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Introducao

A disciplina “Algoritmos avancados” foi criada para combinar a teoria e a
pratica de algoritmos. Muitas vezes a teoria de algoritmos e a pratica de im-
plementagoes eficientes é ensinado separadamente, em particular no caso de
algoritmos avancados. Porém a experiéncia mostra que encontramos muitos
obstaculos no caminho de um algoritmo teoricamente eficiente para uma im-
plementagao eficiente. Além disso, o projeto de algoritmos novos nao termina
com uma implementacao eficiente, mas é alimentado pelos resultados expe-
rimentais para produzir melhores algoritmos. A figura abaixo mostra o ciclo
tipico da area emergente de engenharia de algoritmos.
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Engenharia de algoritmos (Algorithm Engineering s.d.).

Seguindo essa filosofia, o nosso objetivo e tanto entender a teoria de algorit-
mos, demonstrado a sua corretude e analisando a sua complexidade, quanto
dominar a pratica de algoritmos, a sua implementagao e avaliagdo experimen-
tal. Isso é refletido numa sequéncia alternada de aulas tedricas a praticas.






1. Algoritmos em grafos

1.1. Representacao de grafos

Um grafo pode ser representado diretamente de acordo com a sua definicao
por n estruturas que representam os vértices, m estruturas que representam
0s arcos e ponteiros entre as estruturas. Um vértice possui ponteiros para todo
arco incidente sainte ou entrante, e um arco possui ponteiros para o inicio e
término. A representacdo direta possui varias desvantagens. Por exemplo néo
temos acesso direto aos vértices para inserir um arco.

Duas representagoes simples sio listas (ou vetores) ndo-ordenadas de vértices
ou arestas. Uma outra representacdo simples de um grafo G com n vértices é
uma matriz de adjacéncia M = (my;) € B™*™. Para vértices u,v o elemento
myy = 1 caso existe uma arco entre w e v. Para representar grafos néo-
direcionados mantemos My, = My, i.e., M é simétrico. A representacdo
permite um teste de adjacéncia em O(1). Percorrer todos vizinhos de um
dado vértice v custa O(n). O custo alto de espaco de @(n?) restringe o uso
de uma matriz de adjacéncia para grafos pequenos'.

Uma representacao mais eficiente é por listas ou vetores de adjacéncia. Neste
caso armazenamos para cada vértice os vizinhos em uma lista ou um vetor. As
listas ou vetores mesmos podem ser armazenados em uma lista ou um vetor
global. Com isso a representagdo ocupa espaco @(n + m) para m arestas.
Uma escolha comum é um vetor de vértices que armazena listas de vizinhos.
Esse estrutura permite uma inser¢ao e delegao simples de arcos. Para facili-
tar a delecdo de um vértice em grafos nao-direcionados, podemos armazenar
junto com o vizinho u do vértice v a posi¢do do vizinho v do vértice u. A
representacao dos vizinhos por vetores é mais eficiente, e por isso preferivel
caso a estrutura do grafo é estético (Black Jr. e Martel, 1998; Park, Penner e
Prasanna, 2004).

Caso escolhemos armazenar os vértices em uma lista dupla, que armazena uma
lista dupla de vizinhos, em que os vizinhos sao representados por posicoes da
primeira lista, obtemos uma lista dupla de arcos (ingl. doubly connected arc
list, DCAL). Essa estrutura permite uma inserc¢do e remogéo tanto de vértices
quanto de arcos.

Supoe que V = [n]. Uma outra representacido compacta e eficiente conhecido
como forward star para grafos estaticos usa um wvetor de arcos aj,...,Qm.

1 Ainda mais espaco consuma uma matric de incidéncia entre vértices e arestas em B"x™,



1. Algoritmos em grafos

Tabela 1.1.: Operagoes tipicas em grafos.

Lista de Matriz de Lista de
Operacao arestas vértices adjacéncia adjacéncia
Inserir aresta o) OMm+m) o O(1) ou O(n)

Remover aresta O(m) O(m+m) o(1) O(n)
Inserir vértice o(1) 0(1) 0(n?) o(1)

Remover vértice O(m) O(Mnm+m) 0(n?) Om+m)
Teste uv € E O(m) O(n+m) o(1) 0o(A)
Percorrer vizinhos  O(m) 0o(A) O(n) 0o(A)
Grau de um vértice  O(m) 0o(A) O(n) o(1)

Mantemos a lista de arestas ordenado pelo comeco do arco. Uma permutagao o
nos d4 as arestas em ordem do término. (O uso de uma permutagio serve para
reduzir o consumo de memoria.) Para percorrer eficientemente os vizinhos
de um vértice armazenamos o indice s, do primeiro arco sainte na lista de
arestas ordenado pelo comego e o indice e, do primeiro arco entrante na lista
de arestas ordenado pelo término com sn;1 = en 1 = m+ 1 por definicdo.

Com isso temos Nt (v) ={as,,...,as, ,—1} com 8} =sy11 —sy, e N™(v) =
{Ag(ey)y ) Qofey 1 1—1)) cOM 8, = ey41 — e,. A representagdo precisa espaco
O(n+m).

Tabela 1.1 mostra a complexidade de operagoes tipicas nas diferentes repre-
sentacgoes.

1.2. Caminhos e ciclos Eulerianos

Um caminho Euleriano passa por toda arestas de grafo exatamente uma vez.
Um caminho Euleriano fechado é um ciclo Euleriano. Um grafo é Euleriano
caso ele possui um ciclo Euleriano que passa por cada vértice (pelo menos uma
vez).

Proposicao 1.1
Uma grafo nao-direcionado G = (V, E) é Euleriano sse G é conectado e cada
vértice tem grau par.

Prova. Por indugéo sobre o ntimero de arestas. A base da indugdo é um
grafo com um vértice e nenhuma aresta que satisfaz a proposi¢do. Supde que
os grafos com < m arestas satisfazem a proposicdo e temos um grafo G com
m+1 arestas. Comega por um vértice v arbitrario e procura um caminho que
nunca passa duas vezes por uma aresta até voltar para v. Isso sempre é possivel
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porque o grau de cada vértice é par: entrando num vértice sempre podemos
sair. Removendo este caminho do grafo, obtemos uma cole¢do de componentes
conectados com menos que m arestas, e pela hipétese da indugao existem ciclos
Eulerianos em cada componente. Podemos obter um ciclo Euleriano para o
grafo original pela concatengad desses ciclos Eulerianos. |
Pela prova temos o seguinte algoritmo com complexidade O(|E|) para encontrar
um ciclo Euleriano na componente de G = (V, E) que contém v € V:

Algoritmo 1.1 (Caminho Euleriano)

1 Euler (G = (V,E),veV) :=

2 if |[E/|=0 return v

3 procura um caminho comegando em VvV

4 sem repetir arestas voltando para v

5 seja v =Vi,V2,...,Vy =V esse caminho

6 remove as arestas Vivz, VaVi, ..., Vn_1Vn de G
7 para obter Gj

8 return Euler(Gq,vq)+---+ Euler(Gn,_1,Mvn_1) +vn
9 // Usamos + para concatenagdo de caminhos.
10 // Gi & Gi_1 com as arestas do

11 // caminho Euler(Gi_j,vi_ 1) removidos, i.e

12 // Gi:=(V,E(Gi—1) \ E(Euler(Gi_1,vi—1))

Algoritmo 1.1 é de Hierholzer (1873).



1. Algoritmos em grafos

1.3. Filas de prioridade e heaps

Uma fila de prioridade mantem um conjunto de chaves com prioridades de
forma que a atualizar prioridades e acessar o elemento de menor prioridade é
eficiente. Ela possui aplica¢bes em algoritmos para calcular drvores geradores
minimas, caminhos mais curtos de um vértice para todos outros (algoritmo de
Dijkstra) e em algoritmos de ordenagao (heapsort).

Exemplo 1.1
Arvore geradora minima através do algoritmo de Prim.

Algoritmo 1.2 (Arvore geradora minima)
Entrada Um grafo conexo nao-direcionado ponderado G = (V, E, c)

Saida Uma arvore T C E de menor custo total.

