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Conteúdo

Introdução

A disciplina “Algoritmos avançados” foi criada para combinar a teoria e a
prática de algoritmos. Muitas vezes a teoria de algoritmos e a prática de im-
plementações eficientes é ensinado separadamente, em particular no caso de
algoritmos avançados. Porém a experiência mostra que encontramos muitos
obstáculos no caminho de um algoritmo teoricamente eficiente para uma im-
plementação eficiente. Além disso, o projeto de algoritmos novos não termina
com uma implementação eficiente, mas é alimentado pelos resultados expe-
rimentais para produzir melhores algoritmos. A figura abaixo mostra o ciclo
típico da área emergente de engenharia de algoritmos.

Engenharia de algoritmos (Algorithm Engineering s.d.).{fig:ea}

Seguindo essa filosofia, o nosso objetivo e tanto entender a teoria de algorit-
mos, demonstrado a sua corretude e analisando a sua complexidade, quanto
dominar a prática de algoritmos, a sua implementação e avaliação experimen-
tal. Isso é refletido numa sequência alternada de aulas teóricas a praticas.

Organization
• Theoretical and practical session.

Prática: Como fazer experimentos
Note: Better to leave this for the practical part. Just lecture hint.

• Perform newsworthy experiments.

• Tie your paper to the literature.
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Conteúdo

• Use instance testbeds that can support general conclusions.

• Use efficient and effective experimental designs.

• Use reasonably efficient implementations.

• Ensure reproducibility.

• Ensure comparability.

• Report the full story.

• Draw well-justified conclusions and look for explanations.

• Present your data in informative ways.

Leitura: A Theoretician’s Guide to the Experimental Analysis of Algo-
rithms (Johnson, 2002).

Practice: Planning issues

• What kind of language we will be using?

• We need graph algorithms: I suggest C++ or python.

Prática: Ferramentas

• Profiling: gprof.

• Coverage analysis: gcov.

• Performance counters: perfctr, PAPI, perfsuite, valgrind.

• But: check also the downsides of sampling-based profiling.

There’s an talk of Andrescu about engineering sorting algorithms, which
has also nices lesson. The simpler ones: i) more predictable code is bet-
ter; in particular push conditional statements into arithmetic, whenever
you can, and ii) more regular access is better. These address branch
predicition and caches. His central finding then was: the right empirical
complexity model (namely in his case a weighted sum of compares, moves
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and average access distance) is important. That what we observe in this
lecture all the time: we can’t even predict the simplest things without
going very much into detail. This also extends to my work on automatic
generation of algorithms.
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1. Algoritmos em grafos

1.1. Representação de grafos

Um grafo pode ser representado diretamente de acordo com a sua definição
por n estruturas que representam os vértices, m estruturas que representam
os arcos e ponteiros entre as estruturas. Um vértice possui ponteiros para todo
arco incidente sainte ou entrante, e um arco possui ponteiros para o início e
término. A representação direta possui várias desvantagens. Por exemplo não
temos acesso direto aos vértices para inserir um arco.
Duas representações simples são listas (ou vetores) não-ordenadas de vértices
ou arestas. Uma outra representação simples de um grafo G com n vértices é
uma matriz de adjacência M = (mij) ∈ Bn×n. Para vértices u, v o elemento
muv = 1 caso existe uma arco entre u e v. Para representar grafos não-
direcionados mantemos muv = mvu, i.e., M é simétrico. A representação
permite um teste de adjacência em O(1). Percorrer todos vizinhos de um
dado vértice v custa O(n). O custo alto de espaço de Θ(n2) restringe o uso
de uma matriz de adjacência para grafos pequenos1.
Uma representação mais eficiente é por listas ou vetores de adjacência. Neste
caso armazenamos para cada vértice os vizinhos em uma lista ou um vetor. As
listas ou vetores mesmos podem ser armazenados em uma lista ou um vetor
global. Com isso a representação ocupa espaço Θ(n+m) para m arestas.
Uma escolha comum é um vetor de vértices que armazena listas de vizinhos.
Esse estrutura permite uma inserção e deleção simples de arcos. Para facilitar
a deleção de um vértice em grafos não-direcionados, podemos armazenar junto
com o vizinho u do vértice v a posição do vizinho v do vértice u. A repre-
sentação dos vizinhos por vetores é mais eficiente, e por isso preferível caso a
estrutura do grafo é estático (Black Jr. e Martel, 1998; Park et al., 2004).
Caso escolhemos armazenar os vértices em uma lista dupla, que armazena uma
lista dupla de vizinhos, em que os vizinhos são representados por posições da
primeira lista, obtemos uma lista dupla de arcos (ingl. doubly connected arc
list, DCAL). Essa estrutura permite uma inserção e remoção tanto de vértices
quanto de arcos.

1Ainda mais espaço consuma uma matrix de incidência entre vértices e arestas em Bn×m.
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1. Algoritmos em grafos

Tabela 1.1.: Operações típicas em grafos.{tab:opcom}
Lista de Matriz de Lista de

Operação arestas vértices adjacência adjacência
Inserir aresta O(1) O(n+m) O(1) O(1) ou O(n)

Remover aresta O(m) O(n+m) O(1) O(n)
Inserir vértice O(1) O(1) O(n2) O(1)

Remover vértice O(m) O(n+m) O(n2) O(n+m)
Teste uv ∈ E O(m) O(n+m) O(1) O(∆)

Percorrer vizinhos O(m) O(∆) O(n) O(∆)
Grau de um vértice O(m) O(∆) O(n) O(1)

TBD: Figura.

Supõe que V = [n]. Uma outra representação compacta e eficiente conhecido
como forward star para grafos estáticos usa um vetor de arcos a1, . . . , am.
Mantemos a lista de arestas ordenado pelo começo do arco. Uma permutação σ
nos dá as arestas em ordem do término. (O uso de uma permutação serve para
reduzir o consumo de memória.) Para percorrer eficientemente os vizinhos
de um vértice armazenamos o índice sv do primeiro arco sainte na lista de
arestas ordenado pelo começo e o índice ev do primeiro arco entrante na lista
de arestas ordenado pelo término com sn+1 = en+1 = m + 1 por definição.
Com isso temos N+(v) = {asv

, . . . , asv+1−1} com δ+v = sv+1 − sv, e N−(v) =
{aσ(ev), . . . , aσ(ev+1−1)} com δ−v = ev+1 − ev. A representação precisa espaço
O(n+m).
Tabela 1.1 mostra a complexidade de operações típicas nas diferentes repre-
sentações.

1.1.1. Amostragem de grafos aleatórios

Um modelo elementar de grafos aleatórios é de Erdős e Rényi. Na variante
Gn,p temos um grafo com n vertices, e cada uma dss possíveis M =

(
n
2

)
arestas é gerada com probabilidade p; na variante Gn,m cada uma das

(
M
m

)
seleções de m das M arestas tem a mesma probabilidade. (Todo que segue
funciona também no caso de grafos direcionados, tomando M = n(n− 1).)
Para amostrar de acordo com Gn,p podemos simplesmente percorrer todos M
arestas candidatas e adicionar cada uma com probabilidade p em tempo O(M)
e espaço O(m). Neste caso o número de arestas é variável, de acordo com
uma distribuição binomial B(m,p) com valor esperado de arestas m = pM e
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1.1. Representação de grafos

desvio padrão de
√
mp(1− p) = Θ(n

√
p(1− p)) = Θ(n). Uma alternativa

mais rápida pode ser amostrar o número de arestas de acordo com B(m,p) e
depois usar o modelo Gn,m.
Para amostrar de acordo com Gn,m podemos usar um algoritmo de amostra-
gem sem reposição (ver 6.2.1) para selecionar as arestas em tempo e espaço
O(m). (Uma forma simples, mas menos eficiente é aplicar a amostragem
por rejeição: repetidamente selecionar uma aresta aleatória dos M e rejeitar
arestas já selecionadas. O tempo esperado de amostrar a i-ésima aresta é
M/(M− i) e logo o tempo esperado é

E[T ] =
M

M− 0
+

M

M− 1
+ · · ·+ M

M−m+ 1

= M(HM −HM−m) ≤ M(lnM− ln(M−m)).

Com m = pM obtemos M−m = (1− p)M e logo E[T ] = M ln 1
1−p

.)

(Older, simpler estimate.) We focus first on ER with fixed density ρ ∈
[0, 1], and thus samples m =

⌈
ρn2

⌉
edges. If we store all edges, this can

be done by rejection sampling. (This is also what Knuth in the SGB
does.) In the worst case, we need (1 − ρ)−1 samples per edge, and thus
time ρ(1− ρ)−1n2. This diverges for ρ → 1, but if we accept a factor of,
say, 2, then up to ρ = 1/2 we are good. We will also have to store all
edges in memory. So for ρ > 0.5 we can opt to store the left out edges.
Then the output takes time n2, since we have to loop over all edges, but
since ρ is high we again are at most a factor of 2 slower.

Gallo e Pallottino (1988) is a rather old, but broad survey of shortest path
algorithms. It has a good experimental comparison that shows that Dial’s
algorithm and a list search algorithm perform well in practice (but we
have to consider that these experiments were done when the importance
of few memory accesses was lesser).

Mais operações:

• Contração de uma aresta.

• Contração de um par de vértices.

See Harold N. Gabow et al. (1989).
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1. Algoritmos em grafos

1.2. Caminhos e ciclos Eulerianos

Um caminho Euleriano passa por toda arestas de grafo exatamente uma vez.
Um caminho Euleriano fechado é um ciclo Euleriano. Um grafo é Euleriano
caso ele possui um ciclo Euleriano que passa por cada vértice (pelo menos uma
vez).
Proposição 1.1
Uma grafo não-direcionado G = (V, E) é Euleriano sse G é conectado e cada
vértice tem grau par.

Prova. Por indução sobre o número de arestas. A base da indução é um
grafo com um vértice e nenhuma aresta que satisfaz a proposição. Supõe que
os grafos com ≤ m arestas satisfazem a proposição e temos um grafo G com
m+1 arestas. Começa por um vértice v arbitrário e procura um caminho que
nunca passa duas vezes por uma aresta até voltar para v. Isso sempre é possível
porque o grau de cada vértice é par: entrando num vértice sempre podemos
sair. Removendo este caminho do grafo, obtemos uma coleção de componentes
conectados com menos quem arestas, e pela hipótese da indução existem ciclos
Eulerianos em cada componente. Podemos obter um ciclo Euleriano para o
grafo original pela concatençaõ desses ciclos Eulerianos. ■
Pela prova temos o seguinte algoritmo com complexidadeO(|E|) para encontrar
um ciclo Euleriano na componente de G = (V, E) que contém v ∈ V :

{alg:hierholzer}
Algoritmo 1.1 (Caminho Euleriano)

1 Euler(G = (V, E),v ∈ V) :=
2 if |E| = 0 return v

3 procura um caminho começando em v

4 sem repetir arestas voltando para v

5 seja v = v1, v2, . . . , vn = v esse caminho
6 remove as arestas v1v2, v2v3, ..., vn−1vn de G

7 para obter G1

8 return Euler(G1, v1) + · · ·+ Euler(Gn−1, vn−1) + vn
9

10 // Usamos + para concatenação de caminhos.
11 // Gi é Gi−1 com as arestas do
12 // caminho Euler(Gi−1, vi−1) removidos , i.e
13 // Gi := (V, E(Gi−1) \ E(Euler(Gi−1, vi−1))

Algoritmo 1.1 é de Hierholzer (1873).
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1.3. Árvores geradores

1.3. Árvores geradores
Exemplo 1.1
Árvore geradora mínima através do algoritmo de Prim.

Algoritmo 1.2 (Árvore geradora mínima)
Entrada Um grafo conexo não-direcionado ponderado G = (V, E, c)

Saída Uma árvore T ⊆ E de menor custo total.

1 V ′ := {v0} para um v0 ∈ V

2 T := ∅
3 while V ′ 6= V do
4 escolhe e = {u, v} de custo mínimo
5 entre V ′ e V \ V ′ (com u ∈ V ′, v ∈ V \ V ′)
6 V ′ := V ′ ∪ {v}

7 T := T ∪ {e}

8 end while

{alg:prim}
Algoritmo 1.3 (Prim refinado)
Implementação mais concreta:

1 T := ∅
2 for u ∈ V \ {v} do
3 if u ∈ N(v) then
4 value(u) := cuv

5 pred(u) := v

6 else
7 value(u) := ∞
8 end if
9 insert(Q, (value(u), u)) { pares (chave ,elemento) }
10 end for
11 while Q 6= ∅ do
12 v := deletemin(Q)
13 T := T ∪ {pred(v)v}
14 for u ∈ N(v) do
15 if u ∈ Q e cvu < value(u) then
16 value(u) := cuv

17 pred(u) := v

18 update(Q,u, cvu)

11



1. Algoritmos em grafos

19 end if
20 end for
21 end while

Custo? n× insert + n× deletemin +m× update.
♢

Observação 1.1
Implementação com vetor de distâncias: insert = O(1)2, deletemin = O(n),
update = O(1), e temos custo O(n+ n2 +m) = O(n2 +m). Isso é assintoti-
camente ótimo para grafos densos, i.e. m = Ω(n2). ♢

Observação 1.2
Implementação com lista ordenada: insert = O(n), deletemin = O(1), update =

O(n), e temos custo O(n2 + n+mn) = O(mn)3. ♢

Observação 1.3
Implementação com uma lista de

√
n blocos de

√
n elementos, insert, delete-

min e update podem ser implementados em tempo O(
√
n), logo o algoritmo

de Prim e de Dijkstra tem complexidade O(m
√
n). ♢

We look at the problem of keeping a dynamic minimum spanning tree
under vertex deletion – but with connectivity guaranteed – and vertex
addition.
A simple solution. Deleting a leaf is not a problem, when deleting and
inner vertex we rebuild from the resulting components (with a Kruskal
step that searches for the cheapest reconnecting edge); when adding we
connect cheapest. Does this work?
Cattaneo et al. (2010) keep a splay tree for the MST and a binary search
tree (ACL) for remaining edges, and do

1 add(e) :=
2 if e enters the solution
3 add to MST
4 remove costliest cycle edge
5 else
6 add to BSt
7 end

in amortized time O(logn), and

2Com chaves compactas [1, n].
3Na hipótese razoável que m ≥ n.

12



1.4. Caminhos mais curtos

1 remove(e) :=
2 if e in MST
3 remove from MST
4 scan BST for replacement with 2× findroot in O(m logn)
5 else
6 remove from BST
7 end

They additionally cache calls to findroot.

1.4. Caminhos mais curtos

Um problema fundamental em grafos é encontrar caminhos mais curtos entre
pares de vértices. O algoritmo de Dijkstra resolve o problema das distância de
um vértice origem para todos demais em grafos com distâncias não-negativas.
Exemplo 1.2
Caminhos mais curtos com o algoritmo de Dijkstra

{alg:dijkstra}
Algoritmo 1.4 (Dijkstra)
Entrada Um grafo direcionado G = (V,A) com pesos de ≥ 0 nos arcos

arestas a ∈ A, e um vértice s ∈ V .

Saída A distância mínima dv entre s e cada vértice v ∈ V .

1 ds := 0;dv := ∞,∀v ∈ V \ {s}

2 visited(v) := false,∀v ∈ V

3 Q := ∅
4 insert(Q, (s, 0))
5 while Q 6= ∅ do
6 v := deletemin(Q)
7 visited(v) := true
8 for u ∈ N+(v) do
9 if not visited(u) then
10 if du = ∞ then
11 du := dv + dvu

12 insert(Q, (u,du))
13 else if dv + dvu < du

14 du := dv + dvu

15 update(Q, (u, du))
16 end if
17 end if
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18 end for
19 end while

Observação 1.4
A fila de prioridade contém pares de vértices e distâncias. O algoritmo se
aplica igualmente a um grafo não-direcionado. ♢

Proposição 1.2
O algoritmo de Dijkstra possui complexidade

O(n) + n× deletemin + n× insert +m× update.

Prova. O pré-processamento (1-3) tem custo O(n). O laço principal é domi-
nado por no máximo n operações insert, n operações deletemin, em operações
update. A complexidade concreta depende da implementação desses opera-
ções. ■

{prop:dijkstracorrect}
Proposição 1.3
O algoritmo de Dijkstra é correto.

Prova. Seja dist(s, x) a menor distância entre s e x. Provaremos por indução
que para cada vértice v selecionado na linha 6 do algoritmo dv = dist(s, x).
Como base isso é correto para v = s. Seja v 6= s um vértice selecionado na linha
6, e supõe que existe um caminho P = s · · · xy · · · v de comprimento menor que
dv, tal que y é o primeiro vértice que não foi processado (i.e. selecionado na
linha 6) ainda. (É possível que y = v.) Sabemos que

dy ≤ dx + dxy porque x já foi processado
= dist(s, x) + dxy pela hipótese dx = dist(s, x)
≤ d(P) dist(s, x) ≤ dP(s, x) e P passa por xy
< dv, pela hipótese

uma contradição com a minimalidade do elemento extraído na linha 6. (No-
tação: d(P): distância total do caminho P; dP(s, x): distância entre s e x no
caminho P.) ■ ♢

{obs:compheaplb}
Observação 1.5
Podemos ordenar n elementos usando um heap com n operações “insert”
e n operações “deletemin”. Pelo limite de Ω(n logn) para ordenação via
comparação, podemos concluir que o custo de “insert” mais “deletemin” é
Ω(logn). Portanto, pelo menos uma das operações é Ω(logn). ♢
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O caso médio do algoritmo de Dijkstra Dado um grafo G = (V, E) e um
vértice inicial arbitrário supõe que temos um conjunto C(v) de pesos positivos
com |C(v)| = |N−(v)| para cada v ∈ V . Atribuiremos permutações dos pesos
em C(v) aleatoriamente para os arcos entrantes em v.

Proposição 1.4 (Noshita (1985))
O algoritmo de Dijkstra chama update em média n log(m/n) vezes neste mo-
delo.

Prova. Para um vértice v os arcos que podem levar a uma operação update
em v são de forma (u, v) com dist(s, u) ≤ dist(s, v). Supõe que existem k

arcos (u1, v), . . . , (uk, v) desse tipo, ordenado por dist(s, ui) não-decrescente.
Independente da atribuição dos pesos aos arcos, a ordem de processamento
sempre é 1, 2, . . . , k. O arco (ui, v) leva a uma operação update caso

dist(s, ui) + duiv < min
j:j<i

(dist(s, uj) + dujv).

< min
j:j<i

(dist(s, ui) + dujv).

< dist(s, ui) + min
j:j<i

dujv.

Com isso temos duiv < minj:j<i dujv, i.e., duiv é um mínimo local na sequên-
cia dos pesos dos k arcos. O número esperado de máximos locais de uma
permutação aleatória é Hk− 1 ≤ ln k e considerando as permutações inversas,
temos o mesmo número de mínimos locais. Como k ≤ δ−(v) temos um limite
superior para o número de operações update em todos vértices de∑

v∈V

ln δ−(v) = n
∑
v∈V

(1/n) ln δ−(v) ≤ n ln
∑
v∈V

(1/n)δ−(v) = n lnm/n.

A desigualdade é justificada pela equação (A.6) observando que lnn é concava.
■
Com isso complexidade média do algoritmo de Dijkstra é

O(m+ n× deletemin + n× insert + n ln(m/n)× update).

Usando uma fila de prioridade implementada por um heap binário que executa
todas operações em O(logn) a complexidade média do algoritmo de Dijkstra
é O(m+ n logm/n logn).

http://www.macfreek.nl/memory/Disjoint_Path_Finding
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1.4.1. Tópicos

Fast marching method

A equação Eikonal (grego eikon, imagem)

||∇T(x)||F(x) = 1, x ∈ Ω,

T |∂Ω = 0,

define o tempo de chegada de uma superfície que inicia no tempo 0 na fronteira
∂Ω de um subconjunto aberto Ω ⊆ R3 e se propaga com velocidade F(x) > 0

na direção normal4. O fast marching method resolve a equação Eikonal por
discretizar o espaço regularmente, aproximar as derivadas do gradiente ||∇T ||

por diferenças finitas e propagar os valores com um método igual ao algoritmo
de Dijkstra.
Com

∇T = (∂T/∂x− 1, ∂T/∂x2, ∂T/∂x3)

temos

||∇T ||2 = (∂T/∂x1)
2 + (∂T/∂x2)

2 + (∂T/∂x3)
2 = 1/F2.

Definindo as diferenças finitas

D+x1T = T(x1 + 1, x2, x3) − T(x); D−x1T = T(x) − T(x1 − 1, x2, x3)

podemos aproximar

∂T/∂x1 ≈ Tx1
= max{D−x1T,−D+x1T, 0}

The sign of the finite differences is explained since the unknown T(x) has
a later time than those of its neighbors.

e com aproximações similares para as direções y e z obtemos uma equação
quadrática em T(x)

||∇T ||2 ≈ T2
x1

+ T2
x2

+ T2
x3

= 1/F2 (1.1){eq:Tupdate}{eq:Tupdate}

Na solução dessa equação valores ainda desconhecidos de T são ignorados. O
fast marching method define T = 0 para os pontos iniciais em ∂Ω e coloca-os

4O método também funciona para F(x) < 0, mas não para F(x) com sinais diferentes.
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numa fila de prioridade. Repetidamente o ponto de menor tempo é extraído
da fila, os vizinhos ainda não visitados são atualizados de acordo com (1.1)
e entram na fila, caso ainda não fazem parte. (Na terminologia do fast mar-
ching method, os pontos com distância já conhecida são “vivos” (alive), os
pontos na fila formam a “faixa estreita” (narrow band), os restantes pontos
são “distantes” (far away).)

See Sethian’s page. Seems to complicated for 2014/2, because we want
also to do A∗ (see below).
My above description: Baerentzen, On the implementation of fast mar-
ching methods for 3D lattices.

Busca informada

O algoritmo de Dijkstra encontra o caminho mais curto de um vértice origem
s ∈ V para todos os outros vértices num grafo ponderado G = (V, E, d). Caso
estamos interessados somente no caminho mais curto para um único vértice
destino t ∈ T , podemos parar o algoritmo depois de processar t. Isso é uma
aplicação muito comum, por exemplo na busca da rota mais curta em sistemas
de navegação. Uma busca informada processa vértices que estimadamente são
mais próximos do destino com preferência. O objetivo é processar menos
vértices antes de encontrar o destino. Um dos algoritmos mais conhecidos de
busca informada é o algoritmo A∗. Para cada vértice v ∈ V com distância
g(v) da origem s, ele usa uma função heurística h : V → R≥0 que estima a
distância para o destino t e processa os vértices em ordem crescente do custo
total estimado

f(v) = g(v) + h(v). (1.2)

O desempenho do algoritmo A∗ depende da qualidade de heurística h. Ele
pode, diferente do algoritmo de Dijkstra, processar vértices múltiplas vezes,
case ele descobre um caminho mais curto para um vértice já processado. Isso
é a principal diferença com o algoritmo de Dijkstra. Uma outra modificação é
que substituímos o campo “visited” usando no algoritmo Dijkstra 1.4 por um
conjunto V de vértices já visitados, porque o A∗ é frequentemente aplicado em
grafos com um número grande de vértices, que são explorados passo a passo
sem armazenar todos vértices do grafo na memoria.

1 g(s) := 0

2 f(s) := g(s) + h(s)
3 C := ∅ { vértices já visitados }
4 Q := ∅

17

http://math.berkeley.edu/~sethian/2006/level_set.html


1. Algoritmos em grafos

5 insert(Q, (s, f(s)))
6 while Q 6= ∅ do
7 v := deletemin(Q)
8 C := C ∪ {v}

9 if v = t { destino encontrado }
10 return x

11 for u ∈ N+(v) do
12 if u ∈ Q then { ainda aberto: atualiza }
13 g(u) := min(g(v) + dvu, g(u))
14 f(u) := g(u) + h(u)
15 update(Q, (u, f(u)))
16 else if u ∈ C then
17 if g(v) + dvu < g(u) then
18 { caminho menor p/ vértice já processado }
19 C := C \ {u}

20 g(u) := g(v) + dvu

21 f(u) := g(u) + h(u)
22 insert(Q, (u, f(u)))
23 end if
24 else { novo vértice }
25 g(u) := g(v) + dvu

26 f(u) := g(u) + h(u)
27 insert(Q, (u, f(u)))
28 end if
29 end for
30 end while

Observação 1.6
O algoritmo de Dijkstra e a busca A∗ funcionam de forma idêntica quando
substituímos o vértice destino t ∈ V por um conjunto de vértices destino
T ⊆ V . ♢
Existe uma formulação alternativa, equivalente do algoritmo A∗. Ao invés
de sempre processar o vértice aberto de menor valor f podemos processar
sempre o vértice aberto de menor distância ĝ num grafo com pesos modificados
d̂uv = duv − h(u) + h(v). Com pesos modificados obtemos para a distância
total de um caminho uv arbitrário P

ĝ(u, v) =
∑

(u ′,v ′)∈P

d̂u ′v ′ =
∑

(u ′,v ′)∈P

du ′v ′ − h(u ′) + h(v ′)

= h(v) − h(u) +
∑

(u ′,v ′)∈P

du ′v ′ = h(v) − h(u) + g(u, v).
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In particular: shortest paths remain shortest. By the above we have
ĝP(u, v) ≤ ĝP ′(u, v) iff gP(u, v) ≤ gP ′(u, v).

Com ĝ(u) = ĝ(s, u) obtemos

f(u) ≤ f(v) ⇐⇒ g(u) + h(u) ≤ g(v) + h(v)⇐⇒ ĝ(u) + h(s) ≤ ĝ(v) + h(s)⇐⇒ ĝ(u) ≤ ĝ(v).

Logo a ordem de processamento por menor ĝ ou por menor valor f é equiva-
lente.
Para garantir a otimalidade de uma solução a heurística h tem que ser ad-
missível. Caso h é consistente o algoritmo A∗ não somente retorna a solução
ótima, mas processa cada vértice somente uma vez.

These topics can be found in Edelkamp & Schrödl (ch. 2, p. 58), Russell
& Norvig (ch. 4, p. 99). ES are quite detailed, but the book is somewhat
sloppy (f.ex. uses “invariance” and “invariant” in Lemma 2.2), and it
is not clear why the invariant (I) in Lemma 2.2 is so complicated: the
second part of it seems never to be used. RN, on the other hand, are very
simple: correctness follows almost in the same way as that of Dijkstra’s
algorithm. Also nice, and maybe best: Pearl, ch. 3.1. On the question
of goal-awareness, the latter just states that h(t) = 0 for goal states.

Definição 1.1 (Admissibilidade e consistência)
xxx Seja dist(v, t) a distância mínima do vértice v ao destino t. Uma heurística
h é admissível caso h é um limitante inferior à distância mínima, i.e.

h(v) ≤ dist(v, t). (1.3) {rel:dr}{rel:dr}

Uma heurística é consistente caso o seu valor diminui de acordo com o pesos
do grafo: para um arco (u, v) ∈ A

h(v) ≥ h(u) − duv. (1.4) {def:cons}{def:cons}

The simplest way of understanding consistency: h-values are relaxed.
Note that shortest path are usually distance from a source vertex v, so
arc uv is relaxed if dv ≤ du + duv. Since h-values are distance to a goal
t, they are relaxed if du ≤ dv + duv.
Other ways of looking at consistency: if we get more distance, the esti-
mated distance h increases by at most the real distance; if we get closer,
the estimated distance h does not decrease more than the real distance.
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In inconsistency, in that sense, is a too sharp drop: g increases less than
h decreases. And so f is not monotone.
For a consistent heuristic, on the other hand, we have

f(v) = g(v) + h(v) = g(u) + duv + h(v) ≥ g(u) + h(u) = f(u)

if we come over uv so the total estimate is monotone.

Na representação alternativa (1.3), o critério de consistência (1.4) é equivalente
com d̂uv = duv − h(u) + h(v) ≥ 0. Com isso temos diretamente o
Teorema 1.1
Caso h é consistente o algoritmo A∗ nunca processa um vértice mais que uma
vez.

Prova. Neste caso d̂uv ≥ 0. Logo todas distâncias são positivas é o algoritmo
A∗ é equivalente com o algoritmo de Dijkstra. Por um argumento similar ao
da proposição (1.3) o A∗ nunca processa um vértice duas vezes. ■
Lema 1.1
Caso h é consistente e h(t) = 0 (i.e reconhece o destino t), h é admissível.

Prova. Seja P = v0v1 . . . vk um caminho de v0 = u a vk = t. Então

d(P) =
∑
i∈[k]

dvi−1,vi

(1.4)
≥

∑
i∈[k]

h(vi−1) − h(vi) = h(u) − h(t) = h(u).

Em particular, para um caminho P∗ ótimo de u a t temos h(u) ≤ d(P∗) =
δ(u). ■
Teorema 1.2
Caso existe uma solução mínima e h é admissível o algoritmo A∗ encontra a
solução mínima.

Prova. Seja P∗ = v0v1 . . . vk um caminho ótimo de v0 = s a vk = t. Caso
A∗ não terminou, t ainda não foi explorado. Logo existe um vértice aberto de
menor índice vi em P∗. Agora supõe que o próximo vértice explorado é t, mas
o valor de t não é ótimo, i.e. f(t) > d(P∗). Mas então f(vi) = g(vi) + h(vi) ≤
g(vi) + δ(vi) = d(P∗) < f(t), porque h é admissível, em contradição com a
exploração de t. ■

Punchy summary is this:

1. Consistence (t-relaxed h) → Non-negative distances d̂ → No repe-
tition of vertices.
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Figura 1.1.: Esquerda: Heurística não-admissível. A∗ produz o valor sub-ótimo 5.
Centro: Heurística admissível, mas inconsistente (arco vermelho). A∗

visita v duas vezes. Direita: Heurística admissível e consistente. A∗

visita cada vértice somente uma vez. {fig:ex:astar}

2. Consistence & Goal-awareness → Admissibility → Correctness.

3. Not admissible: may return sub-optimal solution.

4. Only admissible: keeps correctness, but must re-open vertices. See
1.1.

Exemplo 1.3
Figure 1.1 mostra uma grafo com três funções heurísticos h diferentes. A
heurística no grafo da esquerda não é admissível em u (marcado por ↑). O A∗

expande s, v e depois t e termina com a distância sub-ótima 5 para chegar em
t. A heurística no grafo do meio é admissível, mas não consistente: h(u) ≤
h(v)+1 não é satisfeito. O A∗ expande s, v, u, v, t, i.e. o vértice v é processado
duas vezes. Finalmente a heurística no grafo da direita é consistente (e por
isso admissível). O A∗ expande cada vértice uma vez, na ordem s, u, t (ou s,
u, v, t).

♢

Exemplo 1.4
A Figura 1.2 compara uma busca com o algoritmo de Dijkstra com uma busca
com o A∗ num grafo geométrico com 5000 vértices e uma aresta entre vértices
de distância no máximo 0.02. Vértices não explorados são pretos, vértices
explorados claros. A claridade corresponde com a ordem de exploração.

♢
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Figura 1.2.: Comparação de uma busca com o algoritmo de Dijkstra (es-
querda) e o A∗ (direita). {fig:exastar}

1.4.2. Mais sobre caminhos mais curtos

Define um arco a = uv ∈ A como relaxado caso dv ≤ du + duv, senão tenso.
Para relaxar temos a operação

1 relax(a) := dv := min{dv, du + duv}.
Similarmente, define tv := minu∈N−(v) du + duv. Podemos definir um vértice
v como relaxado caso dv ≤ tv, e senão tenso. Para relaxar podemos aplicar

1 relax(v) := dv := tv.

I changed the definition of a relaxed vertex from dv ≥ tv to dv ≤ tv, since
I could not figure out the sense of the former definition. This is more
consistent with super-estimators, and we can reformulate Bellman-Ford
below as relaxing each vertex per round and having n − 1 rounds. This
now also means that a vertex is relaxed, if all incoming arcs are relaxed.
The change is inconsequential for the rest of the text, since I don’t use
vertex relaxation anywhere else. I suppose the came from Karczmarz e
Łącki (2005); but there they keep under-estimators 0 ≤ dv ≤ tv and
update to tv, which is different.

Com isso temos dois algoritmos simples que melhoram (super-)estimativas dv

das distâncias dist(s, v), inicialmente ds = 0, e dv = ∞, para todos v 6= s.

• Dijkstra: em ordem de dv, relaxa a ∈ N+(v); tempo O(n logn+m).
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• Bellman-Ford: repete ate n vezes: relaxa todos a ∈ A; tempo O(nm).

O algoritmo de Bellman-Ford também funciona para pesos negativos, na au-
sência de ciclos negativos. (E neste caso é um dos melhores algoritmos atual-
mente para todas distâncias de uma origem.)

I follow here mainly Schrijver, Chapter 8.

Potenciais Chama pv, v ∈ V um potencial caso

duv ≥ pv − pu, a = uv ∈ A. (1.5) {cond:pot}{cond:pot}

Compare to consistent heuristics: the idea is the same, the sign is dif-
ferent: duv ≥ hu − hv. In some sense a potential models a “distance-
landscape”, such that the distances over p are always shorter; a consistent
heuristic models a – in my view – effective potential, that shortens dis-
tances according to the potential difference (but never so much that they
turn negative).

Teorema 1.3
Um potencial existe sse todo circuito (ciclo direcionado) tem comprimento
não-negativo.

Prova. “⇒”: Considere o circuito C = (v0, v1, . . . , vm), vm = v0. Então

d(C) =
∑
i∈[m]

dvi−1,vi
≥

∑
i∈[m]

pvi
− pvi−1

= pm − p0 = 0.

“⇐”: seleciona algum s ∈ V , define pv := dist(s, v). Isso claramente satis-
faz (1.5). ■
Logo: podemos definir

d̃uv := duv − (pv − pu) ≥ 0, (1.6) {transform:d}{transform:d}

uma transformação que mantém caminhos mais curtos.
Agora: como podemos encontrar circuitos negativos?

Teorema 1.4
Um circuito negativo pode ser encontrado em tempo O(nm).
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Prova. Roda Bellman-Ford para obter distâncias d0, d1, . . . , dn. Assume
dn−1 6= dn, com testemunha t ∈ V , i.e. dn

t < dn−1
t . Logo existe uma st-

caminhada P de distância d(P) = dn
t e de comprimento |P| = n. Como ela

tem n arcos, contém um circuito C. Remove C de P para obter uma caminhada
P ′ com menos que n arcos. Como

d(P ′) ≥ dn−1(t) > dn(t) = d(P),

temos d(C) < 0. Caso dn−1 = dn nenhum circuito negativo é alcançável. ■
Teorema 1.5
Um potencial pode ser encontrado em tempo O(nm) caso não tem circuitos
negativos.

Prova. Adiciona um vértice s e arcos sv para todo v ∈ V com dsv = 0,
roda Bellman-Ford e define pv := dv. Como não tem circuitos negativos
dv = dist(s, v) e logo duv ≥ dist(s, v) − dist(s, u) = pv − pu. ■

Caminhos mais curtos entre todos pares de vértices. Seja dk(s, t) a distân-
cia entre s e t usando somente vértices {s, t, v1, . . . , vk} para alguma ordem de
vértices v1, v2, . . . , vn e define d0(s, t) = dst caso st ∈ A e ∞ caso contrário.
O algoritmo de Floyd-Warshall computa

dk+1(s, t) := min{dk(s, t), dk(s, vk+1) + dk(vk+1, t)};

isso custa tempo O(n2) por iteração, logo não mais que O(n3) em total.
Com potenciais, podemos melhorar a complexidade (Johnson 1973): encontra
um potencial p, aplica a transformação (1.6) e roda o algoritmo de Dijkstra
n vezes. Isso custa somente O(n(n logn +m)) = O(nm + n2 logn) e caso o
grafo tem m = Ω(n logm) arcos temos custo O(nm).

O método de Dial Assume distâncias inteiras e que temos um limite superior
∆ ≥ maxv∈V dist(s, v). Neste caso podemos substituir a fila de prioridade no
algoritmo de Dijkstra por ∆ + 1 “baldes” L0, . . . , L∆ (implementados como
listas) onde balde Li contém os vértices de distância dv = i. Mantendo o
número do menor balde não-vazio µ, é simples de ver que

• podemos atualizar µ em tempo amortizado O(1) sobre todas n iterações
(porque µ só aumenta para pesos não negativos);

• podemos atualizar os baldes em tempo constante sobre atualizações de
distâncias.

Logo: temos uma complexidade de O(m + ∆) = O(m + nD), e caso D :=
maxa∈A da.
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I follow here mainly Karczmarz e Łącki (2005).

Atualizações Considera grafos parcialmente dinâmicos, ou
• incremental: inserção de arcos, ou diminuição de distâncias; ou

• decremental: deleção de arcos, ou aumento de distâncias,
e uma sequência de no máximo ∆ atualizações, no seguinte scenário:

• caminhos mais curtos de um s ∈ V para todos demais;

• não há circuitos negativos;

• somente distâncias até L são interessantes;

• todos vértices são alcançáveis de s (adiciona arcos auxiliares sv com
dsv = L+1, para v 6= s: o peso desses arcos não pode ser alterado);

• pesos duv ∈ Z+.

Agora faça, no caso incremental:

1 updateArc(a,d):=
2 A := A ∪ {a}

3 da := d

4 relax(a)
5
6 relax(a = uv):=
7 if dv ≤ du + duv: return
8 dv := du + duv

9 for w | vw ∈ A: relax(vw)
{th:incremental}

Teorema 1.6
O algoritmo updateArc é correto.

Chama d um superestimador relaxado caso: i) ds = 0, ii) todos arcos
são relaxados (dv ≤ du + duv), iii) as distâncias são superestimadas:
dv ≥ dist(s, v).

{lem:suprel}
Lema 1.2
Um superestimador relaxado está correto, i.e dv = dist(s, v).
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Prova. (Semelhante ao Dijkstra). Vamos demonstrar dv ≤ dist(s, v).
Suponha, para fins de contradição, dv > dist(s, v), e seja Pv um caminho
sv mais curto. Escolha um vértice v de modo que |Pv| seja mínimo. Como
não temos um circuito negativo dist(s, s) = 0 = ds, logo v 6= s, e |Pv| > 0.
Assume Pv = s . . . uv. Logo Pu = s . . . u satisfaz du = dist(s, u) pela
minimalidade de |Pv| e

dv > dist(s, v) = dist(s, u) + duv = du + duv

portanto, uv não é relaxado, o que é uma contradição. ■
{lem:relax-good}

Lema 1.3
A função relax termina e retorna um superestimador relaxado.

Prova.

a) As distâncias dv permanecem não-negativas (porque dv = du +
duv ≥ 0+0 = 0). Uma chamada recursiva de relax ocorre somente
após uma redução de pelo menos 1, portanto, as chamadas são
finitas.

b) Os arcos relaxados não ficam tensos durante relax, por indução
sobre a profundidade da recursão: um arco vw fica tenso somente
quando dv diminui: isso leva a relaxamentos recursivos.

c) O arco uv é relaxado: ele fica relaxado no início e, por b), e per-
manece assim.

d) Como dv sempre representa o comprimento de algum caminho sv,
dv ≥ dist(s, v), ou seja, superestima.

■
Prova. (Do teorema 1.6.) Pelo lema 1.2 um superestimador relaxado
é correto, pelo lema (1.3) relax termina e retorna um superestimador
relaxado. ■
Teorema 1.7
Chamar updateArc ∆ vezes custa O(mL+∆) tempo total de atualização
e precisa espaço O(n).
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Prova. As chamadas não-recursivas de relax custam O(∆). As cha-
madas recursivas de relax(uv): cada vértice custa δ+v e é chamado no
máximo L+ 1 vezes, portanto, no total

∑
v∈V δ+v (L+ 1) = O(mL). ■

Similarmente, faça, no caso decremental (onde vamos supor ainda que
não existem circuitos de comprimento 0):

1 update(v):=
2 if v = s or dv = tv: return
3 dv := tv
4 for vw ∈ A: update(w)
5
6 updateArc(a = uv,d):=
7 da := d

8 update(v)
onde tv := minu|uv∈A du + duv.

Teorema 1.8
Algoritmo updateArc é correto. {th:decremental}

Chama d de estimador relaxado (de vértices) se a) ds = 0 e b) dv = tv,
para todos os v 6= s.

Lema 1.4
Uma estimador relaxado está correto, i.e dv = dist(s, v). {lem:estrel}

Prova. Para v 6= s, deixe pv ser o predecessor do que testemunha b).
Ele existe, pois cada vértice v 6= s é acessível a partir de s e, portanto,
tem δ−(v) ≥ 1.
Considere todos os arcos pvv. Eles são acíclicos, pois para um ciclo
C = (v1v2 . . . vk) com vk = v1 temos

d1 = dk = dk−1 + dk−1,k = dk−2 + dk−2,k−1 + dk−1,k

= · · · = d1 +
∑

i∈[k−1]

di,i+1 = d1 + d(C),

portanto, d(C) = 0, o que contradiz a exclusão de ciclos de comprimento
0.
Assim, a árvore T = (V, {pvv | v 6= s}) é uma árvore com raiz s (um out-
tree), pois cada v 6= s tem δ−(v) = 1 em T . Em T , temos dist(s, v) = dv

e existe um caminho sv para todos os v.
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Portanto, em G temos dv ≥ dist(s, v), pois temos mais arcos, e todos os
arcos são relaxados pela definição de tv, ou seja, dv = tv ≤ du+duv para
todos os u ∈ N−(v). Portanto, o Lema 1.2 se aplica e d está correto. ■

Lema 1.5
Algoritmo updateArc retorna um estimador relaxado. {lem:uaestrel}

Prova. Primeiro, dê uma olhada em update(v). Se o invariante

0 ≤ dv ≤ tv, d(s) = 0, (Inv) {ua:inv}{ua:inv}

ć correta, mantemos du = tu onde for válido (pelas chamadas recursivas)
e obtemos dv = tv.
(Inv) é válido por indução. a) É válido no início, pois tv só pode aumentar.
b) Se aumentarmos algum du, devemos ter du < tu e, após o aumento,
ainda teremos du = tu ≤ tu. Além disso, para todos os v, uv ∈ A, tv
pode aumentar, mas como dv ≤ tv antes, o invariante ainda se mantém
após o aumento de du para tu.
Além disso, como dv só aumenta, as chamadas recursivas são limitadas
a D + 1 alterações, portanto, update termina. Como sempre que tu
aumenta, update(u) é chamado e atualiza du = tu, mantemos du = tu.
Segundo, antes de updateArc(a = uv), temos dv = tv para todos os
v 6= s e ds = 0. Então, possivelmente dv < tv, mas pelo exposto acima,
temos dv = tv para v 6= s e ds = 0 após update(v). ■
Prova. (Do teorema 1.8.) Pelo lema (1.5) updateArc retorna um esti-
mador relaxado, que pelo lema (1.4) está correto. ■
Teorema 1.9
Isso pode ser implementando de forma que o tempo total de atualização
é O(mL+ ∆) em espaço O(n).

Prova. To realize this, we need to work harder. First, for vertex v, let
N−(v) = (u1, u2, . . . , uδ−

v
) be its ordered neighborhood. We compute tv

in that order, and call the index of the first minimum βv.
So we have: dui

+ dui,v > tv for i < βv.
Now we do this: we maintain for each vertex the previous tv, called t ′v
and the current βv. Initially we set t ′v = ∞ and βv = δ−v . Now define

1 computeMin(v) :=
2 T := {k | βv ≤ k ≤ δ−v | duk

+ duk,v = t ′v}

3 // a witness of the previous minimum
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4 if T 6= ∅
5 βv := min T

6 else
7 t ′v := tv
8 βv := 1

9 return t ′v
(This is done to compute tv faster.) Note that computeMin works, since
tv can only increase. So if we find a witness of the previous minimum,
we’re done. Otherwise we recompute tv.
With this we can make update faster.

1 update(v):=
2 if v = s or dv = tv: return
3 dv :=computeMin(v)
4 for vw ∈ A: update(w)

With this in place we turn to the analysis. We have ∆ non-recursive calls
to update and at most (L + 1)δ−v recursive ones, since each predecessor
updates at most L + 1 times. This makes O(mL + ∆) calls to update
or computeMin. Naïvely, each call could cost O(δ−v ), so we could end up
with cost ∆ +

∑
v∈V(L + 1)δ−v

2
= O(∆ + Lmn). But, by maintaing βv,

t ′v we have

a) cost j− βv + 1 when another minimum is found; here j is the next
witness;

a) cost δ−v otherwise; but then tv increases.

So the amortized time over the non-increasing case is O(δ−v ), and the
increasing case costs the same. In summary, then, we have at most O(δ−v )
per increase, and thus O(mL) overall, plus O(mL + ∆) for the calls. So
we have O(∆+mL) overall, and O(n) space for βv and t ′v. ■
We next turn to approximate distances for SSSP. We accept real distances
{0}∪ [1,D] and, as before, exclude zero-length circuits for the decremental
case. Additionally: we limit our interest to h∗ < n hops, and just want
an estimator d ′ such that

dist(s, v) ≤ d ′
v ≤ (1+ ϵ)hdisth(s, v),

for ϵ ∈ (0, 1) and disth(s, v) the shortest ≤ h-hop sv-path.
We keep an auxiliary graph: there are arcs (s, v), v 6= s, with distances
dsv = nW, and note that this way dist(s, v) 6= ∞ iff dist((, s), v) < nW.
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The idea: let exprnda(x) = a⌈loga x⌉. Now relax to

dv := exprnd1+ϵdu + duv

in the incremental case and

tv := minu|uv∈Aexprnd1+ϵdu + duv

in the decremental case.
Problem: reachability needs extra effort. Solution: maintain reachable
vertices Rh (can’t be seen by distances, since we overestimate!).
The new algorithms for the incremental case are this.

1 relax(a = uv):=
2 if dv ≤ exprnd1+ϵdu + duv: return
3 dv := exprnd1+ϵdu + duv

4 for w | vw ∈ A: relax(vw)
5
6 updateArc(a,d):=
7 A := A ∪ {a}

8 da := d

9 relax(a)
10
11 estimate(v) :=
12 return dv if v ∈ Rh else ∞

And for the decremental case we have this.

1 init() :=
2 t ′v := ∞, dv := 0, βv := δ−v , v ∈ v

3 ∀v ∈ V : update(v)
4
5 update(v):=
6 if v = s or dv = tv: return
7 dv :=computeMin(v)
8 for vw ∈ A: update(w)
9
10 updateArc(a = uv,d):=
11 da := d

12 if d = ∞: A := A \ {a}

13 update(v)
14

30



1.4. Caminhos mais curtos

15 estimate(v) :=
16 return dv if v ∈ Rh else ∞

Here computeMin applies exprnd.
Fact: This works, and costs:

• Incremental case: O(m log(nW)/ϵ+ ∆) time and O(n) space;

• Decremental case: O(m log(nW)/ϵ + mH∗ + ∆) time and O(n)
space.

The main idea: D = O(log(nW)/ϵ), since distances are 0 or powers of
1+ϵ, but never more than (1+ϵ)nW. So: log1+ϵ nW = 1+log1+ϵ nW =
O(log(nW)/ϵ). [Use lognW/ log 1+ ϵ and the fact that log 1+ ϵ ≈ ϵ for
small ϵ.]
To maintain the reachable vertices Rh (in at most h hops). Incremental
case: BFS, keep state, continue after arc insertions, total cost O(m).
Decremental case: use the exact algorithm with distance limit h∗: cost
O(mh∗.
Further fact; APSP is also possible with

dist(u, v) ≤ duv ≤ (1+ ϵ)⌈log2h⌉+1dist(u, v)

in time O(n3 log(nW/ϵ+ ∆).

1.4.3. Arborescências

We start with two definitions.
{def:arb:1}

Definição 1.2
A is an arborescence rooted in r if the underlying undirected graph T is
a spanning tree, and for every vertex v ∈ V a directed rv-path exists.

{def:arb:2}
Definição 1.3
A is an arborescence rooted in r if A is cycle-free, δ(r)− = 0, and all
vertices v 6= r have δ−(v) = 1.

Proposição 1.5
Definitions (1.2) and (1.3) are equivalent.

Prova. (1.2) → (1.3): Since T is a spanning tree it has n − 1 edges.
Furthermore, by the existence of rv-paths we have δ−(v) ≥ 1 for v 6= r.
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This accounts for n − 1 arcs. So, since |T |= |A| we have δ−(v) = 1 for
v 6= r, and δ−(r) = 0. Also since T has no cycles, neither has A.
(1.3) → (1.2): Since δ−(v) = 1 for v 6= r, we can trace a path back from
every v 6= r, and since A is cycle-free it must end in r. So there’s an
rv-path. We also have |A| = n−1 = |T |, and the paths show connectivity.
Thus T is a spanning tree. ■
We futher observe
Proposição 1.6
An arborescence exists iff there’s and rv-path for all v ∈ V .

