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Introducao

If one would take statistics about which mathematical problem is
using up most of the computer time in the world, then ... the
answer would probably be linear programming. (Laszlo Lovasz)






1. Introducao

1.1. Exemplo

Exemplo 1.1 (No Ildo)

Antes da aula visito o Ildo para tomar um café e comer um Croissant. Ele me
conta: “Estou especializado em Croissants e Strudels. Tenho um lucro de 20
centavos por Croissant e 50 centavos por Strudel. Diariamente até 80 clientes
compram um Croissant e até 60 um Strudel. Mas infelizmente, o Ildo apenas
disponibiliza de 150 ovos e 6 kg de agicar por dia. Entre outros ingredientes,
preciso um ovo e 50g de agicar para cada Croissant e um ovo e meio e 50g
de acicar para cada Strudel. Agora, professor, quantas Croissants e Strudels
devo produzir para obter o maior lucro?”

Sejam c e s o numero de Croissants e Strudels, respectivamente. O lucro do
Ildo em Reais é 0.2¢+0.5s. Seria 6timo produzir todos 80 Croissants e 60 Stru-
dels, mas uma conta simples mostra que nao temos ovos e agucar suficientes.
Para produzir os Croissants e Strudels precisamos ¢ + 1.5s ovos e 50c + 50sg
de agicar que nao podem ultrapassar 150 ovos e 6000g. Com a condigao ébvia
que ¢ > 0 e s > 0 chegamos no seguinte problema de otimizagao:

maximiza 0.2¢ +0.5s (1.1)
sujeito a c+1.5s <150
50c¢ + 50s < 6000
c <80
s < 60
c,s>0

Como resolver esse problema? Com duas varidveis podemos visualizar a si-
tuagao num grafo com ¢ no eixo x e s no eixo y

No lldo



1. Introdugao

Otimizando o lucro do bar

100
90 - (6000-50¢)/50 i

80 -| 2/3(150-0) -

70 r

s=60

s (strudels)

0 10 20 30 40 50 60 70 80 90 100
¢ (croissants)

que nesse caso permite resolver o problema graficamente. Desenhando diversos
conguntos de nivel (ingl. level set) com valor da funcao objetivo 10, 20, 30, 40
é facil observar que o lucro maximo se encontra no ponto ¢ = s = 60, e possui
um valor de 42 reais.

O

Isso é um exemplo de um problema de otimizagao. A forma geral de um
problema de otimizagdo (ou de programagdao matemdtica) é

opt f(x)
sujeito a xeV
com
e um objetivo opt € {max, min},
e uma fungao objetivo (ou fungao critério) f: V — R,
e um conjunto de solugdes vidveis (ou solugdes candidatas) V.

Falamos de um problema de otimizag¢do combinatoria, se V é discreto.
Nessa generalidade um problema de otimizacao é dificil de resolver. O exem-
plo 1.1 é um problema de otimizagdo linear (ou programagdo linear):
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1.1. Exemplo

e as variaveis da solugao sao x1,...,xn € R
e a funcgao de otimizacao é linear em X1,...,Xn:
f(X7,...,%n) =C1X1 + -+ CnXn (1.2)

e as solugoes vidveis sao dadas implicitamente por m restricoes lineares

arixy +ajzxz + -+ ainXxn X by (1.3)
az1x1 + azxy + -+ danxn X2 b (1.4)
(1.5)

Am1X1 + Qm2X2 + - + GmnXn DXy by (1.6)

com p<i € {<, =, >}

Exemplo 1.2 (O problema da dieta)

Suponha que temos uma tabela de nutrientes de diferentes tipos de alimentos.
Sabendo o valor didrio de referéncia (VDR) de cada nutriente (quantidade de
nutriente que deve ser ingerido) e o prego de cada unidade de alimento, qual
a dieta 6tima, i.e. que contém ao menos o valor didrio de referéncia, mas de
menor custo?

Com m nutrientes e n alimentos, seja ai; a quantidade do nutriente 1 no
alimento j (em g/g), i o valor didrio de referéncia do nutriente i (em g) e c;
o prego do alimento j (em R$/g). Queremos saber as quantidades x; de cada
alimento (em g) que

minimiza C1X7 + -+ CnXn (1.7)
sujeito a anx)+ -+ QnXn > T (1.8)
(1.9)

Ami1X1 + -+ QmnXn > Tm (1.10)

X1y.0..,%Xn >0 (1.11)

Exemplo 1.3 (Problema de transporte (Hitchcock))

Uma empresa agréria tem m depdsitos, cada um com um estoque de a; (1 <
1 <m) toneladas de milho. Ela quer encaminhar b; (1 <j < n) toneladas de
milho para n clientes diferentes. O transporte de uma tonelada do depdsito
i para cliente j custa R$ cij. Qual seria o esquema de transporte de menor
custo?

11



1. Introdugao

Como problema de otimizacao linear, podemos introduzir como varidveis xi;
o peso dos produtos encaminhados pelo depédsito i para cliente j, e queremos
resolver

minimiza Z CijXij (1.12)
1<i<n,1<j<m
sujeito a Z Xij < ay para todo fornecedor 1 <i<m (1.13)
1<<n
Z Xij = bj para todo cliente 1 <j <mn (1.14)
1<i<n
xi; >0 para todo fornecedor 1 <i<mnecliente 1 <j<m

Concretamente, suponha que temos a situagao da figura 1.1. A figura mostra

Cliente 1 Cliente 1 5

Fornecedor 1 k\ﬁﬁedor 1

1

3
3
Fornec&dor 2
Fornecedor 3
2
Cliente 3 Cliente 3

Figura 1.1.: Esquerda: Instancia do problema de transporte. Direita: Solucao
otima dessa instancia.

as toneladas disponiveis de cada fornecedor, a demanda (em toneladas) de
cada cliente e as distancias (em km) entre eles. O transporte custa R$ 1000
por km e tonelada. Observe que um transporte do fornecedor 1 para cliente
3 e fornecedor 3 para cliente 1 nao é possivel. N6s usaremos uma distancia
grande de 100 km nesses casos (outra possibilidade seria usar restrigdes x13 =

12



1.2. Formas normais

X31 = 0.

minimiza 3x11 +x12 + 100x13 4+ 4x21 + 2x22
+ 4x23 + 100x37 + 3x32 + 3x33
sujeito a X171 +x12 +%13 <5
X21 + %22 +x23 <7
x31 +x32 +x33 <3
X171 +x21 +x31 =7
x12 +%x22 +%x32 =3
X13 + %23 +x33 =5
xi; > 0
Qual seria a solucao 6tima? A figura da direita mostra o nimero 6timo de
toneladas transportadas. O custo minimo é 46 (em R$ 1000). O

Podemos simplificar a descrigdo usando notagao matricial. Com A = (ay;) €
R™™ b= (bi) € R™, c:=(ci) € R™ e x = (xi) € R™ o problema 1.2-1.6),
pode ser escrito de forma
opt  c'x
sujeito a aix <y by 1<i<m

(Denotamos com a; a i-ésima linha e como @ a j-ésima coluna da matriz A.)

Em caso todas restrigdes usam a mesma relagdo <, > ou = podemos escrever
t t t

opt c'x opt c'x opt c'x

sujeito a Ax=b

sujeito a Ax <b sujeito a Ax>b o,
) Y

1.2. Formas normais

Conversoes
E possivel converter

e um problema de minimizacao para um problema de maximizagao
st t
minc x < —max—Cc x

(o sinal — em frente do max é uma lembranga que temos que negar a
solugéo depois.)

13



1. Introdugao

e uma restricao > para uma restricao <
aix > by &= —aix < —b;
e uma igualdade para desigualdades

aix =b; & aix < bi Aaix > by

Conversoes
e uma desigualdade para uma igualdade

aix <b < aix + xn41 =bi Axny1 >0
aix > b &= aix —Xn41 =bi Axnqp1 >0

usando uma nova varidvel de folga ou excesso xn11 (inglés: slack and
surplus variables).

e uma variavel x; sem restricoes para duas positivas
xi >0Ax; >0
substituindo x; por x;” —x; .

Essas transformacoes permitem descrever cada problema linear em uma forma
padrao.

Forma padrao

maximiza ctx

sujeito a Ax <D

x>0
As restrigoes x > 0 se chamam triviais.
Exemplo 1.4
Dado o problema
minimiza 3x7 — 5% + x3

sujeito a X7 —%x2—x%x3 >0
5x1 4+ 3x2 + x3 < 200
2x1 + 8%y + 2x3 < 500
x1,%x2 >0

14



1.3. Notas historicas

vamos substituir minimiza por maximiza, converter a primeira desigualdade
de > para < e introduzir x3 = x3+ — x5 com duas varidveis positivas x3+ ex3
para obter a forma padrao

maximiza —3x1 +5% — X3 +x3
sujeito a —x1+x2+%x3 —x3 <0
5%1 4 3x2 +x3 — x5 <200
2x71 4+ 8x2 + 2x3 — 2x5 < 500
X1,%2,X3,%3 >0

Em notagao matricial temos

_53 0 111 -
c=| > |o=(200)ia={5 31 -
500 2 8 2 2

Definicao 1.1

Para um programa linear P em forma normal, um vetor x € R™ é uma solu¢do
vidvel, caso Ax < b e x > 0. P é vidvel caso existe alguma solugao viavel,
caso contrario P é invidvel. Uma vetor x* € R™ é uma solugdo dtima caso
ctx* = max{ctx | Ax < b,x > 0}.

Definicao 1.2
Uma programa linear em forma normal é ilimitado caso existe um v € R tal
que para todo w > v existe uma solugao vidvel x tal que ctx > w.

1.3. Notas histéricas

Histdria da programacao linear

15



1. Introdugao

e Jean Baptiste Joseph Fourier (1826): Método de re-
solver um sistema de desigualdades (eliminacdo de
Fourier-Motzkin) Williams [1980].

e Leonid Kantorovich (1939): Programagao linear.

e George Bernard Dantzig (1948): Método Simplex.

e John von Neumann: Dualidade. Jean Baptiste
Joseph Fourier
e Leonid Khachiyan (1979): Método de ellipsoides. (*¥1768, +1830)

e Narendra Karmarkar (1984): Métodos de pontos inte-
riores.

Pesquisa operacional, otimizacao e “programacao”

e “The discipline of applying advanced analytical
methods to help make better decisions” (INFORMS)

A nocao foi criada no segunda guerra mundial, para
métodos cientificos de andlise e predi¢ao de problemas
logisticos.

e Hoje se aplica para técnicas que ajudam decisoes de
execugao e coordenagao de operacoes em organizagoes.

e Os problemas da pesquisa operacional s@o problemas George Bernard
I = Dantzig (*1914
imiz . ,
de ot acao +2005)
e “Programacao” # “Programacao”

— Nao se refere a computacdo: a nocao significa
“planejamento” ou “agendamento”.

Técnicas da pesquisa operacional

e Em geral: Técnicas algoritmicas conhecidas como

— Modelagem matemadtica (equagoes, igualdades, desigualdades, mo-
delos probabilisticos,...)

— Algoritmos gulosos, randoémicos, ...; programacao dinamica, linear,
Convexo, ...

— Heuristicas e algoritmos de aproximagao.

16
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1.3. Notas histéricas
e Algumas dessas técnicas se aplicam para muitos problemas e por isso

sSao mais comuns:

— Exemplo: Programagao linear.
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2. O método Simplex

Graficamente, é dificil resolver sistemas com mais de trés varidveis. Por-
tanto é necessario achar métodos que permitam resolver sistemas grandes.
Um método importante se chama Simplex. Nés vamos estudar esse método
primeiramente através da aplicacao a um exemplo.

2.1. Um exemplo

Comegamos com o seguinte sistema em forma padrao:

Exemplo: Simplex

maximiza z =6x%x71 + 8%2 + 5x3 + Ix4
sujeito a 2x1 +x2 +x3+3x4 <5
X1+ 3% +x3+2x4 <3
X1,X2,X3,%X4 >0

Introduzimos varidveis de folga e reescrevemos as equacoes:

Exemplo: Com variaveis de folga

maximiza z=6x7 + 8% +5%x3 + x4 (2.1)
sujeito a Wi =5—2x7 —x2 —x3 —3x4
Wy =3—x%x1 —3%x2 — X3 — 2x4 (2.3)

X1,X2,X3,X4, W1, W2 >0

Observagao 2.1

Nesse exemplo é facil obter uma solugao viavel, escolhendo x1 = x2 = x3 =
x4 = 0. Podemos verificar que w; = 5 e wy = 3 e todas as restrigoes sao
respeitadas. O valor da funcao objetivo seria 0. Uma outra solucao vidvel é
x1=1,%x2 =x3 =x4 =0, w; =3, w, =2 com valor z = 6. O

19



2. O método Simplex

Com 6 variaveis e duas equacoes independentes o espago de solugoes do sistema
de equagoes lineares dado pelas restrigoes tem 6 — 2 = 4 graus de liberdade.
Uma solugao vidvel com esse nimero de varidveis nulas (igual a 0) se chama
uma solucdo bdsica vidvel. Logo nossa primeira solucao acima é uma solugao
bésica viavel.

A idéia do método Simplex é percorrer solucoes bésicas vidveis, aumentando
em cada passo o valor z da fungao objetivo.

Logo nosso préximo objetivo é aumentar o valor da funcao objetivo z. Para
esse fim, podemos aumentar o valor das varidveis xq, X2, X3 ou X4, pois o
coeficiente delas é positivo. Escolhemos x4, porque essa variavel tem o maior
coeficiente. Nao podemos aumentar x4 arbitrariamente: Para respeitar as
restricoes wi, w2 > 0 temos os limites

Limites

w1 =5—-3x4 >0 x4 <5/3
Wy =3—2x4 >0 &= x4 <3/2

ou seja x4 < 3/2. Aumentando x4 o maximo possivel, obtemos x4 = 3/2 e
wy = 0. Os valores das demais varidveis nao mudam. Essa solucao respeita
novamente todas as restrigoes, e portanto é wvidvel. Ainda, como trocamos
uma varigvel nula (x4) com uma outra nao-nula (w;) temos uma nova solugao
bésica viavel

Solucao basica viavel

X1 =%x2=%x3=0;% =3/2w1 =1/2;w, =0

com valor da fungao objetivo z = 13.5.

O que facilitou esse primeiro passo foi a forma especial do sistema de equagoes.
Escolhemos quatro varidveis independentes (x7, X2, X3 e x4) e duas varidveis
dependentes (wq e wy). Essas varidveis sdo chamadas ndo-bdsicas e bdsicas,
respectivamente. Na nossa solugao béasica vidvel todas varidveis nao-basicas
sao nulas. Logo, pode-se aumentar uma variavel nao-bésica cujo coeficiente
na fungéo objetivo seja positivo (para aumentar o valor da func¢do objetivo).
Inicialmente tem-se as seguintes variaveis béasicas e nao-bésicas

B={wi,wal, N ={x1,%2,x3,x4}.
Depois de aumentar x4 (e consequentemente zerar wy) podemos escolher

B={wi,xa}; N ={x1,x2,x3,W2}.

20



2.1. Um exemplo

A varidvel x4 se chama varidvel entrante, porque ela entra no conjunto de
varidveis basicas B. Analogamente w, se chama varidvel sainte.

Para continuar, podemos reescrever o sistema atual com essas novas variaveis
basicas e ndo-bdsicas. A segunda restrigdo 2.3 é facil de reescrever

W2:3*X1 *3X2*X3*2X4<:>2X4:3*X1 *3X2*X37W2
& X4 :3/2—1/2)(1 —3/2X2—1/2X3—]/2W2

Além disso, temos que reescrever a primeira restrigdo 2.2, porque a variavel
béasica wi depende de x4 que agora é basica também. Nosso objetivo é escrever
todas varidveis bédsicas em termos de varidveis nao-basicas. Para esse fim,
podemos usar combinacgoes lineares da linhas, que eliminam as varidaveis nao-
bésicas. Em nosso exemplo, a combinacao (2.2)—3/2(2.3) elimina x4 e resulta
em

wi —3/2wy =1/2—1/2x1 +7/2x2 + 1/2x3

e colocando a varidvel nao-béasica w; no lado direto obtemos
wy =1/2—1/2x1 +7/2x2 +1/2x3 + 3/2w>.

Temos que aplicar uma operacao semelhante a funcao objetivo que ainda de-
pende da varigvel bésica x4. Escolhemos (2.1)—9/2(2.3) para obter

2=27/2+3/2%1 —11/2x, +1/2x3 — 9/2w,.

Novo sistema

maximiza 2=27/243/2x1 —11/2x3 + 1/2x3 — 9/2w;
sujeito a w1 =1/2—1/2%1 +7/2x2 +1/2x3 + 3/2w;
x4 =3/2—1/2x1 —3/2x2 — 1/2x3 — 1/2w>
X1,X2,X3,X4, W1, W2 > 0

que obtemos apds uma operacao de trocar as variaveis x4 e w. Essa operacao
se chama um pive. Observe que no novo sistema é facil recuperar toda
informacao atual: zerando as varidveis nao-béasicas obtemos diretamente a
solugdo x1 = x2 =x3 =wy =0, wy = 1/2 e x4 = 3/2 com fungao objetivo
z=27/2.

Antes de continuar “pivotando” introduzimos uma forma mais simples de
escrever o sistema

21



2. O método Simplex
Dicionario
z =27/2 43/2x7 —11/2x2 +1/2x3 —9/2w;

wy =1/2  =1/2x¢ +7/2x,  +1/2x3  +3/2w,
xa =3/2 —1/2%1 =3/2x2 —1/2x3 —1/2w;

que se chama diciondrio (inglés: dictionary).

Excurso 2.1

Alguns autores usam um tableau em vez de um diciondrio. Para n varidveis e
m restri¢goes, um tableau consiste em n+ 1 colunas e m+ 1 linhas. Igual a um
diciondrio, a primeira linha corresponde com a fungao objetivo, e as restantes
linhas com as restrigoes. Diferente do dicionario a primeira coluna contém os
constantes, e as restantes colunas correspondem com as varidveis, incluindo
as basicas. Nosso exemplo acima em forma de tableau é

base

X1 X2 X3 X4 w1 W
27/2[3/2 =112 12 0 0 92
1/211/2 =7/2 —-1/2 0 1 =3/2
3/2 1 1/2 3/2 1/2 1 0 1/2

¢

No préximo passo podemos aumentar somente X1 ou X3 porque somente elas
tém coeficientes positivos. Aumentado x; temos que respeitar x; < 1 (da
primeira restrigdo) e x; < 3 (da segunda). Logo a primeira restri¢do é mais
forte, x1 é a varidvel entrante, wy a variavel sainte, e depois do pivo obtemos

Segundo passo

z =15 —=3w; +5x, +2x3
x1 =1 —2w1  +7x2  +Xx3 +3w;
x4 =1 +wq —5x2 —x3 —2w>

No préximo pivo x, entra. A primeira restricdo néo fornece limite para xo,
porque o coeficiente de x, é positivol Mas a segunda x, < 1/5 e x4 sai da
base. O resultado do pivo é

22



2.1. Um exemplo

Terceiro passo

z =16 —2wq —X4 +Xx3 —2w>
x1 =12/5 —-3/5w; —7/5x4 —2/5x3 +1/5w»
x2 =1/5 +1/5w7 —1/5x4 —1/5x3 —2/5w;

O préximo pivo: x3 entra, x; sai:

Quarto passo

z =17 —w; —2x4 —-bx; —4w,
X] =2 —w; —xa +2x2  +wsy
x3 =1 +wr —Xxa —5x; —2w,

Agora, todos coeficientes da funcao objetivo sdo negativos. Isso significa, que
nao podemos mais aumentar nenhuma variavel nao-bédsica. Como esse sistema
é equivalente ao sistema original, qualquer solucao tem que ter um valor menor
ouigual a 17, pois todas as varidveis sao positivas. Logo chegamos no resultado
final: a solugao

W) =%x4 =%x2=wy =0;x1 =2;x3 =1

com valor objetivo 17, é étimal

Concluimos esse exemplo com mais uma observagdo. O numero de solugdes
bésicas viaveis é limitado. Em nosso exemplo, se escolhemos um subconjunto
de quatro varidveis nulas, as duas equacoes determinam as variaveis restantes.
Logo temos no maximo (g) = 15 solugoes béasicas vidveis. Em geral, com
m equagoes e n variaveis, uma solucao bésica vidvel possui n — m varidveis
nulas e o nimero delas é limitado por (nfm). Portanto, se aumentamos em
cada pivo o valor da fungao objetivo, o método termina em no maximo (nfm)
passos.

Exemplo 2.1 (Solugao do problema do Ildo)
Exemplo da solugao do problema do Ildo na pagina 9.

z= 0/1 +1/5¢c +1/2s

wi; = 150 —c —3/2s
wy; = 6000 —50c —50s
W3 = 80 —C

wy = 60 —S

Pivo s—wy
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2. O método Simplex

z= 30 +1/5¢ —1/2wy

w; = 60 —c  +3/2wy
wy = 3000 —50c  +50wy
w3 = 80 —C

S = 60 —Wy

Pivo c—w,

z= 42 —1/5w; —1/5wy
c= 60 —Wj +3/2wy

wy = +50w, —25wy
w3z = 20 +wWq —3/2wy
s= 60 —Wy

O resultado é um lucro total de R$ 42, com os seguintes valores de varidveis:
c=60,s =60, w; =0, w, =0, w3 =20ewy =0. A interpretagao das
variaveis de folga é como segue.

e wi: Numero de ovos sobrando: 0.
e wy: Quantidade de agucar sobrando: 0 g.
e wj: Croissants nao produzidos (abaixo da demanda): 20.

e wy: Strudels nao produzidos: 0.

2.2. O método resumido

Considerando n varidveis e m restrigoes:

Sistema inicial

maximiza z= Z CjX;
1<j<n
sujeito a Z aijx; < by 1<i<m
1<j<n
xj >0 T<j<n
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2.2. O método resumido

Preparacao
Introduzimos variaveis de folga

E aijXj + Xn4i = by 1<i<m
1<j<n
e escrevemos as variaveis de folga como dependentes das varidveis restantes

Xn+i = bi — E aijXj 1<i<m
1<j<n

Solucdo basica viavel inicial
Se todos b; > 0 (o caso contréario vamos tratar na préxima se¢do), temos uma
solugao bésica inicial

indices das variaveis

Depois do primeiro passo, os conjuntos de varidveis basicas e nao-basicas mu-
dam. Seja B o conjunto dos indices das varidveis bésicas (ndo-nulas) e N o
conjunto das varidveis nulas. No comego temos

B=(n+1n+2...,n+m} N={12..n}

A forma geral do sistema muda para

z=z+ Z éij

jeN
XiZBi*Zainj ieB
jeN

As barras em cima dos coeficientes enfatizam que eles mudam ao longo da
aplicagao do método.

Escolher variavel entrante
Em cada passo do método Simplex, escolhemos uma varidvel nao-bésica xy,
com k € N para aumentar o valor objetivo z. Isso somente é possivel para os
indices j tal que ¢; > 0, i.e.

{j€N|6j>O}.
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2. O método Simplex

Escolhemos um k desse conjunto, e xy é a variavel entrante. Uma heuristica
simples é a regra do maior coeficiente, que escolhe

k = argmax{C; | ¢; > 0,j € N}

Aumentar a variavel entrante
Seja xx a varidvel entrante. Se aumentamos xj para um valor positivo, as
varidveis basicas tém novos valores

Xi = Bi — Qik Xk ieB.

Temos que respeitar x; > 0 para 1 < i < n. Cada equacao com aj, > 0
fornece uma cota superior para xy:

xk < bi/dix.

Logo podemos aumentar xx ao maximo um valor

. i
o:= min — > 0.
i€B Qg

ajx >0
Podemos escolher a variavel sainte entre os indices

{ie Blbi/aw = ol

2.3. Sistemas ilimitados
Como pivotar?

e Considere o sistema

z =24 —x1 +2x
x3 =2 —X1  +%x2
X4 =05 +x1 +4x2

e Qual a préxima solucao bésica viavel?

e A duas equagbes nao restringem o aumento de x;: existem solugdes com
valor ilimitado.
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2.4. Encontrar uma solugao inicial

2.4. Encontrar uma solucao inicial

Solucao basica inicial

e Nosso problema inicial é

maximiza z= Z CjX;
1<j<n
sujeito a Z aijX; S bi 1 S i S m
1<5<n
xi >0 1<i<m

e com dicionario inicial
z=2z+ Z CjX;
j
XiZBi_Zdi]’Xj ieB
JEN
Solucao basica inicial
e A solucéo bésica inicial desse dicionério é
x=(0---0by---by)t
e O que acontece se existe um b; < 07

e A solugado basica nao é mais vidvell Sabe-se disso porque pelo menos
uma varidvel bésica tera valor negativo.

Sistema auxiliar

e Um método para resolver o problema: resolver outro programa linear

— cuja solugao fornece uma solugao bésica vidavel do programa linear
original e

— que tem uma solugao bésica viavel simples, tal que podemos aplicar
o método Simplex.

maximiza zZ = —Xo
sujeito a Z aixj —xp < by 0<i<m
1<j<n
xi >0 1<i<n
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2. O método Simplex

Resolver o sistema auxiliar

e E facil achar uma solucao vidvel do sistema auxiliar:
— Escolhe x; =0, para todos 1 <1< n.
— Escolhe x¢ suficientemente grande: xp > maxj<i<m —bi.
e Isso corresponde com um primeiro pivé com varidvel entrante xo apds
introduzir as variaveis de folga

— Podemos comegar com a solugao nao-viavel xo =x1 = ... =X, =

0.

— Depois aumentamos xo tal que a variavel de folga mais negativa
vire positiva.

— Xo e varidvel sainte xy tal que k = argmax; «; <, —bi.

Exemplo: Problema original

maximiza z=—2X1 —X2
sujeito a —x1 +x2 < -1
—x1 —2x2 < -2
x2 <1
x1,%x2 >0

Exemplo: Problema auxiliar

maximiza Z = —Xo
sujeito a —X1+x2 —%x0 < —1
—xX7] —2X) — X0 < =2
X2 —%Xo <1

X0,%1,%2 > 0
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2.4. Encontrar uma solugao inicial

Exemplo: Dicionario inicial do problema auxiliar

z = —Xo0
w =—-1 +x7 —x2 +Xo0
wy =-—2 4+x7 +2x2 +xo
W3 = 1 —X2 +Xo

e Observe que a solugao bésica nao é viavel.

e Para achar uma solucdo bdsica vidvel: fazemos um primeiro pivé com
variavel entrante xo e varidvel sainte w.