1 V':={vo} para um vo €V

2 T:=0

3 while V' #YV do

4 escolhe e ={u,v} de custo minimo

5 entre V' e V\V’ (com ueV ,veV\V)
6 V' =V Ui{v}

7 T:=Tufe

8

end while

Algoritmo 1.3 (Prim refinado)
Implementacao mais concreta:

1 T:=0

2 for ue V\{v} do

3 if we N(v) then

4 value(u) = cuy

5 pred(u) :=v

6 else

7 value(u) := oo

8 end if

9 insert(Q, (value(u),u)) { pares (chave,elemento) }
10 end for

11 while Q#0 do
12 v := deletemin(Q)
13 T:= T U{pred(v)v}
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14 for ue N(v) do

15 if ueQ e cyy < value(u) then
16 value(u) —cuv

17 pred(u) :=

18 update(Q,u cvu)

19 end if

20 end for
21 end while

Custo? n X insert +n x deletemin + m x update.

O

Observacgao 1.1

Implementacdo com vetor de distancias: insert = O(1)2, deletemin = O(n),
update = O(1), e temos custo O(n +n? + m) = O(n? + m). Isso é assintoti-
camente 6timo para grafos densos, i.e. m = Q(n?). %

Observagao 1.2
Implementacao com lista ordenada: insert = O(n), deletemin = O(1), update =

O(n), e temos custo O(n? + n +mn) = O(mn)°. O

Observacgao 1.3

Implementacdo com uma lista de /n blocos de y/1 elementos, insert, delete-
min e update podem ser implementados em tempo O(y/n), logo o algoritmo
de Prim e de Dijkstra tem complexidade O(my/n). %

Exemplo 1.2
Caminhos mais curtos com o algoritmo de Dijkstra

Algoritmo 1.4 (Dijkstra)
Entrada Grafo G = (V,E) com pesos c. > 0 nas arestas e € E, e um
vértice s € V.

Saida A distancia minima d, entre s e cada vértice v € V.

1 ds:=0;d, :=00,¥v e V\{s}
visited(v) := false, Vv € V
Q=0

insert(Q, (s,0))

while Q #0 do

T W N

2Com chaves compactas [1,n].
3Na hipétese razodvel que m > n
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6 v := deletemin(Q)
7 visited(v) := true
8 for ue N(v) do

9 if not visited(u) then
10 if dy =0 then
11 dy :=dy + dyy
12 insert(Q, (u,d,))
13 else if d, +d,, <dy
14 dy :=dy + dyy
15 update(Q, (u, dv,))
16 end if
17 end if

18 end for
19 end while

A fila de prioridade contém pares de vértices e distancias.

Proposicao 1.2
O algoritmo de Dijkstra possui complexidade

O(n) +n x deletemin + n x insert + m x update.

Prova. O pré-processamento (1-3) tem custo O(n). O lago principal é domi-
nado por no maximo n operagoes insert, n operagoes deletemin, e m operagoes
update. A complexidade concreta depende da implementacdo desses opera-
goes. |

Proposicao 1.3
O algoritmo de Dijkstra é correto.

Prova. Seja dist(s,x) a menor distdncia entre s e x. Provaremos por indugao
que para cada vértice v selecionado na linha 6 do algoritmo d, = dist(s,x).
Como base isso é correto parav = s. Sejav # s um vértice selecionado na linha
6, e supoe que existe um caminho P =s---xy---v de comprimento menor que
dy, tal que y é o primeiro vértice que nao foi processado (i.e. selecionado na
linha 6) ainda. (E possivel que y =v.) Sabemos que

dy < dx + dyy porque x ja foi processado
= dist(s,x) 4 dxy pela hipétese d,, = dist(s, x)
< d(P) dist(s,x) < dp(s,x) e P passa por xy
< dy, pela hipétese

10
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uma contradi¢do com a minimalidade do elemento extraido na linha 6. (No-
tacdo: d(P): distdncia total do caminho P; dp(s,x): distancia entre s e x no
caminho P.) [ | O

Observagao 1.4

Podemos ordenar n elementos usando um heap com n operagoes “insert”
e n operagoes “deletemin”. Pelo limite de Q(nlogn) para ordenacdo via
comparagao, podemos concluir que o custo de “insert” mais “deletemin” é
Q(logn). Portanto, pelo menos uma das operacoes é Q(logn). %

O caso médio do algoritmo de Dijkstra Dado um grafo G = (V,E) e um
vértice inicial arbitrario supde que temos um conjunto C(v) de pesos positivos
com |C(v)| = [N~ (v)| para cada v € V. Atribuiremos permutacdes dos pesos
em C(v) aleatoriamente para os arcos entrantes em v.

Proposicao 1.4 (Noshita (1985))
O algoritmo de Dijkstra chama update em média nlog(m/n) vezes neste mo-
delo.

Prova. Para um vértice v os arcos que podem levar a uma operacao update
em v sdo de forma (u,v) com dist(s,u) < dist(s,v). Supde que existem k
arcos (u1,v),..., (u,v) desse tipo, ordenado por dist(s,u;) nao-decrescente.
Independente da atribuicao dos pesos aos arcos, a ordem de processamento é
o mesmo. O arco (ui,Vv) leva a uma operagdo update caso
dist(s,ui) + dyv < ]H]n<nl dist (s, uj) + du;v-

Com isso temos dy;, < minj;j<i dujv, i.e., dy,v ¢ um minimo local na sequén-
cia dos pesos dos k arcos. O numero esperado de méximos locais de uma
permutacao aleatéria é Hy — 1 < Ink e considerando as permutagoes inversas,
temos 0 mesmo nimero de minimos locais. Como k < 6~ (v) temos um limite
superior para o numero de operac¢oes update em todos vértices de

Z Iné~(v) =n Z(]/n) Ind~(v) <nln Z(]/n)é’(\)) =nlnm/n.
vev vev vev

A desigualdade é justificada pela equaciao (A.6) observando que Inn é concava.
]
Com isso complexidade média do algoritmo de Dijkstra é

O(m + n x deletemin + n x insert + nln(m/n) x update).

Usando uma fila de prioridade implementada por um heap bindrio que executa
todas operacoes em O(logn) a complexidade média do algoritmo de Dijkstra
é O(m+nlogm/nlogn).

11
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1. Algoritmos em grafos

1.3.1. Heaps binarios

Teorema 1.1

Uma fila de prioridade pode ser implementado com custo insert = O(logn),
deletemin = O(logn), update = O(logn). Portanto, uma arvore geradora
minima pode ser calculado em tempo O(nlogn + mlogn).

Um heap é uma arvore com chaves nos vértices que satisfazem um critério de
ordenagao.

e min-heap: as chaves dos filhos sdo maior ou igual que a chave do pai;

e max-heap: as chaves dos filhos sdo menor ou igual que a chave do pai.

Um heap binario é um heap em que cada vértice possui no méximo dois filhos.
Implementaremos uma fila de prioridade com um heap binario completo. Um
heap completo fica organizado de forma que possui folhas somente no tltimo
nivel, da esquerda para direita. Isso garante uma altura de O(logn).

Positivo: Achar a chave com valor minimo (operacao findmin) custa O(1).
Como implementar a inser¢do? Idéia: Colocar na tltima posicio e restabelecer
a propriedade do min-heap, caso a chave é menor que a do pai.

insert(H,c) :=
insere ¢ na ultima posigdo p
heapify-up(H,p)

heapify-up(H,p) :=
if root(p) return
if key(parent(p))>key(p) then
swap (key (parent (p)) ,key (p))
heapify-up(H,parent (p))
end if

12
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1.3. Filas de prioridade e heaps

Lema 1.1
Seja T um min-heap. Decremente a chave do né p. Ap6ds heapify-up(T, P)
temos novamente um min-heap. A operacdo custa O(logn).

Prova. Por indugdo sobre a profundidade k de p. Caso k = 1: p é a raiz,
ap6s o decremento ja temos um min-heap e heapify-up nao altera ele. Caso
k > 1: Seja ¢ a nova chave de p e d a chave de parent(p). Caso d < ¢ ja temos
um min-heap e heapify-up néo altera ele. Caso d > ¢ heapify-up troca c e
d e chama heapify-up(T,parent(p)) recursivamente. Podemos separar a troca
em dois passos: (i) copia d para p. (ii) copia ¢ para parent(p). Apds passo
(i) temos um min-heap T’ e passo (ii) diminui a chave de parent(p) e como
a profundidade de parent(p) é k — 1 obtemos um min-heap apds da chamada
recursiva, pela hipotese da indugéao.

