de pratos de sopa comidos por Marcio

e x3: numero de pratos de hamburgueres comidos por Renato
e x4: ntimero de pratos de massa comidos por vini

e x5: numeros de pratos de sopa comidos por vini

Formulagao:

maximiza x1 +x2 4+ x3 + x4 + x5
sujeito a 4>x1+x2>2
5>x3>2
4>x4+x5>2
70(x2 4+ x5) + 200x1 + 100x3 + 30x4 < 1000
30(x2 4+ x5) + 100x1 + 100x3 + 100x4 < 800

Solugao do exercicio 5.6.

Usamos indices 1, 2 e 3 para os voos Pelotas—Porto Alegre, Porto Alegre—
Torres e Pelotas—Torres e variaveis aj, az,as para a categoria A, by,by, b3
para categoria B e c—1, c3, c3 para categoria C. A fungao objetivo é maximizar
o lucro

z = 600a; +320a; +720a3 +440bq +260b, + 560b3 +200cq + 160c, + 280cs.
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Temos que respeitar os limites de capacidade

a;+bi+ci+a3+bz+c3 <30
a>+br+cr+az+bs+c3 <30

e os limites da predigao

a; <4 az <8; az <3
by <§ by <135 b3 <10
c1 <22 co < 205 c3 <18

Obviamente, todas varidaveis também devem ser positivos.

Solugao do exercicio 5.7.

maximiza z =5%x1 + 5%2 + 5x3
sujeito a —6%x1 —2x2 — %3 <0
— 9% —3x2 +3x3 <0

9%1 +3x2 —3x3 <0

X5 2 0
maximiza z=—6X7] — 2X3 — 6x3 + 4x4 + 4x5
sujeito a —3x7 —8xy —6x3 —7x4 —5x5 < 3

3x1 4+ 8x2 + 6X3 + 7x4 + 5x5 < —3
5x1 —7x2 +7x3 +7x4 — 6x5 < 6

X7 — 9% +5x3 +7x4 — 10x5 < —6
— X1+ 9% —5x3 —7x4 +10x5 <6

Xj Z 0
maximiza z=7%x1 +4x2 + 8x3 + 7x4 — x5
sujeito a —4x7 — Ixy — 7x3 — 8%x4 + 6Xx5 < —2

dx1 +x2 +7x3 + 8x4 — 6x5 < 2

— X1 —4xy —2x3 —2x4 +7x5 <7
—8%x1 4+ 2x2 + 8x3 —6%4 — 7x5 < —7
8x1 —2x) — 8x3 +6x4 +7x5 <7

x; >0
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C Solugées dos exercicios

maximiza z =6x7 —5x2 — 8%x3 — 7x4 + 8xs5
sujeito a —5%1 —2x2 +x3 — x4 — 7x5 <9
5%1 + 2x3 —x3 + %4 + 7x5 < —9
7x1 + 7x2 +5%x3 — 3x4 + x5 < —8
—7x1 —7%x2 —5x3 +3x4 — x5 < 8
—5x71 —3x2 —5x3 + x4 +8x5 <0
x5 >0

Solugao do exercicio 5.8.
Solugao com método Simplex, escolhendo como variavel entrante sempre aquela
com o maior coeficiente positivo (em negrito):

z = 25p  +30c
w; =56000 —7p —10c
wy, =6000 —p

ws =4000 —c

z  =120000 +25p —30ws;
w; =16000 —7p +10w;3
wy = 6000 —p

c = 4000 —W3

z =1240000/7 —25/7p +40/7w3s
p  =16000/7 =1/7wy  +10/7w3
wy = 26000/7 +1/7wy;  —10/7w3
c = 4000 —w3

z =192000 —3w; —4w,

p  =6000 —W3y

w3 = 2600 +1/10w;  —=7/10w>

c = 1400 —1/10wy  +7/10w,

Solugao do exercicio 5.10.
Temos

2m+1)\  /2n\(2n+2)(2n+1)  /2n\2(2n+1)
<n+1 )(n) (n+1)2 (n) n+1
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e logo

2

2’n (2n < 2(n+1) <92 2n ‘
n+1\n/ ~ \ n+1 - n
Logo, por inducdo (1/2n)22" < (ZT?) < 22m,

Solugao do exercicio 5.13.

1. Substituindo x; e x2 obtemos a nova funcao objetivo z = x1 + 2x2 =
22 —7wy —3wq. Como todos coeficientes sdo negativos, a solugao bésica
atual permanece étima.

2. A nova funcao objetivo é 1 —w; e o sistema mantem-se 6timo.
3. A nova funcao objetivo é 2 — 2w, e o sistema mantem-se 6timo.

