INF05010 — Algoritmos avancados
Notas de aula

Marcus Ritt

2025-05-05

Universidade Federal do Rio Grande do Sul
Instituto de Informatica
Departamento de Informatica Teorica



Versao 0f2428 compilada em 2025-05-05. Obra esta licenciada sob uma Licenca
Creative Commons (Atribui¢ao-Uso Nao-Comercial-Nao a obras derivadas 4.0

®906).

Agradecimentos Agradeco os estudantes dessa disciplina por criticas e co-
mentéarios e em particular o Rafael de Santiago por diversas correcoes e su-
gestoes.

ii


http://creativecommons.org/licenses/by-nc-nd/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0

Conteudo

1. Algoritmos em grafos 7
1.1. Representacgao de grafos . . . . . .. .. .. .. ... ... 7
1.1.1. Amostragem de grafos aleatérios . . ... .. ... ... 8

1.2. Caminhos e ciclos Eulerianos . . . . ... ... ... ... ... 10
1.3. Arvores geradoTes . . . . . ... 11
1.4. Caminhos mais curtos . . . . . . ... .. ... ... ... 13
1.4.1. Topicos . . . . . o o 16
1.4.2. Mais sobre caminhos mais curtos . . . . . .. ... ... 22
1.4.3. Arborescéncias . . . . .. ... 31
1.4.4. Notes on available material . . . . ... ... ... ... 33
1.4.5. Notas . . . . . . .. e 34
1.4.6. Dynamic connectivity . . . . .. .. ... ... ... .. 34

1.5. Filas de prioridade e heaps . . . . . . . .. ... oL 37
1.5.1. Heaps bindrios . . . . . . .. ... ... . .. 37
1.5.2. Heaps binomiais . . . . . .. ... ... ... ... ... 42
1.5.3. Heaps Fibonacci . . . .. ... .. ... .. ....... 46
1.5.4. Rank-pairing heaps . . . . . . .. ... ... L. 51
1.5.,5. Heapsocos . . ... ... ... .. ... .. ... 60
1.5.6. Arvores de van Emde Boas . . . . ... ......... 65
1.5.7. Exercicios . . . . .. ... 74

1.6. Fluxosemredes. . . . . . . . .. ... 75
1.6.1. O algoritmo de Ford-Fulkerson . . . ... ... ..... 78
1.6.2. O algoritmo de Edmonds-Karp . . . .. ... ... ... 83
1.6.3. O algoritmo “caminho mais gordo” (“fattest path”). .. 84
1.6.4. O algoritmo push-relabel . . . . .. .. ... ... ... 86
1.6.5. Algoritmo de escalonamento . . . . . .. ... ... ... 91
1.6.6. Variantes do problema . . . . . .. ... ... ...... 91
1.6.7. Aplicagdes . . . . . . . . e 96
1.6.8. Outros problemas de fluxo . . . . . ... ... ... ... 104
1.6.9. Exercicios . . . . .. .. ... oo 106

1.7. Emparelhamentos . . . . . . .. ... o000 107
1.7.1. Aplicagdes . . . . . . . . 110
1.7.2. Grafos bi-partidos . . . . . ... ... 112
1.7.3. Emparelhamentos em grafos nao-bipartidos . . . . . . . 125
1.7.4. Tépicos avancados . . . . . . .. ... ... 133



Contetido

1.7.5. Notas . . . . . . . . .
1.7.6. Exercicios . . . . . . . . . . o

2. Tabelas hash
2.1. Hashing com listas encadeadas . . . . . ... ... ... ....
2.2. Hashing com enderegamento aberto. . . . . . . ... ... ...
2.3. Cucohashing . . . .. ... ... ..
2.4. Filtrosde Bloom . . . .. ... ... . oL

3. Algoritmos de aproximacao

3.1. Problemas, classes e redugoes . . . . . .. ... ...
3.2. Medidas de qualidade . . . . . . ... ... .. L.
3.3. Técnicas de aproximacdo . . . . . . . ... ... L.

3.3.1. Algoritmos gulosos . . . . . ...

3.3.2. Aproximagoes com randomizagdo . . . . . .. ... ...

3.3.3. Programacao linear . . . . . .. ... ... .. ...
3.4. Esquemas de aproximacao . . . . . . . . v i i e
3.5. Aproximando o problema da arvore de Steiner minima . . . . .
3.6. Aproximandoo PCV . . . . ... .. .. ... ...
3.7. Aproximando problemas de cortes . . . . ... ... ... ...
3.8. Aproximando empacotamento unidimensional . . . . . . . . ..

3.8.1. Um esquema de aproximacao assintotico para min-EU .
3.9. Aproximando problemas de sequénciamento . . . . . ... ...

3.9.1. Um esquema de aproximagao para P || Cpax - -« - - . .
3.10. Programacao inteira para aproximagao . . . . . . . .. . .. ..
3.1 Exercicios . . . . ..o

4. Algoritmos randomizados

4.1. Teoria de complexidade . . . . .. ... ... ... .......

4.1.1. Amplificacdo de probabilidades . . . . . .. . ... ...

4.1.2. Relagdo entreasclasses . . . ... .. ... .. .....
4.2. Selecdo . . . .o e
4.3. Corteminimo . . . . . . . . ...
4.4. Teste de primalidade . . . . . . .. ... ... L.
4.5. O problema é achar “a agulha no palheiro” . . . ... .. ...
4.6. Encontrar a mediana . . . . . .. ... oL
4.7 Notas . . . . . o e
4.8. Exercicios . . . . .. .o

5. Complexidade e algoritmos parametrizados



Contetido

6. Qutros algoritmos 211
6.1. O problema de soma de intervalos . . . ... ... ... .... 211
6.2. Amostragem discreta . . . . . . .. ... 214

6.2.1. Amostragem sem reposicdo . . . . . . ... ... ... 214
6.2.2. Distribuigoes discretas . . . . . . ... .. ... 214
6.3. Set covering . . . . . . ... 218
6.3.1. Further related problems . . ... ... ... . ... .. 220
6.3.2. Solution strategies . . . . . . . ... .. ... ... 220
6.3.3. Upperbounds. . . .. ... ... ... ... ... ..., 221
6.3.4. Lowerbounds . . . ... .. ... ... .. ........ 221
6.3.5. Reductionrules . . . . . ... ... ... ... ... .. 222
6.3.6. Details. . . . . . ... o 223

A. Material auxiliar 225
Al Algoritmos . ..o 226

B. Técnicas para a analise de algoritmos 231

Bibliografia 233

indice 241



{fig:ea}

Contetido

Introducao

A disciplina “Algoritmos avancados” foi criada para combinar a teoria e a
pratica de algoritmos. Muitas vezes a teoria de algoritmos e a pratica de im-
plementacoes eficientes é ensinado separadamente, em particular no caso de
algoritmos avancados. Porém a experiéncia mostra que encontramos muitos
obstaculos no caminho de um algoritmo teoricamente eficiente para uma im-
plementacao eficiente. Além disso, o projeto de algoritmos novos néo termina
com uma implementagao eficiente, mas é alimentado pelos resultados expe-
rimentais para produzir melhores algoritmos. A figura abaixo mostra o ciclo
tipico da area emergente de engenharia de algoritmos.

-

; realistic
algo_"thn:l models 1 real
engineerin —
9 9 Inputs [y i
i -5
/ falsifiable \ o
(__anaysis _J3 hypotheses 5 — 8
\_ induction / o
deduction ~_ a4 g
perf - implementation -
guarantees L4
algorithm— | 6
libraries

-

Engenharia de algoritmos (Algorithm Engineering s.d.).

Seguindo essa filosofia, o nosso objetivo e tanto entender a teoria de algorit-
mos, demonstrado a sua corretude e analisando a sua complexidade, quanto
dominar a pratica de algoritmos, a sua implementagao e avaliagdo experimen-
tal. Isso é refletido numa sequéncia alternada de aulas tedricas a praticas.

Organization
e Theoretical and practical session.

Pratica: Como fazer experimentos
Note: Better to leave this for the practical part. Just lecture hint.

o Perform newsworthy experiments.

e Tie your paper to the literature.




Contetido

o Use instance testbeds that can support general conclusions.
o Use efficient and effective experimental designs.

o Use reasonably efficient implementations.

e Ensure reproducibility.

e Ensure comparability.

e Report the full story.

o Draw well-justified conclusions and look for explanations.

e Present your data in informative ways.

Leitura: A Theoretician’s Guide to the Experimental Analysis of Algo-
rithms (Johnson, 2002).

Practice: Planning issues

o What kind of language we will be using?

e We need graph algorithms: I suggest C++ or python.

Pratica: Ferramentas

o Profiling: gprof.
o Coverage analysis: gcov.
o Performance counters: perfctr, PAPI, perfsuite, valgrind.

e But: check also the downsides of sampling-based profiling.

There’s an talk of Andrescu about engineering sorting algorithms, which
has also nices lesson. The simpler ones: i) more predictable code is bet-
ter; in particular push conditional statements into arithmetic, whenever
you can, and ii) more regular access is better. These address branch
predicition and caches. His central finding then was: the right empirical
complexity model (namely in his case a weighted sum of compares, moves



https://lemire.me/blog/2024/05/30/never-reason-from-the-results-of-a-sampling-profiler
https://youtu.be/FJJTYQYB1JQ

Contetido

and average access distance) is important. That what we observe in this
lecture all the time: we can’t even predict the simplest things without
going very much into detail. This also extends to my work on automatic
generation of algorithms.




1. Algoritmos em grafos

1.1. Representacao de grafos

Um grafo pode ser representado diretamente de acordo com a sua defini¢ao
por M estruturas que representam os vértices, m estruturas que representam
0s arcos e ponteiros entre as estruturas. Um vértice possui ponteiros para todo
arco incidente sainte ou entrante, e um arco possui ponteiros para o inicio e
término. A representacdo direta possui varias desvantagens. Por exemplo néo
temos acesso direto aos vértices para inserir um arco.

Duas representagoes simples sdo listas (ou vetores) ndo-ordenadas de vértices
ou arestas. Uma outra representacao simples de um grafo G com n vértices é
uma matriz de adjacéncia M = (my;) € B™ ™. Para vértices u,v o elemento
myy = 1 caso existe uma arco entre u e v. Para representar grafos ndo-
direcionados mantemos My, = My, i.e., M é simétrico. A representacdo
permite um teste de adjacéncia em O(1). Percorrer todos vizinhos de um
dado vértice v custa O(n). O custo alto de espaco de @(n?) restringe o uso
de uma matriz de adjacéncia para grafos pequenos'.

Uma representacdo mais eficiente é por listas ou vetores de adjacéncia. Neste
caso armazenamos para cada vértice os vizinhos em uma lista ou um vetor. As
listas ou vetores mesmos podem ser armazenados em uma lista ou um vetor
global. Com isso a representagdo ocupa espaco @(n + m) para m arestas.
Uma escolha comum é um vetor de vértices que armazena listas de vizinhos.
Esse estrutura permite uma insercdo e delecao simples de arcos. Para facilitar
a delecao de um vértice em grafos nao-direcionados, podemos armazenar junto
com o vizinho u do vértice v a posi¢do do vizinho v do vértice u. A repre-
sentacao dos vizinhos por vetores é mais eficiente, e por isso preferivel caso a
estrutura do grafo é estético (Black Jr. e Martel, 1998; Park et al., 2004).
Caso escolhemos armazenar os vértices em uma lista dupla, que armazena uma
lista dupla de vizinhos, em que os vizinhos sao representados por posicoes da
primeira lista, obtemos uma lista dupla de arcos (ingl. doubly connected arc
list, DCAL). Essa estrutura permite uma inserc¢ao e remogao tanto de vértices
quanto de arcos.

1 Ainda mais espaco consuma uma matric de incidéncia entre vértices e arestas em B"x™,



tab:opcom}

1. Algoritmos em grafos

Tabela 1.1.: Operagoes tipicas em grafos.

Lista de Matriz de Lista de
Operacao arestas vértices adjacéncia adjacéncia
Inserir aresta o) OMm+m) o O(1) ou O(n)

Remover aresta O(m) O(m+m) o(1) O(n)
Inserir vértice o(1) 0(1) 0(n?) o(1)

Remover vértice O(m) O(Mnm+m) 0(n?) Om+m)
Teste uv € E O(m) O(n+m) o(1) 0o(A)
Percorrer vizinhos  O(m) 0o(A) O(n) 0o(A)
Grau de um vértice  O(m) 0o(A) O(n) o(1)

TBD: Figura.

Supode que V = [n]. Uma outra representagdo compacta e eficiente conhecido
como forward star para grafos estaticos usa um wvetor de arcos aiy...,0m.
Mantemos a lista de arestas ordenado pelo comeco do arco. Uma permutagao o
nos dé as arestas em ordem do término. (O uso de uma permutacio serve para
reduzir o consumo de memoria.) Para percorrer eficientemente os vizinhos
de um vértice armazenamos o indice s, do primeiro arco sainte na lista de
arestas ordenado pelo comego e o indice e, do primeiro arco entrante na lista
de arestas ordenado pelo término com sn4+1 = en4+1 = M+ 1 por definicao.

Com isso temos N (v) ={as,,...,0as, ,—1} com 8} =sy41 —sy, e N"(v) =
{Ag(ey)y -y Qoley, —1)) com 8, = e,41 — ey. A representacdo precisa espaco
O(n+m).

Tabela 1.1 mostra a complexidade de operagoes tipicas nas diferentes repre-
sentacoes.

1.1.1. Amostragem de grafos aleatérios

Um modelo elementar de grafos aleatérios é de Erdds e Rényi. Na variante
Gn,p temos um grafo com n vertices, e cada uma dss possiveis M = (TZL)
arestas é gerada com probabilidade p; na variante Gn,m cada uma das (’\T:)
selegoes de m das M arestas tem a mesma probabilidade. (Todo que segue
funciona também no caso de grafos direcionados, tomando M =n(n—1).)

Para amostrar de acordo com Gy, p, podemos simplesmente percorrer todos M
arestas candidatas e adicionar cada uma com probabilidade p em tempo O(M)
e espaco O(m). Neste caso o numero de arestas é varidvel, de acordo com
uma distribui¢do binomial B(m,p) com valor esperado de arestas m = pM e



1.1. Representacao de grafos

desvio padrao de /mp(1 —p) = O(n/p(1 —p)) = O(n). Uma alternativa

mais rapida pode ser amostrar o nimero de arestas de acordo com B(m,p) e
depois usar o modelo Gp .
Para amostrar de acordo com G, podemos usar um algoritmo de amostra-
gem sem reposicao (ver 6.2.1) para selecionar as arestas em tempo e espago
O(m). (Uma forma simples, mas menos eficiente é aplicar a amostragem
por rejeicdo: repetidamente selecionar uma aresta aleatoria dos M e rejeitar
arestas ja selecionadas. O tempo esperado de amostrar a i-ésima aresta é
M/(M —1) e logo o tempo esperado é
M M M

M0 M1 T TM_m+i

=M(Hm —Hm—m) < M(InM — In(M — m)).

E[T] =

Com m = pM obtemos M —m = (1 —p)M e logo E[T] = MIn ﬁ)

(Older, simpler estimate.) We focus first on ER with fixed density p €
[0, 1], and thus samples m = [pnz] edges. If we store all edges, this can
be done by rejection sampling. (This is also what Knuth in the SGB
does.) In the worst case, we need (1 — p)~' samples per edge, and thus
time p(1 —p)~'n?. This diverges for p — 1, but if we accept a factor of,
say, 2, then up to p = 1/2 we are good. We will also have to store all
edges in memory. So for p > 0.5 we can opt to store the left out edges.
Then the output takes time n?, since we have to loop over all edges, but

since p is high we again are at most a factor of 2 slower.

Gallo e Pallottino (1988) is a rather old, but broad survey of shortest path
algorithms. It has a good experimental comparison that shows that Dial’s
algorithm and a list search algorithm perform well in practice (but we
have to consider that these experiments were done when the importance
of few memory accesses was lesser).

Mais operagcoes:
o Contracao de uma aresta.

e Contracao de um par de vértices.

See Harold N. Gabow et al. (1989).




:hierholzer}

1. Algoritmos em grafos

1.2. Caminhos e ciclos Eulerianos

Um caminho Euleriano passa por toda arestas de grafo exatamente uma vez.
Um caminho Euleriano fechado é um ciclo Euleriano. Um grafo é Euleriano
caso ele possui um ciclo Euleriano que passa por cada vértice (pelo menos uma
vez).

Proposicao 1.1
Uma grafo nao-direcionado G = (V, E) é Euleriano sse G é conectado e cada
vértice tem grau par.

Prova. Por inducdo sobre o niimero de arestas. A base da indugdo é um
grafo com um vértice e nenhuma aresta que satisfaz a proposicdo. Supde que
os grafos com < m arestas satisfazem a proposicdo e temos um grafo G com
m+ 1 arestas. Comeca por um vértice v arbitrario e procura um caminho que
nunca passa duas vezes por uma aresta até voltar para v. Isso sempre é possivel
porque o grau de cada vértice é par: entrando num vértice sempre podemos
sair. Removendo este caminho do grafo, obtemos uma cole¢ao de componentes
conectados com menos que m arestas, e pela hipotese da indugao existem ciclos
Eulerianos em cada componente. Podemos obter um ciclo Euleriano para o
grafo original pela concatencad desses ciclos Eulerianos. |
Pela prova temos o seguinte algoritmo com complexidade O(|E|) para encontrar
um ciclo Euleriano na componente de G = (V, E) que contém v € V:

Algoritmo 1.1 (Caminho Euleriano)

1 Euler(G=(VE),veV) :=

2 if |[E/|=0 return v

3 procura um caminho comegando em v

4 sem repetir arestas voltando para v

5 seja v=vi,Vv2,...,Vy =V esse caminho

6 remove as arestas ViVz, VaV3, ..., Vh_1Vv, de G
7 para obter G;

8 return Euler(Gq,vi)+---+ Euler(Gn_1,vn_1) +Vvn
9

10 // Usamos + para concatenagdo de caminhos.
11 // Gi & Gi_71 com as arestas do

12 // caminho Euler(Gi_1,vi_1) removidos, i.e

13 // Gi=(V,E(Gi_1) \ E(Euler(Gi_1,vi_1))

Algoritmo 1.1 é de Hierholzer (1873).

10



1.3. Arvores geradores

1.3. Arvores geradores

Exemplo 1.1
Arvore geradora minima através do algoritmo de Prim.
Algoritmo 1.2 (Arvore geradora minima)

Entrada Um grafo conexo nio-direcionado ponderado G = (V, E, c)

Saida Uma 4rvore T C E de menor custo total.

1 V/':={v} para um vo €V

2 T:=0

3 while V' #V do

4 escolhe e ={u,v} de custo minimo

5 entre V/ e V\V’' (com ucV/ ,veV\V")
6 V=V U

7 T=Tule

8

end while

{alg:prim}
Algoritmo 1.3 (Prim refinado) alg:prim

Implementagao mais concreta:

1 T:=0

2 for ueV\{v} do

3 if ue N(v) then

4 value(u) = cyuy

5 pred(u) :=v

6 else

7 value(u) := oo

8 end if

9 insert(Q, (value(u),u)) { pares (chave,elemento) }
10 end for

11 while Q#0 do

12 v := deletemin(Q)
13 T:= T U{pred(v)v}
14 for ue N(v) do

15 if wueQ e cyy < value(u) then
16 value(u) = cyuy

17 pred(u) :=v

18 update(Q,u, ¢y )

11



1. Algoritmos em grafos

19 end if
20 end for
21 end while

Custo? n X insert + n x deletemin + m x update.

¢

Observacgao 1.1

Implementacio com vetor de distdncias: insert = O(1)?, deletemin = O(n),
update = O(1), e temos custo O(n +n? +m) = O(n? +m). Isso é assintoti-
camente 6timo para grafos densos, i.e. m = Q(n?). O

Observacao 1.2
Implementagio com lista ordenada: insert = O(n), deletemin = O(1), update =
O(n), e temos custo O(n? +n 4+ mn) = O(mn)>. O

Observagao 1.3

Implementacdo com uma lista de /n blocos de v/n elementos, insert, delete-
min e update podem ser implementados em tempo O(y/n), logo o algoritmo
de Prim e de Dijkstra tem complexidade O(my/m). O

We look at the problem of keeping a dynamic minimum spanning tree
under vertex deletion — but with connectivity guaranteed — and vertex
addition.

A simple solution. Deleting a leaf is not a problem, when deleting and
inner vertex we rebuild from the resulting components (with a Kruskal
step that searches for the cheapest reconnecting edge); when adding we
connect cheapest. Does this work?

Cattaneo et al. (2010) keep a splay tree for the MST and a binary search
tree (ACL) for remaining edges, and do

add(e) :=
if e enters the solution
add to MST
remove costliest cycle edge
else
add to BSt
end
in amortized time O(logn), and

~ O O s W N

2Com chaves compactas [1,n].
3Na hipétese razoavel que m > n.

12



1.4. Caminhos mais curtos

remove (e) :=
if e in MST
remove from MST
scan BST for replacement with 2 X findroot in O(mlogn
else
remove from BST
end
They additionally cache calls to findroot.

1.4. Caminhos mais curtos

Um problema fundamental em grafos é encontrar caminhos mais curtos entre
pares de vértices. O algoritmo de Dijkstra resolve o problema das distancia de
um vértice origem para todos demais em grafos com distancias nao-negativas.

Exemplo 1.2
Caminhos mais curtos com o algoritmo de Dijkstra
{alg:dijkstr
Algoritmo 1.4 (Dijkstra) g
Entrada Um grafo direcionado G = (V, A) com pesos de > 0 nos arcos
arestas a € A, e um vértice s € V.

Saida A distancia minima d, entre s e cada vértice v € V.

1 ds:=0;d, :=0c0, Vv e V\{s}
2 visited(v) := false,Vv € V
3 Q:=0

4 insert(Q, (s,0))

5 while Q#0 do

6 v := deletemin(Q)

7 visited (v) := true

8 for ue Nt (v) do

9 if not visited(u) then
10 if dy = o0 then
11 dy i=d, + dvu
12 insert(Q, (u,dy))
13 else if d, + dyy < dy
14 dy :=d, +dvu
15 update(Q, (u, dy))
16 end if
17 end if

13



racorrect}

ompheaplb}

1. Algoritmos em grafos

18 end for
19 end while

Observagao 1.4
A fila de prioridade contém pares de vértices e distancias. O algoritmo se
aplica igualmente a um grafo nao-direcionado. O

Proposicao 1.2
O algoritmo de Dijkstra possui complexidade

O(n) +n x deletemin + n x insert + m x update.

Prova. O pré-processamento (1-3) tem custo O(n). O lago principal é domi-
nado por no maximo n operagoes insert, n operagoes deletemin, e m operagoes
update. A complexidade concreta depende da implementacao desses opera-
coes. |

Proposicao 1.3
O algoritmo de Dijkstra é correto.

Prova. Seja dist(s,x) a menor distdncia entre s e x. Provaremos por indugao
que para cada vértice v selecionado na linha 6 do algoritmo d, = dist(s,x).
Como base isso é correto parav = s. Seja v # s um vértice selecionado na linha
6, e supoe que existe um caminho P =s---xy---v de comprimento menor que
dy, tal que y é o primeiro vértice que nao foi processado (i.e. selecionado na
linha 6) ainda. (E possivel que y =v.) Sabemos que

dy <dx +dyy porque x ja foi processado
= dist(s,x) + dxy pela hipétese dy = dist(s,x)
< d(P) dist(s,x) < dp(s,x) e P passa por xy
< dy, pela hipdtese

uma contradi¢do com a minimalidade do elemento extraido na linha 6. (No-
tacdo: d(P): distancia total do caminho P; dp(s,x): distdncia entre s e x no
caminho P.) [ | O

Observagao 1.5

Podemos ordenar n elementos usando um heap com n operagoes “insert”
e N operagoes “deletemin”. Pelo limite de Q(nlogn) para ordenacdo via
comparacao, podemos concluir que o custo de “insert” mais “deletemin” é
Q(logmn). Portanto, pelo menos uma das operacoes é Q(logn). %

14



1.4. Caminhos mais curtos

O caso médio do algoritmo de Dijkstra Dado um grafo G = (V,E) e um
vértice inicial arbitrario supoe que temos um conjunto C(v) de pesos positivos
com |[C(v)] = IN~(v)| para cada v € V. Atribuiremos permutagdes dos pesos
em C(v) aleatoriamente para os arcos entrantes em v.

Proposicdo 1.4 (Noshita (1985))
O algoritmo de Dijkstra chama update em média nlog(m/n) vezes neste mo-
delo.

Prova. Para um vértice v os arcos que podem levar a uma operacao update
em v sdo de forma (u,v) com dist(s,u) < dist(s,v). Supde que existem k
arcos (u1,v),..., (u,v) desse tipo, ordenado por dist(s,1;) ndo-decrescente.
Independente da atribuicdo dos pesos aos arcos, a ordem de processamento
sempre é 1,2,...,k. O arco (ui,Vv) leva a uma operacao update caso

dist(s, ui) + duv < min(dist(s, 1) + duy;v)-

ji<i
< min (dist(s,u) + dy.v)-
P i
jg<i
< dist(s,u;) + min dy;y.
ji<i
Com isso temos dy;v < minj;j<i du;v, i-e., dy,v ¢ um minimo local na sequén-
cia dos pesos dos k arcos. O nimero esperado de maximos locais de uma
permutacao aleatoria é Hy —1 < Ink e considerando as permutacoes inversas,
temos o mesmo nimero de minimos locais. Como k < 8~ (v) temos um limite
superior para o numero de operac¢oes update em todos vértices de

Y & (v)=n) (I/M)ns (v)<nln) (1/n)5 (v) =nlnm/n.

vev vev vev

A desigualdade é justificada pela equagio (A.6) observando que Inn é concava.
[ ]
Com isso complexidade média do algoritmo de Dijkstra é

O(m + n x deletemin + n x insert + nln(m/m) x update).
Usando uma fila de prioridade implementada por um heap bindrio que executa

todas operacoes em O(logn) a complexidade média do algoritmo de Dijkstra
é O(m+nlogm/nlogn).

http://www.macfreek.nl/memory/Disjoint_Path_Finding

15


http://www.macfreek.nl/memory/Disjoint_Path_Finding

q:Tupdate}

1. Algoritmos em grafos

1.4.1. Tépicos
Fast marching method
A equacao Eikonal (grego eikon, imagem)
IVTX)IIF(x) =1, x € Q,
T |a_Q - O)

define o tempo de chegada de uma superficie que inicia no tempo O na fronteira
9Q de um subconjunto aberto Q C R3 e se propaga com velocidade F(x) > 0
na direcdo normal*. O fast marching method resolve a equacio Eikonal por
discretizar o espaco regularmente, aproximar as derivadas do gradiente ||VT||
por diferencas finitas e propagar os valores com um método igual ao algoritmo
de Dijkstra.

Com

VT = (0T/0x — 1,0T/0x2,0T/0x3)
temos
IVTII® = (3T/3x1)? + (3T/dx2)? + (3T/dx3)* = 1/F2.
Definindo as diferengas finitas
DT =T(xy + 1,%x2,x3) — T(x); DT =T(x)—T(x1 —1,x2,%3)
podemos aproximar

OT/ox1 ~ Ty, = max{D ' T,—D*™*' T, 0}

The sign of the finite differences is explained since the unknown T(x) has
a later time than those of its neighbors.

e com aproximacoes similares para as diregoes y e z obtemos uma equagao
quadratica em T(x)

IVTII? =~ T2, + T2, + T2, = 1/F? (1.1)

Na solugdo dessa equagao valores ainda desconhecidos de T sdo ignorados. O
fast marching method define T = 0 para os pontos iniciais em 0Q) e coloca-os

40 método também funciona para F(x) < 0, mas ndo para F(x) com sinais diferentes.

16



=W N

1.4. Caminhos mais curtos

numa fila de prioridade. Repetidamente o ponto de menor tempo é extraido
da fila, os vizinhos ainda néo visitados sdo atualizados de acordo com (1.1)
e entram na fila, caso ainda nao fazem parte. (Na terminologia do fast mar-
ching method, os pontos com distancia ji conhecida sdo “vivos” (alive), os
pontos na fila formam a “faixa estreita” (narrow band), os restantes pontos
sao “distantes” (far away).)

See Sethian’s page. Seems to complicated for 2014/2, because we want
also to do A* (see below).

My above description: Baerentzen, On the implementation of fast mar-
ching methods for 3D lattices.

Busca informada

O algoritmo de Dijkstra encontra o caminho mais curto de um vértice origem
s € V para todos os outros vértices num grafo ponderado G = (V, E, d). Caso
estamos interessados somente no caminho mais curto para um unico vértice
destino t € T, podemos parar o algoritmo depois de processar t. Isso é uma
aplicagdo muito comum, por exemplo na busca da rota mais curta em sistemas
de navegagdo. Uma busca informada processa vértices que estimadamente sao
mais proximos do destino com preferéncia. O objetivo é processar menos
vértices antes de encontrar o destino. Um dos algoritmos mais conhecidos de
busca informada é o algoritmo A*. Para cada vértice v € V com distancia
g(v) da origem s, ele usa uma funcdo heuristica h : V. — R>o que estima a
distancia para o destino t e processa os vértices em ordem crescente do custo
total estimado

f(v) =g(v) +h(v). (1.2)

O desempenho do algoritmo A* depende da qualidade de heuristica h. Ele
pode, diferente do algoritmo de Dijkstra, processar vértices multiplas vezes,
case ele descobre um caminho mais curto para um vértice ja processado. Isso
é a principal diferenca com o algoritmo de Dijkstra. Uma outra modificacao é
que substituimos o campo “visited” usando no algoritmo Dijkstra 1.4 por um
conjunto V de vértices ja visitados, porque o A* é frequentemente aplicado em
grafos com um numero grande de vértices, que sdo explorados passo a passo
sem armagzenar todos vértices do grafo na memoria.

g(s) =

=g(s) +h(s)

) { vértices ja visitados }
0

17


http://math.berkeley.edu/~sethian/2006/level_set.html

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1. Algoritmos em grafos

insert(Q, (s, (s)))
while Q #( do
v := deletemin(Q)
C:=Cu{v}
if v=t { destino encontrado }
return X
for wue N*(v) do
if ue Q then { ainda aberto: atualiza }
g(u) := min(g(v) + dvy, g(u))
f(u) :=g(u) + h(u)
update(Q, (, f(w))
else if ue€ C then
if g(v)+dyy < g(u) then
{ caminho menor p/ vértice ja processado }
C:=C\{u}
g(u) :=g(v) + dvu
f(u) .= g(u) + h(u)
insert(Q, (u, f(u)))
end if
else { novo vértice }
g(u) ==g(v) + dvu
f(u) .= g(u) + h(u)
insert(Q, (u, f(u)))
end if
end for
end while

Observagao 1.6
O algoritmo de Dijkstra e a busca A* funcionam de forma idéntica quando

substituimos o vértice destino t € V por um conjunto de vértices destino
TCV. ¢

Existe uma formulacgéo alternativa, equivalente do algoritmo A*. Ao invés
de sempre processar o vértice aberto de menor valor f podemos processar
sempre o vértice aberto de menor distdncia § num grafo com pesos modificados
duy = duy — h(u) + h(v). Com pesos modificados obtemos para a distancia
total de um caminho uv arbitrario P

guv)= Y duw = )Y  dun —hU)+h()

(u’,v")erP (uw’,v)eprP
=h(v)—h@w+ Y  dun =h{v)—h{u)+gu,v).
(u’,v")ePrP

18



1.4. Caminhos mais curtos

In particular: shortest paths remain shortest. By the above we have
gr(u,v) < gp/(u,v) iff gp(u,v) < gp/(u,v).

Com §(u) = §(s,u) obtemos

flu) <f(v) <= g(u)+h
< g(u) + h(s)
— g(u) < g(v).
Logo a ordem de processamento por menor § ou por menor valor f é equiva-
lente.
Para garantir a otimalidade de uma solucao a heuristica h tem que ser ad-

missivel. Caso h é consistente o algoritmo A* ndo somente retorna a solucao
otima, mas processa cada vértice somente uma vez.

(u) < g(v) +h(v)
<g(v) +his)

These topics can be found in Edelkamp & Schrodl (ch. 2, p. 58), Russell
& Norvig (ch. 4, p. 99). ES are quite detailed, but the book is somewhat
sloppy (f.ex. uses “invariance” and “invariant” in Lemma 2.2), and it
is not clear why the invariant (I) in Lemma 2.2 is so complicated: the
second part of it seems never to be used. RN, on the other hand, are very
simple: correctness follows almost in the same way as that of Dijkstra’s
algorithm. Also nice, and maybe best: Pearl, ch. 3.1. On the question
of goal-awareness, the latter just states that h(t) = 0 for goal states.

Definigao 1.1 (Admissibilidade e consisténcia)
xxx Seja dist(v, t) a distdncia minima do vértice v ao destino t. Uma heuristica
h é admissivel caso h é um limitante inferior a distdncia minima, i.e.

h(v) < dist(v, t). (1.3)

Uma heuristica é consistente caso o seu valor diminui de acordo com o pesos
do grafo: para um arco (u,v) € A

h(v) > h(u) — dyy. (1.4)

The simplest way of understanding consistency: h-values are relaxed.
Note that shortest path are usually distance from a source vertex v, so
arc uv is relaxed if d, < d, + dy. Since h-values are distance to a goal
t, they are relaxed if d,, < dy, + dyy-

Other ways of looking at consistency: if we get more distance, the esti-
mated distance h increases by at most the real distance; if we get closer,
the estimated distance h does not decrease more than the real distance.

19

{rel:dr}

{def:cons]



1. Algoritmos em grafos

In inconsistency, in that sense, is a too sharp drop: g increases less than
h decreases. And so f is not monotone.
For a consistent heuristic, on the other hand, we have

f(v) = g(v) + h(v) = g(u) + diy + h(v) > g(u) + h(u) = f(u)

if we come over uv so the total estimate is monotone.

Na representacao alternativa (1.3), o critério de consisténcia (1.4) é equivalente
com dyy = dyy — h(w) + h(v) > 0. Com isso temos diretamente o

Teorema 1.1
Caso h é consistente o algoritmo A* nunca processa um vértice mais que uma
vez.

Prova. Neste caso dyy > 0. Logo todas distancias sdo positivas é o algoritmo
A* é equivalente com o algoritmo de Dijkstra. Por um argumento similar ao
da proposicao (1.3) o A* nunca processa um vértice duas vezes. |

Lema 1.1
Caso h é consistente e h(t) =0 (i.e reconhece o destino t), h é admissivel.

Prova. Seja P =vyvy ...V um caminho de vo =u a vy = t. Entéo

4P)= Y v s 2 Y Rlve 1) —hiv) = h(w) — h(t) = h(w).
ie(k] ie(k]

Em particular, para um caminho P* 6timo de w a t temos h(u) < d(P*)
d(u).

Teorema 1.2
Caso existe uma solucdo minima e h é admissivel o algoritmo A* encontra a
solugdo minima.

Prova. Seja P* = vovy...vx um caminho 6timo de vo = s a v = t. Caso
A* nao terminou, t ainda nao foi explorado. Logo existe um vértice aberto de
menor indice vi em P*. Agora supde que o préximo vértice explorado é t, mas
o valor de t ndo é 6timo, i.e. f(t) > d(P*). Mas entdo f(vi) = g(vi) + h(vi) <
g(vi) + 8(vi) = d(P*) < f(t), porque h é admissivel, em contradi¢do com a
exploracao de t. |

Punchy summary is this:

1. Consistence (t-relaxed h) — Non-negative distances d — No repe-
tition of vertices.

20



1.4. Caminhos mais curtos

Figura 1.1.: Esquerda: Heuristica ndo-admissivel. A* produz o valor sub-6timo 5.
Centro: Heuristica admissivel, mas inconsistente (arco vermelho). A*
visita v duas vezes. Direita: Heuristica admissivel e consistente. A*
visita cada vértice somente uma vez.

2. Consistence & Goal-awareness — Admissibility — Correctness.
3. Not admissible: may return sub-optimal solution.

4. Only admissible: keeps correctness, but must re-open vertices. See
1.1.

Exemplo 1.3

Figure 1.1 mostra uma grafo com trés funcdes heuristicos h diferentes. A
heuristica no grafo da esquerda nao é admissivel em u (marcado por T). O A*
expande s, v e depois t e termina com a distdncia sub-6tima 5 para chegar em
t. A heurfstica no grafo do meio é admissivel, mas nao consistente: h(u) <
h(v)+1 nao é satisfeito. O A* expande s, v, u, v, t, i.e. o vértice v é processado
duas vezes. Finalmente a heurfstica no grafo da direita é consistente (e por
isso admissivel). O A* expande cada vértice uma vez, na ordem s, u, t (ou s,
u, v, t).

Y

Exemplo 1.4

A Figura 1.2 compara uma busca com o algoritmo de Dijkstra com uma busca
com o A* num grafo geométrico com 5000 vértices e uma aresta entre vértices
de distancia no méaximo 0.02. Vértices nao explorados sdo pretos, vértices
explorados claros. A claridade corresponde com a ordem de exploragio.

O

21

{fig:ex:as



1. Algoritmos em grafos

Figura 1.2.: Comparacao de uma busca com o algoritmo de Dijkstra (es-

querda) e o A* (direita). (fig

1.4.2. Mais sobre caminhos mais curtos

Define um arco a = uv € A como relazado caso d, < d. + dy., sendo tenso.
Para relaxar temos a operacao

relax(a) := d,:=min{d,,dy + duv}-
Similarmente, define t, := min,en-—(v) du + duy. Podemos definir um vértice
v como relazado caso dy < t,, e senao tenso. Para relaxar podemos aplicar

relax(v) := d, :=t,.

I changed the definition of a relaxed vertex from d,, > t,, to d,, < t,, since
I could not figure out the sense of the former definition. This is more
consistent with super-estimators, and we can reformulate Bellman-Ford
below as relaxing each vertex per round and having n — 1 rounds. This
now also means that a vertex is relaxed, if all incoming arcs are relaxed.
The change is inconsequential for the rest of the text, since I don’t use
vertex relaxation anywhere else. I suppose the came from Karczmarz e
Lacki (2005); but there they keep under-estimators 0 < d, < t, and
update to t,, which is different.

Com isso temos dois algoritmos simples que melhoram (super-)estimativas d,
das distancias dist(s,v), inicialmente ds =0, e d, = oo, para todos v # s.

o Dijkstra: em ordem de d,, relaxa a € NT(v); tempo O(nlogn + m).

22



1.4. Caminhos mais curtos

¢ Bellman-Ford: repete ate n vezes: relaxa todos a € A; tempo O(nm).

O algoritmo de Bellman-Ford também funciona para pesos negativos, na au-
séncia de ciclos negativos. (E neste caso é um dos melhores algoritmos atual-
mente para todas distdncias de uma origem.)

I follow here mainly Schrijver, Chapter 8.

Potenciais Chama p,, v € V um potencial caso

duv > Py — Py a=uveA. (1.5)

Compare to consistent heuristics: the idea is the same, the sign is dif-
ferent: d., > hy, —h,. In some sense a potential models a “distance-
landscape”, such that the distances over p are always shorter; a consistent
heuristic models a — in my view — effective potential, that shortens dis-
tances according to the potential difference (but never so much that they
turn negative).

Teorema 1.3
Um potencial existe sse todo circuito (ciclo direcionado) tem comprimento
nao-negativo.

Prova. “=": Considere o circuito C = (vp,V1,...,Vm), Vm = Vo. Entéo

d(C) = Z dVi71;Vi > Z Pvi =Pvioy =Pm —Po = 0.
ie[m] ]

ie[m

“&”: geleciona algum s € V, define p,, := dist(s,v). Isso claramente satis-
faz (1.5). [ ]
Logo: podemos definir

duv = duv - (pv _pu) > 0) (16)

uma transformacado que mantém caminhos mais curtos.
Agora: como podemos encontrar circuitos negativos?

Teorema 1.4
Um circuito negativo pode ser encontrado em tempo O(nm).

23

{cond:pot}

{transforn



1. Algoritmos em grafos

Prova. Roda Bellman-Ford para obter distancias d°,d',...,d™. Assume
d™ 1 # d™, com testemunha t € V, ie. d' < d{‘q. Logo existe uma st-
caminhada P de distancia d(P) = di* e de comprimento |[P| = n. Como ela
tem n arcos, contém um circuito C. Remove C de P para obter uma caminhada
P’ com menos que n arcos. Como

d(P/) > d™ ' (t) > d™(t) = d(P),

temos d(C) < 0. Caso d™~! = d™ nenhum circuito negativo é alcancivel. W

Teorema 1.5
Um potencial pode ser encontrado em tempo O(nm) caso ndo tem circuitos
negativos.

Prova. Adiciona um vértice s e arcos sv para todo v € V com ds, = 0,
roda Bellman-Ford e define p, := d,. Como ndo tem circuitos negativos
d, = dist(s,v) e logo d, > dist(s,v) — dist(s,u) = py, — pu. |

Caminhos mais curtos entre todos pares de vértices. Seja di(s,t) a distan-
cia entre s e t usando somente vértices {s, t,vi,..., vy} para alguma ordem de
vértices vi,v2,...,vn € define do(s,t) = ds¢ caso st € A e oo caso contrério.
O algoritmo de Floyd- Warshall computa

di11(s,t) == min{dy (s, t), di (s, vis1) + di(Vier1, B}

isso custa tempo O(n?) por iteracdo, logo ndo mais que O(n3) em total.
Com potenciais, podemos melhorar a complexidade (Johnson 1973): encontra
um potencial p, aplica a transformagdo (1.6) e roda o algoritmo de Dijkstra
N vezes. Isso custa somente O(n(nlogn +m)) = O(nm +n?logn) e caso o
grafo tem m = Q(nlogm) arcos temos custo O(nm).

O método de Dial Assume distancias inteiras e que temos um limite superior
A > max, ¢y dist(s,Vv). Neste caso podemos substituir a fila de prioridade no
algoritmo de Dijkstra por A 4+ 1 “baldes” Loy,...,La (implementados como
listas) onde balde L; contém os vértices de distdncia d, = i. Mantendo o
numero do menor balde nao-vazio p, é simples de ver que

e podemos atualizar 1 em tempo amortizado O(1) sobre todas n iteragdes
(porque p sé aumenta para pesos nao negativos);

e podemos atualizar os baldes em tempo constante sobre atualizagoes de
distancias.

Logo: temos uma complexidade de O(m + A) = O(m + nD), e caso D :=
maXgeA dq-

24



1.4. Caminhos mais curtos

I follow here mainly Karczmarz e Lacki (2005).

s QO N =

Q0 =]

Atualizacoes Considera grafos parcialmente dindmicos, ou
e incremental: insercao de arcos, ou diminuicao de distancias; ou

e decremental: delecao de arcos, ou aumento de distancias,
e uma sequéncia de no maximo A atualizagoes, no seguinte scenario:

e caminhos mais curtos de um s € V para todos demais;

e nao ha circuitos negativos;

e somente distancias até L sao interessantes;

o todos vértices sao alcancéveis de s (adiciona arcos auxiliares sv com
dsy = L+1, para v # s: o peso desses arcos nao pode ser alterado);

e pesos dyy € Zy.
Agora faga, no caso incremental:

updateArc(a,d):=

A :=AU{a}
d,i=d
relax(a)

relax(a=uv):=
if d, <d,+d,: return
d, = dy + duy
for w|lvw e A: relax(vw)

Teorema 1.6
O algoritmo updateArc é correto.

Chama d um superestimador relazado caso: i) ds = 0, ii) todos arcos
sao relaxados (dy < dy + din), iii) as distancias sdo superestimadas:

d, > dist(s,v).
Lema 1.2

Um superestimador relaxado esté correto, i.e d, = dist(s,v).

Hth:incremen

{lem:suprel}

25



1.

26

Algoritmos em grafos

Prova. (Semelhante ao Dijkstra). Vamos demonstrar d, < dist(s,v).
Suponha, para fins de contradicao, d, > dist(s,v), e seja P, um caminho
sv mais curto. Escolha um vértice v de modo que |P,| seja minimo. Como
nao temos um circuito negativo dist(s,s) =0 = ds, logo v # s, e |Py| > 0.
Assume P, = s...uv. Logo P, = s...u satisfaz d,, = dist(s,u) pela
minimalidade de |P,| e

d, > dist(s,v) = dist(s,u) + dyy = dy + duy

portanto, uv nao é relaxado, o que é uma contradigao. |

Lema 1.3
A fungao relax termina e retorna um superestimador relaxado.

Prova.

a) As distdncias d, permanecem nao-negativas (porque d, = d, +
dyy > 040 =0). Uma chamada recursiva de relax ocorre somente
ap6s uma reducao de pelo menos 1, portanto, as chamadas sao
finitas.

b) Os arcos relaxados nao ficam tensos durante relax, por indugao
sobre a profundidade da recursao: um arco vw fica tenso somente
quando d,, diminui: isso leva a relaxamentos recursivos.

¢) O arco uv é relaxado: ele fica relaxado no inicio e, por b), e per-
manece assim.

d) Como d, sempre representa o comprimento de algum caminho sv,
d, > dist(s,Vv), ou seja, superestima.

Prova. (Do teorema 1.6.) Pelo lema 1.2 um superestimador relaxado
é correto, pelo lema (1.3) relax termina e retorna um superestimador
relaxado. |

Teorema 1.7
Chamar updateArc A vezes custa O(mL+ A) tempo total de atualizagio
e precisa espago O(n).

{lem:r




O J O Ut s WO N =

1.4. Caminhos mais curtos

Prova. As chamadas nao-recursivas de relax custam O(A). As cha-
madas recursivas de relax(uv): cada vértice custa 8% e é chamado no
méximo L + 1 vezes, portanto, no total }_ .\ 67 (L+ 1) = O(mL). |
Similarmente, faga, no caso decremental (onde vamos supor ainda que
néo existem circuitos de comprimento 0):

update (v) : =
if v=s or d,=t,: return
d, =t,
for vwe A: update (w)

updateArc(a=uv,d):=
d, i =d
update (v)
onde t, = minvea du + duy.

Teorema 1.8
Algoritmo updateArc é correto.

Chama d de estimador relaxado (de vértices) se a) ds =0 e b) d, = t,,
para todos os v # s.

Lema 1.4
Uma estimador relaxado estd correto, i.e d, = dist(s, V).

Prova. Para v # s, deixe p, ser o predecessor do que testemunha b).
Ele existe, pois cada vértice v # s é acessivel a partir de s e, portanto,
tem 6~ (v) > 1.

Considere todos os arcos p,v. Eles sdo aciclicos, pois para um ciclo
C = (viva...vx) com vy = vy temos

dy =dx =dr—1 +dx—1x =dx—2 +drk—2 k-1 +dr—1k

coe=dy + Z di,hq =d; + d(C),
ie[k—1]

portanto, d(C) = 0, o que contradiz a exclusdo de ciclos de comprimento
0.

Assim, a drvore T = (V,{pyVv | v # s}) é uma drvore com raiz s (um out-
tree), pois cada v # s tem 6 (v) =1 em T. Em T, temos dist(s,v) = d,
e existe um caminho sv para todos os v.

Hth:decremen

Hlem:estrel}

27



Lo DN

1.

28

Algoritmos em grafos

Portanto, em G temos d, > dist(s,v), pois temos mais arcos, e todos os
arcos sdo relaxados pela definicdo de t,, ou seja, d, = t, < dy +d. para
todos os uw € N~ (v). Portanto, o Lema 1.2 se aplica e d esta correto. W

Lema 1.5
Algoritmo updateArc retorna um estimador relaxado.

Prova. Primeiro, dé uma olhada em update(v). Se o invariante
0<d, <t,,d(s) =0, (Inv)

¢ correta, mantemos d,, = t,, onde for vélido (pelas chamadas recursivas)
e obtemos d, = t,.

(Inv) é valido por indugao. a) E valido no inicio, pois t, s6 pode aumentar.
b) Se aumentarmos algum d,,, devemos ter d,, < t,, e, ap6s o aumento,
ainda teremos d, = t,, < t,,. Além disso, para todos os v, uv € A, t,
pode aumentar, mas como d, < t, antes, o invariante ainda se mantém
apo6s o aumento de d,, para t,.

Além disso, como d, s6 aumenta, as chamadas recursivas sao limitadas
a D + 1 alteragoes, portanto, update termina. Como sempre que t,
aumenta, update(u) é chamado e atualiza d,, = t,,, mantemos d, = t,,.
Segundo, antes de updateArc(a = uv), temos d, = t, para todos os
v # s e ds = 0. Entdo, possivelmente d, < t,, mas pelo exposto acima,
temos d,, =t, para v # s e dg = 0 ap6s update(v). |

Prova. (Do teorema 1.8.) Pelo lema (1.5) updateArc retorna um esti-
mador relaxado, que pelo lema (1.4) estd correto. |

Teorema 1.9
Isso pode ser implementando de forma que o tempo total de atualizacao
é O(mL + A) em espago O(n).

Prova. To realize this, we need to work harder. First, for vertex v, let
N~ (v) = (u1,uz,...,u5) be its ordered neighborhood. We compute t,
in that order, and call the index of the first minimum f3,,.

So we have: dy, +dy, v > t, for i < f3,.

Now we do this: we maintain for each vertex the previous t,, called t;
and the current (. Initially we set t, = oo and (3, = 3, . Now define

computeMin (v) :=
T:={k|By <k <8, |dyy, +du,v =1t}
// a witness of the previous minimum

{lem:u

{ua:in




© 00 = O Ut i

B GO DN =

1.4. Caminhos mais curtos

if T#0
By :=minT
else
t, =t
Bv:i=1

return t/
(This is done to compute t, faster.) Note that computeMin works, since
t, can only increase. So if we find a witness of the previous minimum,
we're done. Otherwise we recompute t.,.
With this we can make update faster.

update (v) : =
if v=s or d,=t,: return
d, :=computeMin(v)
for vwe A: update (w)

With this in place we turn to the analysis. We have A non-recursive calls
to update and at most (L + 1)8; recursive ones, since each predecessor
updates at most L + 1 times. This makes O(mL + A) calls to update
or computeMin. Naively, each call could cost O(5 ), so we could end up
with cost A+ Yy (L+1)8;% = O(A + Lmn). But, by maintaing B,

t/ we have

a) cost j — By + 1 when another minimum is found; here j is the next
witness;

a) cost &, otherwise; but then t, increases.

So the amortized time over the non-increasing case is O(d; ), and the
increasing case costs the same. In summary, then, we have at most O(57,)
per increase, and thus O(mL) overall, plus O(mL + A) for the calls. So
we have O(A + mL) overall, and O(n) space for (3, and t.. |
We next turn to approximate distances for SSSP. We accept real distances
{0}U[1, D] and, as before, exclude zero-length circuits for the decremental
case. Additionally: we limit our interest to h* < n hops, and just want
an estimator d’ such that

dist(s,v) < d’ < (1 + e)"dist™ (s, v),

for € € (0,1) and dist"(s,v) the shortest < h-hop sv-path.
We keep an auxiliary graph: there are arcs (s,v), v # s, with distances
dsy = nW, and note that this way dist(s,v) # oo iff dist((,s),v) < nW.

29



Q0 ~J O O s W N

— =
N

QO ~J O O s QO N

—
O ©

11
12
13
14

1.

30

Algoritmos em grafos

The idea: let exprnd, (x) = a*ga X1 Now relax to

d, = exprnd;, .dy + duy

in the incremental case and

ty == minyyveaexprndy cdy + dyy

in the decremental case.