Como a profundidade de T é O(logn), o nimero de chamadas recursivas tam-
bém é, e como cada chamada tem complexidade O(1), heapify-up tem com-
plexidade O(logn). |

Como remover? A idéia bésica é a mesma: troca a chave com a menor chave
dos filhos. Para manter o heap completo, colocaremos primeiro a chave da
ultima posi¢ao na posi¢ao do elemento removido.

delete(H,p):=
troca ultima posigdo com p
heapify-down (H,p)

heapify-down(H,p):=
if p n8o possui filhos return
if p possui um filho then
if key(left(p))<key(p)) then swap(key(left(p)),key(p))
return
end if
{ p possui dois filhos }
if key(p)>key(left(p)) or key(p)>key(right(p)) then
if (key(left(p))<key(right(p)) then
swap (key (left (p)) ,key(p))
heapify-down(H,left (p))
else
swap (key (right (p)) ,key (p))
heapify-down(H,right (p))
end if
end if

13



0O ~J O UL~ W N+~

ST W N~

1. Algoritmos em grafos

Lema 1.2
Seja T um min-heap. Incremente a chave do né p. Apds heapify-down(T, p)
temos novamente um min-heap. A operacao custa O(logn).

Prova. Por inducado sobre a altura k de p. Caso k =1, p é uma folha e apds o
incremento ja temos um min-heap e heapify-down nao altera ele. Caso k > 1:
Seja ¢ a nova chave de p e d a chave do menor filho f. Caso ¢ < d ja temos
um min-heap e heapify-down nao altera ele. Caso ¢ > d heapify-down troca c
e d e chama heapify-down(T,f) recursivamente. Podemos separar a troca em
dois passos: (i) copia d para p. (ii) copia ¢ para f. Apds passo (i) temos um
min-heap T’ e passo (ii) aumenta a chave de f e como a altura de f é k— 1,
obtemos um min-heap apés da chamada recursiva, pela hip6tese da inducao.
Como a altura de T é O(logn) o nimero de chamadas recursivas também, e
como a cada chamada tem complexidade O(1), heapify-up tem complexidade
O(logmn). [ |
Ultima operacao: atualizar a chave.

update (H,p,v) :=
if v <key(p) then

key (p):=v

heapify-up(H,p)
else

key (p):=v

heapify-down (H,p)
end if

Sobre a implementacdo Uma arvore bindria completa pode ser armazenado
em um vetor v que contém as chaves. Um pontador p a um elemento é
simplesmente o indice no vetor. Caso o vetor contém n elementos e possui
indices a partir de 0 podemos definir

root(p) := return p=20

parent (p) := return [(p—1)/2]

key(p) := return v[p]

left(p) := return 2p+1

right (p) := return 2p+2

numchildren(p) := return max(min(n — left(p),2),0)

14



1.3. Filas de prioridade e heaps

Outras observagoes:

e Para chamar update, temos que conhecer a posi¢do do elemento no heap.
Para um conjunto de chaves compactos [0, n) isso pode ser implementado
usando um vetor pos, tal que pos[c] é o indice da chave ¢ no heap.

o A fila de prioridade ndo possui teste uw € Q (linha 15 do algoritmo 1.3)
eficiente. O teste pode ser implementado usando um vetor visited, tal
que visited[u] sse u & Q.

1.3.2. Heaps binomiais

Um heap binomial é um colecao de drvores binomiais que satisfazem a orde-
nacdo de um heap. A &rvore binomial By consiste de um unico vértice. A
arvore binomial B; possui uma raiz com filhos Bg,...,Bi—1. O posto de By é
k. Um heap binomial contém no maximo uma arvore binomial de cada posto.

Bo By B B3 B4
° :.A: W
Lema 1.3

Uma &arvore binomial tem as seguintes caracteristicas:
1. B, possui 2™ vértices, 2"~ folhas (para n > 0), e tem altura n + 1.

2. O nivel k de By, (a raiz tem nivel 0) tem (}) vértices. (Isso explica o
nome. )

Prova. Exercicio. |

Observagao 1.5

Podemos combinar dois B; obtendo um Bi, 1 e mantendo a ordenagao do heap:
Escolhe a arvore com menor chave na raiz, e torna a outra filho da primeira.
Chamaremos essa operacao “link”. Ela tem custo O(1) (veja observagoes sobre
a implementacao).

15
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O

Observagao 1.6

Um B; possui 2t vértices. Um heap com n chaves consiste em O(logn) drvores.
Isso permite juntar dois heaps binomiais em tempo O(logn). A operagio é
semelhante a soma de dois niimeros binarios com “carry”. Comeca juntar os
Bo. Caso tem zero, continua, case tem um, inclui no heap resultante. Caso
tem dois o heap resultante nao recebe um By. Define como “carry” o link dos
dois Bg’s. Continua com os B7. Sem tem zero ou um ou dois, procede como
no caso dos Bg. Caso tem trés, incluindo o “carry”, inclui um no resultado,
e define como “carry” o link dos dois restantes. Continue desse forma com os
restantes arvores. Para heaps hy, h, chamaremos essa operagao meld(hq,hy).

O

Com a operagao meld, podemos definir as seguintes operacgoes:
« makeheap(c): Retorne um By com chave c¢. Custo: O(1).
o insert(h,c): meld(h,makeheap(c)). Custo: O(logn).
o getmin(h): Mantendo um link para a arvore com o menor custo: O(1).

o deletemin(h): Seja By a drvore com o menor chave. Remove a raiz.
Define dois heaps: hy é h sem By, h, consiste dos filhos de By, i.e.
Bo,...,Bx—1. Retorne meld(hj,h;). Custo: O(logn).

 updatekey(h,p,c): Como no caso do heap bindrio completo com custo
O(logn).

o delete(h,c): decreasekey(h,c,—o0); deletemin(h)

Em comparagao com um heap binario completo ganhamos nada no caso pessi-
mista. De fato, a operacdo insert possui complexidade pessimista O(1) amor-
tizada. Um insert individual pode ter custo O(logn). Do outro lado, isso
acontece raramente. Uma andlise amortizada mostra que em média sobre
uma série de operagoes, um insert s6 custa O(1). Observe que isso nao é uma
analise da complexidade média, mas uma andalise da complexidade pessimista
de uma série de operagdes.
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Analise amortizada

Exemplo 1.3

Temos um contador bin rio com k bits ¢ queremos contar de 0 at 2K — 1.
An lise “tradicional”: um incremento tem complexidade O(k), porque no caso
pior temos que alterar k bits. Portanto todos incrementos custam O(k2¥).
An lise amortizada: “Poupamos” opera es extras nos incrementos simples,
para “gast -las” nos incrementos caros. Concretamente, setando um bit, gas-
tamos duas opera es, uma para setar, outra seria “poupada”. Incrementando,
usaremos as opera es “poupadas” para zerar bits. Desta forma, um incre-
mento custa O(1) e temos custo total O(2¥).

Uma outra forma da an lise amortizada atrav s uma fun o potencial @, que
associa a cada estado de uma estrutura de dados um valor positivo (a “pou-
pan a”). O custo amortizado de uma opera o que transforma uma estrutura
€1 em uma estrutura e; e ¢ — @(eq) + @(ez), com ¢ o custo de opera o. No
exemplo do contador, podemos usar como @(i) o n mero de bits na repre-
senta o bin rio de i. Agora, se temos um estado e

11---10
~——

p bits um g bits um
com @(ey) =p+ q, o estado ap s de um incremento

T ~—~
q

com @(ez) = 1+4q. O incremento custa ¢ = p+1 opera es e portanto o custo
amortizado

c—¢ler)+elea)=p+1—-p—q+1+q=2=0(1).
O

Resumindo: Dado um s rie de chamadas de uma opera o com custos ¢1,...,Cn
o custo amortizado da opera o ) ;_;., ci/n. Caso temos m opera es di-
ferentes, o custo amortizado da opera o que ocorre nos ndices J] C [1, m]
Zie] Cl/m

As somas podem ser dif ceis de avaliar diretamente. Um m todo para sim-
plificar o ¢ lculo do custo amortizado o m todo potencial. Acha uma fun o
potencial @ que atribui cada estrutura de dados antes da opera o i um va-
lor n o-negativo @i > 0 e normaliza ela tal que @7 = 0. Atribui um custo
amortizado

Qi =Ci — Qi+ Qit1

17
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a cada opera o. A soma dos custos n o ultrapassa os custos originais, porque

D A=) -Gt P =Pn—e1+) i) ¢

Portanto, podemos atribuir a cada tipo de opera o | C [1, m] o custo amorti-
zado Zie] ai/|Jl. Em particular, se cada opera o individual i € ] tem custo
amortizado a; < F, o custo amortizado desse tipo de opera o F.