Prova. Sufficiency is by definition, necessity follows from running BFS
starting at r: the BFS tree is an arborescence. ■
Exercício 1.1
Why is it necessary to reduce the weights in Edmonds algorithm for
spanning arborescences?
Here is a small example that shows the difference:

r
3 4

3

The basic algorithmic scheme is simple. First we observe that it is possible
to subtract a constant from the in-arcs of every vertex, such that the
lightest in-arc has weight 0. In the formulation of Kleinberg e Tardos
(2005) we always use this transformation, and proceed as follows.

1) Form the graph obtained by selecting a 0-weight in-arc for every
non-root vertex.

2) If this graph is cycle-free, it is optimal, since every non-root has a
predecessor, so the chain of predecessor must terminate at the root,
which shows that there is a path to each vertex.

3) Otherwise: contract a cycle, recursively find a minimum cost arbo-
rescence in the reduced graph, the expand the cycle, and remove
the cycle arc that enters the single vertex of in-degre 2. This relies
on the fact (that needs a proof!) that we can always find an optimal
solution that enters only once into the contracted cycle.
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In practice, we do not need to transform the weights to always have a
0-weight in-arc. Equivalently, we can:

1. select among the lightest in-arcs, and

2. on contracting subtract the difference from the current cycle arc
to the lightest, from newly created in-arcs. This is required to
“level” the different arcs. Concretely, suppose an oriented cycle
C = (v0, . . . , vn) with arcs a0 = (vn, v0) and ai = (vi−1, vi). Let
a∗ be the lightest cycle arc. Then when contracting C to a single
new vertex v, for every arc a = (u, vi) create a new arc (u, v) of
weight wai

−wa∗ . Outgoing arcs (vi, u) are transformed to (v, u)
keeping the weight.

It is sufficient to contract one cycle, say, the largest, or the first we find.
We need to following operations:

• Contract a cycle. This can be done in different ways, even naively
by creating a new graph.

• In the new graph we need to remember the contracted vertex v to
expand it.

• We need to be able to map in- and out-arcs from v to arcs in the
original graph.

For this reason, a simple strategy is:

• to maintain a union-find structure on the vertices, and translate
arcs (u, v) to current arcs (find(u), find(v)); we use a simple, ex-
plicit structure, where on each contraction a vertex is linked to its
representing vertex in the cycle; the representing vertex is the one
which has the smallest in-arc in the cycle.

• to maintain, for every vertex a weight adjustment for entering arcs;
on calling find(v), for every non-root vertex traversed, we subtract
the weight, accordingly;

1.4.4. Notes on available material

Schrijver (1997) is very short, and presents only an O(nm) algorithm
and refers to some others. Of these Papadimitriou e Steiglitz (1982) does
not seem to contain anything about this topic, Gondran e Minoux (1984)
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is also rather superficial (and contains probably a wrong theorem that
claims that every optimal arborescence has to have a single entry into
a contracted cycle, which is not true). I did not check Minieka (1978)
since the book is even older. An open question is, if any textbook besides
Kleinberg e Tardos (2005) contains a readable presentation of minimum
cost arborescences. The original paper of Tarjan (1977) is readable, but
required thorough studying. It has the disadvantage that the algorithm
computes a maximum cost branching.

1.4.5. Notas

O algoritmo (assintoticamente) mais rápido para árvores geradoras mínimas
usa soft heaps é possui complexidade O(mα(m,n)), com α a função inversa
de Ackermann (Chazelle, 2000; Kaplan e Zwick, 2009).
Karger propôs uma variante de heaps de Fibonacci que substituem a marca
“cut” usado nos cortes em cascata por uma decisão randômica: com proba-
bilidade 0.5 continua cortando, senão para. Além disso o heap é construído
novamente com probabilidade 1/n depois de cada operação. Com isso “de-
letemin” possui complexidade esperada amortizada Θ(log2 n/ log logn) (Li e
Peebles, 2015).
Armazenar e atravessar árvores em ordem de van Emde Boas usando índices,
similar ao ordem por busca em largura é possível (Brodal et al., 2001). O
consumo de memoria das árvores de van Emde Boas pode ser reduzido para
O(n) (Dementiev et al., 2004; Cormen et al., 2009).
Mais sobre o fast marching method se encontra em Sethian (1999). Uma
aplicação interessante é a solução do caixeiro viajante contínuo (Andrews e
Sethian, 2007).

A minha apresentação da caminhos mais curtos em grafos dinâmicos se-
gue Karczmarz e Łącki (2005).

1.4.6. Dynamic connectivity

Idea: maintain an undirected graph with n nodes, under insert(e) (in-
cremental case) delete(e) (decremental case), or both (fully dynamic
case) and allow queres path(x, y)?
We have:

incremental : union-find, α(n) amortized;
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decremental Even & Shiloach (1981): O(n) amortized delete, O(1) find.

fully : Kapron et al. (2015): O(log4 n) insert worst-case, O(log5 n) de-
lete worst-case, O(logn/ log logn) worst-case path query, with high
probability.

fully : Thorup (2000): O(logn(log logn)3) expected amortized update,
O(logn/ log log logn) path query.

The case of directed graphs: dynamic reachability, under same operati-
ons. Same as: transitive closure, O(n3), brute force update O(n2).
Incremental: ≈ union-find. DS of Italiano (1986). Plus: searchpath.
Idea: Maintain: 1) for each node a tree of successors, 2) a matrix of
connectivity index(i, j). There are conveniently combined: index(i, h)
points to node j in i’s tree.
Example: see Italiano.

1 searchpath(i, j) :=
2 if index(i, j) = null return ∅
3 T := {j}

4 while parent(j) 6= null
5 j := parent(j)
6 T := T ∪ {j}

7
8 path(i, j) := return index(i, j) 6= null
9

10 insert(i, j) :=
11 if index(i, j) 6= null return
12 for v ∈ [n] do
13 if index(v, i) 6= null ∧ index(v, j) = null then
14 // new path from v to j
15 meld(v, j, i, j)
16
17 meld(i, j, u, v) :=
18 // i: destination tree; j: source tree
19 // (u, v): new edge
20 create node index(i, v)
21 insert as child of u (in i)
22 for all children w of v do
23 if index(i,w) = null then meld(i, j, v,w)
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Now for the analysis of the above. Define a potential φ =
∑

v∈V φv, and
let φv = −|vis(v)|− 3|desc(v)| where we have visible edges

vis(v) = {(w, x) | w is descendant},

and desc(v) are all descendants of v.
It remains to analyze meld(v, j, i, j). Operation meld examines h1 arcs in
desc(j) and adds h2 arcs to desc(v), where h2 ≤ h1+1 ≤ n. Furthermore,

1) h1 arcs enter into visibility; no visible arc is examined;

2) the number of descendants increases by h2.

Thus, the potential goes down by h1+3h2, and the real cost is h1+3h2,
so we get amortized cost O(1) for meld, i.e. O(n) amortized cost for
insert.
Survey:

incremental Italiano, O(n) amortized insert, O(1) query;

decremental Italiano (1988), DAGs: O(n) amortized delete, O(1) query;

decremental Roddity & Zwick (2002): ditto for general graphs;

fully King (1999): O(n2 logn) amortized update, O(1) query;

fully Roddity (2003): O(n2) amortized update, O(1) query: this is the
best with query O(1).
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1.5. Filas de prioridade e heaps

Uma fila de prioridade mantem um conjunto de chaves com prioridades de
forma que a atualizar prioridades e acessar o elemento de menor prioridade é
eficiente. Ela possui aplicações em algoritmos para calcular árvores geradores
mínimas, caminhos mais curtos de um vértice para todos outros (algoritmo de
Dijkstra) e em algoritmos de ordenaçao (heapsort).

1.5.1. Heaps binários
{sec:binheap}

Teorema 1.10
Uma fila de prioridade pode ser implementado com custo insert = O(logn),
deletemin = O(logn), update = O(logn). Portanto, uma árvore geradora
mínima pode ser calculado em tempo O(n logn+m logn).

Um heap é uma árvore com chaves nos vértices que satisfazem um critério de
ordenação.

• min-heap: as chaves dos filhos são maior ou igual que a chave do pai;

• max-heap: as chaves dos filhos são menor ou igual que a chave do pai.

Um heap binário é um heap em que cada vértice possui no máximo dois filhos.
Implementaremos uma fila de prioridade com um heap binário completo. Um
heap completo fica organizado de forma que possui folhas somente no último
nível, da esquerda para direita. Isso garante uma altura de O(logn).

Positivo: Achar a chave com valor mínimo (operação findmin) custa O(1).
Como implementar a inserção? Idéia: Colocar na última posição e restabelecer
a propriedade do min-heap, caso a chave é menor que a do pai.

1 insert(H,c) :=
2 insere c na última posição p

3 heapify -up(H,p)
4
5 heapify -up(H,p) :=
6 if root(p) return
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7 if key(parent(p))>key(p) then
8 swap(key(parent(p)),key(p))
9 heapify -up(H,parent(p))
10 end if

For revision, to simplify, including ideas of Kleinberg & Tardós.
Arguably, this is not much simpler than what I had before, but maybe a
bit more structured, and a bit more rigorous at some points. The question
is if introducing all these definitions fosters understanding at the end.
We consider a heap H, with elements i, and keys ki.

For heap H, we write H[ki = c] for the heap after setting i’s key ki to c.
We call H a quasi-heap if there is some i and α such that H[ki = α] is a
heap. If H is not a heap we say that H has a violation at i. We further
say H is a ∆-quasi-heap if α ≥ ki, and a ∇-quasi-heap if α ≤ ki. Note
that if α = ki we have a ∆- and ∇-quasi-heap that is also a heap. Further
note that when we decrease the key of i, say from c ′ to c, we obtain a
∆-quasi-heap, since α = c ′ is a witness; this includes the special case of
a insertion, where c ′ = ∞. Similarly, when we increase the key of i from
c ′ to c, we obtain a ∇-quasi-heap.
In the lemmas below we write l = left(i) and r = right(i), and write
µ ∈ {l, r} for the smaller of the two keys, assuming key ∞ for a descendant
that does not exist. Similarly we write p = parent(i) and assume key −∞
if i is the root.
Lema 1.6
Let H be a ∆-quasi-heap with violation at p. Then heapify-up(H,p)
produces a heap in time O(k), where k is p’s depth.

Prova. We first note that (*) if H is a heap, then H[ki = kp] is, too. (So
parent keys can always be copied down.)
The proof is by induction over depth k. If k = 1 then i is the root.
But then, since H is a ∆-quasi heap, we have ki ≤ α ≤ min{kl, kr},
so H is a heap. Now consider k > 1. Then, either H is a heap, or
kp > ki. Since H is a ∆-quasi-heap, H[ki = α] is a heap, and by (*)
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H[ki = α][ki = kp] = H[ki = kp] is, too. But then, since kp > ki,
H[ki = kp][kp = ki] is a ∆-quasi-heap as witnessed by α = kp. Element
p has depth k− 1, so by the induction hypothesis heapify-up produces a
heap.
Furthermore we have at most k calls to heapify-up, each with constant
work; thus the cost is O(k). ■

Lema 1.7
Let H be a ∇-quasi-heap with violation at p. Then heapify-down(H,p)
produces a heap in time O(k), where k is p’s height.

Prova. We first note that (*) if H is a heap, then H[ki = kµ] is, too. (So
the smallest key of a child can be copied up.)
The proof is by induction over height k. If k = 1 then i is a leaf. Then,
since H is a ∇-quasi-heap, we have ki ≥ α ≥ kp, so H is a heap. Now
consider k > 1. Then either H is a heap, or ki > kµ. Since H is a∇-quasi-
heap, H[ki = α] is a heap, and by (*) H[ki = α][ki = kµ] = H[ki = kµ]
is, too. But then, since ki > kµ, H[ki = kµ][kµ = ki] is a ∇-quasi-heap
with violation at µ as witnessed by kµ. Element µ has height k − 1, so
by the induction hypothesis heapify-down produces a heap.
Furthermore we have at most k calls to heapify-down, each with constant
work; thus the cost is O(k). ■
By consequence: inserting a new element and deleting the root costs
O(logn).

Lema 1.8
Seja T um min-heap. Decremente a chave do nó p. Após heapify-up(T, P)
temos novamente um min-heap. A operação custa O(logn).

Prova. Por indução sobre a profundidade k de p. Caso k = 1: p é a raiz,
após o decremento já temos um min-heap e heapify-up não altera ele. Caso
k > 1: Seja c a nova chave de p e d a chave de parent(p). Caso d ≤ c já temos
um min-heap e heapify-up não altera ele. Caso d > c heapify-up troca c e
d e chama heapify-up(T ,parent(p)) recursivamente. Podemos separar a troca
em dois passos: (i) copia d para p. (ii) copia c para parent(p). Após passo
(i) temos um min-heap T ′ e passo (ii) diminui a chave de parent(p) e como
a profundidade de parent(p) é k− 1 obtemos um min-heap após da chamada
recursiva, pela hipótese da indução.
Como a profundidade de T é O(logn), o número de chamadas recursivas tam-
bém é, e como cada chamada tem complexidade O(1), heapify-up tem com-
plexidade O(logn). ■
Como remover? A idéia básica é a mesma: troca a chave com a menor chave
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dos filhos. Para manter o heap completo, colocaremos primeiro a chave da
última posição na posição do elemento removido.

1 delete(H,p):=
2 troca última posição com p

3 heapify -down(H,p)
4
5 heapify -down(H,p):=
6 if p não possui filhos return
7 if p possui um filho then
8 if key(left(p))<key(p)) then swap(key(left(p)),key(p))
9 return
10 end if
11 { p possui dois filhos }
12 if key(p)>key(left(p)) or key(p)>key(right(p)) then
13 if (key(left(p))<key(right(p)) then
14 swap(key(left(p)),key(p))
15 heapify -down(H,left(p))
16 else
17 swap(key(right(p)),key(p))
18 heapify -down(H,right(p))
19 end if
20 end if

Lema 1.9
Seja T um min-heap. Incremente a chave do nó p. Após heapify-down(T, p)
temos novamente um min-heap. A operação custa O(logn).

Prova. Por indução sobre a altura k de p. Caso k = 1, p é uma folha e após o
incremento já temos um min-heap e heapify-down não altera ele. Caso k > 1:
Seja c a nova chave de p e d a chave do menor filho f. Caso c ≤ d já temos
um min-heap e heapify-down não altera ele. Caso c > d heapify-down troca c

e d e chama heapify-down(T ,f) recursivamente. Podemos separar a troca em
dois passos: (i) copia d para p. (ii) copia c para f. Após passo (i) temos um
min-heap T ′ e passo (ii) aumenta a chave de f e como a altura de f é k − 1,
obtemos um min-heap após da chamada recursiva, pela hipótese da indução.
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Como a altura de T é O(logn) o número de chamadas recursivas também, e
como a cada chamada tem complexidade O(1), heapify-up tem complexidade
O(logn). ■
Última operação: atualizar a chave.

1 update(H,p,v) :=
2 if v < key(p) then
3 key(p):=v
4 heapify -up(H,p)
5 else
6 key(p):=v
7 heapify -down(H,p)
8 end if

{bt:implementation}
Sobre a implementação Uma árvore binária completa pode ser armazenado
em um vetor v que contém as chaves. Um pontador p a um elemento é
simplesmente o índice no vetor. Caso o vetor contém n elementos e possui
índices a partir de 0 podemos definir

1 root(p) := return p = 0

2 parent(p) := return b(p− 1)/2c
3 key(p) := return v[p]
4 left(p) := return 2p+ 1

5 right(p) := return 2p+ 2

6 numchildren(p) := return max(min(n− left(p), 2), 0)
Outras observações:

• Para chamar update, temos que conhecer a posição do elemento no heap.
Para um conjunto de chaves compactos [0, n) isso pode ser implementado
usando um vetor pos, tal que pos[c] é o índice da chave c no heap.

• A fila de prioridade não possui teste u ∈ Q (linha 15 do algoritmo 1.3)
eficiente. O teste pode ser implementado usando um vetor visited, tal
que visited[u] sse u 6∈ Q.

Often deletemin takes more sifts, since the key we put from the last
position to the root tends to be large. We can’t just sift up the smallest
child, and sift the “hole” down, because the hole must end up at the last
position. But: we can do that as long as the right child is the smaller
one, and only then fetch the key in the last position.
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1.5.2. Heaps binomiais

Um heap binomial é um coleção de árvores binomiais que satisfazem a orde-
nação de um heap. A árvore binomial B0 consiste de um único vértice. A
árvore binomial Bi possui uma raiz com filhos B0, . . . , Bi−1. O posto de Bk é
k. Um heap binomial contém no máximo uma árvore binomial de cada posto.

B0 B1 B2 B3 B4

{lem:binotree}
Lema 1.10
Uma árvore binomial tem as seguintes características:

1. Bn possui 2n vértices, 2n−1 folhas (para n > 0), e tem altura n+ 1.

2. O nível k de Bn (a raiz tem nível 0) tem
(
n
k

)
vértices. (Isso explica o

nome.)

Prova. Exercício. ■
Observação 1.7
Podemos combinar dois Bi obtendo um Bi+1 e mantendo a ordenação do heap:
Escolhe a árvore com menor chave na raiz, e torna a outra filho da primeira.
Chamaremos essa operação “link”. Ela tem custo O(1) (veja observações sobre
a implementação).

Bi + Bi = Bi

Bi

♢
Observação 1.8
Um Bi possui 2i vértices. Um heap com n chaves consiste emO(logn) árvores.
Isso permite juntar dois heaps binomiais em tempo O(logn). A operação é
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semelhante à soma de dois números binários com “carry”. Começa juntar os
B0. Caso tem zero, continua, case tem um, inclui no heap resultante. Caso
tem dois o heap resultante não recebe um B0. Define como “carry” o link dos
dois B0’s. Continua com os B1. Sem tem zero ou um ou dois, procede como
no caso dos B0. Caso tem três, incluindo o “carry”, inclui um no resultado,
e define como “carry” o link dos dois restantes. Continue desse forma com os
restantes árvores. Para heaps h1, h2 chamaremos essa operação meld(h1,h2).

♢

Com a operação meld, podemos definir as seguintes operações:

• makeheap(c): Retorne um B0 com chave c. Custo: O(1).

• insert(h,c): meld(h,makeheap(c)). Custo: O(logn).

• getmin(h): Mantendo um link para a árvore com o menor custo: O(1).

• deletemin(h): Seja Bk a árvore com o menor chave. Remove a raiz.
Define dois heaps: h1 é h sem Bk, h2 consiste dos filhos de Bk, i.e.
B0, . . . , Bk−1. Retorne meld(h1,h2). Custo: O(logn).

• updatekey(h,p,c): Como no caso do heap binário completo com custo
O(logn).

• delete(h,c): decreasekey(h,c,−∞); deletemin(h)

Em comparação com um heap binário completo ganhamos nada no caso pessi-
mista. De fato, a operação insert possui complexidade pessimista O(1) amor-
tizada. Um insert individual pode ter custo O(logn). Do outro lado, isso
acontece raramente. Uma análise amortizada mostra que em média sobre
uma série de operações, um insert só custa O(1). Observe que isso não é uma
análise da complexidade média, mas uma análise da complexidade pessimista
de uma série de operações.

Análise amortizada
{ex:contador}

Exemplo 1.5
Temos um contador binário com k bits e queremos contar de 0 até 2k−1. Aná-
lise “tradicional”: um incremento tem complexidade O(k), porque no caso pior
temos que alterar k bits. Portanto todos incrementos custam O(k2k). Aná-
lise amortizada: “Poupamos” operações extras nos incrementos simples, para
“gastá-las” nos incrementos caros. Concretamente, setando um bit, gastamos
duas operações, uma para setar, outra seria “poupada”. Incrementando, usa-
remos as operações “poupadas” para zerar bits. Desta forma, um incremento
custa O(1) e temos custo total O(2k).
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Uma outra forma da análise amortizada é através uma função potencial φ, que
associa a cada estado de uma estrutura de dados um valor positivo (a “pou-
pança”). O custo amortizado de uma operação que transforma uma estrutura
e1 em uma estrutura e2 e c−φ(e1) +φ(e2), com c o custo de operação. No
exemplo do contador, podemos usar como φ(i) o número de bits na represen-
tação binário de i. Agora, se temos um estado e1

11 · · · 1︸ ︷︷ ︸
p bits um

0 · · ·︸︷︷︸
q bits um

com φ(e1) = p+ q, o estado após de um incremento é

00 · · · 0︸ ︷︷ ︸
0

1 · · ·︸︷︷︸
q

com φ(e2) = 1 + q. O incremento custa c = p + 1 operações e portanto o
custo amortizado é

c−φ(e1) +φ(e2) = p+ 1− p− q+ 1+ q = 2 = O(1).

♢

Resumindo: Dado um série de chamadas de uma operação com custos c1, . . . , cn
o custo amortizado da operação é

∑
1≤i≤n ci/n. Caso temos m operações di-

ferentes, o custo amortizado da operação que ocorre nos índices J ⊆ [1,m] é∑
i∈J ci/|J|.

As somas podem ser difíceis de avaliar diretamente. Um método para simpli-
ficar o cálculo do custo amortizado é o método potencial. Acha uma função
potencial φ que atribui cada estrutura de dados antes da operação i um va-
lor não-negativo φi ≥ 0 e normaliza ela tal que φ1 = 0. Atribui um custo
amortizado

ai = ci −φi +φi+1

a cada operação. A soma dos custos não ultrapassa os custos originais, porque∑
ai =

∑
ci −φi +φi+1 = φn+1 −φ1 +

∑
ci ≥

∑
ci

Portanto, podemos atribuir a cada tipo de operação J ⊆ [1,m] o custo amorti-
zado

∑
i∈J ai/|J|. Em particular, se cada operação individual i ∈ J tem custo

amortizado ai ≤ F, o custo amortizado desse tipo de operação é F.
{ex:aa:table}

Exemplo 1.6
Queremos implementar uma tabela dinâmica para um número desconhecido
de elementos. Uma estratégia é reserver espaço para n elementos, manter a
última posição livre p, e caso p > n alocara uma nova tabela de tamanho
maior. Uma implementação dessa ideia é
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1 insert(x):=
2 if p > n then
3 aloca nova tabela de tamanho t = max{2n, 1}
4 copia os elementos xi, 1 ≤ i < p para nova tabela
5 n := t

6 end if
7 xp := x

8 p := p+ 1

com valores iniciais n := 0 e p := 0. O custo de insert é O(1) caso existe ainda
espaço na tabela, mas O(n) no pior caso.
Uma análise amortizada mostra que a complexidade amortizada de uma ope-
ração é O(1). Seja Cn o custo das linhas 3–5 e D o custo das linhas 7–8.
Escolhe a função potencial φ(n) = 2Cp−Dn. A função φ é satisfaz os crité-
rios de um potencial, porque p ≥ n/2, e inicialmente temos φ(0) = 0. Com
isso o custo amortizado caso tem espaço na tabela é

ai = ci −φ(i− 1) +φ(i)

= D− (2C(p− 1) −Dn) + (2Cp−Dn) = C+ 2C = O(1).

Caso temos que alocar uma nova tabela o custo é

ai = ci −φ(i− 1) +φ(i) = D+ Cn− (2C(p− 1) −Dn) + (2Cp− 2Dn)

= C+Dn+ 2C−Dn = O(1).

♢

Custo amortizado do heap binomial Nosso potencial no caso do heap bi-
nomial é o número de árvores no heap. O custo de getmin e updatekey não
altera o potencial e por isso permanece o mesmo. makeheap cria uma árvore
que custa mais uma operação, mas permanece O(1). deletemin pode criar
O(logn) árvores novas, porque o heap contém no máximo um B⌈log n⌉ que
tem O(logn) filhos, e permanece também com custo O(logn). Finalmente,
insert reduz o potencial para cada link no meld e portanto agora custa somente
O(1) amortizado, com o mesmo argumento que no exemplo 1.5.
Desvantagem: a complexidade (amortizada) assintótica de calcular uma árvore
geradora mínima permanece O(n logn+m logn).

Meld preguiçosa Ao invés de reorganizar os dois heaps em um meld, pode-
mos simplesmente concatená-los em tempo O(1). Isso pode ser implementado
sem custo adicional nas outras operações. A única operação que não tem com-
plexidade O(1) é deletemin. Agora temos uma coleção de árvores binomiais
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não necessariamente de posto diferente. O deletemin reorganiza o heap, tal
que obtemos um heap binomial com árvores de posto único novamente. Para
isso, mantemos um vetor com as árvores de cada posto, inicialmente vazio.
Sequencialmente, cada árvore no heap, será integrado nesse vetor, executando
operações link só for necessário. O tempo amortizado de deletemin permanece
O(logn).
Usaremos um potencial φ que é o dobro do número de árvores. Supondo que
antes do deletemin temos t árvores e executamos l operações link, o custo
amortizado é

(t+ l) − 2t+ 2(t− l) = t− l.

Mas t − l é o número de árvores depois o deletemin, que é O(logn), porque
todas árvores possuem posto diferente.

Sobre a implementação Um forma eficiente de representar heaps binomiais,
é em forma de apontadores. Além das apontadores dos filhos para o os pais,
cada pai possui um apontador para um filho e os filhos são organizados em
uma lista encadeada dupla. Mantemos uma lista encadeada dupla também
das raízes. Desta forma, a operação link pode ser implementada em O(1).

1.5.3. Heaps Fibonacci

Um heap Fibonacci é uma modificação de um heap binomial, com uma opera-
ção decreasekey de custo O(1). Com isso, uma árvore geradora mínima pode
ser calculada em tempo O(m+n logn). Para conseguir decreasekey em O(1)
não podemos mais usar heapify-up, porque heapify-up custa O(logn).
Primeira tentativa:

• delete(h,p): Corta p de h e executa um meld entre o resto de h e os filhos
de p. Uma alternativa é implementar delete(h,p) como decreasekey(h,p,−∞)
e deletemin(h).
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• decreasekey(h,p): A ordenação do heap pode ser violada. Corta p é
execute um meld entre o resto de h e p.

Problema com isso: após de uma série de operações delete ou decreasekey, a
árvore pode se tornar “esparso”, i.e. o número de vértices não é mais expo-
nencial no posto da árvore. A análise da complexidade das operações como
deletemin depende desse fato para garantir que temos O(logn) árvores no
heap. Consequência: Temos que garantir, que uma árvore não fica “podado”
demais. Solução: Permitiremos cada vértice perder no máximo dois filhos.
Caso o segundo filho é removido, cortaremos o próprio vértice também. Para
cuidar dos cortes, cada nó mantém ainda um valor booleana que indica, se já
foi cortado um filho. Observe que um corte pode levar a uma série de cortes
e por isso se chama de corte em cascatas (ingl. cascading cuts). Um corte
em cascata termina na pior hipótese na raiz. A raiz é o único vértice em que
permitiremos cortar mais que um filho. Por isso não mantemos flag na raiz.

Implementações Denotamos com h um heap, c uma chave e p um elemento
do heap. minroot(h) é o elemento do heap que correspondo com a raiz da
chave mínima, e cut(p) é uma marca que verdadeiro, se p já perdeu um filho.

1 insert(h, c) :=
2 meld(makeheap(c))
3
4 getmin(h) :=
5 return minroot(h)
6
7 delete(h,p) :=
8 decreasekey(h,p,−∞)
9 deletemin(h)

10
11 meld(h1,h2) :=
12 h := lista com raízes de h1 e h2 (em O(1))
13 minroot(h) :=
14 if key(minroot(h1))<key(minroot(h2)) h1 else h2

15
16 decreasekey(h,p,c) :=
17 key(p):= c

18 if c < key(minRoot(h))
19 minRoot(h) := p

20 if not root(p)
21 if key(parent(p))>key(p)
22 corta p e adiciona na lista de raízes de h
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23 cut(p) := false
24 cascading -cut(h,parent(p))
25
26 cascading -cut(h,p) :=
27 { p perdeu um filho }
28 if root(p)
29 return
30 if (not cut(p)) then
31 cut(p) := true
32 else
33 corta p e adiciona na lista de raízes de h

34 cut(p) := false
35 cascading -cut(h,parent(p))
36 end if
37
38 deletemin(h) :=
39 remover minroot(h)
40 juntar as listas do resto de h e dos filhos de minroot(h)
41 { reorganizar heap }
42 determina o posto máximo M = M(n) de h

43 ri := undefined para 0 ≤ i ≤ M

44 for toda raíz r do
45 remove r da lista de raízes
46 d := degree(r)
47 while (rd not undefined) do
48 r := link(r, rd)
49 rd := undefined
50 d := d+ 1

51 end while
52 rd := r

53 end for
54 definir a lista de raízes pelas entradas definidas ri
55 determinar o novo minroot
56
57 link(h1,h2) :=
58 if (key(h1)<key(h2))
59 h := makechild(h1,h2)
60 else
61 h := makechild(h2,h1)
62 cut(h1) := false
63 cut(h2) := false
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64 return h

Para concluir que a implementação tem a complexidade desejada temos que
provar que as árvores com no máximo um filho cortado não ficam esparsos
demais e analisar o custo amortizado das operações.

Custo amortizado Para análise usaremos um potencial de c1t+ c2m sendo
t o número de árvores, m o número de vértices marcados e c1, c2 constantes.
As operações makeheap, insert, getmin e meld (preguiçoso) possuem comple-
xidade (real) O(1). Para decreasekey temos que considerar o caso em que o
corte em cascata remove mais que uma subárvore. Supondo que cortamos
n árvores, o número de raízes é t + n após dos cortes. Para todo corte em
cascata, a árvore cortada é desmarcada, logo temos no máximo m − (n − 1)
marcas depois. Portanto custo amortizado é

O(n) − (c1t+ c2m) + (c1(t+ n) + c2(m− (n− 1))) = c0n− (c2 − c1)n+ c2

e com c2 − c1 ≥ c0 temos custo amortizado constante c2 = O(1).
Com posto máximo M, a operação deletemin tem o custo real O(M+ t), com
as seguintes contribuições

• Linha 43: O(M).

• Linhas 44–51: O(M + t) com t o número inicial de árvores no heap. A
lista de raízes contém no máximo as t árvores de h e mais M filhos da
raiz removida. O laço total não pode executar mais que M+t operações
link, porque cada um reduz o número de raízes por um.

• Linhas 54–55: O(M).

Seja m o número de marcas antes do deletemin e m ′ o número depois. Como
deletemin marca nenhum vértice, temos m ′ ≤ m. O número de árvores t ′

depois de deletemin satisfaz t ′ ≤ M porque deletemin garante que existe no
máximo uma árvore de cada posto. Portanto, o potencial depois de deletemin
e φ ′ = c1t+ c2m

′ ≤ c1M+ c2m, e o custo amortizado é

O(M+ t) − (c1t+ c2m) +φ ′ ≤ O(M+ t) − (c1t+ c2m) + (c1M+ c2m)

= (c0 + c1)M+ (c0 − c1)t

e com c1 ≥ c0 temos custo amortizado O(M).
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Um limite para M Para provar que deletemin tem custo amortizado logn,
temos que provar que M = M(n) = O(logn). Esse fato segue da maneira
”cautelosa” com que cortamos vértices das árvores.

Lema 1.11
Seja p um vértice arbitrário de um heap Fibonacci. Considerando os filhos
na ordem temporal em que eles foram introduzidos, filho i possui pelo menos
i− 2 filhos.

Prova. No instante em que o filho i foi introduzido, p estava com pelo menos
i − 1 filhos. Portanto i estava com pelo menos i − 1 filhos também. Depois
filho i perdeu no máximo um filho, e portanto possui pelo menos i− 2 filhos.
■
Quais as menores árvores, que satisfazem esse critério?

F0 F1 F2 F3 F4

Lema 1.12
Cada subárvore com uma raiz p com k filhos possui pelo menos Fk+2 vértices.

Prova. Seja Sk o número mínimo de vértices para uma subárvore cuja raiz
possui k filhos. Sabemos que S0 = 1, S1 = 2. Define S−2 = S−1 = 1. Com
isso obtemos para k ≥ 1

Sk =
∑

0≤i≤k

Sk−2 = Sk−2 + Sk−3 + · · ·+ S−2 = Sk−2 + Sk−1.

Comparando Sk com os números Fibonacci

Fk =

{
k se 0 ≤ k ≤ 1

Fk−2 + Fk−1 se k ≥ 2

e observando que S0 = F2 e S1 = F3 obtemos Sk = Fk+2. Usando que
Fn ∈ Θ(Φn) com Φ = (1+

√
5)/2 (exercício!) conclui a prova. ■

Corolário 1.1
O posto máximo de um heap Fibonacci com n elementos é O(logn).
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Sobre a implementação A implementação da árvore é a mesma que no caso
de heaps binomiais. Uma vantagem do heap Fibonacci é que podemos usar os
nós como ponteiros – lembre que a operação decreasekey precisa isso, porque
os heaps não possuem uma operação de busca eficiente. Isso é possível, porque
sem heapify-up e heapify-down, os ponteiros mantem-se válidos.

1.5.4. Rank-pairing heaps

Haeupler et al. (2009) propõem um rank-pairing heap (um heap “empare-
lhando postos”) com as mesmas garantias de complexidade que um heap Fi-
bonacci e uma implementação simplificada e mais eficiente na prática (ver
observação 1.11).

Torneios Um torneio é uma representação alternativa de heaps. Começando
com todos elementos, vamos repetidamente comparar pares de elementos, e
promover o vencedor para o próximo nível (Fig. 1.3(a)). Uma desvantagem
de representar torneios explicitamente é o espaço para chaves redundantes.
Por exemplo, o campeão (i.e. o menor elemento) ocorre O(logn) vezes. A
figura 1.3(b) mostra uma representação sem chaves repetidas. Cada chave
é representado somente na comparação mais alta que ele ganhou, as outras
comparações ficam vazias. A figura 1.3(c) mostra uma representação compacta
em forma de semi-árvore. Numa semi-árvore cada elemento possui um filho
ordenado (na figura o filha da esquerda) e um filho não-ordenado (na figura o
filho da direita). O filho ordenado é o perdedor da comparação direta com o
elemento, enquanto o filho não-ordenado é o perdedor da comparação com o
irmão vazio. A raiz possui somente um filho ordenado.
Cada elemento de um torneio possui um posto. Por definição, o posto de uma
folha é 0. Uma comparação justa entre dois elementos do mesmo posto r

resulta num elemento com posto r + 1 no próximo nível. Numa comparação
injusta entre dois elementos com postos diferentes, o posto do vencedor é
definido pelo maior dois postos dos participantes (uma alternativa é que o
posto fica o mesmo). O posto de um elemento representa um limite inferior
do número de elementos que perderam contra-lo:

{lem:rank}
Lema 1.13
Um torneio com campeão de posto k possui pelo menos 2k elementos.

Prova. Por indução. Caso um vencedor possui posto k temos duas possibi-
lidades: (i) foi o resultado de uma comparação justa, com dois participantes
com posto k− 1 e pela hipótese da indução com pelo menos 2k−1 elementos,
tal que o vencedor ganhou contra pelo menos 2k elementos. (ii) foi resultado
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Figura 1.3.: Representações de heaps. {fig:rpheap}
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de uma comparação injusta. Neste caso um dos participantes possuíu posto
k e o vencedor novamente ganhou contra pelo menos 2k elementos. ■

Cada comparação injusta torna o limite inferior dado pelo posto menos preciso.
Por isso uma regra na construção de torneios é fazer o maior número de
comparações justas possíveis. A representação de um elemento de heap é
possui quatro campos para a chave (c), o posto (r), o filho ordenado (o) e o
filho não-ordendo (u):

1 def Node(c,r,o,u)
Podemos implementar as operações de uma fila de prioridade (sem update ou
decreasekey) como segue:

1 { compara duas árvores }
2 link(t1,t2) :=
3 if t1.c < t2.c then
4 return makechild(t1,t2)
5 else
6 return makechild(t2,t1)
7 end if
8
9 makechild(s,t) :=

10 t.u := s.o
11 s.o := t
12 setrank(t)
13 s.r := s.r + 1
14 return s
15
16 setrank(t) :=
17 if t.o.r = t.u.r
18 t.r = t.o.r + 1
19 else
20 t.r = max(t.o.r,t.u.r)
21 end if
22
23 { cria um heap com um único elemento com chave c }
24 make-heap(c) := return Node(c,0,undefined,undefined)
25
26 { insere chave c no heap }
27 insert(h,c) := link(h,make-heap(c))
28
29 { união de dois heaps }
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30 meld(h1,h2) := link(h1,h2)
31
32 { elemento mínimo do heap }
33 getmin(h) := return h
34
35 { deleção do elemento mínimo do heap }
36 deletemin(h) :=
37 aloca array r0 . . . rh.o.r+1

38 t = h.o
39 while t not undefined do
40 t ′ := t.u
41 t.u := undefined
42 register(t,r)
43 t := t ′

44 end while
45 h ′ := undefined
46 for i = 0, . . . , h.o.r+ 1 do
47 if ri not undefined
48 h ′ := link(h ′,ri)
49 end if
50 end for
51 return h ′

52 end
53
54 register(t,r) :=
55 if rt.o.r+1 is undefined then
56 rt.o.r+1 := t
57 else
58 t:=link(t,rt.o.r+1)
59 rt.o.r+1 := undefined
60 register(t,r)
61 end if
62 end

(A figura 1.4 visualiza a operação “link”.)
Observação 1.9
Todas comparações de “register” são justas. As comparações injustas ocorrem
na construção da árvore final nas linhas 35–39. ♢

Lema 1.14
Num torneio balanceado o custo amortizado de “make-heap”, “insert”, “meld”
e “getmin” é O(1), o custo amortizado de “deletemin” é O(logn).
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link( t1 t2 ) = t1

t2

Figura 1.4.: A operação “link” para semi-árvores no caso t1.c < t2.c.{fig:link}

h,min

last

t1 t2 t3 t4

Figura 1.5.: Representação de um heap binomial. {fig:binomial}

Prova. Usaremos o número de comparações injustas no torneio como poten-
cial. “make-heap” e “getmin” não alteram o potencial, “insert” e “meld” au-
mentam o potencial por no máximo um. Portanto a complexidade amortizada
dessas operações é O(1). Para analisar “deletemin” da raiz r do torneio vamos
supor que houve k comparações injustas com r. Além dessas comparações in-
justas, r participou em no máximo logn comparações justas pelo lema 1.13.
Em soma vamos liberar no máximo k + logn árvores, que reduz o potencial
por k, e com no máximo k + logn comparações podemos produzir um novo
torneio. Dessas k+logn comparações no máximo logn são comparações injus-
tas. Portanto o custo amortizado é k+ logn− k+ logn = 2 logn = O(logn).
■

Heaps binomiais com varredura única O custo de representar o heap numa
árvore única é permitir comparações injustas. Uma alternativa é permitir
somente comparações justas, que implica em manter uma coleção de O(logn)
árvores. A estrutura de dados resultante é similar com os heaps binomiais:
manteremos uma lista (simples) de raízes das árvores, junto com um ponteiro
para a árvore com a raíz de menor valor. O heap é representado pela raíz de
menor valor, ver Fig. 1.5.

1 insert(h,c) :=
2 insere make-heap(c) na lista de raizes
3 atualize a árvore mínima
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4
5 meld(h1,h2) :=
6 concatena as listas de h1 e h2

7 atualize a árvore mínima
Somente “deletemin” opera diferente agora:

1 deletemin(h) :=
2 aloca um array de listas r0 . . . r⌈log n⌉
3 remove a árvore mínima da lista de raizes
4 distribui as restantes árvores sobre r

5
6 t := h.o

7 while t not undefined do
8 t ′ := t.u

9 t.u := undefined
10 insere t na lista rt.o.r+1

11 t := t ′

12 end while
13
14 { executa o maior número possível }
15 { de comparações justas num único passo }
16
17 h := undefined { lista final de raizes }
18 for i = 0, . . . , dlogne do
19 while |ri| ≥ 2

20 t := link(ri.head,ri.head.next)
21 insere t na lista h

22 remove ri.head,ri.head.next da lista ri
23 end if
24 if |ri| = 1 insere ri.head na lista h

25 end for
26 return h

Observação 1.10
Continuando com comparações justas até sobrar somente uma árvore de cada
posto, obteremos um heap binomial. ♢
Lema 1.15
Num heap binomial com varredura única o custo amortizado de “make-heap”,
“insert”, “meld”, “getmin” éO(1), o custo amortizado de “deletemin” éO(logn).

Prova. Usaremos o dobro do número de árvores como potencial. “getmin”
não altera o potencial. “make-heap”, “insert” e “meld” aumentam o potencial
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(a)

r

r+ 1 r+ 1
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r+ 0 ≥ r+ 1
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r+ 0 ≥ r+ 2

r

≥ r+ 2 r+ 0

Figura 1.6.: Diferenças no posto de rp-heaps do tipo 1 (a) e tipo 2 (b). {fig:rptypes}

por no máximo dois (uma árvore), e portanto possuem custo amortizado O(1).
“deletemin” libera no máximo logn árvores, porque todas comparações foram
justas. Com um número total de h árvores, o custo de deletemin é O(h).
Sem perda de generalidade vamos supor que o custo é h. A varredura final
executa pelo menos (h−logn)/2−1 comparações justas, reduzindo o potencial
por pelo menos h − logn − 2. Portanto o custo amortizado de “deletemin” é
h− (h− logn− 2) = logn+ 2 = O(logn). ■

rp-heaps O objetivo do rp-heap é adicionar ao heap binomial de varredura
única uma operação “decreasekey” com custo amortizado O(1). A ideía e
os problemas são os mesmos do heap Fibonacci: (i) para tornar a operação
eficiente, vamos cortar a sub-árvore do elemento cuja chave foi diminuída. (ii)
o heap Fibonacci usava cortes em cascata para manter um número suficiente
de elementos na árvore; no rp-heap ajustaremos os postos do heap que perde
uma sub-árvore. Para poder cortar sub-árvores temos que permitir uma folga
nos postos. Num heap binomial a diferença do posto de um elemento com o
posto do seu pai (caso existe) sempre é um. Num rp-heap do tipo 1, exigimos
somente que os dois filhos de um elemento possuem diferença do posto 1 e 1,
ou 0 e ao menos 1. Num rp-heap do tipo 2, exigimos que os dois filhos de
um elemento possuem diferença do posto 1 e 1, 1 e 2 ou 0 e pelo menos 2.
(Figura 1.6.)
Com isso podemos implementar o “decreasekey” (para rp-heaps do tipo 2)
como segue:

1 decreasekey(h,e,∆) :=
2 e.c := e.c − ∆
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e

→ + e

e

→ + e

Figura 1.7.: A operação “decreasekey”. {fig:decreasekey}

3 if root(e)
4 return
5 if parent(e).o = e then
6 parent(e).o := e.u
7 else
8 parent(e).u := e.u
9 end if
10 parent(e).u := parent(e)
11 e.u := undefined
12 u := parent(e)
13 parent(e) := undefined
14 insere e na lista de raízes de h

15 decreaserank(u)
16
17 rank(e) :=
18 if e is undefined
19 return −1

20 else
21 return e.r
22
23 decreaserank(u) :=
24 if root(u)
25 return
26 if rank(u.o) > rank(u.u)+1 then
27 k := rank(u.o)
28 else if rank(u.u) > rank(u.o)+1 then
29 k := rank(u.u)
30 else
31 k = max(rank(u.o),rank(u.u))+1
32 end if
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r

f

r f

= +

Figura 1.8.: Separar uma semi-árvore de posto k em duas. {fig:split}

33 if u.r = k then
34 return
35 else
36 u.r := k
37 decreaserank(parent(u))
38
39 delete(h,e) :=
40 decreasekey(h,e,−∞)
41 deletemin(h)

{obs:eficiency}
Observação 1.11
Para implementar o rp-heap precisamos além dos ponteiros para o filho or-
denado e não-ordenado um ponteiro para o pai do elemento. A (suposta)
eficiência do rp-heap vem do fato que o decreasekey altera os postos do heap,
e pouco da estrutura dele e do fato que ele usa somente três ponteiros por
elemento, e não quatro como o heap Fibonacci. ♢
Lema 1.16
Uma semi-árvore do tipo 2 com posto k contém pelo menos ϕk elementos,
sendo ϕ = (1+

√
5)/2 a razão áurea.

Prova. Por indução. Para folhas o lema é válido. Caso a raiz com posto k

não é folha podemos obter duas semi-árvores: a primeira é o filho da raiz sem
o seu filho não-ordenado, e a segunda é a raiz com o filho não ordenado do
seu filho ordenado (ver Fig. 1.8). Pelas regras dos postos de árvores de tipo
dois, essas duas árvores possuem postos k− 1 e k− 1, ou k− 1 e k− 2 ou k e
no máximo k − 2. Portanto, o menor número de elementos nk contido numa
semi-árvore de posto k satisfaz a recorrência

nk = nk−1 + nk2

que é a recorrência dos números Fibonacci. ■
Lema 1.17
As operações “decreasekey” e “delete” possuem custo amortizadoO(1) eO(logn)
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Prova. Ver (Haeupler et al., 2009). ■

1.5.5. Heaps ocos

Introdução

Objetivo: operações com a mesma complexidade amortizada que heaps de
Fibonacci. Para um heap h, chave k e elemento e temos as operações:

• make-heap(): O(1)

• find-min(h)/getmin(h): O(1)

• meld(h1,h2): O(1)

• insert(e,k,h): O(1)

• decrease-key(e,k,h): O(1)

• delete(e,h): O(logn)

• delete-min(h): O(logn)

Ideia principal: a operação delete esvazia nós, produzindo nós ocos (ingl. hol-
low nodes), a operação decrease-key é um delete, seguido por um insert.
Teremos duas medidas:

n Número de elementos no heap

N Número de nós no heap = # de elementos + # de nós ocos = # operações
insert + # operações decrease-key

Variantes de heaps ocos:

• Heaps ansiosos (ingl. “eager heaps”) com múltiplas raízes.

• Heaps ansiosos com uma única raíz.

• Heaps preguiçosos.

1 def Node =
2 item // elemento
3 key // chave
4 fc // ponteiro para primeiro filho
5 ns // ponteiro para próximo irmão
6 rank // posto do nó
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7
8 def Item =
9 no // nó correspondente

10 // mais dados satelites

Operação básica: link Um link gera um vencedor e um perdedor, que se
torna filho do vencedor, e aumenta o posto do vencedor.

1 (ranked)link(t1,t2) :=
2 if t1.key ≤ t2.key
3 return makechild(t1,t2)
4 else
5 return makechild(t2,t1)
6
7 makechild(w,l) :=
8 l.ns := w.fc
9 w.fc := l

10 w.rank := w.rank+1
11 return w

Representação básica

• Lista simples circular de árvores com ordenação do heap, representada
por um ponteiro à árvore cuja raíz contém a menor chave (chamada a
raíz mínima).

• Cada nó cheia armazena um item. Podem existir nós ocos sem item.

• Nós ocos nunca mais ficam cheias, eles podem somente ser destruídos.

• Filhos ficam armazenados em listas simples, em ordem não-crescente de
postos.
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1 make-heap() := return null
2
3 make-heap(e,k) := return Node(e,k,null,self ,0)
4
5 getmin(h) := h
6
7 findmin(h) := return h is not null? h.item : null
8
9 meld(h1,h2) :=
10 if h1 is null return h2

11 if h2 is null return h1

12 swap(h1.ns,h2.ns) // cria uma lista circular simples
13 if h1.key ≤ h2.key return h1 else return h2

14
15 insert(e,k,h) := meld(make-heap(e,k),h)
16
17 decrease -key(e,k,h) :=
18 u = e.node
19 v = make-heap(e,k)
20 v.rank = max{0, u.rank-2}
21 // desloca os filhos de postos 0,...,rank -2 para v
22 if u.rank ≥ 2
23 v.fc := u.fc.ns.ns
24 u.fc.ns.ns := null
25 return meld(v,h)
26
27 delete(e,h) :=
28 e.node.item := null
29 if e.node = h
30 delete -min(h)
31
32 delete -min(h) :=
33 if h is null: return
34 h.node.item := null
35
36 aloca um array R0, R1, . . . , RM

37 // repetidamente remove raízes ocos e une os heaps
38 r:=h
39 repeat
40 rn := r.ns
41 link-heap(r,R)
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42 r:=rn
43 until r==h
44
45 // reconstrói o heap
46 h:=null
47 for i=0, . . . ,M
48 if Ri is not null
49 Ri.ns := Ri

50 h := meld(h,Ri)
51 return h
52
53 link-heap(h,R) :=
54 if h is hollow
55 r:=h.fc
56 while r is not null
57 rn := r.ns
58 link-heap(r,R)
59 r := rn
60 destroy node h
61 else
62 i := h.rank
63 while Ri is not null
64 h := link(h,Ri)
65 Ri := null
66 i := i + 1
67 end
68 Ri := h

Invariantes

1. Ordenação do heap.

2. Invariante do posto: cada nó de posto r possui r filhos com postos
0, . . . , r − 1, exceto no caso r ≥ 2 e o nó foi esvaziada por uma ope-
ração decrease-key. Neste caso o nó possui dois filhos de postos r − 1 e
r− 2.