Exemplo: Dicionario inicial viavel do sistema auxiliar

z =—2 +x1 +2x2 —wW»
w; =1 —3x2 4w
Xo =2 —Xx7 —2x2 +w;
wy =3 —Xx71 —3x2 +tw>
Primeiro pivo
z =—4/3 +x1 —2/3wi1 —1/3w,
x, =1/3 —1/3w; +1/3w;
xo =4/3 —x1  +2/3w;  +1/3w,
w3 = —X1  +Wj
Segundo pivd
z =0 —X0
x, =1/3 —1/3w;  +1/3w;
x1 =4/3 —xo +2/3w; +1/3w,

w3 :2/3 +xo +1/3W1 7]/3W2
Solugao étimal
Solucao do sistema auxiliar

e O que vale a solucao do sistema auxiliar?

e Obviamente, se o sistema original tem solucao, o sistema auxiliar também
tem uma solugao com xp = 0.
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2. O método Simplex

e Logo, apods aplicar o método Simplex ao sistema auxiliar, temos os casos
— xo > 0: O sistema original nao tem solucao.

— xp = 0: O sistema original tem solucao. Podemos descartar xq e
continuar resolvendo o sistema original com a solucao bésica viavel
obtida.

e A solucao do sistema auxiliar se chama fase I, a solugao do sistema
original fase II.

Sistema original

Reescreve-se a funcgao objetivo original substituindo as varidveis bésicas do
sistema original pelas equagoes correspondentes do sistema auxiliar, de forma
que a fungao objetivo z nao contenha varidveis basicas. No exemplo, a funcao
objetivo é rescrita como:

z=—2X] — X2 = =3 —wW7 —Ww>.

z =-3 —-w —W»

x2 =1/3 —=1/3w; +1/3w,
x1 =4/3 +2/3w; +1/3w,
wsy =2/3 +1/3w; —1/3w,

Nesse exemplo, o diciondrio original ja é 6timol!

2.5. Solucoes degeneradas

Solucdo degenerada
e Um diciondrio é degenerado se existe pelo menos um by = 0.
e Qual o problema?

e Pode acontecer um pivo que nao aumenta a variavel entrante, e portanto
nao aumenta o valor da fung@o objetivo.

Exemplo 1

e Nem sempre é um problema.
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2.5. Solugoes degeneradas

z =5 +x3 —X4
X, =5 —2x3 —3x4
X1 =7 —4X4
w3 = +X4

e X, é a varidvel sainte e o valor da funcao objetivo aumenta.

Exemplo 2

z =3 —1/2x1 +2x2 —3/2w;
X3 =1 71/2)(1 71/2\/\)1
wy = X1 —x2 +wy

e Se a varidvel sainte é determinada pela equac¢ado com b; = 0, temos um

pivd degenerado.

e Nesse caso, a varidvel entrante nao aumenta: temos a mesma solucao

depois do pivo.

Exemplo 2: Primeiro pivo
e Pivo: xo-w>
z =3 +3/2x7 2wy +1/2w;

X3 =1 —1/2)(1 —1/2W1
Xy = X1 —wWy +wh

e O valor da fun¢ao objetivo ndo aumentou!

Exemplo 2: Segundo pivo

e Pivo: x1—x3

z =6 —3X3 —2W2 —W1
X1 =2 —2X3 —W1
X2 = 2 72X3 —W)

e A segunda iteragao aumentou o valor da funcao objetivo!
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2. O método Simplex

Ciclos
e O pior caso seria, se entramos em ciclos.
e E possivel? Depende da regra de selecao de varidveis entrantes e saintes.

e Nossas regras
— Escolha a variavel entrante com o maior coeficiente.
— Escolha a variavel sainte mais restrita.
— Em caso de empate, escolha a varidavel com o menor indice.

e Ciclos sao possiveis: O seguinte sistema possui um ciclo de 6 pivos:
X1-W1, X2-W2, X3-X1, X4-X2, W1—X3, W2—Xgq.

z = 10%x4 —57x> —9%3 —24x4
wy = —1/2x7  +11/2xy  +5/2x3 —9x4
wy = —1/2x7  +3/2x, +1/2x3 —x4
w3 = 1 —X1

Solucées do problema

e Como resolver o problema?

e Trés solugoes
— Ignorar o problema.
— Método lexicogréfico.

— Regra de Bland.
Método lexicografico

e Idéia: O fato que existe um by = 0 é por acaso.

e Se introduzimos uma pequena perturbacao € < 1
— o problema desaparece

— a solugdo serd (praticamente) a mesma.
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2.5. Solugoes degeneradas

Método lexicografico
e Ainda é possivel que duas perturbagoes numéricas se cancelem.
e Para evitar isso: Trabalha-se simbolicamente.
e Introduzimos perturbagoes simbdlicas
<k Ken
em cada equagao.

e Caracteristica: Todo €; é numa escala diferente dos outros tal que eles
nao se cancelam.

Exemplo
Exemplo 2.2
Sistema original degenerado e sistema perturbado
z =4 +2x7  —X2 z =4 +2x1  —X2
w1 = 1/2 —X2 w1 = 1/2 +€q —X2
wy, = —2x1  +4x; wy = €2 —2x1  +4x;
w3 = X1 —3x%2 w3 = €3 +X1 —3x%7
O

Comparar perturbacoes

e A linha com o menor limite l; = b;j/aijx (com xi entrante) define a
variavel sainte.

e A comparacao de limites respeita a ordem lexicografica das perturbagoes,
i.e. com

li=eier 4+ + eikex

L =fher +- +fuoey

temos i < lj se k <k’ ou k =k’ e eix < fix.
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2. O método Simplex

Caracteristicas
e Depois de chegar no valor étimo, podemos retirar as perturbagoes €;.

Teorema 2.1
O método Simplex sempre termina escolhendo as variaveis saintes usando
a regra lexicogréfica.

Prova. E suficiente mostrar que o sistema nunca serd degenerado. Neste caso
o valor da funcao objetivo sempre cresce, e o método Simplex nao entra em
ciclo. A matriz de perturbagoes

€1
€2

€m

inicialmente tem posto m. As operagoes do método Simplex sdo operagoes
lineares que nao mudam o posto do matriz. Logo, em cada passo do método
Simplex temos uma matriz de perturbacoes

€11€q €12€2 -+ €1m€Em
€21€q €22€2 -+ €2m€Em
emi1€1 €m2€2 ' emm€m

que ainda tem posto m. Portanto, em cada linha i existe ao menos um ey; # 0
e assim uma perturbacao diferente de zero e o sistema nao é degenerado. M

Exemplo 2.3
Solugao do exemplo 2.2.

Pivo x1-wy. z =4 +e€2 —W) +3x%2
wr =1/2 +e —X2
X1 1/2¢; —1/2wy  +2x;
w3 1/2e; +e3 —1/2wy —x2

Pivd x;-w3. z =4 +5/2¢; +3e3 —5/2w; —3ws3
wy =1/2 +4e1 —1/2e2 —e3 +1/2wy +ws
X7 = 3/2¢; +2e3 —3/2w, —2wsg
X2 = 1/2¢5 +€3 —1/2w,  —ws3
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2.5. Solugoes degeneradas
Regra de Bland

e Outra solugao do problema: A regra de Bland.

e Escolhe como variavel entrante e sainte sempre a varidvel com o menor
indice (caso tiver mais que um candidato).

Teorema 2.2
O método Simplex sempre termina se as varidveis entrantes e saintes sao
escolhidas através da regra de Bland.

Prova. Prova por contradicdo: Suponha que exista uma sequéncia de di-
ciondrios que entra num ciclo Dy, Dy,...,Dx_1 usando a regra do Bland.
Nesse ciclo algumas varidveis, chamadas inconstantes, entram e saem no-
vamente da base, outras permanecem sempre como bdasicas, ou como nao-
bésicas. Seja x; a varidvel inconstante com o maior indice. Sem perda de
generalidade, seja x¢ a varidvel sainte do primeiro diciondrio Dy. Seja x5 a
varidvel entrante no Dy. Observe que xs também é inconstante e portanto
s < t. Seja D* o diciondrio em que x{ entra na base. Temos a situacao

Xg entra Xt entra
Do, Dy, Dy, D*, Dy_1
Xt sal
com os sistemas correspondentes
Do . D*:
Z:ZO+ZCij z=z*+Zc§‘xj
JEN JEN™
_ . .. R : L * _ * A > *
X{ = by Zal,x) ieB Xi = bj Z aigx; i1e€eB
JEN jeEN™=

Como temos um ciclo, todas varidveis inconstantes tem valor 0 e o valor da
funcao objetivo é constante. Logo zp = z* e para D* temos

z=2z"+ Z cixjy =1zo + Z CiXy. (2.4)

jEN™ jEN™
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2. O método Simplex

Se aumentamos em Dy o valor do xs para y, qual é o novo valor da fungao
objetivo? Os valores das varidveis sdo

Xs =Y
x; =0 je N\ {s} (2.5)
xi:bi—aisy ieB

e temos no sistema D7 o novo valor
z=2z0+cCsy (2.6)

Nos vamos substituir os valores das varidveis (2.5) com {ndices em N'* N B na
equagdo (2.4). Para facilitar a substituigao, vamos definir ¢j :=0Oparaj ¢ N*,
que permite substituir todas varidveis x;,j € B e assim obtemos

z=z0+ Y cxj=z0+ciy+ ) ci(bj—ajy). (2.7)
jell,n+m] jeB

Equagbes (2.6) e (2.7) representam o mesmo valor, portanto

* * *
CS—CS+ZC]~C1]'5 y:chbj.

jeB jeB

Essa igualdade deve ser correta para qualquer aumento y, portanto os dois
lados sao 0, e em particular

cs—Ci+ E cjajs =0.
jeB

Como x¢ entra em Dy temos cg > 0. Em D* a varidvel x; entra, entao c} <0
senao pela regra de Bland s < t entraria. Logo,

Zc}kajs <0

jeB
e deve existir um r € B tal que cfa,s < 0. Isso tem uma série de consequéncias:
1. ¢ #0.
2. r € N'*, porque somente as varidveis nulas satisfazem ¢j #0em D™
3. x; é inconstante, porque ela é basica em Dy, mas nao-basica em D*.

4. r < t, porque t foi a varidvel inconstante com o maior indice.
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2.6. Complexidade do método Simplex

5. T < t, porque ciais > 0: x¢ entra em D*, logo ci > 0, e x¢ sai em Dy,
logo ays > 0.

6. ¢ <0, sendo T e nao t entraria em D* seguindo a regra de Bland.
7. ars > 0.

8. b, = 0, porque x, é inconstante, mas todos varidveis inconstantes tem
valor 0 no ciclo, e x, é basica em Dy.

Os ultimos dois itens mostram que x, foi candidato ao sair em Dy com indice
T < t, uma contradicao a regra de Bland. |

Teorema fundamental

Teorema 2.3 (Teorema fundamental da programacao linear)
Para qualquer programa linear temos:

1. Se nao existe solucdo 6tima, o problema é invidvel ou ilimitado.
2. Se existe uma solucao vidvel, existe uma solugao bésica viavel.

3. Se existe uma solucao 6tima, existe uma solugao 6tima bésica.

2.6. Complexidade do método Simplex
Complexidade pessimista
e Com a regra de Bland o método Simplex sempre termina.
e Com n + m varidveis (de decisao e de folga) existem
(n + m) _ (n + m)
n m
solugoes basicas possiveis.

e Logo: No pior caso o método Simplex termina depois desse nimero de
pivos.
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2. O método Simplex

Complexidade pessimista

e Para n 4+ m constante, obtemos o maior valor de
n+m
m
e Os limites nesse caso sdo (exercicio 5.17)

LZZn < (ZTL) < 2211.
2n n

paran =m.

e Logo, o nimero de passos no pior caso pode ser exponencial no tamanho
da entrada.

Complexidade pessimista

e Se o ntimero de passos é exponencial depende da regra de pivo aplicada.

e FExemplo: Com a regra de maior coeficiente, existem sistemas que pre-
cisam um ndmero exponencial de pivés (Klee-Minty).

e Pergunta em aberto: Isso é o caso para qualquer regra de pivo?

Observagao 2.2

[ ] mostram que o método Simplex possui complexi-
dade suavizada polinomial, i.e., o0 maximo do valor esperado do tempo de
execugao sobre pequenos perturbagoes (Gaussianas) é polinomial no tamanho
da instancia e no inverso da perturbacao. O
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3. Dualidade

3.1. Introducao
Visao global

e Dualidade: Cada programa linear (chamada de primal) possui um pro-
grama linear correspondente, chamado de dual.

e Programas lineares duais tem varias aplicacoes como

— Estimar a qualidade de solugoes e convergéncia.

Certificar a otimalidade de um programa linear.

Analisar a sensibilidade e re-otimizar de sistemas.

— Resolver programas lineares mais simples ou eficiente com o Método
Simplex dual.

e O programa dual frequentemente possui uma interpretacdo relevante.

Introducao
e Considere o programa linear

maximiza z=4x7 +x2 +3x3 (3.1)
sujeito a X1 +4%x <1
3x1 —x2+x3 <3
X1,%2,%x3 > 0
e Cada solugao viavel fornece um limite inferior para o valor maximo.
X1 =X2 :X3:O:>Z:0
Xx1=3,x2=x3=0=>2z=4
e Qual a qualidade da solugao atual?

e Nao sabemos, sem limite superior.
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3. Dualidade

Limites superiores

e Como obter um limite superior?
Observe: z =4x7 +x2 +3x3 < 10x7 +x2 +3x3 < 10

e Podemos construir uma combinacao linear das desigualdades, tal que o
coeficiente de cada x; ultrapasse o coeficiente da fungao objetivo.

e Nosso exemplo:
(x1 +4x2)+303% —x2+x3)<14+3-3=10
& 10x1 +x2 +3x3 < 10
e Como obter um limite superior para a fungao objetivo?

e Qual seria o menor limite superior que esse método fornece?

Exemplo 3.1
Para o sistema (3.1) obtemos:

minimiza Yy +3y2
sujeito a y; +3y2 >4

dyr —y2 > 1
Y2 >3
Y1,Y2,y3 >0
O
O menor limite superior
e Sejam yi,...,Yn os coeficientes de cada linha. Observagao: Eles devem

ser > 0 para manter a direcao das desigualdades.

e Entao queremos
minimiza Z biyi
i
sujeito a Z aijYi > Cj 1<ji<n
i
yi >0

e Isto é o problema dual com varidveis duais yi.
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3.1. Introducao

Dualidade: Caracteristicas

e Em notagao matricial

maximiza c'x minimiza b'y
sujeitoa Ax <D sujeito a y'A >ct
x>0 y>0

e O primeiro se chama primal e o segundo dual.
e Eles usam os mesmos pardmetros c;, aij, b;.

O dual do dual

e Observagao: O dual do dual é o primal.

e Forma normal do dual:

—maximiza —b'y —maximiza —b'y
sujeitoa —y'A<-—c' = sujeito a (—A')y < —c
y=0 y=0

e Dual do dual

—minimiza —c'x maximiza ctx
sujeito a x'(—A') > —b' = sujeitoa Ax <D
x>0 x>0
Exemplo 3.2

Qual o dual do problema de transporte (1.12)? Com varidveis duais m;, 1T <
1 < m para as das restri¢oes de estoque (1.13) e varidveis duais pj, 1 <j <m
para as restrigdes de demanda (1.14) obtemos

maximiza Z aim; + Z bjpj (3.2)
1<i<n <j<m
sujeito a T + Pj > Cyj Vi<i<n,1<j<m
zmi, pj > 0 Vi<i<n,1<j<m
O
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3. Dualidade

3.2. Interpretacao do dual

Exemplo: Dieta dual

e Problema da dieta: Minimiza custos de uma dieta x que alcance dados
VDR minimos.

minimiza c'x
sujeito a Ax >r
x>0

e Unidades das variaveis e parametros
— x: Quantidade do alimento [g]
— ¢: R$/alimento [R$/g]
— ay;: Nutriente/Alimento [g/g]

— 1: Quantidade de nutriente [g].

Exemplo: Dieta dual
e O problema dual é

maximiza y'r
sujeito a ytA<ct
y=>0

Qual a unidade de y? Preco por nutriente [R$/g].

e Imagine uma empresa, que produz cédpsulas que substituem os nutrien-
tes.

Para vender no mercado, a empresa tem que garantir que uma dieta
baseado em capsulas custa menos que os alimentos correspondentes:

Z Yiady < Cj
i

e Além disso, ela define precos por nutriente que maximizam o custo de
uma dieta adequada, para maximizar o préprio lucro.

maximiza y'r
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Interpretacao do dual

e Outra interpretac@o: o valor de uma varidvel dual y; é o lucro marginal
de adicionar mais uma unidade bj.

Teorema 3.1
Se um sistema possui ao menos uma solugao bésica viavel nao-degenerada,
existe um e tal que, se [t;| < e para 1 <j <m,

maximiza ctx
sujeito a Ax<b+t
x>0

tem uma solugao 6tima com valor
S * xt
z=2z +y t

(com z* o valor 6timo do primal, é y* a solugdo 6tima do dual).

3.3. Caracteristicas

Teorema da dualidade fraca

Teorema 3.2 (Dualidade fraca)
Se X1,...,Xn € uma solugao viavel do sistema primal, e yi,...,Yym uma
solugao viavel do sistema dual, entao

Z cixi < Z bjy;.

1<i<n 1<5<m
Prova.
c'x
<(y*A)x =y'(Ax) pela restrigao dual (3.3)
<y'b pela restrigdo primal (3.4)
|
Situacao

Gap de otimalidade

Solugdes primais vidveis Solucdes duais vidveis

e Em aberto: Qual o tamanho desse intervalo em geral?
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3. Dualidade

Teorema da dualidade forte

Teorema 3.3

Sex],..., x5 é uma solucdo 6tima do sistema primal, existe uma solugao 6tima
Yi,..., Yy, do sistema dual, e
* *
E CiX{ = E bjy;.
1<i<n 1<j<m

Prova. Seja x* uma solugdo 6tima do sistema primal, que obtemos pelo
método Simplex. No inicio introduzimos varidveis de folga

Xnyp=bj— ) gixy 1<j<m
1<i<n

e a fungao objetivo final é

z=2z"+ Z CiXi

1<i<n+m

(supondo que ¢; = 0 para varidveis bdsicas). Temos que construir uma solugao
otima dual y*. Pela optimalidade, na fungao objetivo acima, todos ¢; devem
ser nao-positivos. Afirmamos que y; = —Cn3j > 0 para j € [1,m] é uma
solugao dual 6tima. Como z* o valor étimo do problema inicial, temos z* =
2 <i<n CiX{-

Reescrevendo a funcao objetivo temos

z
= Z CiXi sistema inicial
1<i<n

=z + Z CiXi sistema final
1<i<n+m

=z"+ Z Cixi + Z Cn+jXn+j separando indices
1<i<n 1<j<m

=z"+ Z CiXxi — § U;‘ bj — E ajiXq subst. solugdo e var. folga
1<i<n 1<j<m 1<i<n

o * * — *

I Z Y; b | + Z Ci+ § Y5 Qi | Xi agrupando

1<5<m 1<i<n 1<5<m
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3.3. Caracteristicas

Essa derivacao esta valida para x; qualquer, porque sao duas expressoes para
a mesma funcao objetivo, portanto

* * = * .
z = E yjbj e ci=¢+ E Yj Qi 1<i<n.
1<G<m 1<<m

Com isso sabemos que o primal e dual possuem o mesmo valor
* * *
E y]' bj =z = E CiXy

1<j<m 1<i<n
e como ¢; < 0 sabemos que a solucao y* satisfaz a restrigoes duais

< ) yep  1<i<n
1<i<m

Consequéncias: Solucdes primais e duais

e Com o teorema da dualidade forte, temos quatro possibilidades

Sistema primal Sistema dual Intervalo

Otima Otima Sem
Ilimitado Invidvel Sem
Invidvel Ilimitado Sem
Invidvel Invidvel Infinito

Exemplo 3.3

Pelo teorema da dualidade forte, nao podemos concluir, que existe um caso
que tanto o sistema primal quanto o sistema dual sdo invidveis. O seguinte
exemplo mostra que isso pode realmente acontecer. O sistema primal

maximiza X1
sujeito a +x7—%x2 <0
—x1 +x2 < —1
possui sistema dual correspondente
minimiza —Y2
sujeito a +yr—u2>1
—Y1+y22>0

Os dois sistemas sao invidveis. O
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3. Dualidade

Consequéncias

e Dado solucgoes primais e duais x*,y* tal que c¢*x* = bty* podemos con-
cluir que ambas solugoes s@o 6timas (x*,y* é um certificado da optima-
lidade)®.

e A prova mostra: com o valor 6timo do sistema primal, sabemos também
o valor étima do sistema dual.

e Além disso: Podemos trocar livremente entre o sistema primal e dual.
= Método Simplex dual.

Outra consequéncia do Teorema da dualidade forte é o

Teorema 3.4 (Teorema das folgas complementares)
Se x*,y* sao solugdes 6timas do sistema primal e dual, respectivamente, temos

y*'(b—Ax) =0 (3.5)
(V" A—cx* =0 (3.6)

Prova. Pelo Teorema da dualidade forte as duas desigualdades (3.3) e (3.4)
da prova do Teorema da dualidade fraca se tornam igualdades para solugoes
Otimas:
CtX* _ y*tAx* — y*tb

Reagrupando termos, o teorema segue. |
As igualdades 3.5 e 3.6 sdo ainda vélidas em cada componente, porque tanto
as solucoes 6timas x*,y* quanto as folgas primas e duais b — Ax e y**A — ¢t
sempre sao positivos.

xi>0= Z Yjaji = Cq (37)
1<5<m

Z YjQji > ¢ = X = 0 (3.8)

1<5<m
Y > 0= bj = Z ajiXi (39)

1<i<n
by > ) ajixi =y =0 (3.10)
1<i<n

1Uma consequéncia é que o problema de decisdo correspondente, determinar se existe uma
solu¢do maior que um dado valor, possui um certificado que pode ser verificado em tempo
polinomial tanto para uma resposta positiva quanto uma resposta negativa. Portanto,
ja antes da descoberta de um algoritmo polinomial para esse problema, foi claro que ele
pertence a NP N co-NP.
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3.4. Método Simplex dual

Como consequéncia, podemos ver que, por exemplo, caso uma igualdade pri-
mal ndo possui folga, a varidvel dual correspondente é positiva, e, contraria-
mente, caso uma igualdade primal possui folga, a varidvel dual correspondente
é zero. As mesmas relagoes se aplicam para as desigualdades no sistema dual.
Apés a introdugdo da forma matricial no segdo 3.6 vamos analisar a inter-
pretagao das varidveis duais com mais detalha no secao 3.7. O teorema das
folgas complementares pode ser usado ainda para obter a solugdo dual dado
a solucao primal:

Exemplo 3.4
A solugao étima de
maximiza z=06x7 + 8x2 +5x3 + x4
sujeito a 2x1 +x2+x3+3x4 <5
X1 +3x2 +x3+2x4 <3
X1,%X2,X3,%X4 >0

é x1 =2 ex3 =1 com valor 17. Pela equagao (3.7) sabemos que

2y1 +y2=6
Y1 +y2 =5
Portanto a solucao dual é y; =1 ey =4. %

3.4. Método Simplex dual

Método Simplex dual

e Considere

maximiza — X1 — X2
sujeito a —2x1—x2 <4
—2x7 +4x; < -8
—x1 +3x2 <7
X1,x2 >0

e Qual o dual?

minimiza 4y —8yz — 7y3
sujeito a —2y1 —2y2 —ys3 > -1
—y1 +4y2 +3y2 > 1
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3. Dualidade

Com dicionarios

z = —X1 —X2
W1 =4 +2xq +Xx2
wy; =-—8 +2x1 —4xy
w3 =—7  4x1 —3x2
—w = —4y; +8yx +7ys3
zi =1 -2y -2y —y3
zz =1 —yr +4y2 +3ys

e Observagao: O primal nao é vidvel, mas o dual é!

e Correspondéncia das varidveis:

Variaveis
principais de folga
Primal x1,...,xn  Wi,..., W
Dual z1,...,zZn, VY1,.---,Ym
de folga principais

e Primeiro pivo: y; entra, zq sai. No primal: w; sai, x; entra.

Primeiro pivo

z =—4 —-0.5w, —3x2
w =12 +wy  +5%x2
X1 =4 405w +2x;
wy =-3 405w, —X2
—w =4 —12y; —4z4 +3y3
Y2 =05 —U1 —0.521 —0.5y3
) =3 by —2z; +yY3

e Segundo pivo: ys entra, Yy, sai. No primal: ws sai, wy entra.

Segundo pivo

z =—7 —wz —4x;
W1 =18 +2w3z +7x»
X1 =7 +w3z +3x2
W) =6 42wz +2x»
—w =7 —18y; —7z1 —6yz
ys =1 —2y1 —z1 —2y2
V) =4 —71)1 —321 —Zyz

e Sistema dual é 6timo, e portanto o sistema primal também.
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3.4. Método Simplex dual

Método Simplex dual

e Observagao: Nao é necessario escrever o sistema dual. Ele é sempre o
negativo transposto do sistema primal.

Z=i+Z(_Zij

jeN
Xi:bi—g aijX; ieB
jeEN
e Mas é necessario modificar as regras para resolver o sistema dual.

Método Simplex dual: Viabilidade e otimalidade

e Pré-condicao: O dicionério é dualmente vidvel, i.e. os coeficientes das
varidaveis nao-basicas na fungao objetivo tem quer ser nao-positivos.

¢; <0 para jeN.
e Otimalidade: Todos varidveis basicas primais positivas
YieB:bi >0
Método Simplex dual: Pivo

e Caso existe uma varidvel primal negativa: A solucao dual néo é étima.

e Regra do maior coeficiente: A varidvel bésica primal com menor valor
(que é negativo) sai da base primal.

i = argmin by
ieB

o A varidvel primal nula com fracdo di;/c; maior entra.

. .G ) ay
) = argmin — = argmax —— = argmax —
JeN Q4 JeN Cj jeN G

a-”v<0 “ii<0
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3. Dualidade

Método Simplex dual

Resumo:

e Dualmente vidvel: ¢; < 0 paraj € N.

e Otimalidade: Vi € B:b; > 0.

e Varidvel sainte: 1 = argmin;; by

i i ai;
e Varidvel entrante: j = argmax;c &

Exemplo

maximiza

sujeito a

Exemplo: Dicionario inicial

z =
W1 =1
Wy = -2
W3 =1

—2X1
+X1
+x1

—X2
_XZ

+2X2

—X2

z=—2X1 —X2
—x1+x2 <1
—x7 —2xy < -2
x; <1

X1,%x2 20

e O dicionario primal nao é viavel, mais o dual é.

Exemplo: Primeiro pivo

z =—1
W1 =2
X2 =1
1% =

—3/2)(1
+3/2x1
—1/2%;
+1 /2X1

—1/2w;
—1/2w;
+]/2W2
7]/2W2

Exemplo: Terceiro privot

z =-3 —Wjq
x1 =4/3 +2/3w;
x, =1/3 —=1/3w,
W3 = 2/3 +]/3W]
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3.5. Dualidade em forma nao-padrao

3.5. Dualidade em forma nao-padrao

Dualidade em forma padrao

maximiza c'x minimiza b'y
sujeitoa Ax <D sujeito a y'A > ¢t
x>0 y>0

e O que acontece se o sistema nao é em forma padrao?