Problem: reachability needs extra effort. Solution: maintain reachable
vertices Ry (can’t be seen by distances, since we overestimate!).
The new algorithms for the incremental case are this.

relax(a=uv) :=
if dy, < exprnd; . dy +dyy: return
dy :=exprnd;, .dy + duy
for w|lvwe A: relax(vw)

updateArc(a,d):=

A=A U{a}
dqe i =d
relax (a)

estimate (v) :=
return d, if vE Ry else o0
And for the decremental case we have this.

init () :=
t, =00, dy: =0, By:=0,, VEV
Vv € V : update(v)

update (v) :=
if v=s or d,=1t,: return
dy, :=computeMin(v)
for vwe A: update(w)

updateArc(a=uv,d):=

dqe i =d
if d=o0: A:=A\{a}
update (v)




15
16

1.4. Caminhos mais curtos

estimate (v) :=

return d, if vE R, else o
Here computeMin applies exprnd.
Fact: This works, and costs:

e Incremental case: O(mlog(nW)/e + A) time and O(n) space;

e Decremental case: O(mlog(nW)/e + mH* + A) time and O(n)
space.

The main idea: D = O(log(nW)/e€), since distances are 0 or powers of
1+e€, but never more than (14+¢e)nW. So: log; . nW = 1+log; . nW =
O(log(nW)/€). [Use lognW/log 1+ € and the fact that log1+ € ~ € for
small €.

To maintain the reachable vertices Ry, (in at most h hops). Incremental
case: BFS, keep state, continue after arc insertions, total cost O(m).
Decremental case: use the exact algorithm with distance limit h*: cost
O(mh*.

Further fact; APSP is also possible with

dist(u,v) < duy < (1 + €)I°92M+ T dist(u, v)

in time O(n3 log(nW/e + A).

1.4.3. Arborescéncias

We start with two definitions.

Definicao 1.2
A is an arborescence rooted in 7 if the underlying undirected graph T is
a spanning tree, and for every vertex v € V a directed rv-path exists.

Definig¢ao 1.3
A is an arborescence rooted in r if A is cycle-free, d(r)” = 0, and all
vertices v # 1 have 6~ (v) = 1.

Proposicao 1.5
Definitions (1.2) and (1.3) are equivalent.

Prova. (1.2) — (1.3): Since T is a spanning tree it has n — 1 edges.
Furthermore, by the existence of rv-paths we have 6~ (v) > 1 for v # .

31

Hdef:arb:1}

Hdef:arb:2}




1.

32

Algoritmos em grafos

This accounts for n — 1 arcs. So, since |T &= |A| we have 6~ (v) = 1 for
v# 1, and 6~ (r) = 0. Also since T has no cycles, neither has A.

(1.3) — (1.2): Since d (v) =1 for v # v, we can trace a path back from
every v # 1, and since A is cycle-free it must end in r. So there’s an
rv-path. We also have |[A| = n—1 = |T|, and the paths show connectivity.
Thus T is a spanning tree. |
We futher observe

Proposicao 1.6
An arborescence exists iff there’s and rv-path for all v € V.

Prova. Sufficiency is by definition, necessity follows from running BFS
starting at r: the BFS tree is an arborescence. |

Exercicio 1.1

Why is it necessary to reduce the weights in Edmonds algorithm for
spanning arborescences?

Here is a small example that shows the difference:

The basic algorithmic scheme is simple. First we observe that it is possible
to subtract a constant from the in-arcs of every vertex, such that the
lightest in-arc has weight 0. In the formulation of Kleinberg e Tardos
(2005) we always use this transformation, and proceed as follows.

1) Form the graph obtained by selecting a 0-weight in-arc for every
non-root vertex.

2) If this graph is cycle-free, it is optimal, since every non-root has a
predecessor, so the chain of predecessor must terminate at the root,
which shows that there is a path to each vertex.

3) Otherwise: contract a cycle, recursively find a minimum cost arbo-
rescence in the reduced graph, the expand the cycle, and remove
the cycle arc that enters the single vertex of in-degre 2. This relies
on the fact (that needs a proof!) that we can always find an optimal
solution that enters only once into the contracted cycle.




1.4. Caminhos mais curtos

In practice, we do not need to transform the weights to always have a
0-weight in-arc. Equivalently, we can:

1. select among the lightest in-arcs, and

2. on contracting subtract the difference from the current cycle arc
to the lightest, from newly created in-arcs. This is required to
“level” the different arcs. Concretely, suppose an oriented cycle
C = (vo,...,vn) with arcs ap = (vn,vo) and a; = (vi_1,Vvi). Let
a* be the lightest cycle arc. Then when contracting C to a single
new vertex v, for every arc a = (u,v;) create a new arc (u,v) of
weight wq, — Wg». Outgoing arcs (vi,u) are transformed to (v, u)
keeping the weight.

It is sufficient to contract one cycle, say, the largest, or the first we find.
We need to following operations:

o Contract a cycle. This can be done in different ways, even naively
by creating a new graph.

o In the new graph we need to remember the contracted vertex v to
expand it.

e We need to be able to map in- and out-arcs from v to arcs in the
original graph.

For this reason, a simple strategy is:

e to maintain a union-find structure on the vertices, and translate
arcs (u,v) to current arcs (find(u), find(v)); we use a simple, ex-
plicit structure, where on each contraction a vertex is linked to its
representing vertex in the cycle; the representing vertex is the one
which has the smallest in-arc in the cycle.

e to maintain, for every vertex a weight adjustment for entering arcs;
on calling find(v), for every non-root vertex traversed, we subtract
the weight, accordingly;

1.4.4. Notes on available material

Schrijver (1997) is very short, and presents only an O(nm) algorithm
and refers to some others. Of these Papadimitriou e Steiglitz (1982) does
not seem to contain anything about this topic, Gondran e Minoux (1984)

33



1. Algoritmos em grafos

is also rather superficial (and contains probably a wrong theorem that
claims that every optimal arborescence has to have a single entry into
a contracted cycle, which is not true). I did not check Minieka (1978)
since the book is even older. An open question is, if any textbook besides
Kleinberg e Tardos (2005) contains a readable presentation of minimum
cost arborescences. The original paper of Tarjan (1977) is readable, but
required thorough studying. It has the disadvantage that the algorithm
computes a maximum cost branching.

1.4.5. Notas

O algoritmo (assintoticamente) mais rdpido para arvores geradoras minimas
usa soft heaps é possui complexidade O(ma(m,n)), com « a funcdo inversa
de Ackermann (Chazelle, 2000; Kaplan e Zwick, 2009).

Karger prop6s uma variante de heaps de Fibonacci que substituem a marca
“cut” usado nos cortes em cascata por uma decisao randémica: com proba-
bilidade 0.5 continua cortando, sendo para. Além disso o heap é construido
novamente com probabilidade 1/n depois de cada operacao. Com isso “de-
letemin” possui complexidade esperada amortizada ©(log? n/loglogn) (Li e
Peebles, 2015).

Armazenar e atravessar arvores em ordem de van Emde Boas usando indices,
similar ao ordem por busca em largura é possivel (Brodal et al., 2001). O
consumo de memoria das arvores de van Emde Boas pode ser reduzido para
O(n) (Dementiev et al., 2004; Cormen et al., 2009).

Mais sobre o fast marching method se encontra em Sethian (1999). Uma
aplicagdo interessante é a solugdo do caixeiro viajante continuo (Andrews e
Sethian, 2007).

A minha apresentagdo da caminhos mais curtos em grafos dindmicos se-
gue Karczmarz e Lacki (2005).

1.4.6. Dynamic connectivity

Idea: maintain an undirected graph with n nodes, under insert(e) (in-
cremental case) delete(e) (decremental case), or both (fully dynamic
case) and allow queres path(x,y)?

We have:

incremental : union-find, &(n) amortized;

34



QO =] O Ut s QO N

1.4. Caminhos mais curtos

decremental Even & Shiloach (1981): O(n) amortized delete, O(1) find.

fully : Kapron et al. (2015): O(log® n) insert worst-case, O(log® n) de-
lete worst-case, O(logn/loglogn) worst-case path query, with high
probability.

fully : Thorup (2000): O(logn(loglogn)?) expected amortized update,
O(logn/logloglogn) path query.

The case of directed graphs: dynamic reachability, under same operati-
ons. Same as: transitive closure, O(n?3), brute force update O(n?).
Incremental: ~ union-find. DS of Italiano (1986). Plus: searchpath.
Idea: Maintain: 1) for each node a tree of successors, 2) a matrix of
connectivity index(i,j). There are conveniently combined: index(i,h)
points to node j in i’s tree.

Example: see Italiano.

searchpath(i,j)
if index(i,j) =null return (
T :={j}
while parent(j) # null
j := parent(j)
T:=TU{j}

path(i,j) := return index(i,j) # null

insert(i,j)
if index(i,j) # null return
for ve[n] do
if index(v,1) # null A index(v,j) =null then
// mnew path from v to j
neld(v,j, i,j)

meld(i,j,u,v) :=
// i: destination tree; j: source tree
// (W,Vv): new edge
create node index(i,Vv)
insert as child of u (in 1)
for all children w of v do
if index(i,w) =null then meld(i,j,v,w)

35



1.

Algoritmos em grafos

Now for the analysis of the above. Define a potential @ =} | ¢, and
let @, = —|vis(v)| — 3|desc(v)| where we have visible edges

vis(v) = {(w, x) | w is descendant},

and desc(v) are all descendants of v.
It remains to analyze meld(v,j,1,j). Operation meld examines h; arcs in
desc(j) and adds h; arcs to desc(v), where hy; < hy+1 < n. Furthermore,

1) hy arcs enter into visibility; no visible arc is examined;
2) the number of descendants increases by h;.

Thus, the potential goes down by hj +3h;, and the real cost is h; +3h;,
so we get amortized cost O(1) for meld, i.e. O(n) amortized cost for
insert.

Survey:

incremental Italiano, O(n) amortized insert, O(1) query;

decremental Ttaliano (1988), DAGs: O(n) amortized delete, O(1) query;
decremental Roddity & Zwick (2002): ditto for general graphs;

fully King (1999): O(n?logn) amortized update, O(1) query;

fully Roddity (2003): O(n?) amortized update, O(1) query: this is the
best with query O(1).

36




ST W N

1.5. Filas de prioridade e heaps

1.5. Filas de prioridade e heaps

Uma fila de prioridade mantem um conjunto de chaves com prioridades de
forma que a atualizar prioridades e acessar o elemento de menor prioridade é
eficiente. Ela possui aplicagoes em algoritmos para calcular arvores geradores
minimas, caminhos mais curtos de um vértice para todos outros (algoritmo de
Dijkstra) e em algoritmos de ordenagao (heapsort).

1.5.1. Heaps binarios

Teorema 1.10

Uma fila de prioridade pode ser implementado com custo insert = O(logn),
deletemin = O(logn), update = O(logn). Portanto, uma &rvore geradora
minima pode ser calculado em tempo O(nlogn + mlogn).

Um heap é uma arvore com chaves nos vértices que satisfazem um critério de
ordenagao.

o min-heap: as chaves dos filhos sdo maior ou igual que a chave do pai;
e maz-heap: as chaves dos filhos sdo menor ou igual que a chave do pai.

Um heap binario é um heap em que cada vértice possui no maximo dois filhos.
Implementaremos uma fila de prioridade com um heap binario completo. Um
heap completo fica organizado de forma que possui folhas somente no tltimo
nivel, da esquerda para direita. Isso garante uma altura de O(logn).

Positivo: Achar a chave com valor minimo (operagiao findmin) custa O(1).
Como implementar a inser¢ao? Idéia: Colocar na ltima posicao e restabelecer
a propriedade do min-heap, caso a chave é menor que a do pai.

insert(H,c) :=
insere ¢ na ultima posigdo p
heapify-up(H,p)

heapify-up(H,p) :=
if root(p) return

37

{sec:binhe



S © 00

1.

Algoritmos em grafos

if key(parent(p))>key(p) then
swap (key (parent (p)) ,key (p))
heapify-up(H,parent (p))

end if

38

For revision, to simplify, including ideas of Kleinberg & Tardds.
Arguably, this is not much simpler than what I had before, but maybe a
bit more structured, and a bit more rigorous at some points. The question
is if introducing all these definitions fosters understanding at the end.
We consider a heap H, with elements i, and keys k;.

For heap H, we write H[k; = c] for the heap after setting i’s key k; to c.
We call H a quasi-heap if there is some i and « such that H[k; = o] is a
heap. If H is not a heap we say that H has a violation at i. We further
say H is a A-quasi-heap if o« > ki, and a V-quasi-heap if o < k;. Note
that if &« = ki we have a A- and V-quasi-heap that is also a heap. Further
note that when we decrease the key of i, say from ¢’ to ¢, we obtain a
A-quasi-heap, since o = ¢’ is a witness; this includes the special case of
a insertion, where ¢’ = co. Similarly, when we increase the key of i from
¢’ to ¢, we obtain a V-quasi-heap.

In the lemmas below we write 1 = left(i) and r = right(i), and write
u € {1, v} for the smaller of the two keys, assuming key oo for a descendant
that does not exist. Similarly we write p = parent(i) and assume key —oco
if 1 is the root.

Lema 1.6
Let H be a A-quasi-heap with violation at p. Then heapify-up(H,p)
produces a heap in time O(k), where k is p’s depth.

Prova. We first note that (*) if H is a heap, then H[k; = k] is, too. (So
parent keys can always be copied down.)

The proof is by induction over depth k. If k = 1 then i is the root.
But then, since H is a A-quasi heap, we have ki < a« < min{ky, k;},
so H is a heap. Now consider k > 1. Then, either H is a heap, or
kp, > ki. Since H is a A-quasi-heap, H[k; = «] is a heap, and by (¥*)




1.5. Filas de prioridade e heaps

Hlk; = of[ki = kp] = Hlki = k] is, too. But then, since k, > ki,
Hlk; = kpllkp = kil is a A-quasi-heap as witnessed by & = k;,. Element
p has depth k — 1, so by the induction hypothesis heapify-up produces a
heap.

Furthermore we have at most k calls to heapify-up, each with constant
work; thus the cost is O(k). |

Lema 1.7
Let H be a V-quasi-heap with violation at p. Then heapify-down(H,p)
produces a heap in time O(k), where k is p’s height.

Prova. We first note that (*) if H is a heap, then H[k; = k] is, too. (So
the smallest key of a child can be copied up.)

The proof is by induction over height k. If k = 1 then 1 is a leaf. Then,
since H is a V-quasi-heap, we have ki > a > k;,, so H is a heap. Now
consider k > 1. Then either H is a heap, or k; > k,,. Since H is a V-quasi-
heap, H[k; = «l is a heap, and by (*) Hlk; = allki = k] = Hlk; = k]
is, too. But then, since ki > k,, Hlk; = k,l[k, = ki] is a V-quasi-heap
with violation at w as witnessed by k. Element p has height k — 1, so
by the induction hypothesis heapify-down produces a heap.
Furthermore we have at most k calls to heapify-down, each with constant
work; thus the cost is O(k). |
By consequence: inserting a new element and deleting the root costs
O(logn).

Lema 1.8
Seja T um min-heap. Decremente a chave do né p. Apoés heapify-up(T, P)
temos novamente um min-heap. A operacdo custa O(logn).

Prova. Por indugdo sobre a profundidade k de p. Caso k = 1: p é a raiz,
ap6s o decremento ja temos um min-heap e heapify-up nao altera ele. Caso
k > 1: Seja ¢ a nova chave de p e d a chave de parent(p). Caso d < c ja temos
um min-heap e heapify-up nao altera ele. Caso d > c heapify-up troca c e
d e chama heapify-up(T,parent(p)) recursivamente. Podemos separar a troca
em dois passos: (i) copia d para p. (ii) copia ¢ para parent(p). Apds passo
(i) temos um min-heap T’ e passo (ii) diminui a chave de parent(p) e como
a profundidade de parent(p) é k — 1 obtemos um min-heap apés da chamada
recursiva, pela hip6tese da inducao.

Como a profundidade de T é O(logn), o nimero de chamadas recursivas tam-
bém é, e como cada chamada tem complexidade O(1), heapify-up tem com-
plexidade O(logn). |

Como remover? A idéia bésica é a mesma: troca a chave com a menor chave

39



00 ~J O UL~ W N+~

I e i R e R e e e
O O 00T UL WD~ OO

1. Algoritmos em grafos

dos filhos. Para manter o heap completo, colocaremos primeiro a chave da
ultima posicao na posicao do elemento removido.

delete(H,p):=
troca ultima posicgdo com p
heapify-down (H,p)

heapify-down(H,p):=
if p n8o possui filhos return
if p possui um filho then
if key(left(p))<key(p)) then swap(key(left(p)),key(p))
return
end if
{ p possui dois filhos }
if key(p)>key(left(p)) or key(p)>key(right(p)) then
if (key(left(p))<key(right(p)) then
swap (key (left (p)),key(p))
heapify-down(H,left (p))
else
swap (key (right (p)) ,key (p))
heapify-down(H,right (p))
end if
end if

Lema 1.9
Seja T um min-heap. Incremente a chave do né p. Apds heapify-down(T, p)
temos novamente um min-heap. A operacao custa O(logn).

Prova. Por inducéo sobre a altura k de p. Caso k =1, p é uma folha e apds o
incremento ja temos um min-heap e heapify-down nao altera ele. Caso k > 1:
Seja ¢ a nova chave de p e d a chave do menor filho f. Caso ¢ < d ja temos
um min-heap e heapify-down nao altera ele. Caso ¢ > d heapify-down troca c
e d e chama heapify-down(T,f) recursivamente. Podemos separar a troca em
dois passos: (i) copia d para p. (ii) copia ¢ para f. Apds passo (i) temos um
min-heap T’ e passo (ii) aumenta a chave de f e como a altura de f é k — 1,
obtemos um min-heap apés da chamada recursiva, pela hipétese da indugao.

40



00 O Ui W N

STk W N

1.5. Filas de prioridade e heaps

Como a altura de T é O(logn) o niimero de chamadas recursivas também, e
como a cada chamada tem complexidade O(1), heapify-up tem complexidade
O(logmn). |
Ultima operacio: atualizar a chave.

update (H,p,v) :=
if v<key(p) then

key (p):=v

heapify-up(H,p)
else

key (p) :=v

heapify-down(H,p)
end if

bt:implen
Sobre a implementacdao Uma arvore binaria completa pode ser armazenado ¢ P
em um vetor v que contém as chaves. Um pontador p a um elemento é
simplesmente o indice no vetor. Caso o vetor contém n elementos e possui
indices a partir de 0 podemos definir

root(p) := return p=0

parent (p) := return [(p—1)/2]

key (p) := return v[p]

left(p) := return 2p+1

right(p) := return 2p+2

numchildren(p) := return max(min(n — left(p),2),0)

Outras observagoes:

e Para chamar update, temos que conhecer a posicao do elemento no heap.
Para um conjunto de chaves compactos [0, ) isso pode ser implementado
usando um vetor pos, tal que pos[c] é o indice da chave ¢ no heap.

o A fila de prioridade ndo possui teste u € Q (linha 15 do algoritmo 1.3)
eficiente. O teste pode ser implementado usando um vetor visited, tal
que visited[u] sse u & Q.

Often deletemin takes more sifts, since the key we put from the last
position to the root tends to be large. We can’t just sift up the smallest
child, and sift the “hole” down, because the hole must end up at the last
position. But: we can do that as long as the right child is the smaller
one, and only then fetch the key in the last position.

41



:binotree}

1. Algoritmos em grafos

1.5.2. Heaps binomiais

Um heap binomial é um cole¢do de drvores binomiais que satisfazem a orde-
nagao de um heap. A &arvore binomial By consiste de um tdnico vértice. A
arvore binomial B; possui uma raiz com filhos By,...,Bi_1. O posto de By é
k. Um heap binomial contém no maximo uma arvore binomial de cada posto.

Bo Bi B2 B3 By
s /W?}
Lema 1.10

Uma arvore binomial tem as seguintes caracteristicas:
1. B, possui 2™ vértices, 2! folhas (para n > 0), e tem altura n + 1.

2. O nivel k de By, (a raiz tem nivel 0) tem (}) vértices. (Isso explica o
nome.)

Prova. Exercicio. [ |
Observagao 1.7

Podemos combinar dois B; obtendo um B; 1 e mantendo a ordenagao do heap:
Escolhe a arvore com menor chave na raiz, e torna a outra filho da primeira.
Chamaremos essa operacao “link”. Ela tem custo O(1) (veja observagoes sobre
a implementago).

¢

Observagao 1.8
Um B; possui 2' vértices. Um heap com n chaves consiste em O(log n) arvores.
Isso permite juntar dois heaps binomiais em tempo O(logn). A operagao é

42



1.5. Filas de prioridade e heaps

semelhante a soma de dois niimeros binarios com “carry”. Comega juntar os
Bo. Caso tem zero, continua, case tem um, inclui no heap resultante. Caso
tem dois o heap resultante ndo recebe um By. Define como “carry” o link dos
dois Bg’s. Continua com os B;. Sem tem zero ou um ou dois, procede como
no caso dos By. Caso tem trés, incluindo o “carry”, inclui um no resultado,
e define como “carry” o link dos dois restantes. Continue desse forma com os
restantes drvores. Para heaps hy, hy chamaremos essa operagao meld(hj,hz).

O

Com a operagao meld, podemos definir as seguintes operagoes:
o makeheap(c): Retorne um By com chave c. Custo: O(1).
e insert(h,c): meld(h,makeheap(c)). Custo: O(logn).
o getmin(h): Mantendo um link para a drvore com o menor custo: O(1).

¢ deletemin(h): Seja By a &rvore com o menor chave. Remove a raiz.
Define dois heaps: hy é h sem By, h, consiste dos filhos de By, i.e.
Bo,...,Bx_1. Retorne meld(hy,h,). Custo: O(logn).

« updatekey(h,p,c): Como no caso do heap bindrio completo com custo
O(logn).

o delete(h,c): decreasekey(h,c,—o0); deletemin(h)

Em comparagdo com um heap binario completo ganhamos nada no caso pessi-
mista. De fato, a operagao insert possui complexidade pessimista O(1) amor-
tizada. Um insert individual pode ter custo O(logn). Do outro lado, isso
acontece raramente. Uma andlise amortizada mostra que em média sobre
uma série de operacoes, um insert s6 custa O(1). Observe que isso nao é uma
andlise da complexidade média, mas uma andlise da complexidade pessimista
de uma série de operagoes.

Analise amortizada

Exemplo 1.5

Temos um contador bindrio com k bits e queremos contar de 0 até 2X—1. Ana-
lise “tradicional”: um incremento tem complexidade O(k), porque no caso pior
temos que alterar k bits. Portanto todos incrementos custam O(k2¥). Ané-
lise amortizada: “Poupamos” operagoes extras nos incrementos simples, para
“gasta-las” nos incrementos caros. Concretamente, setando um bit, gastamos
duas operacdes, uma para setar, outra seria “poupada”. Incrementando, usa-
remos as operagoes “poupadas” para zerar bits. Desta forma, um incremento
custa O(1) e temos custo total O(2¥).

43

{ex:contad



:aa:table}

1. Algoritmos em grafos

Uma outra forma da andlise amortizada é através uma fung¢do potencial @, que
associa a cada estado de uma estrutura de dados um valor positivo (a “pou-
panga”). O custo amortizado de uma operagio que transforma uma estrutura
e; em uma estrutura e; e ¢ — @(eq) + @(ez2), com ¢ o custo de operacido. No
exemplo do contador, podemos usar como @(i) o ntimero de bits na represen-
tacdo bindrio de i. Agora, se temos um estado e

11---10
——

p bits um g bits um
com @(er) =p + q, o estado apds de um incremento é

00---01 ---
iy
q

com @(ez) =1+ q. O incremento custa ¢ = p + 1 operagdes e portanto o
custo amortizado é

c—ole)+ole2) =p+1-p—q+1+q=2=0(0).
¢

Resumindo: Dado um série de chamadas de uma operacao com custos Cq,...,Cn
o custo amortizado da operagao é )} ;_;,, ci/n. Caso temos m operagoes di-

ferentes, o custo amortizado da operagido que ocorre nos indices ] C [1,m] é

Zie] Cl/m

As somas podem ser dificeis de avaliar diretamente. Um método para simpli-

ficar o cédlculo do custo amortizado é o método potencial. Acha uma fungdo

potencial @ que atribui cada estrutura de dados antes da operagdo i um va-

lor ndo-negativo @; > 0 e normaliza ela tal que @7 = 0. Atribui um custo

amortizado

i =Ci — @i+ @it

a cada operagdo. A soma dos custos ndo ultrapassa os custos originais, porque

Zai:ZCi_(Pi+(Pi+l = Pn+1 — @1 +ZC«L ZZCi
Portanto, podemos atribuir a cada tipo de operacao | C [1, m] o custo amorti-

zado Zie] ai/|J|. Em particular, se cada operagéo individual i € ] tem custo
amortizado a; < F, o custo amortizado desse tipo de operacao é F.

Exemplo 1.6

Queremos implementar uma tabela dindmica para um ntmero desconhecido
de elementos. Uma estratégia é reserver espaco para n elementos, manter a
dltima posicao livre p, e caso p > n alocara uma nova tabela de tamanho
maijor. Uma implementacao dessa ideia é

44



00 O Uik WK

1.5. Filas de prioridade e heaps

insert (x):=
if p>mn then
aloca nova tabela de tamanho t = max{2n,1}
copia os elementos xi,1 <i<p para nova tabela
n:=t
end if
Xp =X
p=p+1
com valores iniciais n:= 0 e p := 0. O custo de insert é O(1) caso existe ainda
espago na tabela, mas O(n) no pior caso.
Uma andlise amortizada mostra que a complexidade amortizada de uma ope-
ragao é O(1). Seja Cn o custo das linhas 3-5 e D o custo das linhas 7-8.
Escolhe a funcéo potencial @(n) =2Cp —Dn. A funcdo ¢ é satisfaz os crité-
rios de um potencial, porque p > n/2, e inicialmente temos @(0) = 0. Com
isso o custo amortizado caso tem espago na tabela é

ai=ci—@(i—1)+e(i)
=D—-(2C(p—1)—Dn)+ (2Cp—Dn)=C+2C=0(1).

Caso temos que alocar uma nova tabela o custo é

ai=c¢i—ei-1)+¢e{i)=D+Cn—(2C(p—1)—Dn) + (2Cp — 2Dn)
=C+Dn+2C—Dn=0(1).

O

Custo amortizado do heap binomial Nosso potencial no caso do heap bi-
nomial é o nimero de arvores no heap. O custo de getmin e updatekey nao
altera o potencial e por isso permanece o mesmo. makeheap cria uma arvore
que custa mais uma operagdo, mas permanece O(1). deletemin pode criar
O(logn) drvores novas, porque o heap contém no maximo um Bpgn que
tem O(logn) filhos, e permanece também com custo O(logn). Finalmente,
insert reduz o potencial para cada link no meld e portanto agora custa somente
O(1) amortizado, com o mesmo argumento que no exemplo 1.5.
Desvantagem: a complexidade (amortizada) assintética de calcular uma arvore
geradora minima permanece O(nlogn + mlogn).

Meld preguicosa Ao invés de reorganizar os dois heaps em um meld, pode-
mos simplesmente concatené-los em tempo O(1). Isso pode ser implementado
sem custo adicional nas outras operagoes. A tinica operagao que nao tem com-
plexidade O(1) é deletemin. Agora temos uma colecio de arvores binomiais

45



1. Algoritmos em grafos

nao necessariamente de posto diferente. O deletemin reorganiza o heap, tal
que obtemos um heap binomial com arvores de posto tinico novamente. Para
isso, mantemos um vetor com as arvores de cada posto, inicialmente vazio.
Sequencialmente, cada arvore no heap, sera integrado nesse vetor, executando
operagoes link s6 for necessario. O tempo amortizado de deletemin permanece
O(logn).

Usaremos um potencial @ que é o dobro do ntimero de arvores. Supondo que
antes do deletemin temos t arvores e executamos 1 operagoes link, o custo
amortizado é

(t+1)—2t+2(t—1)=t—1L

Mas t — 1 é o niimero de arvores depois o deletemin, que é O(logn), porque
todas arvores possuem posto diferente.

Sobre a implementacao Um forma eficiente de representar heaps binomiais,
é em forma de apontadores. Além das apontadores dos filhos para o os pais,
cada pai possui um apontador para um filho e os filhos sdo organizados em
uma lista encadeada dupla. Mantemos uma lista encadeada dupla também
das raizes. Desta forma, a operacao link pode ser implementada em O(1).

1.5.3. Heaps Fibonacci

Um heap Fibonacci é uma modificagdo de um heap binomial, com uma opera-
¢ao decreasekey de custo O(1). Com isso, uma arvore geradora minima pode
ser calculada em tempo O(m + nlogn). Para conseguir decreasekey em O(1)
nao podemos mais usar heapify-up, porque heapify-up custa O(logn).
Primeira tentativa:

o delete(h,p): Corta p de h e executa um meld entre o resto de h e os filhos
de p. Uma alternativa é implementar delete(h,p) como decreasekey(h,p,—oo)
e deletemin(h).

46



0O Uik Wi

== R e e e
DD UL W N = O ©

17
18
19
20
21
22

1.5. Filas de prioridade e heaps

o decreasekey(h,p): A ordenacdo do heap pode ser violada. Corta p é
execute um meld entre o resto de h e p.

Problema com isso: apds de uma série de operagoes delete ou decreasekey, a
arvore pode se tornar “esparso”, i.e. o nimero de vértices nao é mais expo-
nencial no posto da arvore. A andlise da complexidade das operacbes como
deletemin depende desse fato para garantir que temos O(logn) arvores no
heap. Consequéncia: Temos que garantir, que uma arvore nao fica “podado”
demais. Solugdo: Permitiremos cada vértice perder no méximo dois filhos.
Caso o segundo filho é removido, cortaremos o préprio vértice também. Para
cuidar dos cortes, cada n6é mantém ainda um valor booleana que indica, se ja
foi cortado um filho. Observe que um corte pode levar a uma série de cortes
e por isso se chama de corte em cascatas (ingl. cascading cuts). Um corte
em cascata termina na pior hipétese na raiz. A raiz é o Unico vértice em que
permitiremos cortar mais que um filho. Por isso ndo mantemos flag na raiz.

Implementacdées Denotamos com h um heap, ¢ uma chave e p um elemento
do heap. minroot(h) é o elemento do heap que correspondo com a raiz da
chave minima, e cut(p) é uma marca que verdadeiro, se p ja perdeu um filho.

insert(h, c) :=
meld (makeheap (c))

getmin(h) :=
return minroot (h)

delete(h,p) :=
decreasekey (h,p,—o0)
deletemin (h)

meld(hq,hy) :=
h := lista com raizes de hy e hy (em O(1))
minroot (h) :=
if key(minroot (h;))<key(minroot(h;)) h; else h;

decreasekey(h,p,c) :=
key(p):= ¢
if ¢ < key(minRoot (h))
minRoot (h) := p
if not root(p)
if key(parent (p))>key(p)
corta p e adiciona na lista de raizes de h

47



23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
95
o6
o7
58
59
60
61
62
63

1. Algoritmos em grafos

cut

cascading-cut (h,parent (p))

p)

:= false

cascading-cut (h,p)

{ p perdeu um filho }

if root

(p)

return
if (not cut(p)) then

cut (p
else

corta p e adiciona na lista de raizes de h
:= false
cascading-cut (h,parent (p))

cut (p

end if

)

)

deletemin (h)

remover minroot (h)
juntar as listas do resto de h e dos filhos de minroot (h)

:= true

{ reorganizar heap 1}

determina o posto maximo M =M(n) de h
ri ;= undefined para 0 <i<M
for toda raiz r do

remove T da lista de raizes

d := degree(r)

while (rgq not undefined) do

r := link(r,1q)

T4 := undefined

d

= d+1

end while

Tq =
end for

definir a lista de raizes pelas entradas definidas 1
determinar o novo minroot

T

link (hi,hy)

48

if (key(h;)<key(hy))
makechild (hy,hy)

h :=
else

h :=
cut (hy)
cut (hy)

makechild (h,,hy)

false
false



64

1.5. Filas de prioridade e heaps

return h
Para concluir que a implementagao tem a complexidade desejada temos que
provar que as arvores com no maximo um filho cortado nao ficam esparsos
demais e analisar o custo amortizado das operagGes.

Custo amortizado Para andilise usaremos um potencial de ¢1t + ¢com sendo
t o nimero de arvores, m o ntmero de vértices marcados e c1,c2 constantes.
As operagoes makeheap, insert, getmin e meld (preguigoso) possuem comple-
xidade (real) O(1). Para decreasekey temos que considerar o caso em que o
corte em cascata remove mais que uma subarvore. Supondo que cortamos
n arvores, o numero de raizes é t + n apds dos cortes. Para todo corte em
cascata, a arvore cortada é desmarcada, logo temos no maximo m — (n — 1)
marcas depois. Portanto custo amortizado é

Omn)—(cit+com)+(ci(t+n)+ca(m—(n—1)))=con—(c2 —cy)n+cy

e com Cy — Cq > ¢ temos custo amortizado constante ¢, = O(1).
Com posto maximo M, a operagao deletemin tem o custo real O(M +t), com
as seguintes contribuigoes

e Linha 43: O(M).

e Linhas 44-51: O(M + t) com t o nimero inicial de drvores no heap. A
lista de raizes contém no méximo as t arvores de h e mais M filhos da
raiz removida. O laco total ndo pode executar mais que M+t operacoes
link, porque cada um reduz o niimero de raizes por um.

e Linhas 54-55: O(M).

Seja m o ntimero de marcas antes do deletemin e m’ o nimero depois. Como
deletemin marca nenhum vértice, temos m’ < m. O nimero de &rvores t’
depois de deletemin satisfaz t’ < M porque deletemin garante que existe no
maximo uma arvore de cada posto. Portanto, o potencial depois de deletemin
e @' =cit+com’ <c¢iM +com, e o custo amortizado é

OM+1t)—(crt+com)+ @' <OM+1t)—(crt+com)+ (ciM +com)
=(co+c1)M+(co —cq)t

e com cq > ¢ temos custo amortizado O(M).

49



1. Algoritmos em grafos

Um limite para M Para provar que deletemin tem custo amortizado logn,
temos que provar que M = M(n) = O(logn). Esse fato segue da maneira
“cautelosa” com que cortamos vértices das arvores.

Lema 1.11
Seja p um vértice arbitrario de um heap Fibonacci. Considerando os filhos

na ordem temporal em que eles foram introduzidos, filho i possui pelo menos
i — 2 filhos.

Prova. No instante em que o filho i foi introduzido, p estava com pelo menos
i—1 filhos. Portanto i estava com pelo menos i — 1 filhos também. Depois
filho i perdeu no maximo um filho, e portanto possui pelo menos i — 2 filhos.

|
Quais as menores arvores, que satisfazem esse critério?

Fo B Fa F3 F4
Lema 1.12

Cada subarvore com uma raiz p com k filhos possui pelo menos Fy;, vértices.

Prova. Seja Sy o nimero minimo de vértices para uma subarvore cuja raiz
possui k filhos. Sabemos que So =1, S; = 2. Define S_; =S_7 =1. Com
isso obtemos para k > 1

Sk= ) Sk2=Sk2+Sk3+ +S2="Sc2+S5c1.
0<i<k

Comparando Sy com os ntmeros Fibonacci

o k se0<k<I1
k- Fro +Feo1 sek>2
e observando que So = F, e S; = F3 obtemos Sx = Fyi2. Usando que
Fn € ©(O™) com ® = (1++/5)/2 (exercicio!) conclui a prova. [ |

Corolario 1.1
O posto méaximo de um heap Fibonacci com 1 elementos é O(logn).

50



1.5. Filas de prioridade e heaps

Sobre a implementacdo A implementagio da drvore é a mesma que no caso
de heaps binomiais. Uma vantagem do heap Fibonacci é que podemos usar os
ndés como ponteiros — lembre que a operacdo decreasekey precisa isso, porque
os heaps nao possuem uma operacao de busca eficiente. Isso é possivel, porque
sem heapify-up e heapify-down, os ponteiros mantem-se validos.

1.5.4. Rank-pairing heaps

Haeupler et al. (2009) propoem um rank-pairing heap (um heap “empare-
lhando postos”) com as mesmas garantias de complexidade que um heap Fi-
bonacci e uma implementagio simplificada e mais eficiente na pratica (ver
observagdo 1.11).

Torneios Um torneio é uma representagao alternativa de heaps. Comecando
com todos elementos, vamos repetidamente comparar pares de elementos, e
promover o vencedor para o préximo nivel (Fig. 1.3(a)). Uma desvantagem
de representar torneios explicitamente é o espaco para chaves redundantes.
Por exemplo, o campedo (i.e. 0 menor elemento) ocorre O(logn) vezes. A
figura 1.3(b) mostra uma representacio sem chaves repetidas. Cada chave
é representado somente na comparacao mais alta que ele ganhou, as outras
comparagoes ficam vazias. A figura 1.3(c) mostra uma representacao compacta
em forma de semi-drvore. Numa semi-arvore cada elemento possui um filho
ordenado (na figura o filha da esquerda) e um filho nao-ordenado (na figura o
filho da direita). O filho ordenado é o perdedor da comparagio direta com o
elemento, enquanto o filho ndo-ordenado é o perdedor da comparagdo com o
irmao vazio. A raiz possui somente um filho ordenado.

Cada elemento de um torneio possui um posto. Por defini¢ao, o posto de uma
folha é 0. Uma comparacdo justa entre dois elementos do mesmo posto r
resulta num elemento com posto r + 1 no préximo nivel. Numa comparacao
injusta entre dois elementos com postos diferentes, o posto do vencedor é
definido pelo maior dois postos dos participantes (uma alternativa é que o
posto fica 0 mesmo). O posto de um elemento representa um limite inferior
do nimero de elementos que perderam contra-lo:

Lema 1.13
Um torneio com campedo de posto k possui pelo menos 2% elementos.

Prova. Por indugdo. Caso um vencedor possui posto k temos duas possibi-
lidades: (i) foi o resultado de uma comparacao justa, com dois participantes
com posto k — 1 e pela hipétese da inducdo com pelo menos 2%~ elementos,
tal que o vencedor ganhou contra pelo menos 2* elementos. (ii) foi resultado

o1

{lem:rank}



1. Algoritmos em grafos

(a)

(b)

()

Figura 1.3.: Representacoes de heaps.

92

{fig



0~ O Ui W N -

O I I I T T N N T N N Y S o Gy S S gy i oy WG S Y
S OO N EWNRR OO~ U W = O W©

1.5. Filas de prioridade e heaps

de uma comparacao injusta. Neste caso um dos participantes possuiu posto
k e o vencedor novamente ganhou contra pelo menos 2% elementos. |

Cada comparagéo injusta torna o limite inferior dado pelo posto menos preciso.
Por isso uma regra na construcdo de torneios é fazer o maior nimero de
comparagoes justas possiveis. A representacdo de um elemento de heap é
possui quatro campos para a chave (c), o posto (r), o filho ordenado (o) e o
filho néo-ordendo (u):

def Node(c,r,o,u)
Podemos implementar as operagoes de uma fila de prioridade (sem update ou
decreasekey) como segue:

{ compara duas arvores 1}
link(ty,t2) :=
if t1.c < ty.c then
return makechild (ty,t;)
else
return makechild (ty,t7)
end if

makechild(s,t) :=

t.u = s.o0

s.o = t
setrank (t)

s.r := s.r + 1

return s

setrank(t) :=

if t.o.r = t.u.r

t.r = t.o.r + 1
else

t.r = max(t.o.r,t.u.r)
end if

{ cria um heap com um dnico elemento com chave c }
make-heap(c) := return Node(c,O0,undefined,undefined)

{ insere chave c no heap 1}
insert(h,c) := link(h,make-heap(c))

{ unido de dois heaps }

53



30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
93
54
55
56
o7
o8
59
60
61
62

1. Algoritmos em grafos

meld(hy,hy;) := link(h;,hy)

{ elemento minimo do heap }
getmin(h) := return h

{ delegdo do elemento minimo do heap }
deletemin(h) :=
aloca array To...Th.o.r+1
t = h.o
while t not undefined do
t/ = t.u
t.u := undefined
register(t,r)
ti=1t'
end while
h’ := undefined
for i=0,...,h.or+1 do
if r;{ not undefined
h! := 1link(h’,1y)
end if
end for
return h’
end

register(t,r) :=
if T¢o.r+1 is undefined then

Ttor+1 = T

else
t:=link (t,Tto.r+1)
Tt.o.r+1 := undefined
register(t,r)

end if

end
(A figura 1.4 visualiza a operagao “link”.)

Observagao 1.9
Todas comparagoes de “register” sdo justas. As comparagoes injustas ocorrem
na construcao da arvore final nas linhas 35-39. O

Lema 1.14
Num torneio balanceado o custo amortizado de “make-heap”, “insert”, “meld”
e “getmin” é O(1), o custo amortizado de “deletemin” é O(logn).

o4



ink}

1
2
3

1.5. Filas de prioridade e heaps

ST

Figura 1.4.: A operagao “link” para semi-arvores no caso tj.c < tj.c.

last

h, min ?/—\

Figura 1.5.: Representacdo de um heap binomial.

Prova. Usaremos o nimero de comparagoes injustas no torneio como poten-
cial. “make-heap” e “getmin” nao alteram o potencial, “insert” e “meld” au-
mentam o potencial por no maximo um. Portanto a complexidade amortizada
dessas operagoes é O(1). Para analisar “deletemin” da raiz r do torneio vamos
supor que houve k comparacoes injustas com r. Além dessas comparagoes in-
justas, r participou em no maximo logn comparagoes justas pelo lema 1.13.
Em soma vamos liberar no maximo k 4 logn arvores, que reduz o potencial
por k, e com no méaximo k + logn comparacgdes podemos produzir um novo
torneio. Dessas k+logn comparagoes no maximo logn sdo comparacoes injus-
tas. Portanto o custo amortizado é k+logn —k+logn = 2logn = O(logn).
|

Heaps binomiais com varredura Ginica O custo de representar o heap numa
arvore Unica é permitir comparagoes injustas. Uma alternativa é permitir
somente comparagoes justas, que implica em manter uma cole¢ao de O(logn)
arvores. A estrutura de dados resultante é similar com os heaps binomiais:
manteremos uma lista (simples) de raizes das drvores, junto com um ponteiro
para a arvore com a raiz de menor valor. O heap é representado pela raiz de
menor valor, ver Fig. 1.5.

insert(h,c) :=
insere make-heap(c) na lista de raizes
atualize a &rvore minima

55

{fig:binon



- O OU

© 00 O Ui W N+

NN NNNNNRFR PR PP 2B =2
DU W OO0 Uk WwNn—OoO

1. Algoritmos em grafos

meld (h;,hy) :=
concatena as listas de h; e hy
atualize a arvore minima
Somente “deletemin” opera diferente agora:

deletemin(h) :=
aloca um array de listas Tp...T[ogn]
remove a arvore minima da lista de raizes
distribui as restantes &arvores sobre T

t:=h.o

while t not undefined do
t'=tu
t.u := undefined
insere t na lista Ti o.r+1
t=t'

end while

{ executa o maior nimero possivel }
{ de comparagdes justas num dnico passo }

h := undefined { lista final de raizes }
for i=0,...,[logn] do
while [ri| > 2
t := link(ri.head,ri.head.next)
insere t na lista h
remove Ti.head,ri.head.next da lista 13
end if
if |rjJ =1 insere ri.head na lista h
end for
return h

Observagao 1.10
Continuando com comparagdes justas até sobrar somente uma arvore de cada
posto, obteremos um heap binomial. O

Lema 1.15
Num heap binomial com varredura tnica o custo amortizado de “make-heap”,
“insert”, “meld”, “getmin” é O(1), o custo amortizado de “deletemin” é O(logn).

Prova. Usaremos o dobro do niimero de arvores como potencial. “getmin”

W

nao altera o potencial. “make-heap”, “insert” e “meld” aumentam o potencial

o6



1
2

1.5. Filas de prioridade e heaps

VNN AN

(a) r+1 r+1 r4+0 >r+1 >r+1 r+0

SN N NN

(b) r+1 r+1 r+1 r+2 rv+2 r+1 v+0 >r+2

N

>r+2 r+0
Figura 1.6.: Diferengas no posto de rp-heaps do tipo 1 (a) e tipo 2 (b).

por no maximo dois (uma arvore), e portanto possuem custo amortizado O(1).
“deletemin” libera no maximo logn arvores, porque todas comparagoes foram
justas. Com um ntmero total de h &rvores, o custo de deletemin é O(h).
Sem perda de generalidade vamos supor que o custo é h. A varredura final
executa pelo menos (h—logn)/2—1 comparagoes justas, reduzindo o potencial
por pelo menos h —logn — 2. Portanto o custo amortizado de “deletemin” é
h—(h—logn—2) =logn+2 = 0(logn). |

rp-heaps O objetivo do rp-heap é adicionar ao heap binomial de varredura
lnica uma operacao “decreasekey” com custo amortizado O(1). A ideia e
os problemas sdo os mesmos do heap Fibonacci: (i) para tornar a operagao
eficiente, vamos cortar a sub-arvore do elemento cuja chave foi diminuida. (ii)
o heap Fibonacci usava cortes em cascata para manter um ntmero suficiente
de elementos na arvore; no rp-heap ajustaremos os postos do heap que perde
uma sub-arvore. Para poder cortar sub-arvores temos que permitir uma folga
nos postos. Num heap binomial a diferenca do posto de um elemento com o
posto do seu pai (caso existe) sempre é um. Num rp-heap do tipo 1, exigimos
somente que os dois filhos de um elemento possuem diferenca do posto 1 e 1,
ou 0 e ao menos 1. Num rp-heap do tipo 2, exigimos que os dois filhos de
um elemento possuem diferenca do posto 1 e 1, T e 2 ou 0 e pelo menos 2.
(Figura 1.6.)

Com isso podemos implementar o “decreasekey” (para rp-heaps do tipo 2)
como segue:

decreasekey(h,e,A) :=
e.c := e.c —A

o7

{fig:rptyr



1.

Algoritmos em grafos

A/ Ve Z’A A

Figura 1.7.: A operagdo “decreasekey”. {fig

if root(e)

return
if parent(e).o = e then

parent(e).o := e.u
else

parent(e).u := e.u
end if
parent(e).u := parent(e)
e.u := undefined
u := parent(e)
parent (e) := undefined

insere e na lista de raizes de h
decreaserank (u)

rank(e) :=

if e is undefined
return —1
else
return e.r

decreaserank(u) :=

o8

if root (u)

return
if rank(u.o) > rank(u.u)+1 then
k := rank(u.o)
else if rank(u.u) > rank(u.o)+1 then
k := rank(u.u)
else
k = max(rank(u.o),rank(u.u))+1
end if



33
34
35
36
37
38
39
40
41

1.5. Filas de prioridade e heaps

Figura 1.8.: Separar uma semi-arvore de posto k em duas.

if u.r = k then
return
else
u.r := k
decreaserank (parent (u))

delete(h,e) :=
decreasekey(h,e,—00)
deletemin (h)

Observagao 1.11

Para implementar o rp-heap precisamos além dos ponteiros para o filho or-
denado e nao-ordenado um ponteiro para o pai do elemento. A (suposta)
eficiéncia do rp-heap vem do fato que o decreasekey altera os postos do heap,
e pouco da estrutura dele e do fato que ele usa somente trés ponteiros por
elemento, e ndo quatro como o heap Fibonacci. O

Lema 1.16
Uma semi-arvore do tipo 2 com posto k contém pelo menos ¢ elementos,

sendo ¢ = (14 1/5)/2 a razdo durea.

Prova. Por indugdo. Para folhas o lema é valido. Caso a raiz com posto k
nao é folha podemos obter duas semi-arvores: a primeira é o filho da raiz sem
o seu filho nao-ordenado, e a segunda é a raiz com o filho ndo ordenado do
seu filho ordenado (ver Fig. 1.8). Pelas regras dos postos de arvores de tipo
dois, essas duas arvores possuem postos k—Tek—1, ouk—Tek—2ouke
no maximo k — 2. Portanto, o menor nimero de elementos ny contido numa
semi-arvore de posto k satisfaz a recorréncia

Ny = Ng—1 + Ny,

que é a recorréncia dos nimeros Fibonacci. |

Lema 1.17

As operagoes “decreasekey” e “delete” possuem custo amortizado O(1) e O(logn)

59

{fig:split

{obs:efici



S T W N~

1. Algoritmos em grafos

Prova. Ver (Haeupler et al., 2009). |

1.5.5. Heaps ocos
Introducao

Objetivo: operagoes com a mesma complexidade amortizada que heaps de
Fibonacci. Para um heap h, chave k e elemento e temos as operagoes:

o make-heap(): O(1)

o find-min(h)/getmin(h): O(1)
o meld(hy,hz): O(1)

o insert(e,k,h): O(1)

o decrease-key(e,k,h): O(1)

o delete(e,h): O(logn)
 delete-min(h): O(logn)

Ideia principal: a operagio delete esvazia nés, produzindo nés ocos (ingl. hol-
low nodes), a operagdo decrease-key é um delete, seguido por um insert.
Teremos duas medidas:

n Nimero de elementos no heap

N Numero de nés no heap = # de elementos + # de nds ocos = # operagoes
insert + # operagoes decrease-key

Variantes de heaps ocos:
o Heaps ansiosos (ingl. “eager heaps”) com miiltiplas raizes.
e Heaps ansiosos com uma tnica raiz.

o Heaps preguicosos.

def Node =
item // elemento
key // chave
fc // ponteiro para primeiro filho
ns // ponteiro para prdéximo irmdo
rank // posto do nd

60



1.5. Filas de prioridade e heaps

7

8 def Item =

9 no // né correspondente
10 // mais dados satelites

Operacado basica: link Um link gera um vencedor e um perdedor, que se
torna filho do vencedor, e aumenta o posto do vencedor.

1 (ranked)link (t7,ty) :=

2 if t1.key < ty.key

3 return makechild (ty,ty)
4 else

5 return makechild (ty,t7)
6

7 makechild(w,l) :=

8 1l.ns = w.fc

9 w.fc =1

10 w.rank := w.rank+l1

11 return w

Representacao basica

o Lista simples circular de arvores com ordenagao do heap, representada
por um ponteiro a arvore cuja raiz contém a menor chave (chamada a
raiz minima).

e Cada nd cheia armazena um item. Podem existir nds ocos sem item.
e Noés ocos nunca mais ficam cheias, eles podem somente ser destruidos.

¢ Filhos ficam armazenados em listas simples, em ordem nao-crescente de
postos.