Corretude
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Teorema 1.11
Heaps com nós ocos implementam corretamente todas operação e mantém as
invariantes.

Prova. Por indução sobre o número de operações. ■
Lembrança: os números de Fibonacci são definidos por F0 = 0, F1 = 1, Fi+2 =
Fi + Fi+1, para i ≥ 0 e temos Fi+2 ≥ Φi, com a razão áurea Φ = (1+

√
5)/2.

Teorema 1.12
Um nó de posto r possui pelo menos Fr+3 − 1 descendentes (cheios ou ocos),
incluindo o próprio nó, na árvore.

Prova. Por indução sobre r. Para r = 0, temos F3 − 1 = 1, e para r = 1

temos F4 − 1 = 2 e a afirmação está correta, porque para r < 2 um nó não
perde filhos caso for esvaziado. Para r ≥ 2 pela invariante do posto temos
pelo menos dois filhos com postos r − 1 e r2. Pela hipótese da indução eles
tem pelo menos Fr+1 − 1 e Fr+2 − 1 descendentes e logo r possui pelo menos
Fr+1 − 1+ Fr+2 − 1+ 1 = Fr+3 − 1 descendentes. ■
Corolário 1.2
Depois uma operação delete-min o número de árvores é no máximo dlogΦ Ne =
O(logN) porque temos no máximo uma árvore por posto. Logo podemos
escolher M = dlogΦ Ne na operação delete-min.

Teorema 1.13
O tempo amortizado por operação num heap oco é O(1), exceto para as ope-
rações delete e delete-min, que tem complexidade O(logN) para um heap com
N nós.

Prova. Todas operações exceto a deleção do elemento mínimo possuem tempo
O(1) no caso pessimista. O custo de uma deleção é O(H+T) com H o número
de nós ocos destruídos, e T o número de árvores antes das operações link.
Depois das operações link temos no máximo logΦ N árvores, logo faremos pelo
menos T − logΦ N operações link e no máximo logΦ N operações meld. Logo
o custo total é O(1) por destruição de um nó oco, e por link, mas O(logN).
Para contabilizar a destruição do um nó, aumentamos o custo de cada criação
(insert, decrease-key) por 1.
Para contabilizar as operações link: define um potencial igual ao número de
nós cheias, que não são filho de outro nó cheia (i.e. raízes e filhos de nós ocos).
Para todas operações diferente de delete-min e delete, o aumento do potencial
é constante (no máximo 1 para insert, 3 para decrease-key, 0 para as demais).
Para o delete que remove o elemento mínimo e delete-min, o custo amortizado
de cada link é 0, porque um link combina duas raízes cheias, reduzindo o
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Tabela 1.2.: Complexidade das operações de uma fila de prioridade. Comple-
xidades em negrito são amortizados. (1): meld preguiçoso.

insert getmin deletemin update decreasekey delete

Vetor O(1) O(1) O(n) O(1) (update) O(1)
Lista ordenada O(n) O(1) O(1) O(n) (update) O(1)
Heap binário O(log n) O(1) O(log n) O(log n) (update) O(log n)
Heap binomial O(1) O(1) O(log n) O(log n) (update) O(log n)
Heap binomial(1) O(1) O(1) O(log n) O(log n) (update) O(log n)
Heap Fibonacci O(1) O(1) O(log n) - O(1) O(log n)
rp-heap O(1) O(1) O(log n) - O(1) O(log n) {tab:pq}

potencial por 1. Além disso, ao remover um elemento, o potencial aumenta
por no máximo logΦ N, um por cada filho do novo nó oco. Logo o custo
amortizado de delete e delete-min é O(logN).

■

Re-otimizando o heap A análise acima é em função de N. Caso logN =
O(logn) temos um heap assintoticamente ótimo. Caso executamos muitas
operações decrease-key, temos que reconstruir o heap periodicamente, para
garantir N = O(n). O método mais simples é: escolhe uma constante c > 1 e
paraN > cn reconstrói o heap completamente, destruindo os nós ocos, criando
heaps de um único nó de todos nós cheios, e aplicando operações meld para
unir todos heaps. O custo é O(N) para percorrer todo nó uma vez e pode ser
atribuído na análise amortizada para as operações insert e delete-min.

Resumo: Filas de prioridade A tabela 1.2 resume a complexidade das ope-
rações para diferentes implementações de uma fila de prioridade.

1.5.6. Árvores de van Emde Boas

Pela observação 1.5 é impossível implementar uma fila de prioridade baseado
em comparação de chaves com todas operações em o(logn) . Porém existem
algoritmos que ordenam n números em o(n logn), aproveitando o fato que as
chaves são números com k bits, como por exemplo o radix sort que ordena em
tempo O(kn), ou aproveitando que as chaves possuem um domínio limitado,
como por exemplo o counting sort que ordena n números em [k] em tempo
O(n+ k).
Uma árvore de van Emde Boas (árvore vEB) T realiza as operações

• member(T, e): elemento e pertence a T?

• insert(T, e): insere e em T
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• delete(T, e): remove e de T

• min(T) e max(T): elemento mínimo e máximo de T , ou “undefined” caso
não existe

• succ(T, e) e pred(T, e): successor e predecessor de e em T ; e não precisa
pertencer a T

no universo de chaves [0, u− 1] em tempo O(log logu) e espaço O(u).
Outras operações compostas podem ser implementados, por exemplo

1 deletemin(T) :=
2 e := min(T); delete(e); return e

3 deletemax(T) :=
4 e := max(T); delete(e); return e

Árvores binárias em ordem vEB Na discussão da implementação de árvores
binárias na página 41 discutimos uma representação em ordem da busca por
profundidade (BFS order). A ideia da ordem vEB é “cortar” a altura (número
de níveis) h de uma árvore binária (que possui n = 2h−1 nodos e 2h−1 folhas)
pela metade. Com isso obtemos

• uma árvore superior T0 de altura bh/2c

• e b = 2⌊h/2⌋ = Θ(2h/2) = Θ(
√
n) árvores inferiores T1, . . . , Tb de altura

dh/2e e com 2⌈h/2⌉ − 1 = Θ(
√
n) nodos.

Os nodos dessa árvore são armazenados em ordem T0, T1, . . . , Tb e toda árvore
Ti é ordenado recursivamente da mesma maneira, até chegar numa árvore de
altura h = 1, como a Figura 1.9 mostra.
Armazenar uma árvore binária em ordem de vEB não altera a complexidade
das operações. Uma busca, por exemplo, continua com complexidade O(h).
Porém, armazenado em ordem da busca por profundidade, uma busca pode
gerar Θ(h) falhas no cache, no pior caso. Na ordem de vEB, a busca sem-
pre atravessa Ω(log2 B) níveis, com B o tamanho de uma linha de cache,
antes de gerar uma nova falha no cache. Logo uma busca gera somente
O(log2 n/ log2 B) = O(logB n) falhas no cache. O layout se chama cache
oblivious porque funciona sem conhecer o tamanho de uma linha de cache B.

Árvores vEB A estrutura básica de uma árvore de vEB é

1. Usar uma árvore binária de altura h representar 2h−1 elementos nas
folhas.
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Figura 1.9.: Organização de árvores binárias em ordem de van Emde Boas para
h ∈ [4]. As folhas são rotuladas por “cluster.subíndice”. Abaixo
da árvore a ordem do armazenamento do vértices é dado. Os Ti
correspondem com as subárvores do primeiro nível de recursão.{fig:vanEmdeBoas}
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Figura 1.10.: Representação da primeira versão de uma árvore vEB. (a) Forma
geral. (b) Caso base. {fig:vEBr1}

2. Cada folha armazena um bit, que é 1 caso o elemento correspondente
pertence ao conjunto representado.

3. Os bits internos servem como resumo da sub-árvore: eles representam
a conjunção dos bits dos filhos, i.e. um bit interno é um, caso na sua
sub-árvore existe pelo menos uma folha que pertence ao conjunto repre-
sentado.

Todas as operações da estrutura acima podem ser implementadas em tempo
O(h) = O(logu). Para melhorar isso, vamos aplicar a mesma ideia da ordem
de van Emde Boas: a árvore é separada em uma árvore superior, e uma série
de árvores inferiores, cada uma com altura ≈ h/2. As folhas da árvore superior
contém o resumo das raízes das árvores inferiores: por isso a árvore superior
possui altura bh/2c+ 1, uma a mais comparado com a ordem de vEB.
Fig. 1.10 mostra essa representação. A altura da árvore está armazenada no
campo h. Além disso temos um ponteiro “top” para a árvore superior, e
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um vetor de ponteiros “bottom” de tamanho b = 2⌊h/2⌋ para as raízes das
árvores inferiores. No caso base com h = 2, abusaremos os campos “top”
e “bottom” para armazenar os bits da raiz e dos dois filhos: um ponteiro
arbitrário diferente de undefined representa um bit 1, o ponteiro undefined o
bit 0. Para isso servem as funções auxiliares

1 set(p) := p := 1

2 clear(p) := p := undefined
3 bit(p) := return p 6= undefined

Observe que as folhas 0, 1, . . . , 2h−1−1 podem ser representadas com h−1 bits.
Os primeiros bh/2c bits representam o número da sub-árvore que contém a
folha, e os últimos dh/2e−1 bits o índice (relativo) da folha na sua sub-árvore.
Isso explica a definição das funções auxiliares

1 subtree(e) := e � dh/2e− 1

2 subindex(e) := e&(1 � dh/2e− 1) − 1

3 element(s,i) := (s � dh/2e− 1) | i
para extrair de um elemento o número da sub-árvore correspondente, ou o seu
índice nesta sub-árvore, e para determinar o índice na árvore atual do i-ésimo
elemento da sub-árvore s.
Com isso podemos implementar as operações como segue.

1 member(T ,e) :=
2 if T.h = 2

3 return bit(T.bottom[e])
4 return member (T.bottom[subtree(e)],subindex(e))
5
6 min(T ,e) :=
7 if T.h = 2

8 if bit(T.bottom[0])
9 return 0

10 if bit(T.bottom[1])
11 return 1

12 return undefined
13
14 c := min (T.top)
15 if c = undefined
16 return c

17 return element(c,min(T.bottom[c]))
18
19 succ(T ,e) :=
20 if T.h = 2
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21 if e = 0 and bit(T.bottom[1])=1
22 return 1

23 return 0

24
25 s := succ (T.bottom[subtree(e)],subindex(e))
26 if s 6= undefined
27 return element(subtree(e),s)
28
29 c := succ (T.top,subtree(e))
30 if c = undefined
31 return c

32 return element(c,min(T.bottom[c]))
33
34 insert(T ,e) :=
35 if T.h = 2

36 set(T.bottom[e])
37 set(T.top)
38 else
39 insert (T.bottom[subtree(e)],subindex(e))
40 insert (T.top,subtree(e))
41
42 delete(T ,e) :=
43 if T.h = 2

44 clear(T.bottom[e])
45 if (bit(T.bottom[1− e])=0
46 clear(T.top)
47 else
48 delete (T.bottom[subtree(e)],subindex(e))
49 s :=min(T.bottom[subtree(e)])
50 if s = undefined
51 delete (T.top,subtree(e))

As complexidades das operações implementadas no caso pessimista são (ver
as chamadas recursivas acima em vermelho):

member T(h) = T(dh/2e) +O(1) = Θ(logh) = Θ(log logu).

min T(h) = T(bh/2c + 1) + T(dh/2e) + O(1) = 2T(h/2) + O(1) = Θ(h) =
Θ(logu).

insert T(h) = T(dh/2e+ T(bh/2c+ 1) +O(1) = Θ(h) = Θ(logu).

succ/delete T(h) = T(dh/2e) + T(bh/2c + 1) + O(h) = 2T(h/2) + O(h) =

69



1. Algoritmos em grafos
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Figura 1.11.: Representação uma árvore vEB. (a) Forma geral. (b) Caso base.{fig:vEBr2}

Θ(h logh) = Θ(logu log logu) (com um trabalho extra de O(h) para
chamar “min”).

Logo todas operações com mais que uma chamada recursiva não possuem
a complexidade desejada O(log logu). A introdução de dois campos “min”
e “max” que armazenam o elemento mínimo e máximo, junto com algumas
modificações resolvem este problema.

1. Armazenar somente o mínimo, a operação “min” custa somente O(1) é
“insert”, “succ” e “delete” consequentemente somente O(h).

2. Armazenado também o máximo, sabemos na operação “succ” se o su-
cessor está na árvore atual sem buscar, logo a operação “succ” pode ser
implementada em O(log logu).

3. A última modificação é não armazenar o elemento mínimo na sub-árvore
correspondente. Com isso a primeira inserção somente modifica a árvore
de resumo (top) e a segunda e as demais operações modificam somente
a sub-árvore correspondente. A deleção funciona similarmente: ela re-
move ou um elemento na sub-árvore, ou o último elemento, modificando
somente a árvore de resumo (top). Com isso todas operações podem ser
implementadas em O(log logu).

Na base armazenaremos os elementos somente nos campos “min” e “max”.
Por convenção setamos “min” maior que “max” numa árvore vazia. As se-
guintes funções auxiliares permitem remover os elementos de uma árvore base
e determinar se uma árvore possui nenhum, um ou mais elementos.

1 clear(T) :=
2 T.min:=1; T.max:=0; // convenção
3
4 empty(T) :=
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5 return T.min>T.max
6
7 singleton(T) :=
8 return T.min=T.max
9

10 full(T) :=
11 return T.min<T.max

1 member(T ,e) :=
2 if empty(T)
3 return false
4 if T.min = e or T.max = e

5 return true
6
7 { não é ``min'' nem ``max''? a base não contém o elemento }
8 if T.h = 2
9 return false

10
11 return member (T.bottom[subtree(e)],subindex(e))
12
13 min(T) :=
14 if empty(T)
15 return undefined
16 return T.min
17
18 max(T) :=
19 if empty(T)
20 return undefined
21 return T.max
22
23 succ(T ,e) :=
24 if T.h=2
25 if e = 0 and T.max = 1

26 return 1

27 return undefined
28
29 if not empty(T) and e < T.min
30 return T.min
31
32 { sucessor na árvore atual }
33 m:=max(T.bottom[subtree(e)])
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34 if m 6= undefined and subindex(e)<m
35 return element(subtree(e),
36 succ (T.bottom[subtree(e)],subindex(e)))
37
38 { mínimo na árvore sucessora }
39 c := succ (T.top,subtree(e))
40 if c = undefined
41 return c

42 return element(c,min(T.bottom[c]))
43
44 pred(T ,e) :=
45 if T.h=2
46 if e = 1 and T.min=0
47 return 0

48 return undefined
49
50 if not empty(T) and T.max < e

51 return T.max
52
53 { predecessor na árvore atual }
54 m:=min(T.bottom[subtree(e)])
55 if m 6= undefined and m <subindex(e)
56 return element(subtree(e),
57 pred (T.bottom[subtree(e)],subindex(e)))
58
59 { máximo na árvore predecessora }
60 c:= pred (T.top,subtree(e))
61 if c = undefined
62 if not empty(T) and T.min<e
63 return T.min
64 else
65 return undefined
66
67 return element(c,max(T.bottom[c]))
68
69 insert(T ,e) :=
70 if empty(T)
71 T.min := T.max := e

72 return
73
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74 { novo mínimo: setar min, insere min anterior }
75 if e < T.min
76 swap(T.min,e)
77
78 { insere recursivamente }
79 if T.h > 2

80 if empty(T.bottom[subtree(e)]) {line:emptybottom}
81 insert (T.top,subtree(e))
82 insert (T.bottom[subtree(e)],subindex(e)) {line:secondinsert}
83
84 { novo máximo: atualiza }
85 if T.max < e

86 T.max := e

87
88 delete(T ,e) :=
89 if empty(T)
90 return
91
92 if singleton(T)
93 if T.min = e

94 clear(T)
95 return
96
97 { novo mínimo? }
98 if e = T.min
99 T.min := element(min(T.top),min(T.bottom[min(T.top)]))
100 e := T.min
101
102 { remove e da árvore }
103 delete (T.bottom[subtree(e)],subindex(e)) {line:recursivedelete}
104
105 if empty(T.bottom[subtree(e)])
106 delete (T.top,subtree(e)) {line:seconddelete}
107 if e = T.max
108 c:=max(T.top)
109 if c = undefined
110 T.max := T.min
111 else
112 T.max := element(c,max(T.bottom[c]))
113 else
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114 T.max := element(subtree(e),max(T.bottom[subtree(e)]))
Com essas implementações cada função executa uma chamada recursiva e um
trabalho constante a mais e logo precisa tempo O(logh). Em particular, na
função “insert” caso a sub-árvore do elemento é vazia na linha 80 a segunda
chamada “insert” na linha 82 precisa tempo constante. Similarmente, ou a
deleção recursiva na linha 103 não remove o último elemento, e talvez custa
O(logh), e logo a deleção da linha 106 não é executada, ou ela remove o último
elemento e custo somente O(1).

1.5.7. Exercícios
Exercício 1.2
Prove lema 1.10. Dica: Use indução sobre n.

Exercício 1.3
Prove que um heap binomial com n vértices possui O(logn) árvores. Dica:
Por contradição.

Exercício 1.4 (Laboratório 1)
1. Implementa um heap binário. Escolhe casos de teste adequados e verifica

o desempenho experimentalmente.

2. Implementa o algoritmo de Prim usando o heap binário. Novamente
verifica o desempenho experimentalmente.

Exercício 1.5 (Laboratório 2)
1. Implementa um heap binomial.

2. Verifica o desempenho dele experimentalmente.

3. Verifica o desempenho do algoritmo de Prim com um heap Fibonacci
experimentalmente.

Exercício 1.6
A proposição 1.3 continua ser correto para grafos com pesos negativos? Jus-
tifique.
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1.6. Fluxos em redes

Seja G = (V,A, c) um grafo direcionado e capacitado com capacidades c :
A → R nos arcos. Uma atribuição de fluxos aos arcos f : A → R em G se
chama circulação, se os fluxos respeitam os limites da capacidade (fa ≤ ca) e
satisfazem a conservação de fluxo f(v) = 0 com

f(v) :=
∑

a∈N+(v)

fa −
∑

a∈N−(v)

fa (1.7) {eq:totalvertexflow}{eq:totalvertexflow}

(ver Fig. 1.12).
Definição 1.4
Para X, Y ⊆ V sejam A(X, Y) := (X × Y) ∩ A os arcos passando de X para Y.
O fluxo de X para Y é f(X, Y) :=

∑
a∈A(X,Y) fa. Ainda estendemos a notação

do fluxo total de um vértice (1.7) para conjuntos: f(X) := f(X, X̄) − f(X̄, X)
é o fluxo neto do saindo do conjunto X, onde X̄ := V \ X. Analogamente,
escrevemos para as capacidades c(X, Y) :=

∑
a∈A(X,Y) ca.

{lem:xflowsum}
Lema 1.18
Para qualquer conjunto de vértices X ⊆ V temos

∑
v∈X f(v) = f(X).

Prova.∑
v∈X

f(v) =
∑
v∈X

( ∑
a∈N+(v)

fa −
∑

a∈N−(v)

fa

)

=

( ∑
a∈A(X,X̄)

fa +
∑

a∈A(X,X)

fa

)
−

( ∑
a∈A(X̄,X)

fa +
∑

a∈A(X,X)

fa

)
=

∑
a∈A(X,X̄)

fa −
∑

a∈A(X̄,X)

fa = f(X, X̄) − f(X̄, X) = f(X).

■ {lem:flowsum}
Corolário 1.3
Qualquer atribuição de fluxos f satisfaz

∑
v∈V f(v) = 0.

Prova. ∑
v∈V

f(v) = f(V) = f(V, V̄) − f(V̄, V) = 0− 0 = 0.

■
Uma circulação vira um fluxo, se o grafo possui alguns vértices que são fontes
ou destinos (“sorvedouros”) de fluxo, e portanto não satisfazem a conservação
de fluxo. Um fluxo s–t possui uma única fonte s e um único destino t. Um
objetivo comum (transporte, etc.) é encontrar um fluxo s–t máximo.
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Figura 1.12.: Grafo (esquerda) com circulação (direita) {fig:circulation}

Fluxo s–t máximo

Instância Grafo direcionado G = (V,A, c) com capacidades c nos arcos,
um vértice origem s ∈ V e um vértice destino t ∈ V .

Solução Um fluxo f, com f(v) = 0, ∀v ∈ V \ {s, t}.

Objetivo Maximizar o fluxo f(s).

Lema 1.19
Um fluxo s–t satisfaz f(s) + f(t) = 0.

Prova. Temos

f(s) + f(t) =
∑
v∈V

f(v)
(1.3)
= 0,

onde a primeira igualdade vale pela conservação de fluxo nos vértices em
V \ {s, t}. ■
Uma formulação como programa linear é

maximiza f(s) (1.8){lp:maxflow}{lp:maxflow}
sujeito a f(v) = 0, ∀v ∈ V \ {s, t},

0 ≤ fa ≤ ca, ∀a ∈ A.

Observação 1.12
O programa (1.8) possui uma solução, porque fa = 0 é uma solução viável. O
sistema não é ilimitado, porque todas variáveis são limitadas, e por isso possui
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uma solução ótima. O problema de encontrar um fluxo s–t máximo pode ser
resolvido em tempo polinomial via programação linear. ♢

O problema dual é

minimiza
∑
a∈A

caqa

sujeito a qa − pv ≥ 1, ∀a = (s, v) ∈ A, v 6= t

qa + pu ≥ −1, ∀a = (u, s) ∈ A,u 6= t

qa + pu ≥ 0 ∀a = (u, t) ∈ A,u 6= s

qa − pv ≥ 0 ∀a = (t, v) ∈ A, v 6= s

qa ≥ 1 if (s, t) ∈ A

qa ≥ −1 if (t, s) ∈ A

qa + pu − pv ≥ 0, ∀a = (u, v) ∈ A,

pv ≶ 0, ∀v ∈ V \ {s, t},

qa ≥ 0, ∀a ∈ A.

Ou equivalente

(MC) minimiza
∑
a∈A

caqa (1.9)

sujeito a qa + pu − pv ≥ 0 ∀a = (u, v) ∈ A (1.10)
ps = −1, (1.11)
pt = 0, (1.12)
pv ≶ 0, ∀v ∈ V (1.13)
qa ≥ 0, ∀a ∈ A. (1.14)

Here the idea is roughly the following. We want to set all qa = 0. But
that’s not possible, since that implies pu ≥ pv for all arcs uv ∈ A, so the
potential goes only down, but at some point we have to “climb” the hill
from ps = −1 and pt = 0. This can be done by arcs of value qa = 1. If
we do this minimally, we have to intercept every st-path. So we have a
cut. By this reasoning we can see, that every cut can be made a solution
of MC, so its value is at most the value of a minimum cut. (This is
almost exactly Papadimitriou e Steiglitz (1982, Th. 6.1). Note that we
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have fixed ps and pt at particular values, but any solution p + c for a
constant vector c would also do, when fixing ps and pt accordingly.)
It remains to show that MC’s value cannot be lower. Papadimitriou
e Steiglitz (1982) defer this to the Ford-Fulkerson algorithm, and just
remark that complementary slackness implies the condition that for cut
(X, X̄) arcs in A(X, X̄) are saturated, and those in A(X̄, X) are 0.
One could, however, work out that the minimum is obtained by a cut.
First look at any given values p. Since qa ≥ pv − pu, the optimal value
is to set qa = pv − pu. Now look at any solution (p, q). I claim: we
can replace p by p ′ where p ′

a = c(pa; [−1, 0]) with “clamping” function
c(x; [a, b]) = max{min{x, b}, a}, and then set q as above, to obtain another
solution of no larger value. (Note that if we have integer data in the
primal, by total unimodularity, the optimal solution is integer, and the
same holds for the dual. In this case the “clamping” above means p ∈
{−1, 0}n, and q are exactly the arcs that “climb” from −1 to 0, so for
every solution, there exists a cut of the same or better value. But we
don’t want to invoke total unimodularity here.)
To see the claim, note first that the clamping function c is monotone
and 1-Lipschitz, i.e. for x, y, x ≤ y → c(x; I) ≤ c(y; I) and |x − y| ≥
|c(x; I) − c(y; I)|. So, if for any arc uv we have pv ≤ pu by monotonicity
p ′
v ≤ p ′

u so we can choose q ′
a = 0 ≤ qa. If pv − pu ≥ 0 then p ′

v − p ′
u ≤

pv−pu, by the Lipschitz condition. From this follows that we can choose
q ′
a = p ′

v − p ′
v ≤ pv − pu ≤ qa. Overall, we obtain caqa ≥ caq

′
a, since

ca ≥ 0 for all a ∈ A, and thus ctq ≥ ctq ′.
With that in place we would still have to show that the solution can
be made integral, without getting worse. This can probably done by
induction over the number of fractional arcs (i.e. with non-unit potential
difference). We pick one (maybe some minimality here), and show that
we can integralize it. (Does that hold? It would be a funny result, since
the dual is always integral, while the primal clearly has not to be, when
capacities are not integer.)

1.6.1. O algoritmo de Ford-Fulkerson

Nosso objetivo: Achar um algoritmo combinatorial mais eficiente. Idéia bá-
sica: Começar com um fluxo viável fa = 0 e aumentar ele gradualmente.
Observação: caso temos um s–t-caminho P = (v0 = s, v1, . . . , vn−1, vn = t),
podemos aumentar o fluxo atual f um valor que corresponde ao “gargalo”

g(f, P) := min
a=(vi−1,vi)

i∈[n]

ca − fa.
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Figura 1.13.: Esquerda: Grafo com capacidades. Centro: Fluxo com valor 30.
Direita: O grafo residual correspondente. {fig:simpleaugment}
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Figura 1.14.: Manter a conservação de fluxo. {fig:manter}

Observação 1.13
Repetidamente procurar um caminho de gargalo positivo e aumentar nem
sempre produz um fluxo máximo. Na Fig. 1.13 o fluxo máximo possível é
40, obtido pelo aumentos de 10 no caminho P1 = (s, u, t) e 30 no caminho
P2 = (s,w, t). Mas, se aumentamos 10 no caminho P1 = (s, u,w, t) e depois
20 no caminho P2 = (s,w, t) obtemos um fluxo de 30 e o grafo não possui
mais caminho que aumenta o fluxo. ♢

Problema no caso acima: para aumentar o fluxo e manter a conservação de
fluxo num vértice interno v temos quatro possibilidades: (i) aumentar o fluxo
num arco entrante e sainte, (ii) aumentar o fluxo num arco entrante, e diminuir
num outro arco entrante, (iii) diminuir o fluxo num arco entrante e diminuir
num arco sainte e (iv) diminuir o fluxo num arco entrante e aumentar num
arco entrante (ver Fig. 1.14).
Isso é o motivo para definir para um dado fluxo f o grafo residual Gf com

• Vértices V
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• Arcos para frente (“forward”) A com capacidade ca − fa, caso fa < ca.

• Arcos para atras (“backward”) A ′ = {(v, u) | (u, v) ∈ A} com capacidade
c(v,u) = f(u,v), caso f(u,v) > 0.

Observe que na Fig. 1.13 o grafo residual possui um caminho P = (s,w, u, t)
que aumenta o fluxo por 10. O algoritmo de Ford-Fulkerson (Ford e Fulkerson,
1956) consiste em, repetidamente, aumentar o fluxo num caminho s–t no grafo
residual.

Algoritmo 1.5 (Ford-Fulkerson)
Entrada Grafo G = (V,A, c) com capacidades ca nos arcos.

Saída Um fluxo f.

1 for all a ∈ A: fa := 0

2 while existe um caminho s–t em Gf do
3 Seja P um caminho s–t simples
4 Aumenta o fluxo f um valor g(f, P)
5 end while
6 return f

Análise de complexidade Na análise da complexidade, consideraremos so-
mente capacidades em N (ou equivalente em Q: todas capacidades podem ser
multiplicadas pelo menor múltiplo em comum dos denominadores das capaci-
dades.)

{lem:integralflow}
Lema 1.20
Para capacidades inteiras, todo fluxo intermediário e as capacidades residuais
são inteiros.

Prova. Por indução sobre o número de iterações. Inicialmente fa = 0. Em
cada iteração, o “gargalo” g(f, P) é inteiro, porque as capacidades e fluxos são
inteiros. Portanto, o fluxo e as capacidades residuais após do aumento são
novamente inteiros. ■
Lema 1.21
Em cada iteração, o fluxo aumenta por pelo menos 1.

Prova. O caminho s–t possui por definição do grafo residual uma capacidade
“gargalo” g(f, P) > 0. O fluxo f(s) aumenta exatamente g(f, P). ■
Lema 1.22
O algoritmo Ford-Fulkerson precisa no máximo C =

∑
a∈N+(s) ca iterações.

Portanto ele tem complexidade O((n+m)C).
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Prova. C é um limite superior do fluxo máximo. Como o fluxo inicial-
mente possui valor 0 e aumenta ao menos 1 por iteração, o algoritmo de
Ford-Fulkerson termina em no máximo C iterações. Em cada iteração temos
que achar um caminho s–t em Gf. Representando G por listas de adjacên-
cia, isso é possível em tempo O(n+m) usando uma busca por profundidade.
O aumento do fluxo precisa tempo O(n) e a atualização do grafo residual é
possível em O(m), visitando todos arcos. ■

Corretude do algoritmo de Ford-Fulkerson

Definição 1.5
Uma partição (X, X̄) de V é um corte s–t, se s ∈ X e t ∈ X̄. Um arco a é
saturado para um fluxo f, caso fa = ca.

{lem:outflow}
Lema 1.23
Para qualquer corte (X, X̄) temos f(X) = f(s).

Prova.
f(X)

(1.18)
= f(s) +

∑
v∈X\{s}

f(v) = f(s).

(O último passo é correto, porque para todo v ∈ X, v 6= s, temos f(v) = 0 pela
conservação de fluxo.) ■

{lem:flowltcut}
Lema 1.24
O valor c(X, X̄) de um corte s–t é um limite superior para um fluxo s–t.

Prova. Seja f um fluxo s–t. Temos

f(s)
(1.23)
= f(X) = f(X, X̄) − f(X̄, X) ≤ f(X, X̄) ≤ c(X, X̄).

■
Consequência: O fluxo máximo é menor ou igual a o corte mínimo. De fato,
a relação entre o fluxo máximo e o corte mínimo é mais forte:

{th:maxflowmincut}
Teorema 1.14 (Fluxo máximo – corte mínimo)
O valor do fluxo máximo entre dois vértices s e t é igual ao valor do corte
mínimo.

{augment-correct}
Lema 1.25
Quando o algoritmo de Ford-Fulkerson termina, o valor do fluxo é máximo.

Prova. O algoritmo termina se não existe um caminho entre s e t em Gf.
Podemos definir um corte (X, X̄), tal que X é o conjunto de vértices alcançáveis
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Figura 1.15.: Esquerda: Pior caso para o algoritmo de Ford-Fulkerson com pe-
sos inteiros aumentando o fluxo por 2N vezes por 1 nos cami-
nhos (s, u, v, t) e (s, v, u, t). Direita: Menor grafo com pesos irra-
cionais em que o algoritmo de Ford-Fulkerson falha (Zwick, 1995).
M ≥ 3, e r = (1 +

√
1 − 4λ)/2 ≈ 0.682 com λ ≈ 0.217 a única

raiz real de 1 − 5x + 2x2 − x3. Aumentar (s, v1, v4, t) e depois re-
petidamente (s, v2, v4, v1, v3, t), (s, v2, v3, v1, v4, t), (s, v1, v3, v2, v4, t),
e (s, v1, v4, v2, v3, t) converge para o fluxo máximo 2+ r+ r2 sem ter-
minar.{fig:worstcasefordfulkerson}

em Gf a partir de s. Agora considere os arcos entre X e X̄. Para um arco a ∈
A(X, X̄) temos fa = ca, senão Gf terá um arco “forward” a, uma contradição.
Para um arco a = (u, v) ∈ A(X̄, X) temos fa = 0, senão Gf terá um arco
“backward” a ′ = (v, u), uma contradição. Logo

f(s) = f(X) = f(X, X̄) − f(X̄, X) = f(X, X̄) = c(X, X̄).

Pelo lema 1.24, o valor de um fluxo arbitrário é menor ou igual que c(X, X̄),
portanto f é um fluxo máximo. ■
Prova. (Do teorema 1.14) Pela análise do algoritmo de Ford-Fulkerson. ■

Desvantagens do algoritmo de Ford-Fulkerson O algoritmo de Ford-Fulkerson
tem duas desvantagens:

(1) O número de iterações C pode ser alto, e existem grafos em que C

iterações são necessárias (veja Fig. 1.15). Além disso, o algoritmo com
complexidade O((n+m)C) é somente pseudo-polinomial.

(2) É possível que o algoritmo não termina para capacidades reais (veja
Fig. 1.15). Usando uma busca por profundidade para achar caminhos
s–t ele termina, mas é ineficiente (Dean et al., 2006).
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1.6. Fluxos em redes

1.6.2. O algoritmo de Edmonds-Karp

O algoritmo de Edmonds-Karp elimina esses problemas. O princípio dele é
simples: Para achar um caminho s–t simples, usa busca por largura, i.e. sele-
cione o caminho mais curto entre s e t. Nos temos

{th:edmondskarp}
Teorema 1.15
O algoritmo de Edmonds-Karp precisa O(nm) iterações, e portanto termina
em tempo O(nm2).

{lem:distanceincreases}
Lema 1.26
Seja δf(v) a distância entre s e v em Gf. Durante a execução do algoritmo de
Edmonds-Karp δf(v) cresce monotonicamente para todos vértices em V .

Prova. Para v = s o lema é evidente. Supõe que uma iteração modificando o
fluxo f para f ′ diminuirá o valor de um vértice v ∈ V \ {s}, i.e., δf(v) > δf ′(v)
(◦). Seja v o vértice de menor distância δf ′(v) em Gf ′ com essa característica, e
P = (s, . . . , u, v) um caminho mais curto de s para v em Gf ′ . Logo δf ′(u)+1 =
δf ′(v) (∆). Pela escolha de v, o valor de u não diminuiu nessa iteração, i.e.,
δf(u) ≤ δf ′(u) (*).
Supondo uv ∈ A(Gf), temos

δf(v) ≤ δf(u) + 1
(*)
≤ δf ′(u) + 1

(∆)
= δf ′(v),

uma contradição com a hipótese (◦) que a distância de v diminuiu. Logo o
arco uv não existe in Gf, mas uv ∈ A(Gf ′). Isso só é possível se o fluxo de v

para u aumentou nessa iteração. Em particular, vu era parte de um caminho
mínimo de s para u e logo δf(v) + 1 = δf(u) (†). Para v = t isso é uma
contradição imediata. Caso v 6= t, temos

δf(v)
(†)
= δf(u) − 1

(∗)
≤ δf ′(u) − 1

(∆)
= δf ′(v) − 2,

novamente uma contradição com a hipótese (◦) que a distância de v diminuiu.
Logo, o vértice v não existe. ■
Prova. (do teorema 1.15)
Chama um arco num caminho que aumenta o fluxo com capacidade igual
ao gargalo crítico. Em cada iteração existe ao menos um arco crítico que
desaparece do grafo residual. Provaremos que cada arco pode ser crítico no
máximo n/2 − 1 vezes, e logo não temos mais que m(n/2 − 1) = O(mn)
iterações.
No grafo Gf em que um arco uv ∈ A é crítico pela primeira vez temos δf(u) =
δf(v)−1. O arco só aparece novamente no grafo residual caso alguma iteração
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posterior diminui o fluxo em uv, i.e., aumenta o fluxo vu. Nessa iteração, com
fluxo f ′, δf ′(v) = δf ′(u) − 1. Juntamente com o fato de que a distância só
aumenta (lema (1.26)) obtemos

δf ′(u) = δf ′(v) + 1
(1.26)
≥ δf(v) + 1 = δf(u) + 2,

i.e., a distância do u entre dois instantes em que uv é crítico aumenta por
pelo menos dois. Enquanto u é alcançável por s, a sua distância é no máximo
n− 2, porque o caminho não contém s nem t, e por isso a aresta uv pode ser
crítico por no máximo (n− 2)/2 = n/2− 1 vezes. ■

Alt: Warum kann man hier nicht gleich O(n2) Iterationen argumenti-
eren? Antwort: weil nicht in jeder Iteration die Distanz eines Knoten
steigt, sonst würde das stimmen. (Siehe Beispiele Zadeh.)
Since δf(s) = 0 always, this implies that arcs sv are never critical twice.
This makes also sense, since a augmenting path can’t go over s.
Also, if u above is not s (t it can’t be since it has a successor), we obtain
that is distance satisfies 1 ≤ δf(u) ≤ n− 2, and thus the iteration bound
is 1+ 2i ≤ n− 2 or (n− 3)/2.

Zadeh (1972) apresenta instâncias em que o algoritmo de Edmonds-Karp pre-
cisa Θ(n3) iterações, logo o resultado do teorema 1.15 é o melhor possível para
grafos densos.

1.6.3. O algoritmo “caminho mais gordo” (“fattest path”)

Idéia (Edmonds e Karp, 1972): usar o caminho de maior gargalo para aumen-
tar o fluxo. (Exercício 1.7 pede provar que isso é possível com uma modificação
do algoritmo de Dijkstra em tempo O(n logn+m).)

{flow:fp2} Lema 1.27
Um fluxo f pode ser decomposto em fluxos f1, . . . , fk com k ≤ m tal que
o fluxo fi é positivo somente num caminho pi entre s e t.
Prova. Dado um fluxo f, encontra um caminho p de s para t usando
somente arcos com fluxo positivo. Define um fluxo no caminho cujo valor
é o valor do menor fluxo de algum arco em p. Subtraindo esse fluxo do
fluxo f obtemos um novo fluxo reduzido. Repete até o valor do fluxo f é
zero.
Em cada iteração pelo menos um arco com fluxo positivo tem fluxo zero
depois da subtração do caminho p. Logo o algoritmo termina em no
máximo m iterações. ■
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Proof wrong: consider su=2, ut=2, tv=1, vs=1: every flow can be de-
composed in paths and circuits! Previous example does not hold for max
flow, but there still may be circuits.
We can, however, to the following: if the flow is ayclic, it can be decom-
posed in that manner. Otherwise: we decompose into paths and circuits.
Furthermore, a circulation can be decomposed into (directed) circuits.
Then we should be also able to show the following (can we?): any flow
can be decomposed into an aycilic flow and a circulation. These, then,
can be further decomposed into paths, and circuits, respectively.
Funnily, there are some cyclic flows that can be decomposed into paths
(but also into circuits and flows). Take V = {s, u, v, t}, and two flows
suvt and svut: now we have a circuit uvu. We can remove it, and then
extract two more flows svt and sut.

{flow:fp1}Teorema 1.16
O caminho de maior gargalo aumenta o fluxo atual f de valor v por pelo menos
OPT/m, onde OPT é o fluxo máximo no grafo residual Gf.

Prova. Considere um arco crítico a no caminho de maior gargalo, com ca-
pacidade ca no grafo residual Gg. Particiona V = S

.
∪ T , onde S contém s e

todos vértices alcançáveis por arcos de capacidade maior que ca. Por constru-
ção T contém pelo menos t. O corte (S, T) tem capacidade no máximo mca,
logo pelo teorema 1.14 v ≤ OPT ≤ mca. Por isso o fluxo aumenta por pelo
menos ca ≥ OPT/m. ■
Teorema 1.17
A complexidade do algoritmo de Ford-Fulkerson usando o caminho de maior
gargalo é O((n logn + m)m logC) para um limitante superior C do fluxo
máximo.

Prova. Seja fi o valor do caminho encontrado na i-ésima iteração, Gi o grafo
residual após do aumento e OPTi o fluxo máximo em Gi. Observe que G0 é
o grafo de entrada e OPT0 = OPT o fluxo máximo. Temos

OPTi+1 = OPTi − fi ≤ OPTi − OPTi/(2m) = (1− 1/(2m))OPTi.

A desigualdade é válida pelo teorema 1.16, considerando que o grafo residual
possui no máximo 2m arcos. Logo

OPTi ≤ (1− 1/(2m))iOPT ≤ e−i/(2m)OPT.

O algoritmo termina caso OPTi < 1, por isso número de iterações é no máximo
2m ln OPT + 1. Cada iteração custa O(m+ n logn). ■
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Para todo i > 0 e x temos (
1+

x

i

)i

≤ ex.

Logo, com x = −i/2m (
1−

i/2m

i

)i

≤ e−i/2m.

Corolário 1.4
Caso U é um limite superior da capacidade de um arco, o algoritmo termina
em no máximo O(m log mU) passos.

1.6.4. O algoritmo push-relabel

O algoritmo push-relabel representa uma classe de algoritmos que não traba-
lha com um fluxo e caminhos aumentantes, mas mantém um pré-fluxo f que
satisfaz

• os limites de capacidade (0 ≤ fa ≤ ca)

• e requer somente que o excesso e(v) = −f(v) de um vértice v 6= s é
não-negativo.

Vértice s pode ter execesso.

Um vértice v 6= t com e(v) > 0 é chamado ativo. A ideia do algoritmo é
que vértices possuem uma “altura” e o fluxo passa para vértices de altura
mais baixa (“operação push”) ou, caso isso não é possível a altura de um
vértice ativo aumenta (“operação relabel”). Concretamente, manteremos um
potencial (“altura”) pv para cada v ∈ V , tal que,

ps = n; pt = 0; (*){eq:potential}{eq:potential}
pv ≥ pu − 1 (u, v) ∈ A(Gf).

O push initial satisfaz (*).

Nota que a segunda parte da condição tem que ser satisfeita somente para
arcos no grafo residual.
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{obs:distance}
Observação 1.14
Pela condição (*), para um caminho v0, v1, . . . , vk em Gf temos pv0

≤ pv1
+

1 ≤ pv2
+ 2 ≤ · · · ≤ pvk

+ k. ♢
{lem:potential}

Lema 1.28
Condição (*) pode ser satisfeita sse Gf não possui caminho s–t.

Prova. “⇒”: Supõe que existe um caminho s–t simples v0 = s, v1, . . . , vk = t.
Pela observação (1.14)

ps = pv0
≤ pvk

+ k = pt + k = k < n,

uma contradição. “⇐”: Sejam X os vértices alcançáveis em Gf a partir de s

(incluindo s). Como Gf não possui caminho s–t, t ∈ X. Logo setando pv = n

para v ∈ X e pv = 0 para v ∈ X satisfaz (*). ■

Logo, o significado da condição: manter as condições de otimalidade
(enquanto o algoritmo aumenta factibilidade).

O lema mostra que enquanto algoritmos de caminho aumentante são algorit-
mos primais, mantendo uma solução factível, até encontrar o ótimo, algoritmos
da classe push-relabel podem ser vistos como algoritmos duais: eles mantém
o critério de otimalidade (*), até encontrar uma solução factível.
Podemos realizar as operações “push” e “relabel” como segue. A operação
“push(u, v)” num arco (u, v) ∈ A(Gf) manda o fluxo min{ca, e(v)} de u para
v. A operação “relabel(v) aumenta a altura pv do vértice v por uma unidade.

1 push(u, v) :=
2 { pré-condição: u é ativo }
3 { pré-condição: pv = pu − 1 }
4 { pré-condição: (u, v) ∈ A(Gf) }
5 aumenta o fluxo em (u, v) por min{c(u,v), e(u)}
6 { atualiza Gf de acordo }
7 end
8
9 relabel(v) :=

10 { pré-condição: v é ativo }
11 { pré-condição: não existe (u, v) ∈ A(Gf) com pv = pu − 1 }
12 pv := pv + 1

13 end
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1. push: done when potential falls by 1, uv disappears, vu satisfies
(*), since the potential goes up.

2. relabel: done when neighboring potentials same or higher; a poste-
riori potential falls by at most 1, so (*)

Observe que as duas operações mantém a condição (*).

Algoritmo 1.6 (Push-relabel)
Entrada Grafo G = (V,A, c) com capacidades ca no arcos.

Saída Um fluxo f.

1 ps := n; pv := 0, ∀v ∈ V \ {s}

2 fa := ca, ∀a ∈ N+(s) senão fa := 0

3 while existe vértice ativo do
4 escolhe o vértice ativo u de maior pu

5 repete até u é inativo
6 if existe arco (u, v) ∈ Gf com pv = pu − 1 then
7 push(u, v)
8 else
9 relabel(u)

10 end if
11 end
12 end while
13 return f

Lines 5–11 are called “discharge”.

Lema 1.29
O algoritmo push-relabel é parcialmente correto (i.e. correto caso termina).

Prova. Ao terminar não existe vértice ativo. Logo f é um fluxo. Pelo lema
1.28 não existe caminho s–t em Gf. Logo pelo teorema 1.14 o fluxo é ótimo.
■
A terminação é garantida por

Teorema 1.18
O algoritmo push-relabel executa O(n3) operações push e O(n2) operações
relabel.
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Prova. Um vértice ativo v tem excesso de fluxo, logo existe um caminho v–s
em Gf. Por (1.14) pv ≤ ps+(n−1) < 2n, e logo o número de operações relabel
é O(n2). Supõe que uma operação push satura um arco a = (u, v) (i.e. manda
fluxo ca). Para mandar fluxo novamente, temos que mandar primeiramente
fluxo de v para u; isso só pode ser feito depois de pelo menos duas operações
relabel em v. Logo o número de operações push saturantes é O(mn). Para
operações push não-saturantes, podemos observar que entre duas operações
relabel temos no máximo n desses operações, porque cada uma torna o vértice
de maior pv inativo (talvez ativando vértices de menor potencial), logo tem
no máximo O(n3) deles. ■
Para garantir uma complexidade de O(n3) temos que implementar um “push”
em O(1) e um “relabel” em O(n). Para este fim, manteremos uma lista dos
vértices em ordem do potencial. Para cada vértice manteremos uma lista de
arcos candidatos para operações push, i.e. arcos para vizinhos com potencial
um a menos com capacidade residual positiva.
Uma busca linear na lista de vértices encontra o vértice de maior potencial.
Entre duas operações relabel a busca pode continuar no último ponto e precisa
tempo O(n) em total, logo a busca custa no máximo O(n3) sobre toda exe-
cução do algoritmo. Para a operação push podemos simplesmente consultar
a lista de candidatos. Para um push saturante, o candidato será removido.
Isso custa O(1). Finalmente no caso de um relabel temos que encontrar em
O(n) a nova posição do vértice na lista, e reconstruir a lista de candidatos,
que também precisa tempo O(n). Logo todas operações relabel custam não
mais que O(n3).

We need an example. Also: make a drawing of the data structures.

Notas on PR (Cherkassky, Goldberg 1994). PR has poor performance.
1) Algorithmic variants. Process active nodes in FIFO order, or highest
label (HL) via a bucket list. 2) Heuristics. a) Global relabeling: compute
distances to sink, update potential (every n, or every m/2 relabelings.
b) Gap relabeling: if there’s a gap in distances/potential, say no node
with pv = g but some with g < pv < n, then nodes with g < pv < n

can’t reach the sink, and thus are relabeled to pv = n. This is combined
with the next item. c) Two-phase method: consider only nodes with
pv < n active, all other can’t reach the sink. Their excess remains, and
is removed in a second phase.
To detect gaps efficiently, keep bins Bi of nodes with pv = i. Whenever
some |Bi| = 0, we need |Bj| = 0 for i < j < n, otherwise we can empty
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these bins and push their elements to Bn. We can also maintain the
lowest empty bin b, and whenever some Bi with i < b drops to 0 empty
bins i+ 1, . . . , b− 1 and then update b := i.

O algoritmo de Dinitz

O algoritmo de Dinitz (1970) foi um dos primeiros de tempo polinomial,
é simples de implementar e eficiente na prática (Dinitz, 2006). Ele com-
partilha com o algoritmo de Edmonds-Karp um foco em caminhos mais
curtos no grafo residual Gf, mas tem complexidade pessimista O(n2m)
melhor.
A ideia central do algoritmo é a seguinte iteração:

1. considere o subgrafo H de Gf com todos arcos que pertencem a um
caminho mais curto de s a t,

2. encontra um fluxo f em H, tal que no subgrafo de H sem arcos
saturados não existe mais caminho s–t,

3. aumenta o fluxo atual por f.