Igualdades

e Caso de igualdades: Substituindo desigualdades..

maximiza c'x maximiza c'x
sujeitoa Ax=Db sujeitoa Ax <D
x>0 Ax>Db
x>0

e ... padronizar novamente, e formar o dual:

maximiza cx minimiza byt —bly~
sujeitoa Ax<b sujeitoa yT'A—y ‘A>c
—Ax<-b y >0y >0
x>0 vy =kt
Yy =,y
Igualdades

e Equivalente, usando varidveis ndo-restritas y =y —y~

minimiza bly
sujeito a ytA>c
y'so
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3. Dualidade

e Resumo
Primal Dual
Igualdade Varidvel dual livre
Desigualdade (<) Varidvel dual nao-negativa
Desigualdade (>) Variavel dual néo-positiva
Variavel primal livre Igualdade

Varidvel primal nao-negativa Desigualdade (>)
Varidvel primal ndo-positiva  Desigualdade (<)

3.6. Os métodos em forma matricial

A forma matricial permite uma descrigdo mais compacto do método Simplex.
A seguir vamos resumir os métodos Simplex primal e dual na forma matricial.
Mais importante, nesse forma é possivel expressar o dicionario correspondente
com qualquer base em termos das dados inicias (A, ¢, b). Na proxima segao va-
mos usar essa forma para analisar a sensibilidade de uma solugao ao pequenas
perturbagoes dos dados (i.e. os coeficientes A,b, e c).

Sistema padrao

e O sistema padrao é

maximiza ctx

sujeito a Ax <D

x>0
e Com varidveis de folga Xn41,...,Xn+m € A,c,x novo (definigdo segue
abaixo)
maximiza ctx
sujeito a Ax=D
x>0
Matrizes
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3.6. Os métodos em forma matricial

annr a2z - a1
ai a2 -+ azn 1
A= . . . ;
Aml Qm2 ... Qmn 1
C1 X1
C2 X2
by )
b>
b= ic=]cn |;x= Xn
: 0 Xn+1
bm )
0

Xn+m

Separacdo das variaveis

e Em cada iteragao as variaveis estao separados em bésicas e nao-basicas.
e Conjuntos de indices correspondentes: BUN = [1,n + m].

e A componente i de Ax pode ser separado como

E aijXy = E aijXj + E aijX;j

1<j<n+m jeB JEN

Separacdo das variaveis

e Para obter a mesma separacao na forma matricial: Reordenamos as
colunas e separamos as matrizes e vetores:

A=(BN);x= (XB> iCc = <CB>
XN CN

e com B € R™*™ N € R™*n ¢ e R,
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3. Dualidade

Forma matricial das equacoes

e Agora, Ax = b é equivalente com

(BN) <XB> —Bxg +Nxn =b
XN

e Numa solucao bésica, a matriz B tem posto m tal que as colunas de B
formam uma base do R™. Logo B tem inversa e

xg =B (b—Nxn) =B 'b— B "Nxn
Forma matricial da funcao objetivo

e A fungdo objetivo é

XB t
) = ChxB + CNXN
N

e e usando xg = B~ 'b — B~ "Nxpn obtemos

z=cH(B b — B "Nxn) + chxn
=ckB 7o — (c5BTIN — ¢k )xn
=cEB7 b — ((B™"N)tcp —en)txn

Dicionario em forma matricial

e Logo, o dicionario em forma matricial é

z=cEB b — ((B""N)tcp —cn)txn

XB = B 'b— BilNXN

e Compare com a forma em componentes:

z=2+) X z=2Z+C'xy
jeN

Xi:Bi_Zdinj ieB XBZB—AXN
jeN
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3.6. Os métodos em forma matricial

Dicionario em forma matricial

e Portanto, vamos identificar
=cB'b; ¢=—((B"'N)*cg —cn)
=B 'b; A =(ay)=B"'N

Z

o

e para obter o diciondrio

Sistema dual
e As varidveis primais sao

X= (X1 . Xn Xngl oo Xngm)®

original folga
e Para manter indices correspondentes, escolhemos variaveis duais da forma

y=(Ur---YnYnsi.. 'yTLer)t
folga dual

e O diciondrio do dual correspondente entao é

Primal Dual
Z:Z-l-(_:tXN *W:*Z*Btyg
xg = b — Axn yN:—E—FAtyB

Primal e dual
e A solucgéo bédsica do sistema primal é
Xy =0, x53=b=B""b
e A solugao dual correspondente é
yp=0; yn=—c= (B '"N)'eg—cn
e Com isso temos os diciondrios
z=2z— (y\)'xn —w=—2z—(x3)'ys

xp = x5 — (B7'N)xn yn =y + (B7'N)typ
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3. Dualidade
Método Simplex em forma matricial

e Comecamos com uma particao B UN = [1,n +m].

e Em cada iteracao selecionamos uma varidvel sainte i € B e entrante

jeN.
e Fazemos o pivo x; com X;.

e Depois a nova base é B\ {i} U {j}.

Método Simplex em forma matricial

S1: Verifique solucdo 6tima Se yy; > 0 a solucdo atual é 6tima. Pare.

S2: Escolhe variavel entrante Escolhe j € A com y; < 0. xj € a varidvel
entrante.

S3: Determine passo basico Aumentando x; uma unidade temos novas varidveis
x £l % _ t
nao-bésicas xn = x§ + Axn com Axy = (0---010---0)* =e5 e ej 0
vetor nulo com somente 1 na posicao correspondente com indice j. Como

XB = XE — BilNXN

a diminuido correspondente das varidveis bésicas é Axg = B~ Ne;.

Método Simplex em forma matricial

S4: Determine aumento maximo O aumento méaximo de x; é limitado por
XB > O, i.e.

xp = xp — tAxg > 0 & x} > tAxp.

Com t,x§ > 0 temos
x ¥
t<t"= min ——

ieB  Axy
Ax;>0

$5: Escolhe variavel sainte Escolhe um i € B com xj = t*Ax;.
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3.7. Analise de sensibilidade

Método Simplex em forma matricial

S5: Determine passo dual A varidvel entrante dual é y;. Aumentando uma
unidade, as varigveis yn diminuem Ayn = —(B7"N)te;.

S$6: Determina aumento maximo Com varidvel sainte yj, sabemos que y;
pode aumentar ao maximo

Y;
s =—.
Ay;
S7: Atualiza solucao
X =t yi=s
Xp = Xxp — tAxp YN = yN — SAyn

B =B\ {i}U{j}

3.7. Analise de sensibilidade
Motivacao

e Na solugao da programas lineares tratamos os parametros como ser fi-
xados.

e Qual o efeito de uma perturbacao
ci=c+Ac; b:=b+Ab; A:=A+4AA?

(Imagina erros de medida, pequenas flutuagoes, etc.)

Analise de sensibilidade

e Apés a solugdo de um sistema linear, temos o dicionario 6timo

z=2"— (yT\])tXN

XB = Xp — B~ 'Nxn
e com
x5 =B b
yh = (B7'N)'eg —en

2" =c5B b
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3. Dualidade

Modificar c

e Mudarmos ¢ para €, mantendo a base B.
* ~ M * *
e X} nao muda, mas temos que reavaliar yy, e z*.
e Depois, x}; ainda é uma solucao basica vidvel do sistema primal.

e Logo, podemos continuar aplicando o método Simplex primal.

Modificar b

e Da mesma forma, modificamos b para b (mantendo a base).
* e 7 * *
e Yy nao muda, mas temos que reavaliar xg e z*.
¢ Depois, y}, ainda é uma solugao basica viavel do sistema dual.

e Logo, podemos continuar aplicando o método Simplex dual.

Vantagem dessa abordagem

e Nos dois casos, esperamos que a solugao inicial ja é perto da solugao
otima.

e Experiéncia pratica confirma isso.

e O que acontece se queremos modificar tanto b quanto ¢ ou ainda A?

A solugao atual nao necessariamente é viavel no sistema primal ou dual.

e Mas: Mesmo assim, a convergéncia na pratica é mais rapido.

Estimar intervalos

e Pergunta estendida: Qual o intervalo de t € R tal que o sistema com
¢ = ¢ + tAc permanece 6timo?

e Parat=1: y§ = (B"'N)tcg—cn aumenta Ayy := (B~'N)*Acg —Acn.
e Em geral: Aumento tAyy.

e Condigao para manter a viabilidade dual:

yn T tAyn >0
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3.7. Analise de sensibilidade

e Para t > 0 temos

t < min ———
e BY
e Para t < 0 temos
y?‘
M~y St
ij>0 yj

Estimar intervalos

e Agora seja b =b + tAb.

e Parat=1: x; = B~ b aumenta Axp := B~'Ab.

Em geral: Aumento tAb.

Condigao para manter a viabilidade primal:

xp + tAxg > 0

Para t > 0 temos

t< min —
—  ieB Ax;

Axy <0

Para t < 0 temos

Axi=>0

Exemplo 3.5
Considere o problema da empresa de ago (vista na aula pratica, veja também
execicio 5.11).

maximiza 25p + 30c
sujeito a 7p + 10c < 56000
p < 6000
¢ <4000

Qual o intervalo em que o valor do lucro das placas de 25R$ pode variar sem
alterar a solugao 6tima?
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3. Dualidade

Exemplo: Empresa de aco

e Sistema 6timo

2
*7/ 10w,

e Base B = {p,ws,c}, varidveis nao-bdsicas N' = {wy,w;}. (Observe:
Usamos conjuntos de varidveis, ao invés de conjuntos de indices).

Exemplo: Variaveis

e Vetores ¢ e Ac. Observe que reordenamos dos dados do sistema inicial
de forma correspondente com a ordem das variaveis do sistema final.

25

0 25 0
c=130];c5=10 ;cN—<O>;

0 30

0

1

0 1 0
Ac=|0]|;Acg=1(0 ;ACN=<O>

0 0

0

Exemplo: Aumentos

e Aumento das varidveis duais

Ayn = (B7'N)*Acg — Acn = (B7'N)*Acg

® COoIm
0 1
B 'N=[-1/10 7/10
1/10 —=7/10
e temos

()
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3.7. Analise de sensibilidade

Exemplo: Limites

e Limites em geral

* *
m%{ _7 <t< m%\rfl 2
Ao AY; avto AY;
e Logo
—4 <t<o0.
e Uma variacdo do preco entre 25 + [—4, co] = [21, 0o] preserve a otimali-

dade da solugao atual.
e O novo valor da funcao objetivo é

6000
z==03B b= (25+t 0 30) | 2600 | = 192000 + 6000t
1400

e os valores das varidveis p e ¢ permanecem 0s mesmos.

Exemplo 3.6
Qual o intervalo em que o lucro das placas (R$ 25) e dos canos (R$ 30) podem
variar sem que a solugao otima seja alterada?

Exemplo: Variacao do lucro dos placas e canos

e Neste caso, os vetores ¢, cg, CN € Acn permanecem os mesmos do
exemplo anterior. Enquanto que:

Ac Acg = (0]

I
c o —o =

e Neste caso, o valor de Ayy é

]
. (0 1710 1/10 (110
Aun = (B 1NMCB_(] 7/10 —7/10) : —<3/1o>*
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3. Dualidade

e Logo —40/3<t< 0

e Ou seja, uma variagao do lucro das placas entre R$ 11.67 e oo, e do lucro
dos canos entre R$ 16.67 e oo, ndo altera a solugdo 6tima do sistema.

%
Exemplo: Modificacao

e Qual o intervalo em que o lucro dos canos (R$ 30) podem variar sem
que a solugao otima seja alterada?

e Neste caso, os vetores c, cg, cNn € Acn permanecem os mesmos do
exemplo anterior. Enquanto que:

Ac = sAcg = (0] ;

o O == OO

e Neste caso, o valor de Ayy é:

(110,
Acg = <7/1o> ’

o Logo —30 <t < 40/7

e Ou seja, uma variacao do lucro dos canos entre R$ 0 e R$ 35.71, nao
altera a solugao étima do sistema.

Exemplo 3.7
O que acontece se mudarmos o lucro das placas para R$ 207

Exemplo: Placas com lucro R$ 20

e Novos vetores
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e Aumento

3.7. Analise de sensibilidade

0% = (B7'N)'%eg —én = (B7'N)'ep

(0 —=1/10
—\1 7/10
Novas variaveis
e Com
B 'b

e Novo valor da fungao objetivo

1ﬂ0) ? _(3)
7/10) | 9 o

6000
= | 2600
1400

6000
2 —e5B b= (20 0 30) 2600 | = 162000

Exemplo: Novo dicionario

1400

e Novo sistema primal vidvel, mas nao 6timo:

z = 162000 —3w, 4w
p =6000 —wsy
wsz = 2600 +1/10wy —7/10wo
c = 1400 —1/10w;  +7/10w;
e Depois um pivo: Sistema dtimo.
z =1657142/7 —=20/7w; —10/7w3
p =22855/7 —1/7wy +10/7w3
wy =37142/7 +1/7w1 —10/7w;
c = 4000 —W3

Exemplo 3.8

O que acontece se mudarmos o lucro das placas de R$ 25 para R$ 35 e dos

canos de R$ 30 para R$ 10?
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3. Dualidade

Exemplo: Placas e canos com lucro R$ 35 e R$ 10

e Novos vetores

35

0 (35) 0
¢c=110 ,/C\B: 0 ;/C\N_<O)

0 10

0

e Aumento
35
i _ (0 —1/10 1/10 — (]
0% = ((B7"N)tcg —cn) = (1 7/10 _7/10) (10()) - (28)

Novas variaveis e novo dicionario

e Novo valor da fungao objetivo

6000
2 =¢iB 'b=2kx = (35 0 10) [ 2600 | = 224000
1400
e O novo sistema primal vidvel é

z = 224000 —Tw, —28w;

P = 6000 —Wy

ws = 2600 +1/10w;  —7/10w>

c = 1400 —1/10w;  +7/10w;,

e O sistema é 6timo.
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4. Tépicos

4.1. Centro de Chebyshev

Seja B(c,r) = {c +u | |lu]]| < r} a esfera com centro ¢ e raio r. Para um
poligono convexo a;x < by, para 1 <1i < n, queremos achar o centro e o raio
da maior esfera, que cabe dentro do poligono, i.e. resolver

maximiza T
sujeito a sup aip < b vVl <i<n.
PEB(c,T)
Temos
sup aip =caj + sup aju=ca; + [lailr
PEB(c,T) [lull<r

porque o ultimo supremo é atingido por u = ra;/|lai||. Assim obtemos uma
formulacao linear

maximiza T
sujeito a aic + 1llai] < by V1l <i<n.
Exemplo 4.1

O poligono da Fig. 4.1 possui a descri¢ao
2x1 +4x, < 24
Ix1 —xp <12
—x1 <0
—x2<0

Portanto o programa linear para achar a o centro e o raio do maior circulo é
maximiza T
sujeito a 2c1 +4c +Vv20r <24

4eq —cr +V17r < 12
—c1+r<0
—c2+1r<0
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4. Tépicos

Figura 4.1.: Exemplo do centro de Chebyshev

4.2. Funcao objetivo convexa e linear por segmentos

Uma funcao f é convezxa se f(tx+ (1—t)y) < tf(x) + (1 —1t)f(y) para qualquer
xeye0<t<t Fungoes convexas sao importantes na otimizagao, porque
eles possuem no maximo um minimo no interior do dominio deles, e portanto

o minimo de uma funcdo convexa pode ser obtido com métodos locais.

Seja fi(x),1 € [n] uma colegao de fungoes lineares. O maximo f(x) = max;cn) fi(x)
é uma fungao convexa linear por segmentos. O problema de otimizacao

minimiza max fi(x)

ien]
é equivalente com o programa linear
minimiza X0 (4.1)
sujeito a fi(x) < xo Vi e [n]. (4.2)

Portanto podemos minimizar uma fungao convexa linear por segmentos usando
programacao linear. De forma similar, f é concava se f(tx + (1 — t)y) >
tf(x) + (1 — t)f(y). (Observe que uma fungdo convexa e concavo é afina.) O
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4.2. Funcgao objetivo convexa e linear por segmentos

sistema

maximiza X0

sujeito a fi(x) > xo Vi € [n].

maximiza uma funcao concava linear por segmentos.
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5. Exercicios

(Solugoes a partir da pagina 189.)

Exercicio 5.1
Na definicao da programacao linear permitimos restri¢oes lineares da forma

ai1X1 +ai2x2 + - + GinXn D by
com ;€ {<, =, >}. Por que ndo permitimos ;€ {<, >} também? Discute.

Exercicio 5.2
Procura a tabela nutricional de algum restaurante e resolve o problema da
dieta (exemplo 1.2).

Exercicio 5.3

Um investidor pode vender agoes de suas duas empresas na bolsa de valores,
mas estd sujeito a um limite de 10.000 operagoes didrias (vendas por dia).
Na cotacao atual, as acoes da empresa A valorizaram-se 10% e agora cada
uma vale R$ 22. J4 a empresa B teve valorizacao de 2% e cada agao vale R$
51. Sabendo-se que o investidor possui 6.000 a¢oes da Empresa A e 7.000 da
empresa B, maximize seu lucro na BOVESPA e diga qual o lucro obtido.

Exercicio 5.4

Dona Maria adora ver seus netinhos Marcos, Renato e Vinicius bem alimen-
tados. Sempre na hora de cozinhar ela leva em conta o quanto eles gostam de
cada prato para fazé-los comer o maximo possivel. Marcos gosta da lasanha
e comeria 3 pratos dela apés um prato de sopa; Renato prefere lanches, e
comeria 5 hamburgueres, ignorando a sopa; Vinicius gosta muita da massa a
bolonhesa, e comeria 2 pratos apds tomar dois pratos de sopa. Para fazer a
sopa, sao necessarios entre outros ingredientes, 70 gramas de queijo por prato
e 30 gramas de carne. Para cada prato de lasanha, 200 gramas de queijo, e
100 gramas de carne. Para cada hambirguer sao necessarios 100 gramas de
carne, e 100 gramas de queijo. Para cada prato de massa a bolonhesa sao
necessarios 100 gramas de carne e 30 gramas de queijo (ralado para por sobre
a massa). Seus netos vieram visitd-la de surpresa, e tendo ela somente 800
gramas de carne e 1000 gramas de queijo em casa, como ela poderia fazé-los
comer o maior nimero de pratos, garantindo que cada um deles comera pelo
menos dois pratos, e usando somente os ingredientes que ela possui?
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5. Exercicios

Exercicio 5.5

A empresa “Luz para o mundo” produz dois tipos de lampadas, cada um com
partes metélicos e partes eléctricos. A gerencia quer saber com quantas uni-
dades produzidas por tipo o lucro é maximizado. A producao de uma unidade
de produto 1, precisa uma unidade de partes metalicos e duas unidades de
componentes eléctricos. A produgao de uma unidade de produto 2, precisa
trés unidades de partes metalicos e duas unidades de componentes eléctricos.
A empresa tem um estoque de 200 unidades de partes metdlicos e 300 unida-
des de componentes eléctricos. Cada unidade de produto um tem um lucro
de R$ 1 e cada unidade de produto 2, até um limite de 60 unidades, um lucro
de R$ 2. (Cada unidade acima de 60 no caso do produto 2 ndo rende nada.)

Exercicio 5.6

A empresa “Janela jéia” com trés empregados produz dois tipos de janelas:
com molduras de madeira e com molduras de aluminio. Eles tém um lucro de
60 R$ para toda janela de madeira e 30R$ para toda janela de aluminio. Joao
produz as molduras de madeira. Ele consegue produzir até seis molduras por
dia. Sylvana é responsavel pelas molduras de aluminio, e ela consegue produzir
até quatro por dia. Ricardo corta o vidro e é capaz de produzir até 48 m? por
dia. Uma janela de madeira precisa 6m? de vidro, e uma de aluminio §m?.
A empresa quer maximizar o seu lucro.

Exercicio 5.7
Um importador de Whisky tem as seguintes restrigoes de importagao

e no méaximo 2000 garrafas de Johnny Ballantine por 70 R$ cada uma,
e no méximo 2500 garrafas de Old Gargantua por 50 R$ cada uma,
e no maximo 1200 garrafas de Misty Deluze por 40 R$ cada uma.

Dos Whiskies importados ele produz trés misturas A, B, C, que ele vende por
68 R$, 57 RS e 45 RS, respectivamente. As misturas sao

e A: no minimo 60% Johnny Ballantine, no maximo 20% Misty Deluxe,
e B: no minimo 15% Johnny Ballantine, no méximo 60% Misty Deluxe,
e C: no méximo 50% Misty Deluxe.

Quais seriam as misturas otimas, e quantas garrafas de cada mistura devem
ser produzidas para maximizar o lucro?

Observagoes:
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e Use como varidveis o nimero de garrafas xm i da marca m usadas na
mistura i.

e Desconsidere a integralidade das garrafas.

Exercicio 5.8

A empresa de televisao “Boa vista” precisa decidir quantas TVs de 29”e 31”¢la
vai produzir. Uma analise do mercado descobriu que podem ser vendidas no
maximo 40 TVs de 29”e 10 de 31”por més. O trabalho méximo disponivel
por més é 500h. A producao de um TV de 29”precisa 20h de trabalho, e um
TV de 317precisa 10h. Cada TV de 29”rende um lucro de R$ 120 e cada de
317um lucro de R$ 80.

Qual a producao étima média de cada TV por més?

Exercicio 5.9 (da Costa)

Um certo 6leo é refinado a partir da mistura de outros éleos, vegetais ou nao
vegetais. Temos 6leos vegetais V1 e V2 e dleos nao vegetais NV1 NV2 NV3.
Por restrigoes da fabrica, um méaximo de 200 ton. de dleos vegetais podem ser
refinados por més, e um maximo de 250 ton. de 6leos ndo vegetais. A acidez
do dleo desejado deve estar entre 3 e 6 (dada uma unidade de medida) e a
acidez depende linearmente das quantidades/acidez dos dleos brutos usados.
O prego de venda de uma tonelada do 6leo é R$ 150. Calcule a mistura que
maximiza o lucro, dado que:

Oleo V1 V2 NV1I NV2 NV3
Custo/ton 110 120 130 110 115
Acidez 8.8 6.1 2.0 4.2 5.0

Exercicio 5.10 (Campélo Neto)

Um estudante, na véspera de seus exames finais, dispoe de 100 horas de estudo
para dedicar as disciplinas A, B e C. Cada um destes exames é formado por
100 questoes, e o estudante espera acertar, alternativamente, uma questao
em A, duas em B ou trés em C, por cada hora de estudo. Suas notas nas
provas anteriores foram 6, 7 e 10, respectivamente, e sua aprovacao depende
de atingir uma média minima de 5 pontos em cada disciplina. O aluno deseja
distribuir seu tempo de forma a ser aprovado com a maior soma total de notas.

Exercicio 5.11 ( [ D

Formule como problema de otimizacao linear e resolve graficamente.

Uma empresa de ago produz placas ou canos de ferro. As taxas de producao
sa0 200t/h para placas e 140t/h para canos. O lucro desses produtos e 25$/t
para placas e 30$/t para canos. Considerando a demanda atual, os limites de
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5. Exercicios

producao sao 6000t de placas e 4000t de canos. Na semana atual sao 40h de
tempo de producao disponivel. Quantas toneladas de placas e canos devem
ser produzidas para maximizar o lucro?

Exercicio 5.12 ( [ D

Formule como problema de otimizagao linear.

Uma pequena empresa aérea oferece um voo de Pelotas, com escala em Porto
Alegre para Torres. Logo tem trés tipos de clientes que voam Pelotas—Porto
Alegre, Pelotas—Torres e Porto Alegre-Torres. A linha também oferece trés
tipos de bilhetes:

e Tipo A: bilhete regular.
e Tipo B: sem cancelamento.
e Tipo C: sem cancelamento, pagamento trés semanas antes de viajar.

Os precos (em R$) dos bilhetes s@o os seguintes
Pelotas—Porto Alegre Porto Alegre-Torres Pelotas—Torres

A 600 320 720
B 440 260 560
C 200 160 280

Baseado em experiéncia com esse voo, o marketing tem a seguinte predicao
de passageiros:
Pelotas—Porto Alegre Porto Alegre—Torres Pelotas—Torres

A 4 8 3
B 8 13 10
C 22 20 18

O objetivo da empresa e determinar o nimero étimo de bilhetes para vender
de cada tipo, respeitando um limite de 30 passageiros em cada voo e o limite
dos passageiros previstos em cada categoria, que maximiza o lucro.

Exercicio 5.13
Resolva graficamente.

max 4x7 +x2

sa —x]+x2<2
x1 + 8%, < 36
x2 <4
x1 <4.25
x1,%x2 >0
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1. Qual a solugao étima?

2. Qual o valor da solucao 6tima?

Exercicio 5.14
Escreve em forma normal.

minimiza z =—5x7 —5xy — 5x3
sujeito a —6xX7 — 2% —9%x3 <0
— 9% —3%x2 +3x3 =3
x5 >0
maximiza z=—6X1 — 2x3 — 6X3 + 4x4 + 4x5
sujeito a —3x7 —8xy) —6x3 —7x4 —5x5 =3

5x1 —7x2 +7x3 +7x4 —6x5 < 6
Tx7 — 9%2 +5x3 + 7x4 — 10x5 = —6
Xj 20

maximiza z=7%x1 +4x2 + 8x3 + 7x4 — x5
sujeito a —4x7 — Ixy — 7x3 — 8x4 + 6x5 = —2
X1 +4%x2 + 2x3 + 2x4 — 7x5 > —7
—8x1 +2x2 +8x3 — 6x4 — /x5 = —7
x; >0

minimiza z = —6x1 + 5%2 + 8x3 + 7x4 — 8x5

sujeito a —5%1 — 2% +x3 — 94 —7x5 =9
7x1 + 7x2 +5%x3 —3x4 + x5 = —8
—5x7 —3x2 —5x3 + x4 +8x5 <0
Xj > 0
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5. Exercicios

Exercicio 5.15 ( [ D
Resolve com o método Simplex.
maximiza z=3x1 +5%x2
sujeito a x; <4
x2 <6
3x7 +2x, <18
x; >0

Exercicio 5.16
Resolve o exercicio 5.11 usando o método Simplex.

Exercicio 5.17
Prova que

2n
2" < (zn) < 2%,
2n —\n/ —

Exercicio 5.18
Resolve o sistema degenerado

z = 10x%4 —57%2 —9%3 —24x4
wy = —1/2x7  +11/2xy +5/2x3 —9%x4
wy = —1/2x7  +3/2x2  +1/2x3 —x4
w3 = 1 —X1

usando o método lexicografico e o regra de Bland.