61



1. Algoritmos em grafos

1 make-heap() := return null

2

3 make-heap(e,k) := return Node(e,k,null,self,0)
4

5 getmin(h) := h

6

7 findmin(h) := return h is not null? h.item : null
8

9 meld(hq,hy) :=

10 if h; is null return hy

11 if hy is null return hy

12 swap(h;.ns,hy.ns) // cria uma lista circular simples
13 if hy.key < hy.key return hy else return h;
14

15 insert(e,k,h) := meld(make-heap(e,k),h)

16

17 decrease-key(e,k,h) :=

18 u = e.node

19 v = make-heap(e,k)

20 v.rank = max{0,u.rank-2}

21 // desloca os filhos de postos 0,...,rank-2 para v
22 if u.rank > 2

23 v.fc := u.fc.ns.ns

24 u.fc.ns.ns := null

25 return meld(v,h)

26

27 delete(e,h) :=

28 e.node.item := null

29 if e.node = h

30 delete-min(h)

31

32 delete-min(h) :=

33 if h is null: return

34 h.node.item := null

35

36 aloca um array Rp,Rq,...,Rm

37 // repetidamente remove raizes ocos e une os heaps
38 r:=h

39 repeat

40 rn := r.ns

41 link-heap(r,R)

62



42
43
44
45
46
47
48
49
50
51
52
93
o4
95
56
o7
98
99
60
61
62
63
64
65
66
67
68

r:=rn
until r==h

// reconstréi o heap
h:=null
for i=0,...,M
if Ry is not null
Ri.ns HE Ri
h := meld(h,R;)
return h

link-heap(h,R) :=
if h is hollow
r:=h.fc
while r is not null
rn := r.ns
link-heap(r,R)
r := rn
destroy node h
else
i := h.rank
while R; is not null
h := link(h,R;)
Ri := null
i=1i + 1
end
Ri := h

Invariantes

1. Ordenacao do heap.

1.5. Filas de prioridade e heaps

2. Invariante do posto: cada né de posto r possui r filhos com postos
0y...,7— 1, exceto no caso r > 2 e o no foi esvaziada por uma ope-
racao decrease-key. Neste caso o né possui dois filhos de postos 1 — 1 e

r—2.

Corretude

63



1. Algoritmos em grafos

Teorema 1.11
Heaps com noés ocos implementam corretamente todas operagao e mantém as
invariantes.

Prova. Por indugao sobre o niimero de operagoes. |
Lembranga: os niimeros de Fibonacci sdo definidos por Fo = 0,Fy = 1,Fi 1, =
Fi+ Fii1, para i > 0 e temos Fi o > @, com a razdo durea ® = (1+/5)/2.

Teorema 1.12
Um né de posto r possui pelo menos F,3 — 1 descendentes (cheios ou ocos),
incluindo o préprio nd, na arvore.

Prova. Por indugéo sobre r. Para r = 0, temos F3 —1 =1, e para v = 1
temos F4 — 1 = 2 e a afirmagdo estd correta, porque para r < 2 um né nao
perde filhos caso for esvaziado. Para v > 2 pela invariante do posto temos
pelo menos dois filhos com postos 1 — 1 e 1. Pela hipétese da inducao eles
tem pelo menos F.,1 —1 e F, 2 — 1 descendentes e logo T possui pelo menos
Fri1—14+F,2—14+1=F.3—1 descendentes. | |

Corolario 1.2

Depois uma operagao delete-min o nimero de drvores é no méximo [logg, N| =
O(log N) porque temos no méximo uma &rvore por posto. Logo podemos
escolher M = [logg N na operacao delete-min.

Teorema 1.13

O tempo amortizado por operagdo num heap oco é O(1), exceto para as ope-
racoes delete e delete-min, que tem complexidade O(log N) para um heap com
N nés.

Prova. Todas operagoes exceto a delecao do elemento minimo possuem tempo
O(1) no caso pessimista. O custo de uma delecdo é O(H+T) com H o niimero
de nds ocos destruidos, e T o nimero de arvores antes das operagdes link.
Depois das operagoes link temos no maximo logg, N arvores, logo faremos pelo
menos T —logg N operagoes link e no maximo logg N operacoes meld. Logo
o custo total é O(1) por destrui¢do de um né oco, e por link, mas O(log N).
Para contabilizar a destruicdo do um nd, aumentamos o custo de cada criacao
(insert, decrease-key) por 1.

Para contabilizar as operacoes link: define um potencial igual ao nimero de
nds cheias, que nao sao filho de outro né cheia (i.e. raizes e filhos de nds ocos).
Para todas operagoes diferente de delete-min e delete, o aumento do potencial
é constante (no maximo 1 para insert, 3 para decrease-key, 0 para as demais).
Para o delete que remove o elemento minimo e delete-min, o custo amortizado
de cada link é 0, porque um link combina duas raizes cheias, reduzindo o

64



1.5. Filas de prioridade e heaps

Tabela 1.2.: Complexidade das operacoes de uma fila de prioridade. Comple-
xidades em negrito sdo amortizados. (1): meld preguigoso.

insert getmin  deletemin update decreasekey  delete
Vetor O(1) Oo(1) O(n) o(1) (update) O(1)
Lista ordenada O(n) o(1) Oo(1) O(n) (update) Oo(1)
Heap binario O(logmn) o(1) O (logm) O(logm) (update) O (logm)
Heap binomial 0(1) O(1) O(logn) O(logn) (update) O(logn)
Heap binomial(1) O(1) O(1) O(logn) O(logn) (update) O(logmn)
Heap Fibonacci Oo(1) o(1) O (logmn) - 0(1) O (logmn)
rp-heap o(1) o(1) O(logn) - 0(1) O(logn)

potencial por 1. Além disso, ao remover um elemento, o potencial aumenta
por no méaximo logge N, um por cada filho do novo né oco. Logo o custo
amortizado de delete e delete-min é O(log N).

|

Re-otimizando o heap A andlise acima é em func¢do de N. Caso logN =
O(logn) temos um heap assintoticamente étimo. Caso executamos muitas
operagoes decrease-key, temos que reconstruir o heap periodicamente, para
garantir N = O(n). O método mais simples é: escolhe uma constante ¢ > 1 e
para N > cn reconstréi o heap completamente, destruindo os nés ocos, criando
heaps de um tnico né de todos nés cheios, e aplicando operacdes meld para
unir todos heaps. O custo é O(N) para percorrer todo né uma vez e pode ser
atribuido na andlise amortizada para as operagoes insert e delete-min.

Resumo: Filas de prioridade A tabela 1.2 resume a complexidade das ope-
ragOes para diferentes implementacoes de uma fila de prioridade.

1.5.6. Arvores de van Emde Boas

Pela observagao 1.5 é impossivel implementar uma fila de prioridade baseado
em comparacio de chaves com todas operagdes em o(logn) . Porém existem
algoritmos que ordenam n nimeros em o(nlogn), aproveitando o fato que as
chaves sdo ntimeros com k bits, como por exemplo o radix sort que ordena em
tempo O(kn), ou aproveitando que as chaves possuem um dominio limitado,
como por exemplo o counting sort que ordena n nimeros em [K] em tempo
Oom+k).

Uma drvore de van Emde Boas (drvore vEB) T realiza as operagoes

« member(T, e): elemento e pertence a T?

o insert(T,e): insere e em T

65



IENEGUR R

1. Algoritmos em grafos

o delete(T,e): remove e de T

e min(T) e max(T): elemento minimo e maximo de T, ou “undefined” caso
nao existe

o succ(T,e) e pred(T, e): successor e predecessor de e em T; e nio precisa
pertencer a T

no universo de chaves [0,u — 1] em tempo O(loglogu) e espago O(u).
Outras operagoes compostas podem ser implementados, por exemplo

deletemin(T) :=

e:=min(T); delete(e); return e
deletemax (T) :=

e:=max(T); delete(e); return e

Arvores binarias em ordem vEB  Na discussio da implementacio de drvores
binarias na pagina 41 discutimos uma representacao em ordem da busca por
profundidade (BFS order). A ideia da ordem vEB é “cortar” a altura (nimero
de niveis) h de uma arvore binaria (que possui n = 2" —1 nodos e 2"~ folhas)
pela metade. Com isso obtemos

e uma &rvore superior Tp de altura |h/2]

e eb =22 =@(2"/2) = ©(y/n) arvores inferiores Ty,..., Ty de altura
[h/2] e com 2["/21 —1 = @(y/n) nodos.

Os nodos dessa arvore sao armazenados em ordem Ty, Tq,..., Ty e toda arvore
T; é ordenado recursivamente da mesma maneira, até chegar numa arvore de
altura h = 1, como a Figura 1.9 mostra.

Armazenar uma arvore bindria em ordem de vEB néo altera a complexidade
das operagoes. Uma busca, por exemplo, continua com complexidade O(h).
Porém, armazenado em ordem da busca por profundidade, uma busca pode
gerar ©(h) falhas no cache, no pior caso. Na ordem de vEB, a busca sem-
pre atravessa Q(log, B) niveis, com B o tamanho de uma linha de cache,
antes de gerar uma nova falha no cache. Logo uma busca gera somente
O(log; n/log, B) = O(logg n) falhas no cache. O layout se chama cache
oblivious porque funciona sem conhecer o tamanho de uma linha de cache B.

Arvores vVEB A estrutura bésica de uma arvore de vEB é

1. Usar uma arvore binaria de altura h representar 2"~' elementos nas
folhas.

66



1.5. Filas de prioridade e heaps

KR

1.1 00.0 00.101.0 01.110.0 10.111.0

I1I2I31 l1I2I4I5I3I6I7I [l2fs[als[o[shohiTehafs7haks]

Figura 1.9.: Organizagao de arvores binarias em ordem de van Emde Boas para
h € [4]. As folhas sao rotuladas por “cluster.subindice”. Abaixo
da arvore a ordem do armazenamento do vértices é dado. Os T
correspondem com as subdrvores do primeiro nivel de recursao.

oas}
h h
[ ]
top bottom top bottom
L] LI TTTTT] ] 1]
0 1 b—1 0 1

Figura 1.10.: Representacao da primeira versdo de uma arvore vEB. (a) Forma
geral. (b) Caso base. {fig:vEBr1

2. Cada folha armazena um bit, que é 1 caso o elemento correspondente
pertence ao conjunto representado.

3. Os bits internos servem como resumo da sub-arvore: eles representam
a conjuncao dos bits dos filhos, i.e. um bit interno é um, caso na sua
sub-arvore existe pelo menos uma folha que pertence ao conjunto repre-
sentado.

Todas as operacdes da estrutura acima podem ser implementadas em tempo
O(h) = O(logu). Para melhorar isso, vamos aplicar a mesma ideia da ordem
de van Emde Boas: a arvore é separada em uma arvore superior, e uma série
de arvores inferiores, cada uma com altura ~ h/2. As folhas da arvore superior
contém o resumo das raizes das arvores inferiores: por isso a arvore superior
possui altura |h/2| + 1, uma a mais comparado com a ordem de vEB.

Fig. 1.10 mostra essa representacao. A altura da arvore estd armazenada no
campo h. Além disso temos um ponteiro “top” para a arvore superior, e

67



O O UL Wi

= e
B~ wWw N = O o

15
16
17
18
19
20

1. Algoritmos em grafos

um vetor de ponteiros “bottom” de tamanho b = 2"2) para as raizes das
arvores inferiores. No caso base com h = 2, abusaremos os campos “top”
e “bottom” para armazenar os bits da raiz e dos dois filhos: um ponteiro
arbitrario diferente de undefined representa um bit 1, o ponteiro undefined o
bit 0. Para isso servem as funcoes auxiliares

set(p) := p=1

clear (p) := p:=undefined

bit(p) := return p # undefined
Observe que as folhas 0, 1,...,2" 1" —1 podem ser representadas com h—1 bits.
Os primeiros |h/2] bits representam o nimero da sub-drvore que contém a
folha, e os tltimos [h/2]—1 bits o indice (relativo) da folha na sua sub-arvore.
Isso explica a defini¢do das fungdes auxiliares

subtree(e) := e> [h/2] —1
subindex (e) := e&(1 <« [h/2]—1)—1
element (s,i) := (s< [h/2]—-1)]1

para extrair de um elemento o nimero da sub-arvore correspondente, ou o seu
indice nesta sub-arvore, e para determinar o indice na arvore atual do i-ésimo
elemento da sub-arvore s.

Com isso podemos implementar as operagbes como segue.

member (T,e) :=
if Th=2
return bit (T.bottom[e])
return member (T.bottom[subtree(e)],subindex(e))

min(T,e) :=
if Th=2
if bit(T.bottom[0])
return 0
if bit(T.bottom[1])
return 1
return undefined

c:=min (T.top)
if ¢ = undefined
return cC
return element (c,min(T.bottoml[c]))

succ(T,e) :=
if Th=2

68



21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

1.5. Filas de prioridade e heaps

if e=0 and bit(T.bottom[1])=1
return 1
return 0

s:=succ (T.bottom[subtree(e)], subindex (e))
if s # undefined
return element (subtree(e),s)

¢ :=succ (T.top,subtree(e))
if ¢ = undefined
return C
return element (c,min(T.bottom[c]))

insert(T,e) :=
if Th=2
set (T.bottom[e])
set (T.top)
else
insert (T.bottom[subtree(e)],subindex(e))
insert (T.top,subtree(e))

delete(T,e) :=
if Th=2
clear (T.bottom[e])
if (bit(T.bottom[1—e])=0
clear (T.top)
else
delete (T.bottom[subtree(e)],subindex(e))
s:=min(T.bottom[subtree(e)])
if s = undefined
delete (T.top,subtree(e))
As complexidades das operagdes implementadas no caso pessimista sdo (ver
as chamadas recursivas acima em vermelho):

member T(h) =T([h/2]) + O(1) = ©(logh) = O(log logu).

min T(h) = T(|h/2] + 1)+ T([h/2]) + O(1) = 2T(h/2) + O(1) = B(h) =
O(logu).

insert T(h) =T([h/2] +T(|h/2] +1)+0O(1) = BO(h) = O(logu).
succ/delete T(h) = T([h/2]) + T(|h/2] + 1) + O(h) = 2T(h/2) + O(h) =

69



fig:vEBr2}

IENEGURE O

1. Algoritmos em grafos

h min max h min max

L L) L L] L

top bottom top bottom

L LTI T] NN
0 1 b—1 0 1

(a) (b)

Figura 1.11.: Representagdo uma drvore vEB. (a) Forma geral. (b) Caso base.

O(hlogh) = B(loguloglogu) (com um trabalho extra de O(h) para
chamar “min”).

Logo todas operagoes com mais que uma chamada recursiva nao possuem
a complexidade desejada O(loglogu). A introdugio de dois campos “min”
e “max” que armazenam o elemento minimo e maximo, junto com algumas
modificagoes resolvem este problema.

1. Armazenar somente o minimo, a operacio “min” custa somente O(1) é
“insert”, “succ” e “delete” consequentemente somente O(h).

2. Armazenado também o méaximo, sabemos na operacao “succ” se o su-
cessor esta na arvore atual sem buscar, logo a operagao “succ” pode ser
implementada em O(loglogu).

3. A ultima modificacdo é ndo armazenar o elemento minimo na sub-arvore
correspondente. Com isso a primeira inser¢do somente modifica a arvore
de resumo (top) e a segunda e as demais operag¢oes modificam somente
a sub-arvore correspondente. A delecao funciona similarmente: ela re-
move ou um elemento na sub-arvore, ou o tltimo elemento, modificando
somente a arvore de resumo (top). Com isso todas operagdes podem ser
implementadas em O(loglogu).

Na base armazenaremos os elementos somente nos campos “min” e “max”.
Por convencdo setamos “min” maijor que “max” numa arvore vazia. As se-
guintes fungdes auxiliares permitem remover os elementos de uma arvore base
e determinar se uma arvore possui nenhum, um ou mais elementos.

clear (T)
T.min:=1; T.max:=0; // convencéo

empty (T)

70



= O © 0 O Lt

—_ =

0O Ui W

1.5. Filas de prioridade e heaps

return T.min>T.max

singleton(T) :=
return T.min=T.max

full(T)
return T.min<T.max

member (T,e) :=
if empty(T)
return false
if T.min = e or T.max = e
return true

{ ndo & ““min'' nem max''? a base ndo contém o elemento }

if T.h = 2
return false

return member (T.bottom[subtree(e)],subindex(e))

min(T) :=
if empty(T)
return undefined
return T.min

max (T) :=
if empty(T)
return undefined
return T.max

succ(T,e) :=
if T.h=2
if e=0 and Tmax=1
return 1

return undefined

if not empty(T) and e < Tmin
return T.min

{ sucessor na arvore atual }
m:=max (T.bottom[subtree(e)])

71



34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
95
o6

o7

58
59

60

61
62
63
64
65
66
67
68
69
70
71
72
73

1. Algoritmos em grafos

if m # undefined and subindex(e)<m
return element (subtree(e),
succ (T.bottom[subtree(e)],subindex(e)))

{ minimo na &rvore sucessora }
c:=succ (T.top,subtree(e))

if ¢ = undefined

return

return element(c,min(T.bottoml[c]))

pred(T,e)
if T.h=2

(¢

if e=1 and T.min=0
return 0

return undefined

if not empty(T) and T.max < e

return T.max

{ predecessor na arvore atual }

m:=min(T.bottom[subtree(e)])

if m # undefined and m <subindex (e)
return element (subtree(e),

pred (T.bottom[subtree(e)],subindex(e)))

{ maximo na &rvore predecessora }
c:=pred (T.top,subtree(e))

if ¢ = undefined

if not empty(T) and T.min<e

return T.min

else

return undefined

return element (c,max(T.bottoml[c]))

insert (T,e)

if empty(T)

T.min
return

72

T.max

e



74
(6]
76
7
78
79
80

81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

1.5. Filas de prioridade e heaps

{ novo minimo: setar min, insere min anterior }
if e < Tmin
swap (T.min,e)

{ insere recursivamente }
if Th>2
if empty(T.bottom[subtree(e)])
insert (T.top,subtree(e))
insert (T.bottom[subtree(e)],subindex(e))

{1line:empt

{line:secc

{ novo méximo: atualiza }
if Tmax<e
Tmax := e

delete(T,e) :=

if empty(T)
return

if singleton(T)
if Tmin=e
clear(T)
return

{ novo minimo? }

if e = Tmin
T.min := element (min(T.top),min(T.bottom[min(T.top)]))
e := T.min

{ remove e da &arvore }
delete (T.bottom[subtree(e)],subindex(e))

{line:recu
if empty(T.bottom[subtree(e)])
delete (T.top,subtree(e))

if e = Tmax
c:=max (T.top)
if ¢ = undefined

{line:secc

T.max := T.min
else
T.max := element(c,max(T.bottom[c]))

else

73



1. Algoritmos em grafos

114 T.max := element (subtree(e),max(T.bottom[subtree(e)]))
Com essas implementagoes cada fungdo executa uma chamada recursiva e um
trabalho constante a mais e logo precisa tempo O(logh). Em particular, na
fungdo “insert” caso a sub-arvore do elemento é vazia na linha 80 a segunda
chamada “insert” na linha 82 precisa tempo constante. Similarmente, ou a
delecdo recursiva na linha 103 néo remove o ltimo elemento, e talvez custa
O(logh), e logo a delegao da linha 106 néo é executada, ou ela remove o tltimo
elemento e custo somente O(1).

1.5.7. Exercicios

Exercicio 1.2
Prove lema 1.10. Dica: Use indugao sobre n.

Exercicio 1.3
Prove que um heap binomial com n vértices possui O(logn) drvores. Dica:
Por contradicao.

Exercicio 1.4 (Laboratério 1)
1. Implementa um heap binario. Escolhe casos de teste adequados e verifica
o desempenho experimentalmente.

2. Implementa o algoritmo de Prim usando o heap binario. Novamente
verifica o desempenho experimentalmente.

Exercicio 1.5 (Laboratdrio 2)
1. Implementa um heap binomial.

2. Verifica o desempenho dele experimentalmente.

3. Verifica o desempenho do algoritmo de Prim com um heap Fibonacci
experimentalmente.

Exercicio 1.6
A proposicao 1.3 continua ser correto para grafos com pesos negativos? Jus-
tifique.

74



1.6. Fluxos em redes

1.6. Fluxos em redes

Seja G = (V,A,c) um grafo direcionado e capacitado com capacidades c :
A — R nos arcos. Uma atribuicdo de fluxos aos arcos f : A — R em G se
chama circulagdo, se os fluxos respeitam os limites da capacidade (f, < cq4) e
satisfazem a conservagao de fluxo f(v) =0 com

f(v) == Z fq — Z fq (1.7)
aeN+(v) aeN—(v)
(ver Fig. 1.12).

Definicao 1.4

Para X, Y C V sejam A(X,Y) := (X x Y) N A os arcos passando de X para Y.
O fluxo de X para Y é f(X,Y) := ZQGA(X‘Y) fo. Ainda estendemos a notacio
do fluxo total de um vértice (1.7) para conjuntos: f(X) := f(X,X) — f(X,X)
é o fluxo neto do saindo do conjunto X, onde X := V \ X. Analogamente,
escrevemos para as capacidades c(X,Y) := ZaeA(X,Y) Ca-

Lema 1.18
Para qualquer conjunto de vértices X C V temos ) .y f(v) = f(X).

Prova.
S=Y( - 3 o)
veX veX YaeN+t(v) aeN—(v)
_( > fat ) fa>< > ot ) fa)
acA(X,X) aeA(X,X) acA(X,X) ac€A(X,X)
= ) fa > fa=fX,X) = f(X,X) = f(X).
a€A(X,X) acA(X,X)
|
Corolario 1.3
Qualquer atribuicao de fluxos f satisfaz | . f(v) = 0.
Prova.
D V) =f(V) =V, V)= f(V,V) =0—0=0.
vev
]

Uma circulagdo vira um fluzo, se o grafo possui alguns vértices que sdo fontes
ou destinos (“sorvedouros”) de fluxo, e portanto nao satisfazem a conservagio
de fluxo. Um fluxo s—t possui uma unica fonte s e um tnico destino t. Um
objetivo comum (transporte, etc.) é encontrar um fluxo s—t méaximo.

(6]

{eq:totalv

{lem:xflow

{lem:flows



1. Algoritmos em grafos

Figura 1.12.: Grafo (esquerda) com circulacao (direita) {fig

FLUXO s—t MAXIMO

Instdncia Grafo direcionado G = (V, A, ¢) com capacidades ¢ nos arcos,
um vértice origem s € V e um vértice destino t € V.

Solucdo Um fluxo f, com f(v) =0, Vv € V' \ {s, t}.

Objetivo Maximizar o fluxo f(s).

Lema 1.19
Um fluxo s—t satisfaz f(s) + f(t) = 0.

Prova. Temos
fis) +f(t) = Y fv) ‘=0,
vev

onde a primeira igualdade vale pela conservacdo de fluxo nos vértices em
VA {s, t}. |

Uma formulagdo como programa linear é

b :maxflow} maximiza f(s) (1.8)
sujeito a f(v) =0, Yv e V\({s,t},
0<fq <cg, Va € A.

Observagao 1.12
O programa (1.8) possui uma solucdo, porque fq = 0 é uma solugao vidvel. O
sistema nao ¢ ilimitado, porque todas variaveis sdo limitadas, e por isso possui

76



1.6. Fluxos em redes

uma solugao 6tima. O problema de encontrar um fluxo s—t maximo pode ser

resolvido em tempo polinomial via programacao linear. %
O problema dual é
minimiza Z Caqa
acA
sujeito a qq —py > 1, Va=(s,v) EA,v#£t
qa +Pu > —1, Va=(u,s) e A,u#t
qa+pu20 Va:(u,t)eA,u;és
da —Pv >0 Va = (t,v) € A,v#s
qa > 1 if (s,t) € A
qa > —1 if (t,s) € A
da +Pu—pv =0, Va = (u,v) €A,
Py 0, W e V\ (s, 1
da =0, VaeA.
Ou equivalente
(MC) minimiza Z Cafa (1.9)
acA
sujeito a qq+pu—pv >0 Va = (u,v) €A (1.10)
ps =—1, (1.11)
Pt =0, (1.12)
Pv S0, YWweV (1.13)
qa > 0, Va € A. (1.14)
Here the idea is roughly the following. We want to set all qo = 0. But
that’s not possible, since that implies p,, > p,, for all arcs uv € A, so the
potential goes only down, but at some point we have to “climb” the hill
from ps = —1 and py = 0. This can be done by arcs of value qq = 1. If
we do this minimally, we have to intercept every st-path. So we have a
cut. By this reasoning we can see, that every cut can be made a solution
of MC, so its value is at most the value of a minimum cut. (This is
almost exactly Papadimitriou e Steiglitz (1982, Th. 6.1). Note that we

7



1. Algoritmos em grafos

have fixed ps and p: at particular values, but any solution p + ¢ for a
constant vector ¢ would also do, when fixing ps and p accordingly.)

It remains to show that MC’s value cannot be lower. Papadimitriou
e Steiglitz (1982) defer this to the Ford-Fulkerson algorithm, and just
remark that complementary slackness implies the condition that for cut
(X, X) arcs in A(X, X) are saturated, and those in A(X, X) are 0.

One could, however, work out that the minimum is obtained by a cut.
First look at any given values p. Since qq > Pv — Pu, the optimal value
is to set qq = py — pu- Now look at any solution (p,q). I claim: we
can replace p by p’ where p/ = c(pq;[—1,0]) with “clamping” function
c(x; [a, b]) = max{min{x, b}, a}, and then set g as above, to obtain another
solution of no larger value. (Note that if we have integer data in the
primal, by total unimodularity, the optimal solution is integer, and the
same holds for the dual. In this case the “clamping” above means p €
{=1,0}", and q are exactly the arcs that “climb” from —1 to O, so for
every solution, there exists a cut of the same or better value. But we
don’t want to invoke total unimodularity here.)

To see the claim, note first that the clamping function c¢ is monotone
and 1-Lipschitz, i.e. for x,y, x <y — c(x;I) < c(y;I) and [x — y| >
lc(x; 1) — c(y; I)]. So, if for any arc uv we have p, < p,, by monotonicity
ps, < pl, so we can choose q, =0 < qq. If py, —pu > 0 then p), —p/, <
Pv—Pu, by the Lipschitz condition. From this follows that we can choose
qL =Py —Pv < Pv —Pu < qa- Overall, we obtain cqqq > cqql, since
Cq >0 for all a € A, and thus ctq > ctq’.

With that in place we would still have to show that the solution can
be made integral, without getting worse. This can probably done by
induction over the number of fractional arcs (i.e. with non-unit potential
difference). We pick one (maybe some minimality here), and show that
we can integralize it. (Does that hold? It would be a funny result, since
the dual is always integral, while the primal clearly has not to be, when
capacities are not integer.)

1.6.1. O algoritmo de Ford-Fulkerson

Nosso objetivo: Achar um algoritmo combinatorial mais eficiente. Idéia bé-
sica: Comecar com um fluxo viavel f, = 0 e aumentar ele gradualmente.
Observacao: caso temos um s—t-caminho P = (v = s,vi,...,Vn_1,Vn = t),
podemos aumentar o fluxo atual f um valor que corresponde ao “gargalo”

g(f,P):= min  ¢cq — fq.
a=(vi_1,vi)
ie[n]

78



1.6. Fluxos em redes

20

20 O

Figura 1.13.: Esquerda: Grafo com capacidades. Centro: Fluxo com valor 30.
Direita: O grafo residual correspondente.

Figura 1.14.: Manter a conservagao de fluxo.

Observagao 1.13

Repetidamente procurar um caminho de gargalo positivo e aumentar nem
sempre produz um fluxo maximo. Na Fig. 1.13 o fluxo méximo possivel é
40, obtido pelo aumentos de 10 no caminho Py = (s,u,t) e 30 no caminho
P, = (s,w,t). Mas, se aumentamos 10 no caminho P; = (s,u,w,t) e depois
20 no caminho P, = (s,w,t) obtemos um fluxo de 30 e o grafo ndo possui
mais caminho que aumenta o fluxo. O

Problema no caso acima: para aumentar o fluxo e manter a conservacao de
fluxo num vértice interno v temos quatro possibilidades: (i) aumentar o fluxo
num arco entrante e sainte, (ii) aumentar o fluxo num arco entrante, e diminuir
num outro arco entrante, (iii) diminuir o fluxo num arco entrante e diminuir
num arco sainte e (iv) diminuir o fluxo num arco entrante e aumentar num
arco entrante (ver Fig. 1.14).

Isso é o motivo para definir para um dado fluxo f o grafo residual G¢ com

o Vértices V

79

{fig:simpl

{fig:mante



egralflow}

1. Algoritmos em grafos

o Arcos para frente (“forward”) A com capacidade cq —fq, caso fq < cq.

o Arcos para atras (“backward”) A’ = {(v,u) | (u,v) € A} com capacidade
Clvyu) = f(u,v)7 caso f(u,v) > 0.

Observe que na Fig. 1.13 o grafo residual possui um caminho P = (s, w,u,t)
que aumenta o fluxo por 10. O algoritmo de Ford-Fulkerson (Ford e Fulkerson,
1956) consiste em, repetidamente, aumentar o fluxo num caminho s—t no grafo
residual.

Algoritmo 1.5 (Ford-Fulkerson)
Entrada Grafo G = (V, A, c) com capacidades ¢, nos arcos.

Saida Um fluxo f.

1 for all a€A: fqg:=0

while existe um caminho s-t em G; do
Seja P um caminho s-t simples
Aumenta o fluxo f um valor ¢(f,P)

end while

return f

SO W N

Andlise de complexidade Na analise da complexidade, consideraremos so-
mente capacidades em N (ou equivalente em Q: todas capacidades podem ser
multiplicadas pelo menor miiltiplo em comum dos denominadores das capaci-
dades.)

Lema 1.20
Para capacidades inteiras, todo fluxo intermediario e as capacidades residuais
sao inteiros.

Prova. Por inducao sobre o niimero de iteragoes. Inicialmente fo = 0. Em
cada iteracgdo, o “gargalo” g(f, P) é inteiro, porque as capacidades e fluxos séo
inteiros. Portanto, o fluxo e as capacidades residuais apés do aumento sao
novamente inteiros. |
Lema 1.21

Em cada iteragdo, o fluxo aumenta por pelo menos 1.

Prova. O caminho s—t possui por defini¢ao do grafo residual uma capacidade
“gargalo” g(f,P) > 0. O fluxo f(s) aumenta exatamente g(f, P). |

Lema 1.22
O algoritmo Ford-Fulkerson precisa no maximo C = }_ aeN+(s) Ca iteracoes.
Portanto ele tem complexidade O((n + m)C).

80



1.6. Fluxos em redes

Prova. C é um limite superior do fluxo maximo. Como o fluxo inicial-
mente possui valor 0 e aumenta ao menos 1 por iteracdo, o algoritmo de
Ford-Fulkerson termina em no méaximo C iteracées. Em cada iteracdo temos
que achar um caminho s—t em Gf. Representando G por listas de adjacén-
cia, isso é possivel em tempo O(n + m) usando uma busca por profundidade.
O aumento do fluxo precisa tempo O(n) e a atualizagdo do grafo residual é
possivel em O(m), visitando todos arcos. ]

Corretude do algoritmo de Ford-Fulkerson

Definicao 1.5 -
Uma particdo (X,X) de V é um corte s—t, se s € X et € X. Um arco a é
saturado para um fluxo f, caso fq = cq.

Lema 1.23 ~
Para qualquer corte (X, X) temos f(X) = f(s).

Prova.

0 "=V 5 4 Y fw) =(s).

veX\{s}
(O dltimo passo é correto, porque para todo v € X, v #£ s, temos f(v) = 0 pela
conservagao de fluxo.) [ ]
Lema 1.24

O valor ¢(X,X) de um corte s—t é um limite superior para um fluxo s—t.

Prova. Seja f um fluxo s—t. Temos

£(s) "2 £(X) = £(X, X) — £(X, X) < (X, X) < c(X, X).

|
Consequéncia: O fluxo maximo é menor ou igual a o corte minimo. De fato,
a relacdo entre o fluxo maximo e o corte minimo é mais forte:

Teorema 1.14 (Fluxo méximo — corte minimo)
O valor do fluxo maximo entre dois vértices s e t é igual ao valor do corte
minimo.

Lema 1.25
Quando o algoritmo de Ford-Fulkerson termina, o valor do fluxo é maximo.

Prova. O algoritmo termina se nio existe um caminho entre s e t em Gy.
Podemos definir um corte (X, X), tal que X é o conjunto de vértices alcangaveis

81

{lem:outfl

{lem:flowl

{th:maxflc

{augment-c



fulkerson}

1. Algoritmos em grafos

Figura 1.15.: Esquerda: Pior caso para o algoritmo de Ford-Fulkerson com pe-
sos inteiros aumentando o fluxo por 2N vezes por 1 nos cami-
nhos (s,u,v,t) e (s,v,u,t). Direita: Menor grafo com pesos irra-
cionais em que o algoritmo de Ford-Fulkerson falha (Zwick, 1995).
M >3 er = (1++V1—-4A)/2 =~ 0.682 com A =~ 0.217 a tUnica
raiz real de 1 —5x 4+ 2x> — x>. Aumentar (s,v1,vs,t) e depois re-
petidamente (s,v2,va,Vv1,v3,t), (s,v2,V3,V1,Va,t), (S,V1,V3,V2,Va,t),
e (s,v1,v4,Vv2,v3,t) converge para o fluxo maximo 2 + r + 1~ sem ter-
minar.

em Gy a partir de s. Agora considere os arcos entre X e X. Para um arco a €
A(X, X) temos fq = Cq, sendo Gy terd um arco “forward” a, uma contradicio.
Para um arco a = (u,v) € A(X,X) temos fq = 0, sendo G¢ terd um arco
“backward” a’ = (v, u), uma contradi¢ido. Logo

f(s) = f(X) = (X, X) — (X, X) = f(X, X) = c(X, X).

Pelo lema 1.24, o valor de um fluxo arbitrario é menor ou igual que c(X, X),
portanto f é um fluxo méaximo. |
Prova. (Do teorema 1.14) Pela andlise do algoritmo de Ford-Fulkerson. W

Desvantagens do algoritmo de Ford-Fulkerson O algoritmo de Ford-Fulkerson
tem duas desvantagens:

(1) O numero de iteragdes C pode ser alto, e existem grafos em que C
iteragOes sdo necessdrias (veja Fig. 1.15). Além disso, o algoritmo com
complexidade O((n + m)C) é somente pseudo-polinomial.

(2) E possivel que o algoritmo ndo termina para capacidades reais (veja
Fig. 1.15). Usando uma busca por profundidade para achar caminhos
s—t ele termina, mas ¢ ineficiente (Dean et al., 2006).

82



1.6. Fluxos em redes

1.6.2. O algoritmo de Edmonds-Karp

O algoritmo de Edmonds-Karp elimina esses problemas. O principio dele é
simples: Para achar um caminho s—t simples, usa busca por largura, i.e. sele-
cione o caminho mais curto entre s e t. Nos temos

Teorema 1.15
O algoritmo de Edmonds-Karp precisa O(nm) iteracoes, e portanto termina
em tempo O(nm?).

Lema 1.26
Seja d¢(v) a distancia entre s e v em Gy. Durante a execugéo do algoritmo de
Edmonds-Karp 8¢(v) cresce monotonicamente para todos vértices em V.

Prova. Para v = s o lema é evidente. Supde que uma iteragdo modificando o
fluxo f para f’ diminuird o valor de um vértice v € V' \ {s}, i.e., d¢(v) > 6¢/(v)
(o). Sejav o vértice de menor distancia d¢/(v) em G¢/ com essa caracteristica, e
P =(s,...,u,v) um caminho mais curto de s para v em Gy.. Logo d¢/(u)+1 =
8¢/(v) (A). Pela escolha de v, o valor de u nao diminuiu nessa iteragao, i.e.,
dp(u) < 8¢r(u) (*).

Supondo uv € A(Gy), temos

*) (A)
de(v) < 0¢(u)+1 < 8¢/ (u) +1 = 8¢/ (v),

uma contradi¢do com a hipdtese (o) que a distdncia de v diminuiu. Logo o
arco uv nao existe in G¢, mas uv € A(Gy/). Isso s6 é possivel se o fluxo de v
para u aumentou nessa iteracdo. Em particular, vu era parte de um caminho
minimo de s para u e logo &¢(v) + 1 = d¢(u) (). Para v = t isso é uma
contradigdo imediata. Caso v # t, temos

*
5 2 8w 1 < 80w —1 2 o) -2,

novamente uma contradi¢do com a hipdtese (o) que a distancia de v diminuiu.
Logo, o vértice v nao existe. |
Prova. (do teorema 1.15)

Chama um arco num caminho que aumenta o fluxo com capacidade igual
ao gargalo critico. Em cada iteracao existe ao menos um arco critico que
desaparece do grafo residual. Provaremos que cada arco pode ser critico no
méaximo n/2 — 1 vezes, e logo nao temos mais que m(n/2 — 1) = O(mn)
iteragoes.

No grafo Gf em que um arco uv € A é critico pela primeira vez temos 6¢(u) =
d¢(v)—1. O arco s6 aparece novamente no grafo residual caso alguma iteracio

83

{th:edmond

{lem:dista



1. Algoritmos em grafos

posterior diminui o fluxo em uv, i.e., aumenta o fluxo vu. Nessa iteragao, com
fluxo f’, 8¢/(v) = 8¢/ (u) — 1. Juntamente com o fato de que a distancia sé
aumenta (lema (1.26)) obtemos

(1.26)
6{/(11) :6f/(\))+1 > 6f(\))+1 :5f(u)+2,

i.e., a distdncia do u entre dois instantes em que uv é critico aumenta por
pelo menos dois. Enquanto u é alcangével por s, a sua distdncia é no maximo
n — 2, porque o caminho ndo contém s nem t, e por isso a aresta uv pode ser
critico por no méximo (n—2)/2 =n/2 — 1 vezes. |

Alt: Warum kann man hier nicht gleich O(n?) Iterationen argumenti-
eren? Antwort: weil nicht in jeder Iteration die Distanz eines Knoten
steigt, sonst wiirde das stimmen. (Siehe Beispiele Zadeh.)

Since 6¢(s) = 0 always, this implies that arcs sv are never critical twice.
This makes also sense, since a augmenting path can’t go over s.

Also, if u above is not s (t it can’t be since it has a successor), we obtain
that is distance satisfies 1 < 6¢(u) < n—2, and thus the iteration bound
is1+2i<n—2or (n—3)/2.

Zadeh (1972) apresenta instancias em que o algoritmo de Edmonds-Karp pre-
cisa ®(n?) iteracdes, logo o resultado do teorema 1.15 é o melhor possivel para
grafos densos.

1.6.3. O algoritmo “caminho mais gordo” (“fattest path”)

Idéia (Edmonds e Karp, 1972): usar o caminho de maior gargalo para aumen-
tar o fluxo. (Exercicio 1.7 pede provar que isso é possivel com uma modificagdo
do algoritmo de Dijkstra em tempo O(nlogn + m).)

flow:fp2
{£low:p2} Lema 1.27

Um fluxo f pode ser decomposto em fluxos fq,...,fx com k < m tal que
o fluxo f; é positivo somente num caminho p; entre s e t.

Prova. Dado um fluxo f, encontra um caminho p de s para t usando
somente arcos com fluxo positivo. Define um fluxo no caminho cujo valor
é o valor do menor fluxo de algum arco em p. Subtraindo esse fluxo do
fluxo f obtemos um novo fluxo reduzido. Repete até o valor do fluxo f é
Z€ro.

Em cada iteracao pelo menos um arco com fluxo positivo tem fluxo zero
depois da subtracao do caminho p. Logo o algoritmo termina em no
maximo m iteragoes. |

84



1.6. Fluxos em redes

Proof wrong: consider su=2, ut=2, tv=1, vs=1: every flow can be de-
composed in paths and circuits! Previous example does not hold for max
flow, but there still may be circuits.

We can, however, to the following: if the flow is ayclic, it can be decom-
posed in that manner. Otherwise: we decompose into paths and circuits.
Furthermore, a circulation can be decomposed into (directed) circuits.
Then we should be also able to show the following (can we?): any flow
can be decomposed into an aycilic flow and a circulation. These, then,
can be further decomposed into paths, and circuits, respectively.
Funnily, there are some cyclic flows that can be decomposed into paths
(but also into circuits and flows). Take V = {s,u,v,t}, and two flows
suvt and svut: now we have a circuit uvu. We can remove it, and then
extract two more flows svt and sut.

Teorema 1.16
O caminho de maior gargalo aumenta o fluxo atual f de valor v por pelo menos
OPT/m, onde OPT é o fluxo maximo no grafo residual Gy.

Prova. Considere um arco critico a no caminho de maior gargalo, com ca-
pacidade cq no grafo residual G4. Particiona V =S UT, onde S contém s e
todos vértices alcangaveis por arcos de capacidade maior que cq. Por constru-
¢do T contém pelo menos t. O corte (S, T) tem capacidade no maximo mcgq,
logo pelo teorema 1.14 v < OPT < mc,. Por isso o fluxo aumenta por pelo
menos ¢q > OPT/m. [ |

Teorema 1.17

A complexidade do algoritmo de Ford-Fulkerson usando o caminho de maior
gargalo é O((nlogn + m)mlogC) para um limitante superior C do fluxo
maximo.

Prova. Seja f; o valor do caminho encontrado na i-ésima iteracgéo, G; o grafo
residual apds do aumento e OPT; o fluxo médximo em Gi. Observe que Gy é
o grafo de entrada e OPTy = OPT o fluxo maximo. Temos

A desigualdade é vélida pelo teorema 1.16, considerando que o grafo residual
possui no maximo 2m arcos. Logo

OPT; < (1—1/(2m))'OPT < e~/ 2™QPT.

O algoritmo termina caso OPT; < 1, por isso niimero de itera¢es é no maximo
2mIn OPT + 1. Cada iteragdo custa O(m + nlogn). |

85

{flow:fp1}



1. Algoritmos em grafos

Para todo 1 > 0 e x temos

Logo, com x = —i/2m

1

(1 - 1/2111) < e—i/Zm.

Coroléario 1.4
Caso U é um limite superior da capacidade de um arco, o algoritmo termina
em no maximo O(mlogmU) passos.

1.6.4. O algoritmo push-relabel

O algoritmo push-relabel representa uma classe de algoritmos que néo traba-
lha com um fluxo e caminhos aumentantes, mas mantém um pré-fluzo f que
satisfaz

o os limites de capacidade (0 < f, < cq)

e e requer somente que o excesso e(v) = —f(v) de um vértice v # s é
nao-negativo.

Vértice s pode ter execesso.

Um vértice v # t com e(v) > 0 é chamado ativo. A ideia do algoritmo é
que vértices possuem uma “altura” e o fluxo passa para vértices de altura
mais baixa (“opera¢do push”) ou, caso isso nao é possivel a altura de um
vértice ativo aumenta (“operacao relabel”). Concretamente, manteremos um
potencial (“altura”) p, para cada v € V, tal que,

pbotential} ps=1; p:=0 (*)
Pv Zpuf‘l (LL,V) EA(Gf)

O push initial satisfaz (*).

Nota que a segunda parte da condicdo tem que ser satisfeita somente para
arcos no grafo residual.

86



nce}

0O Ui Wi

—
W= OO

1.6. Fluxos em redes

Observagao 1.14

Pela condigao (*), para um caminho vo,v1,..., vk em Gy temos py, < py, +
]Spvz+2§§pvk+k <>
Lema 1.28

Condicdo (*) pode ser satisfeita sse G¢ ndo possui caminho s—t.

Prova. “=7: Supde que existe um caminho s—t simples vop = s,v1,..., v =1t.
Pela observagdo (1.14)

Ps =Pvo < P +k=ptt+k=k<n,

uma contradigdo. “<": Sejam X os vértices alcangdveis em G a partir de s
(incluindo s). Como Gy ndo possui caminho s-t, t € X. Logo setando p, =n
para v € X e p, = 0 para v € X satisfaz (*). [ |

Logo, o significado da condi¢do: manter as condi¢ées de otimalidade
(enquanto o algoritmo aumenta factibilidade).

O lema mostra que enquanto algoritmos de caminho aumentante sao algorit-
mos primais, mantendo uma solucao factivel, até encontrar o 6timo, algoritmos
da classe push-relabel podem ser vistos como algoritmos duais: eles mantém
o critério de otimalidade (*), até encontrar uma solugao factivel.

Podemos realizar as operagoes “push” e “relabel” como segue. A operacio
“push(u,v)” num arco (u,v) € A(G¢) manda o fluxo min{cg, e(v)} de u para
v. A operagao “relabel(v) aumenta a altura p,, do vértice v por uma unidade.

push(u,v) :=
{ pré-condig8o: u é ativo }
{ pré-condigdo: p,=p,—1}%
{ pré-condigdo: (u,v) € A(Gf) }
aumenta o fluxo em (u,v) por min{c(y,),e(u)}
{ atualiza G; de acordo }
end

relabel(v) :=
{ pré-condigéo: v & ativo }
{ pré-condigfo: ndo existe (w,v) € A(Gf) com py=pu—1}
Pyvi=pyv+1

end

87

{lem:poten



1. Algoritmos em grafos

1. push: done when potential falls by 1, uv disappears, vu satisfies
(*), since the potential goes up.

2. relabel: done when neighboring potentials same or higher; a poste-
riori potential falls by at most 1, so (*)

Observe que as duas operagoes mantém a condigdo (*).

Algoritmo 1.6 (Push-relabel)
Entrada Grafo G = (V, A, c) com capacidades cq no arcos.

Saida Um fluxo f.

1 psi=n; py =0, Yv e V\{s}

2 fa:=Cq, Vae NT(s) sendo fq:=0

3 while existe vértice ativo do

4 escolhe o vértice ativo u de maior py

5 repete até u é inativo

6 if existe arco (u,v) € Gf com p, =p, — 1 then
7
8

push(w,v)
else
9 relabel(u)
10 end if
11 end

12 end while
13 return f

Lines 5-11 are called “discharge”.

Lema 1.29
O algoritmo push-relabel é parcialmente correto (i.e. correto caso termina).

Prova. Ao terminar ndo existe vértice ativo. Logo f é um fluxo. Pelo lema
1.28 nao existe caminho s—t em Gy. Logo pelo teorema 1.14 o fluxo é 6timo.
|

A terminacio é garantida por

Teorema 1.18
O algoritmo push-relabel executa O(n3) operacdes push e O(n?) operacoes
relabel.

88



1.6. Fluxos em redes

Prova. Um vértice ativo v tem excesso de fluxo, logo existe um caminho v—s
em G¢. Por (1.14) py, < ps+(n—1) < 2n, e logo o ntmero de operagdes relabel
é O(n?). Supde que uma operacio push satura um arco a = (u,v) (i.e. manda
fluxo cq). Para mandar fluxo novamente, temos que mandar primeiramente
fluxo de v para u; isso s6 pode ser feito depois de pelo menos duas operagoes
relabel em v. Logo o nimero de operagoes push saturantes é O(mn). Para
operagoes push ndo-saturantes, podemos observar que entre duas operagoes
relabel temos no maximo n desses operagoes, porque cada uma torna o vértice
de maior p, inativo (talvez ativando vértices de menor potencial), logo tem
no méaximo O(n3?) deles. [ ]
Para garantir uma complexidade de O(n3?) temos que implementar um “push”
em O(1) e um “relabel” em O(n). Para este fim, manteremos uma lista dos
vértices em ordem do potencial. Para cada vértice manteremos uma lista de
arcos candidatos para operacoes push, i.e. arcos para vizinhos com potencial
um a menos com capacidade residual positiva.

Uma busca linear na lista de vértices encontra o vértice de maior potencial.
Entre duas operagoes relabel a busca pode continuar no tltimo ponto e precisa
tempo O(n) em total, logo a busca custa no maximo O(n3) sobre toda exe-
cugao do algoritmo. Para a operagao push podemos simplesmente consultar
a lista de candidatos. Para um push saturante, o candidato sera removido.
Isso custa O(1). Finalmente no caso de um relabel temos que encontrar em
O(n) a nova posi¢dao do vértice na lista, e reconstruir a lista de candidatos,
que também precisa tempo O(n). Logo todas operagdes relabel custam nao
mais que O(n3).

We need an example. Also: make a drawing of the data structures.

Notas on PR (Cherkassky, Goldberg 1994). PR has poor performance.
1) Algorithmic variants. Process active nodes in FIFO order, or highest
label (HL) via a bucket list. 2) Heuristics. a) Global relabeling: compute
distances to sink, update potential (every n, or every m/2 relabelings.
b) Gap relabeling: if there’s a gap in distances/potential, say no node
with p, = g but some with g < p, < n, then nodes with g < p,, <n
can’t reach the sink, and thus are relabeled to p,, = n. This is combined
with the next item. c) Two-phase method: consider only nodes with
Py < n active, all other can’t reach the sink. Their excess remains, and
is removed in a second phase.

To detect gaps efficiently, keep bins B of nodes with p, =i. Whenever
some |Bi| = 0, we need |Bj| = 0 for i < j < n, otherwise we can empty

89



1. Algoritmos em grafos

these bins and push their elements to B;;. We can also maintain the
lowest empty bin b, and whenever some B; with i < b drops to 0 empty
bins i+ 1,...,b—1 and then update b :=1i.

O algoritmo de Dinitz

O algoritmo de Dinitz (1970) foi um dos primeiros de tempo polinomial,
é simples de implementar e eficiente na pratica (Dinitz, 2006). Ele com-
partilha com o algoritmo de Edmonds-Karp um foco em caminhos mais
curtos no grafo residual G, mas tem complexidade pessimista O(n?m)
melhor.

A ideia central do algoritmo é a seguinte iteracao:

1. considere o subgrafo H de G¢ com todos arcos que pertencem a um
caminho mais curto de s a t,

2. encontra um fluxo f em H, tal que no subgrafo de H sem arcos
saturados nao existe mais caminho s—t,

3. aumenta o fluxo atual por f.

Em comparagao com o algoritmo de Edmonds-Karp que bloqueia um
caminho mais curto, o algoritmo de Dinitz bloqueia todos. O grafo do
passo 1 é um grafo em camadas. Com d¢(v) a distancia do caminho mais
curto em G de s av € V (em arcos), os vértices com 8, = k formam a
k-ésima camada, e todos arcos (u,v) em H satisfazem &, +1 = §,. O
fluxo do passo 2 é um fluzo blogqueio.

A corretude parcial do algoritmo segue diretamente do lema 1.25. A
terminagao é consequéncia do

Lema 1.30
As distancias 6¢(v) aumentam em cada iteracao.

Prova. (TBD.) [ |
Como 6¢(t) < n o algoritmo termina em menos que n iteragoes.
Ainda temos

Lema 1.31
Um fluxo bloqueio pode ser encontrado em tempo O(nm).

90




1.6. Fluxos em redes

Prova. Repetidamente busca em profundidade até encontrar t, aplica
o fluxo, remove todos arcos encontrados durante a bysca e repete, até
nao existe mais caminho s—t. Cada busca custa O(n + a) com a arcos
visitados, e ndo temos mais que m iteragoes, logo o custo total é O(nm).
|

Junto com O(n) iteracdes, o lema garante uma complexidade de O(n?m).
Usando melhor algoritmo para encontrar um fluxo bloqueio de complexi-
dade O(mlogn) (Sleator, Tarjan 1983) a complexidade pode ser reduzida
a O(nmlogn).

Unclear whom I follow here, possibly Schrijver.

1.6.5. Algoritmo de escalonamento

Gabow/1985.

TBD: talk the easy scaling algorithm: say G¢(A) is the residual graph
where we permit only edges of residual capacity more or equal to A. Then
we simply start with A := 2%, where k = |log, C*| and C* = maxyecv Csy
is the maximum augmentation possible on any s-t-path. If there is no
augmenting path in G¢(A), we step down to A := A/2. The algorithm
terminates after processing with A = 1, so we will find all augmenting
paths. Advantage: we have only O(log C*) phases, and each phase makes
at most 2m augmentations (TBD: prove it), so we have a (polynomial)
O(m?log C*) algorithm. Kleinberg/Tardos have this in their book.