Exemplo 1.4

Queremos implementar uma tabela din mica para um n mero desconhecido de
elementos. Uma estrat gia reserver espa o para n elementos, manter a ltima
posi o livre p, e caso p > n alocara uma nova tabela de tamanho maior. Uma
implementa o dessa ideia

insert (x):=
if p>mn then
aloca nova tabela de tamanho t = max{2n,1}
copia os elementos Xxi,]1 <i<p para nova tabela
n:=t
end if
Xp =X
p=p+1
com valores iniciais n:= 0 e p := 0. O custo de insert O(1) caso existe ainda
espa o na tabela, mas O(n) no pior caso.
Uma an lise amortizada mostra que a complexidade amortizada de uma opera o
O(1). Seja Cn o custo das linhas 3-5 e D o custo das linhas 7-8. Escolhe
a fun o potencial @(n) =2Cp —Dn. A fun o ¢ satisfaz os crit rios de um
potencial, porque p > 1n/2, e inicialmente temos @(0) = 0. Com isso o custo
amortizado caso tem espa o na tabela

a=ci—@i-T1)+ (i)
=D—(2C(p—1)—Dn)+ (2Cp —Dn) = C+2C = O(1).

Caso temos que alocar uma nova tabela o custo

ai=ci—oei—1)+ei)=D+Cn—(2C(p—1)—Dn) + (2Cp — 2Dn)
=C+Dn+2C—Dn=0(1).

O

Custo amortizado do heap binomial Nosso potencial no caso do heap bi-
nomial é o nimero de arvores no heap. O custo de getmin e updatekey nao
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altera o potencial e por isso permanece o mesmo. makeheap cria uma arvore
que custa mais uma operagao, mas permanece O(1). deletemin pode criar
O(logn) édrvores novas, porque o heap contém no maximo um Bign que
tem O(logn) filhos, e permanece também com custo O(logn). Finalmente,
insert reduz o potencial para cada link no meld e portanto agora custa somente
O(1) amortizado, com o mesmo argumento que no exemplo 1.3.

Desvantagem: a complexidade (amortizada) assintética de calcular uma drvore
geradora minima permanece O(nlogn + mlogn).

Meld preguicosa Ao invés de reorganizar os dois heaps em um meld, pode-
mos simplesmente concatend-los em tempo O(1). Isso pode ser implementado
sem custo adicional nas outras operacgoes. A tnica operac¢ido que ndo tem com-
plexidade O(1) é deletemin. Agora temos uma colecio de drvores binomiais
nao necessariamente de posto diferente. O deletemin reorganiza o heap, tal
que obtemos um heap binomial com arvores de posto tinico novamente. Para
isso, mantemos um vetor com as arvores de cada posto, inicialmente vazio.
Sequencialmente, cada arvore no heap, serd integrado nesse vetor, executando
operagoes link s6 for necessario. O tempo amortizado de deletemin permanece
O(logmn).

Usaremos um potencial @ que é o dobro do ntimero de arvores. Supondo que
antes do deletemin temos t arvores e executamos 1 operagoes link, o custo
amortizado é

(t+1)—2t4+2t—1) =t—1

Mas t — 1 é o niimero de drvores depois o deletemin, que é O(logn), porque
todas arvores possuem posto diferente.

Sobre a implementacdao Um forma eficiente de representar heaps binomiais,
¢é em forma de apontadores. Além das apontadores dos filhos para o os pais,
cada pai possui um apontador para um filho e os filhos sdo organizados em
uma lista encadeada dupla. Mantemos uma lista encadeada dupla também
das raizes. Desta forma, a operacao link pode ser implementada em O(1).
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1.3.3. Heaps Fibonacci

Um heap Fibonacci é uma modificagdo de um heap binomial, com uma opera-
¢ao decreasekey de custo O(1). Com isso, uma arvore geradora minima pode
ser calculada em tempo O(m + nlogn). Para conseguir decreasekey em O(1)
néo podemos mais usar heapify-up, porque heapify-up custa O(logn).
Primeira tentativa:

o delete(h,p): Corta p de h e executa um meld entre o resto de h e os filhos
de p. Uma alternativa é implementar delete(h,p) como decreasekey(h,p,—o0)
e deletemin(h).

o decreasekey(h,p): A ordenagdo do heap pode ser violada. Corta p é
execute um meld entre o resto de h e p.

Problema com isso: apds de uma série de operagoes delete ou decreasekey, a
arvore pode se tornar “esparso”, i.e. o nimero de vértices ndo é mais expo-
nencial no posto da arvore. A andlise da complexidade das operacbes como
deletemin depende desse fato para garantir que temos O(logm) arvores no
heap. Consequéncia: Temos que garantir, que uma arvore nao fica “podado”
demais. Solugao: Permitiremos cada vértice perder no maximo dois filhos.
Caso o segundo filho é removido, cortaremos o préprio vértice também. Para
cuidar dos cortes, cada né mantém ainda um valor booleana que indica, se ja
foi cortado um filho. Observe que um corte pode levar a uma série de cortes
e por isso se chama de corte em cascatas (ingl. cascading cuts). Um corte
em cascata termina na pior hipdtese na raiz. A raiz é o unico vértice em que
permitiremos cortar mais que um filho. Por isso ndo mantemos flag na raiz.

Implementacées Denotamos com h um heap, ¢ uma chave e p um elemento
do heap. minroot(h) é o elemento do heap que correspondo com a raiz da
chave minima, e cut(p) é uma marca que verdadeiro, se p ja perdeu um filho.

20
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insert(h, c¢) :=
meld (makeheap (c))

getmin(h) :=
return minroot (h)

delete (h,p) :=
decreasekey (h,p,—00)
deletemin (h)

meld(hq,hy) :=
h := lista com raizes de h; e hy; (em O(1))
minroot (h) :=
if key(minroot (hy))<key(minroot(hy;)) h; else h,

decreasekey(h,p,c) :=

key(p):= c
if ¢ < key(minRoot (h))
minRoot (h) := p

if not root(p)
if key(parent (p))>key(p)
corta p e adiciona na lista de raizes de h
cut (p) := false
cascading-cut (h,parent (p))

cascading-cut (h,p) :=
{ p perdeu um filho }

if root(p)
return

if (not cut(p)) then
cut (p) := true

else
corta p e adiciona na lista de raizes de h
cut (p) := false
cascading-cut (h,parent (p))

end if

deletemin(h) :=

remover minroot (h)

juntar as listas do resto de h e dos filhos de minroot (h)

{ reorganizar heap }
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determina o posto maximo M =M(n) de h
ri := undefined para 0<i<M
for toda raiz r do
remove T da lista de raizes
d := degree(r)
while (rq not undefined) do
r := link(r,1q)
T4 := undefined
d := d+1
end while
Tq =T
end for
definir a lista de raizes pelas entradas definidas 1;
determinar o novo minroot

link (h;,hy) :=
if (key(hy)<key(hz))
h := makechild(hj,hy)

else

h := makechild(h,,hy)
cut (h;) := false
cut (hy;) := false

return h
Para concluir que a implementagao tem a complexidade desejada temos que
provar que as arvores com no maximo um filho cortado nao ficam esparsos
demais e analisar o custo amortizado das operacoes.

Custo amortizado Para anélise usaremos um potencial de cit + c;m sendo
t 0 nimero de arvores, m o nimero de vértices marcados e c1,c2 constantes.
As operagoes makeheap, insert, getmin e meld (preguigoso) possuem comple-
xidade (real) O(1). Para decreasekey temos que considerar o caso em que o
corte em cascata remove mais que uma subarvore. Supondo que cortamos
n arvores, o numero de raizes é t + n apds dos cortes. Para todo corte em
cascata, a arvore cortada é desmarcada, logo temos no maximo m — (n — 1)
marcas depois. Portanto custo amortizado é

OMm)—(cit+ecom)+(ci(t+n)+caim—(m—1))) =con—(c2—c1)n+c2
e com €y — €7 > ¢ temos custo amortizado constante ¢, = O(1).

Com posto maximo M, a operacao deletemin tem o custo real O(M +t), com
as seguintes contribuicoes
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« Linha 43: O(M).

e Linhas 44-51: O(M +t) com t o nimero inicial de 4rvores no heap. A
lista de raizes contém no maximo as t drvores de h e mais M filhos da
raiz removida. O laco total ndao pode executar mais que M+t operacoes
link, porque cada um reduz o niimero de raizes por um.

¢ Linhas 54-55: O(M).

Seja m o ntimero de marcas antes do deletemin e m’ o nimero depois. Como
deletemin marca nenhum vértice, temos m’ < m. O ntmero de arvores t’
depois de deletemin satisfaz t’ < M porque deletemin garante que existe no
maximo uma arvore de cada posto. Portanto, o potencial depois de deletemin
e @' =cit+com’ <cyM+cam, e o custo amortizado é

OM+t)—(crt+coam)+ @' <OM+1t)—(cit+com) + (c1M +com)
=(co+c1)M+(co —cr)t

e com Cj > co temos custo amortizado O(M).

