Prova de recuperação

Questão 0.1 (2.5pt)

O problema da bisseção balanceada mínima consiste em achar uma partição dos vértices de um grafo não-direcionado, tal que o tamanho das partições diferem em no máximo um vértice a tal que o número de arestas entre as duas partes é mínimo. Formule um programa linear ou inteira. (Assume que o número de vértices no grafo é par.)

Questão 0.2 (2.5pt, Dantzig)

Em duas semanas uma galinha pode por 12 ovos ou chocar 4 ovos. Após de quatro períodos (de duas semanas) todo pinto será vendido por 60 centavos e todo ovo por 10 centavos. Dado 100 galinhas e nenhum ovo no começo, formula um programa linear ou inteira que determina a melhor programação entre "por" e "chocar".

Questão 0.3 (2.5pt)

Determina as soluções ótimas do problema parametrizado

minimiza
$$(-1+2t)x_1 + (-3+t)x_2$$

sujeito a $x_1 + x_2 \le 6$
 $-x_1 + 2x_2 \le 6$
 $x_1, x_2 > 0$.

para todo $t \in \mathbb{R}$. (Dica: classifique as soluções para uma função objetivo arbitrário e determina para quais t qual caso se aplica.)

Questão 0.4 (2.5pt)

Dado um coleção $\mathcal C$ de subconjuntos de um conjunto finito U qual o menor subconjunto $S\subseteq U$ tal que S contém um elemento de cado subconjunto $C\in \mathcal C$? Esse problema é conhecido como o $transversal\ mínima\ (hitting\ set)$. Com variáveis de decisão $x_u\in \mathbb B$ para todo $u\in U$ uma formulação é

$$\label{eq:minimiza} \begin{aligned} & \sum_{u \in U} x_u \\ & \text{sujeito a} & \sum_{u \in C} x_u \geq 1 \\ & x_u \in B \end{aligned} \qquad \forall C \in \mathcal{C}$$

1

A matriz desse problema é totalmente unimodular? Justifique.

Sucesso!

v3057