1.6.6. Variantes do problema

Fontes e destinos miltiplos Para G = (V| A, ¢) define um conjunto de fontes
S C V e um conjunto de destinos T C V, com SNT = (), e considera

maximiza f(S)

sujeito a f(v) =0, YveV\ (SUT), (1.15) {multiflow
f(l S CCL) Va 6 A

91



extension}

1. Algoritmos em grafos

Tabela 1.3.: Complexidade de diversos algoritmos de fluxo méximo (partes de
Schrijver, 2003).

Ano Referéncia Complexidade Obs

1951 Dantzig O(n*mq) Simplex

1955  Ford & Fulkerson O(mC ) O(mnU) Cam. aument.

1970  Dinitz O(nm?) Cam. min. aument.

1972 Edmonds & Karp O(m?log C) Escalonamento

1973  Dinitz O(nm log C) Escalonamento

1974 Karzanov O(n ) Preflow-Push

1977  Cherkassky o(n?m'/?) Preflow-Push

1986 Goldberg & Tarjan O(nm log[ n?/m)) Push-Relabel

1987  Ahuja & Orlin O(nm+n?logC) Push-Relabel & Esc.

1990 Cheriyan et al. O(n?/logn)

1990 Alon O(nm +n¥3logn)

1992 King et al. O(nm +n?*e)

1997  Goldberg & Rao 0(m?*?1og(n?/m)log C)
0(n*3mlog(n?/m)log C)

2012  Orlin O(nm)

2022 Chen et al. O(m!*et) Pontos interiores

O problema (1.15) pode ser reduzido para um problema de fluxo méximo

simples em G’ = (V/, A/,
Vl
Al =

~

Lema 1.32

c’) (veja Fig. 1.16(a)) com
=VU{s",t"}

AU{s"} xSUT x {t*}
Ca, acA,
c(S,5),

c(T, T),

a=(s*s),s €S,
a=(t,t*),teT

(1.16) {red

Se f’ é uma solugdo méxima de (1.16), a restrigdo f = f’|a é uma solugao
méxima de (1.15) de mesmo valor. Por outro lado, se f é uma solugdo maxima

de (1.15), a extensdo

fo =

é uma solucao maxima de

92

fa, a€eA,
f(s)) a= (S*,S),S € S)
_f(t)» a:(t,t*),tGT,

(1.16) de mesmo valor.

(1.17)



1.6. Fluxos em redes

Cqa — bg
’. ‘\ ba ba

Figura 1.16.: Redugbes entre variantes do problema do fluxo méximo. FEs-
querda: Fontes e destinos multiplos. Direita: Limite inferior e
superior para a capacidade de arcos.

{fig:reduc
Q..0..0 0..0.,:0
T ® :
5 4
00 00

Figura 1.17.: Dois exemplos da transformagao do lema 1.33. Esquerda: Grafo

sem solucao viavel e grafo transformado com fluxo maximo 4.

Direita: Grafo com solugao viavel e grafo transformado com fluxo
maximo 5. {fig:limir

Prova. Se f’ é solugdo de (1.16), a restrigdo f = f'|s é uma solucao de (1.15)
de mesmo valor: f é vidvel porque f(v) = f/(v) = 0 para todov € V\S\T
e f(S) = 3 ;s f(s) = f'(s*). Similarmente, dado um fluxo vélido f em G, a
extensdo f’ (1.17) é um fluxo vélido em G’ de mesmo valor: f’ é vidvel porque
além de f'(v) = f(v) = 0 para todo v € V\ (SUT), também f’(v) = 0 para

veSUT,ef'(s*) =3 s f(s) =f(S). [ ]

On lower limits (or arc demands). Orlin and others seem to solve this
problem in a more complicated manner, Kleinberg & Tardos don’t have it.
A similar construction can be found in Bateni (see material), or Vakken,
or Jeffe.

93


http://www.cs.uu.nl/docs/vakken/an/an-maxflow.ppt
http://compgeom.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/18-maxflowext.pdf

ed:liminf}

em:1liminf}

1. Algoritmos em grafos

Limites inferiores Para G = (V,A,b,c) com limites inferiores b : A — R
considere o problema

maximiza f(s)
sujeito a f(v) =0, Yv € V\ {s, t}, (1.18)
bagfagca) acA.

O problema (1.18) pode ser reduzido para um problema de fluxo méximo
simples em G’ = (V/,A’,c’) (veja Fig. 1.16(b)) com

V/ =V U{s* t)
A" =AU{(u,t") | (u,v) € AJU{(s*,v) | (u,v) € A}U{(t,s)} (1.19)

Ca — ba» ac A,
¢! = ZveN*(u) b(U,Vb a= (u) t*)>
¢ ZueN*(v) b(u»V)’ a= (S*)V))
00, a=(ts).

Chama um fluxo em 1.19 saturado, caso ele satura todos arcos auxiliares
{(w, t) [ (w,v) € AJU{(s™,v) | (u,v) € AL

Lema 1.33
Problema (1.18) possui um fluxo vidvel sse (1.19) possui um fluxo saturado.

Prova. Caso f é um fluxo vidvel em (1.18),

fa— ba» aec A,
ZueN*(v) b(v,u)) a= (V) t*)»

ZueN*(vJ b(uyV)’ a= (S*)u))
f(s), a=(t,s).

é um fluxo saturado de (1.19). Por outro lado, se f’ é um fluxo saturado para
(1.19), fq = f. + by é um fluxo vidvel em (1.18). [ ]

One can go into details. First f’ is feasible, since b < f < ¢ implies
0 < f =f—b < c— b, and the capacities to t* and from s* are
saturated. We also have flow conservation: f’(s) = f(s) — f(s) = 0,
f'(t) = f(t) + f(s) = —f(s) + f(s) =0, and f'(v) = ZaeN+(v)(fa —bq +
ba) + ZaeN*(v)(fU— —ba +ba) =f(v)=0.

94

{lin



1.6. Fluxos em redes

Como um fluxo saturado tem que ser méximo, ele pode ser obtido por um al-
goritmo de fluxo maximo aplicado a (1.19). Caso o fluxo méximo nao satura,
nao tem solugao vidvel, sendo podemos extrair uma solucao vidvel de (1.18)
pela construcdo acima. Para obter um fluxo méximo de (1.18) podemos ma-
ximizar o fluxo a partir da solucdo viavel obtida, com qualquer variante do
algoritmo de Ford-Fulkerson. Na execugdo temos que garantir que um fluxo
minimo de b, é mantido em cada arco a = (u,v). Logo, o grafo residual de um
fluxo f tem arcos “backward” a = (v,u) de capacidade reduzida cg = fq —bq.

Uma alternativa para obter um fluxo factivel com limites inferiores nos arcos
é primeiro mandar o limite inferior de cada arco, i.e. setar f = b, e depois
considerar demandas d, = —f(v). Uma circulacdo factivel com limites 0 <
f < ¢ —Db corresponde com um fluxo factivel f + b no grafo original.

Existéncia de uma circulacio com demandas nos vértices Para G = (V| A, c)
com demandas d,, com d, > 0 para destinos e d,, < 0 para fontes, considere

existe f
s.a f(v) = —d,, Yv ey, (1.20)
fCl S Cay acA.

Evidentemente ) .\, d, = 0 é uma condi¢do necessaria (lema (1.3)). O
problema (1.20) pode ser reduzido para um problema de fluxo méximo em
G’ = (V',A’) com

V' =VU{s*, t*}

A'=AU{(s"V)|veV,d <0tu{(v,t")|veVd, >0} (1.21)
Ca, acA,
Ca = _dva a= (S*,V),

dy, a= (v, t*).

Lema 1.34
Problema (1.20) possui uma solugdo sse problema (1.21) possui uma solugéo
com fluxo maximo D =} 4 _,dv.

Prova. (Exercicio.) |

95

{circulati

{red:circu



ircliminf}

1. Algoritmos em grafos

Circulacdes com limites inferiores Para G = (V, A, b, c) com limites inferi-
ores e superiores, considere

existe f
s.a f(v) = d,, Y eV, (1.22)
be < fqa < cq, a€A.

O problema pode ser reduzido para a existéncia de uma circulagdo com so-
mente limites superiores em G’ = (V/,A’,¢’,d’) com

V' =V
A=A (1.23)
Cq =Cq—bg
=dy— )  ba+ Z ba (1.24)
aeN—(v) aeN* (v

Lema 1.35
O problema (1.22) possui solugéo sse problema (1.23) possui solugéo.

Prova. (Exercicio.) |

1.6.7. Aplicacoes

Cobertura minima em grafos bipartidos Include it here or somewhere
in the matching part. Check Trevisan’s lecture 14 or the original source.

Projeto de pesquisa de opinidao O objetivo é projetar uma pesquisa de opi-
niao, com as restricoes

o Cada cliente i recebe ao menos c; perguntas (para obter informagéo sufi-
ciente) mas no maximo c{ perguntas (para ndo cansar ele). As perguntas
podem ser feitas somente sobre produtos que o cliente ja comprou.

 Para obter informacoes suficientes sobre um produto, entre p; e p{ cli-
entes tem que ser interrogados sobre ele.

Um modelo é um grafo bi-partido entre clientes e produtos, com aresta (ci,p;)
caso cliente 1 ja comprou produto j. O fluxo de cada aresta possui limite
inferior 0 e limite superior 1. Para representar os limites de perguntas por
produto e por cliente, introduziremos ainda dois vértices s, e t, com arestas
(s,ci) com fluxo entre c; e ¢/ e arestas (pj,t) com fluxo entre p; e pj’ e uma
aresta (t,s).

96

{cir



1.6. Fluxos em redes

Segmentacdo de imagens O objetivo é segmentar um imagem em duas par-
tes, por exemplo “foreground” e “background”. Supondo que temos uma “pro-
babilidade” a; de pertencer ao “foreground” e outra “probabilidade” de per-
tencer ao “background” b; para cada pixel i, uma abordagem direta é definir
que pixels com a; > b; sdo “foreground” e os outros “background”. Um exem-
plo pode ser visto na Fig. 1.19 (b). A desvantagem dessa abordagem é que a
separacao ignora o contexto de um pixel. Um pixel, “foreground” com todos
pixel adjacentes em “background” provavelmente pertence ao “background”
também. Portanto obtemos um modelo melhor introduzindo penalidades pi;
para separar (atribuir & categorias diferentes) pixels adjacentes i e j. Um
particdo do conjunto de todos pixels I em A U B tem um valor de

qAB)=) ai+) bi— >  py

ieA ieB (i,j)EAXB

nesse modelo, e 0 nosso objetivo é achar uma partigdo que maximiza q(A, B).
Isso é equivalente a minimizar

Q(A»B)Zzat+bi—zai—zbi+ Z Pij

iel ieA ieB (i,j)EAXB
“YasYhe T op
i€eB ieA (i,j)EAXB

A solucdo minima de Q(A, B) pode ser visto como corte minimo num grafo.
O grafo possui um vértice para cada pixel e uma aresta com capacidade py;
entre dois pixels adjacentes i e j. FEle possui ainda dois vértices adicionais
s e t, arestas (s,1) com capacidade a; para cada pixel i e arestas (i,t) com
capacidade b; para cada pixel i (ver Fig. 1.18).

Sequenciamento O objetivo é programar um transporte com um ntmero k
de veiculos disponiveis, dado pares de origem-destino com tempo de saida e
chegada. Um exemplo é um conjunto de voos é

1. Porto Alegre (POA), 6.00 — Florianopolis (FLN), 7.00
2. Florianopolis (FLN), 8.00 — Rio de Janeiro (GIG), 9.00
3. Fortaleza (FOR), 7.00 — Joao Pessoa (JPA), 8.00

4. Sao Paulo (GRU), 11.00 — Manaus (MAO), 14.00

5. Manaus (MAO), 14.15 — Belem (BEL), 15.15

97



1. Algoritmos em grafos

i j k1
a 30 19 12 10
b 20 15 16 25

Figura 1.18.: Exemplo da construcdo para uma imagem 2 x 2. Direita: Tabela
com valores pele/nao-pele. Esquerda: Grafo com penalidade fixa

pij = 10. {fig

Figura 1.19.: Segmentacgio de imagens com diferentes penalidades p. Acima:
(a) Imagem original (b) Segmentagdo somente com probabilida-
des (p = 0) (¢) p = 1000 (d) p = 10000. Abaixo: (a) Walter
Gramatté, Selbstbildnis mit rotem Mond, 1926 (b) Segmentagao
com p = 10000. A probabilidade de um pixel representar pele
foi determinado conforme Jones e Rehg (1998). {fig

98



1.6. Fluxos em redes

6. Salvador (SSA), 17.00 — Recife (REC), 18.00

O mesmo avido pode ser usado para mais que um par de origem e destino, se
o destino do primeiro é o origem do segundo, em tem tempo suficiente entre
a chegada e salda (para manutengdo, limpeza, etc.) ou tem tempo suficiente
para deslocar o avido do destino para o origem.

Podemos representar o problema como grafo direcionado aciclico. Dado pa-
res de origem destino, ainda adicionamos pares de destino-origem que sao
compativeis com as regras acimas. A idéia é representar avides como fluxo:
cada aresta origem-destino é obrigatério, e portanto recebe limites inferiores
e superiores de 1, enquanto uma aresta destino-origem é facultativa e recebe
limite inferior de O e superior de 1. Além disso, introduzimos dois vértices s
e t, com arcos facultativos de s para qualquer origem e de qualquer destino
para t, que representam os comegos e finais da viagem completa de um aviao.
Para decidir se existe um solugao com k avides, finalmente colocamos um arco
(t,s) com limite inferior de O e superior de k e decidir se existe uma circulagao
nesse grafo.

O problema P | pmtn,r; | Lax Primeiramente resolveremos um problema
mais simples: serd que existe um sequenciamento tal que toda tarefa i executa
dentro do seu intervalo [ri, di]? Equivalentemente, serd que existe uma solucio
com Ly, =07

Seja{tl)tZ)-")tk} :{Thrlw-~rn}U{d1)d2)--'»dn}7 comty; <t; <o <ty
(Observe que k < 2n, e k < 2n no caso de tempos repetidos.) Podemos ver os
t; como eventos em que uma tarefa fica disponivel ou tem que terminar o seu
processamento. Os t; definem k—1 intervalos I; = [ti, ti11] parai € [k—1] com
duragdo S; = t;11 — ti correspondente. Cada tarefa j pode ser executada no
intervalo T; caso I; C [ri, di]. Logo podemos modelar o problema via um grafo
direcionado bipartido com vértices T U I, sendo T = [n] o conjunto de tarefas
e I ={I; |1 € [k—1]} o conjunto de intervalos, e com arcos (j,1) caso tarefa j
pode ser executada no intervalo i. Para completar o grafo adicionaremos um
arco (s,j) de um vértice origem s para cada tarefa j, e um arco (i,t) de cada
intervalo para um vértice destino t. Um fluxo nesse grafo representa tempo,
e teremos capacidades p; entre s e tarefa j, S; entre tarefa j e intervalo i, e
mS; entre T; e t, sendo mS; o tempo total disponivel durante o intervalo i.
Figura 1.20 mostra a construcao completa.

Logo P | pmtn, ; | Liax pode ser resolvido em tempo O(mnlogL).

Com essa abordagem podemos resolver o problema original por busca binaria:
para cada valor do L.y entre O e L testaremos se existe uma solucéo tal que
cada tarefa executa no intervalo [ri, d; + Lyax]. Um limite superior simples é

99



1. Algoritmos em grafos

Pn . : mS "
Figura 1.20.: Problema de fluxo para resolver a versao de decisao do problema

P | pmtn, T4 | Linax- {fig

L = max;ri + Zi pi — min; di executando todas tarefas apés a liberagdo da
altima numa tinica maquina em ordem arbitraria.

O problema 1 | prec | ) w;C; Este problema é NP-completo, mas um
teorema de Sidney (19xx) mostra que podemos decompor a ordenacao
parcial em conjuntos inicias de maior densidade p(I) = w(S)/p(S). Or-
denando os processos em cada componente arbitrariamente, obtemos uma
2-aproximagao. O conjunto inicial de maior densidade é obtido por uma
busca binaria em densidade, resolvendo um problema de fluxo em cada

iteragao.

Para decidir se a maior densidade é maior ou menor que uma densidade
candidata p construiremos um grafo G = ... etc. etc.

A 2-aproximacio segue pelo

Lema 1.36

TBD: Every such a solution has cost at least w(S)p(S)/2 and at most
Ww(S)p(S)/2.

O problema P | p; = 1,15 | }_fj Suppose can be done like this: a
bipartite graph matches jobs to time intervals. Time intervals are defined
by release dates. Each job—interval arc has capacity 1, each arc from a
time interval to the sink the total number of slots in this time interval

100



1.6. Fluxos em redes

(difference of release times, times number of machines). We want to find
a flow of value n, of minimum cost, where the cost of the job—interval
arcs corresponds to the actual scheduling cost. For lateness & tardiness
costs, we may have to introduce additional events at the due dates.

Agendamento de projetos Suponha que temos n projetos, cada um com
lucro pi € Z, i € [n], e um grafo de dependéncias G = ([n], A) sobre os
projetos. Caso (i,j) € A, a execugdo do projeto i é pré-requisito para a
execucao do projeto j. Um lucro pode ser negativo, e neste caso representa
uma perda. Este problema pode ser reduzido para um problema de fluxo
méximo s-t: cria um grafo G’ com vértices V ={s,t} U [n] é

e uma aresta (s,v) para todo v € [n] com p,, > 0, com capacidade py,
e uma aresta (v,t) para todo v € [n] com p, < 0, com capacidade —p,,, e

e uma aresta (u,v) para toda dependéncia (v,u) € A, com capacidade oo.
(Note que projetos v € V com p, = 0 ndo geram arcos (s,v) nem (v,t).)
Lema 1.37 ~
O valor de um corte (X,X) em G’ é minimo, sse o lucro total dos projetos

S = X\ {s} ¢ maximo. Além disso um corte minimo em G’ corresponde a uma
selecao factivel de projetos S.

Prova. Cada corte (X, X) corresponde com uma seleciio de projetos S = X\{s}.
Seja S = [n]\ S. Uma seleciio de projetos S é valida, caso para todo projeto
p € S, ela contém também todos projetos pré-requisitos de p. Logo, o corte
correspondente nao possui arcos com capacidade co. Como o valor do corte
(s, V\{s}) é Zve[n]lpv>0 Csv 0 corte minimo é finito, e logo factivel, porque nao
pode conter um arco entre um projeto selecionado e um projeto pré-requisito
nao selecionado.

O valor de um corte factivel é

cX,X)= > ca= D> Pv— D P
acA(X,X) veS|py>0 veS|p,<0

e nos temos

Z Pv — C(X) X) = Z Pv — Z Pv + Z Pv

venllpy,>0 venllpy,>0 veS|p,>0 veS|py<0
= 2 Pt X P
veS|py >0 veS|py<0
=D _Pw
VvES

101



1. Algoritmos em grafos

i.e. o lucro total da selecao S. Logo o lucro total ¢ maximo sse o valor do corte
é minimo. |

Vencendo um torneio. Suponha que temos um torneio de n equipes e que
elas j4 ganharam wy, ..., w, vezes até agora. Para cada par de equipes, ainda
temos gij jogos pela frente (g é simétrico). A equipe 1 ainda pode terminar
em primeiro lugar, ou seja, ter o maior nimero de vitorias?

Para a equipe 1, seja1i = >_ 94 0 nimero de jogos restantes. Precisamos que
i) a equipe 1 vence todos os seus T1 jogos restantes, portanto, tem wy + T4
vitérias, e ii) todas as outras equipes i € T = [2,n] vencem no méximo m;
jogos, dado por wi + my < wy + 17 Le. my = wy + 17 —w; — 1 (excluindo
empates).

Caso algum m; < 0 a equipe 1 ji ndo pode ganhar mais. Caso contrario uma
reducao para um problema de fluxo é como segue. Cria um grafo com vértices
s, G= G), T, e t e com os seguintes arcos:

* (s,g) para todo g = (i,j) € G de capacidade gy;,
e (g,1) e (g,j) para todo g = (i,j) € G de capacidade oo,
e (i,t) para todo i € T de capacidade m;.

Nos temos

Lema 1.38
Equipe 1 ainda pode vencer sse o grafo acima possui um fluxo st que satura

(ie. de valor ;g 9ij)-

Prova. (Exercicio. Nota que o que “flui” sdo jogos, e mandar fluxo em (g, 1)
ou (g,j) codifica que vence.) |

Winning a tournament Assume we got n teams, and they have already
won wi,...,wn times so far. For each pair of teams, we still have gy
games ahead (g is symmetric). Can team 1 still finish first, i.e. have the
highest number of wins? For team 1i, let r; = Zj gij be the number of
remaining games. We need:

e Team 1 winning all its 1 remaining games, so having wy + 17 wins.

e All the other teams: winning at most m; games, defined by w; +
my < wq 4717 so mi = w; + 11 —Ww; (ignoring ties).
Solution idea: “pump won games”. Consider all (n;]) encounters between
teams 2,...,m, and create a graph as follows

102



1.6. Fluxos em redes

| |
) iy
= Sy gy e v M
o R oy Coole
¢ [ARNPTRS "
g LA oz
] } wan

where each “encounter node” receives flow at most gij, sends flow either
to i or j, which encodes the wins, and each “team node” can drain at
most my wins.

Then we can show: Theorem: Team 1 can win iff there’s a saturating
flow. The time: we have O(n?) vertices and edges, so we need O(n?)
with the algorithm of Chen et al. (2022).

Disjoint pahths. The maximum number k of disjoint st-paths in di-
rected graphs can be found by a maximum st-flow f with unit capacity.
The argument is simple: if we have k disjoints path, we can send a flow
of 1 along them, thus f > k. On the other hand, if we have a flow of
f, repeat the following. Find an st-path in f, by following arcs starting
at s. This path must exist: due to flow conservation we can also move
forward; if we enter a cycle, we can remove, without altering the flow.
Thus we must end up in t. Remove this path and repeat. This removes
a flow of 1, showing that k > f.

For undirected graphs, just use the usual transformation to a directed
graph with opposing arcs. If any such pair of arcs in the flow is 1, we can
remove both. The reduced flow has at most one arcs between any pair of
vertices u, v, and thus serves in the undirected case, too.

Done in 2022/2, based on older lecture note of Jeff Erickson.

Binary assignment Consider an assignment between sets X and Y, i.e. we
want to select the largest multiset M C X X Y, such that

103



1. Algoritmos em grafos

o each x € X is selected at most c(x) times;
o each y €Y is selected at most c(y) times;
e each (x,y) € E is selected at most c(x,y) times.

(A bipartite matching in G = (X U Y, E) is a special case of this problem
with c(x) =c(y) =1, and c(x,y) = [xy € E].)

The solution is clearly to create a flow graph from s over X and Y to t,
where each (s,x) has capacity c(x), each (x,y) capacity c(x,y) and each
(y,t) capacity c(y). Since all capacities are integer, the maximum flow
f* also is, and we can decompose it into f* xyt-flows of value 1, and add
each of the edges.

1.6.8. Outros problemas de fluxo

Obtemos um outro problema de fluxo em redes introduzindo custos de trans-
porte por unidade de fluxo:

FLUXO DE MENOR CUSTO

Entrada Grafo direcionado G = (V, A) com capacidades ¢ € RLE‘ e custos
k € R‘fl nos arcos, um vértice origem s € V, um vértice destino
teV,evalorveR,.

Solucdo Um fluxo s-t f com valor v, respeitando as capacidades (f < c).

Objetivo Minimizar o custo } . kafa do fluxo.

Diferente do problema de menor fluxo, o valor do fluxo é fixo.

(We follow Schrijver here.) Alternatively to finding a minimum cost flow
(MCF) we can find

1) a maximum st-flow of least cost (by finding the maximum flow first,
and then minimizing the cost), or

2) a minimum cost circulation under arc demands (i.e. flow lower
bounds) dq € Q, a € A (MCC).

The reductions are as follows:

1) MCF to MCC: add a back-arc (t,s) of cost kys = 0 and set d¢s =

104




1.6. Fluxos em redes

Cts = V to the desired flow.

2) maximum flow to MCC: add a back-arc (t,s) of cost ks = —1 and
set k = 0 on all other arcs.

The problem of solving MCC can be broken down in two problems: a)
find any feasible circulation, and b) in spirit similar to flow-augmenting
methods, the problem of finding a circulation of lower cost. We have
discussed before how to solve problem a). For solving problem, we first
can observe that if there’s a negative cost circuit in the residual graph
G, we can apply it to reduce the cost. Even better, if there is no such
circuit, the circulation is of least cost.

Notation: Gy is the residual graph, as always, but it has forward arcs
only if fq < ¢q, and backward arcs only if dq < fo. We set the cost of
a backward arc a”! to k,—1 = kq where uv~' = vu. For a circuit C,
define the characteristic vector

1 if the circuit uses a,
x€(a) = { —1, if the circuit uses a ',
0, otherwise.

Teorema 1.19
A feasible circulation f has minimum cost iff each directed circuit in G¢
has non-negative cost.

Prova. “=": if some circuit C in G¢ has negative cost, then for a small
enough e flow f’ = f 4+ exC remains feasible and has lower cost.

“&”: take any feasible circulation f’. Then f’ — f is also a circulation
(but not necessarily feasible!), and

f—f= > Ax©
j€lm]

for some directed circuits Cj,...Cm, and Aq,...,A;y > 0. (This is not

100% clear: probably every flow can be decomposed in this manner
(e.g. take f =0).) Thus

k() =k(f) =k(f' =) = > Ak(C) > 0.
jelm]

105



{flow:ex1}

1. Algoritmos em grafos

There is still one problem: this may take exponential time! Solution:
select a circuit of minimum mean cost k(C)/|C|. Then:

Teorema 1.20
The above takes at most 4nm? [Inn] iterations.

Therefore: MCC can be solved in time O(n?m?logn). For integer c, d
the circulation is also integer.

Finding minimum mean cycles in time O(nm). (TBD.)

« Discuss parametric/maximum flow over time.

o Discuss minimum cost flow with lower bounds (ps4.ps, two max-
flows).

 Discuss Chen et al. (2022), and the popularization Klarreich (2022).

Disser e Skutella (2015) shows that the Simplex algorithm is NP-mighty,
in the sense that every problem in NP can be decided transforming its
input to an input of Simplex, and then responding “yes” iff a given bit in
the input flips during the execution (with Dantzig’s rule). They reduce
an instance of PARTITION to a minimum-cost flow problem, such that
Simplex (and the successive shortest path algorithm) augment flow on a
certain arc iff the PARTITION instance has a solution.

1.6.9. Exercicios

Exercicio 1.7

Mostra como podemos modificar o algoritmo de Dijkstra para encontrar o ca-
minho mais curto entre dois vértices num um grafo para encontrar o caminho

com o maior gargalo entre dois vértices. (Dica: Enquanto o algoritmo de

Dijkstra procura o caminho com a menor soma de distdncias, estamos procu-

rando o caminho com o maior capacidade minimo.)

106




1.7. Emparelhamentos

1.7. Emparelhamentos

Dado um grafo nao-direcionado G = (V, A), um emparelhamento é uma selecdo
de arestas M C A tal que todo vértice tem no maximo grau 1 em G’ = (V, M).
(Notagdo: M = {ujv,uzva,...}.) O nosso interesse em emparelhamentos é
maximizar o nimero de arestas selecionados ou, no caso as arestas possuem
pesos, maximizar o peso total das arestas selecionados.

Para um grafo com pesos ¢ : A — Q, seja ¢(M) = 3 .. Ce 0 valor do
emparelhamento M.

EMPARELHAMENTO MAXIMO (EM)
Entrada Um grafo nio-direcionado G = (V, A).

Solucdo Um emparelhamento M C A, i.e. um conjunto de arestas, tal
que para todos vértices v temos [N(v) " M| < 1.

Objetivo Maximiza |M/|.

EMPARELHAMENTO DE PESO MAXIMO (EPM)

Entrada Um grafo nao-direcionado G = (V, A,c) com pesos ¢ : A — Q
nas arestas.

Solucdo Um emparelhamento M C A.
Objetivo Maximiza o valor ¢(M) de M.

Um emparelhamento se chama perfeito se todo vértice possui vizinho em M.
Uma variacdo comum do problema é

EMPARELHAMENTO PERFEITO DE PESO MiNIMO (EPPM)

Entrada Um grafo nao-direcionado G = (V, A,c) com pesos ¢ : A — Q
nas arestas.

Solucdao Um emparelhamento perfeito M C A, i.e. um conjunto de ares-
tas, tal que para todos vértices v temos [N(v) "M = 1.

Objetivo Minimiza o valor ¢(M) de M.

Observe que os pesos em todos problemas podem ser negativos. O problema de
encontrar um emparelhamento de peso minimo em G = (V, A, ¢) é equivalente

107



1. Algoritmos em grafos

com EPM em —G := (V;A,—c) (por qué?). Até EPPM pode ser reduzido
para EPM.

Teorema 1.21
EPM e EPPM sao problemas equivalentes.

Prova. Seja G = (V,A,c) uma instancia de EPM. Define um conjunto de
vértices V! = VU VT que contém além de V mais |V| vértices novos V™ =
{v* v eV}, e um grafo completo G’ = (V/, V' x V', ¢’) com

Ca

/) —Ca, casoa€A,
0, caso contrario.

Um emparelhamento M em G de custo ¢(M) corresponde com um empare-
lhamento M’ em G’ como segue. Dado M, define

M ' =MU{uv |uw e M}U{w’|v livre em M},

dado M’ define M = M’ N'V2. Ambas construcoes s6 adicionam ou removem
arestas de custo 0 e o custo das demais arestas é invertido, logo ¢/(M’) =
—c(M). Portanto, um EPPM em G’ ¢ um EPM em G.

0=0)

If [V] is even, we can just multiply by —1, remove (now) positive edges,
and complete the graph with 0-edges.

Por outro lado, seja G = (V,A,c) uma instancia de EPPM. Define C :=
T4 > 4calcal, novos pesos ¢, = C —ce e um grafo G’ = (V,A,c’). Para
emparelhamentos M e M, em G arbitrarios temos

ineq:diff} c(Mz)—c(Mi) < D ca— ) ca=) leal<C. ()
aeAO ~a€A0 acA

108



1.7. Emparelhamentos

Idea: Difference by any number of original edges is always < C, so one
more new edge is always better.

Portanto, um emparelhamento de peso méximo em G’ também é um empa-
relhamento de cardinalidade maxima: Para [M;| < [M;| temos

c'(My) = CIMy|—c¢(M;) < CIMq] 4 C —c(M3) < CIM3| —¢(M3) = ¢’ (M2),

onde a primeira desigualdade segue por (*). Se existe um emparelhamento
perfeito no grafo original G, entdo o EPM em G’ é perfeito e as arestas do
EPM em G’ definem um EPPM em G. |

Formulacdes com programacdo inteira A formulagdo do problema do em-
parelhamento perfeito minimo para G = (V, A, c) é

EPPM: minimiza ) caXa (1.25)
acA
sujeito a Z Xuy = 1, ey
ueN (v)
Xq € B.

A formulacdo do problema do emparelhamento méaximo é

EPM: maximiza Z CaXa (1.26)
acA
sujeito a Z Xuw < 1, Yv eV
UueN (v)
Xq € B.

Both linear relaxations are to x > 0, since the upper bound is implicit
in the constraints.

Observagao 1.15

A matriz de coeficientes de (1.25) e (1.26) é totalmente unimodular no caso bi-
partido (pelo teorema de Hoffman-Kruskal). Portanto: a solugdo da relaxagio
linear é inteira. (No caso geral isso néo é verdadeiro, K3 é um contra-exemplo,
com solugao 6tima 3/2.). Observe que isso resolve o caso ponderado sem custo
adicional. O

109

{1p:minper

{1p:maxmat

{obs:tu}



Imaxmatch}

{th:berge}

prop:isvc}

1. Algoritmos em grafos

Observacao 1.16
O dual da relaxagao linear de (1.25) é

CIM: maximiza Z Yy (1.27)
vev
sujeito a Y, + Yy < Ccuy, Yuv € A,
yy € R.

e o dual da relaxagao linear de (1.26)

MVC: minimiza Z Yv (1.28)
vev
sujeito a Yy, + Yy > Cuy, Yuv € A,
Yyv € Ry
Com pesos unitarios cyy, = 1 e restringindo y, € B o primeiro dual é a

formulacdo do conjunto independente maximo e o segundo da cobertura de
vértices minima. Portanto, a observagao 1.15 rende no caso nao-ponderado:

Teorema 1.22 (Berge, 1951)
Em grafos bi-partidos o tamanho da menor cobertura de vértices é igual ao
tamanho do emparelhamento maximo.

Proposigao 1.7

Um subconjunto de vértices I C V de um grafo nao-direcionado G = (V,;A) é
um conjunto independente sse V \ I é um cobertura de vértices. Em particu-
lar um conjunto independente maximo I corresponde com uma cobertura de
vértices minima V \ L.

Prova. (Exercicio 1.9.) [ | O

1.7.1. Aplicacées

Alocacao de tarefas Queremos alocar n tarefas a n trabalhadores, tal que
cada tarefa é executada, e cada trabalhador executa uma tarefa. O custos de
execucao dependem do trabalhar e da tarefa. Isso pode ser resolvido como
problema de emparelhamento perfeito minimo.

Similar: Candidates and jobs (weighted), or persons and chairs (seats in
an airplane, maximum cardinality).

110

{1p:



1.7. Emparelhamentos

Figura 1.21.: Esquerda: Poligono ortogonal com n = 8 vértices de reflexo
(pontos), h = 0 buracos. As cordas sdo pontilhadas. Direita:

grafo de interseccao. {fig:partg

Heuristica para o PCV  Match twice and stitch.

Particionamento de poligonos ortogonais

Teorema 1.23 (Sack e Urrutia (2000, cap. 11, Th. 1))

Um poligono ortogonal com n vértices de reflexo (ingl. reflex vertex, i.e., com
angulo interno maior que 7), h buracos (ingl. holes) pode ser minimalmente
particionado em n — 1L — h + 1 retdngulos. A varidvel 1 é o nimero maximo
de cordas (diagonais) horizontais ou verticais entre vértices de reflexo sem
interseccao.

O numero 1 é o tamanho do conjunto independente méaximo no grafo de in-
terseccao das cordas: cada corda é representada por um vértice, e uma aresta
representa a duas cordas com intersecdo. Pela proposicao 1.9 podemos obter
uma cobertura minima via um emparelhamento maximo, que é o complemento
de um conjunto independente maximo. Podemos achar o emparelhamento em
tempo O(n®/2) usando o algoritmo de Hopcroft-Karp, porque o grafo de in-
tersecgdo é bi-partido (por qué?). {ma:pp}

Two chords intersect also, if they share only one endpoint. The maximum
number of chords does not define the whole partition. It is possible that
there is only one reflex vertex, or several, but without a chord between

111



pviaflowl}

1. Algoritmos em grafos

them. This must be cut off separately.
Refs: http://code.activestate.com/recipes/123641-hopcroft-karp-bipartite-
matching/ Imai and Asano, STAM J. Computing 15(2):478-494, 1986, for

an improvement.

Problemas de agendamento O problema 1| p; =p | 3> w;Tj é resolvido
por um emparelhamento perfeito entre as tarefas e os intervalos de execugao
[(i—1p,ipl, i € [n]l. Podemos resolver ainda 1 | p; = 1,7j [ }_w;Tj, obser-
vando que sempre existe uma solugdo com as tarefas executando nos intervalos
[ti, ti + 1], 1 € [n], definido por

to = —o0; ti = max{t; ¢ + 1;7i}
e supondo que 11 < -+ < 1.

1.7.2. Grafos bi-partidos

Na formulacao como programa inteira a solucao do caso bi-partido é mais facil.
Isso também é o caso para algoritmos combinatoriais, e portanto comegamos
estudar grafos bi-partidos.

These lectures seem to be covered best by chap. 19 and 20 from Kozen.

Reducdo para o problema do fluxo maximo

Teorema 1.24
Um EM em grafos bi-partidos pode ser obtido em tempo O(mmn).

Prova. Introduz dois vértices s, t, liga s para todos vértices em V7, os vértices
em V7 com vértices em V, e os vértices em V; com t, com todos os pesos
unitarios. Aplica o algoritmo de Ford-Fulkerson para obter um fluxo méximo.
O nimero de aumentos é limitado por n, cada busca tem complexidade O(m),
portanto o algoritmo de Ford-Fulkerson termina em tempo O(mn). |

Teorema 1.25
O valor do fluxo maximo € igual a cardinalidade de um emparelhamento ma-
ximo.

Prova. Dado um emparelhamento méximo M = {v11v21,...,VinV2n}, pode-
mos construir um fluxo com arcos svii, viiv2i e vait com valor [M|.

Dado um fluxo maximo, existe um fluxo integral equivalente (veja lema (1.20)).
Na construgao acima os arcos possuem fluxo 0 ou 1. Escolhe todos arcos entre

112



ion}

1.7. Emparelhamentos

Figura 1.22.: Reducao do problema de emparelhamento maximo para o pro-
blema do fluxo maximo

Vi e V2 com fluxo 1. Nao existe vértice com grau 2, pela conservacao de fluxo.
Portanto, os arcos formam um emparelhamento cuja cardinalidade é o valor
do fluxo. ]

Solucdo ndo-ponderada combinatorial Um caminho P = vivovs...v¢ é
alternante em relacio a M (ou M-alternante) se viviy1 € M sse vi11viy2 € M
para todos 1 < i < k—2. Um vértice v € V é livre em relacdo a M se ele
tem grau 0 em M, e emparelhado caso contrario. Uma aresta e € E é livre em
relagdo a M, se e € M, e emparelhado caso contrario. Escrevemos |[P| =k — 1
pelo comprimento do caminho P.

Observagao 1.17

Caso temos um caminho P = vivyv3...vox que é M-alternante com v é

vak livre, podemos obter um emparelhamento M \ (P N M) U (P \ M) de

tamanho [M|+k — (k — 1) = [M| + 1. Notacdo: Diferenca simétrica M @ P =

(M\P)U(P\M). A operacao M & P é um aumento do emparelhamento M.
o

Teorema 1.26 (Hopcroft e Karp (1973))

Seja M* um emparelhamento maximo e M um emparelhamento arbitrario. O
conjunto M@M* contém pelo menos k = |[M*|—|M| caminhos M-aumentantes
disjuntos (de vértices). Um deles possui comprimento no méximo [V|/k — 1.
Prova. Considere os componentes de G em relagao as arestas M@ M*. Cada
vértice possui no maximo grau 2. Portanto, os componentes séo vértices livres,
caminhos simples ou ciclos, todos disjuntos de vértices, por construcao. Os
caminhos e ciclos possuem alternadamente ares

IM*\ M| =M*|—M*NM|=[M|-M*"NM|+k =M\ M*|+k

e portanto M & M* contém k arestas mais de M* que de M. Isso mostra que
existem pelo menos [M*| — [M| caminhos M-aumentantes, porque somente os

113

{obs:aumen

{th:aument



1. Algoritmos em grafos

caminhos de comprimento impar possuem exatamente uma aresta mais de M*.
Pelo menos um desses caminhos tem que ter um comprimento (em arestas)
menor ou igual que [V|/k — 1, sendo cada um possui pelo menos [V|/k + 1
vértices, i.e. eles contém em total mais que |V| vértices. |

Here edge-disjointness implies vertex-disjointness, since two matchings
give degree 2, but a joint vertex requires degree more than 2.

An aside on using M @& M’ (Kozen) versus M U M’ (Schrijver). The
difference are just the joint edges e € M N M’ but these are remain
single edges in M U M, so give rise only to irrelevant components.

Also worth noting: the theorem holds in any graph, not just bipartite
ones!

Corolario 1.5 (Berge (1957))
Um emparelhamento é maximo sse ndo existe um caminho M-aumentante.

Rascunho de um algoritmo:

{alg:em} . a.q
Algoritmo 1.7 (Emparelhamento méaximo)

Entrada Grafo nao-direcionado G = (V, A).

Saida Um emparelhamento méximo M.

1 M=90

2 while (existe um caminho M-aumentante P) do
3 M:=M&P

4 end while

5 return M

Problema: como encontrar caminhos M-aumentantes eficientemente?
Observacao 1.18

Um caminho M-aumentante comeca num vértice livre em V; e termina num
vértice livre em V,. Idéia: comeca uma busca por largura com todos vértices
livres em Vj. Segue alternadamente arcos livres em M para encontrar vizi-
nhos em V, e arcos em M, para encontrar vizinhos em V7. A busca péara ao
encontrar um vértice livre em V> ou apéds de visitar todos os vértices. Ela tem
complexidade O(m +n). O

Teorema 1.27

O problema do emparelhamento maximo nao-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(mn).

Prova. Ultima observacio e o fato que o emparelhamento maximo tem ta-
manho O(n). |

114



1.7. Emparelhamentos

Observagao 1.19
O tltimo teorema é o mesmo que teorema (1.24). O

Observacgao 1.20

Pelo teorema (1.26) sabemos que existem varios caminhos M-alternantes dis-
juntos (de vértices) e nos podemos aumentar M com todos eles em paralelo.
Portanto, estruturamos o algoritmo em fases: cada fase procura um conjunto
de caminhos aumentantes disjuntos e aplicd-los para obter um novo empare-
lhamento. Observe que pelo teorema (1.26) um aumento com o maior conjunto
de caminhos M-alternantes disjuntos resolve o problema imediatamente, mas
nao sabemos como encontrar esse conjunto de forma eficiente. Portanto, pro-
curamos somente um conjunto maximal de caminhos M-alternantes disjuntos
de menor comprimento.

Podemos encontrar um tal conjunto apds uma busca em profundidade usando
o DAG (grafo direcionado aciclico) definido pela busca por profundidade. (i)
Escolhe um vértice livre em V5. (ii) Segue os predecessores para encontrar um
caminho aumentante. (iii) Coloca todos vértices em uma fila de delegdo. (iv)
Processa a fila de delecao: Até que a fila esteja vazia, remove um vértice dela.
Remove todos arcos adjacentes no DAG. Caso um vértice sucessor apds de
remocao de um arco possui grau de entrada 0, coloca ele na fila. (v) Repete
o procedimento no DAG restante, para encontrar outro caminho, até nao
existem mais vértices livres em V5. A nova busca ainda possui complexidade

O(m). O

O que ganhamos com essa nova busca? Os seguintes dois lemas dao a resposta:

Lema 1.39
Em cada fase o comprimento de um caminho aumentante minimo aumenta
por pelo menos dois.

Lema 1.40
O algoritmo termina em no maximo /n fases.

Teorema 1.28

O problema do emparelhamento maximo nao-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(my/m).

Prova. Pelas lemas 1.39 e 1.40 e a observagdo que toda fase pode ser com-
pletada em O(m). |

Usaremos outro lema para provar os dois lemas acima.

Lema 1.41

Seja M um emparelhamento, P um caminho M-aumentante minimo, e Q um
caminho M @ P-aumentante. Entao [Q| > [P+ 2PN Q]. (PN Q denota as
arestas em comum entre P e Q.)

115

{obs: findp

{lem:maisd

{lem:maxfa

{lem:mais}



1. Algoritmos em grafos

Prova. Caso P e Q ndo possuem vértices em comum, Q é M-aumentante,
PN Q =0 e a desigualdade é consequéncia da minimalidade de P.

We have V(P) N V(Q) = (@ which implies E(P) N E(Q) = @ and thus
|Q| > |P|, since P is minimal. Otherwise V(P) N V(Q) # 0 implies E(P) N
E(Q) # 0: otherwise the joint vertex has a matched edge from P and
another from Q, so degree 2in M@ P & Q.

Caso contréario, P e Q possuem um vértice em comum, e logo também uma
aresta, sendo M @& P & Q possui um vértice de grau dois. P & Q consiste em
dois caminhos, e eventualmente um cole¢do de ciclos. Os dois caminhos sdo
M-aumentantes, pelas seguintes observagoes:

1. Cada caminho inicia numa ponta de Q e termina numa ponta de P.
Além disso, em M as pontas de P sdo livres, porque P é M-aumentante;
as pontas de Q também sdo livres em M: sdo livres M @ P, e logo nao
pertencem a P. (Nenhum outro vértice de P @ Q ¢é livre em relagdo a
M.: P s6 contém dois vértices livres e Q s6 contém dois vértices livres

em Q\P.)

2. Os dois caminhos sdo M-alternantes. Comegando com um vértice livre
em Q, a parte do caminho Q em Q\ P é M-alternante, porque as arestas
livres em M @P sdo exatamente as arestas livres em M. O caminho entra
em P com uma aresta livre, porque todo vértice em P j& estd emparelhado
em M @ P. A parte de P em P @ Q tem que continuar com aresta livre
em M @ P, e logo aresta emparelhada em M. Logo, temos um caminho
M-alternante.

Os dois caminhos M-aumentantes em P@® Q tem que ser maiores que |P|. Com
isso temos [P & Q| > 2|P| e

Q=[P QI+2[PNQI— Pl > P[+2[PNQl

Note: [P @ Q| =[P|+ Q| —2/[PN Q.

Prova. (dolema 1.39). Seja S o conjunto de caminhos M-aumentantes da fase
anterior, e P um caminho aumentante. Caso P é disjunto de todos caminhos
em S, ele deve ser mais comprido, porque S é um conjunto maximo de caminhos
aumentantes. Caso P possui um vértice em comum com algum caminho em
S, ele possui também um arco em comum (por qué?) e podemos aplicar
lema 1.41. |

116



1.7. Emparelhamentos

U —1 —] O

U (—1 (—] U
(a) Grafo com emparelhamento M (em negrito) e um caminho
M-aumentante P (em vermelho).

o—0 - —0 - O—_

] (—] (—] U
(b) O mesmo grafo com emparelhamento M @ P (em negrito) e um caminho
M @& P-aumentante Q (em vermelho).

i

) O conjunto de arestas P @ Q (em negrito).

ais} Figura 1.23.: Ilustracao do lema 1.41.

Por qué: same reason as before: otherwise a vertex has degree 2 in the
resulting graph.

Prova. (do lema 1.40). Seja M* um emparelhamento maximo e M o empa-
relhamento obtido apds de y/n/2 fases. O comprimento de qualquer caminho
M-aumentante é no minimo /n, pelo lema 1.39. Pelo teorema 1.26 existem
pelo menos |M*| — |[M| caminhos M-aumentantes disjuntos de vértices. Mas
entdo [M*| — M| < v/n, porque no caso contrario eles possuem mais que n
vértices em total. Como o emparelhamento cresce pelo menos um em cada
fase, o algoritmo executa no maximo mais y/n fases. Portanto, o niimero total

de fases é no maximo 3/2,/n = O(y/n). [ |

Proof idea: after f(n) phases we have length > 2f(n), therefore |M*| —
IM| < n/2f(n) and we terminate in f(n) + n/2f(n) phases. Function
f(n) = /N minimizes this, since

f(n) =n/2f(n) & f(n)? =n/2 & f(n) = \/n/2.

(If we use this value above, the number of phases will be at most v2n,

so still O(y/n).)

O algoritmo de Hopcroft-Karp é o melhor algoritmo conhecido para encontrar

117



© 00 J O Ui W N+

1. Algoritmos em grafos

emparelhamentos maximos em grafos bipartidos ndo-ponderados esparsos®.
Para subclasses de grafos bipartidos existem algoritmos melhores. Por exem-
plo, existe um algoritmo randomizado para grafos bipartidos regulares com
complexidade de tempo esperado O(nlogn) (Goel et al., 2010).

Footnote on dense graphs: say m = n* with « € [1,2]. Then log,, m = «
and Feder e Motwani (1995) has complexity O(y/nm(2 — «)).

Sobre a implementacdo A seguir supomos que o conjunto de vértices é
V = [1,n] e um grafo G = (V, A) bi-partido com particdo V; U V5. Podemos
representar um emparelhamento usando um vetor mate, que contém, para
cada vértice emparelhado, o indice do vértice vizinho, e 0 caso o vértice é
livre.

O nucleo de uma implementacao do algoritmo de Hopcroft e Karp é descrito
na observacao 1.20: ele consiste numa busca por largura até encontrar um ou
mais caminhos M-alternantes minimos e depois uma fase que extrai do DAG
definido pela busca um conjunto maximo de caminhos disjuntos (de vértices).
A busca por largura comega com todos vértices livres em V;. Usamos um
vetor H para marcar os arcos que fazem parte do DAG definido pela busca
por largura® e um vetor m para marcar os vértices visitados.

search_paths(M) :=
for all veV do m, :=false

U;:={veVy|v livre}
for all uelU; do dy =0

do
{ determina vizinhos em U, via arestas livres}
UZ ZZ@
for all uel; do

my = true
for all wweA, w¢M do
if not m, then

d,:=d,+1
W:=UUv
end if

5Feder e Motwani (1991) e Feder e Motwani (1995) propuseram um algoritmo em
O(y/nm(2 — log,, m)) que é melhor em grafos densos.
6H, porque o DAG se chama drvore Hingara na literatura.

118



17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

end for
end for

1.7. Emparelhamentos

{ determina vizinhos em U; via arestas emparelhadas }

found := false
U] = (Z)
for all ue U, do
m, = true
if (u livre) then
found := true
else
v := mate[u]
if not m, then

dy:=d,+1
U;=uU;uv
end if
end for
end for

while (not found)
end

{ pelo menos um caminho encontrado? }

0O Uik WK

Apo6s da busca, podemos extrair um conjunto maximo de caminhos M-alternantes
minimos disjuntos. Enquanto existe um vértice livre em V3, nos extraimos um
caminho alternante que termina em v como segue:

extract_paths() :=
while existe vértice v livre em V>, do
aplica um busca em profundidade a partir de v em H
(procurando um vértice livre em Vi)
remove todos vértices visitados durante a busca
caso um caminho alternante P foi encontrado: M:=M&P
end while
end

Exemplo 1.7
Segue um exemplo da aplicacdo do algoritmo de Hopcroft-Karp.

Grafo original, arvore Hungara primeira iteracdo e emparelhamento
resultante:

119



1. Algoritmos em grafos

:

Arvore Hungara segunda iteracio e emparelhamento resultante:

it

Arvore Hungara terceira iteragdo e emparelhamento resultante:

e

Emparelhamentos, coberturas e conjuntos independentes

csess

atchcover} L
Proposicao 1.8

Seja G = (S U T,A) um grafo bipartido e M C A um emparelhamento em G.
Seja R o conjunto de todos vértices livres em S e todos vértices alcangaveis
por uma busca na arvore Hungara (i.e. via arestas livres de S para T e arestas
emparelhadas de T para S). Entao (S\R)U(TNR) é uma cobertura de vértices
em G.

Prova. Seja uv € A uma aresta nao coberta. Logo u € S\ (S\R) =SNR
eveT\(TNR) =T\R. Caso uv € M, uv é parte da arvore Hingara é

120



1.7. Emparelhamentos

]

|S|‘—|AAJ{ ij/////////////////////////Jl
O v

]

v

]

]

[ | ]

Ml—v{ | O

[ | L]

Figura 1.24.: Tlustragdo da prova da proposigao 1.9.

v € R, uma contradi¢do. Mas caso uv € M, vu é parte da arvore Hingara e v
precede u, logo v € R, novamente uma contradigao. |

A préxima proposi¢gdo mostra que no caso de um emparelhamento maximo
obtemos uma cobertura minima.

