Trabalhos: Problemas

Para cada combinação problema vs. metaheurística, apresentar um relatório contendo no mínimo

- uma descrição do problema,
- uma descrição detalhada do algoritmo proposto,
- uma tabela de resultados com no mínimo as seguintes informações para cada instância: valor da melhor solução encontrada pelo seu algoritmo (S), tempo de execução, desvio percentual $(100\frac{S-MC}{S})$ da melhor solução conhecida MC,
- uma análise dos resultados,
- a bibliografia pesquisada.

ÁRVORE MÍNIMA DE CARDINALIDADE k

Instância Um grafo não-direcionado G = (V, A) com pesos $c : A \to \mathbb{N}_+$ nas arestas.

Solução Uma subgrafo T de G que é uma árvore com exatamente k arestas.

Objetivo Minimizar o peso $\sum_{a \in A(T)} c_a$ das arestas em T.

Formato Instâncias disponíveis em http://iridia.ulb.ac.be/~cblum/kctlib/instances/index.html.

PROBLEMA DAS P-MEDIANAS CAPACITADO

Instância Um conjunto $I=1,\ldots,n$ de n clientes, demanda d_i de cada cliente $i=1,\ldots,n$, uma matriz assimétrica C de custos c_{ij} representado a distância euclidiana entre o cliente i e o local j, um número p de locais potenciais, capacidade fixa c de cada local potencial.

Solução Um subconjunto p clientes onde as p facilidades serão instaladas e os conjuntos S_j para j = 1, ..., p de clientes que serão atendidos por cada facilidade j.

Objetivo Minimizar a soma $\sum_{1 \leq j \leq p} \sum_{s \in S_i} c_{ij}$.

Formato Têm 20 instâncias no arquivo pmedcap1.txt disponível em http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/pmedcap1.txt, e cujo formato está disponível em http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedcapinfo.html. Observe que o valor da melhor solução conhecida para cada instância faz parte dos dados da mesma.

Aterrissagem de aviões

Instância Um conjunto P de aviões, sendo que a cada aviõo $i \in P$ contem as seguintes informações:

- a) R_i : tempo em que o avião i foi detectado pelo radar
- b) E_i : tempo inicial em que o avião i pode pousar
- c) T_i : tempo ideal para pouso
- d) L_i : tempo final em que o avião pode pousar
- e) g_i : penalidade por unidade de tempo se o avião i pousar antes do tempo ideal

v2845 1

- f) h_i : penalidade por unidade de tempo se o avião i pousar depois do tempo ideal
- g) S matriz com valores s_{ij} representado o tempo de separação requerido após o pouso do avião i e antes do pouso do próximo avião j
- **Solução** Sequência de aterrissagem dos aviões considerando apenas uma pista de voo, bem como o tempo em que cada avião aterrissou.
- **Objetivo** Minimizar $\sum_{i \in P} g_i * \alpha_i + h_i * \beta_i$ onde α_i e β_i representam o espaço de tempo em que o avião i pousou antes ou depois, respectivamente, que o seu tempo ideal para pouso.
- Formato As instâncias seguem o seguinte formato descrito em httml. Resultados para instâncias airland1, airland2,...,airland8. Observem que para estas instâncias somente a triangular superior da matriz S é fornecida. Esta é fornecida linha a linha, como último dado de cada avião. As soluções ótimas para estas instâncias são, respectivamente: 700, 1480, 820, 2520, 3100, 24442, 1550, 1950.

v2845 2