Em comparação com o algoritmo de Edmonds-Karp que bloqueia um
caminho mais curto, o algoritmo de Dinitz bloqueia todos. O grafo do
passo 1 é um grafo em camadas. Com δf(v) a distância do caminho mais
curto em Gf de s a v ∈ V (em arcos), os vértices com δv = k formam a
k-ésima camada, e todos arcos (u, v) em H satisfazem δu + 1 = δv. O
fluxo do passo 2 é um fluxo bloqueio.
A corretude parcial do algoritmo segue diretamente do lema 1.25. A
terminação é consequência do

Lema 1.30
As distâncias δf(v) aumentam em cada iteração.

Prova. (TBD.) ■
Como δf(t) < n o algoritmo termina em menos que n iterações.
Ainda temos
Lema 1.31
Um fluxo bloqueio pode ser encontrado em tempo O(nm).
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Prova. Repetidamente busca em profundidade até encontrar t, aplica
o fluxo, remove todos arcos encontrados durante a bysca e repete, até
não existe mais caminho s–t. Cada busca custa O(n + a) com a arcos
visitados, e não temos mais que m iterações, logo o custo total é O(nm).
■
Junto com O(n) iterações, o lema garante uma complexidade de O(n2m).
Usando melhor algoritmo para encontrar um fluxo bloqueio de complexi-
dade O(m logn) (Sleator, Tarjan 1983) a complexidade pode ser reduzida
a O(nm logn).

Unclear whom I follow here, possibly Schrijver.

1.6.5. Algoritmo de escalonamento

Gabow/1985.
TBD: talk the easy scaling algorithm: say Gf(∆) is the residual graph
where we permit only edges of residual capacity more or equal to ∆. Then
we simply start with ∆ := 2k, where k = blog2 C

∗c and C∗ = maxv∈V csv
is the maximum augmentation possible on any s-t-path. If there is no
augmenting path in Gf(∆), we step down to ∆ := ∆/2. The algorithm
terminates after processing with ∆ = 1, so we will find all augmenting
paths. Advantage: we have only O(logC∗) phases, and each phase makes
at most 2m augmentations (TBD: prove it), so we have a (polynomial)
O(m2 logC∗) algorithm. Kleinberg/Tardos have this in their book.

1.6.6. Variantes do problema

Fontes e destinos múltiplos Para G = (V,A, c) define um conjunto de fontes
S ⊆ V e um conjunto de destinos T ⊆ V , com S ∩ T = ∅, e considera

maximiza f(S)

sujeito a f(v) = 0, ∀v ∈ V \ (S ∪ T), (1.15) {multiflow}{multiflow}
fa ≤ ca, ∀a ∈ A.
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Tabela 1.3.: Complexidade de diversos algoritmos de fluxo máximo (partes de
Schrijver, 2003).

Ano Referência Complexidade Obs

1951 Dantzig O(n2mC) Simplex
1955 Ford & Fulkerson O(mC) = O(mnU) Cam. aument.
1970 Dinitz O(nm2) Cam. min. aument.
1972 Edmonds & Karp O(m2 logC) Escalonamento
1973 Dinitz O(nm logC) Escalonamento
1974 Karzanov O(n3) Preflow-Push
1977 Cherkassky O(n2m1/2) Preflow-Push
1986 Goldberg & Tarjan O(nm log(n2/m)) Push-Relabel
1987 Ahuja & Orlin O(nm + n2 logC) Push-Relabel & Esc.
1990 Cheriyan et al. O(n3/ logn)

1990 Alon O(nm + n8/3 logn)
1992 King et al. O(nm + n2+ϵ)

1997 Goldberg & Rao O(m3/2 log(n2/m) logC)

O(n2/3m log(n2/m) logC)
2012 Orlin O(nm)

2022 Chen et al. O(m1+o(1)) Pontos interiores

O problema (1.15) pode ser reduzido para um problema de fluxo máximo
simples em G ′ = (V ′, A ′, c ′) (veja Fig. 1.16(a)) com

V ′ = V ∪ {s∗, t∗}

A ′ = A ∪ {s∗}× S ∪ T × {t∗} (1.16) {red:multiflow}{red:multiflow}

c ′
a =


ca, a ∈ A,

c(S, S̄), a = (s∗, s), s ∈ S,

c(T̄ , T), a = (t, t∗), t ∈ T.

Lema 1.32
Se f ′ é uma solução máxima de (1.16), a restrição f = f ′|A é uma solução
máxima de (1.15) de mesmo valor. Por outro lado, se f é uma solução máxima
de (1.15), a extensão

f ′a =


fa, a ∈ A,

f(s), a = (s∗, s), s ∈ S,

−f(t), a = (t, t∗), t ∈ T,

(1.17){flow:extension}{flow:extension}

é uma solução máxima de (1.16) de mesmo valor.
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s∗ t∗
S T

V

u v

t∗ s∗

ba ba

ca − ba

Figura 1.16.: Reduções entre variantes do problema do fluxo máximo. Es-
querda: Fontes e destinos múltiplos. Direita: Limite inferior e
superior para a capacidade de arcos. {fig:reductions}
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Figura 1.17.: Dois exemplos da transformação do lema 1.33. Esquerda: Grafo

sem solução viável e grafo transformado com fluxo máximo 4.
Direita: Grafo com solução viável e grafo transformado com fluxo
máximo 5. {fig:liminf}

Prova. Se f ′ é solução de (1.16), a restrição f = f ′|A é uma solução de (1.15)
de mesmo valor: f é viável porque f(v) = f ′(v) = 0 para todo v ∈ V \ S \ T

e f(S) =
∑

s∈S f(s) = f ′(s∗). Similarmente, dado um fluxo válido f em G, a
extensão f ′ (1.17) é um fluxo válido em G ′ de mesmo valor: f ′ é viável porque
além de f ′(v) = f(v) = 0 para todo v ∈ V \ (S ∪ T), também f ′(v) = 0 para
v ∈ S ∪ T , e f ′(s∗) =

∑
s∈S f(s) = f(S). ■

On lower limits (or arc demands). Orlin and others seem to solve this
problem in a more complicated manner, Kleinberg & Tardos don’t have it.
A similar construction can be found in Bateni (see material), or Vakken,
or Jeffe.
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Limites inferiores Para G = (V,A, b, c) com limites inferiores b : A → R
considere o problema

maximiza f(s)

sujeito a f(v) = 0, ∀v ∈ V \ {s, t}, (1.18) {liminf}{liminf}
ba ≤ fa ≤ ca, a ∈ A.

O problema (1.18) pode ser reduzido para um problema de fluxo máximo
simples em G ′ = (V ′, A ′, c ′) (veja Fig. 1.16(b)) com

V ′ = V ∪ {s∗, t∗}

A ′ = A ∪ {(u, t∗) | (u, v) ∈ A} ∪ {(s∗, v) | (u, v) ∈ A} ∪ {(t, s)} (1.19){red:liminf}{red:liminf}

c ′
a =


ca − ba, a ∈ A,∑

v∈N+(u) b(u,v), a = (u, t∗),∑
u∈N−(v) b(u,v), a = (s∗, v),∞, a = (t, s).

Chama um fluxo em 1.19 saturado, caso ele satura todos arcos auxiliares
{(u, t∗) | (u, v) ∈ A} ∪ {(s∗, v) | (u, v) ∈ A}.

{lem:liminf}
Lema 1.33
Problema (1.18) possui um fluxo viável sse (1.19) possui um fluxo saturado.

Prova. Caso f é um fluxo viável em (1.18),

f ′a =


fa − ba, a ∈ A,∑

u∈N+(v) b(v,u), a = (v, t∗),∑
u∈N−(v) b(u,v), a = (s∗, u),

f(s), a = (t, s).

é um fluxo saturado de (1.19). Por outro lado, se f ′ é um fluxo saturado para
(1.19), fa = f ′a + ba é um fluxo viável em (1.18). ■

One can go into details. First f ′ is feasible, since b ≤ f ≤ c implies
0 ≤ f ′ = f − b ≤ c − b, and the capacities to t(∗ and from s∗ are
saturated. We also have flow conservation: f ′(s) = f(s) − f(s) = 0,
f ′(t) = f(t) + f(s) = −f(s) + f(s) = 0, and f ′(v) =

∑
a∈N+(v)(fa − ba +

ba) +
∑

a∈N−(v)(fa − ba + ba) = f(v) = 0.
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Como um fluxo saturado tem que ser máximo, ele pode ser obtido por um al-
goritmo de fluxo máximo aplicado a (1.19). Caso o fluxo máximo não satura,
não tem solução viável, senão podemos extrair uma solução viável de (1.18)
pela construção acima. Para obter um fluxo máximo de (1.18) podemos ma-
ximizar o fluxo a partir da solução viável obtida, com qualquer variante do
algoritmo de Ford-Fulkerson. Na execução temos que garantir que um fluxo
mínimo de ba é mantido em cada arco a = (u, v). Logo, o grafo residual de um
fluxo f tem arcos “backward” ā = (v, u) de capacidade reduzida cā = fa−ba.
Uma alternativa para obter um fluxo factível com limites inferiores nos arcos
é primeiro mandar o limite inferior de cada arco, i.e. setar f = b, e depois
considerar demandas dv = −f(v). Uma circulação factível com limites 0 ≤
f ≤ c− b corresponde com um fluxo factível f+ b no grafo original.

Existência de uma circulação com demandas nos vértices ParaG = (V,A, c)
com demandas dv, com dv > 0 para destinos e dv < 0 para fontes, considere

existe f

s.a f(v) = −dv, ∀v ∈ V, (1.20) {circulation}{circulation}
fa ≤ ca, a ∈ A.

Evidentemente
∑

v∈V dv = 0 é uma condição necessária (lema (1.3)). O
problema (1.20) pode ser reduzido para um problema de fluxo máximo em
G ′ = (V ′, A ′) com

V ′ = V ∪ {s∗, t∗}

A ′ = A ∪ {(s∗, v) | v ∈ V, dv < 0} ∪ {(v, t∗) | v ∈ V, dv > 0} (1.21) {red:circulation}{red:circulation}

ca =


ca, a ∈ A,

−dv, a = (s∗, v),

dv, a = (v, t∗).

Lema 1.34
Problema (1.20) possui uma solução sse problema (1.21) possui uma solução
com fluxo máximo D =

∑
v:dv>0 dv.

Prova. (Exercício.) ■
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Circulações com limites inferiores Para G = (V,A, b, c) com limites inferi-
ores e superiores, considere

existe f

s.a f(v) = dv, ∀v ∈ V, (1.22) {circliminf}{circliminf}
ba ≤ fa ≤ ca, a ∈ A.

O problema pode ser reduzido para a existência de uma circulação com so-
mente limites superiores em G ′ = (V ′, A ′, c ′, d ′) com

V ′ = V

A ′ = A (1.23){red:circliminf}{red:circliminf}
ca = ca − ba

d ′
v = dv −

∑
a∈N−(v)

ba +
∑

a∈N+(v)

ba (1.24)

Lema 1.35
O problema (1.22) possui solução sse problema (1.23) possui solução.

Prova. (Exercício.) ■

1.6.7. Aplicações

Cobertura mínima em grafos bipartidos Include it here or somewhere
in the matching part. Check Trevisan’s lecture 14 or the original source.

Projeto de pesquisa de opinião O objetivo é projetar uma pesquisa de opi-
nião, com as restrições

• Cada cliente i recebe ao menos ci perguntas (para obter informação sufi-
ciente) mas no máximo c ′

i perguntas (para não cansar ele). As perguntas
podem ser feitas somente sobre produtos que o cliente já comprou.

• Para obter informações suficientes sobre um produto, entre pi e p ′
i cli-

entes tem que ser interrogados sobre ele.
Um modelo é um grafo bi-partido entre clientes e produtos, com aresta (ci, pj)
caso cliente i já comprou produto j. O fluxo de cada aresta possui limite
inferior 0 e limite superior 1. Para representar os limites de perguntas por
produto e por cliente, introduziremos ainda dois vértices s, e t, com arestas
(s, ci) com fluxo entre ci e c ′

i e arestas (pj, t) com fluxo entre pj e p ′
j e uma

aresta (t, s).
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Segmentação de imagens O objetivo é segmentar um imagem em duas par-
tes, por exemplo “foreground” e “background”. Supondo que temos uma “pro-
babilidade” ai de pertencer ao “foreground” e outra “probabilidade” de per-
tencer ao “background” bi para cada pixel i, uma abordagem direta é definir
que pixels com ai > bi são “foreground” e os outros “background”. Um exem-
plo pode ser visto na Fig. 1.19 (b). A desvantagem dessa abordagem é que a
separação ignora o contexto de um pixel. Um pixel, “foreground” com todos
pixel adjacentes em “background” provavelmente pertence ao “background”
também. Portanto obtemos um modelo melhor introduzindo penalidades pij

para separar (atribuir à categorias diferentes) pixels adjacentes i e j. Um
partição do conjunto de todos pixels I em A

.
∪ B tem um valor de

q(A,B) =
∑
i∈A

ai +
∑
i∈B

bi −
∑

(i,j)∈A×B

pij

nesse modelo, e o nosso objetivo é achar uma partição que maximiza q(A,B).
Isso é equivalente a minimizar

Q(A,B) =
∑
i∈I

ai + bi −
∑
i∈A

ai −
∑
i∈B

bi +
∑

(i,j)∈A×B

pij

=
∑
i∈B

ai +
∑
i∈A

bi +
∑

(i,j)∈A×B

pij.

A solução mínima de Q(A,B) pode ser visto como corte mínimo num grafo.
O grafo possui um vértice para cada pixel e uma aresta com capacidade pij

entre dois pixels adjacentes i e j. Ele possui ainda dois vértices adicionais
s e t, arestas (s, i) com capacidade ai para cada pixel i e arestas (i, t) com
capacidade bi para cada pixel i (ver Fig. 1.18).

Sequenciamento O objetivo é programar um transporte com um número k

de veículos disponíveis, dado pares de origem-destino com tempo de saída e
chegada. Um exemplo é um conjunto de vôos é

1. Porto Alegre (POA), 6.00 – Florianopolis (FLN), 7.00

2. Florianopolis (FLN), 8.00 – Rio de Janeiro (GIG), 9.00

3. Fortaleza (FOR), 7.00 – João Pessoa (JPA), 8.00

4. São Paulo (GRU), 11.00 – Manaus (MAO), 14.00

5. Manaus (MAO), 14.15 – Belem (BEL), 15.15
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k l

i j

t

s

10

10

1010

10

10

10 10

12 10

30 19

16 25

20 15
i j k l

a 30 19 12 10
b 20 15 16 25

Figura 1.18.: Exemplo da construção para uma imagem 2×2. Direita: Tabela
com valores pele/não-pele. Esquerda: Grafo com penalidade fixa
pij = 10. {fig:exseg}

Figura 1.19.: Segmentação de imagens com diferentes penalidades p. Acima:
(a) Imagem original (b) Segmentação somente com probabilida-
des (p = 0) (c) p = 1000 (d) p = 10000. Abaixo: (a) Walter
Gramatté, Selbstbildnis mit rotem Mond, 1926 (b) Segmentação
com p = 10000. A probabilidade de um pixel representar pele
foi determinado conforme Jones e Rehg (1998). {fig:seg}
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6. Salvador (SSA), 17.00 – Recife (REC), 18.00

O mesmo avião pode ser usado para mais que um par de origem e destino, se
o destino do primeiro é o origem do segundo, em tem tempo suficiente entre
a chegada e saída (para manutenção, limpeza, etc.) ou tem tempo suficiente
para deslocar o avião do destino para o origem.
Podemos representar o problema como grafo direcionado acíclico. Dado pa-
res de origem destino, ainda adicionamos pares de destino-origem que são
compatíveis com as regras acimas. A idéia é representar aviões como fluxo:
cada aresta origem-destino é obrigatório, e portanto recebe limites inferiores
e superiores de 1, enquanto uma aresta destino-origem é facultativa e recebe
limite inferior de 0 e superior de 1. Além disso, introduzimos dois vértices s

e t, com arcos facultativos de s para qualquer origem e de qualquer destino
para t, que representam os começos e finais da viagem completa de um avião.
Para decidir se existe um solução com k aviões, finalmente colocamos um arco
(t, s) com limite inferior de 0 e superior de k e decidir se existe uma circulação
nesse grafo.

O problema P | pmtn, ri | Lmax Primeiramente resolveremos um problema
mais simples: será que existe um sequenciamento tal que toda tarefa i executa
dentro do seu intervalo [ri, di]? Equivalentemente, será que existe uma solução
com Lmax = 0?
Seja {t1, t2, . . . , tk} = {r1, r2, . . . rn}∪ {d1, d2, . . . , dn}, com t1 ≤ t2 ≤ · · · ≤ tk.
(Observe que k ≤ 2n, e k < 2n no caso de tempos repetidos.) Podemos ver os
ti como eventos em que uma tarefa fica disponível ou tem que terminar o seu
processamento. Os ti definem k−1 intervalos Ii = [ti, ti+1] para i ∈ [k−1] com
duração Si = ti+1 − ti correspondente. Cada tarefa j pode ser executada no
intervalo Ti caso Ii ⊆ [ri, di]. Logo podemos modelar o problema via um grafo
direcionado bipartido com vértices T

.
∪ I, sendo T = [n] o conjunto de tarefas

e I = {Ii | i ∈ [k − 1]} o conjunto de intervalos, e com arcos (j, i) caso tarefa j

pode ser executada no intervalo i. Para completar o grafo adicionaremos um
arco (s, j) de um vértice origem s para cada tarefa j, e um arco (i, t) de cada
intervalo para um vértice destino t. Um fluxo nesse grafo representa tempo,
e teremos capacidades pj entre s e tarefa j, Si entre tarefa j e intervalo i, e
mSi entre Ti e t, sendo mSi o tempo total disponível durante o intervalo i.
Figura 1.20 mostra a construção completa.
Logo P | pmtn, ri | Lmax pode ser resolvido em tempo O(mn log L̄).
Com essa abordagem podemos resolver o problema original por busca binária:
para cada valor do Lmax entre 0 e L̄ testaremos se existe uma solução tal que
cada tarefa executa no intervalo [ri, di + Lmax]. Um limite superior simples é
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s
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mS1

mS2

mSi

mSk

Si

Figura 1.20.: Problema de fluxo para resolver a versão de decisão do problema
P | pmtn, ri | Lmax. {fig:parpmtnlmax}

L̄ = maxi ri +
∑

i pi − mini di executando todas tarefas após a liberação da
última numa única máquina em ordem arbitrária.

O problema 1 | prec |
∑

wjCj Este problema é NP-completo, mas um
teorema de Sidney (19xx) mostra que podemos decompor a ordenação
parcial em conjuntos inicias de maior densidade ρ(I) = w(S)/p(S). Or-
denando os processos em cada componente arbitrariamente, obtemos uma
2-aproximação. O conjunto inicial de maior densidade é obtido por uma
busca binária em densidade, resolvendo um problema de fluxo em cada
iteração.
Para decidir se a maior densidade é maior ou menor que uma densidade
candidata ρ construiremos um grafo G = ... etc. etc.
A 2-aproximação segue pelo
Lema 1.36
TBD: Every such a solution has cost at least w(S)p(S)/2 and at most
w(S)p(S)/2.

O problema P | pj = 1, rj |
∑

fj Suppose can be done like this: a
bipartite graph matches jobs to time intervals. Time intervals are defined
by release dates. Each job–interval arc has capacity 1, each arc from a
time interval to the sink the total number of slots in this time interval
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(difference of release times, times number of machines). We want to find
a flow of value n, of minimum cost, where the cost of the job–interval
arcs corresponds to the actual scheduling cost. For lateness & tardiness
costs, we may have to introduce additional events at the due dates.

Agendamento de projetos Suponha que temos n projetos, cada um com
lucro pi ∈ Z, i ∈ [n], e um grafo de dependências G = ([n], A) sobre os
projetos. Caso (i, j) ∈ A, a execução do projeto i é pré-requisito para a
execução do projeto j. Um lucro pode ser negativo, e neste caso representa
uma perda. Este problema pode ser reduzido para um problema de fluxo
máximo s-t: cria um grafo G ′ com vértices V = {s, t} ∪ [n] é

• uma aresta (s, v) para todo v ∈ [n] com pv > 0, com capacidade pv,

• uma aresta (v, t) para todo v ∈ [n] com pv < 0, com capacidade −pv, e

• uma aresta (u, v) para toda dependência (v, u) ∈ A, com capacidade ∞.
(Note que projetos v ∈ V com pv = 0 não geram arcos (s, v) nem (v, t).)
Lema 1.37
O valor de um corte (X, X̄) em G ′ é mínimo, sse o lucro total dos projetos
S = X \ {s} é máximo. Além disso um corte mínimo em G ′ corresponde a uma
seleção factível de projetos S.
Prova. Cada corte (X, X̄) corresponde com uma seleção de projetos S = X\{s}.
Seja S̄ = [n] \ S. Uma seleção de projetos S é válida, caso para todo projeto
p ∈ S, ela contém também todos projetos pré-requisitos de p. Logo, o corte
correspondente não possui arcos com capacidade ∞. Como o valor do corte
(s, V\{s}) é

∑
v∈[n]|pv>0 csv o corte mínimo é finito, e logo factível, porque não

pode conter um arco entre um projeto selecionado e um projeto pré-requisito
não selecionado.
O valor de um corte factível é

c(X, X̄) =
∑

a∈A(X,X̄)

ca =
∑

v∈S̄|pv>0

pv −
∑

v∈S|pv<0

pv

e nos temos∑
v∈[n]|pv>0

pv − c(X, X̄) =
∑

v∈[n]|pv>0

pv −
∑

v∈S̄|pv>0

pv +
∑

v∈S|pv<0

pv

=
∑

v∈S|pv>0

pv +
∑

v∈S|pv<0

pv

=
∑
v∈S

pv,
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i.e. o lucro total da seleção S. Logo o lucro total é máximo sse o valor do corte
é mínimo. ■

Vencendo um torneio. Suponha que temos um torneio de n equipes e que
elas já ganharam w1, . . . , wn vezes até agora. Para cada par de equipes, ainda
temos gij jogos pela frente (g é simétrico). A equipe 1 ainda pode terminar
em primeiro lugar, ou seja, ter o maior número de vitórias?
Para a equipe i, seja ri =

∑
j gij o número de jogos restantes. Precisamos que

i) a equipe 1 vence todos os seus r1 jogos restantes, portanto, tem w1 + r1
vitórias, e ii) todas as outras equipes i ∈ T = [2, n] vencem no máximo mi

jogos, dado por wi + mi < w1 + r1 i.e. mi = w1 + r1 − wi − 1 (excluindo
empates).
Caso algum mi < 0 a equipe 1 já não pode ganhar mais. Caso contrário uma
redução para um problema de fluxo é como segue. Cria um grafo com vértices
s, G =

(
T
2

)
, T , e t e com os seguintes arcos:

• (s, g) para todo g = (i, j) ∈ G de capacidade gij,

• (g, i) e (g, j) para todo g = (i, j) ∈ G de capacidade ∞,

• (i, t) para todo i ∈ T de capacidade mi.

Nos temos
Lema 1.38
Equipe 1 ainda pode vencer sse o grafo acima possui um fluxo st que satura
(i.e. de valor

∑
(i,j)∈G gij).

Prova. (Exercício. Nota que o que “flui” são jogos, e mandar fluxo em (g, i)
ou (g, j) codifica que vence.) ■

Winning a tournament Assume we got n teams, and they have already
won w1, . . . , wn times so far. For each pair of teams, we still have gij

games ahead (g is symmetric). Can team 1 still finish first, i.e. have the
highest number of wins? For team i, let ri =

∑
j gij be the number of

remaining games. We need:
• Team 1 winning all its r1 remaining games, so having w1+ r1 wins.

• All the other teams: winning at most mi games, defined by wi +
mi ≤ w1 + r1 so mi = w1 + r1 −wi (ignoring ties).

Solution idea: “pump won games”. Consider all
(
n−1
2

)
encounters between

teams 2, . . . , n, and create a graph as follows
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where each “encounter node” receives flow at most gij, sends flow either
to i or j, which encodes the wins, and each “team node” can drain at
most mi wins.
Then we can show: Theorem: Team 1 can win iff there’s a saturating
flow. The time: we have O(n2) vertices and edges, so we need O(n2)
with the algorithm of Chen et al. (2022).

Disjoint pahths. The maximum number k of disjoint st-paths in di-
rected graphs can be found by a maximum st-flow f with unit capacity.
The argument is simple: if we have k disjoints path, we can send a flow
of 1 along them, thus f ≥ k. On the other hand, if we have a flow of
f, repeat the following. Find an st-path in f, by following arcs starting
at s. This path must exist: due to flow conservation we can also move
forward; if we enter a cycle, we can remove, without altering the flow.
Thus we must end up in t. Remove this path and repeat. This removes
a flow of 1, showing that k ≥ f.
For undirected graphs, just use the usual transformation to a directed
graph with opposing arcs. If any such pair of arcs in the flow is 1, we can
remove both. The reduced flow has at most one arcs between any pair of
vertices u, v, and thus serves in the undirected case, too.

Done in 2022/2, based on older lecture note of Jeff Erickson.

Binary assignment Consider an assignment between sets X and Y, i.e. we
want to select the largest multiset M ⊂ X× Y, such that
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• each x ∈ X is selected at most c(x) times;

• each y ∈ Y is selected at most c(y) times;

• each (x, y) ∈ E is selected at most c(x, y) times.

(A bipartite matching in G = (X
.
∪ Y, E) is a special case of this problem

with c(x) = c(y) = 1, and c(x, y) = [xy ∈ E].)
The solution is clearly to create a flow graph from s over X and Y to t,
where each (s, x) has capacity c(x), each (x, y) capacity c(x, y) and each
(y, t) capacity c(y). Since all capacities are integer, the maximum flow
f∗ also is, and we can decompose it into f∗ xyt-flows of value 1, and add
each of the edges.

1.6.8. Outros problemas de fluxo

Obtemos um outro problema de fluxo em redes introduzindo custos de trans-
porte por unidade de fluxo:

Fluxo de menor custo

Entrada Grafo direcionado G = (V,A) com capacidades c ∈ R|E|
+ e custos

k ∈ R|E|
+ nos arcos, um vértice origem s ∈ V , um vértice destino

t ∈ V , e valor v ∈ R+.

Solução Um fluxo s-t f com valor v, respeitando as capacidades (f ≤ c).

Objetivo Minimizar o custo
∑

a∈A kafa do fluxo.

Diferente do problema de menor fluxo, o valor do fluxo é fixo.

(We follow Schrijver here.) Alternatively to finding a minimum cost flow
(MCF) we can find

1) a maximum st-flow of least cost (by finding the maximum flow first,
and then minimizing the cost), or

2) a minimum cost circulation under arc demands (i.e. flow lower
bounds) da ∈ Q, a ∈ A (MCC).

The reductions are as follows:

1) MCF to MCC: add a back-arc (t, s) of cost kts = 0 and set dts =
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cts = v to the desired flow.

2) maximum flow to MCC: add a back-arc (t, s) of cost kts = −1 and
set k ≡ 0 on all other arcs.

The problem of solving MCC can be broken down in two problems: a)
find any feasible circulation, and b) in spirit similar to flow-augmenting
methods, the problem of finding a circulation of lower cost. We have
discussed before how to solve problem a). For solving problem, we first
can observe that if there’s a negative cost circuit in the residual graph
Gf, we can apply it to reduce the cost. Even better, if there is no such
circuit, the circulation is of least cost.
Notation: Gf is the residual graph, as always, but it has forward arcs
only if fa < ca, and backward arcs only if da < fa. We set the cost of
a backward arc a−1 to ka−1 = ka where uv−1 = vu. For a circuit C,
define the characteristic vector

χC(a) =


1 if the circuit uses a,
−1, if the circuit uses a−1,
0, otherwise.

Teorema 1.19
A feasible circulation f has minimum cost iff each directed circuit in Gf

has non-negative cost.

Prova. “⇒”: if some circuit C in Gf has negative cost, then for a small
enough ϵ flow f ′ = f+ ϵχC remains feasible and has lower cost.
“⇐”: take any feasible circulation f ′. Then f ′ − f is also a circulation
(but not necessarily feasible!), and

f ′ − f =
∑
j∈[m]

λjχ
Cj

for some directed circuits C1, . . . Cm, and λ1, . . . , λm > 0. (This is not
100% clear: probably every flow can be decomposed in this manner
(e.g. take f = 0).) Thus

k(f ′) − k(f) = k(f ′ − f) =
∑
j∈[m]

λjk(Cj) ≥ 0.

So k(f ′) ≥ k(f). ■
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There is still one problem: this may take exponential time! Solution:
select a circuit of minimum mean cost k(C)/|C|. Then:

Teorema 1.20
The above takes at most 4nm2 dlnne iterations.

Therefore: MCC can be solved in time O(n2m3 logn). For integer c, d

the circulation is also integer.

Finding minimum mean cycles in time O(nm). (TBD.)

• Discuss parametric/maximum flow over time.

• Discuss minimum cost flow with lower bounds (ps4.ps, two max-
flows).

• Discuss Chen et al. (2022), and the popularization Klarreich (2022).

Disser e Skutella (2015) shows that the Simplex algorithm is NP-mighty,
in the sense that every problem in NP can be decided transforming its
input to an input of Simplex, and then responding “yes” iff a given bit in
the input flips during the execution (with Dantzig’s rule). They reduce
an instance of Partition to a minimum-cost flow problem, such that
Simplex (and the successive shortest path algorithm) augment flow on a
certain arc iff the Partition instance has a solution.

1.6.9. Exercícios
{flow:ex1}

Exercício 1.7
Mostra como podemos modificar o algoritmo de Dijkstra para encontrar o ca-
minho mais curto entre dois vértices num um grafo para encontrar o caminho
com o maior gargalo entre dois vértices. (Dica: Enquanto o algoritmo de
Dijkstra procura o caminho com a menor soma de distâncias, estamos procu-
rando o caminho com o maior capacidade mínimo.)
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1.7. Emparelhamentos

Dado um grafo não-direcionado G = (V,A), um emparelhamento é uma seleção
de arestas M ⊆ A tal que todo vértice tem no máximo grau 1 em G ′ = (V,M).
(Notação: M = {u1v1, u2v2, . . .}.) O nosso interesse em emparelhamentos é
maximizar o número de arestas selecionados ou, no caso as arestas possuem
pesos, maximizar o peso total das arestas selecionados.
Para um grafo com pesos c : A → Q, seja c(M) =

∑
e∈M ce o valor do

emparelhamento M.

Emparelhamento máximo (EM)

Entrada Um grafo não-direcionado G = (V,A).

Solução Um emparelhamento M ⊆ A, i.e. um conjunto de arestas, tal
que para todos vértices v temos |N(v) ∩M| ≤ 1.

Objetivo Maximiza |M|.

Emparelhamento de peso máximo (EPM)

Entrada Um grafo não-direcionado G = (V,A, c) com pesos c : A → Q
nas arestas.

Solução Um emparelhamento M ⊆ A.

Objetivo Maximiza o valor c(M) de M.

Um emparelhamento se chama perfeito se todo vértice possui vizinho em M.
Uma variação comum do problema é

Emparelhamento perfeito de peso mínimo (EPPM)

Entrada Um grafo não-direcionado G = (V,A, c) com pesos c : A → Q
nas arestas.

Solução Um emparelhamento perfeito M ⊆ A, i.e. um conjunto de ares-
tas, tal que para todos vértices v temos |N(v) ∩M |= 1.

Objetivo Minimiza o valor c(M) de M.

Observe que os pesos em todos problemas podem ser negativos. O problema de
encontrar um emparelhamento de peso mínimo em G = (V,A, c) é equivalente
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com EPM em −G := (V,A,−c) (por quê?). Até EPPM pode ser reduzido
para EPM.
Teorema 1.21
EPM e EPPM são problemas equivalentes.

Prova. Seja G = (V,A, c) uma instância de EPM. Define um conjunto de
vértices V ′ = V ∪ V+ que contém além de V mais |V | vértices novos V+ =
{v+ | v ∈ V}, e um grafo completo G ′ = (V ′, V ′ × V ′, c ′) com

c ′
a =

{
−ca, caso a ∈ A,

0, caso contrário.

Um emparelhamento M em G de custo c(M) corresponde com um empare-
lhamento M ′ em G ′ como segue. Dado M, define

M ′ = M ∪ {u ′v ′ | uv ∈ M} ∪ {vv ′ | v livre em M},

dado M ′ define M = M ′ ∩V2. Ambas construções só adicionam ou removem
arestas de custo 0 e o custo das demais arestas é invertido, logo c ′(M ′) =
−c(M). Portanto, um EPPM em G ′ é um EPM em G.

If |V | is even, we can just multiply by −1, remove (now) positive edges,
and complete the graph with 0-edges.

Por outro lado, seja G = (V,A, c) uma instância de EPPM. Define C :=
1 +

∑
a∈A |ca|, novos pesos c ′

e = C − ce e um grafo G ′ = (V,A, c ′). Para
emparelhamentos M1 e M2 em G arbitrários temos

c(M2) − c(M1) ≤
∑
a∈A
ca>0

ca −
∑
a∈A
ca<0

ca =
∑
a∈A

|ca| < C. (*){ineq:diff}{ineq:diff}
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Idea: Difference by any number of original edges is always < C, so one
more new edge is always better.

Portanto, um emparelhamento de peso máximo em G ′ também é um empa-
relhamento de cardinalidade máxima: Para |M1| < |M2| temos

c ′(M1) = C|M1|− c(M1) < C|M1|+ C− c(M2) ≤ C|M2|− c(M2) = c ′(M2),

onde a primeira desigualdade segue por (*). Se existe um emparelhamento
perfeito no grafo original G, então o EPM em G ′ é perfeito e as arestas do
EPM em G ′ definem um EPPM em G. ■

Formulações com programação inteira A formulação do problema do em-
parelhamento perfeito mínimo para G = (V,A, c) é

EPPM: minimiza
∑
a∈A

caxa (1.25) {lp:minperfectmatch}{lp:minperfectmatch}

sujeito a
∑

u∈N(v)

xuv = 1, ∀v ∈ V,

xa ∈ B.

A formulação do problema do emparelhamento máximo é

EPM: maximiza
∑
a∈A

caxa (1.26) {lp:maxmatch}{lp:maxmatch}

sujeito a
∑

u∈N(v)

xuv ≤ 1, ∀v ∈ V,

xa ∈ B.

Both linear relaxations are to xe ≥ 0, since the upper bound is implicit
in the constraints.

{obs:tu}
Observação 1.15
A matriz de coeficientes de (1.25) e (1.26) é totalmente unimodular no caso bi-
partido (pelo teorema de Hoffman-Kruskal). Portanto: a solução da relaxação
linear é inteira. (No caso geral isso não é verdadeiro, K3 é um contra-exemplo,
com solução ótima 3/2.). Observe que isso resolve o caso ponderado sem custo
adicional. ♢
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Observação 1.16
O dual da relaxação linear de (1.25) é

CIM: maximiza
∑
v∈V

yv (1.27) {lp:dualminperfectmatch}{lp:dualminperfectmatch}

sujeito a yu + yv ≤ cuv, ∀uv ∈ A,

yv ∈ R.

e o dual da relaxação linear de (1.26)

MVC: minimiza
∑
v∈V

yv (1.28){lp:dualmaxmatch}{lp:dualmaxmatch}

sujeito a yu + yv ≥ cuv, ∀uv ∈ A,

yv ∈ R+.

Com pesos unitários cuv = 1 e restringindo yv ∈ B o primeiro dual é a
formulação do conjunto independente máximo e o segundo da cobertura de
vértices mínima. Portanto, a observação 1.15 rende no caso não-ponderado:

{th:berge}
Teorema 1.22 (Berge, 1951)
Em grafos bi-partidos o tamanho da menor cobertura de vértices é igual ao
tamanho do emparelhamento máximo.

{prop:isvc}
Proposição 1.7
Um subconjunto de vértices I ⊆ V de um grafo não-direcionado G = (V,A) é
um conjunto independente sse V \ I é um cobertura de vértices. Em particu-
lar um conjunto independente máximo I corresponde com uma cobertura de
vértices mínima V \ I.

Prova. (Exercício 1.9.) ■ ♢

1.7.1. Aplicações

Alocação de tarefas Queremos alocar n tarefas a n trabalhadores, tal que
cada tarefa é executada, e cada trabalhador executa uma tarefa. O custos de
execução dependem do trabalhar e da tarefa. Isso pode ser resolvido como
problema de emparelhamento perfeito mínimo.

Similar: Candidates and jobs (weighted), or persons and chairs (seats in
an airplane, maximum cardinality).
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Figura 1.21.: Esquerda: Polígono ortogonal com n = 8 vértices de reflexo
(pontos), h = 0 buracos. As cordas são pontilhadas. Direita:
grafo de intersecção. {fig:partpol}

Heurística para o PCV Match twice and stitch.

Particionamento de polígonos ortogonais
Teorema 1.23 (Sack e Urrutia (2000, cap. 11, Th. 1))
Um polígono ortogonal com n vértices de reflexo (ingl. reflex vertex, i.e., com
ângulo interno maior que π), h buracos (ingl. holes) pode ser minimalmente
particionado em n − l − h + 1 retângulos. A variável l é o número máximo
de cordas (diagonais) horizontais ou verticais entre vértices de reflexo sem
intersecção.

O número l é o tamanho do conjunto independente máximo no grafo de in-
tersecção das cordas: cada corda é representada por um vértice, e uma aresta
representa a duas cordas com interseção. Pela proposição 1.9 podemos obter
uma cobertura mínima via um emparelhamento máximo, que é o complemento
de um conjunto independente máximo. Podemos achar o emparelhamento em
tempo O(n5/2) usando o algoritmo de Hopcroft-Karp, porque o grafo de in-
tersecção é bi-partido (por quê?). {ma:pp}

Two chords intersect also, if they share only one endpoint. The maximum
number of chords does not define the whole partition. It is possible that
there is only one reflex vertex, or several, but without a chord between
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them. This must be cut off separately.
Refs: http://code.activestate.com/recipes/123641-hopcroft-karp-bipartite-
matching/ Imai and Asano, SIAM J. Computing 15(2):478-494, 1986, for
an improvement.

Problemas de agendamento O problema 1 | pj = p |
∑

wjTj é resolvido
por um emparelhamento perfeito entre as tarefas e os intervalos de execução
[(i − 1)p, ip], i ∈ [n]. Podemos resolver ainda 1 | pj = 1, rj |

∑
wjTj, obser-

vando que sempre existe uma solução com as tarefas executando nos intervalos
[ti, ti + 1], i ∈ [n], definido por

t0 = −∞; ti = max{ti−1 + 1; ri}

e supondo que r1 ≤ · · · ≤ rn.

1.7.2. Grafos bi-partidos

Na formulação como programa inteira a solução do caso bi-partido é mais fácil.
Isso também é o caso para algoritmos combinatoriais, e portanto começamos
estudar grafos bi-partidos.

These lectures seem to be covered best by chap. 19 and 20 from Kozen.

Redução para o problema do fluxo máximo
{th:empviaflow1}

Teorema 1.24
Um EM em grafos bi-partidos pode ser obtido em tempo O(mn).

Prova. Introduz dois vértices s, t, liga s para todos vértices em V1, os vértices
em V1 com vértices em V2 e os vértices em V2 com t, com todos os pesos
unitários. Aplica o algoritmo de Ford-Fulkerson para obter um fluxo máximo.
O número de aumentos é limitado por n, cada busca tem complexidade O(m),
portanto o algoritmo de Ford-Fulkerson termina em tempo O(mn). ■
Teorema 1.25
O valor do fluxo máximo é igual a cardinalidade de um emparelhamento má-
ximo.

Prova. Dado um emparelhamento máximo M = {v11v21, . . . , v1nv2n}, pode-
mos construir um fluxo com arcos sv1i, v1iv2i e v2it com valor |M|.
Dado um fluxo máximo, existe um fluxo integral equivalente (veja lema (1.20)).
Na construção acima os arcos possuem fluxo 0 ou 1. Escolhe todos arcos entre
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s t

Figura 1.22.: Redução do problema de emparelhamento máximo para o pro-
blema do fluxo máximo{fig:flowreduction}

V1 e V2 com fluxo 1. Não existe vértice com grau 2, pela conservação de fluxo.
Portanto, os arcos formam um emparelhamento cuja cardinalidade é o valor
do fluxo. ■

Solução não-ponderada combinatorial Um caminho P = v1v2v3 . . . vk é
alternante em relação a M (ou M-alternante) se vivi+1 ∈ M sse vi+1vi+2 6∈ M

para todos 1 ≤ i ≤ k − 2. Um vértice v ∈ V é livre em relação a M se ele
tem grau 0 em M, e emparelhado caso contrário. Uma aresta e ∈ E é livre em
relação a M, se e 6∈ M, e emparelhado caso contrário. Escrevemos |P| = k− 1

pelo comprimento do caminho P.
{obs:aumentar}

Observação 1.17
Caso temos um caminho P = v1v2v3 . . . v2k que é M-alternante com v1 é
v2k livre, podemos obter um emparelhamento M \ (P ∩ M) ∪ (P \ M) de
tamanho |M|+ k− (k− 1) = |M|+ 1. Notação: Diferença simétrica M⊕ P =
(M \ P) ∪ (P \M). A operação M⊕ P é um aumento do emparelhamento M.

♢
{th:aumentar}

Teorema 1.26 (Hopcroft e Karp (1973))
Seja M∗ um emparelhamento máximo e M um emparelhamento arbitrário. O
conjuntoM⊕M∗ contém pelo menos k = |M∗|−|M| caminhosM-aumentantes
disjuntos (de vértices). Um deles possui comprimento no máximo |V |/k− 1.
Prova. Considere os componentes de G em relação às arestas M⊕M∗. Cada
vértice possui no máximo grau 2. Portanto, os componentes são vértices livres,
caminhos simples ou ciclos, todos disjuntos de vértices, por construção. Os
caminhos e ciclos possuem alternadamente ares

|M∗ \M| = |M∗|− |M∗ ∩M| = |M|− |M∗ ∩M|+ k = |M \M∗|+ k

e portanto M⊕M∗ contém k arestas mais de M∗ que de M. Isso mostra que
existem pelo menos |M∗|− |M| caminhos M-aumentantes, porque somente os
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caminhos de comprimento ímpar possuem exatamente uma aresta mais deM∗.
Pelo menos um desses caminhos tem que ter um comprimento (em arestas)
menor ou igual que |V |/k − 1, senão cada um possui pelo menos |V |/k + 1

vértices, i.e. eles contém em total mais que |V | vértices. ■

Here edge-disjointness implies vertex-disjointness, since two matchings
give degree 2, but a joint vertex requires degree more than 2.
An aside on using M ⊕ M ′ (Kozen) versus M ∪ M ′ (Schrijver). The
difference are just the joint edges e ∈ M ∩ M ′, but these are remain
single edges in M ∪M ′, so give rise only to irrelevant components.
Also worth noting: the theorem holds in any graph, not just bipartite
ones!

Corolário 1.5 (Berge (1957))
Um emparelhamento é máximo sse não existe um caminho M-aumentante.

Rascunho de um algoritmo:
{alg:em}

Algoritmo 1.7 (Emparelhamento máximo)
Entrada Grafo não-direcionado G = (V,A).

Saída Um emparelhamento máximo M.

1 M = ∅
2 while (existe um caminho M-aumentante P) do
3 M := M⊕ P

4 end while
5 return M

Problema: como encontrar caminhos M-aumentantes eficientemente?
Observação 1.18
Um caminho M-aumentante começa num vértice livre em V1 e termina num
vértice livre em V2. Idéia: começa uma busca por largura com todos vértices
livres em V1. Segue alternadamente arcos livres em M para encontrar vizi-
nhos em V2 e arcos em M, para encontrar vizinhos em V1. A busca pára ao
encontrar um vértice livre em V2 ou após de visitar todos os vértices. Ela tem
complexidade O(m+ n). ♢
Teorema 1.27
O problema do emparelhamento máximo não-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(mn).
Prova. Última observação e o fato que o emparelhamento máximo tem ta-
manho O(n). ■
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Observação 1.19
O último teorema é o mesmo que teorema (1.24). ♢

{obs:findpath}
Observação 1.20
Pelo teorema (1.26) sabemos que existem vários caminhos M-alternantes dis-
juntos (de vértices) e nos podemos aumentar M com todos eles em paralelo.
Portanto, estruturamos o algoritmo em fases: cada fase procura um conjunto
de caminhos aumentantes disjuntos e aplicá-los para obter um novo empare-
lhamento. Observe que pelo teorema (1.26) um aumento com o maior conjunto
de caminhos M-alternantes disjuntos resolve o problema imediatamente, mas
não sabemos como encontrar esse conjunto de forma eficiente. Portanto, pro-
curamos somente um conjunto maximal de caminhos M-alternantes disjuntos
de menor comprimento.
Podemos encontrar um tal conjunto após uma busca em profundidade usando
o DAG (grafo direcionado acíclico) definido pela busca por profundidade. (i)
Escolhe um vértice livre em V2. (ii) Segue os predecessores para encontrar um
caminho aumentante. (iii) Coloca todos vértices em uma fila de deleção. (iv)
Processa a fila de deleção: Até que a fila esteja vazia, remove um vértice dela.
Remove todos arcos adjacentes no DAG. Caso um vértice sucessor após de
remoção de um arco possui grau de entrada 0, coloca ele na fila. (v) Repete
o procedimento no DAG restante, para encontrar outro caminho, até não
existem mais vértices livres em V2. A nova busca ainda possui complexidade
O(m). ♢

O que ganhamos com essa nova busca? Os seguintes dois lemas dão a resposta:
{lem:maisdois}

Lema 1.39
Em cada fase o comprimento de um caminho aumentante mínimo aumenta
por pelo menos dois.

{lem:maxfases}
Lema 1.40
O algoritmo termina em no máximo

√
n fases.

Teorema 1.28
O problema do emparelhamento máximo não-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(m

√
n).

Prova. Pelas lemas 1.39 e 1.40 e a observação que toda fase pode ser com-
pletada em O(m). ■

Usaremos outro lema para provar os dois lemas acima.
{lem:mais}

Lema 1.41
Seja M um emparelhamento, P um caminho M-aumentante mínimo, e Q um
caminho M ⊕ P-aumentante. Então |Q| ≥ |P| + 2|P ∩ Q|. (P ∩ Q denota as
arestas em comum entre P e Q.)
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Prova. Caso P e Q não possuem vértices em comum, Q é M-aumentante,
P ∩Q = ∅ e a desigualdade é consequência da minimalidade de P.

We have V(P) ∩ V(Q) = ∅ which implies E(P) ∩ E(Q) = ∅ and thus
|Q| ≥ |P|, since P is minimal. Otherwise V(P) ∩ V(Q) 6= ∅ implies E(P) ∩
E(Q) 6= ∅: otherwise the joint vertex has a matched edge from P and
another from Q, so degree 2 in M⊕ P ⊕Q.

Caso contrário, P e Q possuem um vértice em comum, e logo também uma
aresta, senão M ⊕ P ⊕Q possui um vértice de grau dois. P ⊕Q consiste em
dois caminhos, e eventualmente um coleção de ciclos. Os dois caminhos são
M-aumentantes, pelas seguintes observações:

1. Cada caminho inicia numa ponta de Q e termina numa ponta de P.
Além disso, em M as pontas de P são livres, porque P é M-aumentante;
as pontas de Q também são livres em M: são livres M ⊕ P, e logo não
pertencem a P. (Nenhum outro vértice de P ⊕ Q é livre em relação a
M: P só contém dois vértices livres e Q só contém dois vértices livres
em Q \ P.)

2. Os dois caminhos são M-alternantes. Começando com um vértice livre
em Q, a parte do caminho Q em Q\P é M-alternante, porque as arestas
livres emM⊕P são exatamente as arestas livres emM. O caminho entra
em P com uma aresta livre, porque todo vértice em P já está emparelhado
em M⊕ P. A parte de P em P ⊕Q tem que continuar com aresta livre
em M⊕ P, e logo aresta emparelhada em M. Logo, temos um caminho
M-alternante.

Os dois caminhos M-aumentantes em P⊕Q tem que ser maiores que |P|. Com
isso temos |P ⊕Q| ≥ 2|P| e

|Q| = |P ⊕Q|+ 2|P ∩Q|− |P| ≥ |P|+ 2|P ∩Q|.