Proposicao 1.9
Seja G = (S U TA). Caso M é um emparelhamento maximo o conjunto
(S\R)U (TNR) é uma cobertura minima.

Prova. O tamanho de qualquer emparelhamento M é um limite inferior para
o tamanho de qualquer cobertura, porque uma cobertura tem que conter pelo
menos um vértice da cada aresta emparelhada. Logo é suficiente demonstrar
que (S\R)U (TNR)| =M.

Temos (S\R)U (TNR)| =|S\ R+ |TNR| porque S e T sdo disjuntos. Vamos
demonstrar que |T N R| = v implica |S \ R| = [M| —v.

Supoe |[TNR| = v. Como M é maximo nao existe caminho M-aumentante,
e logo TN R contém somente vértices emparelhados. Por isso o nimero de
vértices emparelhados em S N R também é v. Além disso S N R contém todos
|S| — IM| vértices livres em S. Logo [S\ R/ =|S|—(|S|—=M|]) —v=|M|—v. R

Observagao 1.21

O complemento V' \ C de uma cobertura C é um conjunto independente (por
qué?). Logo um emparelhamento M que define um conjunto R de acordo com
a proposigao (1.8) corresponde com um conjunto independente (SNR)U(T\R),
e caso M é maximo, o conjunto independente também. %

121

{fig:emcm}

{prop:emcn



{obs:wmp}

1. Algoritmos em grafos

This can be extended to a minimal edge cover (of vertices): take a ma-
ximum matching, and then cover all uncovered vertices by some incident
edge. This is a minimal edge cover, because no further edge can cover
two vertices. In other words, in a minimal edge cover, each vertex has
an adjacent cover edge; now let the matching be those edges that cover
both of its endpoints. Then the total cost is n—|M|. Since n is constant
minimizing —|M| amount to maximizing |M|.

This can be further extended to the weighted version. Here each vertex
v € V can be seen as covered by the lighest incident edge of cost c,.
Now consider a matching of edges that cover both endpoints. An edge
e =uv € E in it has cost ce — ¢y — ¢y. So we have total cost Zvev cy +
2 _eem Ce — Cu — ¢y and since the first term is a constant, a minimum
weight edge cover corresponds to a maximum weight matching with cost
Cy +Cy —Ce.

Solucdo ponderada em grafos bi-partidos Dado um grafo G = (S U T, A)
bipartido com pesos ¢ : A — Q, queremos achar um emparelhamento de
maior peso. Escrevemos V =S UT para o conjunto de todos vértices em G.

Observagao 1.22

O caso ponderado pode ser restrito para emparelhamentos perfeitos: caso
S e T possuem cardinalidade diferente, podemos adicionar vértices, e depois
completar todo grafo com arestas de custo 0. O problema de encontrar um
emparelhamento perfeito maximo (ou minimo) em grafos ponderados é conhe-
cido pelo nome “problema de alocagdo” (ingl. assignment problem). O

Observacao 1.23

A redugdo do teorema 1.24 para um problema de fluxo méximo néo se aplica
no caso ponderado. Mas, com a simplificacdo da observacdo 1.22, podemos
reduzir o problema no caso ponderado para um problema de fluxo de menor
custo: a capacidade de todas arestas é 1, e o custo de transportagdo sao os
pesos das arestas. Como o emparelhamento é perfeito, procuramos um fluxo
de valor [V|/2, de menor custo. O

O dual do problema 1.28 é a motivacao para

Definicao 1.6

Um rotulamento é uma atribuicdo y : V. — R.. Ele é vidvel caso Yy, +y, > cq
para todas arestas a = {u,v}. (Um rotulamento vidvel é uma c-cobertura de
vértices.) Uma aresta é apertada (ingl. tight) caso yy +yy = cq. O subgrafo
de arestas apertadas é Gy = (V;A’,c) com A’ ={a € A | a apertada em y}.

122



1.7. Emparelhamentos

Pelo teorema forte de dualidade e o fato que a relaxacao linear dos sistemas
acima possui uma solugdo integral (ver observacao 1.15) temos

Teorema 1.29 (Egervary (1931))

Para um grafo bi-partido G = (S U T, A, ¢) com pesos nio-negativos ¢ : A —
Q. nas arestas, o maior peso de um emparelhamento perfeito é igual ao peso
da menor c-cobertura de vértices.

O método hiingaro Aplicando um caminho M-aumentante P = (vivy ... Von 1)
produz um emparelhamento de peso ¢(M)+}_; tmpar CVivi 1 — > par CVivi 1 -
Isso motiva a definicdo de uma arvore Hungara ponderada. Para um empa-
relhamento M, seja Hypm o grafo direcionado com as arestas e € M orientadas
de T para S com peso le := we, e com as restantes arestas a € A \ M ori-
entadas de S para T com peso 1, := —wq. Com isso a aplicacdo do caminho
M-aumentante P produz um emparelhamento de peso ¢(M) — L(P) em que
UP) =3 i <cicon Wiviys € 0 comprimento do caminho P.
Com isso podemos modificar o algoritmo para emparelhamentos maximos para
{alg:epm}
Algoritmo 1.8 (Emparelhamento de peso maximo)
Entrada Um grafo ndo-direcionado ponderado G = (V, E, c).

Saida Um emparelhamento de maior peso ¢(M).

1 M=0

while (existe um caminho M-aumentante P) do
encontra o caminho M-aumentante minimo P em Hm
caso L(P)>0: return M;
M:=MagP

end while

return M

N O UL W N

Chamaremos um emparelhamento M eztremo caso ele possui o maior peso
entre todos emparelhamentos de tamanho |M|.

Observagao 1.24

O grafo Hyy de um emparelhamento extremo M néo possui ciclo (par) ne-
gativo. Isso seria uma contradicdo com a maximalidade de M. Portanto
podemos encontrar o caminho minimo no passo 3 do algoritmo usando o al-
goritmo de Bellman-Ford em tempo O(mn). Com isso a complexidade do
algoritmo é O(mn?). O

123



1. Algoritmos em grafos

Observacao 1.25
Lembrando Bellman-Ford: Seja di(t) a distAncia minima entre s e t com um
caminho usando no maximo k arcos ou oo caso tal caminho néo existe. Temos

di,1(t) = min{dy(t), min dg(u)+L(u,t)Vt eV,

(u,t)EA

com do(t) =0 caso t é um vértice livre em S e do(t) = oo caso contréario. (O
algoritmo se aplica igualmente para as distdncias de um conjunto de vértices,
como o conjunto de vértices livres em S.) A atualizacio de k para k+ 1 é
possivel em O(m) e como k < 1 o algoritmo possui complexidade O(nm). ¢

Teorema 1.30
Cada emparelhamento encontrado no Algoritmo 1.8 é extremo.

Prova. Por indugiao sobre |[M|. Para M = () o teorema é correto. Seja
M um emparelhamento extremo, P o caminho aumentante encontrado pelo
algoritmo 1.8 ¢ N um emparelhamento de tamanho [M| 4+ 1 arbitrario. Como
IN| > [M|, pelo teorema (1.26) M @ N contém um caminho M-aumentante Q.
Sabemos 1(Q) > 1(P) pela minimalidade de P. N @& Q é um emparelhamento
de cardinalidade M| (Q é um caminho com arestas em N e M com uma aresta
em N a mais), logo ¢(N @ Q) < ¢(M). Com isso temos

c(N)=c(N&Q)-1UQ) <c(M)—1UP)=c(M&P)
(observe que o comprimento 1(Q) é definido no emparelhamento M). |

Proposigao 1.10
Caso néo existe caminho M-aumentante com comprimento negativo no Algo-
ritmo 1.8, M é méaximo.

Prova. Supde que existe um emparelhamento N com ¢(N) > ¢(M). Logo
IN| > |[M| porque M é possui o maior peso entre todos emparelhamentos de
cardinalidade no maximo |M|. Pelo teorema de Hopcroft-Karp, existem |[N| —
IM| caminhos M-aumentantes disjuntos de vértices em N @& M. Nenhum deles
tem comprimento negativo, pelo critério de parada do algoritmo. Portanto
c¢(N) < ¢(M), uma contradicio. |

Fato 1.1

E possivel encontrar o caminho minimo no passo 3 em tempo O(m +nlogn)
usando uma transformacao para distdncias positivas e aplicando o algoritmo
de Dijkstra. Com isso um algoritmo em tempo O(n(m + nlogn)) é possivel.

124



1.7. Emparelhamentos

1.7.3. Emparelhamentos em grafos nao-bipartidos

O teorema de Berge 1.22 (ou e de Hopcroft & Karp 1.26) vale em qualquer
grafo.

Exemplo 1.8 (Caminhos M-aumentantes em grafos ndo-bipartidos)
Consequéncia: dado um caminho M-aumentante, a sua aplicagdo produz em-
parelhamentos maiores.

et AL

Portanto, o problema central em grafos gerais ainda é
{prob:augn
Problema 1.1 (Encontra um caminho M-aumentante)

Dado um emparelhamento M, retorne um caminho M-aumentante, caso exis-
tir.

Dado uma solugdo em tempo T(n), o algoritmo canénico (inicia com M =
(; repetidamente resolve Problema 1.1; caso tem caminho M-aumentante P,
M := M @ P e repete; sendo: para) termina em no méximo [n/2| = O(n)
iteracoes em tempo O(nT(n)).

O caso nao-ponderado

We start with a classification, following Schrijver 24.1.

If a graph has an odd component (i.e. a component with an odd number
of vertices), then at least one is not matched. This gives the simple bound
v(G) < 1/2(]V F 0(G)) on the number of edges v(G) in a matching, where
0(G) is the number of odd components of graph G. Now take some subset
U C V. If we suppose U is fully matched, we can bound

v(G) < U[+v(G-U)
< U+ T1/72(IVA Ul = o(G — U))
1/2(IVI+ Ul — o(G — U)) (*) Hub:U}

Now the Tutte-Berge theorem states, that the smallest of these bounds

is exact.
Hth:tutte-be

125



1. Algoritmos em grafos

Teorema 1.31 (Tutte-Berge)

v(G) = lrincir\lﬂ/Z(IVI + U] —o(G —U)).

Prova. Obviously “<” follows from (*).

For “>” we use induction on [V|; the base V = () is trivial. We can assume
G to be connected, otherwise we apply the induction hypothesis to the
components. We consider two cases: a) some vertex v is in all maximum
matchings. b) none is.

Consider case a). Then v(G —v) = v(G) — 1, and we can apply the
induction hypothesis to G — v to obtain an U’ such that

V(G —v) =12(IV\{W}| + U] - 0(C —v—U")).
But then U = U’ U{v} witnesses equality, viz.

v(G) =v(G—v)+1
12([VA v} + U —0o(G—v—-U")) +1
1/2(lV]+ U]l —o(G —U)) + 1.

Now consider case b). Then v(G) < |V|/2, and we claim that there’s
a matching of size (V| — 1)/2. Given that, have for U = (), and since
o(G) =1

v(G) =(IVI-1)/2
=1/2(|VI+ U] —o(G —U)) + 1.
> min 1/2(|V|+ [U| — o(G — U)),
ucv

and we're done.

Now for the claim: assume that in all maximal matchings M at least
two vertices u = u(M) and v = v(M) are free; select a matching where
u, v have shortest distance dist(u,v). We can’t have dist(u,v) = 1, since
otherwise we could add uv to M. Thus there’s a vertex t, different from
u and v on the shortest uv-path. By assumption there’s a matching N
where t is free. Choose such a matching of maximal overlap |[M N NJ.
Note that u and v are matched in N, otherwise we have free vertices u,t
with dist(u, t) < dist(u,v) or free vertices t,v with dist(t,v) < dist(u,v)

126




1.7. Emparelhamentos

in contradiction with the selection of u and v. Now since M| = |N]|
there must be some x # t matched in M but not in N. Let e = xy be
the corresponding edge. Vertex y is matched in N, since we otherwise
could add xy to N, and some edge f € N contains y. But now N \
{f} U {e} has a larger overlap w1th M, contradlctmg the choice of N.

Y }W L fl. :
é%; ; //zfi J?nwéﬁul A

|
This leads finally to

Teorema 1.32 (Tutte’s 1-factor theorem)
Graph G has a perfect matching iff G — U has o(G — U) < [U] for all
ucv.

Prova. If G has a perfect matching then v(G) = [V|/2. So

VI/2 = pate 1/2(IVI+ U] = o(G —UW))

and therefore, for all U C V
IVI/2 <1/2(]V|+ U] = o(G — U)) &= o(G—U) < Ul
On the other hand, if for all U € V we have o(G — U) < |U|, then

1/2([VI+UF o(G—U) > 1/2|V]|, and thus v(G) = |V|/2 by theorem 1.31.
|

Hth:tutte}

Primeiramente vamos entender porque a abordagem utilizada em grafos bi-
partidos G = (S U T E) falha. Sejam X os vértices livres em G. Em grafos
bipartidos encontramos um caminho M-aumentante por uma busca em lar-

gura:

Algoritmo 1.9 (Busca caminho M-aumentante)
Inicia em Sy = SN X. Dado S; sejam T; os vértices ainda nao
explorados alcangaveis por S; via arestas livres. Caso T; contém

127

{bcma}



1. Algoritmos em grafos

um vértice livre, termina, sendo sejam Si;1 os vértices ainda nao
explorados alcangaveis por T; via arestas emparelhadas. Repete.

:bemal Lo
Proprbema Proposicao 1.11

Algoritmo 1.9 sempre encontra pelo menos um caminho mais curto M-aumentante
em grafos bipartidos.

Prova. Para todo caminho M-aumentante mais curto P = (vo,Vi1,...,V¢),
vértice vi é encontrado na iteragdo i. Pela existéncia do caminho P, é claro
que vértice vi é descoberto em no méaximo 1i iteracbes. Agora assume v; é
o vértice de menor indice descoberto numa itera¢do j < i, por um caminho
alternante Q = (up, u1,...,u; = v;) iniciando em uy livre. Temos os seguintes
casos:

a) j épar,eiépar. Logouj_1vi € M, evi_1vi € M, eporissouj_1 =vi_j
em contradicdo com a minimalidade de 1.

b) j é impar, i é impar. Logo uj—1vi € M, vivi;1 € M e Q junto com o
caminho (Vi,Vit1,...,V¢) é um caminho M-aumentante de comprimento
j+ (t—1) < t, em contradigdo com a minimalidade de P.

c) j é par, e i é impar. Logo vi € Sj/2 e vi € T|3,2), em contradi¢do com G
sendo bipartido.

d) j é impar, i é par. Similar ao caso c) temos v € Tj,2] e vi € Si/2, uma
contradigdo.

|
Num grafo geral ndo temos a parti¢do em S e T. Uma possivel alternativa é ini-
ciar a busca em Ry = X e aplicar a mesma busca alternante para descobrir uma
sequéncia de conjuntos R;. Mas mesmo em grafos bipartidos, Algoritmo 1.9
entdo falha: em

P

90— 0—@ 0—@ @

Q

os caminhos alternantes P e Q se encontram. Nota que isso corresponde com
o caso d) da Proposi¢ao 1.11, mas ndo é mais uma contradi¢ido, porque os
conjuntos R; contém vértices de S e T.

Esse problema pode ser resolvido por i) modificar o Algoritmo 1.9 para com-
binar caminhos encontrados em buscas iniciados em vértices livres diferentes,
ou, mais simples, mas menos eficiente, ii) buscar a partir de cada vértice x € X
separadamente.

128



1.7. Emparelhamentos

I won’t go into details here, but i) could be done along the lines of Korte e
Vygen (2008, p. 10.27). We keep an alternating forest, each tree starting
from some x € X. Then, an outer (even) vertex can’t have a free neighbor
in the same tree, since all free X have their own trees. So if we meet
an outer vertex in another tree, we have found an augmenting path.
Otherwise the vertex may be not in the tree yet: so it is matched, and
we add the vertex and its matched neighbor. What can’t happen in the
bipartite is the case of a blossom.

For ii) we could check all free vertices with an overhead of n times the
search, but this still won’t work as the second example shows.

Por ser mais simples considera a solugao ii): mesmo procurando a partir de
um tnico vértice x € X falha em grafos gerais. Por exemplo:

P

T~ T
Note que isso corresponde com o caso ¢) da Proposicao 1.11 é ndo é mais uma
contradigdo, porque em grafos gerais podemos ter lagos impares.

Sublety: case c¢) has been excluded by an S, T argument. But if we
assume P and Q share the initial vertex, we would find and odd loop, but
thus can’t happen in bipartite graphs. That’s the deeper reason there’s
no contradiction any more.

O exemplo acima sugere que ciclos impares formam o nicleo do Problema 1.1.
A arvore de busca do exemplo anterior pode ser visualizado como

Isso é o motivo para:

Definicao 1.7 (Flor)
Seja P = (vo,V1,...,v¢) uma caminhada M-alternante. Caso (i) vo € X, (ii)
todos vértices vo, ..., v¢_1 sdo distintos, (iii) t é impar, e (iv) existe um 1 < t,

{def:flowe

129



op : xxwalk}

natchingl1}

1. Algoritmos em grafos

i par, tal que vi = vy, P é chamado uma flor, com caule (vo,...,Vvi), base vy,
e blossom B = (Vi,Vi{1y...,V¢).

' yssom

flor

base

Caminhadas M-alternantes. Como encontrar caminhos M-alternantes fa-
lha, uma outra ideia, que vamos discutir agora, é buscar caminhadas M-
alternantes. Para conseguir isso, vamos introduzir um grafo direcionado au-
xiliar D = (V,A), onde A ={uv |ux € E, xv € M para um x € V}. A ideia é

substituir @-&-@ por ®—Q.

Essa construgdo tem a seguinte caracteristica

Proposicao 1.12
Sejam N(X) todos vértices vizinhos de vértices livres X. Entdo D possui um
caminho X-N(X) sse G possui uma caminhada X-X.

Prova. “=": é suficiente expandir os arcos e adicionar uma aresta final para
um vértice livre.

“&”. dado W = (vg,...,Vv¢) remove o vértice livre vy para obter uma cami-
nhada terminando em N(X). Podemos assumir que v¢_7 é o Unico vértice em
N(X), sendo um prefixo de W serve. Contrai arestas vziV2iy1 para arcos e
remove eventuais ciclos para obter um caminho. Como o vértice inicial é livre
e o vértice final v¢_; nao tem sucessor, ambos nao fazem parte de um ciclo.
Logo o caminho resultante é X-N(X). |
Isso nos permite, em tempo O(m) usar uma busca por profundidade em D
iniciando em X e terminando em algum vértice em N(X) para encontrar uma
caminhada M-alternante X—X. Porém o seguinte exemplo mostra que as flores
ainda s@o uma fonte de problemas para caminhadas M-alternantes.

Exemplo 1.9

Considere o exemplo da Figure 1.25. O caminho v{v3Vv5v;ve corresponde com
o caminho M-aumentante viv2Vv3Vv4V5vsV7vgVov,. Mas caminho vivgcgvsvyve
que corresponde com o caminhada v1voVvgV7VgV4Vs5VeV7VgVoVy que nao é M-
aumentante, mesmo sendo M-alternante entre dois vértices livres. O problema
novamente é o lago impar vgv4vsvg. O

130



ngl}

1.7. Emparelhamentos

o

Figura 1.25.: Grafo com emparelhamento, grafo auxiliar e duas caminhadas
M-alternantes.

Another example I have used: from Korte e Vygen (2008, p. 10.6).
le,ksﬂL/V//\ ] ,,7“_“ 3‘-.7.‘ .
SeADSERRERMRCNEe
P tch /)iﬁghi{VR i
BRRERa %

Nota que no Exemplo 1.9 o prefixo vivevgv;vgvavsve da segunda caminhada
é uma flor. Isso de fato sempre é o caso:

Proposigcao 1.13

Seja P = (vo,V1,...,V¢) uma caminhada M-alternante X—X mais curta. Entao
ou (i) P é um caminho M-aumentante, ou (ii) o prefixo (vo,v1,...,V;) para
algum j <t é uma flor.

Prova. Assume que P ndo é um caminho. Seleciona i < j tal que vi = vj e
j minimo. Entdo todos vértices vo,...,vj_1 sdo distintos. A diferenca j —1
nao pode ser par, sendo podemos remover (vi,...,V;) para obter a caminhada
(voy...,vi) M-alternante X-X mais curta que P, em contradicio com a mi-
nimalidade de P. Ainda, caso i é impar e j é par, temos vivi+1 € M, e
Vj—_1vj € M e como v; = v; também Vi1 = vj_1, em contradi¢cdo com a mi-
nimalidade de j. Logo i é par, j é impar, e (vo,...,V;j) satisfaz todos critérios
da Definicao 1.7 é por isso é uma flor. ]

Lidar com flores. O problema central entdo é como lidar com flores. Esse
problema tem uma solugdo simples: ao encontrar uma flor, contrai a sua

131

{prop:path



th:shrink}

1. Algoritmos em grafos

blossom B. Vamos escrever G/B para o grafo resultante, e assumir que ele

tem vértices G \ B U{B} (ou seja o vértice B representa a blossom contraida).

Ao contrair, vamos descartar lagos. Ainda dado um emparelhamento M, M /B

é o emparelhamento apds a contragdo. (Nota que somente caso [IMNJ(B)| < 1

onde 6(B) = {uv | u € B,v ¢ B}, M/B é um emparelhamento; por exemplo
produz e—e—e que nao é.)

O seguinte teorema nos garante a corretude dessa estratégia.

Teorema 1.33
M é um emparelhamento méximo em G sse M /B é um emparelhamento mé-
ximo em G/B.

Prova. Seja B = (Vi, Vig1y...,Vt)-

“=". Assume M/B nédo é maximo, e seja P um caminho M/B-aumentante.
Vamos mostrar que entao existe um caminho M-aumentante, logo M também
ndo é maximo. Caso B ¢ P, P ji é M-aumentante. Caso contrario, seja uB
a aresta em P que entra em B. Podemos assumir que uB é livre em M/B
(sendo inverte P). Seja uvj, i <j <'t, a aresta correspondente em G. Caso j é
impar, podemos expandir B para vj,Vj;1,...,V¢ para obter um caminho M-
aumentante (nota que vjvj,1 € M) em G. Similarmente, caso j é par, podemos
expandir B para vj,vj_1,...,V; para obter um caminho M-aumentante.

Problem: clearly, by construction, these paths are M-alternating; but why

need they be augmenting? What about the continuation of P beyond B?
p BT f

e S ] 0—omge it
I

]
izl

“&”: Assume M néo é maximo. Para caule Q, M & Q é um emparelhamento
da mesma cardinalidade porque v; tem indice par, pela Definicao 1.7. Entao
podemos supor que i = 0; nota que isso torna v; livre em M, e logo B é
libre em M/B. Dado um caminho M-aumentante P = (ug,...,us), entao
vamos construir um caminho M/B-aumentante em G/B, mostrando que M /B
nio é maximo. Caso PNB = (, P j4 é um caminho M/B-aumentante. Caso
contrério, podemos assumir uo ¢ B (sendo inverte P). Seja u;, j > 0 o primeiro
vértice em P em B. O caminho (ug,...,u;) é M/B-alternante, e como B ¢é
libre em G/B, também aumentante. |

Combinando as pecas. Com isso podemos resolver o Problema 1.1, como
segue.

132



1.7. Emparelhamentos

Algoritmo 1.10 (Busca caminho M-aumentante)
1) Encontra um caminho P M-alternante X-X mais curto. Caso
ndo tenha: para, ndo existe caminho M-aumentante. (Propo-
sicao 1.12).

2) Pela Proposigao 1.13 ou
a) P é um caminho M-aumentante: retorna P; ou

b) um prefixo de P é uma flor com blossom B: recursivamente
encontra um caminho P’ M/B-aumentante em G/B. De-
pois expande P’ para um caminho M-aumentante P em
G, de acordo com Teorema 1.33. retorna P”.

A corretude do algoritmo segue das proposi¢oes e teoremas mencionadas. A
complexidade de encontrar o caminho P no passo 1, bem como a complexi-
dade da contragdo para G/B no passo 2¢ ¢ O(m). Por isso, todas chamadas
recursivas nao custam mais que O(nm), porque em cada recursao temos pelo
menos um vértice a menos. Logo, o algoritmo canénico termina em tempo
O(n’m).

This algorithm is not efficient, but can be made to run in O(n3) using
better data structure. In particular, we don’t want to shrink the whole
graph all the time.

On the weighted case: the problems presented here and their solutions are
valid, also in the weighted case. But: new problems arise. To solve them,
we sometimes must expand blossoms again, to find augmenting paths.
This puts even more pressure on efficient data structures. A detailed
discussion seems at the moment beyond the scope of this lecture.

1.7.4. Tépicos avancados

Sketch of the rest:

o Extract Egervary’s algorithm (Frank, 2004) from the constructive
proof above, and discuss its complexity (should be O(|V|*C)?; its
not polynomial, and C is some input-dependent constant).

e Discuss Kuhn’s idea to increase the duals while searching for an
augmenting path in the Hungarian tree. Show his Hungarian algo-

133



1. Algoritmos em grafos

rithm (Kuhn 1955). Discuss its complexity (what is it? O(|E[[V|?)?)

« Discuss Munkres improvement (now O([V|?)?). Or was it Karp?
Or Tomizawa? Or Dinits?

o In the historical part, discuss Jacobi’s pre 1890 solution: http://
www.lix.polytechnique.fr/~ollivier/JACOBI/jacobiEngl.htm,
and the contribution of Monge.

o Show (below) how to derive the algorithm from primal-dual theory.

Aplicacao do método primal-dual Nessa secdo vamos explorar como
uma aplicagdo do método primal-dual resulta em um algoritmos combi-
natorial para o problema. O problema primal restrito as arestas indicadas
pelo teorema de folgas complementares é

minimiza Z Xy (RP)
vev

sujeito a Z Xy x5 =1 Yv eV
ueN(v)
Xe =0 Ve € E(G) \ E(Gy)
Xe > 0 Ve € E(Gy)
xg >0 Yv eV

com variaveis auxiliares x{ para cada vértice. Para simplificar observe
que a funcdo objetivo pode ser escrito como

Zx Z]— Z Xuv = V] — Zer

vev vev ueN (v ecE

e portanto o problema é equivalente com

maximiza Z Xe (RP?)
eckE
sujeito a Z Xy < 1 Yv eV
ueN (v)
Xe =0 Ve € E(G) \ E(Gy)
Xe > 0 Ve € E(Gy).

134

{mm: rp

{mm: rp



http://www.lix.polytechnique.fr/~ollivier/JACOBI/jacobiEngl.htm
http://www.lix.polytechnique.fr/~ollivier/JACOBI/jacobiEngl.htm

1.7. Emparelhamentos

Isso é o problema de encontrar um emparelhamento maximo no grafo G,
das arestas apertadas! O dual do problema restrito original é

maximiza Z ye (DRP)
vev
sujeitoa y, +y, <0 Ve € E(Gy)
yy <1 Yv eV
Yy, SO Vv e V.

Observe que caso (RP) possui uma solugao com valor 0 achamos um em-
parelhamento perfeito nas arestas apertadas. Esse emparelhamento tem
que ser 6timo pelo teorema forte de dualidade. Caso contrario podemos
usar a solugdo de (DRP) para melhorar a solugdo dual do primal.

What are we going to do from here?

o We apply algorithm 1.7 to (RP’), selecting always one path by
BFS. This is conceptually the same as applying the Edmonds-Karp
maximum flow.

o If we find a perfect matching, we are done.

e Otherwise: we have a s-t cut in the graph. This is equivalent to
the nodes reached in the BFS for an augmenting path. Let the
reachable set be V* = §* U T*.

o We are going to extract a feasible dual for (DRP) from this. The
claim is that

1 v e S*
-1 veT*
Yv = "
—1 veS\S
1 veT\T*

does the job. TBD: Check and prove this. Does not work like this:
its no solution for the dual of (RP’), but for the dual of (RP).
Prova. (Sketch.) We first show, that we have a feasible solution.
Consider some edge e = (u,v) € E(Gy). The only way (*) could not
be satisfied is when u € $*, but v & T*. Therefore e must be part
of the matching, and u is not free, otherwise v would be reachable.
Then, the only way to reach u is e, but this is impossible.

135

H{mm: drp}




{tab:emp}

{ex:mal}

{ex:ma2}

1. Algoritmos em grafos

Tabela 1.4.: Resumo emparelhamentos. Aqui C = maxgea [Cql-

Cardinalidade Ponderado

Bi-partido O(ny/mn/logn) (Alt et al, O(mm + n?logn) (Kuhn, 1955;

1991) O nlvf*bggééﬂl (Feder ¢ Munkres, 1957)
Motwani, 1995)

Geral O(mym) (Micali e Vazirani, O(n?®) (Edmonds, 1965)

1980)

mflog n /m)) (Goldberg e O(mn+n?logn) (H. N. Gabow,

logmn

Karzanov, 2004 Fremuth-Paeger  1990)
e Jungnickel, 2003)

O(mymnlognC) (Duan et al,

2018)

Let the value of the maximum matching be m. All matched vertices
have opposite duals —1 and 1, and therefore contribute in total O
to the value of the dual. TBD: now we have to argue that the
values of the remaining vertices sum up to m. We have two types
of remaining vertices: those free in S and those free in T. We can
set them all to 17! Hmm, something’s inverted. |

Next, we want to use this dual to improve the current dual of the
unrestricted problem.

Finally, we’d like to show the connection to Kuhn’s Hungarian al-
gorithm.

1.7.5. Notas

Duan et al. (2011) apresentam técnicas de aproximagao para emparelhamen-

tos.

1.7.6. Exercicios

Exercicio 1.8
E possivel somar uma constante ¢ € R para todos custos de uma instancia do
EPM ou EPPM, mantendo a otimalidade da solucao?

Exercicio 1.9
Prove a proposigao 1.7.

136




2. Tabelas hash

Em hashing nosso interesse é uma estrutura de dados H para gerenciar um
conjunto de chaves sobre um universo U e que oferece as operagdes de um
dicionario:

o Inser¢ao de uma chave ¢ € U: insert(c,H)
e Delegdo de uma chave ¢ € U: delete(c,H)
o Teste da pertinéncia: Chave ¢ € H? lookup(c,H)

Uma caracteristica do problema é que tamanho [U| do universo de chaves
possiveis pode ser grande, por exemplo o conjunto de todos strings ou todos
numeros inteiros. Portanto usar a chave como indice de um vetor de booleano
nao é uma opcdo. Uma tabela hash é um alternativa para outros estruturas de
dados de dicionarios, p.ex. arvores. O principio de tabelas hash: aloca uma
tabela de tamanho m e usa uma fung¢do hash h : U — [m] para calcular a
posicao de uma chave na tabela.

Como o tamanho da tabela hash é menor que o niimero de chaves possiveis,
existem chaves ci,c2 com h(ci) = h(cz), que geram colisoes. Logo uma
tabela hash precisa definir um método de resolucao de colisoes. Uma solucao
é Hashing perfeito: escolhe uma funcao hash, que para um dado conjunto de
chaves nao tem colisoes. Isso é possivel se o conjunto de chaves é conhecido e
estatico.

2.1. Hashing com listas encadeadas

Seja h : U — [m] uma func¢do hash. Mantemos uma colecio de m listas
loy...,lim_1 tal que a lista 1; contém as chaves ¢ com wvalor hash h(c) = i.
Supondo que a avaliacdo de h é possivel em O(1), a insercao custa O(1), e o
teste é proporcional ao tamanho da lista.

Para obter uma distribui¢do razoavel das chaves nas listas, supomos que h é
uma funcdo hash simples e uniforme:

Pr(h(c) =1i) = 1/m. (2.1)

Seja ny := [l;| o tamanho da lista i e cj; a varidvel aleatéria que indica se chave
j pertence a lista i. Temos Pr(cj; = 1) = Pr(h(j) =1). Aindan; = Z1<].<n Cji

137

{eq:hashun



O O U W N+

2. Tabelas hash

e com isso

E[ni] = EI Z cjil = Z Elcjil = Z Pr(h(c;) =1) =n/m.

1<j<n 1<j<n 1<j<n

O valor ac:=n/m é o fator de ocupagdo da tabela hash.

insert(c,H) :=
insert (c,ln(c))

lookup(c,H) :=
lookup (c,ln(c))

delete(c,H) :=
delete (c,ly())

Teorema 2.1
Uma busca sem sucesso precisa tempo esperado O(1 + o).

Prova. A chave ¢ tem a probabilidade 1/m de ter um valor hash i. O
tamanho esperado da lista i é «. Uma busca sem sucesso nessa lista precisa
tempo O(«). Junto com a avaliacdo da funcao hash em ©(1), obtemos tempo
esperado total ©(1 + «). [ ]

Teorema 2.2
Uma busca com sucesso precisa tempo esperado O(1 + o).

Prova. Supomos que a chave ¢ é uma das chaves na tabela com probabilidade
uniforme. Entdo, a probabilidade de pertencer a lista i (ter valor hash i) é
ni/n. Uma busca com sucesso toma tempo O(1) para avaliacio da funcao
hash, e mais um ntmero de operagdes proporcional a posi¢do p da chave na
sua lista. Com isso obtemos tempo esperado ©(1 + E[p]).

Para determinar a posigao esperada na lista, Elp], seja c1,...,cn a sequéncia
na qual as chaves foram inseridas. Supondo que inserimos as chaves no inicio
da lista, E[p] é um mais que o nimero de chaves inseridos depois de ¢ na
mesma lista.

Seja Xi; um varidvel aleatéria que indica se chaves ¢ e ¢j tem o mesmo valor
hash. E[Xi;] = Pr(h(ci) = h(c)) = Z1§k§m Pr(h(ci) = k) Pr(h(c;) = k) =
1/m. Seja p; a posicdo da chave c; na sua lista. Temos

Elpd =E[1+ ) Xyl=T1+) EXyl=1+n—i)/m

ji>1i jii>i

138



2.1. Hashing com listas encadeadas

e para uma chave aleatdria c

Epl= ) 1/mEpd= )Y 1/n(l+Mm—1i)/m)

1<i<n 1<i<n
=T4+n/m—n+1)/2m)=14+«/2 — /(2n).
Portanto, o tempo esperado de uma busca com sucesso é
O(1+Ep)) =02+ «/2 — a/2n) = O(1 + ).
]

Selecdo de uma funcdo hash Para implementar uma tabela hash, temos
que escolher uma fungao hash, que satisfaz (2.1). Para facilitar isso, supomos
que o universo de chaves é um conjunto U = [u] de nimeros inteiros. (Para
tratar outros tipos de chaves, costuma-se converté-los para nimeros inteiros.)
Se cada chave ocorre com a mesma probabilidade, h(i) = 1 mod m é uma
funcdo hash simples e uniforme. Essa abordagem é conhecida como método
de divisdo. O problema com essa fungdo na pratica é que ndo conhecemos a
distribuicao de chaves, e ela provavelmente nao é uniforme. Por exemplo, se
m é par, o valor hash de chaves pares é par, e de chaves impares é impar, e se
m = 2¥ o valor hash consiste nos primeiros k bits. Uma escolha que funciona
na pratica é um nimero primo “suficientemente” distante de uma poténcia de
2.

O método de multiplicacio define
h(c) = [m{Ac}|.

O método funciona para qualquer valor de m, mas depende de uma escolha
adequada de A € R. Knuth propés A ~ (v/5—1)/2.

Hashing universal Outra idéia: Para qualquer fun¢do hash h fixa, sempre
existe um conjunto de chaves, tal que essa funcdo hash gera muitas colisoes.
(Em particular, um “adversdrio” que conhece a fungao hash pode escolher
chaves ¢ € h™'(i) para qualquer posicéo i € [m], tal que h(c) =i é constante.
Para evitar isso podemos escolher uma func¢ao hash aleatéria de uma familia
de fungoes hash.

Uma familia H de fungdes hash U — [m] é universal se

lth € H | h(ct) =h(c2)}l = [H|/m

ou equivalente
Pr(h(c1) =h(cz)) =1/m

para qualquer par de chaves cq,cC3.

139



2. Tabelas hash

Teorema 2.3
Se escolhemos uma funcao hash h € ‘H uniformemente, para uma chave arbi-
traria ¢ o tamanho esperado de lp (¢ ¢

e a,casoc € H,e
e 14+ «, caso c € H.

Prova. Para chaves c1,c; seja Xij; = [h(cq1) = h(c2)] e temos
E[Xij] = Pr(Xy; = 1) = Pr(h(c1) = h(c2)) =1/m

pela universalidade de H. Para uma chave fixa c seja Y. o nimero de colisoes.

E[Yc] —E[ Z ch’:| = Z E[ch’] < Z 1/m-

c’eH c’eH c’eH
c’#c c’'#c c’#c

Para uma chave ¢ ¢ H, o tamanho da lista é Y., e portanto de tamanho
esperado E[Y.] < n/m = «. Caso ¢ € H, o tamanho da lista é 1+ Y, e com
E[Y.] = (n — 1)/m esperadamente

T+n—1)/m=T4+a—1/m<1+ .

Um exemplo de um conjunto de fungdes hash universais: Sejac = (co,...,Cr)m
uma chave na base m, escolhe a = (ag,..., a;)m randomicamente e define

hg = Z cia; mod m.

0<i<r

Hashing perfeito Hashing é perfeito sem colisdes. Isso podemos garantir so-
mente caso conhegcemos as chaves a serem inseridos na tabela. Para uma fun-
¢ao aleatoria de uma familia universal de func¢ées hash para uma tabela hash
de tamanho m, o niimero esperado de colisoes é E[Zwéj Xyl = Zi# E[Xy] <

2 o ntimero

n?/m. Portanto, caso escolhemos uma tabela de tamanho m > n
esperado de colisdes é menos que um. Em particular, para m > cn? com ¢ > 1
a probabilidade de uma colisao é Pr(zi?éj Xy >1) < E[Z#j Xy] < n?/m<

1/c onde a primeira desigualdade segue da desigualdade de Markov.

140



0 O Uik WK

—
W= OO

2.2. Hashing com endere¢camento aberto

2.2. Hashing com enderecamento aberto

Uma abordagem para resolugao de colisdes, chamada enderecamento aberto, é
escolher uma outra posi¢io para armazenar uma chave, caso h(c) é ocupada.
Uma estratégia para conseguir isso é procurar uma posicao livre numa permu-
tacdo de todos indices restantes. Assim garantimos que um insert tem sucesso
enquanto ainda existe uma posi¢éo livre na tabela. Uma fun¢ao hash h(c,1)
com dois argumentos, tal que h(c,1),...,h(c, m) é uma permutacdo de [m],
representa essa estratégia.

insert(c,H) :=
for i in [m]
if Hlh(c,1)] = free
H[h(c,i)]=c
return

lookup(c,H) :=
for i in [m]
if Hlh(c,1)] = free
return false
if H[h(c,1)] =c¢
return true
return false
A funcgao h(c,1) é uniforme, se a probabilidade de uma chave randémica ter
associada uma dada permutacdo é 1/m!. A seguir supomos que h é uniforme.

Teorema 2.4
As funcgoes lookup e insert precisam no maximo 1/(1 — «) testes caso a chave
nao estd na tabela.

Prova. Seja X o ntmero de testes até encontrar uma posigao livre. Temos

EX =) iPr(X=1)=) ) Pr(X=j)=) Pr(X>1i).

i>1 i>1§>1 i>1

Com T; o evento que o teste 1 ocorre e a posicao 1 é ocupada, podemos escrever

PI’(X > i) = PI‘(T] n-- -ﬂTi,ﬂ = PY(T1 ) PI"(T2|T1 ) PI"(T3|T1 R Tz) s Pr(Ti,1 [Ty yoee

Agora Pr(T;) = n/m, e como h é uniforme Pr(T2|T;) =n—1/(m—1) e em
geral
Pr(TTh,... Tkcy) =(m—k+1)/(m—k+1) <n/m=«.

141

»T172)-



2. Tabelas hash

Portanto Pr(X > 1) < ot~ ' e

XI=) PriXx>1) <) o T=) ot =1/(1—w).

i>1 i>1 i>0
| |
Lema 2.1
Para i <j, temos H; —H; <Inj —Ini.
Prova.
I
H; —H; <J dx =Inj—Ini
i
| |

Teorema 2.5

Caso o < 1 a funcdo lookup precisa esperadamente 1/0cIn1/(1 — «) testes
caso a chave esteja na tabela, e cada chave tem a mesma probabilidade de ser
procurada.

Prova. Seja c a i-gésima chave inserida. No momento de insercdo temos
a = (1—1)/m e o nimero esperado de testes T até encontrar a posigao livre
foi 1/(1—(i—1)/m) = m/(m — (i —1)), e portanto o nimero esperado de
testes até encontrar uma chave arbitraria é

T=1/n > m/(m—({i-1)=1/a > 1/(m—1i)=1/a(Hpn—Hpn n)

1<i<n 0<i<n
ecom Hy, —H_, <In(m) —In(m—mn) temos
T =1/a(Hm —Hm_n) < 1/x(In(m) —In(m—n)) = 1/xIn(1/(1 — «)).

|
Remover elementos de uma tabela hash com enderecamento aberto é mais
dificil, porque a busca para um elemento termina ao encontrar uma posicao
livre. Para garantir a corretude de lookup, temos que marcar posi¢bes como
“removidas” e continuar a busca nessas posi¢des. Infelizmente, nesse caso,
as garantias da complexidade ndo mantem-se — ap6s uma série de delegoes
e insergoes toda posicao livre serd marcada como “removida” tal que delete
e lookup precisam n passos. Portanto o enderegcamento aberto é favoravel
somente se temos poucas delecoes.

142



O © 00O ULk W

—_

Tt W N =

2.3. Cuco hashing

Funcdes hash para enderecamento aberto
e Linear: h(c,i) = h(c) +1 mod m
o Quadratica: h(c,i) = h(c)+ci1i+ c2i? mod m
¢ Hashing duplo: h(c,i) = hy(c) +1ihz(c) mod m

Nenhuma das fungoes é uniforme, mas o hashing duplo mostra um bom de-
sempenho na pratica.

2.3. Cuco hashing

Cuco hashing é outra abordagem que procura posigoes alternativas na tabela
em caso de colisdes, com o objetivo de garantir um tempo de acesso constante
no pior caso. Para conseguir isso, usamos duas funcoes hash h; e hy, e inse-
rimos uma chave em uma das duas posigdes hq(c) ou hy(c). Desta forma a
busca e a dele¢ao possuem complexidade constante O(1):

lookup(c,H) :=
if H[hi(c)] =c or H[ha(c)l =c

return true

return false

delete(c,H) :=
if Hlh(c)]l=c
H[hq(c)] := free
if H[hy(c)] =c¢
Hlhy(c)] := free
Inserir uma chave é simples, caso uma das posicoes alternativas é livre. No
caso contrario, a solugdo do cuco hashing é comportar-se como um cuco com
ovos de outras aves que joga-los fora do seu “ninho”: “insert” ocupa a posicao
de uma das duas chaves. A chave “jogada fora” serd inserida novamente na
tabela. Caso a posicdo alternativa dessa chave é livre, a inser¢do termina.
Caso contrario, o processo se repete. Esse procedimento termina apds uma
série de reinsercoes ou entra num laco infinito. Nesse tltimo caso temos que
realocar todas chaves com novas fungoes hash.

insert(c,H) :=
if H[hi(c)] =c or H[ha(c)l =c
return

p:=hi(c)
do n vezes

143



2. Tabelas hash

if Hp] = free
Hlpl :=c¢
return

swap (c,H[p])

{ escolhe a outra posigdo da chave atual }

if p=hy(c)
p:=hz(c)
else
p = hi(c)
rehash (H)

insert (c,H)

Uma maneira de visualizar uma tabela hash com cuco hashing, é usar o
grafo cuco: caso foram inseridas as chaves cj,...,cn na tabela nas posi-
¢Oes P1y...,Pn, 0 grafo é G = (V,A), com V = [m] é (pi,ha(ci)) € A caso
hi(ci) = pi e (pi,hi(ci)) € A caso ha(ci) = pi, i.e., 0s arcos apontam para
a posicao alternativa. O grafo cuco é um grafo direcionado e eventualmente
possui ciclos. Uma caracteristica do grafo cuco é que uma posicao p é eventu-
almente analisada na insercao de uma chave c somente se existe um caminho
de hy(c) ou hy(c) para p. Para a analise é suficiente considerar o grafo cuco

nao-direcionado.

Exemplo 2.1

Para chaves de dois digitos cic2 seja hy(c) = 3¢c; + ¢z mod m e hy(c) =
4¢q1 + c3. Para m = 10 obtemos para uma sequencia aleatéria de chaves

c 31 41 59 26 bH3 B8 97

hi(¢c) 0 3 4 2 8 3 4

hafe) 3 7 9 4 3 8 3

e a seguinte sequencia de tabelas hash
O (1] 2|3 |4 ]|5|6|7]|8]|09
Inicial

31 Insercao 31
31 41 Insercao 41
31 41 | 59 Insercao 59
31 26 | 41 | 59 Insercao 26
31 26 | 41 | 59 53 Insercao 53
31 26 | 58 | 59 41 | 53 Insercdo 58
31 26 | 58 | 97 41 | 53 | 59 | Insercao 59

O grafo cuco correspondente é

144



2.4. Filtros de Bloom

OJOROAOS

.0 008 6

Lema 2.2
Para posi¢oes i e j e um ¢ > 1 tal que m > 2cn, a probabilidade de existir
um caminho minimo de i para j de comprimento d > 1 é no maximo ¢~ ¢/m.

Prova. Observe que a probabilidade de um item c ter posi¢oes i e j como
alternativas é no maximo Pr(hi(c) = i,ha(c) = j) + Pr(hy(c) = j,hal(c) =
i) = 2/m?2. Portanto a probabilidade de pelo menos uma das n chaves ter
posicoes alternativas i e j é no maximo 2n/m? = ¢~ ' /m.

A prova do lema é por indugao sobre d. Para d = 1 a afirmagao esta correto
pela observacao acima. Para d > 1 existe um caminho minimo de compri-
mento d — 1 de 1 para um k. A probabilidade disso ¢ no maximo ¢~ (=1 /m
e a probabilidade de existir um elemento com posigoes alternativas k e j no
méximo ¢~'/m. Portanto, para um k fixo, a probabilidade existir um cami-
nho de comprimento d é no maximo ¢~4/m? e considerando todas posicoes k
possiveis no maximo c¢~4/m. |
Com isso a probabilidade de existir um caminho entre duas chaves i e j, é
igual a probabilidade de existir um caminho comegando em hq (i) ou h(i) e
terminando em hy(j) ou hz(j), que é no maximo 4 .o, ¢ /m < 4/m(c —
1) = O(1/m). Logo o ntimero esperado de itens visitados numa insercio é
In/m(c—1) = O(1), caso ndo é necessario reconstruir a tabela hash.

2.4. Filtros de Bloom

Um filtro de Bloom armazena um conjunto de n chaves, com as seguintes
restricoes:

e Nao é mais possivel remover elementos.

« E possivel que o teste de pertinéncia tem sucesso, sem o elemento fazer
parte do conjunto (“false positive”).

Um filtro de Bloom consiste em m bits B;, 1 <1 < m, e usa k func¢ées hash
hiy.ooy hi.

145



© 00 O UL W N+

—
o

2. Tabelas hash

insert (c,B) :=
for i in 1...k
Oni(e) =1
end for

lookup(c,B) :=
for i in 1...k
if bpe) =0
return false
return true
Apés de inserir n chaves, um dado bit é ainda 0 com probabilidade

kn kn
e 1-3)" = (5 e

que é igual ao valor esperado da fracdo de bits ndo setados'. Sendo p a fracdo
de bits nao setados realmente, a probabilidade de erradamente classificar um
elemento como membro do conjunto é

(-0~ (1 —p)w (1 e /m)”

porque p é com alta probabilidade perto do seu valor esperado (Broder e
Mitzenmacher, 2003). Broder e Mitzenmacher (2003) também mostram que
o numero 6timo k de funcoes hash para dados valores de n,m é m/nln2 e
com isso temos um erro de classificacdo ~ (1/2).

Aplicacoes:

1. Hifenacao: Manter uma tabela de palavras com hifenacdo excepcional
(que ndo pode ser determinado pelas regras).

2. Comunicagao efetiva de conjuntos, p.ex. selecdo em bancos de dados
distribuidas. Para calcular um join de dois bancos de dados A, B, pri-
meiramente A filtra os elementos, manda um filtro de Bloom S para B
e depois B executa o join baseado em Sa. Para eliminagdo de eventuais
elementos classificados erradamente, B manda os resultados para A e A
filtra os elementos errados.

e http://en.m.wikipedia.org/wiki/Locality-sensitive_hashing

Lembrando que e* > (1 +x/n)™ para n > 0.

146


http://en.m.wikipedia.org/wiki/Locality-sensitive_hashing

2.4. Filtros de Bloom

Tabela 2.1.: Complexidade das operagoes em tabelas hash. Complexidades
em negrito sdo amortizados.

insert lookup delete
Listas encadeadas 0(1) 01+ «) O(1 + «)
Enderecamento aberto  O(1/(1 — «)) o(1/(1 — ) -
(com/sem sucesso) O(1/aln1/(1—«)) O(1/axln1/(1 —«)) -
Cuco 0(1) o) (1)

ash}

147






3. Algoritmos de aproximacao

Para varios problemas nao conhecemos um algoritmo eficiente. Para proble-
mas NP-completos, em particular, uma solugao eficiente é pouco provavel. Um
algoritmo de aproximacao calcula uma solugao aproximada para um problema
de otimizagao. Diferente de uma heuristica, o algoritmo garante a qualidade
da aproximagao no pior caso. Dado um problema e um algoritmo de aproxima-
¢do A, escrevemos A(x) =y para a solugdo aproximada da instancia x, @(x,y)
para o valor dessa solugdo, y* para a solugao 6tima e OPT(x) = @(x,y*) para
o valor da solugao 6tima.

3.1. Problemas, classes e reducoes

Definicao 3.1
Um problema de otimizagao TT = (P, @, opt) é uma relagdo bindria P C I x S
com instancias x € I e solugdes y € S, junto com

e uma fungdo de otimizacao (fun¢io de objetivo) @ : P — N (ou Q).
e um objetivo: Encontrar minimo ou maximo
OPT(x) = opt{e(x,y) | (x,y) € P}
junto com uma solugao y* tal que f(x,y*) = OPT(x).

O par (x,y) € P caso y é uma solucdo para x.

Reductions are as follows.

e From evalution to decision: do a form of binary search (e.g. for ma-
ximization double the value until unfeasible, and the binary search)
in logarithmic time.

e From construction to evaluation: in general unclear; for many NO
problems, in particular self-reducible ones (e.g. SAT): guess solution
elements and evaluate; keep them if the best value remains the
same.

149



3. Algoritmos de aproximag¢ao

Uma instdncia x de um problema de otimizacdo possui solugoes S(x) = {y |

(x,y) € P}

Convencao 3.1
Escrevemos um problema de otimizagdo na forma

NoOME
Instancia x
Solucdo y

Objetivo Minimiza ou maximiza ¢@(x,y).

Com um dado problema de otimizacgao correspondem trés problemas:
o Construcao: Dado x, encontra a solugao étima y* e seu valor OPT(x).
e Avaliacdo: Dado x, encontra valor 6timo OPT(x).

o Decisdo: Dado x e k, decide se OPT(x) > k (maximizacao) ou OPT(x) <
k (minimiza¢ao).
f:polimit}
Definicao 3.2
Uma relacao binaria R é polinomialmente limitada se

Jp € poly : V(x,y) € R: |yl < p(lx]).

