
Universidade Federal do Rio Grande do Sul
Instituto de Informática
Departamento de Informática Teórica

INF05010 – Otimização combinatória
2014/2

Prof. Marcus Ritt

Exerćıcio 1 (Investimento, Formulação, fácil)
Sejam ui as unidades produzidas do produto i ∈ P = [1, 4], xi ∈ B variáveis booleanas que indicam se
o produto i é produzido, ci e li o custo inicial e os lucros, respectivamente.

max
∑
i∈P

uili −
∑
i∈P

cixi

s.a
∑
i∈P

xi ≤ 2 No máximo dois tipos de produtos

x3 ≤ x1 + x2 Tipo 3 somente so tipo 1 ou 2

x4 ≤ x1 + x2 Tipo 4 somente so tipo 1 ou 2

ui ≤ 2000 ∀i ∈ P Limite produção (redundante)

ui ≤ 2000xi ∀i ∈ P Vı́nculo das variáveis

Alternativas para a segunda restrição

x3 + x4 ≤ 2(x1 + x2) Mais fraco, a soma das duas restrições acima

x3 + x4 ≤ x1 + x2 Mais forte, válido porque no máximo dois projetos

Exerćıcio 2 (Sudoku)
O seguinte modelo em AMPL formaliza as restrições:

set d i g i t o s := 1 . . 9 ;
set l i n h a s := 1 . . 9 ;
set co lunas := 1 . . 9 ;

var numero { l i nhas , colunas , d i g i t o s } binary ;

maximize SomaDiagonalSuperior :
sum { i in l i nhas , d in d i g i t o s } d∗numero [i , i , d] ;

cada quadro contém exatamente um d i g i t o
subject to QuadroMenor { i in l i nhas , j in co lunas } :

sum { d in d i g i t o s } numero [i , j , d] = 1 ;
cada l i n h a contém de cada d ı́ g i t o exatamente uma vez
subject to Linha { i in l i nhas , d in d i g i t o s } :

sum { j in co lunas } numero [i , j , d] = 1 ;
cada coluna contém de cada d ı́ g i t o exatamente uma vez
subject to Coluna { j in colunas , d in d i g i t o s } :

sum { i in l i n h a s } numero [i , j , d] = 1 ;
cada quadro maior contém cada d ı́ g i t o exatamente uma vez
subject to QuadroMaior { i in {1 ,4 ,7} , j in {1 ,4 ,7} , d in d i g i t o s } :

sum { di in 0 . . 2 , dj in 0 . . 2 } numero [i+di , j+dj , d] = 1 ;

Um exemplo de uma solucão é

v5129 1 Licença Creative Commons
(Atribuição–Uso Não-Comercial–Não a obras derivadas 3.0 Brasil).

http://creativecommons.org/licenses/by-nc-nd/3.0/br

Universidade Federal do Rio Grande do Sul
Instituto de Informática
Departamento de Informática Teórica

INF05010 – Otimização combinatória
2014/2

Prof. Marcus Ritt

8 3 1 4 2 5 8 9 6

4 8 2 6 9 1 3 5 7

5 6 9 3 7 8 2 1 4

6 2 5 7 1 3 9 4 8

1 9 3 2 8 4 6 7 5

8 4 7 5 6 9 1 2 3

9 5 4 8 3 2 7 6 1

3 1 6 9 5 7 4 8 2

2 7 8 1 4 6 4 3 9

Exerćıcio 3 (Coloração de grafos)
Para um grafo G = (V,A) com n vértices e V = [n] seja xij ∈ B para 1 ≤ v, j ≤ n um indicador se o
vértice v possui cor i ∈ C, com C = [n] o conjunto de cores permitidos. (Permitimos até n cores, para
garantir uma coloração.) Seja ainda ci ∈ B para i ∈ C uma variável auxiliar que indice se a cor i está
usada.

minimiza
∑
i∈C

ci menor número de cores

sujeito a
∑

1≤j≤n

xvj = 1 v ∈ V Garantir exatamente um cor por vértice

xui + xvi ≤ 1 i ∈ C, uv ∈ E Coloração viável

nci ≥
∑
v∈V

xvi i ∈ C Define variáveis aux.