■

Note: |P ⊕Q| = |P|+ |Q|− 2|P ∩Q|.

Prova. (do lema 1.39). Seja S o conjunto de caminhosM-aumentantes da fase
anterior, e P um caminho aumentante. Caso P é disjunto de todos caminhos
em S, ele deve ser mais comprido, porque S é um conjunto máximo de caminhos
aumentantes. Caso P possui um vértice em comum com algum caminho em
S, ele possui também um arco em comum (por quê?) e podemos aplicar
lema 1.41. ■
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(a) Grafo com emparelhamento M (em negrito) e um caminho
M-aumentante P (em vermelho).

(b) O mesmo grafo com emparelhamento M⊕ P (em negrito) e um caminho
M⊕ P-aumentante Q (em vermelho).

(c) O conjunto de arestas P ⊕Q (em negrito).

Figura 1.23.: Ilustração do lema 1.41.{fig:mais}

Por quê: same reason as before: otherwise a vertex has degree 2 in the
resulting graph.

Prova. (do lema 1.40). Seja M∗ um emparelhamento máximo e M o empa-
relhamento obtido após de

√
n/2 fases. O comprimento de qualquer caminho

M-aumentante é no mínimo
√
n, pelo lema 1.39. Pelo teorema 1.26 existem

pelo menos |M∗| − |M| caminhos M-aumentantes disjuntos de vértices. Mas
então |M∗| − |M| ≤

√
n, porque no caso contrário eles possuem mais que n

vértices em total. Como o emparelhamento cresce pelo menos um em cada
fase, o algoritmo executa no máximo mais

√
n fases. Portanto, o número total

de fases é no máximo 3/2
√
n = O(

√
n). ■

Proof idea: after f(n) phases we have length ≥ 2f(n), therefore |M∗| −
|M| ≤ n/2f(n) and we terminate in f(n) + n/2f(n) phases. Function
f(n) =

√
n minimizes this, since

f(n) = n/2f(n) ⇐⇒ f(n)2 = n/2 ⇐⇒ f(n) =
√
n/2.

(If we use this value above, the number of phases will be at most
√
2n,

so still O(
√
n).)

O algoritmo de Hopcroft-Karp é o melhor algoritmo conhecido para encontrar
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emparelhamentos máximos em grafos bipartidos não-ponderados esparsos5.
Para subclasses de grafos bipartidos existem algoritmos melhores. Por exem-
plo, existe um algoritmo randomizado para grafos bipartidos regulares com
complexidade de tempo esperado O(n logn) (Goel et al., 2010).

Footnote on dense graphs: say m = nα with α ∈ [1, 2]. Then logn m = α

and Feder e Motwani (1995) has complexity O(
√
nm(2− α)).

Sobre a implementação A seguir supomos que o conjunto de vértices é
V = [1, n] e um grafo G = (V,A) bi-partido com partição V1

.
∪ V2. Podemos

representar um emparelhamento usando um vetor mate, que contém, para
cada vértice emparelhado, o índice do vértice vizinho, e 0 caso o vértice é
livre.
O núcleo de uma implementação do algoritmo de Hopcroft e Karp é descrito
na observação 1.20: ele consiste numa busca por largura até encontrar um ou
mais caminhos M-alternantes mínimos e depois uma fase que extrai do DAG
definido pela busca um conjunto máximo de caminhos disjuntos (de vértices).
A busca por largura começa com todos vértices livres em V1. Usamos um
vetor H para marcar os arcos que fazem parte do DAG definido pela busca
por largura6 e um vetor m para marcar os vértices visitados.

1 search_paths(M) :=
2 for all v ∈ V do mv := false
3
4 U1 := {v ∈ V1 | v livre}
5 for all u ∈ U1 do du := 0

6
7 do
8 { determina vizinhos em U2 via arestas livres}
9 U2 := ∅
10 for all u ∈ U1 do
11 mu := true
12 for all uv ∈ A, uv 6∈ M do
13 if not mv then
14 dv := du + 1

15 U2 := U2 ∪ v

16 end if

5Feder e Motwani (1991) e Feder e Motwani (1995) propuseram um algoritmo em
O(

√
nm(2 − logn m)) que é melhor em grafos densos.

6H, porque o DAG se chama árvore Húngara na literatura.
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17 end for
18 end for
19
20 { determina vizinhos em U1 via arestas emparelhadas }
21 found := false { pelo menos um caminho encontrado? }
22 U1 := ∅
23 for all u ∈ U2 do
24 mu := true
25 if (u livre) then
26 found := true
27 else
28 v := mate[u]
29 if not mv then
30 dv := du + 1

31 U1 := U1 ∪ v

32 end if
33 end for
34 end for
35 while (not found)
36 end

Após da busca, podemos extrair um conjunto máximo de caminhosM-alternantes
mínimos disjuntos. Enquanto existe um vértice livre em V2, nos extraimos um
caminho alternante que termina em v como segue:

1 extract_paths() :=
2 while existe vértice v livre em V2 do
3 aplica um busca em profundidade a partir de v em H

4 (procurando um vértice livre em V1)
5 remove todos vértices visitados durante a busca
6 caso um caminho alternante P foi encontrado: M := M⊕ P

7 end while
8 end

Exemplo 1.7
Segue um exemplo da aplicação do algoritmo de Hopcroft-Karp.

Grafo original, árvore Húngara primeira iteração e emparelhamento
resultante:
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♢

Emparelhamentos, coberturas e conjuntos independentes
{prop:matchcover}

Proposição 1.8
Seja G = (S

.
∪ T,A) um grafo bipartido e M ⊆ A um emparelhamento em G.

Seja R o conjunto de todos vértices livres em S e todos vértices alcançáveis
por uma busca na árvore Húngara (i.e. via arestas livres de S para T e arestas
emparelhadas de T para S). Então (S\R)∪(T ∩R) é uma cobertura de vértices
em G.

Prova. Seja uv ∈ A uma aresta não coberta. Logo u ∈ S \ (S \ R) = S ∩ R

e v ∈ T \ (T ∩ R) = T \ R. Caso uv 6∈ M, uv é parte da árvore Húngara é
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|S|− |M|

v

|M|− v

v

Figura 1.24.: Ilustração da prova da proposição 1.9. {fig:emcm}

v ∈ R, uma contradição. Mas caso uv ∈ M, vu é parte da árvore Húngara e v

precede u, logo v ∈ R, novamente uma contradição. ■
A próxima proposição mostra que no caso de um emparelhamento máximo
obtemos uma cobertura mínima.

{prop:emcm}
Proposição 1.9
Seja G = (S

.
∪ T,A). Caso M é um emparelhamento máximo o conjunto

(S \ R) ∪ (T ∩ R) é uma cobertura mínima.

Prova. O tamanho de qualquer emparelhamento M é um limite inferior para
o tamanho de qualquer cobertura, porque uma cobertura tem que conter pelo
menos um vértice da cada aresta emparelhada. Logo é suficiente demonstrar
que (S \ R) ∪ (T ∩ R)| = |M|.
Temos (S \ R) ∪ (T ∩ R)| = |S \ R|+ |T ∩ R| porque S e T são disjuntos. Vamos
demonstrar que |T ∩ R| = v implica |S \ R| = |M|− v.
Supõe |T ∩ R| = v. Como M é máximo não existe caminho M-aumentante,
e logo T ∩ R contém somente vértices emparelhados. Por isso o número de
vértices emparelhados em S ∩ R também é v. Além disso S ∩ R contém todos
|S|− |M| vértices livres em S. Logo |S \ R| = |S|− (|S|− |M|) − v = |M|− v. ■

Observação 1.21
O complemento V \ C de uma cobertura C é um conjunto independente (por
quê?). Logo um emparelhamento M que define um conjunto R de acordo com
a proposição (1.8) corresponde com um conjunto independente (S∩R)∪(T \R),
e caso M é máximo, o conjunto independente também. ♢
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This can be extended to a minimal edge cover (of vertices): take a ma-
ximum matching, and then cover all uncovered vertices by some incident
edge. This is a minimal edge cover, because no further edge can cover
two vertices. In other words, in a minimal edge cover, each vertex has
an adjacent cover edge; now let the matching be those edges that cover
both of its endpoints. Then the total cost is n− |M|. Since n is constant
minimizing −|M| amount to maximizing |M|.
This can be further extended to the weighted version. Here each vertex
v ∈ V can be seen as covered by the lighest incident edge of cost cv.
Now consider a matching of edges that cover both endpoints. An edge
e = uv ∈ E in it has cost ce − cu − cv. So we have total cost

∑
v∈V cv +∑

e∈M ce − cu − cv and since the first term is a constant, a minimum
weight edge cover corresponds to a maximum weight matching with cost
cu + cv − ce.

Solução ponderada em grafos bi-partidos Dado um grafo G = (S
.
∪ T,A)

bipartido com pesos c : A → Q+ queremos achar um emparelhamento de
maior peso. Escrevemos V = S ∪ T para o conjunto de todos vértices em G.

{obs:wmp}
Observação 1.22
O caso ponderado pode ser restrito para emparelhamentos perfeitos: caso
S e T possuem cardinalidade diferente, podemos adicionar vértices, e depois
completar todo grafo com arestas de custo 0. O problema de encontrar um
emparelhamento perfeito máximo (ou mínimo) em grafos ponderados é conhe-
cido pelo nome “problema de alocação” (ingl. assignment problem). ♢

Observação 1.23
A redução do teorema 1.24 para um problema de fluxo máximo não se aplica
no caso ponderado. Mas, com a simplificação da observação 1.22, podemos
reduzir o problema no caso ponderado para um problema de fluxo de menor
custo: a capacidade de todas arestas é 1, e o custo de transportação são os
pesos das arestas. Como o emparelhamento é perfeito, procuramos um fluxo
de valor |V |/2, de menor custo. ♢

O dual do problema 1.28 é a motivação para

Definição 1.6
Um rotulamento é uma atribuição y : V → R+. Ele é viável caso yu+yv ≥ ca
para todas arestas a = {u, v}. (Um rotulamento viável é uma c-cobertura de
vértices.) Uma aresta é apertada (ingl. tight) caso yu + yv = ca. O subgrafo
de arestas apertadas é Gy = (V,A ′, c) com A ′ = {a ∈ A | a apertada em y}.
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Pelo teorema forte de dualidade e o fato que a relaxação linear dos sistemas
acima possui uma solução integral (ver observação 1.15) temos

Teorema 1.29 (Egerváry (1931))
Para um grafo bi-partido G = (S

.
∪ T,A, c) com pesos não-negativos c : A →

Q+ nas arestas, o maior peso de um emparelhamento perfeito é igual ao peso
da menor c-cobertura de vértices.

O método húngaro Aplicando um caminhoM-aumentante P = (v1v2 . . . v2n+1)
produz um emparelhamento de peso c(M)+

∑
i ímpar cvivi+1

−
∑

i par cvivi+1
.

Isso motiva a definição de uma árvore Húngara ponderada. Para um empa-
relhamento M, seja HM o grafo direcionado com as arestas e ∈ M orientadas
de T para S com peso le := we, e com as restantes arestas a ∈ A \ M ori-
entadas de S para T com peso la := −wa. Com isso a aplicação do caminho
M-aumentante P produz um emparelhamento de peso c(M) − l(P) em que
l(P) =

∑
1≤i≤2n lvivi+1

é o comprimento do caminho P.
Com isso podemos modificar o algoritmo para emparelhamentos máximos para

{alg:epm}
Algoritmo 1.8 (Emparelhamento de peso máximo)
Entrada Um grafo não-direcionado ponderado G = (V, E, c).

Saída Um emparelhamento de maior peso c(M).

1 M = ∅
2 while (existe um caminho M-aumentante P) do
3 encontra o caminho M-aumentante mínimo P em HM

4 caso l(P) ≥ 0: return M;
5 M := M⊕ P

6 end while
7 return M

Chamaremos um emparelhamento M extremo caso ele possui o maior peso
entre todos emparelhamentos de tamanho |M|.

Observação 1.24
O grafo HM de um emparelhamento extremo M não possui ciclo (par) ne-
gativo. Isso seria uma contradição com a maximalidade de M. Portanto
podemos encontrar o caminho mínimo no passo 3 do algoritmo usando o al-
goritmo de Bellman-Ford em tempo O(mn). Com isso a complexidade do
algoritmo é O(mn2). ♢
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Observação 1.25
Lembrando Bellman-Ford: Seja dk(t) a distância mínima entre s e t com um
caminho usando no máximo k arcos ou ∞ caso tal caminho não existe. Temos

dk+1(t) = min{dk(t), min
(u,t)∈A

dk(u) + l(u, t)}∀t ∈ V,

com d0(t) = 0 caso t é um vértice livre em S e d0(t) = ∞ caso contrário. (O
algoritmo se aplica igualmente para as distâncias de um conjunto de vértices,
como o conjunto de vértices livres em S.) A atualização de k para k + 1 é
possível em O(m) e como k < n o algoritmo possui complexidade O(nm). ♢

Teorema 1.30
Cada emparelhamento encontrado no Algoritmo 1.8 é extremo.

Prova. Por indução sobre |M|. Para M = ∅ o teorema é correto. Seja
M um emparelhamento extremo, P o caminho aumentante encontrado pelo
algoritmo 1.8 e N um emparelhamento de tamanho |M|+ 1 arbitrário. Como
|N| > |M|, pelo teorema (1.26) M⊕N contém um caminho M-aumentante Q.
Sabemos l(Q) ≥ l(P) pela minimalidade de P. N⊕Q é um emparelhamento
de cardinalidade |M| (Q é um caminho com arestas em N e M com uma aresta
em N a mais), logo c(N⊕Q) ≤ c(M). Com isso temos

c(N) = c(N⊕Q) − l(Q) ≤ c(M) − l(P) = c(M⊕ P)

(observe que o comprimento l(Q) é definido no emparelhamento M). ■

Proposição 1.10
Caso não existe caminho M-aumentante com comprimento negativo no Algo-
ritmo 1.8, M é máximo.

Prova. Supõe que existe um emparelhamento N com c(N) > c(M). Logo
|N| > |M| porque M é possui o maior peso entre todos emparelhamentos de
cardinalidade no máximo |M|. Pelo teorema de Hopcroft-Karp, existem |N|−
|M| caminhos M-aumentantes disjuntos de vértices em N⊕M. Nenhum deles
tem comprimento negativo, pelo critério de parada do algoritmo. Portanto
c(N) ≤ c(M), uma contradição. ■

Fato 1.1
É possível encontrar o caminho mínimo no passo 3 em tempo O(m+n logn)
usando uma transformação para distâncias positivas e aplicando o algoritmo
de Dijkstra. Com isso um algoritmo em tempo O(n(m+ n logn)) é possível.
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1.7.3. Emparelhamentos em grafos não-bipartidos

O teorema de Berge 1.22 (ou e de Hopcroft & Karp 1.26) vale em qualquer
grafo.
Exemplo 1.8 (Caminhos M-aumentantes em grafos não-bipartidos)
Consequência: dado um caminho M-aumentante, a sua aplicação produz em-
parelhamentos maiores.

⊕ = ⊕ =

♢
Portanto, o problema central em grafos gerais ainda é

{prob:augment}
Problema 1.1 (Encontra um caminho M-aumentante)
Dado um emparelhamento M, retorne um caminho M-aumentante, caso exis-
tir.

Dado uma solução em tempo T(n), o algoritmo canônico (inicia com M =
∅; repetidamente resolve Problema 1.1; caso tem caminho M-aumentante P,
M := M ⊕ P e repete; senão: para) termina em no máximo bn/2c = O(n)
iterações em tempo O(nT(n)).

O caso não-ponderado

We start with a classification, following Schrijver 24.1.
If a graph has an odd component (i.e. a component with an odd number
of vertices), then at least one is not matched. This gives the simple bound
ν(G) ≤ 1/2(|V ` o(G)) on the number of edges ν(G) in a matching, where
o(G) is the number of odd components of graph G. Now take some subset
U ⊆ V . If we suppose U is fully matched, we can bound

ν(G) ≤ |U|+ ν(G−U)

≤ |U|+ 1/2(|V \U|− o(G−U))

1/2(|V |+ |U|− o(G−U)) (*) {ub:U}{ub:U}

Now the Tutte-Berge theorem states, that the smallest of these bounds
is exact.

{th:tutte-berge}
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Teorema 1.31 (Tutte-Berge)

ν(G) = min
U⊆V

1/2(|V |+ |U|− o(G−U)).

Prova. Obviously “≤” follows from (*).
For “≥” we use induction on |V |; the base V = ∅ is trivial. We can assume
G to be connected, otherwise we apply the induction hypothesis to the
components. We consider two cases: a) some vertex v is in all maximum
matchings. b) none is.
Consider case a). Then ν(G − v) = ν(G) − 1, and we can apply the
induction hypothesis to G− v to obtain an U ′ such that

v(G− v) = 1/2(|V \ {v}|+ |U ′|− o(G− v−U ′)).

But then U = U ′ ∪ {v} witnesses equality, viz.

ν(G) = ν(G− v) + 1

1/2(|V \ {v}|+ |U ′|− o(G− v−U ′)) + 1

1/2(|V |+ |U|− o(G−U)) + 1.

Now consider case b). Then ν(G) < |V |/2, and we claim that there’s
a matching of size (|V | − 1)/2. Given that, have for U = ∅, and since
o(G) = 1

ν(G) = (|V |− 1)/2

= 1/2(|V |+ |U|− o(G−U)) + 1.

≥ min
U⊆V

1/2(|V |+ |U|− o(G−U)),

and we’re done.
Now for the claim: assume that in all maximal matchings M at least
two vertices u = u(M) and v = v(M) are free; select a matching where
u, v have shortest distance dist(u, v). We can’t have dist(u, v) = 1, since
otherwise we could add uv to M. Thus there’s a vertex t, different from
u and v on the shortest uv-path. By assumption there’s a matching N

where t is free. Choose such a matching of maximal overlap |M ∩ N|.
Note that u and v are matched in N, otherwise we have free vertices u, t
with dist(u, t) < dist(u, v) or free vertices t, v with dist(t, v) < dist(u, v)
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in contradiction with the selection of u and v. Now since |M| = |N|

there must be some x 6= t matched in M but not in N. Let e = xy be
the corresponding edge. Vertex y is matched in N, since we otherwise
could add xy to N, and some edge f ∈ N contains y. But now N \

{f} ∪ {e} has a larger overlap with M, contradicting the choice of N.

■
This leads finally to

{th:tutte}
Teorema 1.32 (Tutte’s 1-factor theorem)
Graph G has a perfect matching iff G − U has o(G − U) ≤ |U| for all
U ⊆ V .

Prova. If G has a perfect matching then ν(G) = |V |/2. So

|V |/2 = min
U⊆V

1/2(|V |+ |U|− o(G−U))

and therefore, for all U ⊆ V

|V |/2 ≤ 1/2(|V |+ |U|− o(G−U)) ⇐⇒ o(G−U) ≤ |U|.

On the other hand, if for all U ⊆ V we have o(G − U) ≤ |U|, then
1/2(|V |+ |U ` o(G−U) ≥ 1/2|V |, and thus ν(G) = |V |/2 by theorem 1.31.
■

Primeiramente vamos entender porque a abordagem utilizada em grafos bi-
partidos G = (S

.
∪ T, E) falha. Sejam X os vértices livres em G. Em grafos

bipartidos encontramos um caminho M-aumentante por uma busca em lar-
gura:

{bcma}
Algoritmo 1.9 (Busca caminho M-aumentante)
Inicia em S0 = S ∩ X. Dado Si sejam Ti os vértices ainda não
explorados alcançáveis por Si via arestas livres. Caso Ti contém
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um vértice livre, termina, senão sejam Si+1 os vértices ainda não
explorados alcançáveis por Ti via arestas emparelhadas. Repete.

{prop:bcma} Proposição 1.11
Algoritmo 1.9 sempre encontra pelo menos um caminho mais curtoM-aumentante
em grafos bipartidos.

Prova. Para todo caminho M-aumentante mais curto P = (v0, v1, . . . , vt),
vértice vi é encontrado na iteração i. Pela existência do caminho P, é claro
que vértice vi é descoberto em no máximo i iterações. Agora assume vi é
o vértice de menor índice descoberto numa iteração j < i, por um caminho
alternanteQ = (u0, u1, . . . , uj = vi) iniciando em u0 livre. Temos os seguintes
casos:

a) j é par, e i é par. Logo uj−1vi ∈ M, e vi−1vi ∈ M, e por isso uj−1 = vi−1

em contradição com a minimalidade de i.

b) j é ímpar, i é ímpar. Logo uj−1vi 6∈ M, vivi+1 ∈ M e Q junto com o
caminho (vi, vi+1, . . . , vt) é um caminhoM-aumentante de comprimento
j+ (t− i) < t, em contradição com a minimalidade de P.

c) j é par, e i é ímpar. Logo vi ∈ Sj/2 e vi ∈ T⌊i/2⌋, em contradição com G

sendo bipartido.

d) j é ímpar, i é par. Similar ao caso c) temos vi ∈ T⌊j/2⌋ e vi ∈ Si/2, uma
contradição.

■
Num grafo geral não temos a partição em S e T . Uma possível alternativa é ini-
ciar a busca em R0 = X e aplicar a mesma busca alternante para descobrir uma
sequência de conjuntos Ri. Mas mesmo em grafos bipartidos, Algoritmo 1.9
então falha: em

P

Q

os caminhos alternantes P e Q se encontram. Nota que isso corresponde com
o caso d) da Proposição 1.11, mas não é mais uma contradição, porque os
conjuntos Ri contém vértices de S e T .
Esse problema pode ser resolvido por i) modificar o Algoritmo 1.9 para com-
binar caminhos encontrados em buscas iniciados em vértices livres diferentes,
ou, mais simples, mas menos eficiente, ii) buscar a partir de cada vértice x ∈ X

separadamente.
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I won’t go into details here, but i) could be done along the lines of Korte e
Vygen (2008, p. 10.27). We keep an alternating forest, each tree starting
from some x ∈ X. Then, an outer (even) vertex can’t have a free neighbor
in the same tree, since all free X have their own trees. So if we meet
an outer vertex in another tree, we have found an augmenting path.
Otherwise the vertex may be not in the tree yet: so it is matched, and
we add the vertex and its matched neighbor. What can’t happen in the
bipartite is the case of a blossom.
For ii) we could check all free vertices with an overhead of n times the
search, but this still won’t work as the second example shows.

Por ser mais simples considera a solução ii): mesmo procurando a partir de
um único vértice x ∈ X falha em grafos gerais. Por exemplo:

P

Q

Note que isso corresponde com o caso c) da Proposição 1.11 é não é mais uma
contradição, porque em grafos gerais podemos ter laços ímpares.

Sublety: case c) has been excluded by an S, T argument. But if we
assume P and Q share the initial vertex, we would find and odd loop, but
thus can’t happen in bipartite graphs. That’s the deeper reason there’s
no contradiction any more.

O exemplo acima sugere que ciclos ímpares formam o núcleo do Problema 1.1.
A árvore de busca do exemplo anterior pode ser visualizado como

.

Isso é o motivo para:
{def:flower}

Definição 1.7 (Flor)
Seja P = (v0, v1, . . . , vt) uma caminhada M-alternante. Caso (i) v0 ∈ X, (ii)
todos vértices v0, . . . , vt−1 são distintos, (iii) t é ímpar, e (iv) existe um i < t,
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i par, tal que vi = vt, P é chamado uma flor, com caule (v0, . . . , vi), base vi,
e blossom B = (vi, vi+1, . . . , vt).

blossom

flor
caule

base
.

Caminhadas M-alternantes. Como encontrar caminhos M-alternantes fa-
lha, uma outra ideia, que vamos discutir agora, é buscar caminhadas M-
alternantes. Para conseguir isso, vamos introduzir um grafo direcionado au-
xiliar D = (V,A), onde A = {uv | ux ∈ E, xv ∈ M para um x ∈ V}. A ideia é
substituir u x v por u v .
Essa construção tem a seguinte característica

{prop:xxwalk}
Proposição 1.12
Sejam N(X) todos vértices vizinhos de vértices livres X. Então D possui um
caminho X–N(X) sse G possui uma caminhada X–X.

Prova. “⇒”: é suficiente expandir os arcos e adicionar uma aresta final para
um vértice livre.
“⇐”: dado W = (v0, . . . , vt) remove o vértice livre vt para obter uma cami-
nhada terminando em N(X). Podemos assumir que vt−1 é o único vértice em
N(X), senão um prefixo de W serve. Contrai arestas v2iv2i+1 para arcos e
remove eventuais ciclos para obter um caminho. Como o vértice inicial é livre
e o vértice final vt−1 não tem sucessor, ambos não fazem parte de um ciclo.
Logo o caminho resultante é X–N(X). ■
Isso nos permite, em tempo O(m) usar uma busca por profundidade em D

iniciando em X e terminando em algum vértice em N(X) para encontrar uma
caminhada M-alternante X–X. Porém o seguinte exemplo mostra que as flores
ainda são uma fonte de problemas para caminhadas M-alternantes.

{ex:matching1}
Exemplo 1.9
Considere o exemplo da Figure 1.25. O caminho v1v3v5v7v9 corresponde com
o caminhoM-aumentante v1v2v3v4v5v6v7v8v9va. Mas caminho v1v8c6v5v7v9
que corresponde com o caminhada v1v9v8v7v6v4v5v6v7v8v9va que não é M-
aumentante, mesmo sendoM-alternante entre dois vértices livres. O problema
novamente é o laço ímpar v6v4v5v6. ♢
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va v9

v1

v8

v2

v3

v7

v6

v4

v5

va v9

v1

v8

v2

v3

v7

v6

v4

v5

Figura 1.25.: Grafo com emparelhamento, grafo auxiliar e duas caminhadas
M-alternantes.{fig:matching1}

Another example I have used: from Korte e Vygen (2008, p. 10.6).

Nota que no Exemplo 1.9 o prefixo v1v9v8v7v6v4v5v6 da segunda caminhada
é uma flor. Isso de fato sempre é o caso:

{prop:pathorflor}
Proposição 1.13
Seja P = (v0, v1, . . . , vt) uma caminhada M-alternante X–X mais curta. Então
ou (i) P é um caminho M-aumentante, ou (ii) o prefixo (v0, v1, . . . , vj) para
algum j ≤ t é uma flor.

Prova. Assume que P não é um caminho. Seleciona i < j tal que vi = vj e
j mínimo. Então todos vértices v0, . . . , vj−1 são distintos. A diferença j − i

não pode ser par, senão podemos remover (vi, . . . , vj) para obter a caminhada
(v0, . . . , vi) M-alternante X–X mais curta que P, em contradição com a mi-
nimalidade de P. Ainda, caso i é ímpar e j é par, temos vivi+1 ∈ M, e
vj−1vj ∈ M e como vi = vj também vi+1 = vj−1, em contradição com a mi-
nimalidade de j. Logo i é par, j é ímpar, e (v0, . . . , vj) satisfaz todos critérios
da Definição 1.7 é por isso é uma flor. ■

Lidar com flores. O problema central então é como lidar com flores. Esse
problema tem uma solução simples: ao encontrar uma flor, contrai a sua
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blossom B. Vamos escrever G/B para o grafo resultante, e assumir que ele
tem vértices G \ B ∪ {B} (ou seja o vértice B representa a blossom contraída).
Ao contrair, vamos descartar laços. Ainda dado um emparelhamento M, M/B

é o emparelhamento após a contração. (Nota que somente caso |M∩δ(B)| ≤ 1

onde δ(B) = {uv | u ∈ B, v 6∈ B}, M/B é um emparelhamento; por exemplo
B produz que não é.)

O seguinte teorema nos garante a corretude dessa estratégia.
{th:shrink}

Teorema 1.33
M é um emparelhamento máximo em G sse M/B é um emparelhamento má-
ximo em G/B.

Prova. Seja B = (vi, vi+1, . . . , vt).
“⇒”: Assume M/B não é máximo, e seja P um caminho M/B-aumentante.
Vamos mostrar que então existe um caminho M-aumentante, logo M também
não é máximo. Caso B 6∈ P, P já é M-aumentante. Caso contrário, seja uB

a aresta em P que entra em B. Podemos assumir que uB é livre em M/B

(senão inverte P). Seja uvj, i ≤ j ≤ t, a aresta correspondente em G. Caso j é
ímpar, podemos expandir B para vj, vj+1, . . . , vt para obter um caminho M-
aumentante (nota que vjvj+1 ∈ M) em G. Similarmente, caso j é par, podemos
expandir B para vj, vj−1, . . . , vi para obter um caminho M-aumentante.

Problem: clearly, by construction, these paths are M-alternating; but why
need they be augmenting? What about the continuation of P beyond B?

“⇐”: Assume M não é máximo. Para caule Q, M⊕Q é um emparelhamento
da mesma cardinalidade porque vi tem índice par, pela Definição 1.7. Então
podemos supor que i = 0; nota que isso torna vi livre em M, e logo B é
libre em M/B. Dado um caminho M-aumentante P = (u0, . . . , us), então
vamos construir um caminho M/B-aumentante em G/B, mostrando que M/B

não é máximo. Caso P ∩ B = ∅, P já é um caminho M/B-aumentante. Caso
contrário, podemos assumir u0 6∈ B (senão inverte P). Seja uj, j > 0 o primeiro
vértice em P em B. O caminho (u0, . . . , uj) é M/B-alternante, e como B é
libre em G/B, também aumentante. ■

Combinando as peças. Com isso podemos resolver o Problema 1.1, como
segue.
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Algoritmo 1.10 (Busca caminho M-aumentante)
1) Encontra um caminho P M-alternante X–X mais curto. Caso

não tenha: para, não existe caminho M-aumentante. (Propo-
sição 1.12).

2) Pela Proposição 1.13 ou
a) P é um caminho M-aumentante: retorna P; ou
b) um prefixo de P é uma flor com blossom B: recursivamente

encontra um caminho P ′ M/B-aumentante em G/B. De-
pois expande P ′ para um caminho M-aumentante P ′′ em
G, de acordo com Teorema 1.33. retorna P ′′.

A corretude do algoritmo segue das proposições e teoremas mencionadas. A
complexidade de encontrar o caminho P no passo 1, bem como a complexi-
dade da contração para G/B no passo 2c é O(m). Por isso, todas chamadas
recursivas não custam mais que O(nm), porque em cada recursão temos pelo
menos um vértice a menos. Logo, o algoritmo canônico termina em tempo
O(n2m).

This algorithm is not efficient, but can be made to run in O(n3) using
better data structure. In particular, we don’t want to shrink the whole
graph all the time.
On the weighted case: the problems presented here and their solutions are
valid, also in the weighted case. But: new problems arise. To solve them,
we sometimes must expand blossoms again, to find augmenting paths.
This puts even more pressure on efficient data structures. A detailed
discussion seems at the moment beyond the scope of this lecture.

1.7.4. Tópicos avançados

Sketch of the rest:

• Extract Egerváry’s algorithm (Frank, 2004) from the constructive
proof above, and discuss its complexity (should be O(|V |4C)?; its
not polynomial, and C is some input-dependent constant).

• Discuss Kuhn’s idea to increase the duals while searching for an
augmenting path in the Hungarian tree. Show his Hungarian algo-
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rithm (Kuhn 1955). Discuss its complexity (what is it? O(|E||V |2)?)

• Discuss Munkres improvement (now O(|V |3)?). Or was it Karp?
Or Tomizawa? Or Dinits?

• In the historical part, discuss Jacobi’s pre 1890 solution: http://
www.lix.polytechnique.fr/~ollivier/JACOBI/jacobiEngl.htm,
and the contribution of Monge.

• Show (below) how to derive the algorithm from primal-dual theory.

Aplicação do método primal-dual Nessa seção vamos explorar como
uma aplicação do método primal-dual resulta em um algoritmos combi-
natorial para o problema. O problema primal restrito às arestas indicadas
pelo teorema de folgas complementares é

minimiza
∑
v∈V

xav (RP) {mm:rp0}{mm:rp0}

sujeito a
∑

u∈N(v)

xuv + xav = 1 ∀v ∈ V

xe = 0 ∀e ∈ E(G) \ E(Gy)

xe ≥ 0 ∀e ∈ E(Gy)

xav ≥ 0 ∀v ∈ V

com variáveis auxiliares xav para cada vértice. Para simplificar observe
que a função objetivo pode ser escrito como∑

v∈V

xav =
∑
v∈V

1−
∑

u∈N(v)

xuv = |V |− 2
∑
e∈E

xe

e portanto o problema é equivalente com

maximiza
∑
e∈E

xe (RP’) {mm:rp}{mm:rp}

sujeito a
∑

u∈N(v)

xuv ≤ 1 ∀v ∈ V

xe = 0 ∀e ∈ E(G) \ E(Gy)

xe ≥ 0 ∀e ∈ E(Gy).
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1.7. Emparelhamentos

Isso é o problema de encontrar um emparelhamento máximo no grafo Gy

das arestas apertadas! O dual do problema restrito original é

maximiza
∑
v∈V

y ′
v (DRP) {mm:drp}{mm:drp}

sujeito a y ′
u + y ′

v ≤ 0 ∀e ∈ E(Gy)

y ′
v ≤ 1 ∀v ∈ V

y ′
v ≶ 0 ∀v ∈ V .

Observe que caso (RP) possui uma solução com valor 0 achamos um em-
parelhamento perfeito nas arestas apertadas. Esse emparelhamento tem
que ser ótimo pelo teorema forte de dualidade. Caso contrário podemos
usar a solução de (DRP) para melhorar a solução dual do primal.
What are we going to do from here?

• We apply algorithm 1.7 to (RP’), selecting always one path by
BFS. This is conceptually the same as applying the Edmonds-Karp
maximum flow.

• If we find a perfect matching, we are done.

• Otherwise: we have a s-t cut in the graph. This is equivalent to
the nodes reached in the BFS for an augmenting path. Let the
reachable set be V∗ = S∗

.
∪ T∗.

• We are going to extract a feasible dual for (DRP) from this. The
claim is that

yv =


1 v ∈ S∗

−1 v ∈ T∗

−1 v ∈ S \ S∗

1 v ∈ T \ T∗

does the job. TBD: Check and prove this. Does not work like this:
its no solution for the dual of (RP’), but for the dual of (RP).
Prova. (Sketch.) We first show, that we have a feasible solution.
Consider some edge e = (u, v) ∈ E(Gy). The only way (*) could not
be satisfied is when u ∈ S∗, but v 6∈ T∗. Therefore e must be part
of the matching, and u is not free, otherwise v would be reachable.
Then, the only way to reach u is e, but this is impossible.
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Tabela 1.4.: Resumo emparelhamentos. Aqui C = maxa∈A |ca|.
Cardinalidade Ponderado

Bi-partido O(n
√

mn/ logn) (Alt et al.,
1991) O(m

√
n

log(n2/m)
log n

) (Feder e
Motwani, 1995)

O(nm + n2 logn) (Kuhn, 1955;
Munkres, 1957)

Geral O(m
√
n) (Micali e Vazirani,

1980)
O(n3) (Edmonds, 1965)

O(m
√
n

log(n2/m)
log n

) (Goldberg e
Karzanov, 2004; Fremuth-Paeger
e Jungnickel, 2003)

O(mn + n2 logn) (H. N. Gabow,
1990)

O(m
√
n lognC) (Duan et al.,

2018)
{tab:emp}

Let the value of the maximum matching be m. All matched vertices
have opposite duals −1 and 1, and therefore contribute in total 0
to the value of the dual. TBD: now we have to argue that the
values of the remaining vertices sum up to m. We have two types
of remaining vertices: those free in S and those free in T . We can
set them all to 1?! Hmm, something’s inverted. ■

• Next, we want to use this dual to improve the current dual of the
unrestricted problem.

• Finally, we’d like to show the connection to Kuhn’s Hungarian al-
gorithm.

1.7.5. Notas

Duan et al. (2011) apresentam técnicas de aproximação para emparelhamen-
tos.

1.7.6. Exercícios
{ex:ma1}

Exercício 1.8
É possível somar uma constante c ∈ R para todos custos de uma instância do
EPM ou EPPM, mantendo a otimalidade da solução?

{ex:ma2}
Exercício 1.9
Prove a proposição 1.7.
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Em hashing nosso interesse é uma estrutura de dados H para gerenciar um
conjunto de chaves sobre um universo U e que oferece as operações de um
dicionário:

• Inserção de uma chave c ∈ U: insert(c,H)

• Deleção de uma chave c ∈ U: delete(c,H)

• Teste da pertinência: Chave c ∈ H? lookup(c,H)

Uma característica do problema é que tamanho |U| do universo de chaves
possíveis pode ser grande, por exemplo o conjunto de todos strings ou todos
números inteiros. Portanto usar a chave como índice de um vetor de booleano
não é uma opção. Uma tabela hash é um alternativa para outros estruturas de
dados de dicionários, p.ex. árvores. O princípio de tabelas hash: aloca uma
tabela de tamanho m e usa uma função hash h : U → [m] para calcular a
posição de uma chave na tabela.
Como o tamanho da tabela hash é menor que o número de chaves possíveis,
existem chaves c1, c2 com h(c1) = h(c2), que geram colisões. Logo uma
tabela hash precisa definir um método de resolução de colisões. Uma solução
é Hashing perfeito: escolhe uma função hash, que para um dado conjunto de
chaves não tem colisões. Isso é possível se o conjunto de chaves é conhecido e
estático.

2.1. Hashing com listas encadeadas

Seja h : U → [m] uma função hash. Mantemos uma coleção de m listas
l0, . . . , lm−1 tal que a lista li contém as chaves c com valor hash h(c) = i.
Supondo que a avaliação de h é possível em O(1), a inserção custa O(1), e o
teste é proporcional ao tamanho da lista.
Para obter uma distribuição razoável das chaves nas listas, supomos que h é
uma função hash simples e uniforme:

Pr(h(c) = i) = 1/m. (2.1) {eq:hashuniform}{eq:hashuniform}

Seja ni := |li| o tamanho da lista i e cji a variável aleatória que indica se chave
j pertence a lista i. Temos Pr(cji = 1) = Pr(h(j) = i). Ainda ni =

∑
1≤j≤n cji
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e com isso

E[ni] = E[
∑

1≤j≤n

cji] =
∑

1≤j≤n

E[cji] =
∑

1≤j≤n

Pr(h(cj) = i) = n/m.

O valor α := n/m é o fator de ocupação da tabela hash.

1 insert(c,H) :=
2 insert(c,lh(c))
3
4 lookup(c,H) :=
5 lookup(c,lh(c))
6
7 delete(c,H) :=
8 delete(c,lh(c))

Teorema 2.1
Uma busca sem sucesso precisa tempo esperado Θ(1+ α).

Prova. A chave c tem a probabilidade 1/m de ter um valor hash i. O
tamanho esperado da lista i é α. Uma busca sem sucesso nessa lista precisa
tempo Θ(α). Junto com a avaliação da função hash em Θ(1), obtemos tempo
esperado total Θ(1+ α). ■

Teorema 2.2
Uma busca com sucesso precisa tempo esperado Θ(1+ α).

Prova. Supomos que a chave c é uma das chaves na tabela com probabilidade
uniforme. Então, a probabilidade de pertencer a lista i (ter valor hash i) é
ni/n. Uma busca com sucesso toma tempo Θ(1) para avaliação da função
hash, e mais um número de operações proporcional à posição p da chave na
sua lista. Com isso obtemos tempo esperado Θ(1+ E[p]).
Para determinar a posição esperada na lista, E[p], seja c1, . . . , cn a sequência
na qual as chaves foram inseridas. Supondo que inserimos as chaves no inicio
da lista, E[p] é um mais que o número de chaves inseridos depois de c na
mesma lista.
Seja Xij um variável aleatória que indica se chaves ci e cj tem o mesmo valor
hash. E[Xij] = Pr(h(ci) = h(cj)) =

∑
1≤k≤m Pr(h(ci) = k)Pr(h(cj) = k) =

1/m. Seja pi a posição da chave ci na sua lista. Temos

E[pi] = E[1+
∑
j:j>i

Xij] = 1+
∑
j:j>i

E[Xij] = 1+ (n− i)/m
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e para uma chave aleatória c

E[p] =
∑

1≤i≤n

1/n E[pi] =
∑

1≤i≤n

1/n(1+ (n− i)/m)

= 1+ n/m− (n+ 1)/(2m) = 1+ α/2− α/(2n).

Portanto, o tempo esperado de uma busca com sucesso é

Θ(1+ E[p]) = Θ(2+ α/2− α/2n) = Θ(1+ α).

■

Seleção de uma função hash Para implementar uma tabela hash, temos
que escolher uma função hash, que satisfaz (2.1). Para facilitar isso, supomos
que o universo de chaves é um conjunto U = [u] de números inteiros. (Para
tratar outros tipos de chaves, costuma-se convertê-los para números inteiros.)
Se cada chave ocorre com a mesma probabilidade, h(i) = i mod m é uma
função hash simples e uniforme. Essa abordagem é conhecida como método
de divisão. O problema com essa função na prática é que não conhecemos a
distribuição de chaves, e ela provavelmente não é uniforme. Por exemplo, se
m é par, o valor hash de chaves pares é par, e de chaves ímpares é ímpar, e se
m = 2k o valor hash consiste nos primeiros k bits. Uma escolha que funciona
na prática é um número primo “suficientemente” distante de uma potência de
2.
O método de multiplicação define

h(c) = bm {Ac}c .

O método funciona para qualquer valor de m, mas depende de uma escolha
adequada de A ∈ R. Knuth propôs A ≈ (

√
5− 1)/2.

Hashing universal Outra idéia: Para qualquer função hash h fixa, sempre
existe um conjunto de chaves, tal que essa função hash gera muitas colisões.
(Em particular, um “adversário” que conhece a função hash pode escolher
chaves c ∈ h−1(i) para qualquer posição i ∈ [m], tal que h(c) = i é constante.
Para evitar isso podemos escolher uma função hash aleatória de uma família
de funções hash.
Uma família H de funções hash U → [m] é universal se

|{h ∈ H | h(c1) = h(c2)}| = |H|/m

ou equivalente
Pr(h(c1) = h(c2)) = 1/m

para qualquer par de chaves c1, c2.
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Teorema 2.3
Se escolhemos uma função hash h ∈ H uniformemente, para uma chave arbi-
trária c o tamanho esperado de lh(c) é

• α, caso c 6∈ H, e

• 1+ α, caso c ∈ H.

Prova. Para chaves c1, c2 seja Xij = [h(c1) = h(c2)] e temos

E[Xij] = Pr(Xij = 1) = Pr(h(c1) = h(c2)) = 1/m

pela universalidade de H. Para uma chave fixa c seja Yc o número de colisões.

E[Yc] = E

[ ∑
c ′∈H
c ′ ̸=c

Xcc ′

]
=

∑
c ′∈H
c ′ ̸=c

E[Xcc ′ ] ≤
∑
c ′∈H
c ′ ̸=c

1/m.

Para uma chave c 6∈ H, o tamanho da lista é Yc, e portanto de tamanho
esperado E[Yc] ≤ n/m = α. Caso c ∈ H, o tamanho da lista é 1 + Yc e com
E[Yc] = (n− 1)/m esperadamente

1+ (n− 1)/m = 1+ α− 1/m < 1+ α.

■
Um exemplo de um conjunto de funções hash universais: Seja c = (c0, . . . , cr)m
uma chave na base m, escolhe a = (a0, . . . , ar)m randomicamente e define

ha =
∑

0≤i≤r

ciai mod m.

Hashing perfeito Hashing é perfeito sem colisões. Isso podemos garantir so-
mente caso conheçemos as chaves a serem inseridos na tabela. Para uma fun-
ção aleatória de uma família universal de funções hash para uma tabela hash
de tamanho m, o número esperado de colisões é E[

∑
i̸=j Xij] =

∑
i̸=j E[Xij] ≤

n2/m. Portanto, caso escolhemos uma tabela de tamanho m > n2 o número
esperado de colisões é menos que um. Em particular, para m > cn2 com c > 1

a probabilidade de uma colisão é Pr(
∑

i̸=j Xij ≥ 1) ≤ E[
∑

i̸=j Xij] ≤ n2/m <

1/c onde a primeira desigualdade segue da desigualdade de Markov.
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2.2. Hashing com endereçamento aberto

Uma abordagem para resolução de colisões, chamada endereçamento aberto, é
escolher uma outra posição para armazenar uma chave, caso h(c) é ocupada.
Uma estratégia para conseguir isso é procurar uma posição livre numa permu-
tação de todos índices restantes. Assim garantimos que um insert tem sucesso
enquanto ainda existe uma posição livre na tabela. Uma função hash h(c, i)
com dois argumentos, tal que h(c, 1), . . . , h(c,m) é uma permutação de [m],
representa essa estratégia.

1 insert(c,H) :=
2 for i in [m]
3 if H[h(c, i)] = free
4 H[h(c,i)]=c
5 return
6
7 lookup(c,H) :=
8 for i in [m]
9 if H[h(c, i)] = free

10 return false
11 if H[h(c, i)] = c

12 return true
13 return false

A função h(c, i) é uniforme, se a probabilidade de uma chave randômica ter
associada uma dada permutação é 1/m!. A seguir supomos que h é uniforme.

Teorema 2.4
As funções lookup e insert precisam no máximo 1/(1−α) testes caso a chave
não está na tabela.

Prova. Seja X o número de testes até encontrar uma posição livre. Temos

E[X] =
∑
i≥1

iPr(X = i) =
∑
i≥1

∑
j≥i

Pr(X = j) =
∑
i≥1

Pr(X ≥ i).

Com Ti o evento que o teste i ocorre e a posição i é ocupada, podemos escrever

Pr(X ≥ i) = Pr(T1∩· · ·∩Ti−1) = Pr(T1)Pr(T2|T1)Pr(T3|T1, T2) · · ·Pr(Ti−1|T1, . . . , Ti−2).

Agora Pr(T1) = n/m, e como h é uniforme Pr(T2|T1) = n − 1/(m − 1) e em
geral

Pr(Tk|T1, . . . Tk−1) = (n− k+ 1)/(m− k+ 1) ≤ n/m = α.
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Portanto Pr(X ≥ i) ≤ αi−1 e

E[X] =
∑
i≥1

Pr(X ≥ i) ≤
∑
i≥1

αi−1 =
∑
i≥0

αi = 1/(1− α).

■
Lema 2.1
Para i < j, temos Hj −Hi ≤ ln j− ln i.

Prova.

Hj −Hi ≤
∫ j
i

1

x
dx = ln j− ln i.

■
Teorema 2.5
Caso α < 1 a função lookup precisa esperadamente 1/α ln 1/(1 − α) testes
caso a chave esteja na tabela, e cada chave tem a mesma probabilidade de ser
procurada.

Prova. Seja c a i-gésima chave inserida. No momento de inserção temos
α = (i − 1)/m e o número esperado de testes T até encontrar a posição livre
foi 1/(1 − (i − 1)/m) = m/(m − (i − 1)), e portanto o número esperado de
testes até encontrar uma chave arbitrária é

E[T ] = 1/n
∑

1≤i≤n

m/(m−(i− 1)) = 1/α
∑

0≤i<n

1/(m− i) = 1/α(Hm−Hm−n)

e com Hm −Hm−n ≤ ln(m) − ln(m− n) temos

E[T ] = 1/α(Hm −Hm−n) < 1/α(ln(m) − ln(m− n)) = 1/α ln(1/(1− α)).

■
Remover elementos de uma tabela hash com endereçamento aberto é mais
difícil, porque a busca para um elemento termina ao encontrar uma posição
livre. Para garantir a corretude de lookup, temos que marcar posições como
“removidas” e continuar a busca nessas posições. Infelizmente, nesse caso,
as garantias da complexidade não mantem-se – após uma série de deleções
e inserções toda posição livre será marcada como “removida” tal que delete
e lookup precisam n passos. Portanto o endereçamento aberto é favorável
somente se temos poucas deleções.
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Funções hash para endereçamento aberto

• Linear: h(c, i) = h(c) + i mod m

• Quadrática: h(c, i) = h(c) + c1i+ c2i
2 mod m

• Hashing duplo: h(c, i) = h1(c) + ih2(c) mod m

Nenhuma das funções é uniforme, mas o hashing duplo mostra um bom de-
sempenho na prática.