Um limite para M Para provar que deletemin tem custo amortizado logn,
temos que provar que M = M(n) = Oflogn). Esse fato segue da maneira
”cautelosa” com que cortamos vértices das arvores.

Lema 1.4
Seja p um vértice arbitrario de um heap Fibonacci. Considerando os filhos
na ordem temporal em que eles foram introduzidos, filho 1 possui pelo menos
i — 2 filhos.

Prova. No instante em que o filho i foi introduzido, p estava com pelo menos
i—1 filhos. Portanto i estava com pelo menos i — 1 filhos também. Depois
filho i perdeu no maximo um filho, e portanto possui pelo menos i — 2 filhos.

|
Quais as menores arvores, que satisfazem esse critério?

Fob B R F3 Fa

R e
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Lema 1.5
Cada subarvore com uma raiz p com k filhos possui pelo menos Fy , vértices.

Prova. Seja Sy o niimero minimo de vértices para uma subdrvore cuja raiz
possui k filhos. Sabemos que So =1, S; = 2. Define S_, =S 7 =1. Com
isso obtemos para k > 1

Sk = Z Sx—2=S8x—24+Sk—3+ - +S_2=8k2+ Sk_1.
0<i<k

Comparando Sy com os nimeros Fibonacci

P k se 0 <k<1
kT Froo+Feo1 sek>2
e observando que So = F, e S; = F3 obtemos Sx = Fyi2. Usando que
Fn € O(®™) com ® = (14 +/5)/2 (exercicio!) conclui a prova. [ |

Corolario 1.1
O posto méaximo de um heap Fibonacci com 1 elementos é O(logn).

Sobre a implementacdo A implementagdo da arvore é a mesma que no caso
de heaps binomiais. Uma vantagem do heap Fibonacci é que podemos usar os
nés como ponteiros — lembre que a operagao decreasekey precisa isso, porque
o0s heaps néo possuem uma operacao de busca eficiente. Isso é possivel, porque
sem heapify-up e heapify-down, os ponteiros mantem-se validos.

1.3.4. Rank-pairing heaps

Haeupler, Sen e Tarjan (2009) propoem um rank-pairing heap (um heap “em-
parelhando postos”) com as mesmas garantias de complexidade que um heap
Fibonacci e uma implementacio simplificada e mais eficiente na pratica (ver
observagao 1.9).

Torneios Um torneio é uma representagao alternativa de heaps. Comegando
com todos elementos, vamos repetidamente comparar pares de elementos, e
promover o vencedor para o préximo nivel (Fig. 1.1(a)). Uma desvantagem
de representar torneios explicitamente é o espacgo para chaves redundantes.
Por exemplo, o campedo (i.e. 0 menor elemento) ocorre O(logn) vezes. A
figura 1.1(b) mostra uma representacdo sem chaves repetidas. Cada chave
é representado somente na comparacao mais alta que ele ganhou, as outras
comparagdes ficam vazias. A figura 1.1(c) mostra uma representacio compacta
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Figura 1.1.: Representacoes de heaps.

em forma de semi-drvore. Numa semi-arvore cada elemento possui um filho
ordenado (na figura o filha da esquerda) e um filho ndo-ordenado (na figura o
filho da direita). O filho ordenado é o perdedor da comparacao direta com o
elemento, enquanto o filho ndo-ordenado é o perdedor da compara¢do com o
irméo vazio. A raiz possui somente um filho ordenado.

Cada elemento de um torneio possui um posto. Por defini¢do, o posto de uma
folha é 0. Uma comparacio justa entre dois elementos do mesmo posto r
resulta num elemento com posto r + 1 no préximo nivel. Numa comparacao
injusta entre dois elementos com postos diferentes, o posto do vencedor é
definido pelo maior dois postos dos participantes (uma alternativa é que o
posto fica o mesmo). O posto de um elemento representa um limite inferior
do ntimero de elementos que perderam contra-lo:

Lema 1.6
Um torneio com campedio de posto k possui pelo menos 2% elementos.

Prova. Por indugdo. Caso um vencedor possui posto k temos duas possibi-
lidades: (i) foi o resultado de uma comparacio justa, com dois participantes
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com posto k — 1 e pela hipétese da inducdo com pelo menos 25~ elementos,
tal que o vencedor ganhou contra pelo menos 2% elementos. (ii) foi resultado
de uma comparacao injusta. Neste caso um dos participantes possuiu posto
k e o vencedor novamente ganhou contra pelo menos 2¥ elementos. |

Cada comparacao injusta torna o limite inferior dado pelo posto menos preciso.
Por isso uma regra na constru¢do de torneios é fazer o maior ntimero de
comparagoes justas possiveis. A representacdo de um elemento de heap é
possui quatro campos para a chave (c), o posto (r), o filho ordenado (o) e o
filho nao-ordendo (u):

def Node(c,r,o,u)
Podemos implementar as operagoes de uma fila de prioridade (sem update ou
decreasekey) como segue:

{ compara duas &rvores 1}
link (t7,ty) :=
if t1.c < ty.c then
return makechild (t7,ty)
else
return makechild (ty,tq)
end if

makechild(s,t) :=

t.u := s.o0

s.o0 = t
setrank (t)

s.r := s.r + 1

return s

setrank(t) :=
if t.o.r = t.u.r

t.r = t.o.r + 1
else

t.r = max(t.o.r,t.u.r)
end if

{ cria um heap com um dnico elemento com chave c }
make-heap(c) := return Node(c,O0,undefined,undefined)

{ insere chave c no heap }
insert(h,c) := link(h,make-heap(c))
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{ unido de dois heaps }
meld(hy,hy) := link(h;,hy)

{ elemento minimo do heap }
getmin(h) := return h

{ delegdo do elemento minimo do heap 1}
deletemin(h) :=
aloca array To...Th.o.r+1
t = h.o
while t not undefined do
t/ 1= t.u
t.u := undefined
register(t,r)
t:=t'
end while
h’ := undefined
for i=0,...,h.or+1 do
if r{ not undefined
h/ := link(h’,1y)
end if
end for
return h’
end

register(t,r) :=

if T{o.rr1 is undefined then
Ttor+1 = T

else
t:=1link (t,Tt.o.r41)
Tt.o.re1 := undefined
register (t,r)

end if

end

(A figura 1.2 visualiza a operagao “link”.)

Observagao 1.7
Todas comparagoes de “register” sdo justas. As comparagdes injustas ocorrem
na construgao da arvore final nas linhas 35-39. O
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P

Figura 1.2.: A operagdo “link” para semi-drvores no caso t;.c < tj.c.

last

h, min

Figura 1.3.: Representacao de um heap binomial.

Lema 1.7
Num torneio balanceado o custo amortizado de “make-heap”, “insert”, “meld”
e “getmin” é O(1), o custo amortizado de “deletemin” é O(logn).

Prova. Usaremos o nimero de comparagoes injustas no torneio como poten-
cial. “make-heap” e “getmin” ndo alteram o potencial, “insert” e “meld” au-
mentam o potencial por no maximo um. Portanto a complexidade amortizada
dessas operagoes é O(1). Para analisar “deletemin” da raiz r do torneio vamos
supor que houve k comparacoes injustas com r. Além dessas comparagoes in-
justas, r participou em no maximo logn comparacoes justas pelo lema 1.6.
Em soma vamos liberar no maximo k + logn arvores, que reduz o potencial
por k, e com no maximo k + logn comparagoes podemos produzir um novo
torneio. Dessas k+logn comparac¢oes no maximo log n sdo comparagoes injus-
tas. Portanto o custo amortizado é k+1logn —k +logn = 2logn = O(logn).
]