Definicao 3.3 (Classes de complexidade)

A classe PO consiste dos problemas de otimizagao tal que existe um algoritmo
polinomial A com @(x,A(x)) = OPT(x) para x € L.

A classe NPO consiste dos problemas de otimizagao tal que

(i) As instancias x € I sdo reconheciveis em tempo polinomial.
(ii) A relagdo P é polinomialmente limitada.

(iii) Para y arbitrdrio, polinomialmente limitado: (x,y) € P é decidivel em
tempo polinomial.

(iv) @ é computédvel em tempo polinomial.

150



pall}

pa2}

3.1. Problemas, classes e redugoes

Definicao 3.4

Uma reducdo preservando a aprorimacdo entre dois problemas de minimizagao
TT; e TT, consiste num par de fungoes f e g (computdveis em tempo polinomial)
tal que para instancia x7 de Ty, x2 := f(x7) é instancia de TT; com

OPT]‘[2 (Xz) S OPT]‘[1 (X]) (31)
e para uma solucgéo y, de TT, temos uma solucéo y; := g(x1,y2) de TT; com
o, (x1,Y1) < @, (x2,Y2) (3.2)

Uma reducgao preservando a aproximacao fornece uma x-aproximacao para ITy
dada uma «-aproximacao para IT,, porque

o, (x1,Y1) < @1, (x2,y2) < aOPTy, (x2) < «OPTy, (x1).

Observe que essa defini¢do é vale somente para problemas de minimizagdo. A
defini¢do no caso de maximizacéo é semelhante.

[More complexity classes]
e PTAS: t(n,e) ~nfle),
e EPTAS: t(n,e) =~ nOfle)
o FPTAS: t(n,¢€) =~ poly(n,1/e).

We have FPTAS C EPTAS C PTAS, and if P # NP also FPTAS # PTAS
and PTAS # APX.
We also have: Theorem:

FTPAS — pseudo-polynomial <= not strongly NP-hard.

[Proof technique] We start with minimization. The main proof technique:
find some structure y, usually a relaxation, such that

o LB(x) = d(x,y) < OPT(x), and then
o d(x,A(x)) < rLB(x),

from which ¢(x,A(x)) < rOPT(x) follows. Here we design y such that
the solution our algorithm finds is easier evaluated compared to y.
For maximization this becomes:

« UB(x) = ¢(x,y) = OPT(x), and

151



3. Algoritmos de aproximag¢ao

o d(x,Ax)) 2 TUB(x).

3.2. Medidas de qualidade

Uma aprozimagio absoluta garante que D(x,y) = |OPT(x) — ¢ (x,y)] < D
para uma constante D e todo x, enquanto uma aprozimacdo relativa garante
que o erro relativo E(x,y) = D(x,y)/ max{OPT(x), ¢(x,y)} < € < 1 todos
x. Um algoritmo que consegue um aproximagao com constante € também
se chama e-aproximativo. Tais algoritmos fornecem uma solugdo que difere
no méaximo um fator constante da solucao 6tima. A classe de problemas de
otimiza¢do que permitem uma e-aproximacao em tempo polinomial para uma
constante € se chama APX.

Uma defini¢do alternativa é a taza de aprozimagao R(x,y) =1/(1—E(x,y)) >
1. Um algoritmo com taxa de aproximacdo 1 se chama r-aproximativo. (Nao
tem perigo de confusdo com o erro relativo, porque r > 1.)

Nossa definicdo segue Ausiello et al. (1999). Ela tem a vantagem, de
ser ndo-ambigua entre o erro relativo e o erro absoluto. Um algoritmo
de minimizacdo que garante no maximo um fator 3 da solugdo étima ou
um algoritmo de maximizac¢do que garante no minimo um ter¢o da so-
lugdo 6tima é 2/3-aproximativo ou 3-aproximativo. A defini¢do tem a
desvantagem que ela é pouco intuitivo: seria mais claro, chamar o pri-
meiro algoritmo 3-aproximativo, e o segundo 1/3-aproximativo, usando
simplesmente a taxa de aproximagdo r = @(x,y)/OPT(x). Hromkovi¢
(2001) usa ...

Aproximacao relativa

4+ OPT(x) +  oxy)
D(x,y) D(x,y)
+  ey) 4 OPT(x)
X _ Di(x,
E(x,y) = DO(P’”IFJ) E(x,y) = ﬁ,g)}

152



3.3. Técnicas de aproximacao

Exemplo 3.1

Coloragao de grafos planares e a problema de determinar a arvore geradora e
a arvore Steiner de grau minimo (Fiirer e Raghavachari, 1994) permitem uma
aproximagao absoluta, mas nao o problema da mochila.

Os problemas da mochila e do caixeiro viajante métrico permitem uma apro-
ximacao absoluta constante, mas nao o problema do caixeiro viajante. O

4-colorability in O(n?); decision 3 or 4 colors in NP-complete. Corrob.

Fiirer e Raghavachari (1994) show how to get MSTs or Steiner trees whose
minimal (maximum) degree is within one of the optimal. Singh e Lau (2007)
extend this result for weighted case of MSTs. They show that it is possible to
get a MST whose weight is at most the weight of an optimal MST of degree
less than k, and whose maximum degree is at most k + 1.

3.3. Técnicas de aproximacao

3.3.1. Algoritmos gulosos

Cobertura de vértices

Algoritmo 3.1 (Cobertura de vértices)
Entrada Grafo ndo-direcionado G = (V, E).

Saida Cobertura de vértices C C V.

1 VC-GV(G) :=

2 (C,G) := Reduz(G)

3 if V=0 then

4 return C

5 else

6 escolhe v e V:deg(v) =A(G) { grau maximo }
7 return CU{v}UVC-GV(G —v)

8 end if

Proposicao 3.1

O algoritmo VC-GV é uma O(log |V|)-aproximacio.

Prova. Seja G; o grafo apés iteragao i e C* uma cobertura 6tima, i.e., ¢ ;=
|C*| = OPT(G).

A cobertura 6tima C* todos Gi. Logo, a soma dos graus dos vértices em C*
(contando somente arestas em Gj) é pelo menos o nimero de arestas em Gj

> 86, (v) > |Gl

veC*

153



3. Algoritmos de aproximag¢ao

e o grau médio dos vértices C* em G; satisfaz

S 86, (/e > |Gl .

veC*

Como o grau maximo do grafo é pelo menos o grau médio em C* temos
A(Gl) > ||GLH/C)

0 que permite estimar

Y AG)= Y IGil/e= Y lGell/e=Gell =G~ Y AlGy)

0<i<e 0<i<e 0<i<e 0<i<c

e logo
> A(Gi) > G]l/2,
0<i<c
i.e. o algoritmo remove em c iteragoes pelo menos a metade das arestas. Essa
estimativa continua a ser valida, logo apods

¢ [1g |G < ¢ [2log|G[] = O(c log|Gl)

iteragbes nao tem mais arestas. Como em cada iteracao foi escolhido um
vértice, a taxa de aproximacao é log|G|. |

Algoritmo 3.2 (Cobertura de vértices)
Entrada Grafo nao-direcionado G = (V, E).

Saida Um cobertura de vértices C C V.

1 VC-GE(G) :=

2 (C,G) := Reduz(G)

3 if E=( then

4 return C

5 else

6 escolhe e={u,vieE

7 return CU {u,v}UVC-GE(G — {u,v})
8 end if

Proposicao 3.2
Algoritmo VC-GE é uma 2-aproximagao para VC.

Prova. Cada cobertura C contém pelo menos um dos dois vértices escolhidos,
logo temos ¢pvc.ge(G) < 2|C|, e no caso particular da solugdo 6tima também
dvege(G) < 20PT(G). u

154



3.3. Técnicas de aproximacao

Algoritmo 3.3 (Cobertura de vértices)
Entrada Grafo nao-direcionado G = (V, E).

Saida Cobertura de vértices C C V.

1 VC-B(G) :=

2 (C,G) := Reduz(G)

3 if V=0 then

4 return C

5 else

6 escolhe v e V:deg(v) =A(G) { grau maximo }
7 Cy :=CU{V}UVC-B(G —v)

8 C2:=CUN()UVC-B(G —v—N(v))

9 if |Ci| < |Cz2| then
10 return C;

11 else

12 return C;

13 end if

14 end if

Problema da mochila
KNAPSACK

Instancia Um niimero n de itens com valores vi € N e tamanhos t; € N,
para i € [n], um limite M, tal que t; < M (todo item cabe na
mochila).

Solucdo Uma selecao S C [n] tal que ) ;¢ ti <M.

Objetivo Maximizar o valor total } ;g Vi.

Observagao: O problema da mochila é NP-completo. {problem:k

Como aproximar?

o Idéia: Ordene por vi/t; (“valor médio”) em ordem decrescente e enche
o mochila o mais possivel nessa ordem.

Abordagem
1 K—G (Vi ,ti) =
2 ordene os itemns tal que vi/ti >Vvj/t;, Vi<j.

155



© 00 3O Ut W

S O W N

3. Algoritmos de aproximag¢ao

for 1€ X do
if t{ <M then
S:=SuUf{i}
MZ:M—ti
end if
end for
return S

Aproximacao boa?
o Considere

vi=1...,vh1=1vp, =M-—1
th=1..,thr =1Lt =M=kn k € N arbitrario

o Entao:

vi/ti =1 vn 1 /thr = Lve/th = (M_1)/M<1

e K-G acha uma solugdo com valor @(x) = n—1, mas o étimo é OPT(x) =
M—1.

e Taxa de aproximacio:

Mf1_kn—1 kn —k

n—-1 n—17" n-1 =k

OPT(x)/¢(x) =

¢ K-G nao possui taxa de aproximacao fixa!

¢ Problema: Nao escolhemos o item com o maior valor.

Tentativa 2: Modificacdo

K—G' (vi,ty) :=
S1 = K—G(vi,ty) // solugdo gulosa
Vioi= ) ies, Vi
S, := {argmax;vi} // maior item
V2 1= ) ies, Vi

retorna a maior das duas solugdes

156



3.3. Técnicas de aproximacao

Aproximacao boa?
¢ O algoritmo melhorou?

e Surpresa

Proposicao 3.3
K-G’ é uma 2-aproximacao, i.e. OPT(x) < 2¢k.q’(x).

Prova. Seja j o primeiro item que K-G nao coloca na mochila. Nesse ponto
temos valor e tamanho

v = Z vi < ok.a(x) (3.3)
1<i<j

=) <M (3.4)
1<i<i

Afirmacao: OPT(x) < vj +vj. Nesse caso
(a) Seja v; <vj.
OPT(x) < vj +v; < 2vj < 2¢k.¢(x) < 20k G’
(b) Seja vj > vj
OPT(x) < vj +vj < 2vj < 2Vpax < 20k G-

Prova da afirmacdo: No momento em que item j ndo cabe, temos espago
M — t; < t; sobrando. Como os itens sdo ordenados em ordem de densidade
decrescente, obtemos um limite superior para a solucao 6tima preenchendo
esse espaco com a densidade vj/t;:

OPT(x) <) + (M—1)2 <vj +v;.
j

3.3.2. Aproximacées com randomizacao
Randomizacao
o Idéia: Permite escolhas randémicas (“joga uma moeda”)
¢ Objetivo: Algoritmos que decidem correta com probabilidade alta.
¢ Objetivo: Aproximagoes com wvalor esperado garantido.
e Minimizacao: E[pa(x)] < 20PT(x)
e Maximizacdo: 2E[@A (x)] > OPT(x)

157



3. Algoritmos de aproximag¢ao

Randomizacao: Exemplo

SATISFATIBILIDADE MAXIMA, MAXIMUM SAT

Instancia Uma férmula ¢ € L£L(V) sobre varidveis V = {vi,...,vin}, @ =
CiNCyA---ACy em FNC.

Solucdo Uma atribuicdo de valores de verdade a:V — B.

Objetivo Maximiza o nimero de cldusulas satisfeitas

HCi [ [Ci], = 1}.

(alg:satr} Nossa solucao

1 SAT—R(g) :=

2 seja @ = @(vi,...,Vk)

3 for all i€ [l,k] do

4 escolhe vi=1 com probabilidade 1/2
5 end for

Observacao 3.1
A quantidade [C], é o valor da cldusula C na atribuicao a.

Aproximacao?

e Surpresa: Algoritmo SAT—R é 2-aproximacao.

Prova. O valor esperado de uma cldusula C com 1 varidveis é E[[C]] =

Pr([C] =1)=1—-2"">1/2. Logo o valor esperado do nimero total T =
Zie[n] [C;i] de clausulas satisfeitas é

EM=E[Y [Cll= Y EICI >n/2>OPT/2
]

ie[n i€[n]

pela linearidade do valor esperado.

Outro exemplo
Cobertura de vértices guloso e randomizado.

1 VC—RG(G) :=
2 seja w:i=) . deg(v)
3 C:=0

158



© 00~ O U

3.4. Esquemas de aproximacgao

while E#0 do
escolhe VEV com probabilidade deg(v)/w
C:=Cu{v}
G=G—v
end while
return CUV
Resultado: E[pvo.ra(x)] < 20PT(x).

3.3.3. Programacao linear

Técnicas de programagcao linear sdo frequentemente usadas em algoritmo de
aproximagao. Entre eles sdo o arredondamento randomizado e algoritmos
primais-duais.

Exemplo 3.2 (Arredondamento para cobertura por conjuntos)
Considere o problema de cobertura por conjuntos

minimiza Z WiXi, (3.5)
ien]

sujeito a Z xi > 1, vu e U,
ien]lueCy
x; € {0, 1}, Vie nl.

Seja fe a frequéncia de um elemento e, i.e. o nimero de conjuntos que contém
e e f a maijor frequéncia. Um algoritmo de arredondamento simples é dado
por

Teorema 3.1
A selegdo dos conjuntos com x; > 1/f na relaxagdo linear de (3.5) é uma
f-aproximacao do problema de cobertura de conjuntos.

Prova. Como [{i € [n] |u € Ci}| < f, temos x; > 1/f em média sobre esse
conjunto. Logo existe, para cada u € U um conjunto com x; > 1/f que cobre
u e a selecdo é uma solugao valida. O arrendondamento aumenta o custo por
no maximo um fator f, logo temos uma f-aproximagao. | %

3.4. Esquemas de aproximacao
Novas consideracoes

¢ TFrequentemente uma r-aproximacao nao é suficiente. 1 = 2: 100% de
erro!

159

{ilp:cpc}



S U W N =

3. Algoritmos de aproximag¢ao

« FExistem aproximagoes melhores? p.ex. para SAT? problema do mochila?
o Desejavel: Esquema de aproximacdo em tempo polinomial (EATP);
polynomial time approximation scheme (PTAS)
— Para cada entrada e taxa de aproximacao r:

— Retorne r-aproximacao em tempo polinomial.

Um exemplo: Mochila maxima (Knapsack)

o Problema da mochila (veja pagina 155):
o Algoritmo MM-PD com programacao dindmica (pag. 226): tempo O(n Y_
e Desvantagem: Pseudo-polinomial.

Denotamos uma instancia do problema da mochila com I = ({vi},{t;i}). Seja
r > 1 uma qualidade de aproximagao desejada.

MM—PTAS(I,r) :=
Vnax = maxi{vi}
ti= Uogz %Vmax/nJ
v{:=|vi/2'] para i=1,...,n
Define a nova instancia I'= ({v[},{ti})
return MM-PD(I’)

Teorema 3.2
MM-PTAS é uma r-aproximacao em tempo O(rn3/(r —1)).

Prova. A complexidade da preparacio nas linhas 1-3 é O(n). A chamada
para MM-PD custa

AN Vi
O(“ 2 Vi) - O(“ 2 G 1)/r)(vmax/n))

i€[n] i€[n]

_ T 2 ) _ r .3
_O(T_1n Z}vl/vmax> O(T_]n)

ien

Seja S = MM-PTAS(I) a solucdo obtida pelo algoritmo e $* uma solucao

160

ien]

\



3.4. Esquemas de aproximacgao

Otima.
env-pras(LS) =) vi > Y 2% |vi/2Y) definigdo de ||
ieS ieS$S
> Z 2t Lvi/ZtJ otimalidade de MM-PD sobre v/
ies
>y w2 (A.2)
ies*
= ( > vi) —248¥|
ies*
> OPT(I) — 2tn
Portanto
OPT(I
OPT(I) < omm-pras(l,S) +2'n < oavi-pras(L,S) + . ()Ztn

2t

vmax

< OPT(I) (1 — ) < @mm-pras(], S)

e com 2'N/Viyax < (r—1)/1

& OPT(I) < romm-pras(L,S).

Um EATP frequentemente nao é suficiente para resolver um problema ade-
quadamente. Por exemplo temos um EATP para

« oproblema do caixeiro viajante euclidiano com complexidade O(n3000/¢)

(Arora, 1996);

e o problema do mochila multiplo com complexidade O(n'?lles1/ c)/e’ )
(Chekuri, Kanna, 2000);

e o problema do conjunto independente maximo em grafos com complexi-

dade O(n@#/mM/e*+1)2(1/e*+2)%) (Erlebach, 2001).

Para obter uma aproximagao com 20% de erro, i.e. € = 0.2 obtemos algoritmos
com complexidade O(n'3000) O(n375000) ¢ O(n>23804) respectivamente!

161



{fig:gfm}

3. Algoritmos de aproximag¢ao

Figura 3.1.: Grafo com fecho métrico.

3.5. Aproximando o problema da arvore de Steiner minima

Seja G = (V, A) um grafo completo, nao-direcionado com custos cq > 0 nos
arcos. O problema da arvore Steiner minima (ASM) consiste em achar o
subgrafo conexo minimo que inclui um dado conjunto de vértices necessarios
ou terminais R C V. Esse subgrafo sempre é uma drvore (ex. 3.1). O conjunto
V\ R forma os vértices Steiner. Para um conjunto de arcos A, define o custo

C(A) - ZaEA Ca-

Observacao 3.2

ASM é NP-completo. Para um conjunto fixo de vértices Steiner V' C V\R, a
melhor solucio é a drvore geradora minima sobre RUV'. Portanto a dificuldade
é a selecao dos vértices Steiner da solucao 6tima. O

Definicao 3.5
Os custos sao métricos se eles satisfazem a desigualdade triangular, i.e.

Cij < Cik + Cyj
para qualquer tripla de vértices i, j, k.

Teorema 3.3
Existe uma redugao preservando a aproximagao de ASM para a versdo métrica
do problema.

Prova. O fecho métrico de G = (V, A) é um grafo G’ completo sobre vértices
e com custos c{j = dyj, sendo di; o comprimento do menor caminho entre 1
ej em G. Evidentemente c{; < cyj e portanto (3.1) ¢ satisfeita. Para ver que
(3.2) é satisfeita, seja T’ uma solugdo de ASM em G’. Define T como unido de
todos caminhos definidos pelos arcos em T/, menos um conjunto de arcos para
remover eventuais ciclos. O custo de T é no mdximo ¢(T’) porque o custo de
todo caminho é no maximo o custo da aresta correspondente em T'. |
Consequéncia: Para o problema do ASM é suficiente considerar o caso métrico.

162



asm}

3.6. Aproximando o PCV

2

Figura 3.2.: AGM sobre R e melhor solucio. @: vértice em R, ©: vértice
Steiner.

Teorema 3.4
O AGM sobre R é uma 2-aproximagdo para o problema do ASM.

Prova. Considere a solucdo 6tima S* de ASM. Duplica todas arestas' tal
que todo vértice possui grau par. Encontra um ciclo Euleriano nesse grafo.
Remove vértices duplicados nesse caminho. O custo do caminho C obtido
dessa forma nao é mais que o dobro do custo original: o grafo com todas
arestas custa 2¢(S*) e a remocao de vértices duplicados ndo aumenta esse
custo, pela metricidade. Como esse caminho é uma arvore geradora, temos

c(A) < c¢(C) < 2¢(S*) para AGM A. [ |

3.6. Aproximando o PCV

Teorema 3.5
Para qualquer fungdo «(n) computavel em tempo polinomial o PCV néo pos-
sui a(n)-aproximacao em tempo polinomial, caso P % NP.

Prova. Via reducdo de HC para PCV. Para uma instancia G = (V,; A) de HC
define um grafo completo G’ com

1 €A
Ca:{, a b

a(n)n, caso contrario.

Se G possui um ciclo Hamiltoniano, entdao o custo da menor rota é n. Caso
contrario qualquer rota usa ao menos uma aresta de custo o(n)n e portanto
o custo total é > a(n)n. Portanto, dado uma «(n)-aproximacao de PCV
podemos decidir HC em tempo polinomial. ]

sso transforma G num multigrafo.

163

{fig:agmex



3. Algoritmos de aproximag¢ao

Caso métrico No caso métrico podemos obter uma aproximagao melhor.
Determina uma rota como segue:

1. Determina uma AGM A de G.

[\

. Duplica todas arestas de A.
3. Acha um ciclo Euleriano nesse grafo.

4. Remove vértices duplicados.

Teorema 3.6
O algoritmo acima define uma 2-aproximacao.

Prova. A melhor solu¢io do PCV menos uma aresta é uma arvore geradora
de G. Portanto c(A) < OPT. A solucao S obtida pelo algoritmo acima satisfaz
c(S) < 2¢(A) e portanto c(S) < 20PT, pelo mesmo argumento da prova do
teorema 3.4. ]
O fator 2 dessa aproximacéao é resultado do passo 2 que duplica todas arestas
para garantir a existéncia de um ciclo Euleriano. Isso pode ser garantido
mais barato: A AGM A possui um nimero par de vértices com grau impar
(ver exercicio 3.2), e portanto podemos calcular um emparelhamento perfeito
minimo E entre esse vértices. O grafo com arestas AUE possui somente vértices
com grau par e portanto podemos aplicar os restantes passos nesse grafo.

Teorema 3.7 (Cristofides)
A algoritmo usando um emparelhamento perfeito minimo no passo 2 é uma
3/2-aproximacio.

Prova. O valor do emparelhamento E ndo é mais que OPT/2: remove vértices
ndo emparelhados em E da solu¢do 6tima do PCV. O ciclo obtido dessa forma
é a unido dois emparelhamentos perfeitos E; e E; formados pelas arestas pares
ou impares no ciclo. Com E; o emparelhamento de menor custo, temos

c(B) <c(BEy) < (c(B1) +¢(E2))/2=OPT/2

e portanto

¢(S) = ¢(A) + c(E) < OPT + OPT/2 = 3/20PT.

164



3.7. Aproximando problemas de cortes

Figura 3.3.: Identificagdo de dois terminais e um corte no grafo reduzido. Vér-
tices em verde, terminais em azul. O grafo reduzido possui mul-
tiplas arestas entre vértices.

3.7. Aproximando problemas de cortes

Seja G = (V,A,c¢) um grafo conectado com pesos ¢ nas arestas. Lembramos
que um corte C é um conjunto de arestas que separa o grafo em dois partes
SUV\S. Dado dois vértices s,t € V, o problema de achar um corte minimo
que separa s e t pode ser resolvido via fluxo maximo em tempo polinomial.
Generalizacoes desse problema sao:

¢ Corte multiplo minimo (CMM): Dado terminais s1,..., sk determine o
menor corte C que separa todos.

e k-corte minimo (k-CM): Mesmo problema, sem terminais definidos. (Ob-
serve que todos k componentes devem ser ndo vazios).

Fato 3.1

CMM é NP-dificil para qualquer k > 3. k-CM possui uma solugdo polinomial
em tempo O(nkz) para qualquer k, mas é NP-dificil, caso k faz parte da
entrada (Goldschmidt e Hochbaum, 1988).

Solucao de CMM Chamamos um corte que separa um vértice dos outros um
corte isolante. Idéia: A unido de cortes isolantes para todo s; é um corte mul-
tiplo. Para calcular o corte isolante para um dado terminal s;, identificamos
os restantes terminais em um tnico vértice S e calculamos um corte minimo
entre s; e S. (Na identificagdo de vértices temos que remover self-loops, e
somar os pesos de multiplas arestas.)

Isso leva ao algoritmo

165

{fig:cmm1}



3. Algoritmos de aproximag¢ao

Algoritmo 3.4 (CI)
Entrada Grafo G = (V, A, c) e terminais sq,..., Sk.

Saida Um corte multiplo que separa os s;.

1 Para cada i€ [l,k]: Calcula o corte isolante C; de s;.
2 Remove o maior desses cortes e retorne a unifo dos
restantes.

Teorema 3.8
Algoritmo 3.4 é uma 2 — 2/k-aproximacao.

Prova. Considere o corte minimo C*. De acordo com a Fig. 3.4 ele pode ser
representado pela unido de k cortes que separam os k componentes individu-

almente:
=
ie[k]

Cada aresta de C* faz parte das cortes das duas componentes adjacentes, e
portanto

3 wlC) = 2w(C)
ielk]

e ainda w(C;i) < w(Cf) para os cortes C; do algoritmo 3.4, porque usamos o
corte isolante minimo de cada componente. Logo, para o corte C retornado
pelo algoritmo temos

w(C) < (1—=1/k) )~ w(Ci) < (1—=1/k) ) w(C}) <2(1—1/k)w(C).

i€ (k] i€(k]

|
A anélise do algoritmo é 6timo, como o exemplo da Fig. 3.5 mostra. O menor
corte que separa s; tem peso 2 — €, portanto o algoritmo retorne um corte de
peso (2—e)k—(2—¢€) = (k—1)(2 — €), enquanto o menor corte que separa
todos terminais é o ciclo interno de peso k.

Solucdo de k-CM  Problema: Como saber a onde cortar?

Fato 3.2

Existem somente n—1 cortes diferentes num grafo. Eles podem ser organizados
numa arvore de Gomory-Hu (AGH) T = (V,T). Cada aresta dessa arvore
define um corte associado em G pelos dois componentes apds a sua remogao.

166

{alg:c



3.7. Aproximando problemas de cortes

m2} Figura 3.4.: Corte miltiplo e decomposi¢do em cortes isolantes.

Figura 3.5.: Exemplo de um grafo em que o algoritmo 3.4 retorna uma 2—2/k-
m3} aproximagao.

167



3. Algoritmos de aproximag¢ao

1. Para cada u,v € V o menor corte u—v em G ¢é igual a o menor corte u—v
em T (i.e. a aresta de menor peso no caminho tnico entre uw e v em T).

2. Para cada aresta a € T, w/(a) ¢ igual a valor do corte associado.

Por consequéncia, a AGH codifica o valor de todos cortes em G.
Ele pode ser calculado determinando n — 1 cortes s—t minimos:

1. Define um grafo com um tnico vértice que representa todos vértices do
grafo original. Chama um vértice que representa mais que um vértice
do grafo original gordo.

2. Enquanto existem vértices gordos:

a) Escolhe um vértice gordo e dois vértices do grafo original que ele
representa.

b) Calcula um corte minimo entre esses vértices.

¢) Separa o vértice gordo de acordo com o corte minimo encontrado.

Observagao: A unido dos cortes definidos por k — 1 arestas na AGH separa G
em pelo menos k componentes. Isso leva ao seguinte algoritmo.

{alg:kcm}
gen Algoritmo 3.5 (KCM)

Entrada Grafo G = (V,A,c).

Saida Um k-corte.

1 Calcula uma AGH T em G.
2 Forma a unifo dos k—1 cortes mais leves
definidos por k—1 arestas em T.

Teorema 3.9
Algoritmo 3.5 é uma 2 — 2/k-aproximacao.

Prova. Seja C* = (Jicp Ci um corte minimo, decomposto igual a prova
anterior. O nosso objetivo é demonstrar que existem k — 1 cortes definidos
por uma aresta em T que sdo mais leves que os C}.

Removendo C* de G gera componentes Vi,...,Vy: Define um grafo sobre
esses componentes contraindo os vértices de uma componente, com arcos da
AGH T entre os componentes, e eventualmente removendo arcos até obter
uma nova arvore T’. Seja Ci o corte de maior peso, e define Vi como raiz
da arvore. Desta forma, cada componente Vi,...,Vi_1 possui uma aresta
associada na direcdo da raiz. Para cada dessas arestas (u,v) temos

w(Ci) = w'(u,v)

168



3.8. Aproximando empacotamento unidimensional

porque C7 isola o componente Vi do resto do grafo (particularmente separa u
ev), e w (u,v) é o peso do menor corte que separa u e v. Logo

w(C) < Y wi@) < Y w(C) <=1/ Y w(C) =2(1-1/kjw(C").
ielk]

aeT’ 1<i<k

3.8. Aproximando empacotamento unidimensional

Dado n itens com tamanhos s; € Zy, 1 € [n] e contéineres de capacidade
S € Z, o problema do empacotamento unidimensional é encontrar o menor
nimero de contéineres em que os itens podem ser empacotados.

EMPACOTAMENTO UNIDIMENSIONAL (MIN-EU) (BIN PACKING)

Entrada Um conjunto de n itens com tamanhos s; € Z,, 1 € [n] e o
tamanho de um contéiner S.

Solucdo Uma parti¢do de [n] = C;U---UCyy, tal que Zieck si < S para
k € [ml].

Objetivo Minimiza o nimero de partes (“contéineres”) m.

A versdo de decisdo do empacotamento unidimensional (EU) pede decidir se
os itens cabem em m contéineres.

Fato 3.3
EU é fortemente NP-completo.

Proposigcao 3.4 s
Para um tamanho S fixo EU pode ser resolvido em tempo O(ns").

Prova. Podemos supor, sem perda de generalidade, que os itens possuem
tamanhos 1,2,...,S — 1. Um padrio de alocagdo de um contéiner pode ser
descrito por uma tupla (t7,...,ts_1) sendo t; o ntiimero de itens de tamanho
i. Seja T o conjunto de todos padrdes que cabem num contéiner. Como
0 < t; < S o ntmero total de padroes T é menor que (S +1)5~1 = O(S3S).

Uma ocupacio de m contéineres pode ser descrito por uma tupla (nq,...,nr)
com Nn; sendo o nimero de contéineres que usam padrao i. O ntmero de
contéineres é no méaximo n, logo 0 < n; < n e o nimero de alocacoes diferentes
é no maximo (n+1)T = O(n'). Logo podemos enumerar todas possibilidades
em tempo polinomial. |

169

{prop:bp1}



{prop:bp3}

3. Algoritmos de aproximag¢ao

Proposicao 3.5
Para um m fixo, EU pode ser resolvido em tempo pseudo-polinomial.

Prova. Seja B(Sy,...,Sm,1) € {falso, verdadeiro} a resposta se itens i,1 +
1,...,m cabem em m contéineres com capacidades Sy,...,Sn,. B satisfaz
\/15'§mB(S1 ey Si—si, ., S, i), i<n
B(S1y.rvySppd) =4 ¢ sissy T mnr T ’
verdadeiro, i>n,

e B(S,...,S,1) é a solucdo do EU?. A tabela B possui no maximo n(S +1)™
entradas, cada uma computavel em tempo O(m), logo o tempo total é no
méximo O(mn(S+1)™). [ |

Observagao 3.3
Com um fator adicional de O(log m) podemos resolver também MIN-EU, pro-
curando o menor 1 tal que B(S,...,S,0,...,0,n) é verdadeiro. %

i vezes

A proposicao 3.4 pode ser melhorada usando programacao dindmica.

Proposicao 3.6
Para um ntmero fixo k de tamanhos diferentes, min-EU pode ser resolvido
em tempo O(n?).

Prova. Seja B(i1,...,1k) o menor nimero de contéineres necessdrio para
empacotar ij itens do j-ésimo tamanho e T o conjunto de todas padroes de
alocacdo de um contéiner. B satisfaz

. ) T+ mineer B(iy —t1,...,1k —tx), caso (i1,...,) €T,
B(l1)---)1k) = L=t

1, caso contrario,

e B(ny,...,ny) é a solu¢do do EU, com n; o nimero de itens de tamanho i
na entrada. A tabela B tem no maximo n* entradas. Como o niimero de itens
em cada padrio de alocacdo é no maximo n, temos |T| < n¥ e logo o tempo
total para preencher B é no méaximo O(n?*). |

Corolario 3.1
Para um tamanho S fixo min-EU pode ser resolvido em tempo O(n?S).

20bserve que a disjuncio vazia é falsa.

170

{pro



3.8. Aproximando empacotamento unidimensional

Abordagem pratica?
o Idéia simples: Préximo que cabe (PrC).

e Por exemplo: Itens 6,7,6,2,5,10 com limite 12.

Aproximacao?
¢ Interessante: PrC é 2-aproximacao.

e Observagao: PrC é um algoritmo on-line.

Prova. Seja B o niimero de contéineres usadas, V = } ; (,;si. Como dois
contéineres consecutivos contém uma soma > 1, temos |B/2] < V e com
B/2—1/2 < |B/2] ainda B—1 < 2V ou B < 2V. Mas precisamos pelo menos
[V] contéineres, logo [V] < OPT(x). Portanto, @p,c(x) < 2V < 2[V] <
20PT(x). |

Aproximacao melhor?
e Isso é a melhor estimativa possivel para este algoritmo!
o Considere os 4n itens

1/2,1/20,1/2,1/2n,...,1/2,1/2n

2n vezes

e O que faz PrC? @p,c(x) = 2n: contéineres com

171



3. Algoritmos de aproximag¢ao
1/t2n)[1/2n
1

)

« Otimo: n contéineres com dois elementos de 1/2 + um com 2n elementos
de 1/2n. OPT(x)=n=1.

l

(x)
1/(2n)
12 1/(2n)

o Portanto: Assintoticamente a taxa de aproximacédo 2 é estrito.

Melhores estratégias
o Primeiro que cabe (PiC), on-line, com “estoque” na memdria
e Primeiro que cabe em ordem decrescente: PiCD, off-line.
e Taxa de aproximagao?
@ric(x) < [1.70PT()]
@picp(x) < 1.50PT(x) +1
Prova. (Da segunda taxa de aproximagdo.) Considere a partigio AUBUCU
D ={v1,...,vn} com

AZ{Vi |V;L >2/3}
B :{Vi |2/3 > v > ]/2}
C={vi|1/2>vy{>1/3}
D={vi[1/3>vi}
PiCD primeiro vai abrir |A| contéineres com os itens do tipo A e depois |B|

contéineres com os itens do tipo B. Temos que analisar o que acontece com
os itens em C e D.

172



3.8. Aproximando empacotamento unidimensional

Supondo que um contéiner contém somente itens do tipo D, os outros contéi-
neres tem espaco livre menos que 1/3, sendo seria possivel distribuir os itens
do tipo D para outros contéineres. Portanto, nesse caso

\Y
B < {2/3—‘ <3/2V+1<3/20PT(x) + 1.

Caso contrario (nenhum contéiner contém somente itens tipo D), PiCD en-
contra a solugdo 6tima. Isso pode ser justificado pelas seguintes observagoes:

1) O ntimero de contéineres sem itens tipo D é o mesmo (eles sdo os tltimos
distribuidos em nao abrem um novo contéiner). Logo é suficiente mostrar

@picp(x \ D) = OPT(x\ D).

2) Os itens tipo A nao importam: Sem itens D, nenhum outro item cabe
junto com um item do tipo A. Logo:

@ricp(x\ D) =|A|+ @picp(x \ (AUD)).

3) O melhor caso para os restantes itens sdo pares de elementos em B e C:
Nessa situacao, PiCD encontra a solucao étima.

Garantia ou aproximacao melhor?
o Johnson (1973, Tese de doutorado)

@picp(x) < 11/90PT(x) +4

o Baker (1985)
@picp(x) < 11/90PT(x) + 3

e Uma variante de PiCD (Johnson e Garey, 1985):

epicpm(x) < 71/600PT(x) +31/6

3.8.1. Um esquema de aproximacdo assintético para min-EU

Duas ideias permitem aproximar min-EU em (1+€)OPT(I)+1 para € € (0, 1].

173



:bp-ptas2}

3. Algoritmos de aproximag¢ao

Ideia 1: Arredondamento Para uma instancia I, define uma instancia R
arredondada como segue:

1. Ordene os itens de forma nado-decrescente e forma grupos de k itens.

2. Substitui o tamanho de cada item pelo tamanho do maior elemento no
seu grupo.

Lema 3.1
Para uma instancia I e a instancia R arredondada temos

OPT(R) < OPT(I) + k

Prova. Supde que temos uma solugdo étima para 1. Os itens do i-ésimo
grupo de R cabem nos lugares dos itens do i+ 1-ésimo grupo dessa solucao.
Para o tltimo grupo de R temos que abrir no maximo k contéineres. |

Ideia 2: Descartando itens menores

Lema 3.2

Supde temos temos um empacotamento para itens de tamanho maior que sg
em B contéineres. Entao existe um empacotamento de todos itens com no
maximo

max{B, Z si/(S—so)+ 1}

i€n]
contéineres.

Prova. Empacota os itens menores gulosamente no primeiro contéiner com
espago suficiente. Sem abrir um novo contéiner o limite é obviamente correto.
Caso contrdrio, supoe que precisamos B’ contéineres. B’—1 contéineres contém
itens de tamanho total mais que S — sp. A ocupacao total W deles tem que
ser menor que o tamanho total dos itens, logo

(B'=1)(S—s0) W< ) s

ie[n]

Juntando as ideias

Teorema 3.10
Para € € (0,1] podemos encontrar um empacotamento usando no méximo

(14 €)OPT(I) + 1 contéineres em tempo O(nw/ez).

174

{lem



3.8. Aproximando empacotamento unidimensional

Prova. O algoritmo tem dois passos:

1. Empacota todos itens de tamanho maior que so = [€/2S] usando arre-
dondamento.

2. Empacota os itens menores depois.

Seja I’ a instancia com os 1’ < n itens maiores. No primeiro passo, formamos
grupos com {n’ e? /4J itens. Isso resulta em no maximo
n’ < 2n’ 8
[n’e2/4] — n’e2/4 €2

grupos. (A primeira desigualdade usa |x] > x/2 para x > 1. Podemos supor
que n'e?/4 > 1,ie. n’ > 4/e2. Caso contrario podemos empacotar os itens
em tempo constante usando a proposicao 3.6.)

Arredondando essa instdncia de acordo com lema 3.1 podemos obter uma
solucdo em tempo O(n16/€2) pela proposigao 3.6. Sabemos que OPT(I') >
n'[e/281/S >n’e/2. Logo temos uma solugdo com no maximo

OPT(I') + |ne?/4| < OPT(I') +n'e?/4 < (1+¢€/2)OPT(I') < (1 + ¢/2)OPT(I)

contéineres.
O segundo passo, pelo lema 3.2, produz um empacotamento com no maximo

max{(1+e/z JOPT(I), }  si/(S— so) +1}
ien]

contéineres, mas

2 icin Si < D icm Si < OPT( )
S—so ~ S(1—¢/2) —€e/2

< (1+¢€)OPT(I).

¢ Give all the examples mentioned on the slides and some extra examples
which illustrate the underlying techniques.

o Jeffrey John Hollis and John Kenneth Montague Moody?

e Incorporate some of the stuff in Johnson’s “The many limits of appro-
ximation” column.

175



3. Algoritmos de aproximag¢ao

3.9. Aproximando problemas de sequénciamento

Problemas de sequénciamento recebem nomes da forma

com campos

ol Bly

Méquina o«

1 Um processador

P Processadores paralelos

Q Processadores relacionados
R Processadores arbitrarios
Restrigoes

D; Prazo méaximo (deadline)
di Prazo previsto (due dates)
i Tempo de liberacdo (release time)
Pi=p Tempo uniforme p

prec Precedéncias

Funcdo objetivo y

Cmax
Zi Ci
Li

T

Maior tempo de término (maximum completion time)
Tempo de término total (total completion time)
Atraso (lateness) Ci — di

Tardiness max{L;, 0}

Relacao com empacotamento unidimensional:

tempo ou tamanho

processadores ou contéineres

o Empacotamento unidimensional: Dado C,,x minimiza o nimero de pro-

cessadores.

e P || Chax: Dado um nimero de contéineres, minimiza o tamanho dos

contéineres.

176



3.9. Aproximando problemas de sequénciamento

SEQUENCIAMENTO EM PROCESSORES PARALELOS (P || Cpax)

Entrada O niimero m de processadores e n tarefas com tempo de execu-
¢do pi, 1 € [nl].

Solucdo Um sequenciamento, definido por uma alocacio My U --- U
M. = [n] das tarefas as maquinas.

Objetivo Minimizar o makespan (tempo de término) Cpax = maxjcm) Cj,
com Cj = ZieM,- Pi o tempo de término da maquina j.

Fato 3.4
O problema P || Cpax € fortemente NP-completo.
Um limite inferior para C} .. = OPT ¢é
LB = max{{gz;ﬁpi, Z pi/m}.

ien]

Uma classe de algoritmos gulosos para este problema sao os algoritmos de
sequenciamento em lista (inglés: list scheduling). Eles processam as tarefas
em alguma ordem, e alocam a tarefa atual sempre a maquina de menor tempo
de término atual.
Proposicao 3.7

{prop:1list

Sequenciamento em lista com ordem arbitraria permite uma 2—1/m-aproximagao

em tempo O(nlogn).

Prova. Seja Cna.x o resultado do sequenciamento em lista. Considera uma
maquina com tempo de término Cp.x. Seja j a tltima tarefa alocada nessa
maquina e C o término da maquina antes de alocar tarefa j. Logo,

ielj—1] ie[n]
<ILB+(1—-1/m)LB=(2-1/m)LB< (2—-1/m)C}, ..
A primeira desigualdade é correta, porque alocando tarefa j a miquina tem

tempo de término minimo. Usando uma fila de prioridade a maquina com o
menor tempo de término pode ser encontrada em tempo O(logn). |

Observagao 3.4
Pela prova da proposigao 3.7 temos

LB < C;,

max

< 2LB.

177

{obs:1imit



lem:pcmax}

3. Algoritmos de aproximag¢ao

O que podemos ganhar com algoritmos off-line? Uma abordagem é ordenar
as tarefas por tempo execucdo néo-crescente e aplicar o algoritmo gulos. Essa
abordagem é chamada LPT (largest processing time).

Proposicao 3.8
LPT é uma 4/3 — m/3-aproximagéo em tempo O(nlogn).

Prova. Seja p; > p2 > -+ > pn e supde que isso é o menor contra-exemplo
em que o algoritmo retorne Cpax > (4/3 —m/3)Ck ... Nao é possivel que a
alocagdo do item j < n resulta numa maquina com tempo de término Cpax,
porque pi,...,Ppj seria um contra-exemplo menor (mesmo Cpax, menor Cji . ).
Logo a alocagdo de pn define o resultado Cpax-

Caso pn < C&../3 pela prova da proposicdo 3.7 temos Cpax < (4/3 —
m/3)C} ., uma contradicdo. Mas caso pn > C} .. /3 todas tarefas possuem
tempo de execugdo pelo menos C} .. /3 e no miximo duas podem ser execu-
tadas em cada maquina. Logo Cpax < 2/3C} ., outra contradigdo. | |

3.9.1. Um esquema de aproximacao para P || Cax

Pela observacao 3.4 podemos reduzir o P || Cp.x para o empacotamento unidi-
mensional via uma busca binéria no intervalo [LB,2LB]. Pela proposi¢ao 3.5
isso é possivel em tempo O(log LB mn(2LB + 1)™).

Com mais cuidado a observagdo permite um esquema de aproximagdo em
tempo polinomial assintético: similar com o esquema de aproximagado para
empacotamento unidimensional, vamos remover elementos menores e arre-
dondar a instancia.

Algoritmo 3.6 (Sequencia)
Entrada Uma instancia I de P || Chax, um término méximo C e um
parametro de qualidade €.

1 Sequencia(I,C,e):=

2 remove as tarefas menores conm Pi < eC, je [Tl]

3 arredonda cada pj € [eC(1+ €)', eC(1+¢)'"") para algum i
para 'p]-' =eC(1+e)t

4 resolve a insténcia arredondada com programagéo
dinédmica (proposig&o 3.6)
5 empacota os itens menores gulosamente, usando novas

maquinas para manter o término (1+¢€)C

Lema 3.3
O algoritmo Sequencia gera um sequenciamento que termina em no maximo

(1 + ¢)C em tempo O(nzﬁog‘*e VE]). Ele ndo usa mais mdquinas que o
minimo necessario para executar as tarefas com término C

178



3.9. Aproximando problemas de sequénciamento

Prova. Para cada intervalo valido temos eC(1+ €)' < C, logo o ntimero de
intervalos é no méaximo k = [log; . 1/€]. O valor k também é um limite
para o numero de valores pj’ distintos e pela proposicao 3.6 o terceiro passo
resolve a instancia arredondada em tempo O(n?*). Essa solucio com os itens
de tamanho original termina em no maximo (1 + €)C, porque p; /pj' <T+e.
O niimero minimo de maquinas para executar as tarefas em tempo C é o valor
m = min-EU(C, (p;j)jem)) do problema de empacotamento unidimensional
correspondente. Caso o tultimo passo do algoritmo nao usa novas maquinas
ele precisa < m maquinas, porque a instancia arredondada foi resolvida exa-
tamente. Caso contrario, uma tarefa com tempo de execucdo menor que €C
nao cabe nenhuma maéaquina, e todas maquinas usadas tem tempo de término
mais que C. Logo o empacotamento étimo com término C tem que usar pelo
menos 0 mesmo nimero de maquinas. |

Proposicao 3.9
O resultado da busca bindria usando o algoritmo Sequencia C,.x = min{C €
[LB, 2LB] | Sequencia(l, C, e) < m} é no maximo C} ..

Prova. Com Sequencia(l, C, e) < min-EU(C, (pi)icn]) temos

Cmax = min{C € [LB, 2LB] | Sequencia(l, C,e) < m}
< min{C € [LB, 2LB] | min-EU(C, (p1)icpn)) < m}
= C*

max

[ |
Teorema 3.11

A busca bindria usando o algoritmo Sequencia para determinar determina

um sequenciamento em tempo O(n? 1081 1/¢] logLB) de término mdximo
(1+e)Cx

max*

Prova. Pelo lema 3.3 e proposigao 3.9. ]

3.10. Programacao inteira para aproximacao

A programagdo linear é uma das técnicas mais tteis para construcio de
algoritmos de aproximagao.

e Primal-dual.
e Arredondamento e arredondamento iterado

e “Dual fitting”.

179

{prop:pcma



3. Algoritmos de aproximag¢ao

Lembranca Temos um programa linear primal

minimiza c¢'x (P) Hprima

sujeito a Ax < b,

e um dual correspondente

maximiza yb' (D)
sujeito a Ay <c
y > 0.

Cada solugao do primal é maior que cada solugao do dual pelo teorema
fraco de dualidade
c'x < bly,

e os valores das solugdes Gtimas (caso existem) sdo iguais pelo teorema
forte de dualidade

c'x* =bty*.
O teorema de folgas complementares relaciona as varidveis de um sistema
com as folgas do outro:

o Condigoes primais: ou x; =0 ou a(j)ty = @-
o Condicoes duais: ou y; = 0 ou a(;)x = by.

Na programacao inteira, o teorema forte nao é mais valido. Entre o primal
(P) e a versdo inteira (PI) podemos definir o gap de integralidade

OPTp;(I)

S TOPT(D)

para instancias I = (A, b, c) no caso de minimizacao.
Relaxando as condigbes primais e duais obtemos

o Condicoes primais a-apertados: ou x; = 0 ou ¢/ < amty < ¢j
(c/x <Ay <c)

o Condicoes duais B-apertados: ou yi = 0 ou Bby > ag)x > by
(Bb > Ax > b).

180



© 00 O U Wi+

3.11. Exercicios

Relaxar as condigoe é util porque para um par de solugoes primais x e
duais y temos c*x < «fb'y. Prova.

c'x < aAtyx < aPyb

|
Por consequéncia, x é uma af-aproximacao do problema (com testemu-
nho y). Isto leva a uma schema generica de um algoritmo de aproximacao
usando programagcao linear:

x:=0 // Primal: inviavel

y:=0 // Dual: viavel

do Até o primal é viavel
// (1) Melhorar dual
Incremente alguma variavel dual até ela é apertada
// (2) Viabilizar o primal

O J O Ut s QO N =

end

3.11. Exercicios

Exercicio 3.1
Por que um subgrafo conexo de menor custo sempre é uma arvore?

Exercicio 3.2
Mostra que o nimero de vértices com grau impar num grafo sempre é par.

Exercicio 3.3

Um aluno propde a seguinte heuristica para o empacotamento unidimensional:
Ordene os itens em ordem crescente, coloca o item com peso maximo junto com
quantas itens de peso minimo que é possivel, e depois continua com o segundo
maior item, até todos itens foram colocados em bins. Temos o algoritmo

ordene itens em ordem crescente
m:=1; M:=n
while (m < M) do
abre novo contéiner, coloca vm, M:=M—1
while (v, cabe e m< M) do
coloca vy, no contéiner atual
m:=m-+1
end while
end while

181

Incrementar uma varidvel primal, indicada pela restrigdo dua

{ex:apri}

{ex:apr2}

{ex:apr3}



{ex:apr4}

3. Algoritmos de aproximag¢ao

Qual a qualidade desse algoritmo? E um algoritmo de aproximacio? Caso
sim, qual a taxa de aproximacdo dele? Caso ndo, por qué?

Exercicio 3.4

Prof. Rapidez propde o seguinte pré-processamento para o algoritmo SAT-R de
aproximacao para MAX-SAT (pédgina 158): Caso a instancia contém claisulas
com um unico literal, vamos escolher uma delas, definir uma atribuicao parcial
que satisfazé-la, e eliminar a variavel correspondente. Repetindo esse procedi-
mento, obtemos uma instancia cujas clatisulas tem 2 ou mais literais. Assim,
obtemos 1 > 2 na anélise do algoritmo, o podemos garantir que E[X] > 3n/4,
i.e. obtemos uma 4/3-aproximagcao.

Esta andlise estd correta ou nao?

182



4. Algoritmos randomizados

Um algoritmo randomizado usa eventos aleatérios na sua execugdo. Mo-
delos computacionais adequadas sdo méaquinas de Turing probabilisticas —
mais usadas na drea de complexidade — ou maquinas RAM com um comando
random(S) que retorne um elemento aleatério do conjunto S.

Veja alguns exemplos de probabilidades:

Probabilidade morrer caindo da cama: 1/2x 10° (Roach e Pieper, 2007).

Morrer abanando a maquina de venda automatica e ser espancado até
a morte: 30 pessoas por ano.

Probabilidade acertar 6 nimeros de 60 na mega-sena: 1/50063860.

Probabilidade que a meméria falha: em memoria moderna temos 1000
FIT/MBit, i.e. 6 x 10~ erros por segundo num meméria de 256 MB.!

Probabilidade que um meteorito destréi um computador em cada milis-
segundo: > 271%° (supondo que cada milénio a0 menos um meteorito
destr6i uma drea de 100 m?).

Portanto, um algoritmo que retorna uma resposta falsa com baixa probabi-
lidade é aceitdvel. Em retorno um algoritmo randomizado frequentemente

s

e

mais simples;

mais eficiente: para alguns problemas, um algoritmo randomizado é o
mais eficiente conhecido;

mais robusto: algoritmos randomizados podem ser menos dependente
da distribuicdo das entradas.

a Unica alternativa: para alguns problemas, conhecemos sé algoritmos
randomizados.

LFIT é uma abreviagdo de “failure-in-time” e é o ntimero de erros cada 107 segundos. Para
saber mais sobre erros em memoria veja (Terrazon, 2004).