4. O dicionério dual é

z¢ =31 -7z, —8z
Yy, =11 +2z; 43z
yr =4 +z, +z1

e a solucdo dual 6tima é (y7 yz)t = (411

Solucao do exercicio 5.16.

maximiza 10y + 6y2
sujeito a y1 +5y, <7
—y1+2y2 <1
3yr—y2 <5
y1,Y2 > 0.

Solugao do exercicio 5.17.
Com variaveis duais y. para cada e € U temos

maximiza E Ye

ecl

sujeito a Z Ye < ¢(S) Ses
e:e€S
Ye = 0 ec Uu.
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C Solugées dos exercicios

Solugao do exercicio 10.2.
O sistema inicial

z= X1 +3x%5
w; = —2 +x7
Wo = 3 —X2
w3 = —4 +x5 +x2
Wy = 12 —3X1 —X2

nao é primalmente nem dualmente vidvel. Aplicando a fase I (pivos xo—ws,
xo—x1) e depois fase IT (pivos x2—w1, w3—w2, wi—wy) gera o diciondrio final

z= 12 —8/3wy, —1/3wy
X2 = 3 —W>
wy3= 2 —=2/3wy; —1/3w,
x1= 3 +1/3wr, —1/3wy
w; = 1 +1/3wy  —1/3wy

cuja solugao x1 = 3, x2 = 3 ja é inteira.
No segundo sistema comecamos com o dicionério

X1 —2%7
wi;= 60 +11x7 —15%x;
Wo = 24 74X1 *3)(2
W3 = 59 —]OX] +5X2

N
Il

e um pivo x1—w3 gera a solugao étimo fraciondaria

z= 4.9 —0.1lwz  —1.5%,
w1 = 113.9 —1.1W3 —9.5X2
wy; = 44 +0.4w3  —5xy
X1 = 4.9 —0.1W3 ‘|‘0.5X2

e a linha terceira linha (x1) gera o corte
wy = —0.9 +0.Twz; +40.5x,

Com o pivd ws—w3 obtemos a solucao 6tima inteira

z= 4 — Wy —X2
wy = 104 —1lwgs —4x;
wy, = 8 +4wy —7%2
x1= 4 —Wy +1x3

w3y = 9 +10ws  —5x,
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Solugao do exercicio 10.3.

Conjunto independente maximo Com varidveis indicadores x,,, v € V temos
0 programa inteiro

maximiza Z Xy
vev
sujeito a Xu +x, <1, Yiu,vie A (C.1)
Xy € B, Yv e V.

A equagao C.1 garante que cada aresta possui no méaximo um né incidente.

Emparelhamento perfeito com peso maximo Sejam x,, a € A varidveis
indicadores para a selegao de cada aresta. Com isso, obtemos o programa
inteiro

maximiza Z pla)xa
acA
sujeito a Z X{un) = Yvev (C.2)
UueEN(v)
Xq € B, YveV.

A equagao C.2 garante que cada né possui exatamente um vizinho.

Problema de transporte Sejam xij varidveis inteiras, que correspondem com
o numero de produtos transportados do depdsito i para cliente j. Entao

minimiza E CijXij
1<isn
1Z552m

sujeito a E xij =pi, V1 <i<n cada depdsito manda todo estoque
1<G<m

Z xij = dj, V1 <j<m cada cliente recebe a sua demanda

1<i<n

Xij € VA
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C Solugées dos exercicios

Conjunto dominante Sejam x,, v € V varidveis indicadores para selecdao de
vértices. Temos o programa inteiro

minimiza Z Xy
vev
sujeito a Xv + Xy > 1, Yv eV ndou vizinho selecionado
ueN(v)
X, € B, Yv e V.

Solugao do exercicio 10.5.
Seja d1dy...d,, a entrada, e o objetivo selecionar m < n digitos da entrada.
Seja xi; € B um indicador que o digito i da entrada seria selecionado como

digito j da saida, 1 <i<n, 1 <j<m. Entao
maximiza Z xi;di1 om—J
4j
sujeito a ZXij =1, v (C.3)
i
D xi <, Vi (C.4)
j

xi5 =0, Vi > 1, (C.5)
xk1 < 1 —xy5, vk >1,1<j. (C.6)
A funcao das equacdes é a seguinte:
e Equagao C.3 garante que tem exatamente um digito em cada posicao.
e Equacao C.4 garante que cada digito é selecionado no maximo uma vez.
e Equagao C.5 garante que digito 1 aparece somente a partir da posicao j.

e Equacgao C.4 proibe inversoes.

Solucao do exercicio 10.6.