Heaps binomiais com varredura Gnica O custo de representar o heap numa
arvore Unica é permitir comparacoes injustas. Uma alternativa é permitir
somente comparagoes justas, que implica em manter uma cole¢ido de O(logn)
arvores. A estrutura de dados resultante é similar com os heaps binomiais:
manteremos uma lista (simples) de raizes das drvores, junto com um ponteiro
para a arvore com a raiz de menor valor. O heap é representado pela raiz de
menor valor, ver Fig. 1.3.
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1 insert(h,c) :=
2 insere make-heap(c) na lista de raizes
3 atualize a arvore minima
4
5 meld(hj,hy) :=
6 concatena as listas de h; e hy
7 atualize a arvore minima
Somente “deletemin” opera diferente agora:
1 deletemin(h) :=
2 aloca um array de listas To...T[iogn]
3 remove a arvore minima da lista de raizes
4 distribui as restantes &arvores sobre T
5
6 t:=h.o
7 while t not undefined do
8 t/:=tu
9 t.u := undefined
10 insere t na lista Ti.o.r+1
11 t:=t
12 end while
13
14 { executa o maior nimero possivel }
15 { de comparagdes justas num idnico passo }
16
17 h := undefined { lista final de raizes 7}
18 for i=0,...,[logn] do
19 while |ri| >2
20 t := 1link(ri.head,r;.head.next)
21 insere t na lista h
22 remove Ti.head,T;i.head.next da lista 1y
23 end if
24 if |r{J=1 insere ri.head na lista h
25 end for
26 return h

Observagao 1.8

Continuando com comparagoes justas até sobrar somente uma arvore de cada
posto, obteremos um heap binomial. O
Lema 1.8

Num heap binomial com varredura tinica o custo amortizado de “make-heap”,
“insert”, “meld”, “getmin” é O(1), o custo amortizado de “deletemin” é O(logn).
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AN AN

(a) r+1 r+1 v4+0 >r+1 >r+1 r+0

SN N N N

(b) r+1 r+1 r+1 r+2 rvr+2 r+1 rv+0 >r+2

N\

>r+2 r+0

Figura 1.4.: Diferengas no posto de rp-heaps do tipo 1 (a) e tipo 2 (b).

Prova. Usaremos o dobro do niimero de arvores como potencial. “getmin”
nao altera o potencial. “make-heap”, “insert” e “meld” aumentam o potencial
por no maximo dois (uma &rvore), e portanto possuem custo amortizado O(1).
“deletemin” libera no maximo log n arvores, porque todas comparacoes foram
justas. Com um ntimero total de h arvores, o custo de deletemin é O(h).
Sem perda de generalidade vamos supor que o custo é h. A varredura final
executa pelo menos (h—logn)/2—1 comparacoes justas, reduzindo o potencial
por pelo menos h —logn — 2. Portanto o custo amortizado de “deletemin” é

h—(h—logn—2)=logn+2 = 0(logn). |

rp-heaps O objetivo do rp-heap é adicionar ao heap binomial de varredura
Unica uma operacao “decreasekey” com custo amortizado O(1). A ideia e
os problemas sdo os mesmos do heap Fibonacci: (i) para tornar a operagao
eficiente, vamos cortar a sub-arvore do elemento cuja chave foi diminuida. (ii)
o heap Fibonacci usava cortes em cascata para manter um ntimero suficiente
de elementos na arvore; no rp-heap ajustaremos os postos do heap que perde
uma sub-arvore. Para poder cortar sub-arvores temos que permitir uma folga
nos postos. Num heap binomial a diferenga do posto de um elemento com o
posto do seu pai (caso existe) sempre é um. Num rp-heap do tipo 1, exigimos
somente que os dois filhos de um elemento possuem diferenca do posto 1 e 1,
ou 0 e ao menos 1. Num rp-heap do tipo 2, exigimos que os dois filhos de
um elemento possuem diferenca do posto 1 e 1, 1 e 2 ou 0 e pelo menos 2.
(Figura 1.4.)

Com isso podemos implementar o “decreasekey” (para rp-heaps do tipo 2)
como segue:
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1.3. Filas de prioridade e heaps

Figura 1.5.: A operagdo “decreasekey”

decreasekey(h,e,A) :=

e.c := e.c —A
if root(e)
return
if parent(e).o = e then
parent(e).o := e.u
else
parent(e).u := e.u
end if
parent(e).u := parent(e)
e.u := undefined
u := parent(e)
parent (e) := undefined

insere e na lista de raizes de h
decreaserank (u)

rank(e) :=
if e is undefined
return —1
else
return e.r

decreaserank(u) :=

if root(u)
return

if rank(u.o) > rank(u.u)+1 then
k := rank(u.o)

else if rank(u.u) > rank(u.o)+1 then
k := rank(u.u)

else
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k = max(rank(u.o),rank(u.u))+1

end if

if u.r = k then
return

else
u.r = k

decreaserank (parent (u))

delete(h,e) :=
decreasekey(h,e,—0o0)
deletemin (h)

Observagao 1.9

Para implementar o rp-heap precisamos além dos ponteiros para o filho or-
denado e nao-ordenado um ponteiro para o pai do elemento. A (suposta)
eficiéncia do rp-heap vem do fato que o decreasekey altera os postos do heap,
e pouco da estrutura dele e do fato que ele usa somente trés ponteiros por
elemento, e ndo quatro como o heap Fibonacci. O

Lema 1.9
Uma semi-drvore do tipo 2 com posto k contém pelo menos ¢* elementos,

sendo ¢ = (14 +/5)/2 a razio 4urea.

Prova. Por indugdo. Para folhas o lema ¢é valido. Caso a raiz com posto k
néo é folha podemos obter duas semi-arvores: a primeira é o filho da raiz sem
o seu filho ndo-ordenado, e a segunda é a raiz com o filho ndo ordenado do
seu filho ordenado (ver Fig. 1.6). Pelas regras dos postos de arvores de tipo
dois, essas duas arvores possuem postos k—lTek—1,ouk—1lek—2ouke
no maximo k — 2. Portanto, o menor niimero de elementos ny contido numa
semi-arvore de posto k satisfaz a recorréncia

T = N1 + Ny,

que é a recorréncia dos niimeros Fibonacci. |
Lema 1.10

As operacoes “decreasekey” e “delete” possuem custo amortizado O(1) e O(logn)
Prova. Ver (Haeupler, Sen e Tarjan, 2009). |

1.3.5. Heaps ocos
Introducao

Objetivo: operagdes com a mesma complexidade amortizada que heaps de
Fibonacci. Para um heap h, chave k e elemento e temos as operagoes:
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Figura 1.6.: Separar uma semi-arvore de posto k em duas.

o make-heap(): O(1)

e find-min(h)/getmin(h): O(1)
o meld(hq,hy): O(1)

o insert(e,k,h): O(1)

o decrease-key(e,k,h): O(1)

« delete(e,h): O(logn)

o delete-min(h): O(logn)

Ideia principal: a operagdo delete esvazia nds, produzindo nés ocos (ingl. hol-
low nodes), a operagao decrease-key é um delete, seguido por um insert.
Teremos duas medidas:

n Nimero de elementos no heap

N Nuamero de nés no heap = # de elementos + # de nds ocos = # operacoes
insert 4+ # operagoes decrease-key

Variantes de heaps ocos:
o Heaps ansiosos (ingl. “eager heaps”) com miltiplas raizes.
e Heaps ansiosos com uma tUnica raiz.

o Heaps preguicosos.

def Node =
item // elemento
key // chave
fc // ponteiro para primeiro filho
ns // ponteiro para prdéximo irméo
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rank // posto do nd

def Item =
no // ndé correspondente
10 // mais dados satelites

© 0o~

Operacdo basica: link Um link gera um vencedor e um perdedor, que se
torna filho do vencedor, e aumenta o posto do vencedor.

(ranked)link (t;,ty) :=
if ty.key < ty.key
return makechild (ty,ty)
else
return makechild (ty,t7)

makechild (w,l) :=
1l.ns = w.fc
w.fc =1
w.rank := w.rank+1
return w

—_
= O © 0010 Ui Wi —

—_

Representacao basica

o Lista simples circular de arvores com ordenagdao do heap, representada
por um ponteiro a drvore cuja rafz contém a menor chave (chamada a
raiz minima).

e Cada nd cheia armazena um item. Podem existir nds ocos sem item.

e Nos ocos nunca mais ficam cheias, eles podem somente ser destruidos.

e Filhos ficam armazenados em listas simples, em ordem n&o-crescente de
postos.
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make-heap() := return null

make-heap(e,k) := return Node(e,k,null,self,0)
getmin(h) := h

findmin(h) := return h is not null? h.item : null
meld (hy,hy) :=

if hy; is null return hy

if hy is null return hy

swap(h;.ns,hy.ns) // cria uma lista circular simples
if hy.key < hy.key return h; else return h;

insert(e,k,h) := meld(make-heap(e,k),h)

decrease-key(e,k,h) :=
u = e.node
v = make-heap(e,k)
v.rank = max{0,u.rank-2}

// desloca os filhos de postos 0,...,rank-2 para v
if u.rank > 2

v.fc := u.fc.ns.ns

u.fc.ns.ns := null

return meld(v,h)

delete(e,h) :=
e.node.item := null
if e.node = h
delete-min (h)
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delete-min(h)
if h is null:
h.node.item

aloca um array Ro,Ry,...,Rm
// repetidamente remove raizes ocos e une os heaps

link-heap(r,R)

// reconstrdéi o heap

for i=0,...,M
if Ry is not null
Ri.ns = Ri
h := meld(h,R;)
return h

link-heap(h,R) :=
if h is hollow
r:=h.fc
while r is not null
rn := r.ns
link-heap(r,R)
r := rn
destroy node h
else
i := h.rank
while R; is not null
h := link(h,R;)

Ri := null
i =i+ 1
end
Ry := h
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Invariantes
1. Ordenagao do heap.