Exercicio 5.19
Dado o problema de otimizacao

maximiza X1 + %2
sujeito a axy +bxy <1
x1,%2 >0

determine condigoes suficientes e necessarias ao respeita de a e b tal que
1. existe a0 menos uma solugao 6tima,
2. existe exatamente uma solugao étima,

3. existe nenhuma solucao étima,
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4. o sistema ¢ ilimitado.

ou demonstre que o caso nao é possivel.

Exercicio 5.20
Sabe-se que o dicionério 6timo do problema

maximiza z=23%x1 +%2
sujeito a —2x7 +3x, <5
x1 —x%x2 <1
X1,X2 Z 0
é
z¢ =31 —1lwy; —4w,
X2 = 721/\)2 —W1
X1 =8 —3Wz —W1

1. Se a fungado objetivo passar a z = x7 + 2x2, a solugdo continua 6tima?
No caso de resposta negativa, determine a nova solugao 6tima.

2. Se a funcao objetivo passar a z = x; —x3, a solugao continua étima? No
caso de resposta negativa, determine a nova solugao 6tima.

3. Se a funcao objetivo passar a z = 2x7 —2x;, a solugéo continua 6tima?No
caso de resposta negativa, determine a nova solugao 6tima.

4. Formular o dual e obter a solucao dual étima.

Exercicio 5.21

Prove ou mostre um contra-exemplo.

O problema max{ctx | Ax < b} possui uma solucio vidvel sse min{xg | Ax —
exo < b} possui uma solucao viavel com xo = 0. Observacdo: e é um vetor
com todos compentes igual 1 da mesma dimensao que b.

Exercicio 5.22
Prove ou mostre um contra-exemplo.

Se x é a varidvel sainte em um pivo, x nao pode ser varidvel entrante no pivo
seguinte.
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5. Exercicios

Exercicio 5.23
Qual o sistema dual de

minimiza 7x1 + x2 + 5x3

sujeito a X7 —x2 +3x3 > 10
5%1 +2x3 —x3 > 6
X1,%X2,%3 > 0.

Exercicio 5.24
Considere o problema

COBERTURA POR CONJUNTOS PONDERADOS (WEIGHTED SET COVER)

Instancia Um universo U, a uma familia S de subconjuntos do uni-
verso,i.e.,para todo S € §, S C U, e custos ¢(S) para cada conjunto.

Solugcao Uma cobertura por conjuntos,i.e.,uma selecdo de conjuntos 7 C
S tal que para cada elemento e € U existe ao menos um S € 7 com
ecS.

Objetivo Minimizar o custo total dos conjuntos selecionados.

Uma formulagao inteira do problema é

minimiza Z c(S)xs

Ses

sujeito a Z xs > 1 eclu
S:e€S
xs €{0,1} Ses.

O problema com restricoes de integralidade é NP-completo. Substituindo as
restrigoes de integralidade xs € {0, 1} por restrigoes trivias xs > 0 obtemos
um programa linear. Qual o seu dual?

76



Exercicio 5.25
O sistema

maximiza

sujeito a

possui dicionario 6timo

z= 25 —3/2xs5 —1/2x¢ —3/2x3
x4 = 10 +X5
X1 = 15 —1/2X5 —1/2X6 —]/2)(3
x2= 5 +1/2x5 —1/2x¢ +3/2x3

1. Em qual intervalo o coeficiente ¢; = 2 pode variar?
2. Em qual intervalo o coeficiente b, = 10 pode variar?

3. Modifique o lado direito de (60 10 20)* para (70 20 10):
mantém-se 6timo? Caso contrario, determina a nova solucao 6tima.

2x1 —x2 +x3
3x7 +x2 +x3 <60,
x1 —x2 +2x3 < 10,
X1 +x2 —x3 <20,
X1,%2,%3 > 0.

+2X6 —X3

o sistema

4. Modifique a fungao objetivo para 3x1 — 2x; 4+ 3x3: o sistema mantém-se

6timo? Caso contrério, determina a nova solugao 6tima.
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Parte II.

Programacao inteira
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6. Introducao

6.1. Definicoes
Problema da dieta

e Problema da dieta

minimiza c'x
sujeito a Ax>r
x>0

e com limites quantidade de comida x.

e Uma solugdo (laboratério): 5 McDuplos, 3 magas, 2 casquinhas mista
para R$ 24.31

e Mentira! Solucéo correta: 5.05 McDuplos, 3.21 macas, 2.29 casquinhas
mistas.

e Observagao: Correto somente em média sobre varias refeicoes.

Como resolver?
e Unica refeigdo? Como resolver?
e Restringe a varidveis x ao Z.
e Sera que metodo Simplex ainda funciona?

e Nao. Pior: O problema torna-se NP-completo.

Problemas de otimizacao
e Forma geral

optimiza f(x)

sujeito a x eV
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6. Introducao

Programacao inteira
e Programacao linear (PL)

maximiza c'x
sujeito a Ax <D
xeR™" >0

e Programacio inteira pura (PI)

maximiza h'y
sujeito a Gy<b
yezZ- >0

Programacao inteira
e Programcao (inteira) mista (PIM)

maximiza  c¢'x+h'y
sujeito a Ax+ Gy <b
x€ER">0,yeZ* >0

e Programacao linear e inteira pura sao casos particulares da programagao
mista.

e Outro caso particular: 0-1-PIM e 0-1-PI.

x € B™
Exemplo
maximiza X1 + X2
sujeito a 2x1 + 7x3 <49
5x1 4+ 3x2 <50
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Exemplo
15

14
13 +
12 -
11 +
10

X3

I
3 45 6 7 8 9 101112131415

X1

5X1+3X,< 50 L

6.1. Definigoes

e Sorte: A solugdo 6tima é inteiral x; =7, x2 =5, V =12.

e Observagao: Se a solugdo étima é inteira, um problema de PI(M) pode
ser resolvido com o método Simplex.

Exemplo

Exemplo

maximiza

sujeito a

X1 + X2
1.8x7 +7x3 <49
5%1 4+ 2.8x, <50
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6. Introducao

15
14 u
13 u
12 u
11 u

=
o
l

X

5%, +2.8%,< 50

O P N W b O O N 0 ©
T

I I f I I
01 2 3 45 6 7 8 91011121314 15
X1

e Solucédo 6tima agora: x7 =~ 7.10, x, = 5.17, V =12.28.

e Serd que |x1],|x2] é a solugao étima do PI?

Exemplo
maximiza —x1+7.5%;
sujeito a —x1+7.2x2 <504
5% +2.8x2 <62
Exemplo
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6.1. Definigoes

-X1+7.2X,< 50.4 L

X3

01 2 3 45 6 7 8 9 101112131415

e Solugdo 6tima agora: x; = 7.87, x2 ~ 8.09, V = 52.83.

o LX]J = 7, LXzJ =38.

e Solucao 6tima inteira: x; = 0,x2 = 7!

e Infelizmente a solucdo 6tima inteira pode ser arbitrariamente distante!
Métodos

e Prove que a solugao da relaxacao linear sempre € inteira.
e Insere cortes.

e Branch-and-bound.

Exemplo: 0-1-Knapsack
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6. Introducao

PROBLEMA DA MOCHILA (KNAPSACK)

Instancia Um conjunto de n itens I = {i;,...,in} com valores v; e pesos
w;i. Um limite de peso K do mochila.

Solugcao Um conjunto S C I de elementos que cabem na mochila, i.e.
2 iesWi <K

Objetivo Maximizar o valor } ; ¢ vi.

e Observagao: Existe um solugao com programacao dinamica que possui
complexidade de tempo O(Kn) (pseudo-polinomial) e de espago O(K).

Exemplo: Maximizar cavalos

e Qual o nimero maximo de cavalos que cabe num tabuleiro de xadrez,

tal que nenhum ameaga um outro?
a b o d e i of h

Exemplo 6.1
Formulagao do problema da mochila, com varidveis indicadores xi, 1 <1,j <
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6.2. Motivacao e exemplos

maximiza E ViXi
i
sujeito a E wixiy < L
i
xi € B

Formulagao do problema dos cavalos com varidveis indicadores x;:

maximiza inj
i,j

sujeito a Xij +Xi—2,j4+1 < 1 3<i<8,1<5<7
Xij +Xi—1,542 < 1 2<iL8,1<j<e
xij +Xi42541 <1 1<i1<6,1<j<7
Xij + Xig1,512 <1 1<i<7,1<j<6

Solugoes do problema dos cavaleiros (A030978)
n|1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16

k‘145813 18 25 32 41 50 61 72 8 98 113
¢

6.2. Motivacao e exemplos
Motivacao

e Otimizacao combinatéria é o ramo da ciéncia da computagao que estuda
problemas de otimizagdo em conjuntos (wikipedia).

e “The discipline of applying advanced analytical methods to help make
better decisions” (INFORMS)

e Tais problemas sao extremamente frequentes e importantes.

Maquina de fazer dinheiro

e Imagine uma maquina com 10 botdes, cada botao podendo ser ajustado
em um numero entre 0 e 9.
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6. Introducao

Maquina de fazer dinheiro

e h4 uma configuragao que retorna R$ 10.000.

e total de combinacoes: 10'°.

dez testes por segundo

e em um ano:=> 10 x 60 x 60 x 24 x 365 =3 x 108

Explosao combinatéria
Funcoes tipicas:

n  logn n°5 n? AR n!

10 332 316 107 1.02 x 103 3.6 x 10°
100 6.64 10.00 10* 1.27 x10%° 933 x 107
1000 9.97 31.62 10° 1.07 x 103°7 4,02 x 102°¢7

“Conclusoes”

Iretirado de Integer Programming - Wolsey (1998)
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e Melhor nao aceitar a maquina de dinheiro.

e Problemas combinatdrios sao dificeis.

6.3. Aplicacoes
Apanhado de problemas de otimizacao combinatéria

e (Caixeiro viajante

¢ Roteamento

Projeto de redes

Alocacao de horarios

e Tabelas esportivas

Gestao da produgao

o ctc.

Caixeiro Viajante

6.3. Aplicagoes
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6. Introducao

Caixeiro Viajante

\

Caixeiro Viajante

e Humanos sao capazes de produzir boas solugdes em pouco tempo!
e Humanos 7

Caixeiro Viajante
i 8
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Figure 1.40 Chimpanzse tour (Bida),

Caixeiro Viajante

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University
Press
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6.3. Aplicagoes

Figura 1.41 Pigeon solving a TSP, Images courtesy of Brett Gibson.

Caixeiro Viajante
Der

Handlungsreifende

wie er fein {oll

und wad er ju thun Hat, um Auftedge
gu exhalten und cined glidlihen Grfolgs
in feinen Gefddften gewif au fein,

Bon
¢inem alten Commis - Voyageur.

@
Miteinem Titelbupfer
————

Jlmenau 1832,
Drud und Berlag von B, Fr, Voigt.

Caixeiro Viajante

e Business leads the traveling salesman here and there, and there is not a
good tour for all occurring cases; but through an expedient choice divi-
sion of the tour so much time can be won that we feel compelled to give
guidelines about this. Everyone should use as much of the advice as he
thinks useful for his application. We believe we can ensure as much that

IRetirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University
Press

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University
Press
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6. Introducao

it will not be possible to plan the tours through Germany in considera-
tion of the distances and the traveling back and fourth, which deserves
the traveler’s special attention, with more economy. The main thing to
remember is always to visit as many localities as possible without having
to touch them twice.

“Der Handlungsreisende wie er sein soll und was er zu tun hat, um Auftrage
zu erhalten und eines gliicklichen Erfolgs in seinen Geschiften gewiss zu sein.
Von einem alten Commis-Voyageur” (O caixeiro viajante, como ele deve ser
e o que ele deve fazer para obter encomendas e garantir um sucesso feliz dos
seus negdcios. Por um caixeiro viajante experiente).

First brought to the attention of the TSP research community in 1983 by
Heiner Muller-Merbach [410]. The title page of this small book is shown in
Figure 1.1. The Commis-Voyageur [132] explicitly described the need for good
tours in the following passage, translated from the German original by Linda
Cook.

Caixeiro Viajante

HELP “CAR 54”...AND WIN CASH
54...51,000 PRIZES 5
ONE...410.000 GRAND PRIZE »y

Caixeiro Viajante

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University
Press
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Figure |.45 Further progress in the TSP, log scale.

Formulando matematicamente o PCV

e Associar uma varidvel a cada possivel decisao.

Formulando matematicamente o PCV

e Associar uma varidvel a cada possivel decisao.

6.3. Aplicagoes

1Retirado de: “The Traveling Salesman Problem: A Computational Study” David L.
Applegate, Robert E. Bixby, Vasek Chvétal & William J. Cook. Princeton University

Press

93



6. Introducao

K/‘ minimiza ¢y
sujeito a E Xij + E Xji = 2,

jEN jEN
Xij S {O) ]}>

Formulando matematicamente o PCV

e Associar uma variavel a cada possivel decisao.

\ minimiza CijVYij
sujeito a E Xij + E Xji = 2,

jEN jEN
/ xij €1{0,1},

+ restrigoes de eliminagao de subci-
clos!

Apanhado de problemas de otimizacao combinatdria

e Caixeiro viajante

e Roteamento

Projeto de redes

Alocagao de horérios

Tabelas esportivas

Gestao da producgao

e etc.
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6.3. Aplicagoes

Problemas de roteamento

ool ool

Problemas de roteamento

olo oo oo

Etc.

oo

Apanhado de problemas de otimizacao combinatéria
e Caixeiro viajante
e Roteamento

e Projeto de redes

Alocacgao de horarios

Tabelas esportivas

Gestao da produgao

e etc.
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6. Introducao

Problemas em arvores

Problemas em arvores

Problemas em arvores - aplicacoes

e Telecomunicagoes
e Redes de acesso local

e Engenharias elétrica, civil, etc..
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Apanhado de problemas de otimizacao combinatéria
e (Caixeiro viajante
e Roteamento
e Projeto de redes
e Alocacao de horérios
e Tabelas esportivas
e Gestao da produgao

e ctc.

Alocacao de tripulacoes

Apanhado de problemas de otimizacao combinatéria
e Caixeiro viajante
o Roteamento
e Projeto de redes
e Alocagao de horarios
e Tabelas esportivas
e Gestao da produgao

e etc.

6.3. Aplicagoes
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6. Introducao

Tabelas esportivas

Proximos Adversarios

Fla Vasco Paysandu Criciuma  Vitdria
JUVENTUDE Ponte Coritiba GALO CORINTHIANE
Guarani CRUZEIRO PALMEIRAS  Sanios Juventude
GALO Sao Paulo Parana FURACAO GUARANI
Botafogo GOIAS CRICIOMA Paysandu Grémio
PALMEIRAS  Juventude Santos PONTE COXA
Coritiba CORINTHIANS GALO Parana Sao Paulo

5. PAULO Furaciio Guarani PALMEIRAS  CRUZEIRO
Cruzeiro SANTOS JUVENTUDE Coxa Ponte
Botafogo  Galo Parana |Grémio Guarani
Cruzeiro Criciima S.CAETANO Falmeiras Goids

S. PAULOD GOIAS Grémio PARANA FLA

Coxa Fla PAYSANDU Ponte Vitoria

FLA PARANA Galo VITORIA PALMEIRAS
Guarani FIGUEIRA Goias Furacéio BOTAFOGO
JUVENTUDE Paysandu CRICIOMA SANTOS Figuaira
Corinthians GREMIO Flu Galo PAYSANDU
FURACAO S. Caelano INTER GUARANI Grémio

Apanhado de problemas de otimizacao combinatéria

e Caixeiro viajante

e Roteamento

Projeto de redes

Alocacéao de horarios

Tabelas esportivas

Gestao da producao

e etc.

Gestao da producao
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6.3. Aplicagoes

Etc.
e programacao de projetos
e rotagao de plantagoes
e alocagao de facilidades (escolas, centros de comércio, ambuléncias...)
e projeto de circuitos integrados
e portfolio de acoes

e etc, etc, etc, etc...
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7. Formulacao

7.1. Exemplos
“Regras de formulacao”
o Criar (boas) formulacoes é uma arte.

e Algumas diretivas bésicas:
— escolha das varidveis de decisao.
— escolha do objetivo.

— ajuste das restrigoes.

Formulacao - Problema da mochila

== 7
o B
L)
g

itens N ={1,2,...n}

peso de cada item: pi, valor de cada item: v;

e Levar o maior valor possivel, dada a restrigao de peso.

Varidveis de decisao ?

Formulacao - Problema da mochila
> r)
T
g
L)

T
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7. Formulagao

maximiza E XiVi
i
sujeito a E Pixi <P

ieN
xi € B.

Formulagao - Problema de locacao de facilidades nao-capacitado

e Alocar fdbricas a cidades, de modo a minimizar o custo total de ins-
talagao das fabricas e custo de transporte do produto até o cliente

clientes

[ l:l fabricas
° o [ ]

e Cada ponto i = {1,2,...n} apresenta um custo de instalagdo da fabrica
fi

e Entre cada par de cidade, (1,j), o custo de transporte é dado por cyj

Formulacao - Problema de locacao de facilidades nao-capacitado

e Exemplo:

N

Para formulacao escolhemos varidveis de decisao xi; € B, que indicam se o
cliente 1 for atendido pela fabrica em j.

e Variaveis de decisao ?
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7.2. Técnicas

Formulacao - Problema de locacao de facilidades nao-capacitado

L
N

minimiza E fiy; + E CijXij

1<i<n 1<ij<n
sujeito a Z x5 =1, 1<i<n  (sé uma fibrica atende)
1<5<n
Z yj, <m (no maximo m fabricas)
1<5<n
xij < Yj, 1<1,j <n (s6 fabricas existentes atendem’
xi; € B, 1<i,j<n

Alternativas:

e Para instalar exatamente m fébricas: )} y; = m.

7.2. Técnicas

Formulacao: Indicadores
e Variaveis indicadores x € B: Selecao de um objeto.
e Implicagao (limitada): Se x for selecionado, entéo y deve ser selecionado

x<y xyeB

e Ou:
x+y>1 x,y €B

o QOu-exlusivo:
x+y=1 x,y € B

Em geral: Seleciona n de m itens xq,...,Xm € B

SxfSfn

i il
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7. Formulagao

Formulacao: Indicadores
Para x,y,z € B

e Conjungdo x =yz=y Az

x<(y+z)/2
x>y+z—1
e Disjuncao x =yVz
x> (y+z)/2
x<y-+z
e Negacao x =y
x=1—y

Formulacao: Funcao objetivo nao-linear

e Queremos minimizar custos, com uma “entrada” fixa c

0 x=0
f(x) = _
c+1l(x) 0<x<x
com 1(x) linear.

e Solugao?

e Disjuncao de equagoes: Queremos que aplica-se uma das equagoes
f1 <12
g1 <92

e Solucao, com constante M suficientemente grande

f1 <f,+Mx
g1 <g2+M(1—x)
xe€B
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7.2. Técnicas

Exemplo
Planejamento de produgao (ingl. uncapacitated lot sizing)

e Objetivo: Planejar a futura produgao no préximos n semanas.

e Parametros: Para cada semana i

Custo fixo f; para produzir,

Custo p; para produzir uma unidade,

— Custo hy por unidade para armazenar,

Demanda d;

Exemplo
Seja

e x; a quantidade produzido,

e s; a quantidade no estoque no final da semana 1,

e y; = 1 sem tem produgao na semana i, 0 sendo.
Problema:

e Funcao objetivo tem custos fixos, mas x; nao tem limite.

e Determina ou estima um valor limite M.

Exemplo

minimiza Z Pixi + Z hisi + Z fiyi
i i i

sujeito a Si = Si_1 +xi — di, 1<i<n
SOIO
xi < Myy, 1<i<n

x € R",y € B™.
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7. Formulagao

Formulacgoes diferentes

5 |

4 — L
3+ - —

! >
2 — L
1 - + + + —
0 I I I I
0 1 2 3 4 5

X1
Uma problema de programacao linear ou inteira geralmente possui mais que
uma formulacao. Na programacao linear existe pouca diferenca entre as
formulagoes: a solugao é a mesma e o tempo para resolver o problema é
comparavel, para um numero comparavel de restricoes e varidveis. Na pro-
gramagao inteira uma formulagao boa é mais importante. Como a solugao de
programas inteiras é NP-completo, frequentemente a relaxacao linear é usada
para obter uma aproximagao. Diferentes formulagao de um programa inteiro
possuem diferentes qualidades da relaxacao linear. Uma maneira de quantifi-
car a qualidade de uma formulacao é o gap de integralidade. Para um problema
P e uma instancia i € P seja OPT(i) a solugdo 6tima inteira e LP(i) a solucao
da relaxagao linear. O gap de integralidade é
LP(i)

g(P) SUD SPT(0) (7.4)
(para um problema de maximizacdo.) O gap de integralidade é d4 uma garan-
tia para qualidade da solucao da relaxacao linear: caso o gap € g, a solugao
nao é mais que um fator g maior que a maior solucao integral.
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8. Técnicas de solucao

8.1. Introducao
Limites
e Exemplo: Problema de maximizacao.

e Limite inferior (limite primal): Cada solucao vidvel.

— Qualquer técnica construtiva, p.ex. algoritmos gulosos, heuristicas

etc.

e Limite superior (limite dual): Essencialmente usando uma relaxagao

— Menos restrigoes = conjunto maior de solugao viaveis.

— Nova fungao objetivo que é maior ou igual.

e Importante: Relaxagao linear: x € Z = x € R.

8.2. Problemas com solucao eficiente

Observagao 8.1
Lembranca: A determinante de uma matriz pela regra de Laplace é

det(A) = Y (=1)"aydet(Ay) = Y (=1)"ay;det(Ay)

1<i<n 1<j<n

sendo Aij a submatriz sem linha i e coluna j.

Relaxacao inteira

e Solugao simples: A relaxagao linear possui solugao 6tima inteira.

e Como garantir?

e Com base B temos a solucao x = (xg xn)t = (B~ 'b,0)t.

e Observagao: Se b € Z™ e |det(B)| = 1 para a base 6tima, entdo o PL

resolve o PI.
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8. Técnicas de solucao

Relaxacao inteira
e Para ver isso: Regra de Cramer.

e A solugdo de Ax =Db é

. det(Ay)
Y det(A)
com A; a matriz resultante da substituicao da i-gésima coluna de A por
b.
Prova. Seja U; a matriz identidade com a i-gésima coluna substituido por x,
ie.
1 X1
1 X2
Xn—1
Xn 1

Temos que AU; = A e com det(U;) = x; e det(A) det(U;) = det(A;) temos
o resultado. |

Exemplo: Regra de Cramer

3 21 X1 1
5 0 2 X2 = 1
2 1 2/ \x3 1
Exemplo: Regra de Cramer
3 21 1 21
5 0 2 |=-13 10 2 |=-1
21 2 11 2
311 3 21
2 1 2 2 11

Logo x1 =1/13;%x, = 3/13;x3 = 4/13.
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8.2. Problemas com solugao eficiente
Aplicacao da regra de Cramer
e Como garantir que x = B~'b é inteiro?
e Cramer:

o det(Bi)
~ det(B)

Xi

Condicao possivel: (a) det(B;) inteiro, (b) det(B) € {—1,1}.

Garantir (a): A€ Z™* ™" eb e Z™.

Garantir (b): Toda submatriz quadrada nao-singular de A tem determi-
nante {—1,1}.

Exemplo 8.1
Observe que essas condigoes sao suficientes, mas nao necesséarias. E possivel
que Bx = b possui solugao inteira sem essas condicoes ser satisfeitas. Por

exemplo
2 2\ (x1\ _ (1
1 0 X2 - 1
tem a solucdo inteira (x1x2) = (10), mesmo que det(A) = —2. %

A relaxacdo é inteira

Definicao 8.1

Uma matriz quadrada inteira A € R™*™ é unimodular se |det(A)] = 1. Uma
matriz arbitrdria A é totalmente unimodular (TU) se cada submatriz quadrada
nao-singular A’ de A é modular, i.e. det(A’) €{0,1,—1}.

Uma consequéncia imediata dessa definigao: ay; € {—1,0,1}.

Exemplo
Quais matrizes sao totalmente unimodular?
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8. Técnicas de solucao

1T 10
(}]1);011
10 1
01 000
T =1 =1 0 01 1 11
-1 0 0 1 ]:;l1 0 1 11
o 1 0 =1/ 100 10
10000

Critérios
Proposigao 8.1
Se A é TU entao
1. At é TU.
2. (A I) com matriz de identidade I é TU.

3. Uma matriz B que é uma permutacao das linhas ou colunas de A é TU.

4. Multiplicando uma linha ou coluna com —1 resulta numa matriz TU.

Prova. (i) Qualquer submatriz quadrada B* de A" e uma submatriz B de A
também. Com det(B) = det(B"), segue que A' é totalmente unimodular. (i)
Qualquer submatriz de (Al) tem a forma (A’l’) com A’ submatriz de A e I’
submatriz de I. Com |det(A’l’)| =|det(A’)| segue que (AI) é TU. (iii) Cada
submatriz de B é uma submatriz de A. (iv) A determinante troca no maximo
o sinal. |

Critérios
Proposicao 8.2
Uma matriz A é totalmente unimodular se

1. aij € {+1,-1,0}
2. Cada coluna contém no maximo dois coeficientes nao-nulos.

3. Existe uma partigao de linhas M; U M, = [1,m] tal que cada coluna
com dois coeficientes nao-nulos satisfaz

Z ai; — Z aij:()

ieM; ieM;

Observe que esse critério é suficiente, mas nao necessario.
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8.2. Problemas com solugao eficiente

Exemplo

e Coeficientes € {—1,0,1}: Sim.
o Cada coluna no méximo dois coeficientes nao-nulos: Sim.

e Particao M;,M2? Sim, escolhe M7 = [1,3], M, = 0.

Exemplo

TU? Nao: det(A) = 2.

1T 10

A=(0 1 1

1 0 1

TU? Nao: det(A) = 2.

01 000

o1 1 11

1T 0 1 11
10 0 1 0
10 0 0O

TU? Sim. Mas nossa regra nao se aplical

Prova. (da proposicao 8.2). Prova por contradi¢ao. Seja A uma matriz que
satisfaz os critérios da proposigao 8.2, e B a menor submatriz quadrada de A
tal que det(B) ¢ {0,+1,—1}. B ndo contém uma coluna com um tnico coefi-
ciente nao-nula: seria uma contradi¢do com a minimalidade do B (removendo
a linha e a coluna que contém esse coeficiente, obtemos uma matriz quadrada
menor B*, que ainda satisfaz det(B*) ¢ {0,+1,—1}). Logo, B contém dois
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8. Técnicas de solucao

coeficientes ndo-nulos em cada coluna. Aplicando a condigéo (3) acima, sub-
traindo as linhas com indice em M; das linhas com indice em M, podemos
ver as linhas do B s&o linearmente dependentes e portanto temos det(B) = 0,
uma contradigao. |
Uma caracterizagao (i.e. um critério necessario e suficiente) das matrizes to-
talmente unimodulares (sem prova) é

Teorema 8.1 ( [ D
Um matriz A € Z™*™ é TU sse para todo subconjunto R C [m] de linhas

existe uma particdo Ry U R, tal que

E aij; — E aij

i€eR, ieR2

<1 (8.1)

para todas colunas j € [n].
Observe que a proposi¢ao 8.2 implica o critério acima: dado uma particao das

linhas de acordo com 8.2, para todo R C [m], a particio (M; NR) U (M2 NR)
satisfaz (8.1).

