Universidade Federal do Rio Grande do Sul INF05010 — Otimizacao combinatdéria
Instituto de Informatica 2014/2
Departamento de Informética Tedrica Prof. Marcus Ritt

Exercicio 1 (Investimento, Formulacao, ficil)
Sejam u; as unidades produzidas do produto i € P = [1,4], x; € B varidveis booleanas que indicam se
o produto 7 é produzido, ¢; e [; o custo inicial e os lucros, respectivamente.

max E uili—g CiT;

icP icP
s.a Z T <2 No méaximo dois tipos de produtos
icP
3 < 11+ X9 Tipo 3 somente so tipo 1 ou 2
x4 <1+ 29 Tipo 4 somente so tipo 1 ou 2
u; < 2000 VieP Limite producao (redundante)
u; < 2000x; Vie P Vinculo das varidveis

Alternativas para a segunda restrigao

3+ x4 < 2(x1 + x2) Mais fraco, a soma das duas restricoes acima

T3+ 14 < 11+ X0 Mais forte, valido porque no méximo dois projetos

Exercicio 2 (Sudoku)
O seguinte modelo em AMPL formaliza as restri¢oes:

set digitos := 1 .. 9;
set linhas :=1 .. 9;
set colunas := 1 .. 9;

var numero { linhas, colunas, digitos } binary;

maximize SomaDiagonalSuperior:
sum { i in linhas, d in digitos } d*numero[i,i,d];

cada quadro contém exatamente um digito
cad d té t t digit
subject to QuadroMenor { i in linhas, j in colunas }:
sum { d in digitos } numero[i,j,d] = 1;
cada linha contém de cada digito exatamente uma vez
subject to Linha { i in linhas, d in digitos }:
sum { j in colunas } numero[i,j,d] = 1;
cada coluna contém de cada digito exatamente uma vez
cad l tém d da digit t t
subject to Coluna { j in colunas, d in digitos }:
sum { i in linhas } numero[i,j,d] = 1;
cada quadro maior contém cada digito exatamente uma vez
d d ' té da digit t t
subject to QuadroMaior { i in {1,4,7}, j in {1,4,7}, d in digitos }:
sum { di in 0..2, dj in 0..2 } numero[i+di,j+dj,d] = 1;

Um exemplo de uma solucao é

v5129 1 Licenga Creative Commons
(Atribuigio-Uso Nio-Comercial-Nio a obras derivadas 3.0 Brasil).

http://creativecommons.org/licenses/by-nc-nd/3.0/br

Universidade Federal do Rio Grande do Sul INF05010 — Otimizacao combinatdéria

Instituto de Informatica 2014/2
Departamento de Informética Tedrica Prof. Marcus Ritt
83 1(4/2/5]|8/9]|6
4181216913 |5|7
5/6 93 7/8]2|1/|4
6/25]|7/1[{3]9/48
1191328 4(6|7]5
84 7[5/6[9]1|2]|3
915 /48 3]2|7]6|1
311,69 /571482
2/7,/8(1/4]6]14/31]9

Exercicio 3 (Coloragao de grafos)

Para um grafo G = (V, A) com n vértices e V = [n] seja z;; € B para 1 < v,j < n um indicador se o
vértice v possui cor i € C, com C' = [n] o conjunto de cores permitidos. (Permitimos até n cores, para
garantir uma coloracdo.) Seja ainda ¢; € B para ¢ € C' uma varidvel auxiliar que indice se a cor i estd
usada.

minimiza E ¢ menor numero de cores
eC
sujeito a g Tyj =1 vevV Garantir exatamente um cor por vértice
1<j<n
Tyi + T <1 ieCuw ek Coloragao viavel
ne; > E Toi i1eC Define varidveis aux.
veV

A implementagao correspondente em AMPL para o caso do grafo de Peterson é

set V; # set of wvertices
set E within V cross V; # set of edges
var ¢ { i in V } binary; # color i set?

var x { i in V, j in V } binary; # vertex ¢ has color j?

minimize Colors:
sum { 1 in V } c[i];

subject to OneColor { i in V }:
sum { j in V } x[i,j] = 1;

subject to NoAdjacent { (i,j) in E, k in V }:
x[i,k] + x[j,k] <= 1;

subject to DefineColor { i in V }:
10%c[i] >=sum { j in V } x[j,i];

data;

set V.= 1234567389 10;

set E := (1,2) (1,3) (1,6) (2,7) (2,8) (3,4) (3,9) (6,5) (6,10) (4,5)
(4,8) (5,7) (7,9) (8,10) (9,10) ;

for wuse with cm
set A := (1,2) (1,3) (1,6) (2,7) (2,8) (3,4) (3,9) (5,6) (6,10) (4,5)
(4,8) (5,7) (7,9) (8,10) (9,10) ;

v5129 2 Licenga Creative Commons
(Atribuigao—Uso Nao-Comercial-Nao a obras derivadas 3.0 Brasil).

http://creativecommons.org/licenses/by-nc-nd/3.0/br

Universidade Federal do Rio Grande do Sul INF05010 — Otimizacao combinatdéria

Instituto de Informatica 2014/2
Departamento de Informética Tedrica Prof. Marcus Ritt
end ;

Solugao:

Exercicio 4 (Ponder this, Formulacao, dificil)
Uma formulacado em AMPL é

cubes, mumbers, and faces
set C := 1..25;
set F := 1..6;
set N := 0..31;

set of different cubes
#set DC :=

face wvariables
var x { C, F, N } binary;

sharing variables
var y { C, C, N } binary;

mazimum number used
var M integer;

minimize maxnumber: M;

subject to exactlyonenumber { c0 in C, fO0 in F }:
sum { n0 in N } x[c0,f0,n0] = 1;

subject to noequalnumbers { ¢c0 in C, f0 in F, f1 in F, n0 in N : {0 != f1
}:
x[c0,f0 ,n0]+x[c0,fl ,n0] <= 1;

subject to definesharingl { ¢0 in C, ¢l in C, n0 in N : ¢c0 != ¢l }:
y[c0,cl,n0] <= sum { fO in F } x[c0,f0,n0];

subject to definesharing2 { c0 in C, ¢l in C, n0 in N : c0 != ¢l }:
y[c0,cl,n0] <=sum { fO in F } x[cl,f0,n0];

subject to definesharing3 { c0 in C, ¢l in C, n0 in N : ¢c0 != ¢l }:
y[cO,cl,n0] + 1 >=sum { fO in F } (x[c0,f0,n0] 4+ x[cl,f0,n0]);

subject to shareconenumber { c0 in C, ¢l in C : ¢0 != cl}:
sum { n0 in N } y[c0,cl,n0] = 1;

)

v5129 3 Licenga Creative Commons
(Atribuigao—Uso Nao-Comercial-Nao a obras derivadas 3.0 Brasil).

http://creativecommons.org/licenses/by-nc-nd/3.0/br

Universidade Federal do Rio Grande do Sul INF05010 — Otimizacao combinatdéria
Instituto de Informatica 2014/2
Departamento de Informética Tedrica Prof. Marcus Ritt

subject to setmaxnumber { ¢0 in C, fO0 in F, n0 in N }:
M >= n0xx[c0,f0 ,n0];

v5129 4 Licenga Creative Commons

(Atribuigao—Uso Nao-Comercial-Nao a obras derivadas 3.0 Brasil).

http://creativecommons.org/licenses/by-nc-nd/3.0/br