2.3. Cuco hashing

Cuco hashing é outra abordagem que procura posições alternativas na tabela
em caso de colisões, com o objetivo de garantir um tempo de acesso constante
no pior caso. Para conseguir isso, usamos duas funções hash h1 e h2, e inse-
rimos uma chave em uma das duas posições h1(c) ou h2(c). Desta forma a
busca e a deleção possuem complexidade constante O(1):

1 lookup(c,H) :=
2 if H[h1(c)] = c or H[h2(c)] = c

3 return true
4 return false
5
6 delete(c,H) :=
7 if H[h1(c)] = c

8 H[h1(c)] := free
9 if H[h2(c)] = c

10 H[h2(c)] := free
Inserir uma chave é simples, caso uma das posições alternativas é livre. No
caso contrário, a solução do cuco hashing é comportar-se como um cuco com
ovos de outras aves que jogá-los fora do seu “ninho”: “insert” ocupa a posição
de uma das duas chaves. A chave “jogada fora” será inserida novamente na
tabela. Caso a posição alternativa dessa chave é livre, a inserção termina.
Caso contrário, o processo se repete. Esse procedimento termina após uma
série de reinserções ou entra num laço infinito. Nesse último caso temos que
realocar todas chaves com novas funções hash.

1 insert(c,H) :=
2 if H[h1(c)] = c or H[h2(c)] = c

3 return
4 p := h1(c)
5 do n vezes
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2. Tabelas hash

6 if H[p] = free
7 H[p] := c

8 return
9 swap(c,H[p])
10 { escolhe a outra posição da chave atual }
11 if p = h1(c)
12 p := h2(c)
13 else
14 p := h1(c)
15 rehash(H)
16 insert(c,H)

Uma maneira de visualizar uma tabela hash com cuco hashing, é usar o
grafo cuco: caso foram inseridas as chaves c1, . . . , cn na tabela nas posi-
ções p1, . . . , pn, o grafo é G = (V,A), com V = [m] é (pi, h2(ci)) ∈ A caso
h1(ci) = pi e (pi, h1(ci)) ∈ A caso h2(ci) = pi, i.e., os arcos apontam para
a posição alternativa. O grafo cuco é um grafo direcionado e eventualmente
possui ciclos. Uma característica do grafo cuco é que uma posição p é eventu-
almente analisada na inserção de uma chave c somente se existe um caminho
de h1(c) ou h2(c) para p. Para a analise é suficiente considerar o grafo cuco
não-direcionado.
Exemplo 2.1
Para chaves de dois dígitos c1c2 seja h1(c) = 3c1 + c2 mod m e h2(c) =
4c1 + c2. Para m = 10 obtemos para uma sequencia aleatória de chaves

c 31 41 59 26 53 58 97
h1(c) 0 3 4 2 8 3 4
h2(c) 3 7 9 4 3 8 3

e a seguinte sequencia de tabelas hash

0 1 2 3 4 5 6 7 8 9
Inicial

31 Inserção 31

31 41 Inserção 41

31 41 59 Inserção 59

31 26 41 59 Inserção 26

31 26 41 59 53 Inserção 53

31 26 58 59 41 53 Inserção 58

31 26 58 97 41 53 59 Inserção 59

O grafo cuco correspondente é
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31 26 58 97 41 53 59

♢

Lema 2.2
Para posições i e j e um c > 1 tal que m ≥ 2cn, a probabilidade de existir
um caminho mínimo de i para j de comprimento d ≥ 1 é no máximo c−d/m.

Prova. Observe que a probabilidade de um item c ter posições i e j como
alternativas é no máximo Pr(h1(c) = i, h2(c) = j) + Pr(h1(c) = j, h2(c) =
i) = 2/m2. Portanto a probabilidade de pelo menos uma das n chaves ter
posições alternativas i e j é no máximo 2n/m2 = c−1/m.
A prova do lema é por indução sobre d. Para d = 1 a afirmação está correto
pela observação acima. Para d > 1 existe um caminho mínimo de compri-
mento d − 1 de i para um k. A probabilidade disso é no máximo c−(d−1)/m

e a probabilidade de existir um elemento com posições alternativas k e j no
máximo c−1/m. Portanto, para um k fixo, a probabilidade existir um cami-
nho de comprimento d é no máximo c−d/m2 e considerando todas posições k
possíveis no máximo c−d/m. ■
Com isso a probabilidade de existir um caminho entre duas chaves i e j, é
igual a probabilidade de existir um caminho começando em h1(i) ou h2(i) e
terminando em h1(j) ou h2(j), que é no máximo 4

∑
i≥1 c

−i/m ≤ 4/m(c −
1) = O(1/m). Logo o número esperado de itens visitados numa inserção é
4n/m(c− 1) = O(1), caso não é necessário reconstruir a tabela hash.

2.4. Filtros de Bloom

Um filtro de Bloom armazena um conjunto de n chaves, com as seguintes
restrições:

• Não é mais possível remover elementos.

• É possível que o teste de pertinência tem sucesso, sem o elemento fazer
parte do conjunto (“false positive”).

Um filtro de Bloom consiste em m bits Bi, 1 ≤ i ≤ m, e usa k funções hash
h1, . . . , hk.
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2. Tabelas hash

1 insert(c,B) :=
2 for i in 1 . . . k

3 bhi(c) := 1

4 end for
5
6 lookup(c,B) :=
7 for i in 1 . . . k

8 if bhi(c) = 0

9 return false
10 return true

Após de inserir n chaves, um dado bit é ainda 0 com probabilidade

p ′ =

(
1−

1

m

)kn

=

(
1−

kn/m

kn

)kn

≈ e−kn/m

que é igual ao valor esperado da fração de bits não setados1. Sendo ρ a fração
de bits não setados realmente, a probabilidade de erradamente classificar um
elemento como membro do conjunto é

(1− ρ)k ≈ (1− p ′)k ≈
(
1− e−kn/m

)k

porque ρ é com alta probabilidade perto do seu valor esperado (Broder e
Mitzenmacher, 2003). Broder e Mitzenmacher (2003) também mostram que
o número ótimo k de funções hash para dados valores de n,m é m/n ln 2 e
com isso temos um erro de classificação ≈ (1/2)k.
Aplicações:

1. Hifenação: Manter uma tabela de palavras com hifenação excepcional
(que não pode ser determinado pelas regras).

2. Comunicação efetiva de conjuntos, p.ex. seleção em bancos de dados
distribuídas. Para calcular um join de dois bancos de dados A, B, pri-
meiramente A filtra os elementos, manda um filtro de Bloom SA para B

e depois B executa o join baseado em SA. Para eliminação de eventuais
elementos classificados erradamente, B manda os resultados para A e A

filtra os elementos errados.

• http://en.m.wikipedia.org/wiki/Locality-sensitive_hashing

1Lembrando que ex ≥ (1 + x/n)n para n > 0.

146

http://en.m.wikipedia.org/wiki/Locality-sensitive_hashing


2.4. Filtros de Bloom

Tabela 2.1.: Complexidade das operações em tabelas hash. Complexidades
em negrito são amortizados.

insert lookup delete

Listas encadeadas Θ(1) Θ(1 + α) Θ(1 + α)
Endereçamento aberto O(1/(1 − α)) O(1/(1 − α)) -
(com/sem sucesso) O(1/α ln 1/(1 − α)) O(1/α ln 1/(1 − α)) -
Cuco Θ(1) Θ(1) Θ(1){tab:summaryhash}
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3. Algoritmos de aproximação

Para vários problemas não conhecemos um algoritmo eficiente. Para proble-
mas NP-completos, em particular, uma solução eficiente é pouco provável. Um
algoritmo de aproximação calcula uma solução aproximada para um problema
de otimização. Diferente de uma heurística, o algoritmo garante a qualidade
da aproximação no pior caso. Dado um problema e um algoritmo de aproxima-
ção A, escrevemos A(x) = y para a solução aproximada da instância x, φ(x, y)
para o valor dessa solução, y∗ para a solução ótima e OPT(x) = φ(x, y∗) para
o valor da solução ótima.

3.1. Problemas, classes e reduções
Definição 3.1
Um problema de otimização Π = (P, φ, opt) é uma relação binária P ⊆ I× S

com instâncias x ∈ I e soluções y ∈ S, junto com

• uma função de otimização (função de objetivo) φ : P → N (ou Q).

• um objetivo: Encontrar mínimo ou máximo

OPT(x) = opt{φ(x, y) | (x, y) ∈ P}

junto com uma solução y∗ tal que f(x, y∗) = OPT(x).

O par (x, y) ∈ P caso y é uma solução para x.

Reductions are as follows.

• From evalution to decision: do a form of binary search (e.g. for ma-
ximization double the value until unfeasible, and the binary search)
in logarithmic time.

• From construction to evaluation: in general unclear; for many NO
problems, in particular self-reducible ones (e.g. SAT): guess solution
elements and evaluate; keep them if the best value remains the
same.

149



3. Algoritmos de aproximação

Uma instância x de um problema de otimização possui soluções S(x) = {y |

(x, y) ∈ P}.

Convenção 3.1
Escrevemos um problema de otimização na forma

Nome

Instância x

Solução y

Objetivo Minimiza ou maximiza φ(x, y).

Com um dado problema de otimização correspondem três problemas:

• Construção: Dado x, encontra a solução ótima y∗ e seu valor OPT(x).

• Avaliação: Dado x, encontra valor ótimo OPT(x).

• Decisão: Dado x e k, decide se OPT(x) ≥ k (maximização) ou OPT(x) ≤
k (minimização).

{def:polimit}
Definição 3.2
Uma relação binária R é polinomialmente limitada se

∃p ∈ poly : ∀(x, y) ∈ R : |y| ≤ p(|x|).

Definição 3.3 (Classes de complexidade)
A classe PO consiste dos problemas de otimização tal que existe um algoritmo
polinomial A com φ(x,A(x)) = OPT(x) para x ∈ I.
A classe NPO consiste dos problemas de otimização tal que

(i) As instâncias x ∈ I são reconhecíveis em tempo polinomial.

(ii) A relação P é polinomialmente limitada.

(iii) Para y arbitrário, polinomialmente limitado: (x, y) ∈ P é decidível em
tempo polinomial.

(iv) φ é computável em tempo polinomial.
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Definição 3.4
Uma redução preservando a aproximação entre dois problemas de minimização
Π1 e Π2 consiste num par de funções f e g (computáveis em tempo polinomial)
tal que para instância x1 de Π1, x2 := f(x1) é instância de Π2 com

OPTΠ2
(x2) ≤ OPTΠ1

(x1) (3.1){eq:rpa1}{eq:rpa1}

e para uma solução y2 de Π2 temos uma solução y1 := g(x1, y2) de Π1 com

φΠ1
(x1, y1) ≤ φΠ2

(x2, y2) (3.2){eq:rpa2}{eq:rpa2}

Uma redução preservando a aproximação fornece uma α-aproximação para Π1

dada uma α-aproximação para Π2, porque

φΠ1
(x1, y1) ≤ φΠ2

(x2, y2) ≤ αOPTΠ2
(x2) ≤ αOPTΠ1

(x1).

Observe que essa definição é vale somente para problemas de minimização. A
definição no caso de maximização é semelhante.

[More complexity classes]

• PTAS: t(n, ϵ) ≈ nf(ϵ).

• EPTAS: t(n, ϵ) ≈ nO(1)f(ϵ).

• FPTAS: t(n, ϵ) ≈ poly(n, 1/ϵ).

We have FPTAS ⊆ EPTAS ⊆ PTAS, and if P 6= NP also FPTAS 6= PTAS
and PTAS 6= APX.
We also have: Theorem:

FTPAS → pseudo-polynomial ⇐⇒ not strongly NP-hard.

[Proof technique] We start with minimization. The main proof technique:
find some structure y, usually a relaxation, such that

• LB(x) = ϕ(x, y) ≤ OPT(x), and then

• ϕ(x,A(x)) ≤ rLB(x),

from which ϕ(x,A(x)) ≤ rOPT(x) follows. Here we design y such that
the solution our algorithm finds is easier evaluated compared to y.
For maximization this becomes:

• UB(x) = ϕ(x, y) ≥ OPT(x), and
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3. Algoritmos de aproximação

• ϕ(x,A(x)) ≥ rUB(x).

3.2. Medidas de qualidade

Uma aproximação absoluta garante que D(x, y) = |OPT(x) −φ(x, y)| ≤ D

para uma constante D e todo x, enquanto uma aproximação relativa garante
que o erro relativo E(x, y) = D(x, y)/max{OPT(x), φ(x, y)} ≤ ϵ ≤ 1 todos
x. Um algoritmo que consegue um aproximação com constante ϵ também
se chama ϵ-aproximativo. Tais algoritmos fornecem uma solução que difere
no máximo um fator constante da solução ótima. A classe de problemas de
otimização que permitem uma ϵ-aproximação em tempo polinomial para uma
constante ϵ se chama APX.
Uma definição alternativa é a taxa de aproximação R(x, y) = 1/(1−E(x, y)) ≥
1. Um algoritmo com taxa de aproximação r se chama r-aproximativo. (Não
tem perigo de confusão com o erro relativo, porque r ≥ 1.)

Nossa definição segue Ausiello et al. (1999). Ela tem a vantagem, de
ser não-ambígua entre o erro relativo e o erro absoluto. Um algoritmo
de minimização que garante no máximo um fator 3 da solução ótima ou
um algoritmo de maximização que garante no mínimo um terço da so-
lução ótima é 2/3-aproximativo ou 3-aproximativo. A definição tem a
desvantagem que ela é pouco intuitivo: seria mais claro, chamar o pri-
meiro algoritmo 3-aproximativo, e o segundo 1/3-aproximativo, usando
simplesmente a taxa de aproximação r = φ(x, y)/OPT(x). Hromkovič
(2001) usa ...

Aproximação relativa

φ(x, y)

OPT(x)

E(x, y) = D(x,y)
OPT

D(x, y)

φ(x, y)

OPT(x)

E(x, y) = D(x,y)
φ(x,y)

D(x, y)
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Exemplo 3.1
Coloração de grafos planares e a problema de determinar a árvore geradora e
a árvore Steiner de grau mínimo (Fürer e Raghavachari, 1994) permitem uma
aproximação absoluta, mas não o problema da mochila.
Os problemas da mochila e do caixeiro viajante métrico permitem uma apro-
ximação absoluta constante, mas não o problema do caixeiro viajante. ♢

4-colorability in O(n2); decision 3 or 4 colors in NP-complete. Corrob.
Fürer e Raghavachari (1994) show how to get MSTs or Steiner trees whose
minimal (maximum) degree is within one of the optimal. Singh e Lau (2007)
extend this result for weighted case of MSTs. They show that it is possible to
get a MST whose weight is at most the weight of an optimal MST of degree
less than k, and whose maximum degree is at most k+ 1.

3.3. Técnicas de aproximação

3.3.1. Algoritmos gulosos

Cobertura de vértices

Algoritmo 3.1 (Cobertura de vértices)
Entrada Grafo não-direcionado G = (V, E).

Saída Cobertura de vértices C ⊆ V .
1 VC-GV(G) :=
2 (C,G) := Reduz(G)
3 if V = ∅ then
4 return C

5 else
6 escolhe v ∈ V : deg(v) = ∆(G) { grau máximo }
7 return C ∪ {v} ∪ VC-GV(G − v)
8 end if

Proposição 3.1
O algoritmo VC-GV é uma O(log |V |)-aproximação.
Prova. Seja Gi o grafo após iteração i e C∗ uma cobertura ótima, i.e., c :=
|C∗| = OPT(G).
A cobertura ótima C∗ todos Gi. Logo, a soma dos graus dos vértices em C∗

(contando somente arestas em Gi) é pelo menos o número de arestas em Gi∑
v∈C∗

δGi
(v) ≥ ‖Gi‖,
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3. Algoritmos de aproximação

e o grau médio dos vértices C∗ em Gi satisfaz∑
v∈C∗

δGi
(v)/c ≥ ‖Gi‖/c.

Como o grau máximo do grafo é pelo menos o grau médio em C∗ temos

∆(Gi) ≥ ‖Gi‖/c,

o que permite estimar∑
0≤i<c

∆(Gi) ≥
∑

0≤i<c

‖Gi‖/c ≥
∑

0≤i<c

‖Gc‖/c = ‖Gc‖ = ‖G‖−
∑

0≤i<c

∆(Gi)

e logo ∑
0≤i<c

∆(Gi) ≥ ‖G‖/2,

i.e. o algoritmo remove em c iterações pelo menos a metade das arestas. Essa
estimativa continua a ser válida, logo após

c dlg ‖G‖e ≤ c d2 log |G|e = O(c log |G|)

iterações não tem mais arestas. Como em cada iteração foi escolhido um
vértice, a taxa de aproximação é log |G|. ■

Algoritmo 3.2 (Cobertura de vértices)
Entrada Grafo não-direcionado G = (V, E).

Saída Um cobertura de vértices C ⊆ V .
1 VC-GE(G) :=
2 (C,G) := Reduz(G)
3 if E = ∅ then
4 return C

5 else
6 escolhe e = {u, v} ∈ E

7 return C ∪ {u, v} ∪ VC-GE(G − {u, v})
8 end if

Proposição 3.2
Algoritmo VC-GE é uma 2-aproximação para VC.

Prova. Cada cobertura C contém pelo menos um dos dois vértices escolhidos,
logo temos ϕVC-GE(G) ≤ 2|C|, e no caso particular da solução ótima também
ϕVC-GE(G) ≤ 2OPT(G). ■
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Algoritmo 3.3 (Cobertura de vértices)
Entrada Grafo não-direcionado G = (V, E).

Saída Cobertura de vértices C ⊆ V .
1 VC-B(G) :=
2 (C,G) := Reduz(G)
3 if V = ∅ then
4 return C

5 else
6 escolhe v ∈ V : deg(v) = ∆(G) { grau máximo }
7 C1 := C ∪ {v} ∪ VC-B(G − v)
8 C2 := C ∪N(v) ∪ VC-B(G − v −N(v))
9 if |C1| < |C2| then

10 return C1

11 else
12 return C2

13 end if
14 end if

Problema da mochila

Knapsack

Instância Um número n de itens com valores vi ∈ N e tamanhos ti ∈ N,
para i ∈ [n], um limite M, tal que ti ≤ M (todo item cabe na
mochila).

Solução Uma seleção S ⊆ [n] tal que
∑

i∈S ti ≤ M.

Objetivo Maximizar o valor total
∑

i∈S vi.

Observação: O problema da mochila é NP-completo. {problem:knapsack}

Como aproximar?

• Idéia: Ordene por vi/ti (“valor médio”) em ordem decrescente e enche
o mochila o mais possível nessa ordem.

Abordagem
1 K−G(vi,ti) :=
2 ordene os itens tal que vi/ti ≥ vj/tj, ∀i < j.
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3 for i ∈ X do
4 if ti < M then
5 S := S ∪ {i}

6 M := M− ti
7 end if
8 end for
9 return S

Aproximação boa?

• Considere

v1 = 1, . . . , vn−1 = 1, vn = M− 1

t1 = 1, . . . , tn−1 = 1, tn = M = kn k ∈ N arbitrário

• Então:

v1/t1 = 1, . . . , vn−1/tn−1 = 1, vn/tn = (M− 1)/M < 1

• K-G acha uma solução com valor φ(x) = n−1, mas o ótimo é OPT(x) =
M− 1.

• Taxa de aproximação:

OPT(x)/φ(x) =
M− 1

n− 1
=

kn− 1

n− 1
≥ kn− k

n− 1
= k

• K-G não possui taxa de aproximação fixa!

• Problema: Não escolhemos o item com o maior valor.

Tentativa 2: Modificação

1 K−G'(vi,ti) :=
2 S1 := K−G(vi,ti) // solução gulosa
3 v1 :=

∑
i∈S1

vi

4 S2 := {argmaxi vi} // maior item
5 v2 :=

∑
i∈S2

vi

6 retorna a maior das duas soluções
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Aproximação boa?
• O algoritmo melhorou?

• Surpresa
Proposição 3.3
K-G’ é uma 2-aproximação, i.e. OPT(x) < 2φK-G ′(x).

Prova. Seja j o primeiro item que K-G não coloca na mochila. Nesse ponto
temos valor e tamanho

v̄j =
∑

1≤i<j

vi ≤ φK-G(x) (3.3)

t̄j =
∑

1≤i<j

ti ≤ M (3.4)

Afirmação: OPT(x) < v̄j + vj. Nesse caso

(a) Seja vj ≤ v̄j.

OPT(x) < v̄j + vj ≤ 2v̄j ≤ 2φK-G(x) ≤ 2φK-G ′

(b) Seja vj > v̄j

OPT(x) < v̄j + vj < 2vj ≤ 2vmax ≤ 2φK-G ′

Prova da afirmação: No momento em que item j não cabe, temos espaço
M − t̄j < tj sobrando. Como os itens são ordenados em ordem de densidade
decrescente, obtemos um limite superior para a solução ótima preenchendo
esse espaço com a densidade vj/tj:

OPT(x) ≤ v̄j + (M− t̄j)
vj

tj
< v̄j + vj.

■

3.3.2. Aproximações com randomização

Randomização
• Idéia: Permite escolhas randômicas (“joga uma moeda”)

• Objetivo: Algoritmos que decidem correta com probabilidade alta.

• Objetivo: Aproximações com valor esperado garantido.

• Minimização: E[φA(x)] ≤ 2OPT(x)

• Maximização: 2E[φA(x)] ≥ OPT(x)
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3. Algoritmos de aproximação

Randomização: Exemplo

Satisfatibilidade máxima, Maximum SAT

Instância Uma fórmula φ ∈ L(V) sobre variáveis V = {v1, . . . , vm}, φ =
C1 ∧ C2 ∧ · · ·∧ Cn em FNC.

Solução Uma atribuição de valores de verdade a : V → B.

Objetivo Maximiza o número de cláusulas satisfeitas

|{Ci | [[Ci]]a = 1}| .

Nossa solução{alg:satr}

1 SAT−R(φ) :=
2 seja φ = φ(v1, . . . , vk)
3 for all i ∈ [1, k] do
4 escolhe vi = 1 com probabilidade 1/2

5 end for

Observação 3.1
A quantidade [[C]]a é o valor da cláusula C na atribuição a. ♢

Aproximação?

• Surpresa: Algoritmo SAT−R é 2-aproximação.

Prova. O valor esperado de uma cláusula C com l variáveis é E[[[C]]] =
Pr([[C]] = 1) = 1 − 2−l ≥ 1/2. Logo o valor esperado do número total T =∑

i∈[n][[Ci]] de cláusulas satisfeitas é

E[T ] = E[
∑
i∈[n]

[[Ci]]] =
∑
i∈[n]

E[[[Ci]]] ≥ n/2 ≥ OPT/2

pela linearidade do valor esperado. ■

Outro exemplo
Cobertura de vértices guloso e randomizado.

1 VC−RG(G) :=
2 seja w̄ :=

∑
v∈V deg(v)

3 C := ∅

158



3.4. Esquemas de aproximação

4 while E 6= ∅ do
5 escolhe v ∈ V com probabilidade deg(v)/w̄
6 C := C ∪ {v}

7 G := G− v

8 end while
9 return C ∪ V

Resultado: E[ϕVC-RG(x)] ≤ 2OPT(x).

3.3.3. Programação linear

Técnicas de programação linear são frequentemente usadas em algoritmo de
aproximação. Entre eles são o arredondamento randomizado e algoritmos
primais-duais.

Exemplo 3.2 (Arredondamento para cobertura por conjuntos)
Considere o problema de cobertura por conjuntos

minimiza
∑
i∈[n]

wixi, (3.5) {ilp:cpc}{ilp:cpc}

sujeito a
∑

i∈[n]|u∈Ci

xi ≥ 1, ∀u ∈ U,

xi ∈ {0, 1}, ∀i ∈ [n].

Seja fe a frequência de um elemento e, i.e. o número de conjuntos que contém
e e f a maior frequência. Um algoritmo de arredondamento simples é dado
por
Teorema 3.1
A seleção dos conjuntos com xi ≥ 1/f na relaxação linear de (3.5) é uma
f-aproximação do problema de cobertura de conjuntos.

Prova. Como |{i ∈ [n] | u ∈ Ci}| ≤ f, temos xi ≥ 1/f em média sobre esse
conjunto. Logo existe, para cada u ∈ U um conjunto com xi ≥ 1/f que cobre
u e a seleção é uma solução válida. O arrendondamento aumenta o custo por
no máximo um fator f, logo temos uma f-aproximação. ■ ♢

3.4. Esquemas de aproximação

Novas considerações

• Frequentemente uma r-aproximação não é suficiente. r = 2: 100% de
erro!
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3. Algoritmos de aproximação

• Existem aproximações melhores? p.ex. para SAT? problema do mochila?

• Desejável: Esquema de aproximação em tempo polinomial (EATP);
polynomial time approximation scheme (PTAS)

– Para cada entrada e taxa de aproximação r:

– Retorne r-aproximação em tempo polinomial.

Um exemplo: Mochila máxima (Knapsack)

• Problema da mochila (veja página 155):

• Algoritmo MM-PD com programação dinâmica (pág. 226): tempoO(n
∑

i∈[n] vi).

• Desvantagem: Pseudo-polinomial.

Denotamos uma instância do problema da mochila com I = ({vi}, {ti}). Seja
r > 1 uma qualidade de aproximação desejada.

1 MM−PTAS(I,r) :=
2 vmax := maxi{vi}

3 t :=
⌊
log2

r−1
r

vmax/n
⌋

4 v ′
i := bvi/2tc para i = 1, . . . , n

5 Define a nova instância I ′ = ({v ′
i}, {ti})

6 return MM-PD(I ′)

Teorema 3.2
MM-PTAS é uma r-aproximação em tempo O(rn3/(r− 1)).

Prova. A complexidade da preparação nas linhas 1–3 é O(n). A chamada
para MM-PD custa

O

(
n

∑
i∈[n]

v ′
i

)
= O

(
n

∑
i∈[n]

vi

((r− 1)/r)(vmax/n)

)

= O

(
r

r− 1
n2

∑
i∈[n]

vi/vmax

)
= O

(
r

r− 1
n3

)
.

Seja S = MM-PTAS(I) a solução obtida pelo algoritmo e S∗ uma solução
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3.4. Esquemas de aproximação

ótima.

φMM-PTAS(I, S) =
∑
i∈S

vi ≥
∑
i∈S

2t
⌊
vi/2

t
⌋

definição de b·c

≥
∑
i∈S∗

2t
⌊
vi/2

t
⌋

otimalidade de MM-PD sobre v ′
i

≥
∑
i∈S∗

vi − 2t (A.2)

=

( ∑
i∈S∗

vi

)
− 2t|S∗|

≥ OPT(I) − 2tn

Portanto

OPT(I) ≤ φMM-PTAS(I, S) + 2tn ≤ φMM-PTAS(I, S) +
OPT(I)
vmax

2tn

⇐⇒ OPT(I)
(
1−

2tn

vmax

)
≤ φMM-PTAS(I, S)

e com 2tn/vmax ≤ (r− 1)/r

⇐⇒ OPT(I) ≤ rφMM-PTAS(I, S).

■
Um EATP frequentemente não é suficiente para resolver um problema ade-
quadamente. Por exemplo temos um EATP para

• o problema do caixeiro viajante euclidiano com complexidadeO(n3000/ϵ)
(Arora, 1996);

• o problema do mochila múltiplo com complexidade O(n12(log 1/ϵ)/e8

)
(Chekuri, Kanna, 2000);

• o problema do conjunto independente máximo em grafos com complexi-
dade O(n(4/π)(1/ϵ2+1)2(1/ϵ2+2)2) (Erlebach, 2001).

Para obter uma aproximação com 20% de erro, i.e. ϵ = 0.2 obtemos algoritmos
com complexidade O(n15000), O(n375000) e O(n523804), respectivamente!
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3. Algoritmos de aproximação

3
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1 1
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Figura 3.1.: Grafo com fecho métrico.{fig:gfm}

3.5. Aproximando o problema da árvore de Steiner mínima

Seja G = (V,A) um grafo completo, não-direcionado com custos ca ≥ 0 nos
arcos. O problema da árvore Steiner mínima (ASM) consiste em achar o
subgrafo conexo mínimo que inclui um dado conjunto de vértices necessários
ou terminais R ⊆ V . Esse subgrafo sempre é uma árvore (ex. 3.1). O conjunto
V \ R forma os vértices Steiner. Para um conjunto de arcos A, define o custo
c(A) =

∑
a∈A ca.

Observação 3.2
ASM é NP-completo. Para um conjunto fixo de vértices Steiner V ′ ⊆ V \R, a
melhor solução é a árvore geradora mínima sobre R∪V ′. Portanto a dificuldade
é a seleção dos vértices Steiner da solução ótima. ♢

Definição 3.5
Os custos são métricos se eles satisfazem a desigualdade triangular, i.e.

cij ≤ cik + ckj

para qualquer tripla de vértices i, j, k.

Teorema 3.3
Existe uma redução preservando a aproximação de ASM para a versão métrica
do problema.

Prova. O fecho métrico de G = (V,A) é um grafo G ′ completo sobre vértices
e com custos c ′

ij := dij, sendo dij o comprimento do menor caminho entre i

e j em G. Evidentemente c ′
ij ≤ cij e portanto (3.1) é satisfeita. Para ver que

(3.2) é satisfeita, seja T ′ uma solução de ASM em G ′. Define T como união de
todos caminhos definidos pelos arcos em T ′, menos um conjunto de arcos para
remover eventuais ciclos. O custo de T é no máximo c(T ′) porque o custo de
todo caminho é no máximo o custo da aresta correspondente em T ′. ■
Consequência: Para o problema do ASM é suficiente considerar o caso métrico.
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3.6. Aproximando o PCV

2

2

1 1

1

Figura 3.2.: AGM sobre R e melhor solução. : vértice em R, : vértice
Steiner. {fig:agmex}

{th:asm}
Teorema 3.4
O AGM sobre R é uma 2-aproximação para o problema do ASM.

Prova. Considere a solução ótima S∗ de ASM. Duplica todas arestas1 tal
que todo vértice possui grau par. Encontra um ciclo Euleriano nesse grafo.
Remove vértices duplicados nesse caminho. O custo do caminho C obtido
dessa forma não é mais que o dobro do custo original: o grafo com todas
arestas custa 2c(S∗) e a remoção de vértices duplicados não aumenta esse
custo, pela metricidade. Como esse caminho é uma árvore geradora, temos
c(A) ≤ c(C) ≤ 2c(S∗) para AGM A. ■

3.6. Aproximando o PCV

Teorema 3.5
Para qualquer função α(n) computável em tempo polinomial o PCV não pos-
sui α(n)-aproximação em tempo polinomial, caso P 6= NP.

Prova. Via redução de HC para PCV. Para uma instância G = (V,A) de HC
define um grafo completo G ′ com

ca =

{
1, a ∈ A,

α(n)n, caso contrário.

Se G possui um ciclo Hamiltoniano, então o custo da menor rota é n. Caso
contrário qualquer rota usa ao menos uma aresta de custo α(n)n e portanto
o custo total é ≥ α(n)n. Portanto, dado uma α(n)-aproximação de PCV
podemos decidir HC em tempo polinomial. ■

1Isso transforma G num multigrafo.
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3. Algoritmos de aproximação

Caso métrico No caso métrico podemos obter uma aproximação melhor.
Determina uma rota como segue:

1. Determina uma AGM A de G.

2. Duplica todas arestas de A.

3. Acha um ciclo Euleriano nesse grafo.

4. Remove vértices duplicados.

Teorema 3.6
O algoritmo acima define uma 2-aproximação.

Prova. A melhor solução do PCV menos uma aresta é uma árvore geradora
de G. Portanto c(A) ≤ OPT. A solução S obtida pelo algoritmo acima satisfaz
c(S) ≤ 2c(A) e portanto c(S) ≤ 2OPT, pelo mesmo argumento da prova do
teorema 3.4. ■
O fator 2 dessa aproximação é resultado do passo 2 que duplica todas arestas
para garantir a existência de um ciclo Euleriano. Isso pode ser garantido
mais barato: A AGM A possui um número par de vértices com grau ímpar
(ver exercício 3.2), e portanto podemos calcular um emparelhamento perfeito
mínimo E entre esse vértices. O grafo com arestas A∪E possui somente vértices
com grau par e portanto podemos aplicar os restantes passos nesse grafo.

Teorema 3.7 (Cristofides)
A algoritmo usando um emparelhamento perfeito mínimo no passo 2 é uma
3/2-aproximação.

Prova. O valor do emparelhamento E não é mais que OPT/2: remove vértices
não emparelhados em E da solução ótima do PCV. O ciclo obtido dessa forma
é a união dois emparelhamentos perfeitos E1 e E2 formados pelas arestas pares
ou ímpares no ciclo. Com E1 o emparelhamento de menor custo, temos

c(E) ≤ c(E1) ≤ (c(E1) + c(E2))/2 = OPT/2

e portanto

c(S) = c(A) + c(E) ≤ OPT + OPT/2 = 3/2OPT.

■
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3.7. Aproximando problemas de cortes

Figura 3.3.: Identificação de dois terminais e um corte no grafo reduzido. Vér-
tices em verde, terminais em azul. O grafo reduzido possui múl-
tiplas arestas entre vértices. {fig:cmm1}

3.7. Aproximando problemas de cortes

Seja G = (V,A, c) um grafo conectado com pesos c nas arestas. Lembramos
que um corte C é um conjunto de arestas que separa o grafo em dois partes
S

.
∪ V \ S. Dado dois vértices s, t ∈ V , o problema de achar um corte mínimo

que separa s e t pode ser resolvido via fluxo máximo em tempo polinomial.
Generalizações desse problema são:

• Corte múltiplo mínimo (CMM): Dado terminais s1, . . . , sk determine o
menor corte C que separa todos.

• k-corte mínimo (k-CM): Mesmo problema, sem terminais definidos. (Ob-
serve que todos k componentes devem ser não vazios).

Fato 3.1
CMM é NP-difícil para qualquer k ≥ 3. k-CM possui uma solução polinomial
em tempo O(nk2

) para qualquer k, mas é NP-difícil, caso k faz parte da
entrada (Goldschmidt e Hochbaum, 1988).

Solução de CMM Chamamos um corte que separa um vértice dos outros um
corte isolante. Idéia: A união de cortes isolantes para todo si é um corte múl-
tiplo. Para calcular o corte isolante para um dado terminal si, identificamos
os restantes terminais em um único vértice S e calculamos um corte mínimo
entre si e S. (Na identificação de vértices temos que remover self-loops, e
somar os pesos de múltiplas arestas.)
Isso leva ao algoritmo
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3. Algoritmos de aproximação

{alg:cmm}
Algoritmo 3.4 (CI)
Entrada Grafo G = (V,A, c) e terminais s1, . . . , sk.

Saída Um corte múltiplo que separa os si.
1 Para cada i ∈ [1, k]: Calcula o corte isolante Ci de si.
2 Remove o maior desses cortes e retorne a união dos

restantes.

Teorema 3.8
Algoritmo 3.4 é uma 2− 2/k-aproximação.

Prova. Considere o corte mínimo C∗. De acordo com a Fig. 3.4 ele pode ser
representado pela união de k cortes que separam os k componentes individu-
almente:

C∗ =
∪

i∈[k]

C∗
i .

Cada aresta de C∗ faz parte das cortes das duas componentes adjacentes, e
portanto ∑

i∈[k]

w(C∗
i ) = 2w(C∗)

e ainda w(Ci) ≤ w(C∗
i ) para os cortes Ci do algoritmo 3.4, porque usamos o

corte isolante mínimo de cada componente. Logo, para o corte C retornado
pelo algoritmo temos

w(C) ≤ (1− 1/k)
∑
i∈[k]

w(Ci) ≤ (1− 1/k)
∑
i∈[k]

w(C∗
i ) ≤ 2(1− 1/k)w(C∗).

■
A análise do algoritmo é ótimo, como o exemplo da Fig. 3.5 mostra. O menor
corte que separa si tem peso 2− ϵ, portanto o algoritmo retorne um corte de
peso (2 − ϵ)k − (2 − ϵ) = (k − 1)(2 − ϵ), enquanto o menor corte que separa
todos terminais é o ciclo interno de peso k.

Solução de k-CM Problema: Como saber a onde cortar?
Fato 3.2
Existem somente n−1 cortes diferentes num grafo. Eles podem ser organizados
numa árvore de Gomory-Hu (AGH) T = (V, T). Cada aresta dessa árvore
define um corte associado em G pelos dois componentes após a sua remoção.
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s2

s3

s1

C∗
2

C∗
2

C∗
1

Figura 3.4.: Corte múltiplo e decomposição em cortes isolantes.{fig:cmm2}

2− ϵ

1
2− ϵ

1

2− ϵ
1

2− ϵ

1
2− ϵ

1

2− ϵ
1

s1

si

Figura 3.5.: Exemplo de um grafo em que o algoritmo 3.4 retorna uma 2−2/k-
aproximação.{fig:cmm3}
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3. Algoritmos de aproximação

1. Para cada u, v ∈ V o menor corte u–v em G é igual a o menor corte u–v
em T (i.e. a aresta de menor peso no caminho único entre u e v em T).

2. Para cada aresta a ∈ T , w ′(a) é igual a valor do corte associado.

Por consequência, a AGH codifica o valor de todos cortes em G.
Ele pode ser calculado determinando n− 1 cortes s–t mínimos:

1. Define um grafo com um único vértice que representa todos vértices do
grafo original. Chama um vértice que representa mais que um vértice
do grafo original gordo.

2. Enquanto existem vértices gordos:
a) Escolhe um vértice gordo e dois vértices do grafo original que ele

representa.
b) Calcula um corte mínimo entre esses vértices.
c) Separa o vértice gordo de acordo com o corte mínimo encontrado.

Observação: A união dos cortes definidos por k− 1 arestas na AGH separa G

em pelo menos k componentes. Isso leva ao seguinte algoritmo.
{alg:kcm}

Algoritmo 3.5 (KCM)
Entrada Grafo G = (V,A, c).

Saida Um k-corte.

1 Calcula uma AGH T em G.
2 Forma a união dos k− 1 cortes mais leves

definidos por k− 1 arestas em T.

Teorema 3.9
Algoritmo 3.5 é uma 2− 2/k-aproximação.

Prova. Seja C∗ =
∪

i∈[k] C
∗
i um corte mínimo, decomposto igual à prova

anterior. O nosso objetivo é demonstrar que existem k − 1 cortes definidos
por uma aresta em T que são mais leves que os C∗

i .
Removendo C∗ de G gera componentes V1, . . . , Vk: Define um grafo sobre
esses componentes contraindo os vértices de uma componente, com arcos da
AGH T entre os componentes, e eventualmente removendo arcos até obter
uma nova árvore T ′. Seja C∗

k o corte de maior peso, e define Vk como raiz
da árvore. Desta forma, cada componente V1, . . . , Vk−1 possui uma aresta
associada na direção da raiz. Para cada dessas arestas (u, v) temos

w(C∗
i ) ≥ w ′(u, v)
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3.8. Aproximando empacotamento unidimensional

porque C∗
i isola o componente Vi do resto do grafo (particularmente separa u

e v), e w ′(u, v) é o peso do menor corte que separa u e v. Logo

w(C) ≤
∑
a∈T ′

w ′(a) ≤
∑

1≤i<k

w(C∗
i ) ≤ (1−1/k)

∑
i∈[k]

w(C∗
i ) = 2(1−1/k)w(C∗).

■

3.8. Aproximando empacotamento unidimensional

Dado n itens com tamanhos si ∈ Z+, i ∈ [n] e contêineres de capacidade
S ∈ Z+ o problema do empacotamento unidimensional é encontrar o menor
número de contêineres em que os itens podem ser empacotados.

Empacotamento unidimensional (min-EU) (Bin packing)

Entrada Um conjunto de n itens com tamanhos si ∈ Z+, i ∈ [n] e o
tamanho de um contêiner S.

Solução Uma partição de [n] = C1∪ · · ·∪Cm tal que
∑

i∈Ck
si ≤ S para

k ∈ [m].

Objetivo Minimiza o número de partes (“contêineres”) m.

A versão de decisão do empacotamento unidimensional (EU) pede decidir se
os itens cabem em m contêineres.
Fato 3.3
EU é fortemente NP-completo.

{prop:bp1}
Proposição 3.4
Para um tamanho S fixo EU pode ser resolvido em tempo O(nSS

).

Prova. Podemos supor, sem perda de generalidade, que os itens possuem
tamanhos 1, 2, . . . , S − 1. Um padrão de alocação de um contêiner pode ser
descrito por uma tupla (t1, . . . , tS−1) sendo ti o número de itens de tamanho
i. Seja T o conjunto de todos padrões que cabem num contêiner. Como
0 ≤ ti ≤ S o número total de padrões T é menor que (S+ 1)S−1 = O(SS).
Uma ocupação de m contêineres pode ser descrito por uma tupla (n1, . . . , nT )
com ni sendo o número de contêineres que usam padrão i. O número de
contêineres é no máximo n, logo 0 ≤ ni ≤ n e o número de alocações diferentes
é no máximo (n+1)T = O(nT ). Logo podemos enumerar todas possibilidades
em tempo polinomial. ■
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3. Algoritmos de aproximação

{prop:bp2}
Proposição 3.5
Para um m fixo, EU pode ser resolvido em tempo pseudo-polinomial.

Prova. Seja B(S1, . . . , Sm, i) ∈ {falso, verdadeiro} a resposta se itens i, i +
1, . . . , n cabem em m contêineres com capacidades S1, . . . , Sm. B satisfaz

B(S1, . . . , Sm, i) =

{∨
1≤j≤m
si≤Sj

B(S1, . . . , Sj − sj, . . . , Sm, i+ 1), i ≤ n,

verdadeiro, i > n,

e B(S, . . . , S, 1) é a solução do EU2. A tabela B possui no máximo n(S+ 1)m

entradas, cada uma computável em tempo O(m), logo o tempo total é no
máximo O(mn(S+ 1)m). ■

Observação 3.3
Com um fator adicional de O(logm) podemos resolver também min-EU, pro-
curando o menor i tal que B(S, . . . , S︸ ︷︷ ︸

i vezes

, 0, . . . , 0, n) é verdadeiro. ♢

A proposição 3.4 pode ser melhorada usando programação dinâmica.
{prop:bp3}

Proposição 3.6
Para um número fixo k de tamanhos diferentes, min-EU pode ser resolvido
em tempo O(n2k).

Prova. Seja B(i1, . . . , ik) o menor número de contêineres necessário para
empacotar ij itens do j-ésimo tamanho e T o conjunto de todas padrões de
alocação de um contêiner. B satisfaz

B(i1, . . . , ik) =

{
1+ min t∈T

t≤i
B(i1 − t1, . . . , ik − tk), caso (i1, . . . , ik) 6∈ T ,

1, caso contrário,

e B(n1, . . . , nk) é a solução do EU, com ni o número de itens de tamanho i

na entrada. A tabela B tem no máximo nk entradas. Como o número de itens
em cada padrão de alocação é no máximo n, temos |T | ≤ nk e logo o tempo
total para preencher B é no máximo O(n2k). ■

Corolário 3.1
Para um tamanho S fixo min-EU pode ser resolvido em tempo O(n2S).

2Observe que a disjunção vazia é falsa.
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3.8. Aproximando empacotamento unidimensional

Abordagem prática?

• Idéia simples: Próximo que cabe (PrC).

• Por exemplo: Itens 6, 7, 6, 2, 5, 10 com limite 12.

6 7 6

2

5 10

Aproximação?

• Interessante: PrC é 2-aproximação.

• Observação: PrC é um algoritmo on-line.

Prova. Seja B o número de contêineres usadas, V =
∑

i∈[n] si. Como dois
contêineres consecutivos contém uma soma > 1, temos bB/2c < V e com
B/2− 1/2 ≤ bB/2c ainda B− 1 < 2V ou B ≤ 2V. Mas precisamos pelo menos
dVe contêineres, logo dVe ≤ OPT(x). Portanto, φPrC(x) ≤ 2V ≤ 2 dVe ≤
2OPT(x). ■

Aproximação melhor?

• Isso é a melhor estimativa possível para este algoritmo!

• Considere os 4n itens

1/2, 1/2n, 1/2, 1/2n, . . . , 1/2, 1/2n︸ ︷︷ ︸
2n vezes

• O que faz PrC? φPrC(x) = 2n: contêineres com
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1/2

1/(2n)

1/2

1/(2n)

1/2

1/(2n)

1/2

1/(2n)

1/2

1/(2n)

1/2

1/(2n)

. . .

• Ótimo: n contêineres com dois elementos de 1/2 + um com 2n elementos
de 1/2n. OPT(x) = n = 1.

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/(2n)

1/(2n)

1/(2n)

1/(2n)

1/(2n)

1/(2n)

. . .

...

• Portanto: Assintoticamente a taxa de aproximação 2 é estrito.

Melhores estratégias

• Primeiro que cabe (PiC), on-line, com “estoque” na memória

• Primeiro que cabe em ordem decrescente: PiCD, off-line.

• Taxa de aproximação?

φPiC(x) ≤ d1.7OPT(x)e
φPiCD(x) ≤ 1.5OPT(x) + 1

Prova. (Da segunda taxa de aproximação.) Considere a partição A∪B∪C∪
D = {v1, . . . , vn} com

A = {vi | vi > 2/3}

B = {vi | 2/3 ≥ vi > 1/2}

C = {vi | 1/2 ≥ vi > 1/3}

D = {vi | 1/3 ≥ vi}

PiCD primeiro vai abrir |A| contêineres com os itens do tipo A e depois |B|

contêineres com os itens do tipo B. Temos que analisar o que acontece com
os itens em C e D.
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3.8. Aproximando empacotamento unidimensional

Supondo que um contêiner contém somente itens do tipo D, os outros contêi-
neres tem espaço livre menos que 1/3, senão seria possível distribuir os itens
do tipo D para outros contêineres. Portanto, nesse caso

B ≤
⌈

V

2/3

⌉
≤ 3/2V + 1 ≤ 3/2OPT(x) + 1.

Caso contrário (nenhum contêiner contém somente itens tipo D), PiCD en-
contra a solução ótima. Isso pode ser justificado pelas seguintes observações:

1) O número de contêineres sem itens tipo D é o mesmo (eles são os últimos
distribuídos em não abrem um novo contêiner). Logo é suficiente mostrar

φPiCD(x \D) = OPT(x \D).

2) Os itens tipo A não importam: Sem itens D, nenhum outro item cabe
junto com um item do tipo A. Logo:

φPiCD(x \D) = |A|+φPiCD(x \ (A ∪D)).

3) O melhor caso para os restantes itens são pares de elementos em B e C:
Nessa situação, PiCD encontra a solução ótima.

■

Garantia ou aproximação melhor?

• Johnson (1973, Tese de doutorado)

φPiCD(x) ≤ 11/9OPT(x) + 4

• Baker (1985)
φPiCD(x) ≤ 11/9OPT(x) + 3

• Uma variante de PiCD (Johnson e Garey, 1985):

φPiCDM(x) ≤ 71/60OPT(x) + 31/6

3.8.1. Um esquema de aproximação assintótico para min-EU

Duas ideias permitem aproximar min-EU em (1+ϵ)OPT(I)+1 para ϵ ∈ (0, 1].
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3. Algoritmos de aproximação

Ideia 1: Arredondamento Para uma instância I, define uma instância R

arredondada como segue:

1. Ordene os itens de forma não-decrescente e forma grupos de k itens.

2. Substitui o tamanho de cada item pelo tamanho do maior elemento no
seu grupo.

{lem:bp-ptas1}
Lema 3.1
Para uma instância I e a instância R arredondada temos

OPT(R) ≤ OPT(I) + k

Prova. Supõe que temos uma solução ótima para I. Os itens do i-ésimo
grupo de R cabem nos lugares dos itens do i + 1-ésimo grupo dessa solução.
Para o último grupo de R temos que abrir no máximo k contêineres. ■

Ideia 2: Descartando itens menores
{lem:bp-ptas2}

Lema 3.2
Supõe temos temos um empacotamento para itens de tamanho maior que s0
em B contêineres. Então existe um empacotamento de todos itens com no
máximo

max
{
B,

∑
i∈[n]

si/(S− s0) + 1
}

contêineres.

Prova. Empacota os itens menores gulosamente no primeiro contêiner com
espaço suficiente. Sem abrir um novo contêiner o limite é obviamente correto.
Caso contrário, supõe que precisamos B ′ contêineres. B ′−1 contêineres contém
itens de tamanho total mais que S − s0. A ocupação total W deles tem que
ser menor que o tamanho total dos itens, logo

(B ′ − 1)(S− s0) ≤ W ≤
∑
i∈[n]

si.