Consequéncias

Teorema 8.2 ( [ D
Se a matriz A de um programa linear é totalmente unimodular e o vetor b é
inteiro, todas solugoes bésicas sao inteiras. Em particular as regioes

{xeR"| Ax < b}
{xeR" | Ax > b}
{xeR"™| Ax < b,x > 0}
{xeR"| Ax =b,x > 0}

tem pontos extremos inteiros.

Prova. Consideracoes acima. |

Exemplo 8.2 (Caminhos mais curtos)
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8.2. Problemas com solugao eficiente

Exemplo: Caminhos mais curtos

e Dado um grafo direcionado G = (V, A) com custos ¢ : A — Z nos arcos.

e Qual o caminho mais curto entre dois nés s,t € V7

Exemplo: Caminhos mais curtos

minimiza Z CaXa
acA
sujeito a Z Xq — Z Xq =1
aeN(s) aeN-(s)
> Xa— ) Xxa=0, e V\ (st}
aeNT(v) aeN~(v)
S ove Y xe=
aeN+(t) aeN~—(t)
Xq € B, Va e A.

A matriz do sistema acima de forma explicita:

S 1 . e =] Xa, 1
1 0
1 1 0
t 1 Xan 1

Como cada arco ¢ incidente a dois vértices, cada coluna contém um coeficiente
1 e —1, e a Proposicao 8.2 é satisfeito pela particao trivial § U V. O

Exemplo 8.3 (Fluxo em redes)

Exemplo: Fluxo em redes

e Dado: Um grafo direcionado G = (V, A)
— com arcos de capacidade limitada 1: A — Z*,

— demandas d : V — Z dos vértices,
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8. Técnicas de solucao

— (com d, < 0 para destino e d,, > 0 nos fonte)

— e custos ¢ : A — R por unidade de fluxo nos arcos.

e Qual o fluxo com custo minimo?

Exemplo: Fluxo em redes

minimiza Z CaXa
acA

sujeito a Z Xaq — Z Xq = dy, YveVv
acN+(v) aeN—(v)
0 <xq <lg, Va e A.

com conjunto de arcos entrantes N~ (v) e arcos saintes Nt (v).

Exemplo: Fluxo
e A matriz que define um problema de fluxo é totalmente unimodular.

e Consequéncias
— Cada ponto extremo da regiao viavel é inteira.

— A relaxag@o PL resolve o problema.

e Existem véarios subproblemas de fluxo minimo que podem ser resolvidos
também, p.ex. fluxo méximo entre dois vértices.
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8.3. Desigualdades validas

Exemplo 8.4 (Emparelhamentos)
EMPARELHAMENTO MAXIMO (EM)

Entrada Um grafo G = (V, E) néo-direcionado.

Solucao Um emparelhamento M C E, i.e. um conjunto de arcos, tal que
para todos vértices v temos |[N(v) " M| < 1.

Objetivo Maximiza |M]|.

Uma formulagao é

maximiza Z CeXe (8.2)
eck
sujeito a Z Xuw < 1, YveV
ueN(v)
Xe € B.

A matriz de coeficientes dessa formulagao é TU. Por qué? Isso ainda é valida
para grafos nao-bipartidos? %

8.3. Desigualdades validas

Desigualdades validas

e Problema inteiro

max{c'x | Ax < b,x € Z}

e Relaxagao linear

max{c'x | Ax < b,x € R}
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8. Técnicas de solucao

5
47 |-
3 - =
N
x
27 |-
1 4 + + + —
0 T T T T
0 1 2 3 4 5
X1

Desigualdades validas

Definigao 8.2
Uma desigualdade mx < 71 € vdlida para um conjunto P, se Vx € P : rix < 7.

e Como achar desigualdades (restrigoes) vélidas para o conjunto da solugoes
vidveis {x | Ax < b,x € Z%} de um problema inteiro?

— Técnicas de construgao (p.ex. método de Chvatal-Gomory)
— Observar e formalizar caracteristicas especificas do problema.

— “The determination of families of strong valid inequalities is more
of an art than a formal methodology” | ,
, D. 259]

Exemplo 8.5 (Locagao de facilidades nao-capacitado)

Temos um conjunto de cidados C = [n] em que podemos abrir facilidades
para um custo fixo fj,j € C. Em cada cidade 1 existe um demanda que pode
ser satisfeito por uma facilidade na cidade j com custo cij, caso existe um

116



8.3. Desigualdades validas

facilidade na cidade j. Com xi; € B indicando que a demanda da cidade i ¢
satisfeito pela facilidade na cidade j podemos formular

minimiza Z fiu; + Z CijXij (8.3)
1<j<n 1<i,j<n

sujeito a Z xy =1, Yi=1l.n (8.4)
1<5<n
Xy < Yj, vi,j=1..n (8.5)
xij; € B, i,j=1,..,n (8.6)
yj € B, i=1,.,mn. (8.7)

Ao invés de
Xij < Yj (8.8)

podemos pensar em

Z Xij < ny;j. (89)

1<i<n

Essa formulacdo ainda é correto, mas usa n restricoes ao invés de n?. Entre-
tanto, a qualidade da relagao linear é diferente. E simples ver que podemos
obter (8.9) somando (8.8) sobre todos i. Portanto, qualquer solugdo que sa-
tisfaz (8.8) satisfaz (8.9) também, e dizemos que (8.8) domina (8.9).

Que o contrério nao é verdadeiro, podemos ver no seguinte exemplo: Com
custos de instalacdo f; = 1, de transporte ci;j = 5 para i # j e ¢35 = 0,
duas cidades e uma fabrica obtemos as duas formulagoes (sem restrigdes de
integralidade)

minimiza  y; +y2 +5x12 + 5x21 Y1 +y2 +5x12 + 5x21
sujeito a X171 +x12 =1 X11 +x12 =1

x21 +x22 =1 X21 +x22 =1

y1 +y2 <1 y1+tyz<1

x11 < Yi x11 +x21 < 2y

x12 < Y2

x21 <Y1 x21 +x22 < 2y3

x22 < Y2

A solucao 6tima do primeiro sistema é y; = 1,x17 = x27 = 1 com valor 6,
que é a solugao Otima inteira. Do outro lado, a solugao 6tima da segunda
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8. Técnicas de solucao

formulacdo é y; = y2 = 0.5 com x77 = x22 = 1, com valor 1, i.e. ficam
instaladas duas “meia-fabricas” nas duas cidades!
O
Exemplo: 0-1-Knapsack
< 7
&)
15 kg w
=
{ &=
~ -
oy
maximiza Z ViXi
1<i<n
sujeito a Z pixi <P
1<i<n
xi €B

Exemplo: 79x7 + 53x2 4+ 53x3 + 45%x4 + 45x5 < 178.

Exemplo: 0-1-Knapsack

e Observacao: Para um subconjunto S C [1,n]: Se } ¢pi > P entdo
> oxi <[S[—1.

e Exemplos:

X1 +x2+x3<2
X1 +XxX2+%x4 +%x5 <3
X] +%3+%x4 +%x5 <3
X2 +x3+%x4+%x5 <3

Exemplo 8.6 (Emparelhamentos)
Continuando exemplo 8.4.

Exemplo: Emparelhamentos
e Escolhe um subconjunto de nés U C V arbitrario.

e Observagdo: O ndmero de arestas internas é < [[U|/2].
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8.3. Desigualdades validas

e Portanto:
Y xa< (U2

acUZnA

é uma desigualdade vélida.

Método de Chvatal-Gomory
Dado

Zaixi < b
i

também temos, para u € R, u > 0 as restrigoes validas

Z uaix; < ub (multiplicagao)
> |uai]x < ub lyl <y,0<x
Z [uai ] xi < |ub] Lado esquerda é inteira.

Método de Chvatal-Gomory

Teorema 8.3
Todas desigualdades validadas pode ser construida através de um niuimero

finito de aplicagdes do método de Chvatal-Gomory.

Exemplo: Emparelhamentos

e Para um U C V podemos somar as desigualdades

Z Xy <1 Yvev

UueEN(v)

para obter

2 ) xw

veVueN(v)
=2 > Xat ) xa < U
acUZnA aeN(U
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8. Técnicas de solucao

e com peso 1/2 temos

S oxety Y xa_%|u|

acUZnA aEN

e Também temos

aeN(U)
e Portanto
1

Z Xa S §|u|

acUZnA
1

Z Xa < {ZIUIJ Lado esquerdo inteiro

acUZnA

8.4. Planos de corte
Como usar restricoes validas?

e Adicionar a formulacao antes de resolver.

— Vantagens: Resolugdo com ferramentas padrao.

— Desvantagens: Numero de restrigoes pode ser muito grande ou de-

mais.

e Adicionar ao problema se necessario: Algoritmos de plano de corte.

— Vantagens: Somente cortes que ajudam na solugao da instancia sao

usados.

Planos de corte
Problema inteiro
max{c'x | Ax < b,x € Z}}

e O que fazer, caso a relaxagao linear nao produz solugoes Otimas?
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8.4. Planos de corte

e Um método: Introduzir planos de corte.

Definigao 8.3
Um plano de corte (ingl. cutting plane) é uma restrigdo vélida (ingl.
valid inequality) que todas solugoes inteiras satisfazem.

Algoritmo de planos de corte

Algoritmo 8.1 (Planos de corte)
Entrada Programa inteiro max{c'x | Ax < b,x € Z}}.

Saida Solugao inteira 6tima ou “N&o existe corte.”.

1 Vi={x|Ax <Db} { regidao vidvel }

2 x*:=argmax{c'x | x € V} { resolve relaxagdo }

3 while (x*¢Z%) do

4 if (existe corte a'x <d com a'x* >d) then

5 V:i=Vn{x|a*x<d} { nova regiao viavel }

6 x* 1= argmax{c'x | x € V} { nova solucdo 6tima }
7 else

8 return "Nao existe corte.”

9 end if

10 end while

Método de Gomory

e Como achar um novo corte na linha 4 do algoritmo?

e A solucao 6tima atual é representado pelo diciondrio
z=2z+ E éij
j

xi:Bi—Zdej ieB
JeEN

e Se a solucao nao é inteira, existe um indice i tal que x; € Z,, i.e.
bi_ g ZJr.
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8. Técnicas de solucao

Cortes de Chvatal-Gomory

=b; — Z ai;x; Linha fraciondria
JEN
<bi— Z Laij] x; Definicio de |-|
jeN
xi < |bi] — Z [ aij] x; Integralidade de x
JEN
0> {b:i} - > {aylx (8.10) — (8.12)
JEN
Xnt1 =—{bi} + Z {aiix Nova varidvel
JeEN
Xnt1 € Z+

(8.10)
(8.11)
(8.12)
(8.13)

(8.14)

(8.15)

(Para solugoes inteiras, a diferenca do lado esquerdo e do lado direito na

equagdo (8.12) é inteira. Portanto x,41 também é inteira.)

A solugao bésica atual nao satisfaz (8.13), porque com x; = 0,j € N temos

que satisfazer

{bi} <0,

uma contradicdo com a definicio de {-} e o fato que b; é fraciondrio. Portanto,

provamos

Proposicao 8.3

O corte (8.13) satisfaz os critérios da linha 4 do algoritmo PLANOS DE CORTE.
Em particular, sempre existe um corte e o caso da linha 8 nunca se aplica.

Exemplo 8.7
Queremos resolver o problema
maximiza X1 +x2
sujeito a —x1+3x <9
10x1 <27
X1,%X2 € Zy

A solucao da relaxacao linear produz a série de dicionarios

(1) z = X1 +x2 (2) z =3 +4/3x1 —1/3w
wy =9 +x1  —3x2 X2 =3 +1/3x7 —1/3w;
Wy = 27 7]0)(1 wp = 27 710X1
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8.4. Planos de corte

(3) z =6.6 —4/30w, —1/3w,
X2 = 3.9 —1/30W2 —1/3W1
X1 =27 —1/1OW2
A solugdo 6tima x1 = 2.7, xp = 3.9 é fraciondria. Correspondendo com a
segunda linha
X2 = 3.9 —1/30W2 —]/3W1

temos o corte

wzy =-0.9 +1/30w, +1/3w,
e 0 novo sistema é
(4) z =6.6 —4/30w; —1/3w,
X2 =39 —1/30w, —1/3w;
X1 =27 -1 /]OWZ
wsy =-0.9 +1/30w, +1/3w;
Substituindo w; e wy no corte w3 = —0.9 + 1/30w, + 1/3w; > 0 podemos

reescrever o corte sando as varidveis originais do sistema, obtendo x; < 3.
Esse sistema nao é mais 6timo, e temos que re-otimizar. Pior, a solucao bésica
atual ndo é vidvell Mas como na fungao objetivo todos coeficientes ainda sao
negativos, podemos aplicar o método Simplex dual. Um pivo dual gera a nova
solugao 6tima

(5) z =57 —=1/10w, —w3
X2 =3 —W3
X1 =27 -1 /1 OWZ

w1 = 2.7 7]/10W2 +3W3
com x; = 3 inteiro agora, mas xj ainda fraciondrio. O préximo corte, que
corresponde com xq é

(6) z =57 —-1/10w, —w; (7)z =5 —ws  —ws

X2 =3 —W3 X2 =3 —W3

X1 =27 —1/1OW2 X1 =2 — Wy

Wi =27 —1/10wy +3ws w; =2 —wyq  +3ws

wg =-0.7 +1/10w, wy =7 +10wy
cuja solugao é inteira e 6tima. (O tdltimo corte inserido wy = —0.74+1/10w; >
0 corresponde com x; < 2.) O

Resumo: Algoritmos de planos de corte

e O algoritmo de planos de corte, usando os cortes de Gomory termina
sempre, i.e. é correto.

e O algoritmos pode ser modificado para programas mistos.
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8. Técnicas de solugao

Segundo corte

==(%7)

Primeiro corte

1 3

Figura 8.1.: Visualizagao do exemplo 8.7.

e A técnica pura é considerado inferior ao algoritmos de branch-and-
bound.

e Mas: Planos de corte em combinagdao com branch-and-bound é uma
técnica poderosa: Branch-and-cut.

8.5. Branch-and-bound

Branch-and-bound
Ramifica-e-limite (ingl. branch-and-bound)
e Técnica geral para problemas combinatoriais.

Branch and Bound is by far the most widely used tool for
solving large scale NP-hard combinatorial optimization pro-
blems. [Clausen, 1999]
o Idéia basica:

— Particiona um problema em subproblemas disjuntos e procura solugoes
recursivamente.

— Evite percorrer toda arvore de busca, calculando limites e cortando
sub-arvores.

e Particularmente efetivo para programas inteiras: a relaxacao linear for-
nece os limites.
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8.5. Branch-and-bound

Branch-and-bound

Problema PI (puro): {maxc'x |x € S,x € ZT}.

Resolve a relaxagao linear.

Solucgao inteira? Problema resolvido.

Caso contrario: Escolhe uma varidvel inteira x;, com valor b; fracionério.
Heuristica: Variavel mais fraciondria: argmin; |{x;} — 0.5|.

Particione o problema S = S; U S; tal que

Si=Sn{x|xi < |vi]ly S2=SnN{x[xi>[vi]}

Em particular com variaveis x; € B:

S1=Sn{x|xi=0}) S;=SN{x|x;=1}

Limitar

e Para cada sub-arvore mantemos um limite inferior e um limite superior.

— Limite inferior: Valor da melhor solugao encontrada na sub-arvore.

— Limite superior: Valor da relaxagao linear.

e Observacao: A eficiéncia do método depende crucialmente da qualidade

do limite superior.

e Preferimos formulagoes mais “rigidos”.

Cortar sub-arvores

1.
2.

Corte por inviabilidade: Sub-problema é inviavel.

Corte por limite: Limite superior da sub-drvore z; menor que limite
inferior global z (o valor da melhor solugéo encontrada).

Corte por otimalidade: Limite superior z; igual limite inferior z; da
sub-arvore.

Observagao: Como os cortes dependem do limite z, uma boa solugao
inicial pode reduzir a busca consideravelmente.
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8. Técnicas de solucao

Ramificar

e Nao tem como cortar mais? Escolhe um né e particiona.
e Qual a melhor ordem de busca?

e Busca por profundidade
— V: Limite superior encontrado mais rapido.

— V: Pouca memoria (O(8d), para & subproblemas e profundidade
d).

— V: Re-otimizagcao eficiente do pai (método Simplex dual)

— D: Custo alto, se solugdo 6tima encontrada tarde.

e Melhor solugdo primeiro (“best-bound rule”)
— V: Procura ramos com maior potencial.

— V: Depois encontrar solugao 6tima, nao produz ramificagoes supérfluas.

e Busca por largura? Demanda de memoria é impraticdvel.

Algoritmos B&B

Algoritmo 8.2 (B&B)
Instancia Programa inteiro P = max{c'x | Ax < b,x € Z1}.
Saida Solugdo inteira étima.
1 { usando funcdo z para estimar limite superior }
2 zi=—00 { limite inferior }
3 A:= {(P,g(P))} { nés ativos }
4 while A #0 do
5 Escolhe: (P,g(P)eA; A:=A\(P,g(P))
6 Ramifique: Gera subproblemas Pi,...,Pn.
7 for all P;, 1<i<n do
8 { adiciona, se permite melhor solugao }
9 if z(Pi) >z then
10 A=A U{(P,Z(P:))}
11 end if
12 { atualize melhor solugado }
13 if (solucdo zZ(Py) é viavel) then
14 z:=z(Pi)
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8.5. Branch-and-bound

15 end if
16 end for
17 end while

Exemplo 8.8 (Aplicacdo Branch&Bound no PCV)
Considera uma aplicagdo do PCV no grafo

Aplicando somente backtracking obtemos a seguinta arvore de busca:
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8. Técnicas de solucao

¢ %8 ® .?6 % o @
6 7 5 5_5 4
0 00 000 0 oo o

A drvore de backtracking completa possui 65 vértices (por nivel: 1,4,12,24,24).
Usando como limite inferior o custo atual mais o niimero de arcos que faltam
vezes a distancia minima e aplicando branch&bound obtemos os custos par-
ciais e limites indicados na direita de cada vértice. Com isso podemos aplicar
uma séria de cortes: busca da esquerada para direito obtemos

e uma nova solucao 7 em 2345;

e um corte por limite em 235;

e um corte por otimalidade em 243;
e um corte por otimalidade em 2453;
e um corte por limite em 253;

e um corte por otimalidade em 2543;
e uma nova solugdo 6 em 3245;

e um corte por otimalidade em 32;

e um corte por otimalidade em 3;
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8.5. Branch-and-bound

um corte por limite em 4;

um corte por otimalidade em 5234;
um corte por otimalidade 5243;
um corte por limite em 53;

um corte por otimalidade 543.
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9. Toépicos

Outras técnicas

e Branch-and-cut.

Comega com menos restrigoes (relaxagao) e insere restrigdes (cortes) nos
sub-problemas da busca com branch-and-bound.

e Branch-and-price.

Comega com menos varidveis e insere varigveis (“geragdo de colunas”)
nos sub-problemas da busca com branch-and-bound.
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10. Exercicios

(Solugoes a partir da pdgina 200.)

Exercicio 10.1 (Formulagao)

A empresa “Festa fulminante” organiza festas. Nos préximos n dias, ela pre-
cisa pi pratos, 1 < i < n. No comego de cada dia gerente tem os seguintes

opgoes:

e Comprar um prato para um pr

eco de c reais.

e Mandar lavar um prato devagarmente em d; dias, por um preco de 14

reais.

e Mandar lavar um prato rapidamente em d; < d; dias, por um preco de

1, > 1 reais.

O gerente quer minimizar os custos dos pratos.

inteira.

Exercicio 10.2 (Planos de corte)
Resolve

maximiza

sujeito a

maximiza

sujeito a

com o algoritmo de planos de corte using cortes de Chvatal-Gomory.

X1 + 3x2

—x1 <=2

x2 <3
—x1—x2 <4
3x1 +x2 <12
Xi € Z4

X1 —ZXZ

—T1x7 + 15%, <60
dx1 +3xy <24
10x7 — 5%y <49
X1,X2 €Z+

Formule como programa
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Exercicio 10.3 (Formulacgao)
Para os problemas abaixo, acha uma formulagao como programa inteira.

CONJUNTO INDEPENDENTE MAXIMO
Instancia Um grafo ndo-direcionado G = (V, A).

Solugdao Um conjunto independente 1, i.e. I C V tal que para vértices
vi,v2 €1 {vi,va} & A

Objetivo Maximiza |I|.

EMPARELHAMENTO PERFEITO COM PESO MAXIMO

Instancia Um grafo nio-direcionado bi-partido G = (V7 U V3, A) (a fato
de ser bi-partido significa que A C V7 x V) com pesos p: A — R
nos arcos.

Solugao Um emparelhamento perfeito, i.e. um conjunto de arcos C C A
tal que todos nds no sub-grafo G[C] = (V; U V;,C) tem grau 1.

Objetivo Maximiza o peso total } .. p(c) do emparelhamento.

PROBLEMA DE TRANSPORTE

Instdncia n depdsitos, cada um com um estoque de p; (1 < i < n)
produtos, ¢ m clientes, cada um com uma demanda de d; (1 <j <
m) produtos. Custos de transporte ai; de cada depdsito para cada
cliente.

Solugdo Um decisao quantos produtos xi; devem ser transportados do
depésito 1 ao cliente j, que satisfaz (i) Cada depésito manda todo
seu estoque (ii) Cada cliente recebe exatamente a sua demanda.
(Observe que o ntimero de produtos transportados deve ser integral.)

Objetivo Minimizar os custos de transporte 3 ; ; aijXij.
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CONJUNTO DOMINANTE
Instancia Um grafo ndo-direcionado G = (V, A).

Solugdao Um conjunto dominante, i.e. um conjunto D C V| tal que Vv €
V:veDV(Jue D :{u,v} e A) (cada vértice faz parte do conjunto
dominante ou tem um vizinho no conjunto dominante).

Objetivo Minimizar o tamanho do conjunto dominante |D|.

Exercicio 10.4 (Formulacao)
Acha uma formulagao inteira para todos os 21 problemas que o Karp provou
NP-completo [ , ].

Exercicio 10.5 (Formulagao: Apagando e ganhando)

Juliano é fa do programa de auditério Apagando e Ganhando, um programa
no qual os participantes sao selecionados atraves de um sorteio e recebem
prémios em dinheiro por participarem. No programa, o apresentador escreve
um numero de N digitos em uma lousa. O participante entao deve apagar
exatamente D digitos do niimero que estd na lousa; o nimero formado pelos
digitos que restaram é entao o prémio do participante. Juliano finalmente
foi selecionado para participar do programa, e pediu que vocé escrevesse um
programa inteira que, dados o niimero que o apresentador escreveu na lousa,
e quantos digitos Juliano tem que apagar, determina o valor do maior prémio
que Juliano pode ganhar.

(Fonte: Maratona de programagao regional 2008, RS)

Exercicio 10.6 (Formulagao: Set)

Set é um jogo jogado com um baralho no qual cada carta pode ter uma,
duas ou trés figuras. Todas as figuras em uma carta sao iguais, e podem ser
circulos, quadrados ou triangulos. Um set é um conjunto de trés cartas em
que, para cada caracteristica (ndmero e figura), u ou as trés cartas sdo iguais,
ou as trés cartas sao diferentes. Por exemplo, na figura abaixo, (a) é um set
valido, j& que todas as cartas tém o mesmo tipo de figura e todas elas tém
numeros diferentes de figuras. Em (b), tanto as figuras quanto os niimeros sao
diferentes para cada carta. Por outro lado, (¢) nao é um set, j& que as duas
ultimas cartas tém a mesma figura, mas esta é diferente da figura da primeira
carta.
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10. Exercicios

12 | B ]
[ee ] [O0O] [2oA
[eee] [eo] [£A
(a) (b) ()

O objetivo do jogo é formar o maior nimero de sets com as cartas que estao
na mesa; cada vez que um set é formado, as trés cartas correspondentes sao
removidas de jogo. Quando héa poucas cartas na mesa, é facil determinar
0 maior numero de sets que podem ser formados; no entanto, quando ha
muitas cartas ha muitas combinagoes possiveis. Seu colega quer treinar para
o campeonato mundial de Set, e por isso pediu que voceé fizesse um programa
inteira e que calcula o maior niimero de sets que podem ser formados com um
determinado conjunto de cartas.

(Fonte: Maratona de programagao regional 2008, RS)

Exercicio 10.7 (Matrizes totalmente unimodulares)
Para cada um dos problemas do exercicio 10.3 decide, se a matriz de coefici-
entes é totalmente unimodular.

Exercicio 10.8 (Formulagao)
Para os problemas abaixo, acha uma formulagdo como programa inteira.

COBERTURA POR ARCOS

Instancia Um grafo nao-direcionado G = (V,E) com pesos ¢ : E — Q nos
arcos.

Solucdo Uma cobertura por arcos, i.e. um subconjunto E’ C E dos arcos
tal que todo vértice faz parte de ao menos um arco selecionado.

Objetivo Minimiza o custo total dos arcos selecionados em E’.

CONJUNTO DOMINANTE DE ARCOS

Instancia Um grafo ndo-direcionado G = (V,E) com pesos ¢ : E — Q nos
arcos.

Solucdo Um conjunto dominante de arcos, i.e. um subconjunto E/ C E
dos arcos tal que todo arco compartilha um vértice com ao menos
um arco em E’.
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Objetivo Minimiza o custo total dos arcos selecionados em E’.

COLORAGAO DE GRAFOS
Instdncia Um grafo nao-direcionado G = (V,E).

Solucao Uma coloragao do grafo, i.e. uma atribuicao de cores nas vértices
c:V — Z] tal que cada par de vértices ligando por um arco recebe
uma cor diferente.

Objetivo Minimiza o nimero de cores diferentes.

CLIQUE MINIMO PONDERADO

Instancia Um grafo nao-direcionado G = (V, E) com pesos ¢ : V — Q nos
vértices.

Solugdo Uma clique, i.e. um subconjunto V' C V de vértices tal que
existe um arco entre todo par de vértices em V.

Objetivo Maximiza o peso total dos vértices selecionados V'.

SUBGRAFO CUBICO
Instancia Um grafo nao-direcionado G = (V, E).

Solugdo Uma subgrafo ciibico, i.e. uma selegdo E/ C E dos arcos, tal que
cada vértice em G’ = (V,E’) possui grau 0 ou 3.

Objetivo Maximiza o nimero de arcos selecionados |E’|.