Existem 21 sets diferentes, cada um com consumo diferente das 9 cartas. Seja
AR?*21 uma matriz, que contém em cada das 21 coluna o nimero de cartas
de cada set. Além disso, seja b € R? o niimero de cartas disponiveis. Usando
varigveis inteiros x € Z?' que representam o nimero de sets formandos de
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cada tipo de set diferentes, temos a formulacao

maximiza Z Xi
1<i<21
sujeito a Ax <Db
x > 0.

Solugao do exercicio 10.7.

Conjunto independente maximo A matriz de coeficientes contém dois co-
eficientes igual 1 em cada linha, que correspondem com uma aresta, mas
geralmente nao é totalmente unimodular. Por exemplo, o grafo completo com

trés vértices Kz

7N

G——=6

gera a matriz de coeficientes

1 10

1 0 1

0 1 1

cuja determinante é —2. A soluc@o 6tima da relaxacdo inteira 0 < x; < 1 é
X1 =x2 = x3 = 1/2 com valor 3/2. (Observagao: A transposta dessa matriz
satisfaz os critérios (i) e (ii) da nossa proposicao, e caso o grafo é bi-partido,
também o critério (iii). Portanto Conjunto independente mdzimo pode ser
resolvido em tempo polinomial em grafos bi-partidos).

Emparelhamento perfeito com peso maximo A matriz de coeficientes sa-
tisfaz critério (i). Ela tem uma linha para cada vértice e uma coluna para cada
aresta do grafo. Como cada aresta é incidente a exatamente dois vértices, ela
também satisfaz (ii). Finalmente, a bi-particio Vi U V; do grafo gera uma
bi-parti¢do das linhas que satisfaz (iii). Portanto, a matriz é TU, e o Empare-
lhamento perfeito com peso mdaximo pode ser resolvido em tempo polinomial
usando a relaxacao linear.
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C Solugées dos exercicios

Problema de transporte A matriz de coeficientes satisfaz critério (i). Po-
demos representar o problema como grafo bi-partido completo K;, 1, entre os
depositos e os clientes. Desta forma, com o mesmo argumento que no ultimo
problema, podemos ver, que os critérios (ii) e (iii) sdo satisfeitos.

Conjunto dominante A matriz de coeficientes satisfaz critério (i), mas néo
critério (ii): cada linha e coluna correspondente com vértice v contém [N (v)|+1
coeficientes ndo-nulos. Mas, nao é obviou se a matriz mesmo assim nao é TU
(lembra que o critério é suficiente, mas nao necessario). O Kj acima, por
exemplo, gera a matriz

1T 11
T 11
T 11

que ¢ TU. Um contra-exemplo seria o grafo bi-partido Ky 3

O—®

N

& @

que gera a matriz de coeficientes

—_— o ) —d

1
0
1
0

_ O —

1
1
0
0

com determinante —2. Isso nao prova ainda que a relaxacdo linear nao pro-
duz resultados inteiros étimos. De fato, nesse exemplo a solucao 6tima da
relaxacao inteira é a solugao étima inteira D = {1}.

Um verdadeiro contra-exemplo é um ciclo com cinco vértices Cs

(1)
@/ \@

O—®
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com matriz

—_—_o O —
—_ O = -0
© = ——_o
S = =0 =
—_ O O = -

(cuja determinante é 3). A relaxacdo linear desse sistema tem a solugdo 6timo
X1 = X2 = X3 =X4 = X5 = 1/3 com valor 5/3 que nao ¢ inteira.

Solugao do exercicio 10.8.

Cobertura por arcos

maximiza Z CeXe
eckE
sujeito a Z Xuw > 1, YweV
ueN (v)
Xe € B.

Observe que esse problema é redutivel a um emparalhamento perfeito maximo
e portanto possui solugdo em tempo polinomial.

Conjunto dominante de arcos

maximiza Z CeXe
ecE
sujeito a Z Xer > 1, Vee E

e/€E
ene’#0

Xe € B.
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C Solugées dos exercicios

Coloracao de grafos Sejan =|V|.
minimiza E Cj
1<jisn

sujeito a Z Xyj =1, Ywev (C.7)

1<5<n
Xui +xvi < 1, Viu,vie E,1<i<n (C.8)

nej > Z Xvj, v1<ji<n (C.9)
vev
Xvi, Cj € B.

e Equacgao C.7 garante que todo vértice recebe exatamente uma cor.
e Equacao C.8 garante que vértices adjacentes recebem cores diferentes.

e Equacao C.9 garante que c; =1 caso cor j for usada.

