Observações gerais:

- Lê todas as questões antes de começar e pergunta em caso de dúvidas.
- Sempre justifique a sua resposta.
- Responde a cada guestão, ainda que a resposta não esteja completa.

Prova 2

Questão 1 (Formulação matemática, 2pt)

Uma cidade tem 6 bairros e tem que instalar uma série de centros de atendimento. Em cada bairro tem uma localidade candidata para um centro e temos os seguintes tempos (em minutos) para alcançar os centros dos demais bairros:

	1	2	3	4	5	6
1	0	10	20	30	30	20
2	10	0	25	35	20	10
3	20	25	0	15	30	20
4	30	35	15	0	15	25
5	30	20	30	15	0	14
6	20	10	20	25	14	0

A cidade quer instalar o menor número de centros de forma que nenhuma distância de um bairro para o próximo centro seja mais que 15 minutos.

Questão 2 (Formulação matemática, 3pt)

Dado um grafo direcionado completo G = (V, A) com distâncias d_{ij} , $i, j \in V$, dois vértices $s, t \in V$ e um conjunto $Q \subseteq V \setminus \{s, t\}$, queremos encontrar o menor caminho simples de s para t visitando pelo menos a metade dos vértices em Q. Formula um programa inteiro.

Questão 3 (Programas lineares duais, 1.5pt)

Qual o programa linear dual de

Prof. Marcus Ritt

Questão 4 (Dualidade, 1pt)

Considera o programa linear

maximiza
$$-2x_2 - x_3 - 3x_4$$

sujeito a $x_1 - x_2 + 2x_4 \le 2$,
 $2x_2 + x_3 \le 4$,
 $2x_1 - x_3 + x_4 \le 1$,
 $x_1, x_2, x_3, x_4 \ge 0$.

Encontra uma solução primal factível e uma solução dual factível e demonstra que as duas soluções satisfazem o teorema da dualidade fraca.

Questão 5 (Análise de sensibilidade, 2.5pt)

O dicionário final na solução de

maximiza
$$4x_1 + 5x_2 + 9x_3 + 11x_4$$

sujeito a $x_1 + x_2 + x_3 + x_4 \le 15$
 $7x_1 + 5x_2 + 3x_3 + 2x_4 \le 120$
 $3x_1 + 5x_2 + 10x_3 + 15x_4 \le 100$
 $x_1, x_2, x_3, x_4 \in \mathbb{R}_+$

é

(com variáveis de folga x_5 , x_6 e x_7).

- a) A solução básica ótima é ainda ótima se a função objetivo original for maximizar $6x_1 + 5x_2 + 9x_3 + 12x_4$?
- b) Substituindo o coeficiente 9 de x_3 na função objetivo por 9+t, quais os limites de t tal que a solução atual mantem se ótima? Qual a função objetivo em função de t?