Exercicio 10.9 (Formulagao e implementacao: Investimento)

Uma empresa tem que decidir quais de sete investimentos devem ser feitos.
Cada investimento pode ser feito somente uma tinica vez. Os investimentos
tem lucros (ao longo prazo) e custos iniciais diferentes como segue
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Investimento
1 2 3 4 5 6 7

Lucro estimado [MR$] 17 10 15 19 7 13
Custos iniciais [MR$] 43 28 34 48 17 32 23

A empresa tem 100 MR$ capital disponivel. Como maximizar o lucro total
(ao longo prazo, nao considerando os investimentos atuais), respeitando que
os investimentos 1,2 e 3,4 sdo mutualmente exclusivas, e nem o investimento
3 nem o investimento 4 pode ser feita, sem ao menos um investimento em 1
ou 2 (as outros investimentos ndo tem restrigoes).

Exercicio 10.10 (Formulacao e implementagao: Brinquedos)

Um produtor de brinquedos projetou dois novos brinquedos para Natal. A
preparacao de uma fabrica para produzir custaria 50000 R$ para a primeiro
brinquedo e 80000 R$ para o segundo. Apds esse investimento inicial, o pri-
meiro brinquedo rende 10 R$ por unidade e o segundo 15RS$.

O produtor tem duas fabricas disponiveis mas pretende usar somente uma,
para evitar custos de preparagao duplos. Se a decisao for tomada de produzir
os dois brinquedos, a mesma fabrica seria usada.

Por hora, a fabrica 1 é capaz de produzir 50 unidades do brinquedo 1 e 40
unidades do brinquedo 2 e tem 500 horas de producao disponivel antes de
Natal. A fabrica 2 é capaz de produzir 40 unidades do brinquedo 1 e 25
unidades do brinquedo 2 por hora, e tem 700 horas de produgao disponivel
antes de Natal.

Como nao sabemos se os brinquedos serao continuados depois Natal, a pro-
blema é determinar quantas unidades de cada brinquedo deve ser produzido
até Natal (incluindo o caso que um brinquedo nao é produzido) de forma que
maximiza o lucro total.

Exercicio 10.11 (Formulacdo e implementacio: avides)

Uma empresa produz pequenos avioes para gerentes. Os gerentes frequen-
temente precisam um aviao com caracteristicas especificas que gera custos
inicias altos no comecgo da produgao.

A empresa recebeu encomendas para trés avides, mas como ela estd com ca-
pacidade de producao limitada, ela tem que decidir quais das trés avices ela
vai produzir. Os seguintes dados sao relevantes
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Avioes Cliente

produzidas 1 2 3
Custo inicial [MR$] 3 2 0
Lucro [MR$/aviao] 2 3 0.8
Capacidade usada [%/avido] 20% 40% 20%
Demanda méxima [avides] 3 2 5

Os clientes aceitam qualquer nimero de avides até a demanda méaxima. A
empresa tem quer decidir quais e quantas avides ela vai produzir. As avioes
serao produzidos em paralelo.

Exercicio 10.12 (Desigualdades validas (Nemhauser,Wolsey))
Uma formulacao do problema do conjunto independente méximo é

maximiza Z Xy (10.1)
vev

sujeito a Xu+x <1 viu,v} € E (10.2)

Xy € B Yv e V. (10.3)

Considere a instancia

Mostra que ) ;_.;-7%i <2 é uma desigualdade valida.

Exercicio 10.13 (Formulacao (Winkler))

Uma fechadura de combinacao com trés discos, cada um com niimeros entre
1 e 8, possui um defeito, tal que precisa-se somente dois nimeros corretos dos
trés para abri-la. Qual o nimero minimo de combinagoes (de trés niimeros)
que precisa-se testar, para garantidamente abrir a fechadura?

Formule um programa inteiro e resolve-o.
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10. Exercicios

Exercicio 10.14 (Desigualdades vélidas)
Considere a instancia

do problema do caixeiro viajante (os nimeros nas arestas representam os
indices das varidveis correspondentes). Mostra que

X1 +X2+X5+Xg+X7+%0 <4

é uma desigualdade vélida.

Exercicio 10.15 (Formulacao)
Formule o problema

MAX-k-SAT

Entrada Uma férmula em forma normal conjuntiva sobre varidaveis
X1,...,Xm com M cladsulas @(x1,...,xx) = C1 A--- A Cy em que
cada clatusula possui no maximo k literais

Solucdo Uma atribuicao x; — {0, 1}.

Objetivo Maximizar o nimero de claisulas satisfeitas.

(Dica: Usa as desigualdades (7.1)-(7.3). Comega com k = 3.)
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11. Introducao

Resolucao de Problemas

e Problemas Polinomiais
1. Programagao Dinamica
2. Divisao e Conquista

3. Algoritmos Gulosos

e Problemas Combinatdérios

— Técnicas Exatas: Programagao Dinamica, Divisao e Conquista back-
tracking, branch & bound

— Programacao nao-linear: Programacgao semi-definida, etc.

Algoritmos de aproximacao: garantem solugao aproximada

Heuristicas e metaheuristicas: raramente provéem aproximagao

Heuristicas

e O que é uma heuristica?
Practice is when it works and nobody knows why.

e Grego heurisko: eu acho, eu descubro.

e Qualquer procedimento que resolve um problema
— bom em média
— bom na prética (p.ex. Simplex)

— nao necessariamente comprovadamente.

e Nosso foco
— Heuristicas construtivas: Criam solugoes.

— Heuristicas de busca: Procumra solugoes.
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11. Introducao

Heuristicas de Construcao

e Constréem uma solugao, escolhendo um elemento a ser inserido na solugao

a cada passo.

e Geralmente sao algoritmos gulosos.

e Podem gerar solugoes infactiveis.

— Solugao infactivel: nao satisfaz todas as restricées do problema.

— Solugao factivel: satisfaz todas as restri¢ées do problema, mas nao

é necessariamente a étima.

Exemplo: Heuristica construtiva

e Problema do Caixeiro Viajante (PCV) — Heuristica do vizinho mais

proximo.

Algoritmo 11.1 (HVizMaisProx)
Entrada Matriz de distancias completa D = (dy;), ntimero de cidades n.

Saida Uma solucao factivel do PCV: Ciclo Hamiltaneo C com custo c.

HVizMaisProx (D ,n)=

{ cidade inicial rand6émica }

u:= seleciona uniformemente de [1,n]

wi=u

{ representacdo de caminhos: sequéncia de vértices }
C=u { ciclo inicial }

c:=0 { custo do ciclo }

repeat n—1 vezes
seleciona v¢ C com distdncia minima de u
C:=Cv
c:=c+duv
u:=v
end repeat
C:=Cw { fechar ciclo }
c:=c+duw
return (C,c)
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Meta-heuristicas

e Heuristicas genéricas: meta-heuristicas.

Motivacao: quando considera-se a possibilidade de usar heuristicas

e Para gerar i,a solugao factivel num tempo pequeno, muito menor que
uma solugao exata pudesse ser fornecida.

e Para aumentar o desempenho de métodos exatos. Exemplo: um limi-
tante superior de um Branch-and-Bound pode ser fornecido por uma
heuristica.

Desvantagens do uso de heuristicas

e No caso de metaheuristicas, nao ha como saber o quao distante do étimo
a solugao estd

e Nao hé garantia de convergéncia
e Dependendo do problema e instancia, nao hd nem como garantir uma
solugao 6tima
Problema de otimizacao em geral
e Um problema de otimizagao pode ser representado por uma quadrupla
(L, S, f, obj)
— I é o conjunto de possiveis instancias.

— S(i) é o conjunto de solugoes factiveis (espago de solugdes factiveis)
para a instancia i.

— Uma fungao objetivo (ou fitness) f(-) avalia a qualidade de uma
dada solugao.

— Um objetivo obj = min ou max: s* € S para o qual f(s*) seja
minimo ou maximo.

o Alternativa

optimiza f(x)

sujeitoa x €S

e S discreto: problema combinatorial.
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11. Introducao

Técnicas de solucao
e Resolver o problema nessa geralidade: enumeragao.
e Frequentemente: Uma solugdo x € S possui uma estrutura.
e Exemplo: x é um tuplo, um grafo, etc.

e Permite uma enumeracao por componente: branch-and-bound.
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12. Heuristicas baseados em Busca local

12.1. Busca local

Busca Local

e Frequentemente: O espacgo de solugoes possui uma topologia.

e Exemplo da otimizacdo (continua): max{x? +xy | x,y € R}

XEXEXRY

e Espaco euclidiano de duas dimensoes.

e Isso podemos aproveitar: Busca localmente!

Vizinhancas

e O que fazer se ndo existe uma topologia natural?
e Exemplo: No caso do TSP, qual o vizinho de um ciclo Hamiltaneo?

e Temos que definir uma vizinhanga.
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12. Heuristicas baseados em Busca local

e Notacao: Parax € S
N(x)

denota o conjunto de solugoes vizinhos.

e Uma vizinhanca defina a paisagem de otimizagao (ingl. optimization
landscape): Espaco de solugoes com valor de cada solugao.

Relacao de vizinhanca entre solucoes

e Uma solugdo s’ é obtida por uma pequena modificagdo na solugéo s.

e Enquanto que S e f sao fornecidos pela especificagao do problema, o
projeto da vizinhanga é livre.

Busca Local k-change e insercao

e k-change: mudanca de k componentes da solugao.

Cada solucdo possui vizinhanca de tamanho O(nk).

Exemplo: 2-change, 3-change.

TSP: 2-change (inversdo).

Inser¢ao/remogao: inser¢ao de um componente da solugdo, seguido da
factibilizagao da solugao

Vertex cover: 1-change + remogao.

Exemplo: Vizinhanca mais elementar

e Suponha um problema que possue como solugoes factiveis S = B™ (por
exemplo, uma instancia do problema de particionamento de conjuntos).

e Entao, para n = 3 e sp={0,1,0}, para uma busca local 1-flip, N(so) =
{(1,1,0),(0,0,0), (0,1, 1)}
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12.1. Busca local

Exemplo: Vizinhancas para TSP

e 2-0pt: Para cada par de arcos (uy,vq) e (uz,v2) nao consecutivos,
remova-os da rota, e insira os arcos (u,uz) e (vi,vz).

e Para uma solugdo s e uma busca k-opt [NV (s)| € O(n¥).

Caracteristicas de vizinhancas
E desejavel que uma vizinhanga é

e simétrica (ou reversivel)
yeN((X) = xeN(y)

e conectada (ou completa)

Vx,y €S3zy,...,zk €S z1 € N(x)
zit1 € N(zy) 1<i<k
y € N(z)

Busca Local: Ideia
e Inicia a partir de uma solugao sg
e Se move para solucoes vizinhas melhores no espago de busca.

e Para, se nao tem solucoes melhores na vizinhanca.

e Mas: Repetindo uma busca local com solugoes inicias randomicas, acha-
mos o minimo global com probabilidade 1.
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12. Heuristicas baseados em Busca local

Busca local — Caso continuo

Algoritmo 12.1 (Busca local continua)
Entrada Solugao inicial sy € R™, tamanho inicial « de um passo.

Saida Solucdo s € R™ tal que f(s) < f(so).

Nome Gradient descent.

1 BuscaLocal (s ,x)=

2 S$:=Sp

3 while Vf(x)#0 do
4 s’ :=s— aVf(s)

5 if f(s’) < f(s) then
6 s:=s’

7 else

8 diminui «

9 end if

10 end while

11 return s

Busca local — Caso continuo

o Gradiente

Vi(x) = < of (x),...,éf(x))

% OXn

sempre aponta na dire¢ido do crescimento mais alto de f (Cauchy).
e Necessario: A funcao objetivo f é diferencidvel.
e Diversas técnicas para diminuir (aumentar) «.

e Opcao: Line search na direcdo —Vf(x) para diminuir o nimero de gra-
dientes a computar.
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12.1. Busca local

Busca Local — Best Improvement

Algoritmo 12.2 (Busca Local BI)
Entrada Solucao inicial sg.

Saida Solucao s tal que f(s) < f(sp).

Nomes Steepest descent, steepest ascent.

1 BuscaLocal (so)=

S:=S$g

while true
s’ == argmin, {f(y) |y € N(s)}
if f(s’) < f(s) then s:=s’
else break

end while

return s

00 J O U = W N

Busca Local — First Improvement

Algoritmo 12.3 (Busca Local FI)
Entrada Solucao inicial sg.

Saida Solucao s’ tal que f(s’) < f(s).
Nomes Hill descent, hill climbing.

1 BuscaLocal (so)=
s =S
repeat
Select any s’ € N(s) not yet considered
if f(s’)<f(s) then s:=s’
until all solutions in A(s) have been visited
return s

~N O Uk W N
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12.

Heuristicas baseados em Busca local

Projeto de uma busca local

e Como gerar uma solucao inicial? Aleatéria, via método construtivo, etc.
e Quantas solugoes inicias devem ser geradas?

Importante: Definicao da funcdo de vizinhanca N.

e Vizinhanga grande ou pequena? (grande= muito tempo e pequena=menos
vizinhos)

Estratégia de selecao de novas solugoes
— examine todas as solugoes vizinhas e escolha a melhor
— assim que uma solucao melhor for encontrada, reinicie a busca.

Neste caso, qual a sequéncia de solugoes examinar?

e Importante: Método eficiente para avaliar a funcao objetivo de vizinhos.

Exemplo: 2-change TSP

e Vizinhanca: Tamanho O(n?).
e Avaliagdo de uma solugao: O(n) (somar n distancias).
e Atualizando a valor da solucao atual: O(1) (somar 4 distancias)

e Portanto: Custo por iteragao de “best improvement”
— O(n?) sem avaliacao diferential.

— O(n?) com avaliacao diferential.

Avaliacao de buscas locais
Como avaliar a busca local proposta?

e Poucos resultados tedricos.
e Dificil de saber a qualidade da solugao resultante.

e Depende de experimentos.

Problema Dificil
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e E fécil de gerar uma solucio aleatéria para o TSP, bem como testar sua
factibilidade

e Isso nao é verdade para todos os problemas

e Exemplo dificil: Atribuig¢do de pesos a uma rede OSPF



12.1. Busca local

Busca local

e Desvantagem obvia: Podemos parar em minimos locais.

Valor
A

» Solucao

e Exceto: Fungio objetivo convexa (caso minimizagao) ou concava (caso
maximizagao).

e Técnicas para superar isso baseadas em busca local
— Multi-Start
— Busca Tabu
— Algoritmos Metropolis e Simlated Annealing

— Variable neighborhood search
Multi-Start Metaheuristic
e Gera uma solugao aleatoria inicial e aplique busca local nesta solugao.
e Repita este procedimento por n vezes.

e Retorne a melhor solucao encontrada.

e Problema: solugoes aleatoriamente geradas em geral possuem baixa qua-
lidade.

Multi-Start

Algoritmo 12.4 (Multi-Start)
Entrada Numero de repetigoes n.
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12. Heuristicas baseados em Busca local

Saida Solucao s.

1 Multi_Start(n) :=

2 s =10

3 f* =00

4 repeat n vezes

) gera solucao randomica s
6 s := BuscaLocal(s)
7 if f(s) <f* then
8 s*i=s

9 f* .= 1(s)
10 end if
11 end repeat

12 return s*

Cobrimento de Vértices
e Definicao de vizinhanca
e grafo sem vértices
e grafo estrela
e clique bipartido Kj ;

e grafo linha

12.2. Metropolis e Simulated Annealing

O algoritmo Metropolis

e Proposto em 1953 por Metropolis, Rosenbluth, Rosenbluth, Teller e Tel-

ler

e simula o comportamento de um sistema fisico de acordo com a mecéanica

estatistica

e supoe temperatura constante

— Um modelo bésico define que a probabilidade de obter um sistema
. ) . R ~  _E .
num estado com energia E é proporcional a fungao e” x7 de Gibbs-
Boltzmann, onde T > 0 é a temperatura, e k > 0 uma constante
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12.2. Metropolis e Simulated Annealing

— a func¢ao é monotonica decrescente em E: maior probabilidade de
estar em um sistema de baixa energia

— para T pequeno, a probabilidade de um sistema em estado de baixa
energia é maior que um em estado de alta energia

— para T grande, a probabilidade de passar para outra configuracao
qualquer do sistema é grande

A distribuicao de Boltzmann

1.2 T
exp(-x/0.1) ——
exp(-x/2)
exp(-x/10) --------
exp(-x/20)
1k exp(-x/500) B
\
0.8 r B
\
\
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|
|
‘\
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|
\
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0 N | | L ]
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Algoritmo Metropolis

e Estados do sistema sao solugoes candidatas

A energia do sistema é representada pelo custo da solugao
x x = /
e Gere uma perturbagao na solucao s gerando uma solugao s’.

e Se E(s’) < E(s) atualize a nova solugéo para s’.

Caso contrario, AE = E(s’) — E(s) > 0.

A solugao s’ passa ser a solugao atual com probabilidade s

°
.
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12. Heuristicas baseados em Busca local

e Caracteristica marcante: permite movimentos de melhora e, com baixa
probabilidade, também de piora

Metropolis

Algoritmo 12.5 (Metropolis)
Entrada Solugao inicial s, uma temperatura T, uma constante k.

Saida Solucao s’ : c(s’) < c(s)

1 Metropolis(s, T, k)=

2 do

3 seleciona s’ € N(s)

4 if c(s’) <c(s) then

5 atualiza s:=s’

6 else

7 atualiza s:=s’ com probabilidade e’w
8 end if

9 until (critério de para satisfeito)

10 return s

Consideracdes sobre o algoritmo

e O algoritmo Metropolis pode resolver problemas que o gradiente descen-
dent nao conseguia

e Mas em muitos casos o comportamento deste algoritmo nao é desejado
(vertex cover para grafo sem arcos)

e Alta probabilidade de saltos quando préximo de um minimo local

e T pode ser manipulada: se T for alta, o algoritmo Metropolis funciona
de forma similar a um passeio aleatério (ingl. random walk) e se T for
baixa (préxima a 0), o algoritmo Metropolis funciona de forma similar
ao gradiente descendente.
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12.3. GRASP

Simulated Annealing

e Simula um processo de recozimento.

e Recozimento: processo da fisica que aquece um material a uma tem-
peratura bem alta e resfria aos poucos, dando tempo para o material
alcancar seu estado de equilibrio

e Recozimento simulado: parte de uma alta temperatura e baixa gradual-
mente. Para cada temperatura, permite um nimero maximo de saltos
(dois lagos encadeados)

Simulated Annealing

Algoritmo 12.6 (Simulated Annealing)
Entrada Solucao inicial s, temperatura T, constante k, fator de esfria-
mento 1 € [0, 1], um ntdmero inteiro I

Saida Solucao s’ tal que f(s’) < f(s).
1 SimulatedAnnealing(s, T, k, r, I) :=

2 repeat (até critério de parada satisfeito)

3 repeat 1 vezes

4 seleciona s’ € M(s) que ainda nao foi visitado
5 if f(s’) <f(s) then

6 s:=s'

7 else

8 s:=s’ com probbilidade e (f(s)=f(s)/kT.

9 end fi

10 end repeat

11 T:=Txr

12 end repeat
13 return s

12.3. GRASP

GRASP
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12. Heuristicas baseados em Busca local
e GRASP: greedy randomized adaptive search proce-
dure
e Proposto por Mauricio Resende e Thomas Feo (1989).

e Mauricio Resende: Pesquisador da AT&T por 20 anos,
Departamento de Algoritmos e Otimizagao

Mauricio G. C.
Resende

GRASP

e Método multi-start, em cada iteragao
1. Gera solugoes com um procedimento guloso-randomizado.

2. Otimiza as solugoes geradas com busca local.

Algoritmo 12.7 (GRASP)
Entrada Parametro «.

Saida Solucao s’ : c(s’) < c(s)

1 GRASP(«, ...)=
2 s é alguma solucao
do
s’ := greedy randomized solution(x)
s’ := BuscalLocal(s’)
s:=s’ if f(s') < f(s)
until a stopping criterion is satisfied
return s

0 J O Utk W

Construcao gulosa-randomizada
e Motivagao: Um algoritmo guloso gera boas solugoes inicias.

e Problema: Um algoritmo deterministico produz sempre a mesma solugao.
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12.3. GRASP

e Logo: Aplica um algoritmo guloso, que nao escolhe o melhor elemento,

mas escolhe randomicamente entre os % melhores candidatos.

e O conjunto desses candidatos se chama restricted candidate list (RCL).

Construcao gulosa-randomizada: Algoritmo guloso

Guloso () :=
S=0

while S=(sy,...,s;) com i<n do
entre todos candidatos C para siii:
escolhe o melhor se€C
S:=(s7,...,8i,5)
end while

Construcao gulosa-randomizada: Algoritmo guloso

Guloso—Randomizado (&) :=
S=0

while S = (s7,...,si) com i<n do
entre todos candidatos C para si;1:
forma a RCL com os o\% melhores candidatos em C
escolhe randomicamente um s € RCL
S:=(s1,...,8i,5)
end while

GRASP

Algoritmo 12.8 (GRASP)
Entrada Solucao inicial s, parametro «.

Saida Solucao s’ : c(s’) < c(s)
1 GRASP(so, «, ...)=

2 X 1= Sy
3 do
4 y := greedy randomized solution(o)
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12. Heuristicas baseados em Busca local

o~ S Ot

y := BuscalLocal(y)

atualiza x caso y é solucao melhor
until a stopping criterion is satisfied
return s

GRASP: Variacoes

e long term memory: hash table (para evitar otimizar solugoes ja vistas)

e Parametros: so, N(x), a € [0,1] (para randomizagdo), tamanho das

listas (conj. elite, rcl, hash table), niimero de iteragoes,

GRASP com meméria

e O GRASP original ndo havia mecanismo de memoria de iteragoes pas-

sadas

Atualmente toda implementacdo de GRASP usa conjunto de solugbes
elite e religagdo por caminhos (path relinking)

Conjunto de solugoes elite: conjunto de solugoes diversas e de boa qua-
lidade

— uma solucado somente é inserida se for melhor que a melhor do
conjunto ou se for melhor que a pior do conjunto e diversa das
demais

— a solucao a ser removida é a de pior qualidade

Religagao por Caminhos: a partir de uma solugao inicial, modifique um
elemento por vez até que se obtenha uma solucdo alvo (do conjunto elite)

solugdes intermediarias podem ser usadas como solugoes de partida

Comparacao entre as metaheuristicas apresentadas
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e Metaheuristicas: Simulated annealing (SA), Multi-Start Search (MS),

GRASP

e SA tem apenas um ponto de partida, enquanto que os outros dois

métodos testa diversos



12.4. Busca Tabu

e SA permite movimento de piora, enquanto que os outros dois métodos
nao

e SA é baseado em um processo da natureza, enquanto que os outros dois

nao

12.4. Busca Tabu

Busca Tabu (Tabu Search)
e Proposto por Fred Glover em 1986 (principios bésicos
do método foram propostos por Glover ainda em 1977)

e Professor da Universidade do Colorado, EUA

Fred Glover

Busca Tabu (BT)

e Assim como em simulated annealing (SA) e VNS, TB é baseada inteira-
mente no processo de busca local, movendo-se sempre de uma solucao s
para uma solugao s’

e Assim com em SA, também permite movimentos de piora

e Diferente de SA que permite movimento de piora por randomizagao, tal
movimento na BT é deterministico

e A base do funcionamento de Busca Tabu é o uso de memoria segundo
algumas regras

e O nome Tabu tem origem na proibicao de alguns movimentos durante a
busca

Busca Tabu (BT)

e Mantém uma lista T de movimentos tabu

e A cada iteracdo se move para o melhor vizinho, desde que nao faga
movimentos tabus
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12.

Heuristicas baseados em Busca local
e Permite piora da solucao: o melhor vizinho pode ser pior que o vizinho
atual!

e Sao inseridos na lista tabu elementos que provavelmente nao direcionam
a busca para o 6timo local desejado. Ex: ultimo movimento executado

e o0 tamanho da lista tabu é um importante parametro do algoritmo

e Critérios de parada: quando todos movimentos sao tabus ou se x movi-
mentos foram feitos sem melhora

Busca Tabu: Conceitos Basicos e notacao

e s: solugao atual

o s*:

melhor solugao

e f*: valor de s*

e N(s): Vizinhanca de s.

e N(s) C N(s): possiveis (nao tabu) solugbes vizinhas a serem visitadas
e Solugoes: inicial, atual e melhor

e Movimentos: atributos, valor

e Vizinhanca: original, modificada (reduzida ou expandida)

Movimentos Tabu
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e Um movimento é classificado como tabu ou nao tabu pelas regras de
ativacdo tabu

e em geral, as regras de ativagdo tabu classificam um movimento como
tabu se o movimento foi recentemente realizado

e Memdria de curta duracao (MCD) - também chamada de lista tabu:
usada para armazenar os movimentos tabu

e duragao tabu (tabu tenure) é o niimero de iteragoes em que o movimento
permanecera tabu

e dependendo do tamanho da MCD um movimento pode deixar de ser
tabu antes da duragao tabu estabelecida



12.4. Busca Tabu

e A MCD em geral é implementada como uma lista circular

e O objetivo principal da MCD ¢ evitar ciclagem e retorno a solugoes ja
visitadas

e 0s movimentos tabu também colaboram para a busca se mover para
outra parte do espago de solugoes, em dire¢ao a um outro minimo local

Busca Tabu

Algoritmo 12.9 (BuscaTabu)
Entrada uma solucao s

Saida uma solucao s’ : f(s’) < f(s)

1 BuscaTabu()=
2 Inicializacao:
s:=Sg; f*:=1(sp); s*i=s0 ; T:=0
while not STOP
s’ := select s’ € N(s) com min f(s)
if f(s) <fx then
f*:=1(s); s*:=s
insira movimento em T (a lista tabu)
end while

© 00~ O Ut =W

Busca Tabu (BT)

e critérios de parada:
— numero de iteragoes (N qax)
— numero interagoes sem melhora
— quando s* atinge um certo valor minimo (mdximo) estabelecido

e Um movimento nao é executado se for tabu, ou seja, se possuir um ou
mais atributos tabu-ativos

e Pode ser estabelecida uma regra de uso de um movimento tabu (critério
de aspiragdo)
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12. Heuristicas baseados em Busca local

— Critério de aspiracao por objetivo: se o movimento gerar uma
solucao melhor que s*, permite uso do movimento tabu

— Critério de aspiracao por dire¢ao: o movimento tabu é liberado se
for na diregao da busca (de melhora ou piora)

Busca Tabu: mecanismos auxiliares

e intensificacao: a idéia é gastar mais “esforco” em regides do espago de
busca que parece mais promissores. Isso pode ser feito de diversas manei-
ras (exemplo, guardar o nimero de interagdes com melhora consecutiva).
Nem sempre este a intensificacao traz beneficios.

e Diversificagao: recursos algoritmicos que forcam a busca para um espago
de solugoes ainda nao explorados.