183



4. Algoritmos randomizados

Analysis of randomized algorithms. T(n) now is a random variable. So:
worst-case expected: maxy|xj—n E[T(n)] where the expectation is over
all possible executions (i.e. there is no assumption on the distribution of
inputs).

4.1. Teoria de complexidade

Classes de complexidade

TBD: Check where this fits in

A maquina de Turing probabilistica Uma méquina de Turing probabi-
listica (MTP, inglés: probabilistic Turing machine, PTM) é uma méquina
de Turing com uma fita aleatoria adicional. A execucao da maquina é a
mesma que normal, exceto num estado g, especial. Nesse estado a méa-
quina leia um simbolo da fita aleatéria é executa um passo que depende
somente desse simbolo e depois avanca a cabeca da fita aleatoria um para
a direita (Arora e Barak, 2009).

Definicao 4.1
Seja L algum alfabeto e R(«, f) a classe de linguagens L C X* tal que existe
um algoritmo de decisdo em tempo polinomial A que satisfaz

e x € L= Pr(A(x) =sim) > «.
e x ¢ L= Pr(A(x) =nao) > B.

(A probabilidade é sobre todas sequéncias de bits aleatérios r. Como o algo-
ritmo executa em tempo polinomial no tamanho da entrada |x|, o niimero de
bits aleatdrios |r| é polinomial em |x| também.)

Com isso podemos definir

o a classe RP := R(1/2,1) (randomized polynomial), dos problemas que
possuem um algoritmo com erro unilateral (no lado do “sim”); a classe
co — RP = R(1,1/2) consiste dos problemas com erro no lado de “nao”;

 a classe ZPP := RP N co — RP (zero-error probabilistic polynomial) dos
problemas que possuem algoritmo randomizado sem erro;

e a classe PP := Uee(o,1/2] R(1/2+ €,1/2+ €) (probabilistic polynomial),
dos problemas com erro 1/2 4 € nos dois lados; e

184



B W N =

4.1. Teoria de complexidade

o a classe BPP := R(2/3,2/3) (bounded-error probabilistic polynomial),
dos problemas com erro 1/3 nos dois lados.

RP may have false negatives, co — RP may have false positives.

Algoritmos que respondem corretamente somente com uma certa probabili-
dade também sao chamados do tipo Monte Carlo, enquanto algoritmos que
usam randomizacao somente internamente, mas respondem sempre correta-
mente sdo do tipo Las Vegas.

Exemplo 4.1 (Teste de identidade de polindémios)

Dado dois polinémios p(x) e q(x) de grau maximo d, como saber se p(x) =
q(x)? Caso temos os dois na forma canénica p(x) = ;. i<q4 pix!' ou na forma
fatorada p(x) = [[;<i<q(x — 1) isso é simples responder por comparacao
de coeficientes em tempo O(n). E caso contrario? Converter para a forma
candnica pode custar ©(d?) multiplicacdes. Uma abordagem randomizada
é vantajosa, se podemos avaliar o polindmio mais rdpido (por exemplo em

0(d)):

identico(p,q) :=

Seleciona um ntmero aleatdrio T no intervalo [1,100d].

Caso p(r) =q(r) retorne ~“sim''.

Caso p(r) #q(r) retorne ~“ndo''.
Caso p(x) = q(x), o algoritmo responde “sim” com certeza. Caso contrario
a resposta pode ser errada, se p(r) = q(r) por acaso. Qual a probabilidade
disso? p(x) — q(x) é um polinémio de grau d e possui no maximo d raizes.
Portanto, a probabilidade de encontrar um v tal que p(r) = q(r), caso p # q
é d/100d = 1/100. Isso demonstra que o teste de identidade pertence a classe

co—RP. o
Observagao 4.1
E uma pergunta em aberta se o teste de identidade pertence a P. O

The testing can be formulated more easily as testing for p = 0, and the
above then is just testing p —q = 0.

The extension to multi-variate polynomials is known as the Schwartz-
Zippel lemma: for p € Flx1,...,x] take a finite subset of F and sample
r; € S independently and unformly. Then the probability of p(ri) =0 is
d/|S|, for total degree d.

Now consider the question of a bipartite graph having a perfect matching.
For any bipartite graph G = (S U T, A) the corresponding Tutte matriz

185



4. Algoritmos randomizados

T is defined by ti; = [ij € A]. The determinant of any matrix A, by
Leibniz’ formula is

det(A Z sgn(o H 5 1) (4.1) Heq:le

oESH i€n]

We can see that every permutation 7 € S,;, corresponds to a perfect
matching. Now define the following polynomial over variables x;:

D(X11y+++yXnn) = Z sgn(o) H X4, 0(4) - (4.2)
ien

OESH

Since, for every matching that is not perfect the corresponding term in
D is 0, we obtain

D(X11y.++yXnn) = Z sgn(o H Xi,0(1) (4.3) Heq:le

oeP ien]

where P are all permutations that correspond to perfect matchings in G.
This makes clear that if G has no perfect matching then D = 0. On
the other hand, if at least one perfect matching exists the corresponding
term does not vanish, and since no other term can cancel it, D #Z 0. Thus
the problem of checking for the existence of a perfect matching can be
reduced to polynomial identity testing.

[More concretely, we need to choose some values xi; and compute the
resulting determinant. This alone is too hard; Kabanets mentions a pa-
rallel algorithm. There’s also a point of the numerical stability, but since
the degree is at most n, Chawla argues that for prime p > 2n we can
compute all in Z,,, which is not clear to me, but I suspect is just to bound
the possible coefficients. This also makes the problem not easier. Chawla
is also interesting since he goes on to show an algorithm to compute the
matching based on testing of existence.)

[This is partially based on Kabanets, Lecture 2, which is very sketchy,
and also on Chawla, Lecture 3, which is better.

Exemplo 4.2 (Freivalds’ algorithm)

For given matrices A,B,C € R™*™ we want to test if AB = C. With
standard matrix multiplication this can be done in time O(n?), with
better algorithms we may get down to O(n®). Freivalds proposal is a
Monte Carlo algorithm in co — RP with probability of 1/2 for a false

186


https://www2.cs.sfu.ca/~kabanets/cmpt881/lec/lec2.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15859-f04/www/scribes/lec3.pdf

4.1. Teoria de complexidade

positive. It works as follows.

Let D = AB — C, p = Dr, and note that Dr = (AB — C)r = A(Br) — Cr
can be computed in time O(n?). Clearly, if there is no error then D = 0
and we have p = 0 for all . Otherwise there is some element d;; # 0,
and thus p; = dier could be non-zero. Now choose 1 € {0, 1}™ randomly
and write

pi =dyT+ ) dacTi,
i
~—————

and consider
Pr(pi =0) =Pr(pi =0|c=0)Pr(c =0) +Pr(pi =0 c #0)Pr(c #0)

=1/2 <1/2
<1/2,

where the first equality is because dijt; # 0 iff r; = 1, and the second
requires 153 = 1, too (but the terms not necessarily cancel, so 1/2 is an
upper bound).

There are many ways to “pimp” Freivals algorithms. First, we can incre-
ase the domain of 1’s elements. Even better, assuming D # 0 choose

r=| $ (4.4)

for some random s € R. As above assume dij # 0. Then p; = die7 can
be seen as a polynomial in s of degree at most n — 1, and thus has at
most n— 1 roots. That means there are at most n — 1 values s € R such
that p; = 0. Therefore the probability of a false positive is 0. O

Exemplo 4.3 (Welzl’s algorithm)

(First introduced in 2022/2 as an example.)

Given a set of points P in R?, find the smallest enclosing disc md(P)
defined by three points. We define md(P) = P for |P| < 3. We do the
following. Let W(P,R) be the smallest enclosing disc of P, where R are
known to lie on the boundary.

187



D O s O N

4. Algoritmos randomizados

W(P,R) :=
if P=0 or |R|=3: return the solution.
choose a random p €P
D := W(P—{p}LR) // assume p &R
if peD: return D
return W(P —{p,RU{p}) // peR
O

Let n = |P| and 3 —j = |R|. Then the probability of making an error in
the first recursive call is j/n. That gives an expected time of

tin) =tjn—=1) +14+j/Mmtj_1(n—1)

where we define the base case to(n) = 0. If is easy to show that tj(n) <
c;n where ¢ =1, ¢ =3, c3 = 10.
[Namely assuming t;(n) < cin

ttm) <tim—1)+T+T/ntgn—1)<cim—1)+1T=cin+-——c7+1
ﬁ_/ HT)—/
0 <

where the last condition gives ¢y > 1; assuming t;(n) < con

tbm) <tym—1+T+2/nt1(n—1)<co(n—1)+1+2/nci(n—1)
<cm—cr+1+2/nci(n—1)

<0

where the last condition is satifisfied for ¢ > 1+ 2/nci(n — 1) which
holds for ¢, > 3, and assuming t3(n) < c3n

tz3(n) <ts(m—1)+1+3/nt,(n—1)<c3(n—1)+1+3/nc2(n—1)
<csn—c3+1+3/nc;(n—1)

<0

where the last condition is satisfied for ¢z > 1+43/nc2(n—1) which holds
for c3 > 10.]

We can also consider the worst case. If we call the first recursion a zig,
the second a zag, the shape of the tree has any number of zigs, but at
most three zags. In this case we get

tj(n) Stj(n—‘l)—f']ﬁ—tjf](n—])

188




4.1. Teoria de complexidade

(note that the probability is gone), and we still get t;(n) < cyn, but

TBD

4.1.1. Amplificacdo de probabilidades

Caso nao estamos satisfeitos com a probabilidade de 1/100 no exemplo acima,
podemos repetir o algoritmo k vezes, e responder “sim” somente se todas k
repeticoes responderam “sim”. A probabilidade erradamente responder “nao”
para polinémios idénticos agora é (1/100)¥, i.e. ela diminui exponencialmente
com o numero de repetigoes.

Essa técnica é uma amplificagdo da probabilidade de obter a solucdo correta.
Ela pode ser aplicada para melhorar a qualidade de algoritmos em todas clas-
ses “Monte Carlo”. Com um numero constante de repeti¢cdes, obtemos uma
probabilidade baixa nas classes RP, co — RP e BPP. Isso ndo se aplica a PP:
é possivel que € diminui exponencialmente com o tamanho da instancia. Um
exemplo de amplificagdo de probabilidade encontra-se na prova do teorema 4.6.

Teorema 4.1
R(a, 1) =R(B,1) para 0 < o, p < 1.

Prova. Sem perda de generalidade seja o < (3. Claramente R(3,1) C R(e, 1).
Supde que A é um algoritmo que testemunha L € R(x,1). Execute A no
maximo k vezes, respondendo “sim” caso A responde “sim” em alguma ite-
racao e “nao” caso contrario. Chama esse algoritmo A’. Caso x ¢ L temos
Pr(A’(x) = “nao”) = 1. Caso x € L temos Pr(A’(x) = “sim”) > 1 — (1 — «)¥,
logo para k > In(1—3)/In(1 — o), Pr(A’(x) = “sim”) > B. |

1-1-a¢>pe=1-p>(1-a)* & In(1-B)>kn(1 —«)

Corolario 4.1
RP =R(x, 1) para 0 < oc < 1.

Teorema 4.2
R(a, &) = R(B, B) para 1/2 < «, .

Prova. Sem perda de generalidade seja o« < . Claramente R(f3,) C
R, ).

Supoe que A é um algoritmo que testemunha L € R(«x, «). Executa A k vezes,
responde “sim” caso a maioria de respostas obtidas foi “sim”, e “nao” caso
contrério. Chama esse algoritmo A’. Para x € L temos

Pr(A’(x) = “sim”) = Pr(A(x) = “sim” > |k/2] + 1 vezes) > 1 — e~ 2k(a1/2)*

189

{th:rpinv]}

{th:bppinv



N OO WD

4. Algoritmos randomizados

eparak > In(B—1)/2(x—1/2)? temos Pr(A’(x) = “sim”) > B. Similarmente,
para x ¢ L temos Pr(A’(x) = “nao”) > B. Logo L € R(B, B). ]

This result is via Chernoff bounds, example A.4 in CA lecture notes.

Corolario 4.2

BPP = R(«, &) para 1/2 < «.

Observagao 4.2

Os resultados acima sdo validos ainda caso o erro dimiui polinomialmente
com o tamanho da insténcia, i.e. &, 3 > n~° no caso do teorema 4.1 e &, 3 >
1/2417¢ no caso do teorema 4.2 para um constante ¢ (ver por exemplo Arora
e Barak (2009)). O

4.1.2. Relacdo entre as classes

Duas caracterizacOes alternativas de ZPP

Definicao 4.2
Um algoritmo A é honesto se

i) ele responde ou “sim”; ou “ndo” ou “néo sei”,
ii) Pr(A(x) =néo sei) < 1/2, e
iii) no caso ele responde, ele nao erra, i.e., para x tal que A(x) # “nao sei”
temos A(x) = “sim” <= x € L.

Uma linguagem ¢é honesta caso ela possui um algoritmo honesto. Com isso
também podemos falar da classe das linguagens honestas.

Teorema 4.3
ZPP ¢ a classe das linguagens honestas.

Lema 4.1
Caso L € ZPP existe um algoritmo um algoritmo honesto para L.

Prova. Para L € ZPP existem dois algoritmos A; € RP e A2 € co—RP.
Vamos construir um algoritmo
if Aj7(x) =Az(x) then

return A7(x)

else if Aj(x) = "nfo'' e Aj(x) = "sim'' then
return "~ "ndo sei''

else if Aj(x) = "sim'' e A(x) = ~"nfo'' then
{ caso impossivel }

end if

190



4.1. Teoria de complexidade

O algoritmo responde corretamente “sim” e “nao”, porque um dos dois al-
goritmos ndo erra. Qual a probabilidade do segundo caso? Para x € L,
Pr(A;(x) = “ndo” A Az(x) = “sim”) < 1/2 x 1 = 1/2. Similarmente, para
x €L, Pr(Aq(x) = “ndo” AN Az(x) =“sim”) < 1x1/2=1/2. |

Lema 4.2
Caso L possui um algoritmo honesto L € RP e L € co — RP.

Prova. Seja A um algoritmo honesto. Constréi outro algoritmo que sempre
responde “nao” caso A responde “nao sei”, e senao responde igual. No caso de
co — RP analogamente constréi um algoritmos que responde “sim” nos casos
“nao sei” de A. |

Definicao 4.3

Um algoritmo A é sem falha se ele sempre responde “sim” ou “nao” corre-
tamente em tempo polinomial esperado. Com isso podemos também falar de
linguagens sem falha e a classe das linguagens sem falha.

Teorema 4.4
ZPP é a classe das linguagens sem falha.

Lema 4.3
Caso L € ZPP existe um algoritmo sem falha para L.

Prova. Sabemos que existe um algoritmo honesto para L. Repete o algo-
ritmo honesto até encontrar um “sim” ou “nao”. Como o algoritmo honesto
executa em tempo polinomial p(n), o tempo esperado desse algoritmo ainda
¢é polinomial:

> k2 Fp(n) < 2p(n)
k>0

1/2+2/4+3/8+4/16+) < 2 follows from (A.37) in the CA lecture notes.

Lema 4.4
Caso L possui um algoritmo A sem falha, L € RP e L € co— RP.

Prova. Caso A tem tempo esperado p(n) executa ele para um tempo 2p(n).
Caso o algoritmo responde, temos a resposta certa. Caso contrario, responde
“nao sei”. Pela desigualdade de Markov temos uma resposta com probabilidade
Pr(T > 2p(n)) < p(n)/2p(n) = 1/2. Isso mostra que existe um algoritmo
honesto para L, e pelo lema 4.2 L € RP. O argumento para L € co—RP ¢
similar. |

191

{E.%ng gpcéne S

{th:zppalt

» ZPP C SF

» SF C ZPP



h: rpinbpp}

TR W N =

4. Algoritmos randomizados

Markov: Pr(|X| > a] < E[[X] < a, see A.8 in the CA lecture notes.

Mais relacoes

Teorema 4.5
RP C NP e co—RP C co— NP

Prova. Supde que temos um algoritmo em RP para algum problema L. Po-
demos, ndo-deterministicamente, gerar todas sequéncias r de bits aleatérios e
responder “sim” caso alguma execucao encontra “sim”. O algoritmo é correto,
porque caso para um x ¢ L, ndo existe uma sequéncia aleatoria 1 tal que o
algoritmo responde “sim”. A prova do segundo caso é similar. |

Teorema 4.6
RP C BPP ¢ co— RP C BPP.

Prova. Seja A um algoritmo para L € RP. Constr6i um algoritmo A’

if A(x)=""ndo'' e A(x)=""ndo'' then
return "~ "ndo''

else
return "~ "sim''

end if

Casox € L, Pr(A’(x) = “nao”) = Pr(A(x) = “nao” AA(x) = “nao”) = 1x1 =
1. Casox € L,

Pr(A’(x) = “sim”) = 1 — Pr(A’(x) = “nao”) = 1 — Pr(A(x) = “nao” AA(x) =
>1-1/2x1/2=3/4>2/3.
(Observe que para k repetigdes de A obtemos Pr(A’(x) = “sim”) > 1 —

1/2%, i.e., o erro diminui exponencialmente com o niimero de repetigdes.) O
argumento para co — RP é similar.

Relacdo com a classe NP e abundancia de testemunhas Lembramos que a
classe NP contém problemas que permitem uma verificagdo de uma solugdo em
tempo polinomial. Nao-deterministicamente podemos “chutar” uma solugao
e verificd-la. Se o niimero de solugbes positivas de cada instancia é mais que
a metade do numero total de solugoes, o problema pertence a RP: podemos
gerar uma solucdo aleatdria e testar se ela possui a caracteristica desejada.
Um problema desse tipo possui uma abunddncia de testemunhas. Isso de-
monstra a importancia de algoritmos randomizados. O teste de equivaléncia
de polinémios acima é um exemplo de abundéncia de testemunhas.

192

“

nao

5



4.2. Selegao

PP =co— PP

AN

NP : BQP - co— NP
7

BPP = co — BPP

Figura 4.1.: Relacoes entre classes de complexidade para algoritmos randomi-
c1s} zados.

I guess the relation of BPP to co-NP is the same: show it! Also NP C BPP
is improbable.

4.2. Selecao

O algoritmo deterministico para selecionar o k-ésimo maior elemento de uma
sequéncia nao ordenada x1,...,%, discutido na segdo A.1 (pagina 228) pode
ser simplificado usando randomizacao: escolheremos um elemento pivo m = x;
aleatdrio. Com isso o algoritmo A.1 fica mais simples:
. {alg:selecti
Algoritmo 4.1 (Selecdao randomizada)
Entrada Niumeros x1,...,Xn, posicao k.

Saida O k-ésimo maior nimero.

1 S(k,{X1,...,Xn}) =

2 if n<1

3 calcula e retorna o k-ésimo elemento
4 end if

193



4. Algoritmos randomizados

o O Ot

11
12
13
14
15

m:=x; para um i€ [n] aleatdrio
Li={xi|xi<m1<i<n}
R:i={xi|xi >m,1<i<n}
i:=IL+1
if i=k then
return m
else if i>k then
return S(k,L)
else
return S(k—1,R)
end if

Para determinar a complexidade podemos observar que com probabilidade
1/n temos |L| =1 e |R| =n —1 e o caso pessimista é uma chamada recursiva
com max{i,n —1} elementos. Logo, com custo cn para particionar o conjunto
¢ os testes temos

T(m)<en+ Y 1/nT(max{n—i,i})

ie[o,n]
—cn+1/n< > Tm-v+ ) T(i)>
ie[0,k] ie[[n/2],n]
=cn+2/n Yy T(n—i),
ie[0,k]

onde usamos k = |n/2|. Separando o termo T(n) do lado direito obtemos

(1-2/mM)TM)<en+2/n ) Thn—i)

ie(k]

e < <cn2 +2) Tn- i)).

n—2 E
ielk]

Provaremos por indugdo que T(n) < c¢’n para uma constante c’. Para um
n < ng o problema pode ser claramente resolvido em tempo constante (por
exemplo em O(nplogmng) via ordenagdo). Logo, supde que T(i) < c¢’i para

194



4.3. Corte minimo

i < n. Demonstraremos que T(n) < ¢'n. Temos

T(n) < 1<cn2 +2) T(ni))

n—2 )
ie(k]

1 2 I .
TL—Z<Cn +2C Z Tl-l)

ielk]

IN

= %(cnz +2¢’(2n —k — 1)k/2)

ecom2n—k—1=2n—|n/2] —1<3/2n

2

(en? +3/4c'n?) = (c + 3/4c') =

<
- n-—2

n—2
Para n > ng := 16 temos n/(n—2) < 8/7 e com um ¢’ > 8¢ temos

Tn)<c'(1/843/4)8/7n =c'n.

4.3. Corte minimo

CORTE MINIMO

Entrada Grafo ndo-direcionado G = (V,;A) com pesos ¢ : A — Z, nas
arestas.

Solucdo Uma particio V=S US onde S =V \'S.

Objetivo Minimizar o peso do corte ZaeA(SS) Ca-

Solugoes deterministicas:

e Calcular a arvore de Gomory-Hu: a aresta de menor peso define o corte
minimo.
¢ Calcular o corte minimo (via fluxo méximo) entre um vértice fixo s € V

e todos outros vértices: o menor corte encontrado é o corte minimo.

Custo em ambos casos: O(n) aplicagdoes de um algoritmo de fluxo méaximo,
i.e. O(mn?) usando o algoritmo de Orlin (ou O(mnm'*°(1)) com o algoritmo
de Chen et al. (2022)).

195



SO W N~

tsurvival}

4. Algoritmos randomizados

Gomory-Hu is simply this. Let a fat verter V represent all vertices V.
While there’s a fat vertex C, choose two vertices u,u’ € V, compute a
minimum uu’-cut, and separate V into the parts U and U’. This gives
a tree T. Now: the value of each minimum uv-cut equals the value of
the minimum uv-cut in T, i.e. the lightest edge in the single uv-path.

Furthermore, by removing this lightest edge, we recover the parts.

Solucdo randomizada para pesos unitarios No que segue supomos que os
pesos sao unitarios, i.e. ¢ = 1 para a € A. Uma abordagem simples é
baseada na seguinte observacao: se escolhemos uma aresta que nao faz parte
de um corte minimo, e contraimo-la (i.e. identificamos os vértices adjacentes),
obtemos um grafo menor, que ainda contém o corte minimo. Se escolhemos
uma aresta aleatoriamente, a probabilidade de por acaso escolher uma aresta
de um corte minimo é baixa.

cmr (G) :=
while G possui mais que dois vértices
escolhe uma aresta {u,v} aleatoriamente
identifica u e v em G
end while
return o corte definido pelos dois vértices em G

Exemplo 4.4
Uma sequencia de contragoes (das arestas vermelhas).

O

Dizemos que uma aresta “sobrevive” uma contragao, caso ele nao foi contraido.

Lema 4.5
A probabilidade que os k arestas de um corte minimo sobrevivem n — n’
contragoes (de n para n’ vértices) é Q((n’/n)?).

196



4.3. Corte minimo

Prova. Como o corte minimo é k, cada vértice possui grau pelo menos k,
e portanto o nimero de arestas apds da iteracdo 0 < i < n —n’ e maior
ou igual a k(n —1)/2 (com a convencdo que a “iteragdo 0” produz o grafo
inicial). Supondo que as k arestas do corte minimo sobreviveram a iteragio 1i,
a probabilidade de nao sobreviver a proxima iteracao é pelo menos k/(k(n —
1)/2) =2/(n—1). Logo, a probabilidade do corte sobreviver n —n’ iteragoes
¢é pelo menos

2 n—i—-2
H ]_n—i: H n—i

0<i<n—m’ 0<i<n—m’
~ m=2)n=3)---n'—=1) n'(n'—1) /N2
 onn—=1)---m'+1) nn-1 = Q(n'/n)7).
|

Teorema 4.7
Dado um corte minimo C de tamanho k, a probabilidade do algoritmo cmr
retornar C é Q(n=2).

Prova. Caso o grafo possui n vértices, o algoritmo termina em n—2 iteragoes:
podemos aplicar o lema acima com n’ = 2. |

Observacgao 4.3

O que acontece se repetimos o algoritmo algumas vezes? Seja C; uma variavel
que indica se o corte minimo foi encontrado na repeticdo i. Temos Pr(C; =
1) > 2n=2 e portanto Pr(C; = 0) < 1 —2n~2. Para kn? repeticdes, vamos
encontrar C = Y_ C; cortes minimos com probabilidade

Pr(C>1)=1—Pr(C=0)>1—(1-2n"2)*"" >1_¢ 2k,

Para k = logn obtemos Pr(C>1) >1—n"2. O

Since exp(x) > (1+x/n)™ for all n > 0 and x, for x = —2k and n = kn?
we have

exp(—2k) > (1 — 2k/kn?)*™" = (1 — 2n=2)kn7,

Logo, ao repetir o algoritmo n? logm vezes e retornar o menor corte encon-
trado, achamos o corte minimo com probabilidade razodvel. Se a implemen-
tacdo realiza uma contracao em tempo O(n) o algoritmo possui complexidade
O(n?) e com as repeticdes em total O(n*logn).

197



CO O UL i W N+

4. Algoritmos randomizados

Implementacao de contracées Para garantir a complexidade acima, uma
contracao tem que ser implementada em O(n). Isso é possivel tanto na repre-
sentagao por uma matriz de adjacéncia, quanto na representacao pela listas
de adjacéncia. A contracgdo de dois vértices adjacentes resulta em um novo
vértice, que é adjacente aos vizinhos dos dois. Na contracdo arestas de um
vértice com si mesmo sao removidas. Multiplas arestas entre dois vértices tem
que ser mantidas para garantir o Lema 4.5.

Um algoritmo melhor (Karger e Stein, 1996) O problema principal com o
algoritmo acima é que nas ultimas iteragoes, a probabilidade de contrair uma
aresta do corte minimo é grande. Para resolver esse problema, executaremos o
algoritmo duas vezes para instancias menores, para aumentar a probabilidade

de nao contrair o corte minimo. Define f(n) = [1 + n/ﬁ-‘

cmr2(G) :=
if (G possui menos que 6 vértices)
determina o corte minimo C por exaustédo
return C
else
n’ = f(n)
seja G7 o resultado de n—n’ contragdes em G
seja G, o resultado de n—n’ contracgdes em G
Ci:=cmr2(Gy)
Cy:=cmr2(Gy)
return o menor dos dois cortes C; e C,
end if
Esse algoritmo possui complexidade de tempo O(n?logn) e encontra um corte
minimo com probabilidade Q(1/logn).

Lema 4.6
A probabilidade de um corte minimo sobreviver n — f(n) contracoes é pelo
menos 1/2.

Prova. Pelo lema 4.5 a probabilidade é pelo menos

() —1) _ 0+n/V2)n/v2)  V24n _n 1
nmn-—1) S 2m—=1) " 2n 2

nn-—1) -

|
Seja P(n) a probabilidade que um corte com k arestas sobrevive caso o grafo

198



4.3. Corte minimo

possui n vértices. Temos

Pr(o corte sobrevive em G1) > 1/2P(f(n))
Pr(o corte sobrevive em G,) > 1/2P(f(n))
Pr(o corte ndo sobrevive em G; nem G,) < (1 —1/2P(f(n)))?
P(n) = Pr(o corte sobrevive em G; ou G2) > 1— (1 —1/2P(f(n)))?

1
P(f(n)) —1/4P(f(n))?

Kk
Para resolver essa recorréncia, define Q(k) = P(v/2") com base Q(0) = 1 para
obter a recorréncia simplificada

Qk+1) =P(2) = P(ﬁ + ﬁk]) . 1/4P([1 + ﬁkbz
~ P(V2) = P(V2")2/4 = Q(k) — Q(k)? /4
e depois R(k) =4/Q(k) — 1 com base R(0) = 3 para obter

4 4 4
RKT T 1T RIOTT Rz = R+ 1) =R{k) 1+ 1/R{k).

The above is, BTW, an example of a recurrence that Akra-Bazzi can’t
handle.

R(k) satisfaz
k<R(k)<k+Hg_1+3

Prova. Por indugdo. Para k = 1 temos 1 < R(1) =13/3 <14+ Hp+3 =5.
Caso a HI esté satisfeito, temos

R(k+1)=R(k)+1+1/R(k) >R(k)+1>k+1
R(k+1)=R(k)+1+1/R(k) <k+H 14+34+14+1/k=(k+1)+Hx+3

|
Logo, R(k) = k + O(logk), e com isso Q(k) = O(1/k) e finalmente P(n) =
O(1/logn).

Para determinar a complexidade do algoritmo cmr2 observe que temos O(logn)
niveis de recursdo e cada contracio pode ser feita em tempo O(n?), portanto

T = 2T(f(n)) + O(n?).

199



4. Algoritmos randomizados

Aplicando o teorema de Akra-Bazzi obtemos a equacéo caracteristica 2(1/v2)P =
1 com solugdop =2 e
" cu?

T, € O(n?(1 +J ?du)) =0O(n?logn).
1

Check and cite Karger,Stein, A New Approach to the Minimum Cut
Problem

Generalized Karger-Stein amplification. Consider a randomized
algorithm constructing an object as follows. Given input fo apply a se-
quence of k operators to obtain fq,fs,..., fx, where fy is the result (or
contains it in some easily extractable form). What makes the algorithm
randomized is that each step has a certain probability p; to destroy the
desired object, and we return something sub-optimal. There the proba-
bility to produce the desired object is p = Hie[k] 1 —p;i.

The amplification uses the fact that p; < p2 < --- < px, i.e. the proba-
bility to destroy the object is higher in the later steps. If we repeat the
process . times and return the “best” result found — we need to be able to
evaluate the quality — we have C = ) _; C; successes, where P[C; = 1] =p
and therefore

PIC>1]=1—p[C=0=1—(1—p)"
and setting n = m/p we get
PC>1=1-(1—p)"/P" >1—¢e ™

We also can assume that for instance size n — oo we have p — 0.
Challenge: show how probing more at the lower levels increases the proba-
bility more effectively. Is this not very similar to “go with the winners”?
Can we apply this to “largest path” by repeatedly contracting edges?

4.4. Teste de primalidade

Um problema importante na criptografia é encontrar niimeros primos grandes
(p-ex. RSA). Escolhendo um nimero n aleatério, qual a probabilidade de n
ser primo?

200



T W N =

4.4. Teste de primalidade

Teorema 4.8 (Hadamard (1896), Vallée Poussin (1896))
(Teorema dos nimeros primos.)
Para mt(n) = [{p < n | p primo}| temos

n(n)

nheo n/Ilnn -
(Em particular 7t(n) = O(n/Ilnn).)

Portanto, a probabilidade de um niimero aleatério no intervalo [2,n] ser primo
assintoticamente é somente 1/Inn. Entdo para encontrar um ntimero primo,
temos que testar se n é primo mesmo. Observe que isso nao é igual a fatoracao
de n. De fato, temos testes randomizados (e deterministicos) em tempo poli-
nomial, enquanto ndo sabemos fatorar nesse tempo. Uma abordagem simples
é testar todos os divisores:

Primol(n) :=

for i=2,3,5,7,...,[vn] do

if in return ~N&o"'
end for
return ~°~Sim''

O tamanho da entrada n é t = logn bits, portanto o niimero de iteragoes
6 O(y/n) = ©(2Y2) e a complexidade Q(2'/?) (mesmo contando o teste de
divisdo com O(1)) desse algoritmo é exponencial. Para testar a primalidade
mais eficiente, usaremos uma caracteristica particular dos niimeros primos.

Teorema 4.9 (Fermat, Euler)
Para p primo e a > 0 temos

a’? =a mod p.
Prova. Por indugao sobre a. Base: evidente. Seja aP = a. Temos
'p .
P _ i
(a+1) Z (1) a
0<i<p

epara 0 <i<p

|<P> _plp=1--(p—it1)
P\i)~ i—1)---1

porque p é primo. Portanto (a+1)P =aP +1e
(a+T)P—(a+1)=a’+1—(a+1)=a?—a=0.

(A dltima identidade é a hipétese da indugéo.) |

201



oq:fermat}

T W N =

4. Algoritmos randomizados

Definicao 4.4
Para a,b € Z denotamos com (a,b) o maior divisor em comum (MDC) de a
e b. No caso (a,b) =1, a e b sdo nimeros coprimos.

Teorema 4.10 (Divisdo modulo p)
Caso p é primo e (b,p) =1

ab=cb modp=a=c modp.

(Em palavras: Numa identidade modulo p podemos dividir por ntimeros co-
primos com p.)

2:3=7-3 mod5,s02=7 mod5,but 2-4=4-4 mod 8§, but 2 #4
mod 8.

Prova.

ab=cd & Jkab+kp =cb
& dJka+kp/b=c

Como a,c € Z, temos kp/b € Z e blk ou blp. Mas (b,p) = 1, entdo blk.
Definindo k' := k/b temos Ik’ a+k'p =¢, i.e. a =c. [ ]

Residual problem: do we need p to be prime here? Probably not, (b,p) =
1 is sufficient (otherwise even my example does not make sense). Check
the Algebra book.

Logo, para p primo e (a,p) =1 (em particular se 1 < a < p)
a?'=1 mod p. (4.5)

Um teste melhor entdo é

Primo2(n) :=

seleciona a€[l,n—1] aleatoriamente

if (a,n)# 1 return ~~N&o'!'

if a»'=1 return ~~Sim'’

return "~ "N&do''
Complexidade: Uma multiplicagdo e divisdo com logn digitos é possivel em
tempo O(log2 n). Portanto, o primeiro teste (o algoritmo de Euclides em logn
passos) pode ser feito em tempo O(log®n) e o segundo teste (exponenciagao
modular) é possivel implementar com O(logn) multiplicagbes (exercicio!).

202

{th:



4.4. Teste de primalidade

Corretude: O caso de uma resposta “Nao” é certo, porque n ndo pode ser
primo. Qual a probabilidade de falhar, i.e. do algoritmo responder “Sim”,
com n composto? O problema é que o algoritmo falha no caso de nidmeros
Carmichael.

Definigao 4.5

Um ntimero composto n que satisfaz a™~! =1 mod n é um ndmero pseudo-
primo com base a. Um nimero Carmichael é um ntimero pseudo-primo para
qualquer base a com (a,n) =1.

Os primeiros niimeros Carmichael sdo 561 = 3 x 11 x 17, 1105 e 1729 (veja
OEIS A002997). Existe um ndmero infinito deles:

Teorema 4.11 (Alford et al. (1994))
Seja C(n) o nimero de nimeros Carmichael até n. Assintoticamente temos
C(n) >n?/".

Exemplo 4.5
C(n) até 10'° (OEIS A055553):

n 1 23 4 5 6 7 8 9 10
C(10m) 0 0 1 7 16 43 105 255 646 1547 - %
[(10M)2/7] 2 4 8 14 27 52 100 194 373 720

Caso um ntimero n nao é primo, nem niimero de Carmichael, mais que n/2 dos

€ [1,n—1] com (a,n) = 1 nao satisfazem (4.5) ou seja, com probabilidade
> 1/2 acharemos um testemunha que n é composto. O problema é que no
caso de nimeros Carmichael ndo temos garantia.

Teorema 4.12 (Raiz modular)
Para p primo temos

x*=1 modp=x==41 mod p.
O teste de Miller-Rabin usa essa caracteristica para melhorar o teste acima.
t
Podemos escrever n — 1 = 2%u para um u fmpar. Temos a™ ! = (a%)? =
Portanto, se a™ ! =1,

Ou a* =1 mod p ou existe um menor i € [0, t] tal que ((1”)Zi =1

Caso p é primo, /(a*)2" = (a“)ZF1 = —1 pelo teorema (4.12) e a minimali-
dade de 1 (que exclui o caso = 1). Por isso:

203

{th:modula



N O Ok W N

eq:grhdet}

4. Algoritmos randomizados

Definicao 4.6
Um ntmero n é um pseudo-primo forte com base a caso

Ou a*'=1 mod p ou existe um menor i € [0,t — 1] tal que (a") =

Primo3(n) :=
seleciona a€[l,n—1] aleatoriamente
if (a,n)# 1 return ~“N&o'!'
seja n—1=2

if a*=1 return "~ Sim''
if (a%)?’ =1 para um i€ [0,t—1] return "~ Sim"''
return ~"Ndo''

Teorema 4.13 (Monier (1980) e Rabin (1980))
Caso n e composto e impar, mais que 3/4 dos a € [1,n— 1] com (a,n) =1
ndo satisfazem o critério (4.6) acima.

Portanto com k testes, a probabilidade de falhar Pr(Sim | n composto) <
(1/4)% = 2-2%_ De fato a probabilidade é menor:

Teorema 4.14 (Damgéard et al., 1993)
A probabilidade de um unico teste falhar para um ntmero com k bits é <
k2427\/f.

Exemplo 4.6
Para n € [2497,2500 _1] a probabilidade de nao detectar um n composto com
um tunico teste é menor que

4992 x 42—VA99 222,
O

Teste deterministico O algoritmo pode ser convertido em um algoritmo de-
terministico, testando pelo menos 1/4 dos a com (a,n) = 1. De fato, para o
menor testemunho w(n) de um niimero n ser composto temos

Se 0 HGR é verdade: w(n) < 2log?n (4.7)

com HGR a hipétese generalizada de Riemann (uma conjetura aberta). Su-

pondo HGR, obtemos um algoritmo deterministico com complexidade O (log5 n.

Em 2002, Agrawal et al. (2004) descobriram um algoritmo deterministico (sem
a necessidade da HGR) em tempo O(log12 n) que depois foi melhorado para
O(log® n).

204

{eq:



4.7. Notas

4.5. O problema é achar “a agulha no palheiro”

Discutir

Teorema 4.15 (Valiant-Vazirani)

Supoe que temos um algoritmo polinomial que, dado uma férmula em
forma normal conjuntiva que é satisfativel por uma tnica atribuicéo,
encontra-la. (Para outras entradas o resultado do algoritmo pode ser
arbitrrio.) Entdo NP = RP.

4.6. Encontrar a mediana

Fala sobre o algoritmo randomizado de encontrar o k-ésimo elemento de
uma sequencia ordenada, que é mais simples que a versao deterministica.

Ver p.ex. Arora/Barak, 7.2.1.

4.7. Notas

Um applet com uma implementacao do teste de Miller e Rabin se encontra
aqui.

4.8. Exercicios

Exercicio 4.1
Encontre um primo p e um valor b tal que a identidade do teorema 4.10 nao
¢ correta.

Exercicio 4.2
Encontre um nimero p ndo primo tal que a identidade do teorema 4.12 néo é
correta.

205


http://www.jjam.de/Java/Applets/Primzahlen/Miller_Rabin.html
http://www.jjam.de/Java/Applets/Primzahlen/Miller_Rabin.html




5. Complexidade e algoritmos parametrizados

A complexidade de um problema geralmente é resultado de diversos elementos.
Um algoritmo parametrizado separa explicitamente os elementos que tornam
um problema dificil, dos que sdo simples de tratar. A andlise da complezidade
parametrizada quantifica essas partes separadamente. Por isso, a complexi-
dade parametrizada é chamada uma “complexidade de duas dimensoes”.

Exemplo 5.1

O problema de satisfatibilidade (SAT) é NP-completo, i.e. ndo conhecemos um
algoritmo cuja complexidade cresce somente polinomialmente com o tamanho
da entrada. Porém, a complexidade deste problema cresce principalmente com
o nimero de variaveis, e ndo com o tamanho da entrada: com k variaveis e en-
trada de tamanho n solucéo trivial resolve o problema em tempo O(2*n). Em
outras palavras, para pardmetro k fixo, a complexidade ¢é linear no tamanho
da entrada. O

Definigao 5.1

Um problema que possui um pardmetro k € N (que depende da instancia) e
permite um algoritmo de complexidade f(k)[x|°(") para entrada x e com f uma
funcao arbitraria, se chama tratdvel por pardmetro fixo (ingl. fixed-parameter
tractable, fpt). A classe de complexidade correspondente é FPT.

Um problema tratavel por pardmetro fixo se torna tratavel na pratica, se o
nosso interesse sao instancias com parametro pequeno. E importante observar
que um problema permite diferentes parametrizagées. O objetivo de projeto
de algoritmos parametrizados consiste em descobrir para quais pardmetros
que sao pequenos na pratica o problema possui um algoritmo parametrizado.
Neste sentido, o algoritmo parametrizado para SAT néo é interessante, porque
o nimero de varidveis na pratica é grande.

A seguir consideramos o problema NP-complete de cobertura de vértices. Uma
versao parametrizada é

k-COBERTURA DE VERTICES
Instancia Um grafo nido-direcionado G = (V,; A) e um ntimero k'.

Solucdo Uma cobertura C, i.e. um conjunto C C V tal que Va € A :

207



ST W N

5. Complexidade e algoritmos parametrizados

ancC#0.
Parametro O tamanho k da cobertura.

Objetivo Minimizar |C|.

Abordagem com forga bruta:

mvc (G = (VA)) :=
if A=0 return ()
seleciona aresta {u,v}€ A ndo coberta
Cr:={u}Umve(G\{u})
Cy :={viUmve(G\{v})
return a menor entre as coberturas C; e Cy
Supondo que a selecdo de uma aresta e a reducao dos grafos é possivel em
0O(n), a complexidade deste abordagem é dado pela recorréncia

Th = 2Tn71 + O(Tl)

com soluc¢ao T, = O(2™). Para achar uma solugdo com no maximo k vértices,
podemos podar a arvore de busca definido pelo algoritmo mvc na profundidade
k. Isso resulta em

Teorema 5.1
O problema k-cobertura de vértices é tratavel por pardmetro fixo em O(2%n).

Prova. Até o nivel k vamos visitar O(2%) vértices na arvore de busca, cada
um com complexidade O(n). |

O projeto de algoritmos parametrizados frequentemente consiste em

e achar uma parametrizacdo tal que o parte super-polinomial da com-
plexidade é limitada para um parte do problema que depende de um
parametro k que é pequeno na pratica;

e encontrar o melhor algoritmo possivel para o parte super-polinomial.

Exemplo 5.2
Considere o algoritmo direto (via uma arvore de busca, ou backtracking) para
SAT.

BT—SAT(@p,x) :=
if « & atribuigio completa: return @(«)

ntroduzimos k na entrada, porque k mede uma caracteristica da solucdo. Para evitar
complexidades artificias, entende-se que k nestes casos é codificado em undrio.

208



=

Figura 5.1.: Subproblemas geradas pela decisdo da inclusdo de um vértice v.
Vermelho: vértices selecionadas para a cobertura.

if alguma clausula ndo é satisfeita: return false

if BT—SAT(@,xl) return true

return BT-SAT (@, x0)
(0 e ol denotam extensdes de uma atribuicdo parcial das varidveis.)
Aplicado a 3SAT, das 8 atribuigoes por clausula podemos excluir uma que
néo a satisfaz. Portanto a complexidade de BT-SAT é O(7™/3) = O(v/7 n) =
0(1.9129™). (Exagerando — mas nao mentindo — podemos dizer que isso é
uma aceleragdo exponencial sobre a abordagem trivial que testa todas 2™
atribuigdes.)
O melhor algoritmo para 3-SAT possui complexidade O(1.324™). %

Um algoritmo melhor para cobertura de vértices Consequéncia: O projeto
cuidadoso de uma arvore de busca pode melhorar a complexidade. Vamos
aplicar isso para o problema de cobertura de vértices.

Um melhor algoritmo para a k-cobertura de vértices pode ser obtido pelas
seguintes observagoes

e Caso o grau maximo A de G é 2, o problema pode ser resolvido em
tempo O(n), porque G é uma cole¢io de caminhos simples e ciclos.

o (Caso contrario, temos pelo menos um vértice v de grau 6, > 3. Ou esse
vértice faz parte da cobertura minima, ou todos seus vizinhos N(v) (veja
figura 5.1).

209

{fig:mvc1}



© 00 O UL W N+

5. Complexidade e algoritmos parametrizados

mvc'(G) :=
if A(G) <2 then
determina a cobertura minima C em tempo O(n)
return C
end if
seleciona um vértice v com grau 0, >3
Cy ={v}Umvc'(G\{v})
Cz;:=N(HWw)Umvc'(G\N(v))
return a menor cobertura entre C; e C;
O algoritmo resolve o problema de cobertura de vértices minima de forma
exata. Se podamos a arvore de busca apds selecionar k vértices obtemos um
algoritmo parametrizado para k-cobertura de vértices. O ntimero de vértices
nessa arvore é

Vi<Vio1+Vig+1.
Lema 5.1

A solucdo dessa recorréncia é Vi = 0(1.38031).

Teorema 5.2
O problema k-cobertura de vértices é tratdvel por pardmetro fixo em O(1.3803%n).

Prova. Consideragoes acima com trabalho limitado por O(n) por vértice na
arvore de busca. |
Prova. (Do lema acima.) Com o ansatz V; < c¢' obtemos uma prova por
inducao se para um i > ig
Vi<Vig4+Vig+i<c T4t p1<cd

e et = -1 >1

= ct—c3-1>0
(O dltimo passo ¢ justificado porque para ¢ > 1 e i suficientemente grande o

produto vai ser > 1.) ¢* —c3 — 1 possui uma tinica raiz positiva ~ 1.32028 e
para ¢ > 1.3803 temos ¢ —c? —1>0. |

210



6. Outros algoritmos

6.1. O problema de soma de intervalos

No problema de soma de intervalos (ingl. range-sum problem) queremos man-
ter nimeros aj,...,a, sobre duas operagoes: add(i,v) aumenta a; por v e
get(k) retorna Y ;g ai. Nota que a soma sobre qualquer intervalo [j, k] con-
tiguo, Zie[j,k] ai, é get(k) —get(j —1). Numa implementagdo direta por um
vetor essas operacoes possuem complexidade O(1) e O(n).

Para uma operagao O : N — N seja Oi = {i,0(1),0(0(1)),...}Nn] o orbit de
i sobre O.

Teorema 6.1

Caso operagoes O e P satisfazem

|Ox N Py| = [x <yl (®)
as operacoes
add(i,v) := aj:=a;+v para todo j€ Oi
get(k) := return } ; p ai

resolvem o problema da soma de intervalos.

Prova. Por indugdo sobre as operagdes add. Supde get(k) = 3 i @i
Depois de uma operagao add(i,v) temos: (i) Casoi > k: get(k) =) ;cprai =
2 iepk @i = 2_icpg @i porque [OiN Pk| = 0. (i) Caso i < ki get(k) =
2 iepk U =V H D icp @i =V+ D icpg @i porque [Ox N Py| =1. [ |

Exemplo 6.1

A solugdo por um vetor que armazena os a; diretamente corresponde com
O(i) =1ieP(i) =1—1. Operagdes add e get tem complexidade O(1) e O(n),
respectivamente. (Critério (®) é satisfeito porque Oi = {i}, Pi = [i].) O

Exemplo 6.2

Com O(i) = i+1 e P(i) = i obtemos uma solucao em que a; armazena as somas
parciais. As operagdes agora tem complexidade O(n) e O(1). (Critério (®) é
satisfeito porque Oi ={i,1+1,...,n}e Pi ={i}) O
Exemplo 6.3

Seja O(1) = 42"V e P(i) = i—2"M) com r(i) o indice do bit menos significativo
(LSB) na representacdo bindria de i. Por definigdo é claro que a érbita de O
cresce, i.e. O(1) > 1, e o do P decresce, i.e. P(i) < i.

211

{th:fenwic

{orbit}



6. Outros algoritmos

Proposicao 6.1
Critério (®) ¢ satisfeito.

Prova. Se x >y, temos |Ox N Py| = 0, pois a 6rbita de O cresce e a de P
decresce. Pelo mesmo motivo, se x =y, entdo |OxNPy| = [{x,y}| =1 é vilido.
Agora, suponha que x < Yy. Podemos escrever x = h+s,, y = h+2° + Sy,
onde b é o bit mais significativo diferente de x ey, h > 2% e 0 < s, sy < 20,
Considere primeiro s, = 0. Entao, x = h € Py, ja que P remove repetidamente
bit menos significativo (least significant bit, LSB) e, portanto, x € Ox N Py.
Para qualquer outro o € Ox, 0 # X, temos 0 > x+2"*) > x4+ 2°+1 'mas para
pEPY, p<h+2°+s, =x+2°+sY <x+2° 4 2% =x 4 2°"1. Portanto,
0x 1 Pyl = )] = 1.

Agora considere s, > 0. Afirmamos que Ox N Py = {m}, onde m = h + 2°.
Novamente, é ficil ver que m € Py, pois P remove repetidamente o LSB. Para

ver que m € Ox, considere as iteracdes s; = O'(sy),1=0,1,2,.... Ses; < 2°,
entdo s; < (2°—1)—(270s1) —1) =20 —27(54) j4 que r(s;) < b é 0 LSB. Assim,
para o primeiro iterado tal que s; > 2P, temos s; = si_q 4+ 2"(5i-1) < 2b,

portanto s; = 2% e, assim, m = h + 2 € Ox.

Agora considere o € Ox e p € Py com o,p < m. Temos 0 > x = h+ sy > h,
mas também p < m—2"™) = h, portanto, nenhum outro elemento desse tipo
estd em Ox N Py. Por fim, considere o € Ox e p € Py com o,p > m. Entéo,
o>m+2"M =m+2°=h4+2° 42 =h+ 2% T ep<y=h+2P+s, <
h+ 2% 4+ 2% = h 4+ 251, Portanto, novamente, nenhum outro elemento desse
tipo estd em Ox N Py. |

Prova. If x > y, we have |Ox N Py| = 0, since O’s orbit increases, and
P’s decreases. For the same reason, if x =y then |[Ox N Py| = [{x,y}| =1
holds.

Now assume x < y. Then we can write x = h+sx, y = h+2°+s,, where
b is the highest different bit of x and y, h > 21 and 0 < sy, sy < 2°.
Consider first s, = 0. Then x = h € Py, since P repeatedly removes
the LSB, and thus x € Ox N Py. For any other o € Ox, o # x, we have
0>x+2") >x 425 but for p € Py, p <h+2° 5y =x+2°+sY <
x + 2% + 2% = x 4+ 2°+1. Therefore |Ox N Py| = [{(x}| = 1.

Now consider s, > 0. We claim Ox NPy = {m}, where m = h + 2°. It is
again easy to see that m € Py, since P repeatedly removes the LSB. To see
that m € Ox consider iterates s; = O'(sy),1=0,1,2,.... If s; < 2° then
si < (2P —1)—(27(s) —1) = 20 —27(s4) gince (s;) < b is the LSB. Thus,
for the first iterate such that s; > 2P, we have s; = s;_; +27(5t-1) < 2P
so s; = 2%, and thus m = h+ 2% € Ox.

Now consider o € Ox and p € Py with o,p < m. We have 0 > x =

212



6.1. O problema de soma de intervalos

h+ sy > h, but also p < m — 27(m) = h, so no other such element is
in Ox N Py. Finally, consider o € Ox and p € Py with o,p > m. Then
0>m4+2"M =m42> = h4+2° 420 = h4+20+ andp <y =
h+2%+sy <h+2%+2% =h+2°"1. So again, no other such element
is in Ox N Py. |

Proposicao 6.2
As operagoes add and get tem complexidade O(logn).