Clique minimo ponderado

minimiza Z CyXy
vev

sujeito a Xu+x <1, Viu,v} € E (C.10)
X, € B.

Equacao C.10 garante que nao existe um par de vértices selecionados que nao
sao vizinhos.

Subgrafo cibico x. indica se o arco e é selecionado, e Yy, indica se ele possui
grau 0 (caso contrario grau 3).

minimiza ZXE
ecE

sujeito a Z Xe <O+ E[(1T—vye)
eeN(v)

Z Xe <3+ ‘E‘ye
eeN(v)

- ) xe<-3+3y.
eeN(v)
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Observe que o grau de cada vértice é limitado por [E|.

Solucao do exercicio 10.9.

Sejam x; € B,1 <1 < 7 varidveis que definem a escolha do projeto i. Entao

temos
maximiza 17x1 + 10x2 + 15%x3
4+ 19%4 + 7x5 + 13%x6 + %7
sujeito a 43x1 + 28% + 34x3 + 48x4

+ 17x5 + 32x¢ + 23x7 < 100 Limite do capital

x1 +x2 <1
x3+x4 <1

X3 +x4 <XxX1+%X2

Projetos 1,2 mutualmente exclusivos
Projetos 3,4 mutualmente exclusivos

Projeto 3 ou 4 somente se 1 ou 2

http://www.inf.ufrgs.br/~mrpritt/e6q2.mod

end ;

set projetos =1 7;
param lucro { projetos };
param custo { projetos };
var fazer { projetos } binary;
maximize M: sum { i in projetos } lucro[i]|*xfazer[i];
subject to S1:

sum { i in projetos } custo[i]xfazer[i] <= 100;
subject to S2: fazer[l]+fazer [2] <= 1;
subject to S3: fazer[3]|+fazer[4] <= 1;
subject to S4: fazer[3]+fazer [4] <= fazer[l]+ fazer [2];
data;
param lucro := 1 17 2 10 3 15 4 19 57 6 13 7 9;
param custo := 1 43 2 28 3 34 4 48 5 17 6 32 7 23;

Solucao: Selecionar projetos 1,3,7 com lucro de 4TMRS.

Solugao do exercicio 10.10.

Seja f € B uma varidvel que determina qual fibrica vai ser usada (fdbrica 1,
caso f = 0, fabrica 2, caso f = 1), b; € B uma varidvel bindria que determina,
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DN DN DN NN = = = = s s e e
T W NP OO T WD+ O ©

C Solugées dos exercicios

se brinquedo 1 vai ser produzido e u; € Z as unidades produzidas de brinquedo

i (sempre com 1 <1i < 2).

maximiza 10w + 15u,; — 50000b; — 80000b,

sujeito a ui < Mby Permitir unidades somente se
ug /50 + u, /40 < 500 + fM Limite fabrica 1, se selecionad
w1 /40 +uy/25 <700+ (1 —f)M  Limite fabrica 2, se selecionad

A constante M deve ser suficientemente grande tal que ela efetivamente nao
restringe as unidades. Dessa forma, se a fabrica 1 esta selecionada, a terceira

restrigdo (da fdbrica 2) nao se aplica e vice versa.

http://www.inf .ufrgs.br/~mrpritt/e6q3.mod

var f binary;

var b { brinquedos } binary;

var u { brinquedos } integer, >= 0;
param inicial { brinquedos };
param lucro { brinquedos };

param prodfabl { brinquedos };
param prodfab2 { brinquedos };
param M := 35000;

maximize Lucro:
sum { i in brinquedos } u[i]*lucro[i]
— ( sum { i in brinquedos } inicial[i]*b[i] );
subject to PermitirProducao { i in brinquedos }:
u[i] <= Mxb[i];
subject to LimiteFabl
sum { i in brinquedos }
uli]*prodfabl[i] <= 500 + f*M;
subject to LimiteFab2
sum { i in brinquedos }
u[i]*prodfab2[i] <= 700 + (1—f)=*M;

data;

param inicial := 1 50000 2 80000;
param lucro := 1 10 2 15;

param prodfabl := 1 0.020 2 0.025;
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26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

param prodfab2 := 1 0.025 2 0.040;

Solucao: Produzir 28000 unidades do brinquedo 1 na fabrica 2, com lucro
230KRS$.