2. Invariante do posto: cada né de posto r possui v filhos com postos

0,...,7— 1, exceto no caso r > 2 e o nb foi esvaziada por uma ope-
ragao decrease-key. Neste caso o né possui dois filhos de postos 1 — 1 e
T—2.

Corretude

Teorema 1.2
Heaps com nés ocos implementam corretamente todas operagao e mantém as
invariantes.

Prova. Por indugdo sobre o nimero de operagoes. |
Lembranga: os nimeros de Fibonacci sdo definidos por Fo =0,F; = 1,F,, =
Fi +Fiiq, para i > 0 e temos Fi, > @, com a razao durea ® = (1 ++/5)/2.

Teorema 1.3
Um né de posto T possui pelo menos Fri3 — 1 descendentes (cheios ou ocos),
incluindo o proéprio né, na arvore.

Prova. Por indugao sobre r. Para r = 0, temos F3 —1 =1, e para v = 1
temos F4 — 1 = 2 e a afirmagdo estd correta, porque para r < 2 um nd néo
perde filhos caso for esvaziado. Para r > 2 pela invariante do posto temos
pelo menos dois filhos com postos 1 — 1 e 1. Pela hipétese da inducao eles
tem pelo menos Fry 1 — 1 e Fr.2 — 1 descendentes e logo T possui pelo menos
Fry1—14+F2—14+1=F. 3—1 descendentes. [ |

Corolario 1.2

Depois uma operagéo delete-min o nimero de arvores é no méximo [logq, N| =
O(log N) porque temos no méximo uma arvore por posto. Logo podemos
escolher M = [logq, N na operacio delete-min.

Teorema 1.4

O tempo amortizado por operagdo num heap oco é O(1), exceto para as ope-
racoes delete e delete-min, que tem complexidade O(log N) para um heap com
N nés.

Prova. Todas operagoes exceto a delecdo do elemento minimo possuem tempo
O(1) no caso pessimista. O custo de uma delecdo é O(H+T) com H o niimero
de noés ocos destruidos, e T o ntimero de arvores antes das operacoes link.
Depois das operagoes link temos no maximo logg N arvores, logo faremos pelo
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Tabela 1.2.: Complexidade das operagoes de uma fila de prioridade. Comple-
xidades em negrito sdo amortizados. (1): meld preguigoso.

insert getmin  deletemin update decreasekey  delete
Vetor O(1) O(1) O(n) O(1) (update) O(1)
Lista ordenada O(n) O(1) O(1) O(n) (update) O(1)
Heap binério O (logm) O(1) O(logn) O(logn) (update) O(logn)
Heap binomial 0(1) O(1) O (logn) O (logn) (update) O (logn)
Heap binomial(1) O(1) O(1) O(logn) O (logm) (update) O (logn)
Heap Fibonacci o(1) O(1) O(logn) - 0(1) O(logn)
rp-heap o(1) O(1) O(logn) - 0(1) O(logn)

menos T —logg N operagoes link e no maximo logg N operagoes meld. Logo
o custo total é O(1) por destruigdo de um né oco, e por link, mas O(log N).

Para contabilizar a destruicdo do um nd, aumentamos o custo de cada criacao
(insert, decrease-key) por 1.

Para contabilizar as operagoes link: define um potencial igual ao nimero de
nés cheias, que nao sao filho de outro né cheia (i.e. raizes e filhos de nds ocos).
Para todas operagoes diferente de delete-min e delete, o aumento do potencial
é constante (no maximo 1 para insert, 3 para decrease-key, 0 para as demais).
Para o delete que remove o elemento minimo e delete-min, o custo amortizado
de cada link é 0, porque um link combina duas raizes cheias, reduzindo o
potencial por 1. Além disso, ao remover um elemento, o potencial aumenta,
por no maximo logg N, um por cada filho do novo né oco. Logo o custo
amortizado de delete e delete-min é O(log N).

Re-otimizando o heap A andlise acima é em func¢do de N. Caso logN =
O(logn) temos um heap assintoticamente 6timo. Caso executamos muitas
operagoes decrease-key, temos que reconstruir o heap periodicamente, para
garantir N = O(n). O método mais simples é: escolhe uma constante ¢ > 1 e
para N > cn reconstroéi o heap completamente, destruindo os nés ocos, criando
heaps de um tunico né de todos nés cheios, e aplicando operagdes meld para
unir todos heaps. O custo é O(N) para percorrer todo né uma vez e pode ser
atribuido na andlise amortizada para as operacoes insert e delete-min.

Resumo: Filas de prioridade A tabela 1.2 resume a complexidade das ope-
racgoes para diferentes implementacoes de uma fila de prioridade.
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1.3.6. Arvores de van Emde Boas

Pela observacao 1.4 é impossivel implementar uma fila de prioridade baseado
em comparacio de chaves com todas operagdes em o(logn) . Porém existem
algoritmos que ordenam n nimeros em o(nlogn), aproveitando o fato que as
chaves sdo niimeros com k bits, como por exemplo o radix sort que ordena em
tempo O(kn), ou aproveitando que as chaves possuem um dominio limitado,
como por exemplo o counting sort que ordena m nimeros em [k] em tempo
On+k).

Uma drvore de van Emde Boas (drvore vEB) T realiza as operagoes

« member(T, e): elemento e pertence a T?
o insert(T,e): insere e em T
o delete(T,e): remove e de T

e min(T) e max(T): elemento minimo e méximo de T, ou “undefined” caso
nao existe

o succ(Tye) e pred(T, e): successor e predecessor de e em T; e ndo precisa
pertencer a T

no universo de chaves [0,u — 1] em tempo O(loglogu) e espago O(u).
Outras operagbes compostas podem ser implementados, por exemplo

deletemin(T) :=

e:=min(T); delete(e); return e
deletemax (T) :=

e:=max(T); delete(e); return e

Arvores binarias em ordem vEB  Na discussdo da implementacio de rvores
binarias na pagina 14 discutimos uma representagdo em ordem da busca por
profundidade (BFS order). A ideia da ordem vEB é “cortar” a altura (nimero
de niveis) h de uma 4rvore bindria (que possui n = 2" —1 nodos e 2"~ folhas)
pela metade. Com isso obtemos

o uma arvore superior Ty de altura |h/2]

e ¢ b =22 —@(2"2) = ©(y/n) rvores inferiores T1,..., Ty de altura
[h/2] e com 2["/21 —1 = ©(,/n) nodos.

Os nodos dessa drvore sdo armazenados em ordem Ty, Ty, ..., Ty, e toda arvore
T; é ordenado recursivamente da mesma maneira, até chegar numa arvore de
altura h = 1, como a Figura 1.7 mostra.
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Figura 1.7.: Organizacao de arvores binarias em ordem de van Emde Boas para
h € [4]. As folhas sao rotuladas por “cluster.subindice”. Abaixo
da arvore a ordem do armazenamento do vértices é dado. Os T;
correspondem com as subarvores do primeiro nivel de recursao.

Armazenar uma arvore bindria em ordem de vEB néo altera a complexidade
das operagoes. Uma busca, por exemplo, continua com complexidade O(h).
Porém, armazenado em ordem da busca por profundidade, uma busca pode
gerar ©(h) falhas no cache, no pior caso. Na ordem de vEB, a busca sem-
pre atravessa (log, B) niveis, com B o tamanho de uma linha de cache,
antes de gerar uma nova falha no cache. Logo uma busca gera somente
O(log; n/log, B) = Of(logg n) falhas no cache. O layout se chama cache
oblivious porque funciona sem conhecer o tamanho de uma linha de cache B.