— uso de memdria de longo prazo (exemplo, nimero de vezes que a
inser¢ao de um elemento provocou melhora da solugao)

— Estratégia basica: forgar a insercao de alguns poucos movimentos
pouco executados e reiniciar a busca daquele ponto

— Estratégia usada para alguns problemas: permitir solugoes infactiveis
durante algumas interagoes

Busca Tabu: variacoes

e Virias listas tabus podem ser utilizadas (com tamanhos, duragao, e
regras diferentes)

e BT probabilistico: os movimentos sao avaliados para um conjunto se-
lecionado aleatoriamente N’(s) € N(s). Permite usar uma lista tabu
menor, acontece menos ciclagem.

e A duragdo tabu pode variar durante a execugio

Comparacao entre as metaheuristicas apresentadas até entao

e Metaheuristicas: Simulated annealing (SA), Multi-Start Search (MSS),
GRASP, BT

e SA e BT tém apenas um ponto de partida, enquanto que os outros dois
métodos testa diversos

e SA e BT permitem movimentos de piora, enquanto que os outros dois
métodos nao
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12.5. Variable Neighborhood Search

e SA é baseado em um processo da natureza, enquanto que os outros
métodos nao

Parametros e decisoes das metaheuristicas

e SA:

— Parametros: temperatura inicial, critério de parada, varidvel de
resfriamento

— Decisoes: vizinhanga, solugao inicial
e GRASP:

— Parametros: so, N(x), « €[0,1] (para randomizacao), tamanho das
listas (conj. elite, rcl, hash table), critério de parada

— Decisbes: vizinhanga, solugao inicial (so), randomizagao da sg, atu-
alizacoes do conjunto elite

e BT:
— Parametros: tamanho da lista tabu, critério de parada

— Decisoes: vizinhaga, critérios para classificar movimento tabu

12.5. Variable Neighborhood Search

Variable Neighborhood Search
e Pierre Hansen e Mladenovié, 1997

e Hansen é Professor na HEC Montréal, Canada

Pierre Hansen

Variable Neighborhood Search
e Método que explora mais que uma vizinhaca.

e Explora sistematicamente as seguintes propriedades:

— O minimo local de uma vizinhanga ndo é necessariamente minimo
para outra vizinhanca
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12. Heuristicas baseados em Busca local

— Um minimo global é um minimo local com respeito a todas as
vizinhangas

— Para muitos problemas, os minimos locais estao localizados relati-
vamente préximos no espago de busca para todas as vizinhangas

Variable Neighborhood Search

Algoritmo 12.10 (VNS)
Entrada Solugdo inicial s, um conjunto de vizinhancas N, 1 <i < m.
Saida uma solucao s : f(s) < f(sp)
1 VNS(so ,{Ni})z
2 X = $So
3 do (até chegar a um minimo local
4 para todas as buscas locais)
5 k =1
6 while k<m do
7 escolhe y € Ni(x) randomicamente { shaking }
8 y := BuscaLocal(y)
9 if f(y) <f(x) then
10 X =y
11 k =1
12 else
13 k = k+1
14 end if
15 end while
16 end do
17 return x
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13. Heuristicas inspirados da natureza

13.1. Algoritmos Genéticos e meméticos

Algoritmos Genéticos
e Proposto na década de 60 por Henry Holland.

e Professor da Faculdade de Engenharia Elétrica e de
Computagao da Universidade de Michigan/EUA.

e Seu livro: Adaptation in Natural and Artificial Sys-
tems (1975).

John Henry
Holland (+1929)

Algoritmos genéticos

e Foi proposto com o objetivo de projetar software de sistemas artificiais
que reproduzem processos naturais.

e Baseados na evolugao natural das espécies.

e Por Darwin: individuos mais aptos tém mais chances de perpetuar a
espécie.

e Mantém uma populagao de solugoes e nao uma unica solugao por vez.
e Usa regras de transicao probabilisticas, e nao deterministicas.

e Procedimentos: avaliagao, sele¢do, geragdo de novos individuos (recom-
binagao), mutagcao.

e Parada: numero x de geragoes total, numero y de geragoes sem melhora.

Algoritmos genéticos: Caracteristicas
e Varias solugoes (“populacido”).
e Operagoes novas: Recombinagao e mutagao.

e Separagao da representacao (“gendtipo”) e formulagao “natural” (fendtipo).
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13. Heuristicas inspirados da natureza

Algoritmos Genéticos: Nocoes

e Genes: Representagdo de um elemento (bindrio, inteiro, real, arco, etc)
que determine uma caracteristica da solugao.

Alelo: Instancia de uma gene.

e Cromossomo: Uma string de genes que compdem uma solugao.

Gendtipo: Representagao genética da solugdo (cromossomos).

Fenétipo: Representacao “fisica” da solucao.

Populagao: Conjunto de cromossomos.

Algoritmos genéticos: Representacao e Solucao

Representagao Solugao
Al S
mapeamento
[of1]3T11Tofo o 1o 1]1]0[0] AN
N / @)

V /

cromossomo

gene com alelos 0,1

Algoritmos Genéticos: exemplos

e Problema de partigao de conjuntos
Gens: O ou 1
Cromossomo: 0001101010101011110110

e Problema do Caixeiro viajante
Gens: valores inteiros entre 1 e n

Cromossomo: 15368247

Procedimentos dos Algoritmos Genéticos

e Codificacao: genes e cromossomos.

e Initializacao: geracao da populagao inicial.
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13.1. Algoritmos Genéticos e meméticos

solucao.

Selecao de pais: selecao dos individuos para crossover.

Operadores genéticos: crossover, mutacao

de parada

Algoritmos Genéticos

Fungao de Avaliagao (fitness): funcdo que avalia a qualidade de uma

Parametros: tamanho da populagao, percentagem de mutagao, critério

Algoritmo 13.1 (AlgoritmoGenético)

Entrada Parametros do algoritmo.

Saida Melhor solugdo encontrada para o problema.

1 Inicializagao e avaligcao inicial

2 while (critério de parada nao satisfeito) do
3 repeat

4 if (critério para recombinacdo) then
5 selecione pais

6 recombina e gera um filho

7 end if

8 if (critério para mutagao) then

9 aplica mutagao

10 end if

11 until (descendentes suficientes)

12 selecione nova populacgao

13 end while

Populacao Inicial: geracao

e Solugoes aleatérias.

e Método construtivo (ex: vizinho mais préximo com diferentes cidades

de partida).
e Heuristica construtiva com perturbagoes da solugao.

e Pode ser uma mistura das opgoes acima.
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13. Heuristicas inspirados da natureza

Populacao inicial: tamanho

e Populacao maior: Custo alto por iteragao.
e Populacao menor: Cobertura baixa do espago de busca.

e Critério de Reeves: Para alfabeto bindrio, populacao randomica: Cada
ponto do espago de busca deve ser alcancavel através de recombinagoes.

e Consequencia: Probabilidade que cada alelo é presente no gene i: 1 —
21,

Probabilidade que alelo é presente em todos gene: (1 —2'~™)L

Exemplo: Com | = 50, para garantir cobertura com probabilidade 0.999:

n>1-log, (1 _ %Y 0.999) ~ 16.61

Terminagao
e Tempo.
e Numero de avaliagoes.

e Diversidade. Exemplo: Cada gene é dominado por um alelo, i.e. 90%
dos individuos tem o mesmo alelo.

Préoxima Geracao

e Gerada por recombinacdo e mutacao (solugoes aleatérias ou da po-
pulagdo anterior podem fazer parte da préxima geracao).

Estratégias:
— Recombinacao e mutacao.

— Recombinagao ou mutagao.

Regras podem ser randomizadas.

Exemplo: Taxa de recombinacao e taxa de mutagao.

Exemplo: Numero de genes mutados.
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13.1. Algoritmos Genéticos e meméticos
Mutacao

e Objetivo: Introduzir elementos diversificados na populagao e com isso
possibilitar a exploragao de uma outra parte do espago de busca.

e Exemplo para representagao bindria: flip de k bits.

e Exemplo para o PCV: troca de posicao entre duas cidades.

Recombinacao

e Recombinagao (ingl. crossover): combinar caracteristicas de duas solugoes
para prover uma nova solucao potencialmente com melhor fitness.

e Explora o espago entre solugoes.

e Crossover clédssicos: one-point recombinagao e two-points recombinagao.

One-point crossover

Escolha um niimero aleatério k entre 1 e n. Gere um filho com os primeiros
k bits do pai A e com os dltimos n — k bits do pai B

e Problema de particagao: aplicacao direta do conceito

e Problema do Caixeiro Viajante: copie os primeiros k elementos do pai
A e as demais n—k posigoes preenche com as cidades faltantes, segundo
a ordem em que elas aparecem no pai B
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13. Heuristicas inspirados da natureza

Recombinacao de dois pontos

OO
ole.

Exemplo: Strategic Arc Crossover

e Selecione todos os pedagos de rotas (string) com 2 ou mais cidades que
sao iguais nas duas solugoes

e Forme uma rota através do algoritmo de vizinho mais préoximo entre os
pontos extremos dos strings

Recombinacao: Selecao dos pais

e A probabilidade de uma solugao ser pai num processo de crossover deve
depender do seu fitness.

e Variagoes:
— Probabilidade proporcional com fitness.

— Probabilidade proporcional com ordem.
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13.1. Algoritmos Genéticos e meméticos

Estratégia adotada pelos operadores

Intimeros operadores podem ser propostos para cada problema. O ideal é
combinar caracteristicas do operador usado, com outros operadores (mutagao,
busca local) usados no GA. Basicamente um crossover é projetado da seguinte
forma:

e Encontre similaridades entre A e B e insira S = A N B no filho.
e Defina conjuntos Si e Sout de caracteristicas desejaveis e nao desejaveis.
e Projete um operador que mantenha ao maximo elementos de S e Siy,
minimizando o uso de elementos de Sgt.
Nova Populacao
e Todos os elementos podem ser novos.
e Alguns elementos podem ser herdados da populacao anterior.
e Elementos novos podem ser gerados.

e Exemplos, com populagdo de tamanho A que gera p filhos. o
Seleciona os A melhores dos filhos. (A + ) Seleciona os A melhores
em toda populacao.

Estrutura da Populacao

Em geral, populagao estruturada garante melhores resultados. A estrutura
da populacao permite selecionar pais para crossover de forma mais criteriosa.
Algumas estruturas conhecidas

e Divisao em Castas: 3 particoes A, B e C (com tamanhos diferentes),
sendo que os melhores individuos estao em A e os piores em C.

e [lhas: a populacao é particionada em subpopulacoes que evoluem em
separado, mas trocam individuos a cada periodo de niimero de geracoes.

e Populacao organizada como uma arvore.

Exemplo: Populacdao em castas

e Recombinagao: Somente entre individuos da casta A e B ou C para
manter diversidade.

e Nova populagao: Manter casta ”elite” A, re-popular casta B com filhos,
substituir casta C com solucoes randomicas.
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13. Heuristicas inspirados da natureza

Exemplo: Populacao em arvore

e Considere uma &rvore terndria completa, em que cada né possui duas
solugdes (pocket e current).

e A solucao current é a solucao atual armazenada naquela posicao da
arvore.

e A solugdo pocket é a melhor ja tida naquela posi¢do desde a primeira
geracao.

e A cada solugao aplique ezchange (se a solucdo current for melhor que a
pocket, troque-as de posigao)

e Se a solugao pocket de um filho for melhor que a do seu pai, troque o
né de posicao.
Algoritmos Meméticos

e Proposto por Pablo Moscato, Newcastle, Austrélia.

e Idefa: Informacao “cultural” pode ser adicionada a um
individuo, gerando um algoritmo memético.

e Meme: unidade de informagao cultural.

Pablo Moscato

Algoritmos Meméticos

e Um procedimento de busca local pode inserir informagao de boa quali-
dade, e nado genética (memes).

e Faz uso de um procedimento de busca local (em geral aplicado & solugao
gerada pelo procedimento de recombinagao).

e Geralmente trabalha com populagoes menores.

Comparacao entre as Metaheuristicas Apresentadas

e Quais que dependem de randomizagao? SA, GRASP, GA

e Quais que geram apenas uma solugao inicial em todo processo? BT, SA
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13.1. Algoritmos Genéticos e meméticos
e (Quais mantém um conjunto de solugoes, em vez de considerar apenas
uma? GA
e Quais sdo inspiradas em processos da natureza? GA, BT
e Qual gera os melhores resultados?
Existem outras Metaheuristicas

Handbook of Metaheuristics, por Fred W. Glover (Editor), Gary A. Kochen-
berger (Editor) Kluwer 2002.

HANDBOOK OF
METAHEURISTICS

T
Fomd Cdornin
Lo & Rin hemerge

Consideracoes Finais

e O desempenho de uma metaheuristica depende muito de cada imple-
mentagao

e As metaheuristicas podem ser usadas de forma hibridizada
e Técnicas de otimizacao multiobjetivo tratam os casos de problemas com
mais de um objetivo (Curva de pareto)
Exercicio

e Problema de alocagao: atender n clientes por m postos de atendimento
(um posto é instalado no local onde se encontra um cliente)

e Entrada: distancias entre cada par de clientes

e Problema: Determinar em que locais instalar os postos, de forma a mini-
mizar a soma das distancias de cada cliente a um ponto de atendimento
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13. Heuristicas inspirados da natureza

Propor uma heuristica construtiva e uma busca local.

Comparacao entre as Metaheuristicas
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Quais que permitem movimento de piora? BT, SA
Quais que nao dependem de randomizagao? BT
Quais que geram apenas uma solugao inicial em todo processo? BT, SA

Quais mantém um conjunto de solugoes, em vez de considerar apenas
uma?

Qual gera os melhores resultados?



Parte IV.

Appéndice
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A. Conceitos matematicos

N, Z, Q e R denotam os conjuntos dos nimeros naturais sem 0, inteiros,
racionais e reais, respectivamente. Escrevemos também Ny = N U {0}, para
qualquer conjunto C, C, :={x € C|x > 0} e C_ :={x € C|x < 0}. Por exemplo

R, ={x € Rjx > 0}!

Para um conjunto finito S, P(S) denota o conjunto de todos subconjuntos de
S.

A = (ay;) € F™*™ denota uma matriz de m linhas e n colunas com elementos
em F, ai, com a} € F* a i-ésigma linha e @) € F™ a j-ésima coluna de A.

Definicao A.1 (Pisos e tetos)
Para x € R o piso [x] é o maior nimero inteiro menor que x e o teto [x] é o
menor nimero inteiro maior que x. Formalmente

[x| = max{y € Zly < x}
[x] = min{y € Zly > x}

O parte fraciondrio de x é {x} = x — [x].

Observe que o parte fraciondrio sempre é positivo, por exemplo {—0.3} = 0.7.

Proposicao A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem

x < [x] <x+1
x—1<|x] <x (A.2)

—~
P>
—

~—

L Alguns autores usam R+ .
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B. Formatos

Essa capitulo contém um breve resumo de dois formatos usados para descre-
ver problemas de otimizacgao linear. CPLEX LP é um formato simples, en-
quanto AMPL (A modeling language for mathematical programming) é uma
linguagem completa para definir problemas de otimizacao, com elementos de
programacao, comandos interativos e um interface para diferentes “solvers”
de problemas.

CPLEX LP serve bom para experimentos rapidos. Aprender AMPL precisa
mais investimento, que rende em aplicagoes maiores. AMPL tem o apoio da
maioria das ferramentas disponiveis.

Varios outros formatos sdo em uso, a maioria deles comerciais. Exemplos sao
MPS (Mathematical programming system), um formato antigo e pouco usével
do IBM), LINGO, ILOG, GAMS e ZIMPL.

B.1. CPLEX LP
Uma gramética simplificada' do formato CPLEX LP é

(specification) ::= (objective)

(restrictions)?

(bounds)

(general)?

(binary)?

‘End’
(objective) ::= (goal) (name)? (linear expression)
(goal) ::= ‘MINIMIZE’ | ‘MAXIMIZE | ‘MIN’ | ‘MAX’
(restrictions) ::= ‘SUBJECT TQ’ (restriction)+
(restriction) := (name)? (linear expression) (cmp) (number)
<Cmp> = (<7 | (<=7 | (=) | (>7 | (>=7

LA gramética ndo contém as especificacdes “semi-continuous” e “SOS”.
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B. Formatos

(linear expression) ::= (number) (variable) ( '+ |’-’) (number) (variable) )*
(bounds) ::= ‘BOUNDS’ (bound)+

(bound) ::= (name)? ( (limit) ‘<=" (variable) ‘<=" (limit)
(limit) ‘<=" (variable)

(variable) ‘<=" (limit)

(variable) ‘=" (number)

(variable) ‘free’)

(limit) ::= ‘infinity’ | ‘-infinity’ | (number)
(general) ::= ‘GENERAL’ (variable)+
(binary) ::= ‘BINARY’ (variable)+

Todas varidveis x tem a restricao padrao 0 < x < 4o0. Caso outras limites
sao necessdarias, eles devem ser informados na secao “BOUNDS”. A segoes
“GENERAL” e “BINARY” permitem restringir varidveis para Z e {0, 1}, res-
pectivamente.

As palavras-chaves também podem ser escritos com letras mintsculas: o for-
mato permite algumas abreviagoes nao listadas acima (por exemplo, escrever
“s.t” ao invés de “subject to”).

Exemplo B.1
Problema (1.1) no formato CPLEX LP.

Maximize
lucro: 0.2 ¢ + 0.5 s

Subject To
ovo: c+ 1.5 s <= 150
acucar: 50 c + 50 s <= 6000
clientl:c <= 80
client2:s <= 60
Bounds
0 <=c
0 <= s
End
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B.2. AMPL

Exemplo B.2
Problema de mochila 0-1 com 11 itens em formato CPLEX LP.

max 19x1487x2497x3422x4+47x5+22x6+30x7+5x8+32x9+54x104-75x11
s.t

1x1496x2467x3+90x4+13x5+74x6+22x74+86x84+23x94+63x10+89x11<= 624
binary x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

end

Observagao B.1

CPLEX LP permite constantes como 0.5e6 que representa 0.5 x 10°. Ou-
tra interpretagao dessa expressao é 0.5 vezes a varidvel eg. Para evitar essa
ambiguidade, varidveis nao podem comecar com a letra e. %

B.2. AMPL
Objetos de modelagem

e Um modelo em AMPL consiste em
— parametros,
— variaveis,

— restricoes, e

objetiovos

e AMPL usa conjuntos (ou arrays de multiplas dimensoes)
A:1—-D
mapeiam um conjunto de indices I =17 x --- x I;; para valores D.
Formato
e Parte do modelo
<s1>
<sn>
end;

com s; € um comando ou uma declaragao.
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B. Formatos

e Parte de dados

data
<d1i>

<dn>
end;

Tipo de dados
e Numeros: 2.0,-4
e Strings: ’Comida’

e Conjuntos: {2,3,4}

Expressées numéricas
e Operagoes bésicas: +,—,%,/,div,mod,less,*x
Exemplo: x less y

e Funcdes: abs, ceil , floor ,exp
Exemplo: abs(—3)

e Condicional: if x>y then x else y

Expressoes sobre strings
e AMPL converte nimeros automaticamente em strings
e Concatenacgao de strings: &

Exemplo: x & ’ unidades’

Expressoes para conjuntos de indices

e Unica dimensio
— t in S: varidavel “dummy” t, conjunto S
— (t1 ,... tn) in S: para conjuntos de tuplos

— S: sem nomear a variavel

e Multiplas dimensoes
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— {el ..., en} com e; uma dimenséo (acima).

Varidveis dummy servem para referenciar e modificar.

Exemplo: (i—1) in S

B.2. AMPL

Conjuntos
e Conjunto bésico: {v1 ,..., vn}
e Valores: Considerados como conjuntos com conjunto de indices de di-
mensao 0
e Indices: [il ,..., in]
e Sequéncias: nl ... n2 by dounl ... n2
e Construcao: setof I e: {e(i1,...,in) | (11,...,in) €I}

Exemplo: setof {j in A} abs(j)

Operacoes de conjuntos

X union Y: Uniao XUY

X diff Y: Diferenga X\ Y

X symdiff Y: Diferenca simétrica (X \ Y) U (Y \ X)
X inter Y: Interseccao XNY

X cross Y: Produto cartesiano X x Y

Expressoes légicas

Interpretacao de nimeros: n vale “v”, sse n # 0.
Comparagoes simples <,<=,= ou ==,>=,>,<> ou !|=
Pertinéncia x in Y, xnot in Y, x lin Y

Subconjunto X within Y, X !within Y, X not within Y
Operadores 16gicos: && ou and, || ou or, ! ou not

Quantificagao: com indices I, expressao booleana b
forall I b: /\(11 imer Bl tn)
exists I b \/( b(iy,...,1in)

i1,in )€l
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B. Formatos

Declaracées: Conjuntos

set NI [dimen n] [within S] [default el] [:= e2]
param N I [in S] [<=,>=,!=,... n] [default el] [:= e2]
e Nome N

Conjunto de indices I (opcional)

Conjunto de valores S
e Valor default e

e Valor inicial e»

Declaracoes: Restricoes e objetivos

subject to NT1: el =e2 | el <= €2, el >=e2
minimize [I] : e

maximize [I] : e

Comandos

e solve: Resolve o sistema.

e check [I] : b: Valida expressao booleana b, erro caso falso.

display [I] : el ,... en: Imprime expressoes eq,...,en.

printf [I] : fmt,el ,..., en: Imprime expressoes e — 1,..., e, usando
formato fmt.

e for T : ¢c,for I : {c1l ... cn}: Lagos.

Dados: Conjuntos
set Nrl.,..rm
Com nome N e records r1,...,Th, cada record

e um tuplo: vy,...,vjn Exemplo: 12,13,22, 27

e a definicdo de uma fatia (vq]*,Vva*,...,vn|*): depois basta de listar os
elementos com *. Exemplo: (1 *)23,(2*)27

e uma matriz
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B.2. AMPL

Dados: Parametros
param N rl,...rn

Com nome N e records r1,...,Th, cada record
e um valor i,...,1i,,V
e a definicdo de uma fatia [i7]*,12|*,...,1in|*): depois basta definir indices
com .

e uma matriz

uma tabela

Exemplo B.3 (Exemplo 1.1 em AMPL)
var c; # numero de croissants

var s; # numero de strudels
param lucro croissant; # o lucro por croissant
param lucro strudel; # o lucro por strudel

maximize lucro: lucro croissant*c+lucro strudelxs;
subject to ovo: c+1.5%s <= 150;

subject to acucar: 50%c+50%xs <= 6000:

subject to croissant: ¢ <= 80;

subject to strudel: s <= 60;
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C. Solucoes dos exercicios

Solugao do exercicio 5.3.

maximiza 2A+B
sujeito a A <= 6000
B <=7000
A + B <= 10000

Resposta: A=6000 e B=4000 e Z=16000

Solugao do exercicio 5.4.
Sa0 necessarias cinco varidveis:

o x1:

e x2:

o x3:

o x4:

o Xb:

ntimero de pratos de lasanha comidos por Marcio
numero de pratos de sopa comidos por Marcio

nimero de pratos de hamburgueres comidos por Renato
ntimero de pratos de massa comidos por vini

numeros de pratos de sopa comidos por vini

Formulagao:

maximiza x1 +x2+x3+ x4+ x5

sujeito a 4>x1+x2>2
5>x3>2
4>x44x%x5>2
70(x2 4+ x5) 4+ 200x1 + 100x3 + 30x4 < 1000
30(x2 4+ x5) + 100x1 + 100x3 + 100x4 < 800
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C. Solugées dos exercicios

Solugao do exercicio 5.5.

maximiza 1 + 21,
sujeito a 1, <60
1 + 31, <200
21 + 21, <300

L,la>0
Solugao do exercicio 5.6.
maximiza 60m + 30a
sujeito a m<6
a<4
6m + 8a < 48
m,a >0

Solugao do exercicio 5.7.
Com marcas J,0,M (Johnny Ballantine, Old Gargantua, Misty Deluxe) e
misturas A, B, C temos as variaveis

X7,A5X],ByXJ,CyX0,A,X0,B)X0,CyXM,A, XM B, XM, C

que denotam o numero de garrafas usadas por mistura.
Vamos introduzir ainda as varidveis auxiliares para o nimero de garrafas usa-
das de cada marca

X; =Xj A +XjB+X5c; X0 =%X0,A+X0,B+X0,c; XM =XM,ATXMB+XMm,C
e varidveis auxiliares para o nimero de garrafas produzidas de cada mistura

XA =Xj A +X0 A F+XMA; XB=X]B+X0B+TXM,B;, Xc =Xjc+X0,c+Xm,cC.
Queremos maximizar o lucro em reais

68xa + 57xg +45xc — (70x) + 50x0 + 40xpm)
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respeitando os limites de importagao
x; <2000; xo <2500; xm <1200
e os limites de percentagem

xpA 2> 0.6xa; xmA < 0.2xa
x5, > 0.15xg; xm,B < 0.6xp
xm,c < 0.5%c.

Portanto, o sistema final é

max 68xa +57xg +45xc — (70x5 + 50x0 + 40xm)
s.a xj <2000

xo < 2500

xm < 1200

xj,A > 0.6xa

xm,A < 0.2xa

xj.8 > 0.15xg

xm,B < 0.6xp

xm,c < 0.5%¢c

Xm = Xm,A + Xm,B + Xm,C me {]7 O» M}
Xm = XJ,m +X0,m +XM,m me{A,B,C}
Xmn >0 me{],0,M},n € {A,B,C}

Sem considerar a integralidade a solugdo 6tima é produzir 2544.44 garrafas da
mistura A, 3155.56 garrafas da mistura B e 0 garrafas da mistura C, com as
percentagens

e A: 60% Johnny Ballantine, 20% Old Gargantua, 20% Misty Deluxe
e B: 15% Johnny Ballantine, 63% Old Gargantua, 22% Misty Deluxe
Solugao do exercicio 5.8.
Com t; o ntimero de TVs de 297¢ t, de 31”temos

maximiza 120t + 80t
sujeito a t1 <40
1 <10
20t; + 10t < 500
t1,t22>0
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C. Solugées dos exercicios

Solugao do exercicio 5.9.

Seja V = {V7,Va} e NV = {NV;,NV,,NV3} os conjuntos de dleas vegetais e
nao vegetais e O = VUNYV o conjunto do todos dleos. Seja ainda ¢ o custo por
tonelada do éleo i € O e a; a acidez do dleo i € O. (Por exemplo ¢y, =110
e any, = 4.2.) Com varidveis x; (toneladas refinadas do déleo i € O) e x,
(quantidade total de éleo produzido) podemos formular

maximiza 150x, — Z CiXi
ic0
sujeito a Z xi < 200 limite dleos vegetais
ieVv
Z x; < 250 limite 6leos nao vegetais
ieNV
3xo < Z aixi < 6X,o Intervalo acidez
ieO
Z Xi = Xo Oleo total
i€eO
Xo,Xi > 0 Vie O.