Solugao do exercicio 10.11.
Sejam a; € B uma varidavel que determina se aviao i vai ser produzido e ujy € Z
as unidadas produzidas.

maximiza 2u; +3uy +0.2u3z — 3a; — 2ay

sujeito a 0.2u; +0.4usz +0.2u; <1 Limite de capacidade
u; < 5by Permitir unidades somente se for produ:
u <3 Limite aviao 1
u <2 Limite aviao 2
uz; <5 Limite aviao 3

http://www.inf.ufrgs.br/~mrpritt/e6q4.mod

param custo { avioes };

param lucro { avioes };

param capacidade { avioes };

param demanda { avioes };

var produzir { avioes } binary;

var unidades { avioes } integer, >= 0;

maximize Lucro:
sum { i in avioes }
(lucro[i]*xunidades[i]—custo[i]*produzir[i]);
subject to LimiteCapacidade:
sum { i in avioes } unidades|i]*capacidade[i] <= 1;
subject to PermitirProducao { i in avioes }:
unidades [i] <= 5xproduzir[i];
subject to LimiteDemanda { i in avioes }:

unidades [i] <= demandali];
data ;
param : custo lucro capacidade demanda :=
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46
47
48
49

C Solugées dos exercicios

W N =
O NN W
o W N
o O O
RN
(G288 NIV

Solugao: Produzir dois avioes para cliente 2, e um para cliente 3, com lucro
4.8 MRS.

Solugao do exercicio 10.12.

A formulag@o possui 14 restri¢oes, correspondendo com as 14 arestas. Como
o grafo é 4-regular, cada vértice ocorre 4 vezes no lado esquerdo de uma
restrigao, e somando todas restrigdes obtemos

4% x <14

1<i<7
= Z xi < 14/4
1<iL7
= ) x < [14/4) =3,
1<i<7

que nao ¢é suficiente. Para obter uma desigualdade mais forte, vamos somar
sobre todos tridngulos. Somando primeiro as restrigdes das arestas de cada
tridngulo (u,v,w) obtemos

2%y + 2%y + 2% < 3
SxXy + Xy +x0 < [3/2] = 1.

Somando agora as restrigoes obtidas desta forma de todos 14 tridngulos do
grafo (cada vértice é parte de 6 tridngulos) obtemos a desigualdade desejada

6 Z xi < 14

1<4i<7

= Y xi<|14/6) =2

1<i<7

(Outra abordagem: Supode, sem perda de generalidade, que x; = 1 na solugao
O6tima. Pelas restricoes x1 + x; < 2 temos x; = 0 para i € {3,4,5,6}. Pela
restricao x2 +x7 < 1, portanto ) ;.- % < 2.)
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Solugao do exercicio 10.13.

Seja xi;x € B um indicador do teste com a combinagdo (i,j,k) para 1 <
1,5,k < 8. Cada combinacéao (1,j,k) testada cobre 22 combinacgoes: além de
(1,7, k) mais 7 para cada combinacao que difere somente na primeira, segunda
ou terceira posicao. Portanto, uma formulagao é

minimiza E Xij,k
i,j,k
sujeito a Xij,k + E Xi/jk + E Xij/k + E Xijk’ >1 vi,j, k
i#L i'# k’#k
Xij,k €B V1»J)k

A solucao 6tima desse sistema é 32, i.e. 32 testes sdo suficientes para abrir a
fechadura.

Solugao do exercicio 10.14.

X1 + xg + x7 < 2 porque uma rota nao contém subrotas. Portanto x; + x, +
X5 + X + X7 + xo < 5. Supoe x1 + X3 + x5 + X6 + X7 + xo = 5. Temos trés
casos: x1 = 0, x¢ = 0 ou x; = 0. Em todos os casos, as restantes variaveis
possuem valor 1, e no grafo resultante sempre existe um vértice de grau 3 (o
vértice no centro, da esquerda, de acima, respectivamente), que nao é possivel
numa solugao valida.

Solucao do exercicio 10.15.

Sejam x; € B, 1T < i < k as varidveis de entrada, e ¢c; € B, 1 <1 < n
variaveis que indicam se a clatsula c; estd satisfeita. Para aplicar a regra
(7.2) diretamente, vamos usar uma varigvel auxiliar di. 1 < i < n, que
representa a disjungao dos primeiros dois literais da clatsula 1.

maximiza Z Ci
1<i<n
. X1 literal j na cladsula i é x
sujeito a li; = ) 1 i L
1 —x literal j na clatdsula i é —xy
di > (L + li2)/2
di <lin + li2
ci > (di +L3)/2
ci <di+Ls
ci,di, xqy € B.
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C Solugées dos exercicios

Como é um problema de maximizacao, pode ser simplificado para

maximiza E ci
1<i<n
L. X1 literal j na claisula i é x
sujeito a L =

1 —x literal j na clatsula i é —xy

ci <lin +li2 + i3
ci,xi € B.

A segunda formulagao possui uma generalizacdao simples para o caso k > 3.
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