A implementação correspondente em AMPL para o caso do grafo de Peterson é

set V; # s e t o f v e r t i c e s
set E with in V c r o s s V; # s e t o f edges
var c { i in V } binary ; # c o l o r i s e t ?
var x { i in V, j in V } binary ; # v e r t e x i has c o l o r j ?

minimize Colors :
sum { i in V } c [i] ;

subject to OneColor { i in V } :
sum { j in V } x [i , j] = 1 ;

subject to NoAdjacent { (i , j) in E, k in V } :
x [i , k] + x [j , k] <= 1 ;

subject to Def ineColor { i in V } :
10∗ c [i] >= sum { j in V } x [j , i] ;

data ;

set V := 1 2 3 4 5 6 7 8 9 10 ;
set E := (1 , 2) (1 , 3) (1 , 6) (2 , 7) (2 , 8) (3 , 4) (3 , 9) (6 , 5) (6 , 10) (4 , 5)

(4 , 8) (5 , 7) (7 , 9) (8 , 10) (9 , 10) ;
f o r use wi th cm
set A := (1 , 2) (1 , 3) (1 , 6) (2 , 7) (2 , 8) (3 , 4) (3 , 9) (5 , 6) (6 , 10) (4 , 5)

(4 , 8) (5 , 7) (7 , 9) (8 , 10) (9 , 10) ;

v5129 2 Licença Creative Commons
(Atribuição–Uso Não-Comercial–Não a obras derivadas 3.0 Brasil).

http://creativecommons.org/licenses/by-nc-nd/3.0/br

Universidade Federal do Rio Grande do Sul
Instituto de Informática
Departamento de Informática Teórica

INF05010 – Otimização combinatória
2014/2

Prof. Marcus Ritt

end ;

Solução:

Exerćıcio 4 (Ponder this, Formulação, dif́ıcil)
Uma formulação em AMPL é

cubes , numbers , and f a c e s
set C := 1 . . 2 5 ;
set F := 1 . . 6 ;
set N := 0 . . 3 1 ;

s e t o f d i f f e r e n t cubes
#s e t DC :=

f a c e v a r i a b l e s
var x { C, F, N } binary ;

s har ing v a r i a b l e s
var y { C, C, N } binary ;

maximum number used
var M i n t e g e r ;

minimize maxnumber : M;

subject to exactlyonenumber { c0 in C, f0 in F } :
sum { n0 in N } x [c0 , f0 , n0] = 1 ;

subject to noequalnumbers { c0 in C, f0 in F, f1 in F, n0 in N : f0 != f1
} :

x [c0 , f0 , n0]+x [c0 , f1 , n0] <= 1 ;

subject to d e f i n e s h a r i n g 1 { c0 in C, c1 in C, n0 in N : c0 != c1 } :
y [c0 , c1 , n0] <= sum { f 0 in F } x [c0 , f0 , n0] ;

subject to d e f i n e s h a r i n g 2 { c0 in C, c1 in C, n0 in N : c0 != c1 } :
y [c0 , c1 , n0] <= sum { f 0 in F } x [c1 , f0 , n0] ;

subject to d e f i n e s h a r i n g 3 { c0 in C, c1 in C, n0 in N : c0 != c1 } :
y [c0 , c1 , n0] + 1 >= sum { f 0 in F } (x [c0 , f0 , n0] + x [c1 , f0 , n0]) ;

subject to shareonenumber { c0 in C, c1 in C : c0 != c1 } :
sum { n0 in N } y [c0 , c1 , n0] = 1 ;

v5129 3 Licença Creative Commons
(Atribuição–Uso Não-Comercial–Não a obras derivadas 3.0 Brasil).

http://creativecommons.org/licenses/by-nc-nd/3.0/br

Universidade Federal do Rio Grande do Sul
Instituto de Informática
Departamento de Informática Teórica

INF05010 – Otimização combinatória
2014/2

Prof. Marcus Ritt

subject to setmaxnumber { c0 in C, f0 in F, n0 in N } :
M >= n0∗x [c0 , f0 , n0] ;

v5129 4 Licença Creative Commons
(Atribuição–Uso Não-Comercial–Não a obras derivadas 3.0 Brasil).

http://creativecommons.org/licenses/by-nc-nd/3.0/br