Solugao do exercicio 5.10.
Sejam xa, xg € Xc 0 nimero de horas investidos para cada disciplina. Vamos
usar varidveis auxiliares na, N e nc para as notas finais das trés disciplinas.
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Como isso temos o programa linear

maximiza na +ng +nc
sujeito a xa +xg +xc =100 Total de estudo
na = (6+xa/10)/2 Nota final disc. A
ng = (7+ 2xg/10)/2 Nota final disc. B
ne = (10+ 3xc/10)/2 Nota final disc. C
na >5 Nota minima disc. A
ng > 5 Nota minima disc. B
nec >5 Nota minima disc. C
na <10 Nota méxima disc. A
ng <10 Nota maxima disc. B
nc <10 Nota méxima disc. C

na,np,nc > 0.

Solugao do exercicio 5.11.

maximiza 25p + 30c
sujeito a /200 + ¢/140 < 40 & 7p + 10c < 56000
p < 6000
¢ <4000
c,p=>0
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C. Solugoes dos exercicios

Produzindo ago

6000 |

5000 (56000-7*X)/10

4000

3000

Canos ¢

2000 coes viaveis

1000

0
0 1000 2000 3000 4000 5000 6000 7000 8000
Placas p

A solucao 6tima é p = 6000, ¢ = 1400 com valor 192000.

Solugao do exercicio 5.12.

Usamos indices 1, 2 e 3 para os voos Pelotas—Porto Alegre, Porto Alegre—
Torres e Pelotas—Torres e varidveis aj, az, a3 para a categoria A, by, by, b3
para categoria B e c—1, ¢z, c3 para categoria C. A funcdo objetivo é maximizar
o lucro

z =600a; +320a; + 720a3 +440b; 4+ 260b, 4+ 560b3 + 200ct + 160c2 + 280c3.
Temos que respeitar os limites de capacidade

a;+bi+ci4+a3+bz+c3 <30
a+br+cr+a3+bz+c3 <30

e os limites da predigao

a; <4 az < §; az <3
b1 <8 by <135 b3 <10
¢ <22 ¢y <20 c3 <18

Obviamente, todas varidveis também devem ser positivos.
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Solugao do exercicio 5.13.
A solucao gréfica é
6

1 Solugdes viaveis

1. A solugao 6tima é x1 =4.25, x2 ~ 4 (valor exato x; = 3.96875).

2. O valor da solugao 6tima é ~ 21 (valor exato 20.96875).

Solugao do exercicio 5.14.

maximiza z =5%1 4+ 5%x2 + 5x3
sujeito a —6%x1 — 2% — %3 <0
— 9% —3x2+3x3 <3
9%1 +3x2 —3x3 < -3
x; >0
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C. Solugées dos exercicios

maximiza z=—6X] — 2x3 — 6X3 + 4x4 + 4x5
sujeito a —3x7 — 8%y —6%x3 — 7x4 —5x5 < 3
3x7 + 8xy + 6x3 + 7x4 + 5x5 < —3
5%1 —7x2 +7x3 +7x4 — 6x5 < 6
X1 — %2 +5x3 + 7x4 — 10x5 < —6
—x1+ 9% —5x3 —7x4 +10x5 < 6
Xj > 0

maximiza z=7%x1 +4x2 + 8x3 + 7x4 — 9x5
sujeito a —4x7 — Ixp — 7x3 — 8x4 + 6x5 < —2
dx1 +x2 +7x3 + 8x4 — 6x5 < 2
— X1 —4xy —2x3 — 2x4 + 7x5 <7
—8%1 4+ 2x2 + 8x3 — 6X4 — /x5 < —7
8x1 —2xy —8x3 + 6X4 + 7x5 <7

X5 Z 0
maximiza z=6x7 —5xy — 8x3 — 7x4 + 8x5
sujeito a —5%1 — 2% +x3 — x4 — 7x5 < 9

5%1 + 2x3 — x3 + x4 + 7x5 < =9
7xX1 +7%x2 +5x3 —3x4 + x5 < —8
—7x1 —7%2 —5x3 +3x4 — x5 <8
—5%71 —3%x2 —5%x3 + x4 + 8x5 <0
x; >0

Solugao do exercicio 5.15.
Solugao com método Simplex, escolhendo como variavel entrante sempre aquela
com o maior coeficiente positivo (em negrito):

z = 25p  +30c
w; =56000 —7p —10c
wy; =6000 —p

ws =4000 —c
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z =120000 +25p —30w;
w; =16000 —7p +10w;3
wy = 6000 -

c = 4000 —W3

z =1240000/7 —25/7p +40/7wj;
P =16000/7 —1/7wy  +10/7w3
wy = 26000/7 +1/7w7  —10/7w3
c = 4000 —W3

z = 192000 —3wy —4w,

P = 6000 —W

wz = 2600 +1/10w;  —7/10w;

c = 1400 —1/10wy  +7/10w,

Solugao do exercicio 5.17.
Temos

2An+1)\ (20| 2n+2)2n+1) (20 22n+1)
(n—H >_<n> (n+1)2 _(n> n+1

22n (Zn) < <2(n+1)> <2 (Zn).
n+1\n,/ — n+1 - n

Logo, por inducdo (1/2n)22" < (21:‘) <22,

e logo

Solugao do exercicio 5.20.

1. Substituindo x; e x, obtemos a nova funcao objetivo z = x1 + 2x, =
22 —7wy —3w;. Como todos coeficientes sao negativos, a solugao bésica
atual permanece 6tima.

2. A nova funcgao objetivo é 1 —w; e o sistema mantem-se 6timo.
3. A nova fungao objetivo é 2 — 2w, e o sistema mantem-se 6timo.

4. O diciondrio dual é

z¢ =31 7z, -8z
y» =11 42z +3z4
y1 =4 +z +z1

197



C. Solugées dos exercicios

e a solucao dual 6tima é (y7 yz)t = (4 11)t.

Solucao do exercicio 5.23.

maximiza 10y + 6Yy3
sujeito a Y1 +5y, <7

—y1 +2y2 <1
3yr —y2 <5
y1,y2 > 0.

Solugao do exercicio 5.24.
Com varidveis duais y. para cada e € U temos

maximiza E Ye

ecl

sujeito a Z Ye < ¢(S) Ses
e:ecS
Ye >0 ec U.

Solugao do exercicio 5.25.

1. Temos B = {4,1,2} (varidveis bdsicas x4, x1 € x2) e N' = {5,6,3}
(varidveis nulas xs, xg € x3). No que segue, vamos manter essa or-
dem das varidveis em todos vetores e matrizes. O vetor de custos nessa
ordem é

cg =002 —-1)% ecn =001
e com
Ac=(010000)"
temos

Ay = (BT'N)*Acg — Acny = (B7'N)'Acg

~1 12 =172\ /0 1/2
=2 12 12 |(1]=]12
1172 =372) \o 1/2

Com y3, = (3/21/2 3/2)* obtemos os limites —1 <t < ocoe 1 < ¢y < c0.
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2. Temos Axp, =B 'Ab e Ab = (0 1 0)!. Para determinar Axg precisamos
calcular B~ pela inversao de

(observe que as colunas estdo na ordem de B) que é

1T -1 =2
B '=10 1/2 12
0 —1/2 1,2

Assim Axg = (—11/2 —1/2)% e com xj; = (10 155)" e pela defini¢ao

x¥ *
max ——— <t < min ——
AIEB X4 ieB AX;L

x>0 Ax;<0

obtemos os limites —30 <t <10 e —20 < b, < 20.

3. Com b = (70 20 10)* temos B~'6 = (30 15 — 5)t. Portanto, a solucio
bésica nao é mais viavel e temos que reotimizar. O novo valor da fungao
objetivo é

30
ck(B'B)=(0 2 -1)[15] =35

-5

e temos o dicionério
z= 35 —3/27(5 —1/2X6 —3/27(3
x4 = 30 +X5 +2x¢ —X3

x;1= 15 71/2)(5 71/2)(6 71/2)(3
x2 = =5 +1/2x5 —1/2x¢ +3/2x3

O dicionario é dualmente vidvel, e apds pivo x2—x3 temos o novo sistema,
6timo
z= 30 —Xs5 —X6 —X2
x4 = 80/3 +4/3x5 +5/3x¢ —2/3x2
x1 = 40/3 —1/3x5 —2/3x¢ —1/3%x2
x3= 10/3 —1/3x5 +1/3x¢ +2/3x2

4. Temos €= (03 —2003)* (em ordem B, ') e com isso
-1 1/2 —-1/2 0 0 5/2
0y =B "N)eg—en=[-2 12 1,2 3 -|(o]=[12
112 —3/2) \ 2 3 3/2
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C. Solugées dos exercicios

Portanto, a solugao ainda é 6tima. O novo valor da fungao objetivo é

10
¢sB ') =(0 3 —2)|15] =35.
5
Solugao do exercicio 10.2.
O sistema inicial
z= X1 +3x;
wr = =2 +x
W) = 3 —X2
w3 = —4 4xq +x2
Wy = 12 —3X1 —X2

nao é primalmente nem dualmente vidvel. Aplicando a fase I (pivos xo—ws,
xo—X1) e depois fase II (pivos xa—w7, W3—w2, wi—wy) gera o diciondrio final

z= 12 —=8/3w, —1/3wy
X2 = 3 —W>
w3 = 2 72/31/\)2 71/31/\)4
x1= 3 +1/3w,  —1/3wy
w; = 1 +1/3wy  —1/3wy

cuja solugao x1 = 3, x2 = 3 ja é inteira.
No segundo sistema comecamos com o dicionério

z X1 —2%7
wy; = 60 +11x; —15%,
Wy = 24 —4X1 —3X2
w3 = 59 —10x7 +5x»

e um pivo x1—w3 gera a solucao 6timo fraciondria
z= 4.9 70.1W3 —1 .5X2
w1 = 113.9 —1.]W3 —9.5X2
wy, = 44 +0.4w3  —5x,
x; = 4.9 —0.1ws  +0.5%x,

e a linha terceira linha (x71) gera o corte

Wy = —0.9 +01W3 ‘|‘0.5X2
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Com o pivd wg—w3 obtemos a solugao 6tima inteira

z= 4 —Wy —X2
w1 = 104 -1 1W4 —4X2
wy= 8 +4wy —7%2
x1= 4 —Wy +1x;
w3 = 9 +10ws  —5x3

Solugao do exercicio 10.3.

Conjunto independente maximo Com varidveis indicadores x,,, v € V temos
o programa inteiro

maximiza Z Xy
vev
sujeito a Xut+x <1, Yiu,vi e A (C.1)
X, € B, Yv eV

A equagdo C.1 garante que cada aresta possui no maximo um né incidente.

Emparelhamento perfeito com peso maximo Sejam xo, a € A varidveis
indicadores para a selecao de cada aresta. Com isso, obtemos o programa
inteiro

maximiza Z pla)xa
acA
sujeito a Z Xuv) =1, YveV (C.2)
ueN (v)
Xq € B, Vv e V.

A equagao C.2 garante que cada né possui exatamente um vizinho.
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C. Solugées dos exercicios

Problema de transporte Sejam xij varidveis inteiras, que correspondem com
o numero de produtos transportados do depésito i para cliente j. Entao

minimiza Z CijXij
1<i<n
155Em
sujeito a Z xi;j =Ppi, V1 <i<n cada depésito manda todo estoque
1<j<m
Z xi; =d;j, VI <j<m cada cliente recebe a sua demanda
1<i<n

Xij € VAR

Conjunto dominante Sejam x,,, v € V varidveis indicadores para selecao de
vértices. Temos o programa inteiro

minimiza Z Xv
vev
sujeito a Xy + Z Xy > 1, YveV ndou vizinho selecionado
ueN(v)
Xy € B, Yv eV

Solugao do exercicio 10.5.

Seja d1d;...d, a entrada, e o objetivo selecionar m < n digitos da entrada.
Seja x4 € B um indicador que o digito i da entrada seria selecionado como
digito j da saida, 1 <i<mn, 1 <j<m. Entao

maximiza Z xq5d41 om—J
i,j
sujeito a ZXU =1, Yj (C.3)
i

D xi <, Vi (C.4)
j

Xij = 0, Vj > 1, (05)
xug]—xﬁ, Vk>l,1<) (06)

A funcao das equacoes é a seguinte:

e Equagao C.3 garante que tem exatamente um digito em cada posicao.
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e Equacao C.4 garante que cada digito é selecionado no maximo uma vez.
e Equacao C.5 garante que digito i aparece somente a partir da posicao j.

e Equacao C.4 proibe inversoes.

Solucao do exercicio 10.6.

Existem 21 sets diferentes, cada um com consumo diferente das 9 cartas. Seja
AR?*21 yuma matriz, que contém em cada das 21 coluna o nimero de cartas
de cada set. Além disso, seja b € R? o ntimero de cartas disponiveis. Usando
varidveis inteiros x € Z?' que representam o nimero de sets formandos de
cada tipo de set diferentes, temos a formulacao

maximiza Z Xi
1<i<21
sujeito a Ax <D
x > 0.

Solugao do exercicio 10.7.

Conjunto independente maximo A matriz de coeficientes contém dois co-
eficientes igual 1 em cada linha, que correspondem com uma aresta, mas
geralmente nao é totalmente unimodular. Por exemplo, o grafo completo com

trés vértices Kz

7N

O——=6

gera a matriz de coeficientes

110
1 0 1
0 11

cuja determinante é —2. A solugao 6tima da relaxacao inteira 0 < x; < 1 ¢é
X1 = X2 = x3 = 1/2 com valor 3/2, a Fig. C.1 mostra o politopo correspon-
dente. (Observacao: A transposta dessa matriz satisfaz os critérios (i) e (ii) da
nossa proposigao, e caso o grafo é bi-partido, também o critério (iii). Portanto
Congjunto independente mdximo pode ser resolvido em tempo polinomial em
grafos bi-partidos).
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C. Solugoes dos exercicios

Figura C.1.: Politopo {x € R3 [x14+x2 <T,x14+x3 <T,xa+x3<1,0<x <
1}. (O visualizador usa os eixos x = x1, Y = X2, z = X3.)

Emparelhamento perfeito com peso maximo A matriz de coeficientes sa-
tisfaz critério (i). Ela tem uma linha para cada vértice e uma coluna para cada
aresta do grafo. Como cada aresta é incidente a exatamente dois vértices, ela
também satisfaz (ii). Finalmente, a bi-particio V7 U V, do grafo gera uma
bi-parti¢ao das linhas que satisfaz (iii). Portanto, a matriz é TU, e o Empare-
lhamento perfeito com peso mdzrimo pode ser resolvido em tempo polinomial
usando a relaxacao linear.

Problema de transporte A matriz de coeficientes satisfaz critério (i). Po-
demos representar o problema como grafo bi-partido completo K;, 1, entre os
depositos e os clientes. Desta forma, com o mesmo argumento que no ultimo
problema, podemos ver, que os critérios (ii) e (iii) sdo satisfeitos.

Conjunto dominante A matriz de coeficientes satisfaz critério (i), mas néo
critério (ii): cada linha e coluna correspondente com vértice v contém [N(v)|+1
coeficientes nao-nulos. Mas, nao é obviou se a matriz mesmo assim nao é TU
(lembra que o critério é suficiente, mas nao necessario). O Kj acima, por
exemplo, gera a matriz

T 11
T 11
1T 11

que ¢ TU. Um contra-exemplo seria o grafo bi-partido Ky 3
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que gera a matriz de coeficientes

T 1 11
1100
1010
10 0 1

com determinante —2. Isso nao prova ainda que a relaxacao linear nao pro-
duz resultados inteiros 6timos. De fato, nesse exemplo a solugao étima da
relaxacao inteira é a solucdo 6tima inteira D = {1}.

Um verdadeiro contra-exemplo é um ciclo com cinco vértices Cs

O——®

com matriz

—_—_—O O =
—_ O = —o
© = —_—_oo
© = —=0 =
—_O O - —

(cuja determinante é 3). A relaxacao linear desse sistema tem a solu¢ao 6timo
X1 =X2 = X3 =X4 = X5 = 1/3 com valor 5/3 que néo ¢ inteira.

Solugao do exercicio 10.8.

205



C. Solugées dos exercicios

Cobertura por arcos

minimiza Z CeXe
eckE

sujeito a Z Xuv > 1, YwevVv
ueN(v)
Xe € B.

Conjunto dominante de arcos

maximiza E CeXe
ecE
sujeito a E Xer > 1, VecE
e’/€E
ene’#0
Xe € B.

Coloracao de grafos Sejan =|V|.
minimiza E Cj
1<5<n

sujeito a Z Xyj =1, Yvev (C.7)

1<i<n
Xui Fxvi < 1, Viu,vi € E,1<1<n (C.8)

ne; > Z Xvi, v1<ji<n (C.9)
vev

Xvi, Cj € B.
e Equacgao C.7 garante que todo vértice recebe exatamente uma cor.
e Equacao C.8 garante que vértices adjacentes recebem cores diferentes.

e Equacao C.9 garante que ¢; =1 caso cor j for usada.

Clique minimo ponderado

minimiza Z CvXy
vev

sujeito a Xu + %y < 1, YV{u,v} € E (C.10)
X, € B.
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Equacao C.10 garante que nao existe um par de vértices selecionados que nao
sao vizinhos.

Subgrafo ciibico x. indica se o arco e é selecionado, e Yy, indica se ele possui
grau 0 (caso contrario grau 3).

minimiza E Xe
ecE

sujeito a Z Xe <0+ [EI(T —ye)
ecN(v)

> xe <3+|Elye
eeN(v)

— ) Xe<-3+3ye
eeN(v)

Observe que o grau de cada vértice é limitado por |E|.

Solugao do exercicio 10.9.
Sejam x; € B, 1 < 1i < 7 varidveis que definem a escolha do projeto i. Entao
temos

maximiza 17x7 + 10x2 + 15%x3
+ 19%4 + 7x5 + 13x6 + 9x7
sujeito a 43x7 + 28x, + 34x3 + 48x4
4+ 17x5 + 32x¢ + 23x7 < 100 Limite do capital

X1 +x2 <1 Projetos 1,2 mutualmente exclusivos
X3 +x4 <1 Projetos 3,4 mutualmente exclusivos
X3 +x4 <x1+x%x2 Projeto 3 ou 4 somente se 1 ou 2

http://www.inf.ufrgs.br/~mrpritt/e6q2.mod

set projetos = 1 .. 7;
param lucro { projetos };
param custo { projetos };

var fazer { projetos } binary;
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10
11
12
13
14
15
16
17

Sy Tk W N+~

C. Solugées dos exercicios

maximize M: sum { i in projetos } lucro[i]xfazer[i];
subject to S1:

sum { i in projetos } custo[i]xfazer[i] <= 100;
subject to S2: fazer[l]+ fazer[2] <= 1;
subject to S3: fazer[3]+ fazer[4] <= 1;
subject to S4: fazer[3]+ fazer [4] <= fazer[l]+ fazer [2];
data;
param lucro := 1 17 2 10 3 15 4 19 5 7 6 13 7 9;
param custo := 1 43 2 28 3 34 4 48 5 17 6 32 7 23;
end;

Solucéo: Selecionar projetos 1,3,7 com lucro de 4TMRS.

Solugao do exercicio 10.10.

Seja f € B uma varidvel que determina qual fabrica vai ser usada (fabrica 1,
caso f = 0, fabrica 2, caso f = 1), b; € B uma varidvel bindria que determina,
se brinquedo 1 vai ser produzido e u; € Z as unidades produzidas de brinquedo
i (sempre com 1 <1< 2).

maximiza 10w + 15u, — 50000b; — 80000b,
sujeito a u; < Mby Permitir unidades somente se

ug /50 +u, /40 < 500 + fM Limite fabrica 1, se selecionad
w1 /40 +uy/25 <700+ (1 —f)M  Limite fabrica 2, se selecionad

A constante M deve ser suficientemente grande tal que ela efetivamente nao
restringe as unidades. Dessa forma, se a fabrica 1 esta selecionada, a terceira
restricdo (da fabrica 2) néo se aplica e vice versa.

http://www.inf.ufrgs.br/~mrpritt/e6q3.mod

var f binary;

var b { brinquedos } binary;

var u { brinquedos } integer, >= 0;
param inicial { brinquedos };
param lucro { brinquedos };

param prodfabl { brinquedos };
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

param prodfab2 { brinquedos };
param M := 35000;

maximize Lucro:

sum { i in brinquedos } u[i]*lucro[i]

— ( sum { i in brinquedos } inicial[i]*b[i]
subject to PermitirProducao { i in brinquedos

uli] <= Mxb[i];
subject to LimiteFabl

sum { i in brinquedos }

uli]*prodfabl[i] <= 500 + f«M;

—_

subject to LimiteFab2
sum { i in brinquedos }
u[i]*prodfab2[i] <= 700 + (1—f)=M;
data;
param inicial := 1 50000 2 80000;
param lucro := 1 10 2 15;
param prodfabl := 1 0.020 2 0.025;

param prodfab2 := 1 0.025 2 0.040;

Solugao: Produzir 28000 unidades do brinquedo 1 na fabrica 2, com lucro
230KR$.

Solucao do exercicio 10.11.
Sejam a; € B uma varidvel que determina se aviao i vai ser produzido e u; € Z
as unidadas produzidas.

maximiza 2uy + 3uy +0.2uz — 3a7 — 2a;

sujeito a 0.2uq +0.4u3z +0.2uz <1 Limite de capacidade
u; < 5by Permitir unidades somente se for produ;
u <3 Limite aviao 1
u <2 Limite aviao 2
us <5 Limite avido 3

http://www.inf .ufrgs.br/~mrpritt/e6q4.mod
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

C. Solugées dos exercicios

param custo { avioes };

param lucro { avioes };

param capacidade { avioes };

param demanda { avioes };

var produzir { avioes } binary;

var unidades { avioes } integer, >= 0;

maximize Lucro:
sum { i in avioes }
(lucro[i]*unidades[i]—custo[i]*produzir[i]);
subject to LimiteCapacidade:
sum { i in avioes } unidades[i]xcapacidade[i] <= 1;
subject to PermitirProducao { i in avioes }:
unidades [i] <= 5xproduzir[i];
subject to LimiteDemanda { i in avioes }:

unidades [i] <= demandali];
data;
param custo lucro capacidade demanda :=
13 2 0.2 3
2 23 0.4 2
30 0.8 0.25

Solugao: Produzir dois avides para cliente 2, e um para cliente 3, com lucro

4.8 MRS.

Solucao do exercicio 10.12.

A formulag@o possui 14 restri¢oes, correspondendo com as 14 arestas. Como
o grafo é 4-regular, cada vértice ocorre 4 vezes no lado esquerdo de uma

restricao, e somando todas restricoes obtemos
43 xi <14
1<i<7

= ) xi<14/4

1<i<7

= Y xi<[14/4) =3,

1<i<7
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que nao é suficiente. Para obter uma desigualdade mais forte, vamos somar
sobre todos tridngulos. Somando primeiro as restricbes das arestas de cada
tridngulo (u,v,w) obtemos

2xy + 2%y + 2%, <3
Sxu + X%y +x < [3/2] = 1.

Somando agora as restri¢coes obtidas desta forma de todos 14 triangulos do
grafo (cada vértice é parte de 6 tridngulos) obtemos a desigualdade desejada

(Outra abordagem: Supode, sem perda de generalidade, que x; = 1 na solugao
6tima. Pelas restrigoes x1 + x; < 2 temos x; = 0 para i € {3,4,5,6}. Pela
restricao x +x7 < 1, portanto ) ;_;.,xi <2.)

Solugao do exercicio 10.13.

Seja xi5x € B um indicador do teste com a combinagdo (i,j,k) para 1 <
1,5,k < 8. Cada combinacao (1,j,k) testada cobre 22 combinagoes: além de
(1,7, k) mais 7 para cada combinacao que difere somente na primeira, segunda
ou terceira posi¢ao. Portanto, uma formulacao é

minimiza E Xij,k
i,j,k
sujeito a  xijx + E Xirjk + E Xijrk + E xijkr > 1 Vi, k
i i K7k
Xijk € B v1,],k

A solugao otima desse sistema é 32, i.e. 32 testes sao suficientes para abrir a
fechadura.

Solugao do exercicio 10.14.

X1 + xg + X7 < 2 porque uma rota nao contém subrotas. Portanto x; + x, +
X5 + X6 + X7 + xo < 5. Supoe x7 + X2 + X5 + X + X7 + xo = 5. Temos trés
casos: X1 = 0, xg = 0 ou x; = 0. Em todos os casos, as restantes varidveis
possuem valor 1, e no grafo resultante sempre existe um vértice de grau 3 (o
vértice no centro, da esquerda, de acima, respectivamente), que nao é possivel
numa solucao valida.
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C. Solugées dos exercicios

Solugao do exercicio 10.15.
Sejam x; € B, 1 < i < k as varidveis de entrada, e ¢c; € B, 1 < i < n
variaveis que indicam se a clausula c; estd satisfeita. Para aplicar a regra
(7.2) diretamente, vamos usar uma varigvel auxiliar di. 1 < i < n, que
representa a disjungao dos primeiros dois literais da clatsula i.
maximiza g Ci
1<i<n
X1 literal j na claisula i é x

sujeito a l; =
J Y 1 —x literal j na clatsula i é —xy

di > (L +1i2)/2
di <l + L2
ci > (diy +1li3)/2
ci <di+lis
ci, di, xi € B.

V

Como é um problema de maximizacao, pode ser simplificado para

maximiza E ci
1<i<n
L. X1 literal j na clatsula i é x
sujeito a li; =

1 —x literal j na clatsula i é —xy

ci <lin +li2 + i3
ci,xi € B.

A segunda formulagao possui uma generalizacdao simples para o caso k > 3.
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Nomenclatura

argmax valor para que uma funcgao atinge o maximo, pagina 24

argmin valor para que uma funcao atinge o minimo, pagina 47

B

[x]
co-NP

sup
At

cn
Ccnxm

N(v)

conjunto booleano {0, 1}, pagina 76
menor nimero inteiro maior ou igual a x, pagina 118

classe de problemas de decisao com certificados polinomiais para instancias
negativas, pagina 44

uniao disjunta, pagina 50

maior niimero inteiro menor ou igual a x, pagina 78
significadamente menor que, pagina 30

conjunto de nimeros inteiros, pagina 75

conjunto de variaveis bésicas, pagina 19

conjunto de variaveis nulas, pagina 19

classe de problemas de decisao com certificados polinomiais para instancias
positivas, pagina 44

conjunto de nimeros reais, pagina 10

supremo, menor limite superior de um conjunto, pagina 63

matriz transposta, pagina 39

espaco vetorial com vetores de n componentes sobre o campo C, pagina 13
grupo de matrizes de tamanho n x m sobre o campo C, pagina 13
conjunto de vértices adjacentes a v, pagina 112

conjunto de arcos saintes de v, pagina 107

conjunto de arcos saintes de v, pagina 107

conjunto de niimeros inteiros nao-negativos, pagina 124
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