■

Juntando as ideias
Teorema 3.10
Para ϵ ∈ (0, 1] podemos encontrar um empacotamento usando no máximo
(1+ ϵ)OPT(I) + 1 contêineres em tempo O(n16/ϵ2

).
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3.8. Aproximando empacotamento unidimensional

Prova. O algoritmo tem dois passos:

1. Empacota todos itens de tamanho maior que s0 = dϵ/2 Se usando arre-
dondamento.

2. Empacota os itens menores depois.

Seja I ′ a instância com os n ′ ≤ n itens maiores. No primeiro passo, formamos
grupos com

⌊
n ′ϵ2/4

⌋
itens. Isso resulta em no máximo

n ′

bn ′ϵ2/4c
≤ 2n ′

n ′ϵ2/4
=

8

ϵ2

grupos. (A primeira desigualdade usa bxc ≥ x/2 para x ≥ 1. Podemos supor
que n ′ϵ2/4 ≥ 1, i.e. n ′ ≥ 4/ϵ2. Caso contrário podemos empacotar os itens
em tempo constante usando a proposição 3.6.)
Arredondando essa instância de acordo com lema 3.1 podemos obter uma
solução em tempo O(n16/ϵ2

) pela proposição 3.6. Sabemos que OPT(I ′) ≥
n ′ dϵ/2 Se /S ≥ n ′ϵ/2. Logo temos uma solução com no máximo

OPT(I ′) +
⌊
nϵ2/4

⌋
≤ OPT(I ′) + n ′ϵ2/4 ≤ (1+ ϵ/2)OPT(I ′) ≤ (1+ ϵ/2)OPT(I)

contêineres.
O segundo passo, pelo lema 3.2, produz um empacotamento com no máximo

max
{
(1+ ϵ/2)OPT(I),

∑
i∈[n]

si/(S− s0) + 1

}

contêineres, mas∑
i∈[n] si

S− s0
≤

∑
i∈[n] si

S(1− ϵ/2)
≤ OPT(I)

1− ϵ/2
≤ (1+ ϵ)OPT(I).

■

• Give all the examples mentioned on the slides and some extra examples
which illustrate the underlying techniques.

• Jeffrey John Hollis and John Kenneth Montague Moody?

• Incorporate some of the stuff in Johnson’s “The many limits of appro-
ximation” column.
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3. Algoritmos de aproximação

3.9. Aproximando problemas de sequênciamento

Problemas de sequênciamento recebem nomes da forma

α | β | γ

com campos

Máquina α

1 Um processador
P Processadores paralelos
Q Processadores relacionados
R Processadores arbitrários

Restrições β

Di Prazo máximo (deadline)
di Prazo previsto (due dates)
ri Tempo de liberação (release time)
pi = p Tempo uniforme p

prec Precedências

Função objetivo γ

Cmax Maior tempo de término (maximum completion time)∑
i Ci Tempo de término total (total completion time)

Li Atraso (lateness) Ci − di

Ti Tardiness max{Li, 0}

Relação com empacotamento unidimensional:

tempo ou tamanho

processadores ou contêineres

• Empacotamento unidimensional: Dado Cmax minimiza o número de pro-
cessadores.

• P || Cmax: Dado um número de contêineres, minimiza o tamanho dos
contêineres.
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3.9. Aproximando problemas de sequênciamento

Sequenciamento em processores paralelos (P || Cmax)

Entrada O número m de processadores e n tarefas com tempo de execu-
ção pi, i ∈ [n].

Solução Um sequenciamento, definido por uma alocação M1

.
∪ · · ·

.
∪

Mm = [n] das tarefas às máquinas.

Objetivo Minimizar o makespan (tempo de término) Cmax = maxj∈[m] Cj,
com Cj =

∑
i∈Mj

pi o tempo de término da máquina j.

Fato 3.4
O problema P || Cmax é fortemente NP-completo.

Um limite inferior para C∗
max = OPT é

LB = max
{

max
i∈[n]

pi,
∑
i∈[n]

pi/m
}
.

Uma classe de algoritmos gulosos para este problema são os algoritmos de
sequenciamento em lista (inglês: list scheduling). Eles processam as tarefas
em alguma ordem, e alocam a tarefa atual sempre à máquina de menor tempo
de término atual. {prop:list}
Proposição 3.7
Sequenciamento em lista com ordem arbitrária permite uma 2−1/m-aproximação
em tempo O(n logn).

Prova. Seja Cmax o resultado do sequenciamento em lista. Considera uma
máquina com tempo de término Cmax. Seja j a última tarefa alocada nessa
máquina e C o término da máquina antes de alocar tarefa j. Logo,

Cmax = C+ pj ≤
∑

i∈[j−1]

pi/m+ pj ≤
∑
i∈[n]

pi/m− pj/m+ pj

≤ LB + (1− 1/m)LB = (2− 1/m)LB ≤ (2− 1/m)C∗
max.

A primeira desigualdade é correta, porque alocando tarefa j a máquina tem
tempo de término mínimo. Usando uma fila de prioridade a máquina com o
menor tempo de término pode ser encontrada em tempo O(logn). ■

{obs:limits}
Observação 3.4
Pela prova da proposição 3.7 temos

LB ≤ C∗
max ≤ 2LB.

♢
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3. Algoritmos de aproximação

O que podemos ganhar com algoritmos off-line? Uma abordagem é ordenar
as tarefas por tempo execução não-crescente e aplicar o algoritmo gulos. Essa
abordagem é chamada LPT (largest processing time).
Proposição 3.8
LPT é uma 4/3−m/3-aproximação em tempo O(n logn).
Prova. Seja p1 ≥ p2 ≥ · · · ≥ pn e supõe que isso é o menor contra-exemplo
em que o algoritmo retorne Cmax > (4/3 −m/3)C∗

max. Não é possível que a
alocação do item j < n resulta numa máquina com tempo de término Cmax,
porque p1, . . . , pj seria um contra-exemplo menor (mesmo Cmax, menor C∗

max).
Logo a alocação de pn define o resultado Cmax.
Caso pn ≤ C∗

max/3 pela prova da proposição 3.7 temos Cmax ≤ (4/3 −
m/3)C∗

max, uma contradição. Mas caso pn > C∗
max/3 todas tarefas possuem

tempo de execução pelo menos C∗
max/3 e no máximo duas podem ser execu-

tadas em cada máquina. Logo Cmax ≤ 2/3C∗
max, outra contradição. ■

3.9.1. Um esquema de aproximação para P || Cmax

Pela observação 3.4 podemos reduzir o P || Cmax para o empacotamento unidi-
mensional via uma busca binária no intervalo [LB, 2LB]. Pela proposição 3.5
isso é possível em tempo O(log LB mn(2LB + 1)m).
Com mais cuidado a observação permite um esquema de aproximação em
tempo polinomial assintótico: similar com o esquema de aproximação para
empacotamento unidimensional, vamos remover elementos menores e arre-
dondar a instância.

Algoritmo 3.6 (Sequencia)
Entrada Uma instância I de P || Cmax, um término máximo C e um

parâmetro de qualidade ϵ.
1 Sequencia(I,C,ϵ):=
2 remove as tarefas menores com pj < ϵC, j ∈ [n]

3 arredonda cada pj ∈ [ϵC(1 + ϵ)i, ϵC(1 + ϵ)i+1) para algum i

para p ′
j = ϵC(1 + ϵ)i

4 resolve a instância arredondada com programação
dinâmica (proposição 3.6)

5 empacota os itens menores gulosamente , usando novas
máquinas para manter o término (1 + ϵ)C

{lem:pcmax}
Lema 3.3
O algoritmo Sequencia gera um sequenciamento que termina em no máximo
(1 + ϵ)C em tempo O(n2dlog1+ϵ 1/ϵe). Ele não usa mais máquinas que o
mínimo necessário para executar as tarefas com término C
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3.9. Aproximando problemas de sequênciamento

Prova. Para cada intervalo válido temos ϵC(1 + ϵ)i ≤ C, logo o número de
intervalos é no máximo k = dlog1+ϵ 1/ϵe. O valor k também é um limite
para o número de valores p ′

j distintos e pela proposição 3.6 o terceiro passo
resolve a instância arredondada em tempo O(n2k). Essa solução com os itens
de tamanho original termina em no máximo (1+ ϵ)C, porque pj/p

′
j < 1+ ϵ.

O número mínimo de máquinas para executar as tarefas em tempo C é o valor
m := min-EU(C, (pj)j∈[n]) do problema de empacotamento unidimensional
correspondente. Caso o último passo do algoritmo não usa novas máquinas
ele precisa ≤ m máquinas, porque a instância arredondada foi resolvida exa-
tamente. Caso contrário, uma tarefa com tempo de execução menor que ϵC

não cabe nenhuma máquina, e todas máquinas usadas tem tempo de término
mais que C. Logo o empacotamento ótimo com término C tem que usar pelo
menos o mesmo número de máquinas. ■

{prop:pcmax}
Proposição 3.9
O resultado da busca binária usando o algoritmo Sequencia Cmax = min{C ∈
[LB, 2LB] | Sequencia(I, C, ϵ) ≤ m} é no máximo C∗

max.

Prova. Com Sequencia(I, C, ϵ) ≤ min-EU(C, (pi)i∈[n]) temos

Cmax = min{C ∈ [LB, 2LB] | Sequencia(I, C, ϵ) ≤ m}

≤ min{C ∈ [LB, 2LB] | min-EU(C, (pi)i∈[n]) ≤ m}

= C∗
max

■
Teorema 3.11
A busca binária usando o algoritmo Sequencia para determinar determina
um sequenciamento em tempo O(n2dlog1+ϵ 1/ϵe log LB) de término máximo
(1+ ϵ)C∗

max.

Prova. Pelo lema 3.3 e proposição 3.9. ■

3.10. Programação inteira para aproximação

A programação linear é uma das técnicas mais úteis para construção de
algoritmos de aproximação.

• Primal-dual.

• Arredondamento e arredondamento iterado

• “Dual fitting”.
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3. Algoritmos de aproximação

Lembrança Temos um programa linear primal

minimiza ctx (P) {primal}{primal}
sujeito a Ax ≤ b,

x ≥ 0.

e um dual correspondente

maximiza ybt (D)
sujeito a Aty ≤ c

y ≥ 0.

Cada solução do primal é maior que cada solução do dual pelo teorema
fraco de dualidade

ctx ≤ bty,

e os valores das soluções ótimas (caso existem) são iguais pelo teorema
forte de dualidade

ctx∗ = bty∗.

O teorema de folgas complementares relaciona as variáveis de um sistema
com as folgas do outro:

• Condições primais: ou xj = 0 ou a(j)ty = cj.

• Condições duais: ou yi = 0 ou a(i)x = bi.

Na programação inteira, o teorema forte não é mais válido. Entre o primal
(P) e a versão inteira (PI) podemos definir o gap de integralidade

sup
I

OPTPI(I)

OPT(I)

para instâncias I = (A,b, c) no caso de minimização.
Relaxando as condições primais e duais obtemos

• Condições primais α-apertados: ou xj = 0 ou cj/α ≤ a(j)ty ≤ cj
(c/α ≤ Aty ≤ c)

• Condições duais β-apertados: ou yi = 0 ou βbi ≥ a(i)x ≥ bi

(βb ≥ Ax ≥ b).
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Relaxar as condiçõe é útil porque para um par de soluções primais x e
duais y temos ctx ≤ αβbty. Prova.

ctx ≤ αAtyx ≤ αβyb

■
Por consequência, x é uma αβ-aproximação do problema (com testemu-
nho y). Isto leva a uma schema generica de um algoritmo de aproximação
usando programação linear:

1 x := 0 // Primal: inviável
2 y := 0 // Dual: viável
3 do Até o primal é viável
4 // (1) Melhorar dual
5 Incremente alguma variável dual até ela é apertada
6 // (2) Viabilizar o primal
7 Incrementar uma variável primal , indicada pela restrição dual apertada
8 end

3.11. Exercícios
{ex:apr1}

Exercício 3.1
Por que um subgrafo conexo de menor custo sempre é uma árvore?

{ex:apr2}
Exercício 3.2
Mostra que o número de vértices com grau ímpar num grafo sempre é par.

{ex:apr3}
Exercício 3.3
Um aluno propõe a seguinte heurística para o empacotamento unidimensional:
Ordene os itens em ordem crescente, coloca o item com peso máximo junto com
quantas itens de peso mínimo que é possível, e depois continua com o segundo
maior item, até todos itens foram colocados em bins. Temos o algoritmo

1 ordene itens em ordem crescente
2 m := 1; M := n

3 while (m < M) do
4 abre novo contêiner , coloca vM, M := M− 1

5 while (vm cabe e m < M) do
6 coloca vm no contêiner atual
7 m := m+ 1

8 end while
9 end while
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3. Algoritmos de aproximação

Qual a qualidade desse algoritmo? É um algoritmo de aproximação? Caso
sim, qual a taxa de aproximação dele? Caso não, por quê?

{ex:apr4}
Exercício 3.4
Prof. Rapidez propõe o seguinte pré-processamento para o algoritmo SAT-R de
aproximação para MAX-SAT (página 158): Caso a instância contém claúsulas
com um único literal, vamos escolher uma delas, definir uma atribuição parcial
que satisfazê-la, e eliminar a variável correspondente. Repetindo esse procedi-
mento, obtemos uma instância cujas claúsulas tem 2 ou mais literais. Assim,
obtemos l ≥ 2 na análise do algoritmo, o podemos garantir que E[X] ≥ 3n/4,
i.e. obtemos uma 4/3-aproximação.
Esta análise está correta ou não?
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Um algoritmo randomizado usa eventos aleatórios na sua execução. Mo-
delos computacionais adequadas são máquinas de Turing probabilísticas –
mais usadas na área de complexidade – ou máquinas RAM com um comando
random(S) que retorne um elemento aleatório do conjunto S.
Veja alguns exemplos de probabilidades:

• Probabilidade morrer caindo da cama: 1/2×106 (Roach e Pieper, 2007).

• Morrer abanando a máquina de venda automática e ser espancado até
a morte: 30 pessoas por ano.

• Probabilidade acertar 6 números de 60 na mega-sena: 1/50063860.

• Probabilidade que a memória falha: em memória moderna temos 1000

FIT/MBit, i.e. 6× 10−7 erros por segundo num memória de 256 MB.1

• Probabilidade que um meteorito destrói um computador em cada milis-
segundo: ≥ 2−100 (supondo que cada milênio ao menos um meteorito
destrói uma área de 100m2).

Portanto, um algoritmo que retorna uma resposta falsa com baixa probabi-
lidade é aceitável. Em retorno um algoritmo randomizado frequentemente
é

• mais simples;

• mais eficiente: para alguns problemas, um algoritmo randomizado é o
mais eficiente conhecido;

• mais robusto: algoritmos randomizados podem ser menos dependente
da distribuição das entradas.

• a única alternativa: para alguns problemas, conhecemos só algoritmos
randomizados.

1FIT é uma abreviação de “failure-in-time” e é o número de erros cada 109 segundos. Para
saber mais sobre erros em memória veja (Terrazon, 2004).
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Analysis of randomized algorithms. T(n) now is a random variable. So:
worst-case expected: maxx||x|=n E[T(n)] where the expectation is over
all possible executions (i.e. there is no assumption on the distribution of
inputs).

4.1. Teoria de complexidade
Classes de complexidade

TBD: Check where this fits in

A máquina de Turing probabilística Uma máquina de Turing probabi-
lística (MTP, inglês: probabilistic Turing machine, PTM) é uma máquina
de Turing com uma fita aleatória adicional. A execução da máquina é a
mesma que normal, exceto num estado qr especial. Nesse estado a má-
quina leia um símbolo da fita aleatória é executa um passo que depende
somente desse símbolo e depois avança a cabeça da fita aleatória um para
a direita (Arora e Barak, 2009).

Definição 4.1
Seja Σ algum alfabeto e R(α,β) a classe de linguagens L ⊆ Σ∗ tal que existe
um algoritmo de decisão em tempo polinomial A que satisfaz

• x ∈ L ⇒ Pr(A(x) = sim) ≥ α.

• x 6∈ L ⇒ Pr(A(x) = não) ≥ β.

(A probabilidade é sobre todas sequências de bits aleatórios r. Como o algo-
ritmo executa em tempo polinomial no tamanho da entrada |x|, o número de
bits aleatórios |r| é polinomial em |x| também.)
Com isso podemos definir

• a classe RP := R(1/2, 1) (randomized polynomial), dos problemas que
possuem um algoritmo com erro unilateral (no lado do “sim”); a classe
co − RP = R(1, 1/2) consiste dos problemas com erro no lado de “não”;

• a classe ZPP := RP ∩ co − RP (zero-error probabilistic polynomial) dos
problemas que possuem algoritmo randomizado sem erro;

• a classe PP :=
∪

ϵ∈(0,1/2] R(1/2+ ϵ, 1/2+ ϵ) (probabilistic polynomial),
dos problemas com erro 1/2+ ϵ nos dois lados; e
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• a classe BPP := R(2/3, 2/3) (bounded-error probabilistic polynomial),
dos problemas com erro 1/3 nos dois lados.

RP may have false negatives, co − RP may have false positives.

Algoritmos que respondem corretamente somente com uma certa probabili-
dade também são chamados do tipo Monte Carlo, enquanto algoritmos que
usam randomização somente internamente, mas respondem sempre correta-
mente são do tipo Las Vegas.
Exemplo 4.1 (Teste de identidade de polinômios)
Dado dois polinômios p(x) e q(x) de grau máximo d, como saber se p(x) ≡
q(x)? Caso temos os dois na forma canônica p(x) =

∑
0≤i≤d pix

i ou na forma
fatorada p(x) =

∏
1≤i≤d(x − ri) isso é simples responder por comparação

de coeficientes em tempo O(n). E caso contrário? Converter para a forma
canônica pode custar Θ(d2) multiplicações. Uma abordagem randomizada
é vantajosa, se podemos avaliar o polinômio mais rápido (por exemplo em
O(d)):

1 identico(p,q) :=
2 Seleciona um número aleatório r no intervalo [1, 100d].
3 Caso p(r) = q(r) retorne ``sim''.
4 Caso p(r) 6= q(r) retorne ``não''.

Caso p(x) ≡ q(x), o algoritmo responde “sim” com certeza. Caso contrário
a resposta pode ser errada, se p(r) = q(r) por acaso. Qual a probabilidade
disso? p(x) − q(x) é um polinômio de grau d e possui no máximo d raízes.
Portanto, a probabilidade de encontrar um r tal que p(r) = q(r), caso p 6≡ q

é d/100d = 1/100. Isso demonstra que o teste de identidade pertence à classe
co − RP. ♢
Observação 4.1
É uma pergunta em aberta se o teste de identidade pertence a P. ♢

The testing can be formulated more easily as testing for p ≡ 0, and the
above then is just testing p− q ≡ 0.
The extension to multi-variate polynomials is known as the Schwartz-
Zippel lemma: for p ∈ F[x1, . . . , xn] take a finite subset of F and sample
ri ∈ S independently and unformly. Then the probability of p(ri) = 0 is
d/|S|, for total degree d.
Now consider the question of a bipartite graph having a perfect matching.
For any bipartite graph G = (S

.
∪ T,A) the corresponding Tutte matrix
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T is defined by tij = [ij ∈ A]. The determinant of any matrix A, by
Leibniz’ formula is

det(A) =
∑
σ∈Sn

sgn(σ)
∏
i∈[n]

ai,σ(i) (4.1) {eq:leibniz}{eq:leibniz}

We can see that every permutation π ∈ Sn corresponds to a perfect
matching. Now define the following polynomial over variables xij:

D(x11, . . . , xnn) =
∑
σ∈Sn

sgn(σ)
∏
i∈[n]

tijxi,σ(i). (4.2)

Since, for every matching that is not perfect the corresponding term in
D is 0, we obtain

D(x11, . . . , xnn) =
∑
σ∈P

sgn(σ)
∏
i∈[n]

xi,σ(i). (4.3) {eq:leibniz}{eq:leibniz}

where P are all permutations that correspond to perfect matchings in G.
This makes clear that if G has no perfect matching then D ≡ 0. On
the other hand, if at least one perfect matching exists the corresponding
term does not vanish, and since no other term can cancel it, D 6≡ 0. Thus
the problem of checking for the existence of a perfect matching can be
reduced to polynomial identity testing.
[More concretely, we need to choose some values xij and compute the
resulting determinant. This alone is too hard; Kabanets mentions a pa-
rallel algorithm. There’s also a point of the numerical stability, but since
the degree is at most n, Chawla argues that for prime p ≥ 2n we can
compute all in Zp, which is not clear to me, but I suspect is just to bound
the possible coefficients. This also makes the problem not easier. Chawla
is also interesting since he goes on to show an algorithm to compute the
matching based on testing of existence.)
[This is partially based on Kabanets, Lecture 2, which is very sketchy,
and also on Chawla, Lecture 3, which is better.

Exemplo 4.2 (Freivalds’ algorithm)
For given matrices A,B,C ∈ Rn×n we want to test if AB = C. With
standard matrix multiplication this can be done in time O(n3), with
better algorithms we may get down to O(nω). Freivalds proposal is a
Monte Carlo algorithm in co − RP with probability of 1/2 for a false
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positive. It works as follows.
Let D = AB − C, p = Dr, and note that Dr = (AB − C)r = A(Br) − Cr

can be computed in time O(n2). Clearly, if there is no error then D = 0

and we have p = 0 for all r. Otherwise there is some element dij 6= 0,
and thus pi = di•r could be non-zero. Now choose r ∈ {0, 1}n randomly
and write

pi = dijrj +
∑
k ̸=j

dikrk︸ ︷︷ ︸
c

,

and consider

Pr(pi = 0) = Pr(pi = 0 | c = 0)︸ ︷︷ ︸
=1/2

Pr(c = 0) + Pr(pi = 0 | c 6= 0)︸ ︷︷ ︸
≤1/2

Pr(c 6= 0)

≤ 1/2,

where the first equality is because dijrj 6= 0 iff rj = 1, and the second
requires rj = 1, too (but the terms not necessarily cancel, so 1/2 is an
upper bound).
There are many ways to “pimp” Freivals algorithms. First, we can incre-
ase the domain of r’s elements. Even better, assuming D 6= 0 choose

r =


1

s

s2

...
sn−1

 (4.4)

for some random s ∈ R. As above assume dij 6= 0. Then pi = di•r can
be seen as a polynomial in s of degree at most n − 1, and thus has at
most n− 1 roots. That means there are at most n− 1 values s ∈ R such
that pi = 0. Therefore the probability of a false positive is 0. ♢

Exemplo 4.3 (Welzl’s algorithm)
(First introduced in 2022/2 as an example.)
Given a set of points P in R2, find the smallest enclosing disc md(P)
defined by three points. We define md(P) = P for |P| ≤ 3. We do the
following. Let W(P, R) be the smallest enclosing disc of P, where R are
known to lie on the boundary.
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1 W(P, R) :=
2 if P = ∅ or |R| = 3: return the solution.
3 choose a random p ∈ P

4 D := W(P − {p}, R) // assume p 6∈ R

5 if p ∈ D: return D

6 return W(P − {p}, R ∪ {p}) // p ∈ R

♢

Let n = |P| and 3 − j = |R|. Then the probability of making an error in
the first recursive call is j/n. That gives an expected time of

tj(n) = tj(n− 1) + 1+ j/ntj−1(n− 1)

where we define the base case t0(n) = 0. If is easy to show that tj(n) ≤
cjn where c1 = 1, c2 = 3, c3 = 10.
[Namely assuming t1(n) ≤ c1n

t1(n) ≤ t1(n− 1) + 1+ 1/nt0(n− 1)︸ ︷︷ ︸
0

≤ c1(n− 1) + 1 = c1n+−c1 + 1︸ ︷︷ ︸
≤0

where the last condition gives c1 ≥ 1; assuming t2(n) ≤ c2n

t2(n) ≤ t2(n− 1) + 1+ 2/nt1(n− 1) ≤ c2(n− 1) + 1+ 2/nc1(n− 1)

≤ c2n−c2 + 1+ 2/nc1(n− 1)︸ ︷︷ ︸
≤0

where the last condition is satifisfied for c2 ≥ 1 + 2/nc1(n − 1) which
holds for c2 ≥ 3, and assuming t3(n) ≤ c3n

t3(n) ≤ t3(n− 1) + 1+ 3/nt2(n− 1) ≤ c3(n− 1) + 1+ 3/nc2(n− 1)

≤ c3n−c3 + 1+ 3/nc2(n− 1)︸ ︷︷ ︸
≤0

where the last condition is satisfied for c3 ≥ 1+3/nc2(n−1) which holds
for c3 ≥ 10.]
We can also consider the worst case. If we call the first recursion a zig,
the second a zag, the shape of the tree has any number of zigs, but at
most three zags. In this case we get

tj(n) ≤ tj(n− 1) + 1+ tj−1(n− 1)
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(note that the probability is gone), and we still get t1(n) ≤ c1n, but

TBD

4.1.1. Amplificação de probabilidades

Caso não estamos satisfeitos com a probabilidade de 1/100 no exemplo acima,
podemos repetir o algoritmo k vezes, e responder “sim” somente se todas k

repetições responderam “sim”. A probabilidade erradamente responder “não”
para polinômios idênticos agora é (1/100)k, i.e. ela diminui exponencialmente
com o número de repetições.
Essa técnica é uma amplificação da probabilidade de obter a solução correta.
Ela pode ser aplicada para melhorar a qualidade de algoritmos em todas clas-
ses “Monte Carlo”. Com um número constante de repetições, obtemos uma
probabilidade baixa nas classes RP, co − RP e BPP. Isso não se aplica a PP:
é possível que ϵ diminui exponencialmente com o tamanho da instância. Um
exemplo de amplificação de probabilidade encontra-se na prova do teorema 4.6.

{th:rpinv}
Teorema 4.1
R(α, 1) = R(β, 1) para 0 < α,β < 1.

Prova. Sem perda de generalidade seja α < β. Claramente R(β, 1) ⊆ R(α, 1).
Supõe que A é um algoritmo que testemunha L ∈ R(α, 1). Execute A no
máximo k vezes, respondendo “sim” caso A responde “sim” em alguma ite-
ração e “não” caso contrário. Chama esse algoritmo A ′. Caso x 6∈ L temos
Pr(A ′(x) = “não”) = 1. Caso x ∈ L temos Pr(A ′(x) = “sim”) ≥ 1− (1− α)k,
logo para k ≥ ln(1− β)/ ln(1− α), Pr(A ′(x) = “sim”) ≥ β. ■

1− (1− α)k ≥ β ⇐⇒ 1− β ≥ (1− α)k ⇐⇒ ln(1− β) ≥ k ln(1− α)

Corolário 4.1
RP = R(α, 1) para 0 < α < 1.

{th:bppinv}
Teorema 4.2
R(α,α) = R(β,β) para 1/2 < α,β.

Prova. Sem perda de generalidade seja α < β. Claramente R(β,β) ⊆
R(α,α).
Supõe que A é um algoritmo que testemunha L ∈ R(α,α). Executa A k vezes,
responde “sim” caso a maioria de respostas obtidas foi “sim”, e “não” caso
contrário. Chama esse algoritmo A ′. Para x ∈ L temos

Pr(A ′(x) = “sim”) = Pr(A(x) = “sim” ≥ bk/2c+ 1 vezes) ≥ 1− e−2k(α−1/2)2
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e para k ≥ ln(β−1)/2(α−1/2)2 temos Pr(A ′(x) = “sim”) ≥ β. Similarmente,
para x 6∈ L temos Pr(A ′(x) = “não”) ≥ β. Logo L ∈ R(β,β). ■

This result is via Chernoff bounds, example A.4 in CA lecture notes.

Corolário 4.2
BPP = R(α,α) para 1/2 < α.

Observação 4.2
Os resultados acima são válidos ainda caso o erro dimiui polinomialmente
com o tamanho da instância, i.e. α,β ≥ n−c no caso do teorema 4.1 e α,β ≥
1/2+n−c no caso do teorema 4.2 para um constante c (ver por exemplo Arora
e Barak (2009)). ♢

4.1.2. Relação entre as classes

Duas caracterizações alternativas de ZPP
Definição 4.2
Um algoritmo A é honesto se

i) ele responde ou “sim”, ou “não” ou “não sei”,

ii) Pr(A(x) = não sei) ≤ 1/2, e

iii) no caso ele responde, ele não erra, i.e., para x tal que A(x) 6= “não sei”
temos A(x) = “sim” ⇐⇒ x ∈ L.

Uma linguagem é honesta caso ela possui um algoritmo honesto. Com isso
também podemos falar da classe das linguagens honestas.

▶ ZPP ⊆ H
{th:zppalt1}

Teorema 4.3
ZPP é a classe das linguagens honestas.

Lema 4.1
Caso L ∈ ZPP existe um algoritmo um algoritmo honesto para L.

Prova. Para L ∈ ZPP existem dois algoritmos A1 ∈ RP e A2 ∈ co − RP.
Vamos construir um algoritmo

1 if A1(x) = A2(x) then
2 return A1(x)
3 else if A1(x) = ``não'' e A2(x) = ``sim'' then
4 return ``não sei''
5 else if A1(x) = ``sim'' e A2(x) = ``não'' then
6 { caso impossível }
7 end if
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O algoritmo responde corretamente “sim” e “não”, porque um dos dois al-
goritmos não erra. Qual a probabilidade do segundo caso? Para x ∈ L,
Pr(A1(x) = “não” ∧ A2(x) = “sim”) ≤ 1/2 × 1 = 1/2. Similarmente, para
x 6∈ L, Pr(A1(x) = “não”∧A2(x) = “sim”) ≤ 1× 1/2 = 1/2. ■

▶ H ⊆ ZPP
{lem:honest2}

Lema 4.2
Caso L possui um algoritmo honesto L ∈ RP e L ∈ co − RP.

Prova. Seja A um algoritmo honesto. Constrói outro algoritmo que sempre
responde “não” caso A responde “não sei”, e senão responde igual. No caso de
co − RP analogamente constrói um algoritmos que responde “sim” nos casos
“não sei” de A. ■
Definição 4.3
Um algoritmo A é sem falha se ele sempre responde “sim” ou “não” corre-
tamente em tempo polinomial esperado. Com isso podemos também falar de
linguagens sem falha e a classe das linguagens sem falha.

{th:zppalt2}
Teorema 4.4
ZPP é a classe das linguagens sem falha.

▶ ZPP ⊆ SFLema 4.3
Caso L ∈ ZPP existe um algoritmo sem falha para L.

Prova. Sabemos que existe um algoritmo honesto para L. Repete o algo-
ritmo honesto até encontrar um “sim” ou “não”. Como o algoritmo honesto
executa em tempo polinomial p(n), o tempo esperado desse algoritmo ainda
é polinomial: ∑

k>0

k2−kp(n) ≤ 2p(n)

■

1/2+2/4+3/8+4/16+) ≤ 2 follows from (A.37) in the CA lecture notes.

▶ SF ⊆ ZPPLema 4.4
Caso L possui um algoritmo A sem falha, L ∈ RP e L ∈ co − RP.

Prova. Caso A tem tempo esperado p(n) executa ele para um tempo 2p(n).
Caso o algoritmo responde, temos a resposta certa. Caso contrário, responde
“não sei”. Pela desigualdade de Markov temos uma resposta com probabilidade
Pr(T ≥ 2p(n)) ≤ p(n)/2p(n) = 1/2. Isso mostra que existe um algoritmo
honesto para L, e pelo lema 4.2 L ∈ RP. O argumento para L ∈ co − RP é
similar. ■
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Markov: Pr(|X| ≥ a] ≤ E[|X]] ≤ a, see A.8 in the CA lecture notes.

Mais relações
Teorema 4.5
RP ⊆ NP e co − RP ⊆ co − NP

Prova. Supõe que temos um algoritmo em RP para algum problema L. Po-
demos, não-deterministicamente, gerar todas sequências r de bits aleatórios e
responder “sim” caso alguma execução encontra “sim”. O algoritmo é correto,
porque caso para um x 6∈ L, não existe uma sequência aleatória r tal que o
algoritmo responde “sim”. A prova do segundo caso é similar. ■

{th:rpinbpp}
Teorema 4.6
RP ⊆ BPP e co − RP ⊆ BPP.

Prova. Seja A um algoritmo para L ∈ RP. Constrói um algoritmo A ′

1 if A(x) = ``não'' e A(x) = ``não'' then
2 return ``não''
3 else
4 return ``sim''
5 end if

Caso x 6∈ L, Pr(A ′(x) = “não”) = Pr(A(x) = “não”∧A(x) = “não”) = 1×1 =
1. Caso x ∈ L,

Pr(A ′(x) = “sim”) = 1− Pr(A ′(x) = “não”) = 1− Pr(A(x) = “não”∧A(x) = “não”)
≥ 1− 1/2× 1/2 = 3/4 > 2/3.

(Observe que para k repetições de A obtemos Pr(A ′(x) = “sim”) ≥ 1 −
1/2k, i.e., o erro diminui exponencialmente com o número de repetições.) O
argumento para co − RP é similar. ■

Relação com a classe NP e abundância de testemunhas Lembramos que a
classe NP contém problemas que permitem uma verificação de uma solução em
tempo polinomial. Não-determinísticamente podemos “chutar” uma solução
e verificá-la. Se o número de soluções positivas de cada instância é mais que
a metade do número total de soluções, o problema pertence a RP: podemos
gerar uma solução aleatória e testar se ela possui a característica desejada.
Um problema desse tipo possui uma abundância de testemunhas. Isso de-
monstra a importância de algoritmos randomizados. O teste de equivalência
de polinômios acima é um exemplo de abundância de testemunhas.
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ZPP

co − RP

co − NP

PP = co − PP

NP

RP

BPP = co − BPP

P

BQP
?
? ?

Figura 4.1.: Relações entre classes de complexidade para algoritmos randomi-
zados.{fig:randccls}

I guess the relation of BPP to co-NP is the same: show it! Also NP ⊆ BPP
is improbable.

4.2. Seleção

O algoritmo determinístico para selecionar o k-ésimo maior elemento de uma
sequência não ordenada x1, . . . , xn discutido na seção A.1 (página 228) pode
ser simplificado usando randomização: escolheremos um elemento pivôm = xi
aleatório. Com isso o algoritmo A.1 fica mais simples:

{alg:selectionr}
Algoritmo 4.1 (Seleção randomizada)
Entrada Números x1, . . . , xn, posição k.

Saída O k-ésimo maior número.

1 S(k, {x1, . . . , xn}) :=
2 if n ≤ 1

3 calcula e retorna o k-ésimo elemento
4 end if

193



4. Algoritmos randomizados

5 m := xi para um i ∈ [n] aleatório
6 L := {xi | xi < m, 1 ≤ i ≤ n}

7 R := {xi | xi ≥ m, 1 ≤ i ≤ n}

8 i := |L|+ 1

9 if i = k then
10 return m

11 else if i > k then
12 return S(k, L)
13 else
14 return S(k− i, R)
15 end if

Para determinar a complexidade podemos observar que com probabilidade
1/n temos |L| = i e |R| = n − i e o caso pessimista é uma chamada recursiva
com max{i, n− i} elementos. Logo, com custo cn para particionar o conjunto
e os testes temos

T(n) ≤ cn+
∑

i∈[0,n]

1/nT(max{n− i, i})

= cn+ 1/n

( ∑
i∈[0,k]

T(n− i) +
∑

i∈[⌈n/2⌉,n]

T(i)

)
= cn+ 2/n

∑
i∈[0,k]

T(n− i),

onde usamos k = bn/2c. Separando o termo T(n) do lado direito obtemos

(1− 2/n)T(n) ≤ cn+ 2/n
∑
i∈[k]

T(n− i)

⇐⇒T(n) ≤ 1

n− 2

(
cn2 + 2

∑
i∈[k]

T(n− i)

)
.

Provaremos por indução que T(n) ≤ c ′n para uma constante c ′. Para um
n ≤ n0 o problema pode ser claramente resolvido em tempo constante (por
exemplo em O(n0 logn0) via ordenação). Logo, supõe que T(i) ≤ c ′i para
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i < n. Demonstraremos que T(n) ≤ c ′n. Temos

T(n) ≤ 1

n− 2

(
cn2 + 2

∑
i∈[k]

T(n− i)

)

≤ 1

n− 2

(
cn2 + 2c ′

∑
i∈[k]

n− i

)

=
1

n− 2

(
cn2 + 2c ′(2n− k− 1)k/2

)
e com 2n− k− 1 = 2n− bn/2c− 1 ≤ 3/2n

≤ 1

n− 2
(cn2 + 3/4c ′n2) = (c+ 3/4c ′)

n2

n− 2

Para n ≥ n0 := 16 temos n/(n− 2) ≤ 8/7 e com um c ′ > 8c temos

T(n) ≤ c ′(1/8+ 3/4)8/7n = c ′n.

4.3. Corte mínimo

Corte mínimo

Entrada Grafo não-direcionado G = (V,A) com pesos c : A → Z+ nas
arestas.

Solução Uma partição V = S ∪ S̄ onde S̄ = V \ S.

Objetivo Minimizar o peso do corte
∑

a∈A(S,S̄) ca.

Soluções determinísticas:

• Calcular a árvore de Gomory-Hu: a aresta de menor peso define o corte
mínimo.

• Calcular o corte mínimo (via fluxo máximo) entre um vértice fixo s ∈ V

e todos outros vértices: o menor corte encontrado é o corte mínimo.

Custo em ambos casos: O(n) aplicações de um algoritmo de fluxo máximo,
i.e. O(mn2) usando o algoritmo de Orlin (ou O(nm1+o(1)) com o algoritmo
de Chen et al. (2022)).
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Gomory-Hu is simply this. Let a fat vertex V represent all vertices V .
While there’s a fat vertex C, choose two vertices u, u ′ ∈ V , compute a
minimum uu ′-cut, and separate V into the parts U and U ′. This gives
a tree T . Now: the value of each minimum uv-cut equals the value of
the minimum uv-cut in T , i.e. the lightest edge in the single uv-path.
Furthermore, by removing this lightest edge, we recover the parts.

Solução randomizada para pesos unitários No que segue supomos que os
pesos são unitários, i.e. ca = 1 para a ∈ A. Uma abordagem simples é
baseada na seguinte observação: se escolhemos uma aresta que não faz parte
de um corte mínimo, e contraímo-la (i.e. identificamos os vértices adjacentes),
obtemos um grafo menor, que ainda contém o corte mínimo. Se escolhemos
uma aresta aleatoriamente, a probabilidade de por acaso escolher uma aresta
de um corte mínimo é baixa.

1 cmr(G) :=
2 while G possui mais que dois vértices
3 escolhe uma aresta {u, v} aleatoriamente
4 identifica u e v em G

5 end while
6 return o corte definido pelos dois vértices em G

Exemplo 4.4
Uma sequencia de contrações (das arestas vermelhas).

♢

Dizemos que uma aresta “sobrevive” uma contração, caso ele não foi contraído.
{lem:cutsurvival}

Lema 4.5
A probabilidade que os k arestas de um corte mínimo sobrevivem n − n ′

contrações (de n para n ′ vértices) é Ω((n ′/n)2).
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Prova. Como o corte mínimo é k, cada vértice possui grau pelo menos k,
e portanto o número de arestas após da iteração 0 ≤ i < n − n ′ e maior
ou igual a k(n − i)/2 (com a convenção que a “iteração 0” produz o grafo
inicial). Supondo que as k arestas do corte mínimo sobreviveram a iteração i,
a probabilidade de não sobreviver a próxima iteração é pelo menos k/(k(n −
i)/2) = 2/(n− i). Logo, a probabilidade do corte sobreviver n− n ′ iterações
é pelo menos∏
0≤i<n−n ′

1−
2

n− i
=

∏
0≤i<n−n ′

n− i− 2

n− i

=
(n− 2)(n− 3) · · · (n ′ − 1)

n(n− 1) · · · (n ′ + 1)
=

n ′(n ′ − 1)

n(n− 1)
= Ω((n ′/n)2).

■
Teorema 4.7
Dado um corte mínimo C de tamanho k, a probabilidade do algoritmo cmr
retornar C é Ω(n−2).

Prova. Caso o grafo possui n vértices, o algoritmo termina em n−2 iterações:
podemos aplicar o lema acima com n ′ = 2. ■
Observação 4.3
O que acontece se repetimos o algoritmo algumas vezes? Seja Ci uma variável
que indica se o corte mínimo foi encontrado na repetição i. Temos Pr(Ci =
1) ≥ 2n−2 e portanto Pr(Ci = 0) ≤ 1 − 2n−2. Para kn2 repetições, vamos
encontrar C =

∑
Ci cortes mínimos com probabilidade

Pr(C ≥ 1) = 1− Pr(C = 0) ≥ 1− (1− 2n−2)kn
2

≥ 1− e−2k.

Para k = logn obtemos Pr(C ≥ 1) ≥ 1− n−2. ♢

Since exp(x) ≥ (1+ x/n)n for all n > 0 and x, for x = −2k and n = kn2

we have

exp(−2k) ≥ (1− 2k/kn2)kn
2

= (1− 2n−2)kn
2

.

Logo, ao repetir o algoritmo n2 logn vezes e retornar o menor corte encon-
trado, achamos o corte mínimo com probabilidade razoável. Se a implemen-
tação realiza uma contração em tempo O(n) o algoritmo possui complexidade
O(n2) e com as repetições em total O(n4 logn).
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Implementação de contrações Para garantir a complexidade acima, uma
contração tem que ser implementada em O(n). Isso é possível tanto na repre-
sentação por uma matriz de adjacência, quanto na representação pela listas
de adjacência. A contração de dois vértices adjacentes resulta em um novo
vértice, que é adjacente aos vizinhos dos dois. Na contração arestas de um
vértice com si mesmo são removidas. Múltiplas arestas entre dois vértices tem
que ser mantidas para garantir o Lema 4.5.

Um algoritmo melhor (Karger e Stein, 1996) O problema principal com o
algoritmo acima é que nas últimas iterações, a probabilidade de contrair uma
aresta do corte mínimo é grande. Para resolver esse problema, executaremos o
algoritmo duas vezes para instâncias menores, para aumentar a probabilidade
de não contrair o corte mínimo. Define f(n) =

⌈
1+ n/

√
2
⌉
.

1 cmr2(G) :=
2 if (G possui menos que 6 vértices)
3 determina o corte mínimo C por exaustão
4 return C

5 else
6 n ′ := f(n)
7 seja G1 o resultado de n− n ′ contrações em G

8 seja G2 o resultado de n− n ′ contrações em G

9 C1:=cmr2(G1)
10 C2:=cmr2(G2)
11 return o menor dos dois cortes C1 e C2

12 end if
Esse algoritmo possui complexidade de tempo O(n2 logn) e encontra um corte
mínimo com probabilidade Ω(1/ logn).

Lema 4.6
A probabilidade de um corte mínimo sobreviver n − f(n) contrações é pelo
menos 1/2.

Prova. Pelo lema 4.5 a probabilidade é pelo menos

f(n)(f(n) − 1)

n(n− 1)
≥ (1+ n/

√
2)(n/

√
2)

n(n− 1)
=

√
2+ n

2(n− 1)
≥ n

2n
=

1

2
.

■
Seja P(n) a probabilidade que um corte com k arestas sobrevive caso o grafo
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possui n vértices. Temos

Pr(o corte sobrevive em G1) ≥ 1/2 P(f(n))

Pr(o corte sobrevive em G2) ≥ 1/2 P(f(n))

Pr(o corte não sobrevive em G1 nem G2) ≤ (1− 1/2P(f(n)))2

P(n) = Pr(o corte sobrevive em G1 ou G2) ≥ 1− (1− 1/2P(f(n)))2

= P(f(n)) − 1/4P(f(n))2

Para resolver essa recorrência, define Q(k) = P(
√
2
k
) com base Q(0) = 1 para

obter a recorrência simplificada

Q(k+ 1) = P(
√
2
k+1

) = P(
⌈
1+

√
2
k
⌉
) − 1/4P(

⌈
1+

√
2
k
⌉
)2

≈ P(
√
2
k
) − P(

√
2
k
)2/4 = Q(k) −Q(k)2/4

e depois R(k) = 4/Q(k) − 1 com base R(0) = 3 para obter

4

R(k+ 1) + 1
=

4

R(k) + 1
−

4

(R(k) + 1)2
⇐⇒ R(k+ 1) = R(k) + 1+ 1/R(k).

The above is, BTW, an example of a recurrence that Akra-Bazzi can’t
handle.

R(k) satisfaz

k < R(k) < k+Hk−1 + 3

Prova. Por indução. Para k = 1 temos 1 < R(1) = 13/3 < 1 + H0 + 3 = 5.
Caso a HI está satisfeito, temos

R(k+ 1) = R(k) + 1+ 1/R(k) > R(k) + 1 > k+ 1

R(k+ 1) = R(k) + 1+ 1/R(k) < k+Hk−1 + 3+ 1+ 1/k = (k+ 1) +Hk + 3

■
Logo, R(k) = k + Θ(log k), e com isso Q(k) = Θ(1/k) e finalmente P(n) =
Θ(1/ logn).
Para determinar a complexidade do algoritmo cmr2 observe que temosO(logn)
níveis de recursão e cada contração pode ser feita em tempo O(n2), portanto

Tn = 2T(f(n)) +O(n2).
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4. Algoritmos randomizados

Aplicando o teorema de Akra-Bazzi obtemos a equação característica 2(1/
√
2)p =

1 com solução p = 2 e

Tn ∈ Θ(n2(1+

∫n
1

cu2

u3
du)) = Θ(n2 logn).

Check and cite Karger,Stein, A New Approach to the Minimum Cut
Problem

Generalized Karger-Stein amplification. Consider a randomized
algorithm constructing an object as follows. Given input f0 apply a se-
quence of k operators to obtain f1, f2, . . . , fk, where fk is the result (or
contains it in some easily extractable form). What makes the algorithm
randomized is that each step has a certain probability pi to destroy the
desired object, and we return something sub-optimal. There the proba-
bility to produce the desired object is p =

∏
i∈[k] 1− pi.

The amplification uses the fact that p1 < p2 < · · · < pk, i.e. the proba-
bility to destroy the object is higher in the later steps. If we repeat the
process n times and return the “best” result found – we need to be able to
evaluate the quality – we have C =

∑
i Ci successes, where P[Ci = 1] = p

and therefore

P[C ≥ 1] = 1− p[C = 0] = 1− (1− p)n

and setting n = m/p we get

P[C ≥ 1] = 1− (1− p)1/p
m

≥ 1− e−m.

We also can assume that for instance size n → ∞ we have p → 0.
Challenge: show how probing more at the lower levels increases the proba-
bility more effectively. Is this not very similar to “go with the winners”?
Can we apply this to “largest path” by repeatedly contracting edges?

4.4. Teste de primalidade

Um problema importante na criptografia é encontrar números primos grandes
(p.ex. RSA). Escolhendo um número n aleatório, qual a probabilidade de n

ser primo?
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4.4. Teste de primalidade

Teorema 4.8 (Hadamard (1896), Vallée Poussin (1896))
(Teorema dos números primos.)
Para π(n) = |{p ≤ n | p primo}| temos

lim
n→∞ π(n)

n/ lnn
= 1.

(Em particular π(n) = Θ(n/ lnn).)

Portanto, a probabilidade de um número aleatório no intervalo [2, n] ser primo
assintoticamente é somente 1/ lnn. Então para encontrar um número primo,
temos que testar se n é primo mesmo. Observe que isso não é igual a fatoração
de n. De fato, temos testes randomizados (e determinísticos) em tempo poli-
nomial, enquanto não sabemos fatorar nesse tempo. Uma abordagem simples
é testar todos os divisores:

1 Primo1(n) :=
2 for i = 2, 3, 5, 7, . . . ,

⌊√
n
⌋

do
3 if i|n return ``Não''
4 end for
5 return ``Sim''

O tamanho da entrada n é t = logn bits, portanto o número de iterações
é Θ(

√
n) = Θ(2t/2) e a complexidade Ω(2t/2) (mesmo contando o teste de

divisão com O(1)) desse algoritmo é exponencial. Para testar a primalidade
mais eficiente, usaremos uma característica particular dos números primos.
Teorema 4.9 (Fermat, Euler)
Para p primo e a ≥ 0 temos

ap ≡ a mod p.

Prova. Por indução sobre a. Base: evidente. Seja ap ≡ a. Temos

(a+ 1)p =
∑

0≤i≤p

(
p

i

)
ai

e para 0 < i < p

p|

(
p

i

)
=

p(p− 1) · · · (p− i+ 1)

i(i− 1) · · · 1
porque p é primo. Portanto (a+ 1)p ≡ ap + 1 e

(a+ 1)p − (a+ 1) ≡ ap + 1− (a+ 1) = ap − a ≡ 0.

(A última identidade é a hipótese da indução.) ■
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4. Algoritmos randomizados

Definição 4.4
Para a, b ∈ Z denotamos com (a, b) o maior divisor em comum (MDC) de a

e b. No caso (a, b) = 1, a e b são números coprimos.
{th:divmod}

Teorema 4.10 (Divisão modulo p)
Caso p é primo e (b, p) = 1

ab ≡ cb mod p ⇒ a ≡ c mod p.

