Prof. Marcus Ritt

Prova: NN

Código de Ética

Eu declaro que resolvi essa prova sem receber ajuda de outras pessoas.

Eu declaro que não ajudei outras pessoas na solução da prova; em particular eu não compartilhei o conteúdo dessa prova.

Assinatura:	

Observações gerais:

- Lê todas as questões antes de começar e pergunta em caso de dúvidas.
- Sempre justifique a sua resposta. Você ganha pontos para explicações de como o resultado foi obtido e não para respostas sem explicações, exceto a questão pede explicitamente não justificar.
- Responde a cada questão, ainda que a resposta não esteja completa.

Prof. Marcus Ritt

Prova

Questão 1 (Formulação Matemática, 2.5pt)

Num capítulo perdido de "O Senhor dos Anéis" os Hobbits desenvolvem um veneno. Para isso eles consideram os seguintes ingredientes:

Ingrediente	Toxicidade	Salinidade	Amargura	Adstringência
Readreal	2.5	3.5	4.0	2.0
Gavela	6.5	7.0	6.0	6.0
Gerathyn	2.5	7.5	8.0	8.5
Gethiaria	5.5	9.0	3.0	0.5
Ieneal	9.5	7.0	2.0	5.0

Como se pode ver, além da toxicidade, cada substância possui uma certa salinidade, amargura e adstringência. Ajude-os com um programa linear que maximiza a toxicidade, garantindo que a adstringência final fica entre 3.0 e 8.0, a salinidade e no mínimo o triplo da adstringência, a adstringência e no máximo a metade da salinidade, a fração de Gethiaria fica no mínimo 43% do total, e a adstringência e no máximo a metade da amargura. Assume que a toxicidade é aditiva, enquanto as demais caraterísticas se misturam.

Questão 2 (Solução de sistemas lineares, 2.5pt)

Considere o programa linear

minimiza
$$ax_1 + bx_2$$

sujeito a $-5x_1 + 0x_2 \le -10$,
 $+3x_1 - 3x_2 \ge -12$,
 $+2x_1 - 5x_2 \le -1$,
 $x_1, x_2 \ge 0$.

com parâmetros $a, b \in \mathbb{R}$. Determine para quais valores de a e b o sistema

- a) possui exatamente uma solução ótima,
- b) possui um número infinito de soluções ótimas,
- c) é ilimitado, ou
- d) não possui solução.

É esperado listar todos casos possíveis, não somente um exemplo de cada caso (se tiver). Justifique a resposta. (Dica: considere uma análise gráfica.)

Questão 3 (Formulação Matemática, 2.5pt)

Um startup produz máquinas automatizadas para pintar paredes. Ele oferecem três modelos:

Impressora	Parede	Teto
Pinta PR-1	6	2
Pinta PR-2	2	8
Pinta PR-3	6	5

Na tabela também dá para ver o número de m^2 que cada modelo é capaz de pintar por dia, que é diferente para paredes normais e para tetos. Um cliente comprou 2 modelos PR-1, 3 PR-2, 3 PR-3. Ele quer pintar o maior número de quartos possível dentro um dia. Assume que o número de m^2 das paredes normais é 1.8 vezes maior que o número que o número de m^2 dos tetos. Formula um programa linear que consegue pintar o maior número de quartos num dia. (Ignora eventuais restrições de integralidade.)

Questão 4 (Método Simplex, 2.5pt)

Considere o programa linear

minimiza
$$+2x_1 + 0x_2 + 8x_3$$

sujeito a $-1x_1 - 9x_2 - 9x_3 = -3$,
 $-8x_1 - 3x_2 - 5x_3 \le -6$,
 $-5x_1 - 4x_2 - 9x_3 \le 3$,
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

- a) Apresenta a forma normal do sistema e o dicionário inicial.
- b) Qual o menor número de coeficientes que é preciso modificar neste sistema tal que não é necessário aplicar a fase I? Lista os coeficientes e os seus novos valores.
- c) Para o sistema do item b): Qual o menor número de coeficientes que é preciso modificar tal que o primeiro pivô é w_1 - x_3 usando a regra de Dantzig?
- d) Para o sistema do item b): Qual o menor número de coeficientes que é preciso modificar tal que o primeiro pivô é w_1 - x_1 usando a regra de Bland?
- e) Para o sistema do item b): Qual o menor número de coeficientes que é preciso modificar tal que o o sistema já representa a solução ótima, sem precisar pivotar?

Para cada um dos itens b) a e): Lista os coeficientes e os seus novos valores e apresenta uma breve justificativa porque a modificação desses coeficientes é necessário e mínimo (ou, caso tal modificação é impossível uma explicação do motivo).