Prova. Por inducao, O*(x) > x+ ZO<j<i 2 > 2% de modo que a 6rbita de O
tem no méaximo log, n elementos. Da mesma forma, P*(y) < n—ZO<].<i 2=

n —2' +1 e a érbita de P também tem no maximo log, n elementos. As
duas operagdes podem ser implementadas de forma eficiente por O(i) = (1 |
i—=1))+1eP@l)=1i&(i—1) em tempo O(1). |

Prova. By induction O'(x) > x + ZO<j<i 23 > 21 50 O’s orbit has at
most log, n elements. Similarly, P(y) < n— Zogj<i D =n—2'+1and
P’s orbit also has at most log, n elements. As duas operagdes podem ser
implementadas de forma eficiente por O(i) = 1| (i —1)) =1 e P(i) =
1i&(1— 1) em tempo O(1). [ ]

Even if we don’t use the bit operations, numbers x and y have at most
log, n bits, and we can go bit over bit to implement O and P. That would
increase the complexitty to O(log2 n).

That’s nice, but unnecessarily complicated. (I also lots the original refe-
rence, may this one was it; there is also this.) A segment tree archieves
the same simpler, and can be extended to do more.

Exercicio 6.1

Mostre que as operagoes O(1) =11+ 1e P(i) = (i&(i+ 1)) — 1 satisfazem o
critério do teorema 6.1. Qual a interpretacido das operagbes na representacio
binaria? Vocé conseque dar uma definicdo aritmética equivalente? Qual a
complexidade de add e get usando essas operagoes?

213


https://michaelnielsen.org/polymath/index.php?title=Updating_partial_sums_with_Fenwick_tree
https://pixel-druid.com/articles/fenwick-trees-and-orbits
https://cp-algorithms.com/data_structures/segment_tree.html

6. Outros algoritmos

6.2. Amostragem discreta

6.2.1. Amostragem sem reposicao

Queremos selecionar k nimeros de [n] sem reposicdo. Uma forma simples de
conseguir isso é definir um vetor s; = i, 1 € [n] e para j € [k] trocar um
elemento aleatério em sjj ) com s;. No final s contém a amostra desejada.
O custo é O(n) tempo e espaco, porque usa um vetor de tamanho n. Uma
abordagem melhor usa uma tabela hash mapeando indices para valores, sem
armazenar os valores default i —i. Com isso o custo de tempo e espago é
reduzido para O(k) que é essencialmente 6timo.

6.2.2. Distribuicoes discretas

Queremos amostrar de uma distribuicdo discreta com probabilidades pi, 1 €
[n]. Uma abordagem muito simples é rejection sampling. Seja p = maxicn] Pi-
Selecionamos um item i € [n] e um nimero em q = [0,p] uniformemente e
rejeitamos se q > pi. A taxa de aceitagao é 1/(np).

Uma ideia melhor é tower sampling. Aqui, armazenamos as somas parciais
qi = Zje[i] Pj, i € [n], amostramos um niimero aleatério uniforme r € U0, 1]
e, em seguida, fazemos uma busca binaria pelo menor i, de modo que 1 > qj.
O pré-processamento leva tempo O(n), a amostragem apenas O(logn).

A solucdo para o problema de soma de intervalo acima permite atualizar as
somas de prefixo no tempo O(logn). Portanto, podemos aplicar a amostragem
de torre dinamicamente com tempo de atualizagdo de O(logmn) e tempo de
amostragem de O(log2 1), j& que temos no maximo logn consultas, cada uma
de custo O(logn).

Uma ideia ainda melhor é alias sampling. Primeiro, subdivida todos os p;
em itens de baixa probabilidade L = {i | p; < 1/n}, boa probabilidade G =
{i| pi = 1/n} e alta probabilidade H = {i | p; > 1/n}. Logo, se L = H = 0§,
podemos fazer uma amostragem uniforme de G. Em seguida, observamos que
L = () sse H = (), pois as probabilidades dos n itens devem somar 1. Portanto,
ou somos bons ou temos um par L-H. Para esse par, crie um compartimento
“bom” combinando o item L com uma parte adequada do item H. Lembre-se
dos compartimentos de origem e realoque a parte restante do item H para L,
G ou H. Agora ainda temos n compartimentos, mas um compartimento bom
(tipo G) a mais. Repita até que tenhamos apenas compartimentos bons. Isso
leva no méximo O(n) tempo, pois podemos ter no maximo n compartimentos
bons.

Para amostragem, armazene em s1,S2,...,S2n, nimeros de itens de modo que
o compartimento i represente os itens sy; € $2i41. (Para compartimentos

214

{sec



SR NI

6.2. Amostragem discreta

puramente bons, sy; = s2i+1.) Armazene também a massa de probabilidade
do primeiro item s,; em cada compartimento em (1, q2, ..., qn. (Novamente,
para compartimentos puramente bons, q; = 1).

Agora podemos fazer a amostragem da seguinte forma em tempo O(1):

x = U(0, 1]

b=[nx] // localizar o compartimento

r=[(nx mod 1) > qp] // localizar o item no compartimento
retornar Sop4r

Vamos estudar agora a amostragem de reservatério (ingl. reservoir sampling).
Aqui, o problema é escolher um elemento da sequéncia 1,2,...,n com pro-
babilidades pi, mas on-line, ou seja, visitando a sequéncia uma vez. E claro
que poderiamos ler toda a sequéncia e fazer uma amostragem como acima.
Portanto, a restricdo aqui é que temos O(1) de memoria.

Vamos examinar primeiro o caso uniforme que possui uma solucéao facil. Man-
tenha um item selecionado, inicialmente nenhum, e substitua-o pelo item i
com probabilidade 1/i. A corregdo pode ser facilmente demonstrada por in-
ducdo. Suponha que, para n itens, tenhamos p; = 1/n. Entdo, para n + 1,
escolhemos 1 + 1 com probabilidade 1/(n + 1), ou qualquer um dos outros
itens com probabilidade p; - n/(n+ 1) =1/(n+ 1), conforme necessario.
Agora generalizamos isso para selecionar itens de m > 1 e pesos gerais wy, ..., Wy
(ou seja, os pesos ndo precisam ser normalizados). Isso funciona da seguinte
forma. Para cada item, calcule o valor U[0, 1]/t e mantenha os m itens de
maior valor. Podemos ver facilmente por que isso é correto no caso especial
de amostragem uniforme. Nesse caso, é melhor definir w; =--- =w, = 1.
Entéo, basta sortear n nimeros aleatérios em U[0, 1] e pegar os m itens de
maiores valores.

O algoritmo acima requer n niimeros aleatérios, e o nimero esperado de atua-
lizagbes do conjunto escolhido é O(mlogn/m). H4 uma versdo que precisa de
apenas O(mlogn/m) amostras aleatérias. Esses algoritmos também podem
ser usados para criar uma amostra aleatéria de tamanho k com reposigao,
executando k instancias paralelas que selecionam m = 1 item cada.

We want to sample from a discrete distribution with probabilities pj,
i € [n]. A very simple approach is via rejection sampling. Let p =
maXicm] Pi- We select an item 1 € [n] and a number in q = [0,p]
uniformly, and reject if q > p;i. The acceptance rate is 1/(np).

A better idea is tower sampling. Here we store the partial sums q; =
Zie[ﬂ Pj, i € [n], sample a uniform random number r € U[0, 1], and
then binary search for the smallest i, such that r > q;. Pre-processing

215



\)

6. Outros algoritmos

takes time O(n), sampling only O(logn). More details can be found in
Krauth (2006, Section 1.2.3). The solution to the interval sum problem
above allows to update prefix sums in time O(logn). Therefore we can
apply tower sampling dynamically with update time O(logn) and sample
time O(log® n), since we have at most logn queries, each of which costs
O(logn).

An even better idea is alias sampling. First subdivide all p; into items
with low probability L = {i | p1 < 1/n}, good probability G = {i | p; =
1/n}, and high probability H = {i | p; > 1/n}. Then, if L =H = 0, we
can sample uniformly from G. Next, we observe L = ) iff H = (), since
the probabilities of the n items must sum to 1. Therefore either we are
good, or we have a L-H pair. For such a pair, create a “good” bin by
combining the L item, with an adequate part of the H item. Remember
the source bins, and reallocate the remaining part of the H item into L,
G, or H. Now we still have n bins, but one G bin more. Repeat until we
have only G bins. This takes at most O(n) time, since we can have at
most n G bins.

For sampling, store in s1,82,..., 52y item numbers such that bin i repre-
sents items sz; and s2i41. (For purely good bins, s2;i = s2i+1.) Also store
the probability mass for the first item s;; in each bin in q1,q2,...,qn-
(Again, for purely good bins q; = 1.)

Now we can sample as follows in time O(1):

x=U[0,1] b=[nx] // find the bin

r=[(nx mod 1) >(p] // find the item in the bin
return Syp4r

We can see tower sampling as sampling in a full binary tree (divide items
accordingly). Alias sampling can be seen as a tree of depth 2 where the
root has n bins as children, and each child either is a leaf, representing
a single item, or has two leafs, corresponding to the two possible items.
Decisive is that the first level is uniform (or at least regular, such that a
child can be sampled in O(1)). Does this view bring some insight?

Let us now turn to reservoir sampling. Here, the problem is choosing an
element from the sequence 1,2,...,n with probabilities p;, but online,
i.e. by visiting the sequence once. Clearly we could read the entire se-
quence, and sample as above. So the restriction here is that we have O(1)
memory.

216




6.2. Amostragem discreta

We look first at the uniform case. This has an easy solution. Keep
a currently selected item, initially none, and replace it by item i with
probability 1/i. Correctness can be easily shown by induction. Assume
for n items we have p; = 1/n. Then for n 4+ 1, we choose n + 1 with
probability 1/(n + 1), or any of the other items with probability p; -
n/(m+1)=1/(n+1) as required.

We now generalize this to selecting m > 1 items and general weights
Wi,y ..., Wy (i.e. the weights need not be normalized). This works as
follows. For each item compute value U[0, 1]"/W+ and keep the m items
of largest value. We can see easily why this is correct in the special case
of uniform sampling. Here it’s best to set w; =--- =w,, = 1. Then we
just draw n random numbers in U[0, 1] and take the m items of largest
values.

The above algorithm requires n random numbers, and the expected num-
ber of updates of the chosen set is O(mlogn/m). There’s a version that
needs only O(mlogmn/m) random samples. These algorithms can also be
used to create a random sample of size k with replacement, by running
k parallel instances selecting m = 1 item each.

Open:
e Demonstrate the above.

e Does similarity of biased random keys with the sampling above
(which in the original paper also uses the notion of “keys”) suggest
a possibility of generating non-uniform permutations in BRKGAs?

o Weighted reservoir sampling should also be connected to the ideas
of (Krauth, 2006); I see similarities.

A good source on sampling is the book of Krauth (2006). Alias sampling
is well explained by Patrascu (2011). Weighted reservoir sampling is from
Efraimidis e Spirakis (2005).

Notas Uma boa fonte sobre amostragem é o livro de Krauth (2006). Para
amostragem sem reposigao ver Ting (2021) e Bentley e Floyd (1987). Alias
sampling é bem explicada por Patragcu (2011). A amostragem de reservatério
ponderada é de Efraimidis e Spirakis (2005).

217



6. Outros algoritmos

6.3. Set covering

(A lecture on demand held Aug 12, 2024. The first part is based on a
chapter on set partitioning of Balas, the second part on a paper of Blésius
and others.)

Let A € R™*™ be the element-set containment matrix over m elements
and n sets, i.e. columns are sets, with 1s at the rows of their elements,
rows are elements, with 1s at the column of the sets they are contained
in. We have the NP-complete set covering problem

min{cx | Ax > 1,x € B"} (SC) {sc}

and the related problems

min{cx | Ax = 1,x € B™} (SPP) {spp}
max{cx | Ax < 1,x € B"} (SP) {sp}
max{ly | Agy < 1,y € B™} (EM) {em}
min{ly | Agy > 1,y € B™} (EC) {ec}
max{1x | A x < 1,x € B"} (NP) {np}
min{lx | Afx > 1,x € B"} (NC) {nc}

namely set partitioning SPP, set packing SP, edge matching EM (and its
perfect version EM*), edge cover EC, node packing NP (i.e. maximum
independent sets), and node cover NC (i.e. minimum vertex cover). Here
Ac € R™*™ is the node-edge incidence matrix of graph G with n vertices
and m edges (columns represent edges with at most two 1s, rows represent
vertices, the 1s are its incident edges).

We have the following relationship, where solid arcs are problem reduc-
tions, and dotted arcs go from special cases to more general problems:

218



6.2. Amostragem discreta

EM* } SPP ——— SC
EM » SP
EC NP

The reductions are as follows.

(1) SPP to SC. Penalize excess by writing
min{cx + Oly | Ax—y =1,y > 0,x € B"}.
Then y = Ax —1 so Oly = ©@1Ax — mO and we can write
min{—O@m + ¢'x | Ax > 1,x € B"},

with ¢/ = ©1A + ¢ (we can drop constant —@m). For large © > 1c
optimal solutions are the same.

(2) SPP to SP Penalize slack by writing
min{ex +Oly | Ax +y =1,y > 0,x € B"}.

Then y = 1 — Ax so Oly = Om — O1Ax, and letting ¢’ = O1A — ¢ we
have

min{—c'x + O@m | Ax < 1,x € B"} = max{c'x | Ax < 1,x € B"}

(3) EC to EM EC must cover all n vertices. This can be done with n
edges. However, in a matching M we cover two vertices per edge, thus

219



© 00 =~ O U s QO N

6. Outros algoritmos

the value of EC minimizes n — [M|. In other words we maximize |M|,
i.e. solve an EM, since n is a constant.

(We note that all can be reduced to SC, but there’s no simple reduction
from SC to SPP.)

6.3.1. Further related problems

Let G = (V, F) be a hypergraph with hyperedges F C V. The hitting set
problem is

min(S| | FN'S # 0, ¥F € 7} (HS) {ns}
min{ly |y*A > 1%y € B™} (HS) {ns2}
-~ —
Aty>1

where in the latter formulation we just have SC with the roles of sets
and elements inverted. (In SC sets covers element they contain; changing
roles, seeing sets as elements and elements they cover as sets their are
contained in, we have a hitting set.)

6.3.2. Solution strategies

In the 2000s ILP was SOTA. We look at Blisius et al. (2022) which
achieve a median speedup of 25 over 929 instances where Gurobi takes
> 0.01 seconds. (The total test set has 4256 instances, with 4114 trivial
ones, and 6 that take more than 24 hours. This leaves 136 core instances,
of which 58 are random and 78 applied.)

The solution technique is branch and bound. It solves subproblems over

chosen vertices S, open vertices V, and exluded vertives S.

hs(S,V,S) :=
greedy(SUV) { Compute UB }
while reduction or pruning possible
computer lower bounds
if lb>ub: return
apply first applicable reduction
end while
choose highest degree vertex veV
hs (SU{}, V\{v}, S) { include }
hs(S, V\{v}, SU{V}) { exclude }

220



6.2. Amostragem discreta

We can see that this is almost canonical, with inclusion before exclusion.
What counts are lower and upper bounds, reductions, the branching stra-
tegy, and efficient data structures. We go over them in turn.

6.3.3. Upper bounds
Repeatedly pick greedily the vertex of highest degree. This is a logn-

approximation, and works well in practice. It can be done in time O(n +
m) by keeping vertices in buckets, and repeatedly choosing one of highest
degree, and then going over the neighbors to relocate them.

6.3.4. Lower bounds

There are several ones of increasing complexity.

Max-degree Each vertex hits at most dyax = maxyecy 8y sets. So [|F|/dmax|
is a lower bound.

Sum-degree Let 87 > 8, > --- > d,, and choose the smallest 1 such that
the prefix sum Zje[i] d; > |F|. Then j is a lower bound, since fewer
vertices cannot hit all sets.

Efficiency Take any solution S C V of cost |S| and write

si=>1=% Z /6, =3 3 1/ 2 ) minl/s,.

vES VES FeF(s FeF veSnF FeF
\—f—/ —
push cost to edges >minyer 1/8y

In the relaxation to the minimum we observe that at least one vertex
of highest degree pays for edge F. The cost is now independent of S,
and we have lower bound [ZFE}- min,cg 1/5\,] (The vertex cover
viewpoint is: each vertex costs 1/s where s is the largest set it is
contained in.)

Packing If P C F are pairwise disjoint edges, |P| is a lower bound. This
is an independent set in the intersection graph of the edges.

Sum-over-packing As above, take a packing P. The vertices that hit P
hit at most

bp = (Z max 6v) —|P|
Fep ve

221



6. Outros algoritmos

edges in the rest F \ P. Now assume bp < |F \ P|, then we need to
hit r = |F \ P| — bp more edges. So again let &7 > 8, > -+ > 8y,
but with degrees in F \ P, and with the vertex of highest degree
out, and choose the smallest 1 such that Zie[i] 8; > . Then [P| +j
is a lower bound.

The relations are as follows, where arcs indicate domination, and orange
edges incomparability. The order these bounds are computed is shown in
red.

® @

efficiency sum-over-packing

®

sum-degree packing

@

max-degree

They cost (1) O(n), (2) O(D), (3) O(D + mlogm), and (4) O(D).

6.3.5. Reduction rules

We have four reduction rules. Again circled numbers give the order and
the cost to apply them. Here D = 3 .\ 0, = ) 7 [F| (note that in
traditional graphs D = 2m since [F = 2).

Unit edge If an edge has size one, pick its vertex. (5) O(m).

Edge domination If edges F; C F,, remove F, (since hitting F; implies
hitting F2). (9) O(mD).

Vertex domination If F(v1) 2 F(v,) delete v, (since all v, hits vq hits,

t00). @ O(nD).

Costly discard (a kind of anticipated branching) if removing v € V makes
ub > 1b select v. @: update efficiency bound, O(D), @: update

222




6.2. Amostragem discreta

packing bound, no repacking, O(D + mlogm), @: repack for the
3 vertices of highest degree O(D + mlogm).

6.3.6. Details

Keeping the graph Vertices have edge lists, edges vertex lists; all are
kept sorted in a data structure called an “ordered subset list”.

= n on_oal_ o b

+ indicg

1,2, ... n or m

In this way we have the following operations:
init() to {s1,...,sn} (ordered) in O(n);
del(i) in O(1);

undo last del in O(1);

traverse in either direction in O(|S]).

We also keep an undo stack.
Upper bounds Via bucket heaps, in O(D).

Packing bound Computed heuristically, as follows:

a) Approximate the min degree order of edges F in the conflict
graph by 3 | ,, done in O(mlogm).

b) Visit edges F in order, select F if possible, mark vertices. Each
check costs [F| so total cost D = 3 - [F.

Costly discard with efficiency bound Each F € F may lose a vertex, so
cost minycr 1/0, goes to the second smallest vertex; it is remembe-
red when computing the efficiency bound for the instance, so cost
O(D) once. Then: for each v € V and for each F € F(v), check if v is
current minimum, and increase. This costs } oy 3 rcz(,) 1 =D.

S

223



6. Outros algoritmos

Costly discard with packing bound In the current packing P all edges
F \ P intersect some F € P, and thus are blocked by some v € | JP
such that FNJP = {v}. (Only those blocked by a single vertex are
interesting.) Now do the following three steps:

a) initialize: for each v € V find B,, the edges blocked by it in
O(D), and sort B, by highest degree of a contained vertex
(except v) in O(mlogm)

b) check: for each v € V go over B,, and add edges greedily

¢) for the ¢ = 3 vertices of highest degree: rebuild the packing
from scratch

Edge and vertex domination For vertices going over all pairs in O( Z Ot
8;) = O(nD); for edges ditto in O(3_, ) [F1| + [F2|) = O(mD)

(There are theoretical indications that subquadratlc time is not
possible.) In practice: set tries over [n] store a family of sets over
operations (Savnik, 2013)
add(S) T=TU{S} in (|S])
has subset(S) in O(|S|+ |[T|])
has superset(S) in O(|S| + [|T||)

as follows: root (), children always greater, each node also has a
“last flag” (for prefixes).

Now for edges: go over |Fi| < [Fz| < --- < |Fy|, for each Fy: if T
has a subset discard F; else insert into T. For vertices: go over
81 > 082 > --- > bq, and for each vi: if T has a superset of F(vy)
discard vi, otherwise insert F(v;) into T.

224



A. Material auxiliar

Definicoes

Definicao A.1
Uma relagao binaria R é polinomialmente limitada se

{def:polin

dp € poly : V(x,y) € R: |yl < p(lx])

{def:pisot
Definicao A.2 (Pisos e tetos)

Para x € R o piso |x] é o maior nimero inteiro menor que x e o teto [x] é o
menor nimero inteiro maior que x. Formalmente

x| =max{y € Z|y <x}
[x] =min{y € Z |y > x}

O parte fraciondrio de x é {x} =x — |x].
Observe que o parte fracionério sempre é positivo, por exemplo {—0.3} = 0.7.

Proposicao A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem

x < [x] <x+1 (A.1) {eq:teto}
x—1<|x] <x (A.2) {eq:piso}

Defini¢ao A.3
Uma funcao f é convera se ela satisfaz a desigualdade de Jensen

f(Ox + (1—O)y) < Of(x) + (1— O)f(y). (A.3)

Similarmente uma fungao f é concava caso —f é convexo, i.e., ela satisfaz

f(Ox + (1 —0)y) > Of(x) + (1 —0)f(y). (A4)
Exemplo A.1
Exemplos de funcdes convexas sao x2%, 1/x. Exemplos de funcdes concavas
sao logx, v/X. O

225



{alg:mmpd}

A. Material auxiliar

Proposicao A.2

Para Zie[n} ©; =1 e pontos xi, i € [n] uma fungdo convexa satisfaz

f() O) < ) Bif(xi)
ien]

ie[n]

e uma func¢éo concava

Z ®1X1 Z Z ®if(xi)
ie[n]

ien]

(A.5)

(A.6)

Prova. Provaremos somente o caso convexo por indugdo, o caso concavo
sendo similar. Para n = 1 a desigualdade ¢ trivial, para n = 2 ela é vélida

por definicdo. Para n > 2 define @ = ) _;_ 2.n] 1 ©; tal que © + 0 =1.

isso temos

f( Z @ixi) = f(@]X] + Z @ixi) = f(®1%7 —|—@y)
]

ien ige[2,m]

onde y = Zje[z,n](e)’/@)x)’» logo

f( ) Oxi) < O:1f(x1) + Of(y)

ien]

=®1f(X1) +@f( Z (8)'/@)7()')

jel2,m]
<Of(x1)+0 )  (6/0)f(x) = > Oix
jel2m] ie[n]

A.1l. Algoritmos

Solucdes do problema da mochila com Programacao Dinamica

Mochila maxima (Knapsack)

Com

e Seja S*(k,v) a solu¢ao de tamanho menor entre todas solugdes que

— usam somente itens S C [1,Kk] e

226

{pro

{eq:

{eq:



A.1. Algoritmos

M(k,n)

Entrada |X1 X2 X3 X4 X5| X6 | | an

Medianos I:‘ I:‘ I:‘
Mediano

Particao Xi <m | m| X{ > m |
i
Recursao k<i: k=1: k>1i:
M(k,i—1) Encontrado M(k —i,n—1)

Figura A.1.: Funcionamento do algoritmo recursivo para selecao. {fig:selec

— tem valor exatamente v.

e Temos

(1,v) = undef para v # vy

Mochila maxima (Knapsack)

e« S* obedece a recorréncia

S*(k,v) = min

tamanho

S*(k—1,v—wvi)U{k}, sevik <veS"k—1,v—vy) definido
S*(k—1,v)

e Menor tamanho entre os dois

> i+t < Yt

ieS*(k—1,v—vy) ieS* (k—1,v)

e Melhor valor: Escolhe $*(n,v) com o valor méximo de v definido.

s Tempo e espago: O(M 3 Vi)

227



g:selection}

A. Material auxiliar

Selecdo Dado um conjunto de ntimeros, o problema da sele¢io consiste em
encontrar o k-ésimo maior elemento. Com ordenacdo o problema possui so-
lucdo em tempo O(nlogn). Mas existe um outro algoritmo mais eficiente.
Podemos determinar o mediano de grupos de cinco elementos, e depois o re-
cursivamente o mediano m desses medianos. Com isso, o algoritmo particiona
o conjunto de nimeros em um conjunto L de nimeros menores que m e um
conjunto R de niimeros maiores que m. O mediano m é na posi¢ao i := |L| 41
desta sequéncia. Logo, caso i = k m é o k-ésimo elemento. Caso i > k te-
mos que procurar o k-ésimo elemento em L, caso i < k temos que procurar o
k — i-ésimo elemento em R (ver figura A.1).

O algoritmo ¢ eficiente, porque a selecao do elemento particionador m garante
que o subproblema resolvido na segunda recursao é no maximo um fator 7/10
do problema original. Mais preciso, o nimero de medianos é maior que n/5,
logo o nimero de medianos antes de m é maior que n/10 — 1, o ntmero de
elementos antes de m é maior que 3n/10—3 e com isso o nimero de elementos
depois de m é menor que 7n/10+ 3. Por um argumento similar, o nimero de
elementos antes de m é também menor que 7n/10 + 3. Portanto temos um
custo no caso pessimista de

Tm) = (1) sen <5
m= T([n/5]) + ©(7/n/10+3) + ©(n) caso contrario

ecom 5P + (7/10)P =1 temos p = log, 7 ~ 0.84 ¢

oo 1+ v )

=0OMmP(1+(n'"P/(01—p)—1/(1—p)))
=0(cin? +can) = O(n).

Algoritmo A.1 (Selecao)
Entrada Numeros x1,...,Xy, posicao k.

Saida O k-ésimo maior nimero.

1 S(k,{x1,...,xn}) =
2 if n<5

3 calcula e retorne o k-ésimo elemento
4 end if
5 my = median(xﬁﬂ,. . ~)Xmin(5i+5,n]) para 0<i< IVTI/5‘| .

228

{sec


http://www.wolframalpha.com/input/?i=solve(5**-p%2B(7/10)**p=1)

:S([{n/SW /21»m1)”°)m(n/5]—1)
{xilxi <m,1<i<n}
xXilxg>m,1<i<n}
i:=|L+1
if i=k then
return m
else if i >k then
return S(k,L)
else
return S(k—1i,R)
end if

m
L:
R:

A.1. Algoritmos

229






B. Técnicas para a analise de algoritmos

Analise de recorréncias

Teorema B.1 (Akra-Bazzi e Leighton)
Dado a recorréncia

{th:mak}

T(x) = e(1), se x < Xo,
N Z1§i§k aiT(bix + hi(x)) + g(x), caso contrério,

com constantes a; > 0, 0 < b; < 1 e fungodes g, h, tal que
l9'()l € O(x%);  [ha(x)] < x/log' "€ x

para um € > 0 e a constante x¢ e suficientemente grande

T(x) €® (Xp (1 + J.X Esﬂ du))
1

com p tal que } ;i aib? =1.

Teorema B.2 (Graham et al. (1988))
Dado a recorréncia

T(n) = e(1), n < maxi<i<k di,
2 % T(n—di), caso contrario,

seja o a raiz com a maior valor absoluto com multiplicidade 1 do polinomio

caracteristico

D

com d = maxy di. Entao

231






Bibliografia

Manindra Agrawal, Neeraj Kayal e Nitin Saxena. “PRIMES is in P”.
Em: Annals of Mathematics 160.2 (2004), pp. 781-793.

W. R. Alford, A. Granville e C. Pomerance. “There are infinitely many
Carmichael numbers”. Em: Annals Math. 140 (1994).

Algorithm Engineering. http://www.algorithm-engineering.de. Deutsche
Forschungsgemeinschaft.

H. Alt et al. “Computing a maximum cardinality matching in a bipartite
graph in time O(n'->y/mlogn)”. Em: Information Processing Letters 37
(1991), pp. 237-240.

June Andrews e J. A. Sethian. “Fast marching methods for the continu-
ous traveling salesman problem”. Em: Proc. Natl. Acad. Sci. USA 104.4
(2007). DOI: 10.1073/pnas.0609910104.

Sanjeev Arora e Boaz Barak. Computational Complexity: A Modern Ap-
proach. Cambridge University Press, 2009.

G. Ausiello et al. Complexity and approximation — Combinatorial Opti-
mization Problems and their Approxzimability Properties. Springer-Verlag,
1999. URL: http://www.nada.kth.se/~viggo/approxbook.

Brenda S. Baker. “A new proof for the first fit decreasing bin packing
algorithm”. Em: J. Alg. 6 (1985), pp. 49-70. po1: 10 . 1016 /0196 -
6774(85)90018-5.

Jon Bentley e Bob Floyd. “Programming pearls: a sample of brilliance”.
Em: Communications of the ACM 30.9 (set. de 1987), pp. 754-757. ISSN:
1557-7317. pOI: 10.1145/30401.315746.

Claude Berge. “Two theorems in graph theory”. Em: Proc. National
Acad. Science 43 (1957), pp. 842-844.

John R. Black Jr. e Charles U. Martel. Designing Fast Graph Data
Structures: An Ezperimental Approach. Rel. téc. Department of Com-
puter Science, University of California, Davis, 1998.

233


https://doi.org/10.1073/pnas.0609910104
http://www.nada.kth.se/~viggo/approxbook
https://doi.org/10.1016/0196-6774(85)90018-5
https://doi.org/10.1016/0196-6774(85)90018-5
https://doi.org/10.1145/30401.315746

Bibliografia

[12]

234

Thomas Blasius et al. “An Efficient Branch-and-Bound Solver for Hit-
ting Set”. Em: 2022 Proceedings of the Symposium on Algorithm Engi-
neering and Experiments (ALENEX). Society for Industrial e Applied
Mathematics, jan. de 2022, pp. 209-220. 1sBN: 9781611977042. DOT: 10.
1137/1.9781611977042.17.

G. S. Brodal, R. Fagerberg e R. Jacob. Cache Oblivious Search Trees
via Binary Trees of Small Height. Rel. téc. RS-01-36. BRICS, 2001.

Andrei Broder e Michael Mitzenmacher. “Network applications of Bloom
filter: A survey”. Em: Internet Mathematics 1.4 (2003), pp. 485-509.

G. Cattaneo et al. “Maintaining dynamic minimum spanning trees: An
experimental study”. Em: Discrete Applied Mathematics 158.5 (mar. de
2010), pp. 404-425. 1sSN: 0166-218X. pDOI: 10.1016/j.dam.2009.10.
005.

Bernhard Chazelle. “A Minimum Spanning Tree Algorithm with Inverse-
Ackermann Type Complexity”. Em: Journal ACM 47 (2000), pp. 1028—
1047.

Li Chen et al. “Maximum Flow and Minimum-Cost Flow in Almost-
Linear Time”. Em: tbd (2022). DOI: 10 . 48550/ arxiv . 2203 . 00671.
arXiv: 2203.00671 [cs.DS].

Thomas H. Cormen et al. Introduction to Algorithms. 3rd. The MIT
Press, 2009.

Ivan Damgard, Peter Landrock e Carl Pomerance. “Average case error
estimates for the strong probable prime test”. Em: Mathematics of com-
putation 61.203 (1993), pp. 177-194.

Brian C. Dean, Michel X. Goemans e Nicole Immorlica. “Finite ter-
mination of "augmenting path”algorithms in the presence of irrational
problem data”. Em: ESA’06: Proceedings of the 14th conference on An-
nual Furopean Symposium. Zurich, Switzerland: Springer-Verlag, 2006,
pp- 268-279. DOI: 10.1007/11841036_26.

R. Dementiev et al. “Engineering a Sorted List Data Structure for 32 Bit
Keys”. Em: Workshop on Algorithm Engineering € Experiments. 2004,
pp. 142-151.

Yefim Dinitz. “Algorithm for solution of a problem of maximum flow in
a network with power estimation”. Em: Doklady Akademii Nauk SSSR
11 (1970), pp. 1277-1280.


https://doi.org/10.1137/1.9781611977042.17
https://doi.org/10.1137/1.9781611977042.17
https://doi.org/10.1016/j.dam.2009.10.005
https://doi.org/10.1016/j.dam.2009.10.005
https://doi.org/10.48550/arxiv.2203.00671
https://arxiv.org/abs/2203.00671
https://doi.org/10.1007/11841036_26

23]

33]

[34]

Yefim Dinitz. “Dinitz’ Algorithm: The Original Version and Even’s Ver-
sion”. Em: Theoretical Computer Science: Essays in Memory of Shimon
Even. Ed. por Oded Goldreich, Arnold L. Rosenberg e Alan L. Selman.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 218-240. ISBN:
978-3-540-32881-0. DOI: 10.1007/11685654_10.

Yann Disser e Martin Skutella. “The Simplex Algorithm is NP-mighty”.
Em: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms. USA: Society for Industrial e Applied Mathematics,
2015, pp. 858-872. DOL: 10.1137/1.9781611973730.59.

Ran Duan, Seth Pettie e Hsin-Hao Su. “Scaling algorithms for approxi-
mate and exact maximum weight matching”. Em: CoRR abs/1112.0790
(2011).

Ran Duan, Seth Pettie e Hsin-Hao Su. “Scaling Algorithms for Weighted
Matching in General Graphs”. Em: ACM Trans. Algorithms 14.1 (2018),
pp. 225-231. DOL: 10.1145/3155301.

J. Edmonds. “Paths, Trees, and Flowers”. Em: Canad. J. Math 17 (1965),
pp. 449-467.

J. Edmonds e R. Karp. “Theoretical improvements in algorithmic ef-
ficiency for network flow problems”. Em: JACM 19.2 (1972), pp. 248—
264.

Pavlos S. Efraimidis e Paul G. Spirakis. “Weighted Random Sampling”.
Em: Encyclopedia of Algorithms. 2005.

Jen6 Egervéiry. “Matrixok kombinatorius tulajdonsdgairél (On combi-
natorial properties of matrices)”. Em: Matematikai és Fizikai Lapok 38
(1931), pp. 16-28.

T. Feder e R. Motwani. “Clique Partitions, Graph Compression and
Speeding-Up Algorithms”. Em: Journal of Computer and System Scien-
ces 51.2 (out. de 1995), pp. 261-272. 1SsN: 0022-0000. DOI: 10. 1006/
jcss.1995.1065.

T. Feder e R. Motwani. “Clique partitions, graph compression and speeding-

up algorithms”. Em: Proceedings of the Twenty Third Annual ACM
Symposium on Theory of Computing (25rd STOC). 1991, pp. 123-133.

L. R. Ford e D. R. Fulkerson. “Maximal flow through a network”. Em:
Canadian Journal of Mathematics 8 (1956), pp. 399-404.

Andras Frank. On Kuhn’s Hungarian Method — A tribute from Hun-
gary. Rel. téc. Egervary Research Group on Combinatorial Optimiza-
tion, 2004.

235


https://doi.org/10.1007/11685654_10
https://doi.org/10.1137/1.9781611973730.59
https://doi.org/10.1145/3155301
https://doi.org/10.1006/jcss.1995.1065
https://doi.org/10.1006/jcss.1995.1065

Bibliografia

[35]

236

C. Fremuth-Paeger e D. Jungnickel. “Balanced network flows VIII: a re-
vised theory of phase-ordered algorithms and the O(y/nmlog(n?/m)/logn
bound for the nonbipartite cardinality matching problem”. Em: Networks
41 (2003), pp. 137-142.

Martin Fiirer e Balaji Raghavachari. “Approximating the minimu-degree
steiner tree to within one of optimal”. Em: Journal of Algorithms (1994).

H. N. Gabow. “Data structures for weighted matching and nearest com-
mon ancestors with linking”. Em: Proc. of the 1st Annual ACM-SIAM
Symposium on Discrete Algorithms (1990), pp. 434-443.

Harold N. Gabow, Zvi Galil e Thomas H. Spencer. “Efficient implemen-
tation of graph algorithms using contraction”. Em: Journal of the ACM
36.3 (jul. de 1989), pp. 540-572. 1sSN: 1557-735X. DOI: 10.1145/65950.
65954.

Giorgio Gallo e Stefano Pallottino. “Shortest path algorithms”. Em: An-
nals of Operations Research 13.1 (dez. de 1988), pp. 1-79. 1SSN: 1572-
9338. DOI: 10.1007/b£02288320.

Ashish Goel, Michael Kapralov e Sanjeev Khanna. “Perfect Matchings in
O(nlogn) Time in Regular Bipartite Graphs”. Em: STOC 2010. 2010.
A. V. Goldberg e A. V. Karzanov. “Maximum skew-symmetric flows and
matchings”. Em: Mathematical Programming A 100 (2004), pp. 537-568.

Olivier Goldschmidt e Dorit S. Hochbaum. “Polynomial Algorithm for
the k-Cut Problem”. Em: Proc. 29th FOCS. 1988, pp. 444-451.

Michel Gondran e Michel Minoux. Graphs and Algorithms. Wiley, 1984.

Ronald Lewis Graham, Donald Ervin Knuth e Oren Patashnik. Concrete
Mathematics: a foundation for computer science. Addison-Wesley, 1988.

J. Hadamard. “Sur la distribution des zéros de la fonction zeta(s) et ses
conséquences arithmétiques”. Em: Bull. Soc. math. France 24 (1896),
pp. 199-220.

Bernhard Haeupler, Siddharta Sen e Robert E. Tarjan. “Heaps simpli-
fied”. Em: (Preprint) (2009). arXiv:0903.0116.

Carl Hierholzer. “Ueber die Moglichkeit, einen Linienzug ohne Wie-
derholung und ohne Unterbrechung zu umfahren”. Em: Mathematische
Annalen 6 (1873), pp. 30-32. DOI: 10.1007/b£01442866.

J. E. Hopcroft e R. Karp. “An n®/2 algorithm for maximum matching
in bipartite graphs”. Em: SIAM J. Comput. 2 (1973), pp. 225-231.

Juraj Hromkovi¢. Algorithmics for hard problems. Springer, 2001.


https://doi.org/10.1145/65950.65954
https://doi.org/10.1145/65950.65954
https://doi.org/10.1007/bf02288320
https://doi.org/10.1007/bf01442866

David S. Johnson. “A theoretician’s guide to the experimental analysis
of algorithms”. Em: Proceedings of the 5th and 6th DIMACS Implemen-
tation Challenges. 2002.

David S. Johnson. “Near-optimal bin packing algorithms”. Tese de dou-
toramento. Massachusetts Institute of Technology. Dept. of Mathema-
tics, 1973. URL: http://hdl.handle.net/1721.1/57819.

David S. Johnson e Michael R. Garey. “A 71/60 theorem for bin pac-
king”. Em: J. Complez. 1.1 (1985), pp. 65-106. DOI: 10.1016/0885~
064X (85)90022-6.

Michael J. Jones e James M. Rehg. Statistical Color Models with Ap-
plication to Skin Detection. Rel. téc. CRL 98/11. Cambridge Research
Laboratory, 1998.

Haim Kaplan e Uri Zwick. “A simpler implementation and analysis of
Chazelle’s soft heaps”. Em: SODA ’09: Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms. New York, New
York: Society for Industrial e Applied Mathematics, 2009, pp. 477-485.

Adam Karczmarz e Jakub Lacki. “Simple Label-Correcting Algorithms
for Partially Dynamic Approximate Shortest Paths in Directed Graphs”.
Em: 2020 Symposium on Simplicity in Algorithms (SOSA). 2005, pp. 106—
120. por: 10.1137/1.9781611976014. 15.

David R. Karger e Clifford Stein. “A new approach to the minimum
cut problem”. Em: Journal of the ACM 43.4 (1996), pp. 601-640. DOTI:
10.1145/234533.234534.

Erica Klarreich. “Researchers Achieve ’Absurdly Fast’ Algorithm for
Network Flow”. Em: Quanta Magazine (jun. de 2022). URL: https://
www . quantamagazine . org/researchers-achieve-absurdly-fast-
algorithm-for-network-flow-20220608.

Jon Kleinberg e Eva Tardos. Algorithm design. Addison-Wesley, 2005.

Bernhard Korte e Jens Vygen. Combinatorial optimization — Theory and
Algorithms. 4th. Springer, 2008.

Werner Krauth. Statistical Mechanics: Algorithms and Computation.
OUP, 2006.

H. W. Kuhn. “The Hungarian Method for the assignment problem”. Em:
Naval Rejsearch Logistic Quarterly 2 (1955), pp. 83-97.

Jerry Li e John Peebles. “Replacing Mark Bits with Randomness in
Fibonacci Heaps”. Em: Int. Colog. Automata, Languages, and Progr.
Ed. por Magnus Halldérsson et al. Vol. 9134. LNCS. 2015, pp. 886—-897.

237


http://hdl.handle.net/1721.1/57819
https://doi.org/10.1016/0885-064X(85)90022-6
https://doi.org/10.1016/0885-064X(85)90022-6
https://doi.org/10.1137/1.9781611976014.15
https://doi.org/10.1145/234533.234534
https://www.quantamagazine.org/researchers-achieve-absurdly-fast-algorithm-for-network-flow-20220608
https://www.quantamagazine.org/researchers-achieve-absurdly-fast-algorithm-for-network-flow-20220608
https://www.quantamagazine.org/researchers-achieve-absurdly-fast-algorithm-for-network-flow-20220608

Bibliografia

[63]

238

S. Micali e Vijay V. Vazirani. “An O(4/[v||E|) algorithm for finding maxi-
mum matching in general graphs”. Em: Proc. 21th FOCS. 1980, pp. 17—
27.

Edward Minieka. Optimization Algorithms for Networks and Graphs.
Dekker, 1978.

L. Monier. “Evaluation and comparison of two efficient probabilistic pri-
mality testing algorithms”. Em: Theoret. Comp. Sci. 12 (1980), pp. 97—
108.

J. Munkres. “Algorithms for the assignment and transporation pro-
blems”. Em: J. Soc. Indust. Appl. Math 5.1 (1957), pp. 32-38.

K. Noshita. “A theorem on the expected complexity of Dijkstra’s shor-
test path algorithm”. Em: Journal of Algorithms 6 (1985), pp. 400-408.

Christos H. Papadimitriou e Kenneth Steiglitz. Combinatorial optimi-
zation: Algorithms and complexity. Dover. Prentice-Hall, 1982.

Joon-Sang Park, Michael Penner e Viktor K. Prasanna. “Optimizing
Graph Algorithms for Improved Cache Performance”. Em: IEEE Trans.
Par. Distr. Syst. 15.9 (2004), pp. 769-782.

Mihai Patragcu. Follow-up: Sampling a discrete distribution. 19 de set. de
2011. URL: http://infoweekly.blogspot.com/2011/09/follow-up-
sampling-discrete.html.

Michael O. Rabin. “Probabilistic algorithm for primality testing”. Em:
J. Number Theory 12 (1980), pp. 128-138.

Emma Roach e Vivien Pieper. “Die Welt in Zahlen”. Em: Brand eins 3
(2007).

J.R. Sack e J. Urrutia, eds. Handbook of computational geometry. Else-
vier, 2000.

Iztok Savnik. “Index Data Structure for Fast Subset and Superset Que-
ries”. Em: Awailability, Reliability, and Security in Information Sys-
tems and HCI Springer Berlin Heidelberg, 2013, pp. 134-148. ISBN:
9783642405112. DOI: 10.1007/978-3-642-40511-2_10.

Alexander Schrijver. Combinatorial Optimization — Polyhedra and Effi-
ciency. Springer, 1997.

Alexander Schrijver. Combinatorial optimization. Polyhedra and effici-
ency. Vol. A. Springer, 2003.


http://infoweekly.blogspot.com/2011/09/follow-up-sampling-discrete.html
http://infoweekly.blogspot.com/2011/09/follow-up-sampling-discrete.html
https://doi.org/10.1007/978-3-642-40511-2_10

J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer Vi-
ston and Materials Science. Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press, 1999.

Mohit Singh e Lap Chi Lau. “Approximating minimum bounded degree
spanning trees to within one of the optimal”. Em: STOC ’07: Proceedings
of the thirty-ninth annual ACM symposium on Theory of computing.
2007.

Robert Endre Tarjan. “Finding Optimum Branchings”. Em: Netw. 7
(1977), pp- 25-35. DOI: 10.1002/net.3230070103.

Terrazon. Soft Errors in Electronic Memory — A White Paper. Rel. téc.
Terrazon Semiconductor, 2004.

Daniel Ting. “Simple, Optimal Algorithms for Random Sampling Without
Replacement”. Em: (abr. de 2021). DOI: 10.48550/ARXIV.2104.05091.
arXiv: 2104.05091 [cs.DS].

C.-J. de la Vallée Poussin. “Recherches analytiques la théorie des nom-
bres premiers”. Em: Ann. Soc. scient. Bruzelles 20 (1896), pp. 183-256.

Norman Zadeh. “Theoretical Efficiency of the Edmonds-Karp Algorithm
for Computing Maximal Flows”. Em: J. ACM 19.1 (1972), pp. 184-192.

Uri Zwick. “The smallest networks on which the Ford-Fulkerson ma-
ximum flow procedure may fail to terminate”. Em: Theoretical Com-
puter Science 148.1 (1995), pp. 165-170. po1: DOI : 10.1016/0304 -
3975(95)00022-0.

239


https://doi.org/10.1002/net.3230070103
https://doi.org/10.48550/ARXIV.2104.05091
https://arxiv.org/abs/2104.05091
https://doi.org/DOI: 10.1016/0304-3975(95)00022-O
https://doi.org/DOI: 10.1016/0304-3975(95)00022-O




Indice

P || Cmax, 177 mais curto, 37, 74
APX, 152 algoritmo de Dijkstra, 37, 74
NPO, 150 caminho mais gordo
PO, 150 algoritmo de, 84-86
circulagao, 75
admissivel, 19 cobertura de vértices, 153, 207
Akra, Louay, 231 aproximacao, 153
Akra-Bazzi complexidade
método de, 231 amortizada, 43
algoritmo parametrizada, 207

e-aproximativo, 152
r-aproximativo, 152
de aproximacao, 149
guloso, 153
parametrizado, 207
primal-dual, 159

consistente, 19
corte

em cascatas, 47
cuco hashing, 143

_ desigualdade

randomizado, 183 de Jensen. 225
algorlFmO ~A*7 17 desigualdade triangular, 162
aproximagao dicionario, 137

absoluta, 152 Dijkstra

relativa, 152 . algoritmo de, 17, 37, 74
arredondamento randomizado, 159 Dijkstra, Edsger Wybe, 37
Baker, Brenda S., 173 Dinitz .
Bazzi, Mohamad, 231 algoritmo de, 90

bin packing
empacotamento unidimensional, Edmonds, Jack R., 83
169 Edmonds-Karp
Bloom, Burton Howard, 145 algoritmo de, 83-84
busca informada, 17 empacotamento unidimensional, 169
emparelhamento, 107

caminho de peso méaximo, 107
alternante, 113 maximo, 107
Euleriano, 10 perfeito, 107

241



Indice

de peso minimo, 107 cuco, 143
enderecamento aberto, 141 perfeito, 137, 140
equacao Eikonal, 16 universal, 139
escalonamento heap, 37-74

algoritmo de, 91 binomial, 42, 55, 74
excesso, 86 custo armotizado, 45
binério, 37, 74
fator de ocupagao, 138 implementacao, 41
fecho métrico, 162 Fibonacci, 46
fila de prioridade, 37-74 oco, 60
com lista ordenada, 12 rank-pairing, 51, 57
com vetor, 12 Hierholzer
filtro de Bloom, 145 algoritmo de, 10
fluxo, 75 Hierholzer,Carl, 10
s—t maximo, 76
com fontes e destinos multi- Jensen
plos, 92 desigualdade de, 225
de menor custo, 104 Johnson, David Stifler, 173

formulacao linear, 77
Ford, Lester Randolph, 79
Ford-Fulkerson

algoritmo de, 78-82
forward star, 8
Fulkerson, Delbert Ray, 79

Karp, Richard Manning, 83
Knapsack, 155

método de divisdo, 139
método de multiplicacao, 139

fungao ordem
concava, 225 van Emde Boas, 66
convexa, 225
funcéo de otimizacao, 150 permutacao, 141
fun¢do hash, 137 piso, 225
com divisdo, 139 Prim
com multiplicagdo, 139 algoritmo de, 11
universal, 139, 140 Prim,Robert Clay, 11
funcdo objetivo, 150 problema
da mochila, 226
grafo de avaliacao, 150
Euleriano, 10 de construcao, 150
grafo residual, 80 de decisao, 150
de otimizagdo, 150
hashing problema da mochila, 155, 226
com enderecamento aberto, 141 problema de soma de intervalos, 211
com listas encadeadas, 137 pré-fluxo, 86

242



Indice

relagao
polinomialmente limitada, 150

SAT, 207
satisfatibilidade
de féormulas booleanas, 207
semi-arvore, 51
sequenciamento
em processores paralelos, 177

terminal, 162

teto, 225

torneio, 51

tratavel por parametro fixo, 207

uniforme, 141

valor hash, 137
van Emde Boas, Peter, 66
vertex cover, 153
aproximagao, 153
vértice
ativo, 86
emparelhado, 113
livre, 113

Williams, J. W. J., 37

arvore

binomial, 42

van Emde Boas, 65-74
arvore geradora minima, 11

algoritmo de Prim, 11
arvore Steiner minima, 162

243



	Conteúdo
	Algoritmos em grafos
	Representação de grafos
	Amostragem de grafos aleatórios

	Caminhos e ciclos Eulerianos
	Árvores geradores
	Caminhos mais curtos
	Tópicos
	Mais sobre caminhos mais curtos
	Arborescências
	Notes on available material
	Notas
	Dynamic connectivity

	Filas de prioridade e heaps
	Heaps binários
	Heaps binomiais
	Heaps Fibonacci
	Rank-pairing heaps
	Heaps ocos
	Árvores de van Emde Boas
	Exercícios

	Fluxos em redes
	O algoritmo de Ford-Fulkerson
	O algoritmo de Edmonds-Karp
	O algoritmo ``caminho mais gordo'' (``fattest path'')
	O algoritmo push-relabel
	Algoritmo de escalonamento
	Variantes do problema
	Aplicações
	Outros problemas de fluxo
	Exercícios

	Emparelhamentos
	Aplicações
	Grafos bi-partidos
	Emparelhamentos em grafos não-bipartidos
	Tópicos avançados
	Notas
	Exercícios


	Tabelas hash
	Hashing com listas encadeadas
	Hashing com endereçamento aberto
	Cuco hashing
	Filtros de Bloom

	Algoritmos de aproximação
	Problemas, classes e reduções
	Medidas de qualidade
	Técnicas de aproximação
	Algoritmos gulosos
	Aproximações com randomização
	Programação linear

	Esquemas de aproximação
	Aproximando o problema da árvore de Steiner mínima
	Aproximando o PCV
	Aproximando problemas de cortes
	Aproximando empacotamento unidimensional
	Um esquema de aproximação assintótico para min-EU

	Aproximando problemas de sequênciamento
	Um esquema de aproximação para PCmax

	Programação inteira para aproximação
	Exercícios

	Algoritmos randomizados
	Teoria de complexidade
	Amplificação de probabilidades
	Relação entre as classes

	Seleção
	Corte mínimo
	Teste de primalidade
	O problema é achar ``a agulha no palheiro''
	Encontrar a mediana
	Notas
	Exercícios

	Complexidade e algoritmos parametrizados
	Outros algoritmos
	O problema de soma de intervalos
	Amostragem discreta
	Amostragem sem reposição
	Distribuições discretas

	Set covering
	Further related problems
	Solution strategies
	Upper bounds
	Lower bounds
	Reduction rules
	Details


	Material auxiliar
	Algoritmos

	Técnicas para a análise de algoritmos
	Bibliografia
	Bibliografia
	Índice
	Índice

