Prova 2

Questão 1 (Formulação, 2pt)

O departamento de pesquisa e desenvolvimento de uma empresa projetou cinco linhas de produtos. A diretoria agora precisa decidir quais dos produtos serão produzidos e em quais quantidades. Para cada produto tem um custo fixo inicial e lucros por unidade como segue:

	Produto					
	1	2	3	4	5	
Custo fixo incial Lucro por unidade					5500 90	

Sejam x_1 , x_2 , x_3 , x_4 e x_5 as quantidades produzidas de cada produto. A diretoria formulou as seguintes restrições:

1. Somente duas das seguintes três restrições devem ser satisfeitas:

$$5x_1 + 3x_2 + 6x_3 + 4x_4 + 2x_5 \le 6000,$$

$$4x_1 + 3x_2 + 3x_3 + 4x_4 + 4x_5 \le 6000,$$

$$3x_1 + 4x_2 + 2x_3 + 2x_4 + x_5 \le 5000.$$

- 2. No máximo três produtos podem ser escolhidos para a produção.
- 3. Do produto 5 devem ser produzidas no máximo 1000 unidades.

Formule um modelo matemático que determina a solução de maior lucro.

Questão 2 (Análise de sensibilidade, 3pt)

O problema

possui o dicionário ótimo

a) Em quais limites o coeficiente $c_1 = 7$ da variável x_1 pode variar, tal que a base atual continua a ser a base ótima? Qual o novo valor da função objetivo em função da variação?

Prof. Marcus Ritt

b) Em quais limites o lado direito $b_3 = 4$ da terceira restrição pode variar, tal que a base atual continua a ser a base ótima? Qual o novo valor da função objetivo em função da variação?

Dica:

Após a solução de um sistema linear, temos o dicionário ótimo

$$z = z^* - (y_N^*)^t x_N$$
$$x_B = x_B^* - B^{-1} N x_N$$

com

$$x_B^* = B^{-1}b$$

 $y_N^* = (B^{-1}N)^t c_B - c_N$
 $z^* = c_B^t B^{-1}b$.

Questão 3 (Formulação, Takuzu, 3pt)

Um Takuzu é uma grade 8×8 com dicas que precisa ser preenchida completamente com 0s e 1s, tal que tem o mesmo número de 0s e 1s em cada linha e coluna e tem no máximo dois 0s ou 1s adjacentes.

		0	0			
1						
					1	
1		0				0
	1					
0						
0		0	0			0
				1	1	

Formula um programa inteiro que resolve Takuzus, maximizando os 1s.

Questão 4 (Dualidade, 2pt)

Qual o problema dual da relaxação linear do problema da mochila?