(Em palavras: Numa identidade modulo p podemos dividir por números co-
primos com p.)

2 · 3 ≡ 7 · 3 mod 5, so 2 ≡ 7 mod 5, but 2 · 4 ≡ 4 · 4 mod 8, but 2 6≡ 4

mod 8.

Prova.

ab ≡ cd ⇐⇒ ∃k ab+ kp = cb⇐⇒ ∃k a+ kp/b = c

Como a, c ∈ Z, temos kp/b ∈ Z e b|k ou b|p. Mas (b, p) = 1, então b|k.
Definindo k ′ := k/b temos ∃k ′ a+ k ′p = c, i.e. a ≡ c. ■

Residual problem: do we need p to be prime here? Probably not, (b, p) =
1 is sufficient (otherwise even my example does not make sense). Check
the Algebra book.

Logo, para p primo e (a, p) = 1 (em particular se 1 ≤ a < p)

ap−1 ≡ 1 mod p. (4.5){eq:fermat}{eq:fermat}

Um teste melhor então é

1 Primo2(n) :=
2 seleciona a ∈ [1, n− 1] aleatoriamente
3 if (a,n) 6= 1 return ``Não''
4 if an−1 ≡ 1 return ``Sim''
5 return ``Não''

Complexidade: Uma multiplicação e divisão com logn dígitos é possível em
tempo O(log2 n). Portanto, o primeiro teste (o algoritmo de Euclides em logn
passos) pode ser feito em tempo O(log3 n) e o segundo teste (exponenciação
modular) é possível implementar com O(logn) multiplicações (exercício!).
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4.4. Teste de primalidade

Corretude: O caso de uma resposta “Não” é certo, porque n não pode ser
primo. Qual a probabilidade de falhar, i.e. do algoritmo responder “Sim”,▶ Thus: RP.
com n composto? O problema é que o algoritmo falha no caso de números
Carmichael.

Definição 4.5
Um número composto n que satisfaz an−1 ≡ 1 mod n é um número pseudo-
primo com base a. Um número Carmichael é um número pseudo-primo para
qualquer base a com (a,n) = 1.

Os primeiros números Carmichael são 561 = 3 × 11 × 17, 1105 e 1729 (veja
OEIS A002997). Existe um número infinito deles:

Teorema 4.11 (Alford et al. (1994))
Seja C(n) o número de números Carmichael até n. Assintoticamente temos
C(n) > n2/7.

Exemplo 4.5
C(n) até 1010 (OEIS A055553):
n 1 2 3 4 5 6 7 8 9 10
C(10n) 0 0 1 7 16 43 105 255 646 1547⌈
(10n)2/7

⌉
2 4 8 14 27 52 100 194 373 720

. ♢

Caso um número n não é primo, nem número de Carmichael, mais que n/2 dos
a ∈ [1, n − 1] com (a,n) = 1 não satisfazem (4.5) ou seja, com probabilidade
> 1/2 acharemos um testemunha que n é composto. O problema é que no
caso de números Carmichael não temos garantia.

{th:modularroot}
Teorema 4.12 (Raiz modular)
Para p primo temos

x2 ≡ 1 mod p ⇒ x ≡ ±1 mod p.

O teste de Miller-Rabin usa essa característica para melhorar o teste acima.
Podemos escrever n− 1 = 2tu para um u ímpar. Temos an−1 = (au)2

t ≡ 1.
Portanto, se an−1 ≡ 1,

Ou au ≡ 1 mod p ou existe um menor i ∈ [0, t] tal que (au)2
i

≡ 1

Caso p é primo,
√
(au)2i = (au)2

i−1 ≡ −1 pelo teorema (4.12) e a minimali-
dade de i (que exclui o caso ≡ 1). Por isso:
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4. Algoritmos randomizados

Definição 4.6
Um número n é um pseudo-primo forte com base a caso

Ou au ≡ 1 mod p ou existe um menor i ∈ [0, t− 1] tal que (au)2
i

≡ −1

(4.6) {eq:carmtest}{eq:carmtest}

1 Primo3(n) :=
2 seleciona a ∈ [1, n− 1] aleatoriamente
3 if (a,n) 6= 1 return ``Não''
4 seja n− 1 = 2tu

5 if au ≡ 1 return ``Sim''
6 if (au)2

i ≡ −1 para um i ∈ [0, t− 1] return ``Sim''
7 return ``Não''

Teorema 4.13 (Monier (1980) e Rabin (1980))
Caso n e composto e ímpar, mais que 3/4 dos a ∈ [1, n − 1] com (a,n) = 1

não satisfazem o critério (4.6) acima.

Portanto com k testes, a probabilidade de falhar Pr(Sim | n composto) ≤
(1/4)k = 2−2k. De fato a probabilidade é menor:
Teorema 4.14 (Damgård et al., 1993)
A probabilidade de um único teste falhar para um número com k bits é ≤
k242−

√
k.

Exemplo 4.6
Para n ∈ [2499, 2500−1] a probabilidade de não detectar um n composto com
um único teste é menor que

4992 × 42−
√
499 ≈ 2−22.

♢

Teste determinístico O algoritmo pode ser convertido em um algoritmo de-
terminístico, testando pelo menos 1/4 dos a com (a,n) = 1. De fato, para o
menor testemunho w(n) de um número n ser composto temos

Se o HGR é verdade: w(n) < 2 log2 n (4.7){eq:grhdet}{eq:grhdet}

com HGR a hipótese generalizada de Riemann (uma conjetura aberta). Su-
pondo HGR, obtemos um algoritmo determinístico com complexidadeO(log5 n).
Em 2002, Agrawal et al. (2004) descobriram um algoritmo determinístico (sem
a necessidade da HGR) em tempo Õ(log12 n) que depois foi melhorado para
Õ(log6 n).
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4.7. Notas

4.5. O problema é achar “a agulha no palheiro”

Discutir
Teorema 4.15 (Valiant-Vazirani)
Supõe que temos um algoritmo polinomial que, dado uma fórmula em
forma normal conjuntiva que é satisfatível por uma única atribuição,
encontra-la. (Para outras entradas o resultado do algoritmo pode ser
arbitrário.) Então NP = RP.

4.6. Encontrar a mediana

Fala sobre o algoritmo randomizado de encontrar o k-ésimo elemento de
uma sequencia ordenada, que é mais simples que a versão determinística.
Ver p.ex. Arora/Barak, 7.2.1.

4.7. Notas

Um applet com uma implementação do teste de Miller e Rabin se encontra
aqui.

4.8. Exercícios
Exercício 4.1
Encontre um primo p e um valor b tal que a identidade do teorema 4.10 não
é correta.

Exercício 4.2
Encontre um número p não primo tal que a identidade do teorema 4.12 não é
correta.
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5. Complexidade e algoritmos parametrizados

A complexidade de um problema geralmente é resultado de diversos elementos.
Um algoritmo parametrizado separa explicitamente os elementos que tornam
um problema difícil, dos que são simples de tratar. A análise da complexidade
parametrizada quantifica essas partes separadamente. Por isso, a complexi-
dade parametrizada é chamada uma “complexidade de duas dimensões”.
Exemplo 5.1
O problema de satisfatibilidade (SAT) é NP-completo, i.e. não conhecemos um
algoritmo cuja complexidade cresce somente polinomialmente com o tamanho
da entrada. Porém, a complexidade deste problema cresce principalmente com
o número de variáveis, e não com o tamanho da entrada: com k variáveis e en-
trada de tamanho n solução trivial resolve o problema em tempo O(2kn). Em
outras palavras, para parâmetro k fixo, a complexidade é linear no tamanho
da entrada. ♢

Definição 5.1
Um problema que possui um parâmetro k ∈ N (que depende da instância) e
permite um algoritmo de complexidade f(k)|x|O(1) para entrada x e com f uma
função arbitrária, se chama tratável por parâmetro fixo (ingl. fixed-parameter
tractable, fpt). A classe de complexidade correspondente é FPT.

Um problema tratável por parâmetro fixo se torna tratável na prática, se o
nosso interesse são instâncias com parâmetro pequeno. É importante observar
que um problema permite diferentes parametrizações. O objetivo de projeto
de algoritmos parametrizados consiste em descobrir para quais parâmetros
que são pequenos na prática o problema possui um algoritmo parametrizado.
Neste sentido, o algoritmo parametrizado para SAT não é interessante, porque
o número de variáveis na prática é grande.
A seguir consideramos o problema NP-complete de cobertura de vértices. Uma
versão parametrizada é

k-cobertura de vértices

Instância Um grafo não-direcionado G = (V,A) e um número k1.

Solução Uma cobertura C, i.e. um conjunto C ⊆ V tal que ∀a ∈ A :
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5. Complexidade e algoritmos parametrizados

a ∩ C 6= ∅.

Parâmetro O tamanho k da cobertura.

Objetivo Minimizar |C|.

Abordagem com força bruta:

1 mvc(G = (V,A)) :=
2 if A = ∅ return ∅
3 seleciona aresta {u, v} ∈ A não coberta
4 C1 := {u} ∪ mvc(G \ {u})
5 C2 := {v} ∪ mvc(G \ {v})
6 return a menor entre as coberturas C1 e C2

Supondo que a seleção de uma aresta e a redução dos grafos é possível em
O(n), a complexidade deste abordagem é dado pela recorrência

Tn = 2Tn−1 +O(n)

com solução Tn = O(2n). Para achar uma solução com no máximo k vértices,
podemos podar a árvore de busca definido pelo algoritmo mvc na profundidade
k. Isso resulta em
Teorema 5.1
O problema k-cobertura de vértices é tratável por parâmetro fixo em O(2kn).

Prova. Até o nível k vamos visitar O(2k) vértices na árvore de busca, cada
um com complexidade O(n). ■
O projeto de algoritmos parametrizados frequentemente consiste em

• achar uma parametrização tal que o parte super-polinomial da com-
plexidade é limitada para um parte do problema que depende de um
parâmetro k que é pequeno na prática;

• encontrar o melhor algoritmo possível para o parte super-polinomial.

Exemplo 5.2
Considere o algoritmo direto (via uma árvore de busca, ou backtracking) para
SAT.

1 BT−SAT(φ,α) :=
2 if α é atribuição completa: return φ(α)

1Introduzimos k na entrada, porque k mede uma característica da solução. Para evitar
complexidades artificias, entende-se que k nestes casos é codificado em unário.
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δv ≥ 3

Figura 5.1.: Subproblemas geradas pela decisão da inclusão de um vértice v.
Vermelho: vértices selecionadas para a cobertura. {fig:mvc1}

3 if alguma cláusula não é satisfeita: return false
4 if BT−SAT(φ,α1) return true
5 return BT-SAT(φ,α0)

(α0 e α1 denotam extensões de uma atribuição parcial das variáveis.)
Aplicado a 3SAT , das 8 atribuições por cláusula podemos excluir uma que
não a satisfaz. Portanto a complexidade de BT-SAT é O(7n/3) = O( 3

√
7
n
) =

O(1.9129n). (Exagerando – mas não mentindo – podemos dizer que isso é
uma aceleração exponencial sobre a abordagem trivial que testa todas 2n

atribuições.)
O melhor algoritmo para 3-SAT possui complexidade O(1.324n). ♢

Um algoritmo melhor para cobertura de vértices Consequência: O projeto
cuidadoso de uma árvore de busca pode melhorar a complexidade. Vamos
aplicar isso para o problema de cobertura de vértices.
Um melhor algoritmo para a k-cobertura de vértices pode ser obtido pelas
seguintes observações

• Caso o grau máximo ∆ de G é 2, o problema pode ser resolvido em
tempo O(n), porque G é uma coleção de caminhos simples e ciclos.

• Caso contrário, temos pelo menos um vértice v de grau δv ≥ 3. Ou esse
vértice faz parte da cobertura mínima, ou todos seus vizinhos N(v) (veja
figura 5.1).
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1 mvc'(G) :=
2 if ∆(G) ≤ 2 then
3 determina a cobertura mínima C em tempo O(n)
4 return C

5 end if
6 seleciona um vértice v com grau δv ≥ 3

7 C1 := {v} ∪ mvc ′(G \ {v})
8 C2 := N(v) ∪ mvc ′(G \N(v))
9 return a menor cobertura entre C1 e C2

O algoritmo resolve o problema de cobertura de vértices mínima de forma
exata. Se podamos a árvore de busca após selecionar k vértices obtemos um
algoritmo parametrizado para k-cobertura de vértices. O número de vértices
nessa árvore é

Vi ≤ Vi−1 + Vi−4 + 1.

Lema 5.1
A solução dessa recorrência é Vi = O(1.3803i).

Teorema 5.2
O problema k-cobertura de vértices é tratável por parâmetro fixo emO(1.3803kn).

Prova. Considerações acima com trabalho limitado por O(n) por vértice na
árvore de busca. ■
Prova. (Do lema acima.) Com o ansatz Vi ≤ ci obtemos uma prova por
indução se para um i ≥ i0

Vi ≤ Vi−1 + Vi−4 + 1 ≤ ci−1 + ci−4 + 1 ≤ ci⇐⇒ ci−4(c4 − c3 − 1) ≥ 1⇐⇒ c4 − c3 − 1 ≥ 0

(O último passo é justificado porque para c > 1 e i0 suficientemente grande o
produto vai ser ≥ 1.) c4 − c3 − 1 possui uma única raiz positiva ≈ 1.32028 e
para c ≥ 1.3803 temos c3 − c2 − 1 ≥ 0. ■
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6. Outros algoritmos

6.1. O problema de soma de intervalos

No problema de soma de intervalos (ingl. range-sum problem) queremos man-
ter números a1, . . . , an sobre duas operações: add(i, v) aumenta ai por v e
get(k) retorna

∑
i∈[k] ai. Nota que a soma sobre qualquer intervalo [j, k] con-

tíguo,
∑

i∈[j,k] ai, é get(k) − get(j − 1). Numa implementação direta por um
vetor essas operações possuem complexidade O(1) e O(n).
Para uma operação O : N → N seja Oi = {i,O(i), O(O(i)), . . .}∩ [n] o orbit de
i sobre O. {th:fenwick}
Teorema 6.1
Caso operações O e P satisfazem

|Ox ∩ Py| = [x ≤ y] (�) {orbit}

as operações
1 add(i, v) := aj := aj + v para todo j ∈ Oi

2 get(k) := return
∑

i∈Pk ai

resolvem o problema da soma de intervalos.

Prova. Por indução sobre as operações add. Supõe get(k) =
∑

i∈[k] ai.
Depois de uma operação add(i, v) temos: (i) Caso i > k: get(k) =

∑
i∈Pk a

′
i =∑

i∈Pk ai =
∑

i∈[k] ai porque |Oi ∩ Pk| = 0. (ii) Caso i ≤ k: get(k) =∑
i∈Pk a

′
i = v+

∑
i∈Pk ai = v+

∑
i∈[k] ai porque |Ox ∩ Py| = 1. ■

Exemplo 6.1
A solução por um vetor que armazena os ai diretamente corresponde com
O(i) = i e P(i) = i− 1. Operações add e get tem complexidade O(1) e O(n),
respectivamente. (Critério (�) é satisfeito porque Oi = {i}, Pi = [i].) ♢
Exemplo 6.2
ComO(i) = i+1 e P(i) = i obtemos uma solução em que ai armazena as somas
parciais. As operações agora tem complexidade O(n) e O(1). (Critério (�) é
satisfeito porque Oi = {i, i+ 1, . . . , n} e Pi = {i}.) ♢
Exemplo 6.3
SejaO(i) = i+2r(i) e P(i) = i−2r(i) com r(i) o índice do bit menos significativo
(LSB) na representação binária de i. Por definição é claro que a órbita de O

cresce, i.e. O(i) > i, e o do P decresce, i.e. P(i) < i.
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Proposição 6.1
Critério (�) é satisfeito.

Prova. Se x > y, temos |Ox ∩ Py| = 0, pois a órbita de O cresce e a de P

decresce. Pelo mesmo motivo, se x = y, então |Ox∩Py| = |{x, y}| = 1 é válido.
Agora, suponha que x < y. Podemos escrever x = h + sx, y = h + 2b + sy,
onde b é o bit mais significativo diferente de x e y, h ≥ 2b+1 e 0 ≤ sx, sy < 2b.
Considere primeiro sx = 0. Então, x = h ∈ Py, já que P remove repetidamente
bit menos significativo (least significant bit, LSB) e, portanto, x ∈ Ox ∩ Py.
Para qualquer outro o ∈ Ox, o 6= x, temos o ≥ x+2r(x) ≥ x+2b+1, mas para
p ∈ Py, p ≤ h + 2b + sy = x + 2b + sy < x + 2b + 2b = x + 2b+1. Portanto,
|Ox ∩ Py| = |{x}| = 1.
Agora considere sx > 0. Afirmamos que Ox ∩ Py = {m}, onde m = h + 2b.
Novamente, é fácil ver que m ∈ Py, pois P remove repetidamente o LSB. Para
ver que m ∈ Ox, considere as iterações si = Oi(sx), i = 0, 1, 2, . . .. Se si < 2b,
então si ≤ (2b−1)−(2r(si)−1) = 2b−2r(si), já que r(si) < b é o LSB. Assim,
para o primeiro iterado tal que si ≥ 2b, temos si = si−1 + 2r(si−1) ≤ 2b,
portanto si = 2b e, assim, m = h+ 2b ∈ Ox.
Agora considere o ∈ Ox e p ∈ Py com o, p < m. Temos o ≥ x = h + sx > h,
mas também p ≤ m−2r(m) = h, portanto, nenhum outro elemento desse tipo
está em Ox ∩ Py. Por fim, considere o ∈ Ox e p ∈ Py com o, p > m. Então,
o ≥ m+ 2r(m) = m+ 2b = h+ 2b + 2b = h+ 2b+1 e p ≤ y = h+ 2b + sy <

h+ 2b + 2b = h+ 2b+1. Portanto, novamente, nenhum outro elemento desse
tipo está em Ox ∩ Py. ■

Prova. If x > y, we have |Ox ∩ Py| = 0, since O’s orbit increases, and
P’s decreases. For the same reason, if x = y then |Ox ∩ Py| = |{x, y}| = 1

holds.
Now assume x < y. Then we can write x = h+sx, y = h+2b+sy, where
b is the highest different bit of x and y, h ≥ 2b+1, and 0 ≤ sx, sy < 2b.
Consider first sx = 0. Then x = h ∈ Py, since P repeatedly removes
the LSB, and thus x ∈ Ox ∩ Py. For any other o ∈ Ox, o 6= x, we have
o ≥ x+ 2r(x) ≥ x+ 2b+1 but for p ∈ Py, p ≤ h+ 2b+ sy = x+ 2b+ sy <

x+ 2b + 2b = x+ 2b+1. Therefore |Ox ∩ Py| = |{x}| = 1.
Now consider sx > 0. We claim Ox ∩ Py = {m}, where m = h+ 2b. It is
again easy to see thatm ∈ Py, since P repeatedly removes the LSB. To see
that m ∈ Ox consider iterates si = Oi(sx), i = 0, 1, 2, . . .. If si < 2b then
si ≤ (2b−1)−(2r(si)−1) = 2b−2r(si), since r(si) < b is the LSB. Thus,
for the first iterate such that si ≥ 2b, we have si = si−1 + 2r(si−1) ≤ 2b,
so si = 2b, and thus m = h+ 2b ∈ Ox.
Now consider o ∈ Ox and p ∈ Py with o, p < m. We have o ≥ x =
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h + sx > h, but also p ≤ m − 2r(m) = h, so no other such element is
in Ox ∩ Py. Finally, consider o ∈ Ox and p ∈ Py with o, p > m. Then
o ≥ m + 2r(m) = m + 2b = h + 2b + 2b = h + 2b+1, and p ≤ y =
h+ 2b + sy < h + 2b + 2b = h+ 2b+1. So again, no other such element
is in Ox ∩ Py. ■

Proposição 6.2
As operações add and get tem complexidade O(logn).

Prova. Por indução, Oi(x) ≥ x+
∑

0≤j<i 2
j ≥ 2i, de modo que a órbita de O

tem no máximo log2 n elementos. Da mesma forma, Pi(y) ≤ n−
∑

0≤j<i 2
j =

n − 2i + 1 e a órbita de P também tem no máximo log2 n elementos. As
duas operações podem ser implementadas de forma eficiente por O(i) = (i |
(i− 1)) + 1 e P(i) = i&(i− 1) em tempo O(1). ■

Prova. By induction Oi(x) ≥ x +
∑

0≤j<i 2
j ≥ 2i so O’s orbit has at

most log2 n elements. Similarly, Pi(y) ≤ n−
∑

0≤j<i 2
j = n− 2i + 1 and

P’s orbit also has at most log2 n elements. As duas operações podem ser
implementadas de forma eficiente por O(i) = (i | (i − 1)) − 1 e P(i) =
i&(i− 1) em tempo O(1). ■

Even if we don’t use the bit operations, numbers x and y have at most
log2 n bits, and we can go bit over bit to implement O and P. That would
increase the complexitty to O(log2 n).

♢

That’s nice, but unnecessarily complicated. (I also lots the original refe-
rence, may this one was it; there is also this.) A segment tree archieves
the same simpler, and can be extended to do more.

Exercício 6.1
Mostre que as operações O(i) = i | i+ 1 e P(i) = (i&(i+ 1)) − 1 satisfazem o
critério do teorema 6.1. Qual a interpretação das operações na representação
binária? Você conseque dar uma definição aritmética equivalente? Qual a
complexidade de add e get usando essas operações?
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6. Outros algoritmos

6.2. Amostragem discreta

6.2.1. Amostragem sem reposição
{sec:swr}

Queremos selecionar k números de [n] sem reposição. Uma forma simples de
conseguir isso é definir um vetor si = i, i ∈ [n] e para j ∈ [k] trocar um
elemento aleatório em s[j,n] com sj. No final s[k] contém a amostra desejada.
O custo é O(n) tempo e espaço, porque usa um vetor de tamanho n. Uma
abordagem melhor usa uma tabela hash mapeando índices para valores, sem
armazenar os valores default i 7→i. Com isso o custo de tempo e espaço é
reduzido para O(k) que é essencialmente ótimo.

6.2.2. Distribuições discretas

Queremos amostrar de uma distribuição discreta com probabilidades pi, i ∈
[n]. Uma abordagemmuito simples é rejection sampling. Seja p̄ = maxi∈[n] pi.
Selecionamos um item i ∈ [n] e um número em q = [0,̄ p] uniformemente e
rejeitamos se q > pi. A taxa de aceitação é 1/(np̄).
Uma ideia melhor é tower sampling. Aqui, armazenamos as somas parciais
qi =

∑
j∈[i] pj, i ∈ [n], amostramos um número aleatório uniforme r ∈ U[0, 1]

e, em seguida, fazemos uma busca binária pelo menor i, de modo que r ≥ qi.
O pré-processamento leva tempo O(n), a amostragem apenas O(logn).
A solução para o problema de soma de intervalo acima permite atualizar as
somas de prefixo no tempo O(logn). Portanto, podemos aplicar a amostragem
de torre dinamicamente com tempo de atualização de O(logn) e tempo de
amostragem de O(log2 n), já que temos no máximo logn consultas, cada uma
de custo O(logn).
Uma ideia ainda melhor é alias sampling. Primeiro, subdivida todos os pi

em itens de baixa probabilidade L = {i | pi < 1/n}, boa probabilidade G =
{i | pi = 1/n} e alta probabilidade H = {i | pi > 1/n}. Logo, se L = H = ∅,
podemos fazer uma amostragem uniforme de G. Em seguida, observamos que
L = ∅ sse H = ∅, pois as probabilidades dos n itens devem somar 1. Portanto,
ou somos bons ou temos um par L-H. Para esse par, crie um compartimento
“bom” combinando o item L com uma parte adequada do item H. Lembre-se
dos compartimentos de origem e realoque a parte restante do item H para L,
G ou H. Agora ainda temos n compartimentos, mas um compartimento bom
(tipo G) a mais. Repita até que tenhamos apenas compartimentos bons. Isso
leva no máximo O(n) tempo, pois podemos ter no máximo n compartimentos
bons.
Para amostragem, armazene em s1, s2, . . . , s2n números de itens de modo que
o compartimento i represente os itens s2i e s2i+1. (Para compartimentos
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6.2. Amostragem discreta

puramente bons, s2i = s2i+1.) Armazene também a massa de probabilidade
do primeiro item s2i em cada compartimento em q1, q2, . . . , qn. (Novamente,
para compartimentos puramente bons, qi = 1).
Agora podemos fazer a amostragem da seguinte forma em tempo O(1):

1 x = U(0, 1]
2 b = dnxe // localizar o compartimento
3 r = [(nx mod 1) > qb] // localizar o item no compartimento
4 retornar s2b+r

Vamos estudar agora a amostragem de reservatório (ingl. reservoir sampling).
Aqui, o problema é escolher um elemento da sequência 1, 2, . . . , n com pro-
babilidades pi, mas on-line, ou seja, visitando a sequência uma vez. É claro
que poderíamos ler toda a sequência e fazer uma amostragem como acima.
Portanto, a restrição aqui é que temos O(1) de memória.
Vamos examinar primeiro o caso uniforme que possui uma solução fácil. Man-
tenha um item selecionado, inicialmente nenhum, e substitua-o pelo item i

com probabilidade 1/i. A correção pode ser facilmente demonstrada por in-
dução. Suponha que, para n itens, tenhamos pi = 1/n. Então, para n + 1,
escolhemos n + 1 com probabilidade 1/(n + 1), ou qualquer um dos outros
itens com probabilidade pi · n/(n+ 1) = 1/(n+ 1), conforme necessário.
Agora generalizamos isso para selecionar itens dem > 1 e pesos geraisw1, . . . , wn

(ou seja, os pesos não precisam ser normalizados). Isso funciona da seguinte
forma. Para cada item, calcule o valor U[0, 1]1/wi e mantenha os m itens de
maior valor. Podemos ver facilmente por que isso é correto no caso especial
de amostragem uniforme. Nesse caso, é melhor definir w1 = · · · = wn = 1.
Então, basta sortear n números aleatórios em U[0, 1] e pegar os m itens de
maiores valores.
O algoritmo acima requer n números aleatórios, e o número esperado de atua-
lizações do conjunto escolhido é O(m logn/m). Há uma versão que precisa de
apenas O(m logn/m) amostras aleatórias. Esses algoritmos também podem
ser usados para criar uma amostra aleatória de tamanho k com reposição,
executando k instâncias paralelas que selecionam m = 1 item cada.

We want to sample from a discrete distribution with probabilities pi,
i ∈ [n]. A very simple approach is via rejection sampling. Let p̄ =
maxi∈[n] pi. We select an item i ∈ [n] and a number in q = [0,̄ p]
uniformly, and reject if q > pi. The acceptance rate is 1/(np̄).
A better idea is tower sampling. Here we store the partial sums qi =∑

j∈[i] pj, i ∈ [n], sample a uniform random number r ∈ U[0, 1], and
then binary search for the smallest i, such that r ≥ qi. Pre-processing
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takes time O(n), sampling only O(logn). More details can be found in
Krauth (2006, Section 1.2.3). The solution to the interval sum problem
above allows to update prefix sums in time O(logn). Therefore we can
apply tower sampling dynamically with update time O(logn) and sample
time O(log2 n), since we have at most logn queries, each of which costs
O(logn).
An even better idea is alias sampling. First subdivide all pi into items
with low probability L = {i | pi < 1/n}, good probability G = {i | pi =
1/n}, and high probability H = {i | pi > 1/n}. Then, if L = H = ∅, we
can sample uniformly from G. Next, we observe L = ∅ iff H = ∅, since
the probabilities of the n items must sum to 1. Therefore either we are
good, or we have a L-H pair. For such a pair, create a “good” bin by
combining the L item, with an adequate part of the H item. Remember
the source bins, and reallocate the remaining part of the H item into L,
G, or H. Now we still have n bins, but one G bin more. Repeat until we
have only G bins. This takes at most O(n) time, since we can have at
most n G bins.
For sampling, store in s1, s2, . . . , s2n item numbers such that bin i repre-
sents items s2i and s2i+1. (For purely good bins, s2i = s2i+1.) Also store
the probability mass for the first item s2i in each bin in q1, q2, . . . , qn.
(Again, for purely good bins qi = 1.)
Now we can sample as follows in time O(1):

1 x = U[0, 1] b = dnxe // find the bin
2 r = [(nx mod 1) > qb] // find the item in the bin
3 return s2b+r

We can see tower sampling as sampling in a full binary tree (divide items
accordingly). Alias sampling can be seen as a tree of depth 2 where the
root has n bins as children, and each child either is a leaf, representing
a single item, or has two leafs, corresponding to the two possible items.
Decisive is that the first level is uniform (or at least regular, such that a
child can be sampled in O(1)). Does this view bring some insight?

Let us now turn to reservoir sampling. Here, the problem is choosing an
element from the sequence 1, 2, . . . , n with probabilities pi, but online,
i.e. by visiting the sequence once. Clearly we could read the entire se-
quence, and sample as above. So the restriction here is that we have O(1)
memory.
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We look first at the uniform case. This has an easy solution. Keep
a currently selected item, initially none, and replace it by item i with
probability 1/i. Correctness can be easily shown by induction. Assume
for n items we have pi = 1/n. Then for n + 1, we choose n + 1 with
probability 1/(n + 1), or any of the other items with probability pi ·
n/(n+ 1) = 1/(n+ 1) as required.
We now generalize this to selecting m > 1 items and general weights
w1, . . . , wn (i.e. the weights need not be normalized). This works as
follows. For each item compute value U[0, 1]1/wi and keep the m items
of largest value. We can see easily why this is correct in the special case
of uniform sampling. Here it’s best to set w1 = · · · = wn = 1. Then we
just draw n random numbers in U[0, 1] and take the m items of largest
values.
The above algorithm requires n random numbers, and the expected num-
ber of updates of the chosen set is O(m logn/m). There’s a version that
needs only O(m logn/m) random samples. These algorithms can also be
used to create a random sample of size k with replacement, by running
k parallel instances selecting m = 1 item each.

Open:

• Demonstrate the above.

• Does similarity of biased random keys with the sampling above
(which in the original paper also uses the notion of “keys”) suggest
a possibility of generating non-uniform permutations in BRKGAs?

• Weighted reservoir sampling should also be connected to the ideas
of (Krauth, 2006); I see similarities.

A good source on sampling is the book of Krauth (2006). Alias sampling
is well explained by Pătraşcu (2011). Weighted reservoir sampling is from
Efraimidis e Spirakis (2005).

Notas Uma boa fonte sobre amostragem é o livro de Krauth (2006). Para
amostragem sem reposição ver Ting (2021) e Bentley e Floyd (1987). Alias
sampling é bem explicada por Pătraşcu (2011). A amostragem de reservatório
ponderada é de Efraimidis e Spirakis (2005).
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6.3. Set covering

(A lecture on demand held Aug 12, 2024. The first part is based on a
chapter on set partitioning of Balas, the second part on a paper of Bläsius
and others.)

Let A ∈ Rm×n be the element-set containment matrix over m elements
and n sets, i.e. columns are sets, with 1s at the rows of their elements,
rows are elements, with 1s at the column of the sets they are contained
in. We have the NP-complete set covering problem

min{cx | Ax ≥ 1, x ∈ Bn} (SC) {sc}{sc}

and the related problems

min{cx | Ax = 1, x ∈ Bn} (SPP) {spp}{spp}
max{cx | Ax ≤ 1, x ∈ Bn} (SP) {sp}{sp}

max{1y | AGy ≤ 1, y ∈ Bm} (EM) {em}{em}
min{1y | AGy ≥ 1, y ∈ Bm} (EC) {ec}{ec}

max{1x | At
Gx ≤ 1, x ∈ Bn} (NP) {np}{np}

min{1x | At
Gx ≥ 1, x ∈ Bn} (NC) {nc}{nc}

namely set partitioning SPP, set packing SP, edge matching EM (and its
perfect version EM∗), edge cover EC, node packing NP (i.e. maximum
independent sets), and node cover NC (i.e. minimum vertex cover). Here
AG ∈ Rn×m is the node-edge incidence matrix of graph G with n vertices
andm edges (columns represent edges with at most two 1s, rows represent
vertices, the 1s are its incident edges).
We have the following relationship, where solid arcs are problem reduc-
tions, and dotted arcs go from special cases to more general problems:
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SPP

SP

NP

EM

EC

EM* SC

(2)

(3)

(1)

NP-complete

The reductions are as follows.

(1) SPP to SC. Penalize excess by writing

min{cx+Θ1y | Ax− y = 1, y ≥ 0, x ∈ Bn}.

Then y = Ax− 1 so Θ1y = Θ1Ax−mΘ and we can write

min{−Θm+ c ′x | Ax ≥ 1, x ∈ Bn},

with c ′ = Θ1A + c (we can drop constant −Θm). For large Θ > 1c
optimal solutions are the same.

(2) SPP to SP Penalize slack by writing

min{cx+Θ1y | Ax+ y = 1, y ≥ 0, x ∈ Bn}.

Then y = 1 − Ax so Θ1y = Θm − Θ1Ax, and letting c ′ = Θ1A − c we
have

min{−c ′x+Θm | Ax ≤ 1, x ∈ Bn} = max{c ′x | Ax ≤ 1, x ∈ Bn}

(3) EC to EM EC must cover all n vertices. This can be done with n

edges. However, in a matching M we cover two vertices per edge, thus
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the value of EC minimizes n − |M|. In other words we maximize |M|,
i.e. solve an EM, since n is a constant.
(We note that all can be reduced to SC, but there’s no simple reduction
from SC to SPP.)

6.3.1. Further related problems

Let G = (V,F) be a hypergraph with hyperedges F ⊆ V . The hitting set
problem is

min
S⊆V

{|S| | F ∩ S 6= ∅,∀F ∈ F } (HS) {hs}{hs}

min{1y | ytA ≥ 1t︸ ︷︷ ︸
Aty≥1

, y ∈ Bm} (HS) {hs2}{hs2}

where in the latter formulation we just have SC with the roles of sets
and elements inverted. (In SC sets covers element they contain; changing
roles, seeing sets as elements and elements they cover as sets their are
contained in, we have a hitting set.)

6.3.2. Solution strategies

In the 2000s ILP was SOTA. We look at Bläsius et al. (2022) which
achieve a median speedup of 25 over 929 instances where Gurobi takes
≥ 0.01 seconds. (The total test set has 4256 instances, with 4114 trivial
ones, and 6 that take more than 24 hours. This leaves 136 core instances,
of which 58 are random and 78 applied.)
The solution technique is branch and bound. It solves subproblems over
chosen vertices S, open vertices V , and exluded vertives S̄.

1 hs(S,V,S̄) :=
2 greedy(S ∪ V) { Compute UB }
3 while reduction or pruning possible
4 computer lower bounds
5 if lb ≥ ub: return
6 apply first applicable reduction
7 end while
8 choose highest degree vertex v ∈ V

9 hs(S ∪ {v}, V \ {v}, S̄) { include }
10 hs(S, V \ {v}, S̄ ∪ {v}) { exclude }
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We can see that this is almost canonical, with inclusion before exclusion.
What counts are lower and upper bounds, reductions, the branching stra-
tegy, and efficient data structures. We go over them in turn.

6.3.3. Upper bounds

Repeatedly pick greedily the vertex of highest degree. This is a logn-
approximation, and works well in practice. It can be done in time O(n+
m) by keeping vertices in buckets, and repeatedly choosing one of highest
degree, and then going over the neighbors to relocate them.

6.3.4. Lower bounds

There are several ones of increasing complexity.

Max-degree Each vertex hits at most dmax = maxv∈V δv sets. So d|F |/dmaxe
is a lower bound.

Sum-degree Let δ1 ≥ δ2 ≥ · · · ≥ δn, and choose the smallest i such that
the prefix sum

∑
j∈[i] δj ≥ |F |. Then j is a lower bound, since fewer

vertices cannot hit all sets.

Efficiency Take any solution S ⊆ V of cost |S| and write

|S| =
∑
v∈S

1 =
∑
v∈S

∑
F∈F(s)

1/δv︸ ︷︷ ︸
push cost to edges

!
=

∑
F∈F

∑
v∈S∩F

1/δv︸ ︷︷ ︸
≥minv∈F 1/δv

≥
∑
F∈F

min
v∈F

1/δv.

In the relaxation to the minimum we observe that at least one vertex
of highest degree pays for edge F. The cost is now independent of S,
and we have lower bound

⌈∑
F∈F minv∈F 1/δv

⌉
. (The vertex cover

viewpoint is: each vertex costs 1/s where s is the largest set it is
contained in.)

Packing If P ⊆ F are pairwise disjoint edges, |P| is a lower bound. This
is an independent set in the intersection graph of the edges.

Sum-over-packing As above, take a packing P. The vertices that hit P

hit at most

bP =
(∑
F∈P

max
v∈F

δv
)
− |P|
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edges in the rest F \ P. Now assume bP < |F \ P|, then we need to
hit r = |F \ P| − bP more edges. So again let δ1 ≥ δ2 ≥ · · · ≥ δn,
but with degrees in F \ P, and with the vertex of highest degree
out, and choose the smallest i such that

∑
j∈[i] δj ≥ r. Then |P|+ j

is a lower bound.

The relations are as follows, where arcs indicate domination, and orange
edges incomparability. The order these bounds are computed is shown in
red.

efficiency

sum-degree

max-degree

sum-over-packing

packing

2 4

3

1

They cost 1 O(n), 2 O(D), 3 O(D+m logm), and 4 O(D).

6.3.5. Reduction rules

We have four reduction rules. Again circled numbers give the order and
the cost to apply them. Here D =

∑
v∈V δv =

∑
F∈F |F| (note that in

traditional graphs D = 2m since |F |= 2).

Unit edge If an edge has size one, pick its vertex. 5 O(m).

Edge domination If edges F1 ⊆ F2, remove F2 (since hitting F1 implies
hitting F2). 9 O(mD).

Vertex domination If F(v1) ⊇ F(v2) delete v2 (since all v2 hits v1 hits,
too). 10 O(nD).

Costly discard (a kind of anticipated branching) if removing v ∈ V makes
ub ≥ lb select v. 6 : update efficiency bound, O(D), 7 : update
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packing bound, no repacking, O(D +m logm), 8 : repack for the
3 vertices of highest degree O(D+m logm).

6.3.6. Details

Keeping the graph Vertices have edge lists, edges vertex lists; all are
kept sorted in a data structure called an “ordered subset list”.

list

1, 2, ... n or m

+ indices

In this way we have the following operations:
init() to {s1, . . . , sn} (ordered) in O(n);
del(i) in O(1);
undo last del in O(1);
traverse in either direction in O(|S|).
We also keep an undo stack.

Upper bounds Via bucket heaps, in O(D).

Packing bound Computed heuristically, as follows:
a) Approximate the min degree order of edges F in the conflict

graph by
∑

v∈F δv, done in O(m logm).
b) Visit edges F in order, select F if possible, mark vertices. Each

check costs |F| so total cost D =
∑

F∈F |F|.

Costly discard with efficiency bound Each F ∈ F may lose a vertex, so
cost minv∈F 1/δv goes to the second smallest vertex; it is remembe-
red when computing the efficiency bound for the instance, so cost
O(D) once. Then: for each v ∈ V and for each F ∈ F(v), check if v is
current minimum, and increase. This costs

∑
v∈V

∑
F∈F(v) 1 = D.
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Costly discard with packing bound In the current packing P all edges
F \ P intersect some F ∈ P, and thus are blocked by some v ∈

∪
P

such that F∩
∪
P = {v}. (Only those blocked by a single vertex are

interesting.) Now do the following three steps:
a) initialize: for each v ∈ V find Bv, the edges blocked by it in

O(D), and sort Bv by highest degree of a contained vertex
(except v) in O(m logm)

b) check: for each v ∈ V go over Bv and add edges greedily
c) for the c = 3 vertices of highest degree: rebuild the packing

from scratch

Edge and vertex domination For vertices going over all pairs in O(
∑

i,j δi+
δj) = O(nD); for edges ditto in O(

∑
F1,F2

|F1| + |F2|) = O(mD).
(There are theoretical indications that subquadratic time is not
possible.) In practice: set tries over [n] store a family of sets over
operations (Savnik, 2013)
add(S) T = T ∪ {S} in (|S|)

has subset(S) in O(|S|+ ||T ||)

has superset(S) in O(|S|+ ||T ||)

as follows: root ∅, children always greater, each node also has a
“last flag” (for prefixes).
Now for edges: go over |F1| ≤ |F2| ≤ · · · ≤ |Fn|, for each Fi: if T
has a subset discard Fi else insert into T . For vertices: go over
δ1 ≥ δ2 ≥ · · · ≥ δn, and for each vi: if T has a superset of F(vi)
discard vi, otherwise insert F(vi) into T .
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Definições
{def:polimit2}

Definição A.1
Uma relação binária R é polinomialmente limitada se

∃p ∈ poly : ∀(x, y) ∈ R : |y| ≤ p(|x|)
{def:pisoteto}

Definição A.2 (Pisos e tetos)
Para x ∈ R o piso bxc é o maior número inteiro menor que x e o teto dxe é o
menor número inteiro maior que x. Formalmente

bxc = max{y ∈ Z | y ≤ x}

dxe = min{y ∈ Z | y ≥ x}

O parte fracionário de x é {x} = x− bxc.

Observe que o parte fracionário sempre é positivo, por exemplo {−0.3} = 0.7.

Proposição A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem

x ≤ dxe < x+ 1 (A.1) {eq:teto}{eq:teto}
x− 1 < bxc ≤ x (A.2) {eq:piso}{eq:piso}

Definição A.3
Uma função f é convexa se ela satisfaz a desigualdade de Jensen

f
(
Θx+ (1−Θ)y

)
≤ Θf(x) + (1−Θ)f(y). (A.3)

Similarmente uma função f é concava caso −f é convexo, i.e., ela satisfaz

f(Θx+ (1−Θ)y) ≥ Θf(x) + (1−Θ)f(y). (A.4)

Exemplo A.1
Exemplos de funções convexas são x2k, 1/x. Exemplos de funções concavas
são log x,

√
x. ♢
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{prop:jensen}
Proposição A.2
Para

∑
i∈[n] Θi = 1 e pontos xi, i ∈ [n] uma função convexa satisfaz

f
(∑
i∈[n]

Θixi
)
≤

∑
i∈[n]

Θif(xi) (A.5) {eq:convexmult}{eq:convexmult}

e uma função concava

f
(∑
i∈[n]

Θixi
)
≥

∑
i∈[n]

Θif(xi) (A.6) {eq:concavemult}{eq:concavemult}

Prova. Provaremos somente o caso convexo por indução, o caso concavo
sendo similar. Para n = 1 a desigualdade é trivial, para n = 2 ela é válida
por definição. Para n > 2 define Θ̄ =

∑
i∈[2,n] Θi tal que Θ + Θ̄ = 1. Com

isso temos

f
(∑
i∈[n]

Θixi
)
= f

(
Θ1x1 +

∑
i∈[2,n]

Θixi
)
= f(Θ1x1 + Θ̄y)

onde y =
∑

j∈[2,n](Θj/Θ̄)xj, logo

f
(∑
i∈[n]

Θixi
)
≤ Θ1f(x1) + Θ̄f(y)

= Θ1f(x1) + Θ̄f
( ∑
j∈[2,n]

(Θj/Θ̄)xj
)

≤ Θ1f(x1) + Θ̄
∑

j∈[2,n]

(Θj/Θ̄)f(xj) =
∑
i∈[n]

Θixi

■

A.1. Algoritmos
{alg:mmpd}

Soluções do problema da mochila com Programação Dinâmica

Mochila máxima (Knapsack)

• Seja S∗(k, v) a solução de tamanho menor entre todas soluções que
– usam somente itens S ⊆ [1, k] e
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M(k, n)

x1 x2 x3 x4 x5 x6 xn· · ·Entrada

Medianos

mMediano

m

i

xi < m xi ≥ mPartição

Recursão k < i : k = i : k > i :

M(k, i − 1) Encontrado M(k − i, n − i)

Figura A.1.: Funcionamento do algoritmo recursivo para seleção. {fig:selection}

– tem valor exatamente v.

• Temos

S∗(k, 0) = ∅
S∗(1, v1) = {1}

S∗(1, v) = undef para v 6= v1

Mochila máxima (Knapsack)

• S∗ obedece a recorrência

S
∗(k, v) = min

tamanho

{
S∗(k − 1, v − vk) ∪ {k}, se vk ≤ v e S∗(k − 1, v − vk) definido
S∗(k − 1, v)

• Menor tamanho entre os dois∑
i∈S∗(k−1,v−vk)

ti + tk ≤
∑

i∈S∗(k−1,v)

ti.

• Melhor valor: Escolhe S∗(n, v) com o valor máximo de v definido.

• Tempo e espaço: O(n
∑

i∈[n] vi).
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{sec:selection}
Seleção Dado um conjunto de números, o problema da seleção consiste em
encontrar o k-ésimo maior elemento. Com ordenação o problema possui so-
lução em tempo O(n logn). Mas existe um outro algoritmo mais eficiente.
Podemos determinar o mediano de grupos de cinco elementos, e depois o re-
cursivamente o mediano m desses medianos. Com isso, o algoritmo particiona
o conjunto de números em um conjunto L de números menores que m e um
conjunto R de números maiores que m. O mediano m é na posição i := |L|+ 1

desta sequência. Logo, caso i = k m é o k-ésimo elemento. Caso i > k te-
mos que procurar o k-ésimo elemento em L, caso i < k temos que procurar o
k− i-ésimo elemento em R (ver figura A.1).
O algoritmo é eficiente, porque a seleção do elemento particionador m garante
que o subproblema resolvido na segunda recursão é no máximo um fator 7/10
do problema original. Mais preciso, o número de medianos é maior que n/5,
logo o número de medianos antes de m é maior que n/10 − 1, o número de
elementos antes de m é maior que 3n/10−3 e com isso o número de elementos
depois de m é menor que 7n/10+ 3. Por um argumento similar, o número de
elementos antes de m é também menor que 7n/10 + 3. Portanto temos um
custo no caso pessimista de

T(n) =

{
Θ(1) se n ≤ 5

T(dn/5e) +Θ(7n/10+ 3) +Θ(n) caso contrário

e com 5−p + (7/10)p = 1 temos p = log2 7 ≈ 0.84 e

T(n) = Θ

(
np

(
1+

∫n
1

u−pdu

))
= Θ(np(1+ (n1−p/(1− p) − 1/(1− p)))

= Θ(c1n
p + c2n) = Θ(n).

{alg:selection}
Algoritmo A.1 (Seleção)
Entrada Números x1, . . . , xn, posição k.

Saída O k-ésimo maior número.

1 S(k, {x1, . . . , xn}) :=
2 if n ≤ 5

3 calcula e retorne o k-ésimo elemento
4 end if
5 mi := median(x5i+1, . . . , xmin(5i+5,n)) para 0 ≤ i < dn/5e.
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6 m := S(ddn/5e /2e ,m1, . . . ,m⌈n/5⌉−1)
7 L := {xi | xi < m, 1 ≤ i ≤ n}

8 R := {xi | xi ≥ m, 1 ≤ i ≤ n}

9 i := |L|+ 1

10 if i = k then
11 return m

12 else if i > k then
13 return S(k, L)
14 else
15 return S(k− i, R)
16 end if
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B. Técnicas para a análise de algoritmos

Análise de recorrências
{th:mak}

Teorema B.1 (Akra-Bazzi e Leighton)
Dado a recorrência

T(x) =

{
Θ(1), se x ≤ x0,∑

1≤i≤k aiT(bix+ hi(x)) + g(x), caso contrário,

com constantes ai > 0, 0 < bi < 1 e funções g, h, tal que

|g ′(x)| ∈ O(xc); |hi(x)| ≤ x/ log1+ϵ x

para um ϵ > 0 e a constante x0 e suficientemente grande

T(x) ∈ Θ

(
xp

(
1+

∫x
1

g(u)

up+1
du

))
com p tal que

∑
1≤i≤k aib

p
i = 1.

Teorema B.2 (Graham et al. (1988))
Dado a recorrência

T(n) =

{
Θ(1), n ≤ max1≤i≤k di,∑

i αiT(n− di), caso contrário,

seja α a raiz com a maior valor absoluto com multiplicidade l do polinômio
característico

zd − α1z
d−d1 − · · ·− αkz

d−dk

com d = maxk dk. Então

T(n) = Θ(nlαn) = Θ∗(αn).
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