Arvores vVEB A estrutura bésica de uma arvore de vEB é

1. Usar uma arvore bindria de altura h representar 2"~ ! elementos nas
folhas.

2. Cada folha armazena um bit, que é 1 caso o elemento correspondente
pertence ao conjunto representado.

3. Os bits internos servem como resumo da sub-arvore: eles representam
a conjuncdo dos bits dos filhos, i.e. um bit interno é um, caso na sua
sub-arvore existe pelo menos uma folha que pertence ao conjunto repre-
sentado.

Todas as operagdes da estrutura acima podem ser implementadas em tempo
O(h) = O(logu). Para melhorar isso, vamos aplicar a mesma ideia da ordem
de van Emde Boas: a arvore é separada em uma arvore superior, e uma série
de arvores inferiores, cada uma com altura ~ h/2. As folhas da arvore superior
contém o resumo das raizes das arvores inferiores: por isso a arvore superior
possui altura |h/2] + 1, uma a mais comparado com a ordem de vEB.
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Figura 1.8.: Representacao da primeira versao de uma arvore vEB. (a) Forma
geral. (b) Caso base.

Fig. 1.8 mostra essa representagdo. A altura da arvore estd armazenada no
campo h. Além disso temos um ponteiro “top” para a arvore superior, e
um vetor de ponteiros “bottom” de tamanho b = 2l"/2) para as raizes das
arvores inferiores. No caso base com h = 2, abusaremos os campos “top”
e “bottom” para armazenar os bits da raiz e dos dois filhos: um ponteiro
arbitrario diferente de undefined representa um bit 1, o ponteiro undefined o
bit 0. Para isso servem as fungoes auxiliares

set(p) := p:=1

clear (p) := p:=undefined

bit(p) := return p # undefined
Observe que as folhas 0, 1,...,2"1—1 podem ser representadas com h—1 bits.
Os primeiros |h/2] bits representam o nimero da sub-arvore que contém a
folha, e os tltimos [h/2]—1 bits o indice (relativo) da folha na sua sub-4rvore.
Isso explica a definicdo das funcdes auxiliares

subtree(e) := e> [h/2]—1
subindex(e) := e&(1 <« [h/2]—1)—1
element (s,i) := (s [h/2]—1)]1

para extrair de um elemento o niimero da sub-arvore correspondente, ou o seu
indice nesta sub-arvore, e para determinar o indice na arvore atual do i-ésimo
elemento da sub-arvore s.

Com isso podemos implementar as operagdes como segue.

member (T,e) :=
if Th=2
return bit (T.bottom[e])
return member (T.bottom[subtree(e)],subindex(e))

min(T,e) :=

41



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

1. Algoritmos em grafos

if Th=2
if bit(T.bottom[0])
return 0
if bit(T.bottom[1])
return 1
return undefined

c:=min (T.top)
if ¢ = undefined
return C
return element(c,min(T.bottoml[c]))

succ(T,e) :=
if Th=2
if e=0 and bit(T.bottom[1])=1
return 1
return 0

s:=succ (T.bottom[subtree(e)], subindex(e))
if s 7 undefined

return element (subtree(e),s)

c :=succ (T.top,subtree(e))
if ¢ = undefined
return cC
return element (c,min(T.bottom[c]))

insert(T,e) :=
if Th=2
set (T.bottom[e])
set (T.top)
else
insert (T.bottom[subtree(e)], subindex(e))

insert (T.top,subtree(e))

delete(T,e) :=
if Th=2
clear (T.bottom[e])
if (bit(T.bottom[1—e]l)=0
clear (T.top)
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else
delete (T.bottom[subtree(e)], subindex(e))
s:=min(T.bottom[subtree(e)])
if s = undefined
delete (T.top,subtree(e))
As complexidades das operagdes implementadas no caso pessimista sdo (ver
as chamadas recursivas acima em vermelho):

member T(h) =T([h/2]) + O(1) = ©(logh) = O(log logu).

min T(h) = T([h/2] + 1) + T([h/2]) + O(1) = 2T(h/2) + O(1) = O(h) =
O(log ).

insert T(h) = T([h/2] + T([h/2] + 1)+ O(1) = ©(h) = O(log u).

]
succ/delete T(h) = T([h/2]) + T(|h/2] + 1) + O(h) = 2T(h/2) + O(h) =
O(hlogh) = O(loguloglogu) (com um trabalho extra de O(h) para
chamar “min”).

Logo todas operagoes com mais que uma chamada recursiva nao possuem
a complexidade desejada O(loglogu). A introducdo de dois campos “min”
e “max” que armazenam o elemento minimo e maximo, junto com algumas
modificagoes resolvem este problema.

1. Armazenar somente o minimo, a operacido “min” custa somente O(1) é
“insert”, “succ” e “delete” consequentemente somente O(h).

2. Armazenado também o méximo, sabemos na operacido “succ” se o su-
cessor estd na arvore atual sem buscar, logo a operagao “succ” pode ser
implementada em O(loglogu).

3. A dltima modificagdo é ndo armazenar o elemento minimo na sub-arvore
correspondente. Com isso a primeira inser¢ao somente modifica a arvore
de resumo (top) e a segunda e as demais operagoes modificam somente
a sub-arvore correspondente. A delecdo funciona similarmente: ela re-
move ou um elemento na sub-arvore, ou o tltimo elemento, modificando
somente a arvore de resumo (top). Com isso todas operagdes podem ser
implementadas em O(loglogu).

Na base armazenaremos os elementos somente nos campos “min” e “max”.
Por convencéo setamos “min” maior que “max” numa arvore vazia. As se-
guintes fungoes auxiliares permitem remover os elementos de uma arvore base

e determinar se uma arvore possui nenhum, um ou mais elementos.
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h min max h min max

L L) L [ ]

top bottom top bottom

L LTI T] NN
0 1 b—1 0 1

(a) (b)

Figura 1.9.: Representacdo uma drvore vEB. (a) Forma geral. (b) Caso base.

1 clear(T) :=

2 T.min:=1; T.max:=0; // convengéo
3

4 empty(T) :=

5 return T.min>T.max

6

7 singleton(T) :=

8 return T.min=T.max

9

10 full(T) :=

11 return T.min<T.max

1 member(T,e) :=

2 if empty(T)

3 return false

4 if T.min = e or T.max = e

5 return true

6

7 { ndo & “"min'' nem “"max''? a base ndo contém o elemento }
8 if T.h = 2

9 return false

10

11 return member (T.bottom[subtree(e)], subindex(e))
12

13 min(T) :=

14 if empty(T)

15 return undefined

16 return T.min

17

18 max(T) :=
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if empty(T)
return undefined
return T.max
succ(T,e) :=
if T.h=2
if e=0 and Tmax=1
return 1
return undefined
if not empty(T) and e < Tmin
return T.min
{ sucessor na Aarvore atual }
m:=max (T.bottom[subtree(e)])
if m # undefined and subindex(e)<m
return element (subtree(e),
succ (T.bottom[subtree(e)],subindex(e)))
{ minimo na &rvore sucessora }
¢ :=succ (T.top,subtree(e))
if ¢ = undefined
return c
return element (c,min(T.bottom[c]))
pred(T,e) :=
if T.h=2
if e=1 and T.min=0
return 0
return undefined
if not empty(T) and T.max < e
return T.max
{ predecessor na arvore atual }
m:=min(T.bottom[subtree(e)])
if m # undefined and m <subindex (e)
return element (subtree(e),
pred (T.bottom[subtree(e)],subindex(e)))
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{ maximo na &rvore predecessora }
c:=pred (T.top,subtree(e))
if ¢ = undefined
if not empty(T) and T.min<e
return T.min
else
return undefined

return element (c,max(T.bottoml[c]))

insert(T,e) :=

if empty(T)
T.min := T.max := e
return

{ novo minimo: setar min, insere min anterior }
if e < Tmin
swap (T.min,e)

{ insere recursivamente }
if Th>2
if empty(T.bottom[subtree(e)])
insert (T.top,subtree(e))
insert (T.bottom[subtree(e)],subindex(e))

{ novo maximo: atualiza }
if Tmax <e
Tmax := e

delete(T,e) :=
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if empty(T)
return

if singleton(T)
if Tmin=-¢e
clear (T)
return

{ novo minimo? %}
if e = Tmin
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99 T.min := element(min(T.top),min(T.bottom[min(T.top)]))
100 e := T.min

101

102 { remove e da &arvore }

103 delete (T.bottom[subtree(e)],subindex(e))

104

105 if empty(T.bottom[subtree(e)])

106 delete (T.top,subtree(e))

107 if e = Tmax

108 c:=max(T.top)

109 if ¢ = undefined

110 T.max := T.min

111 else

112 T.max := element(c,max(T.bottoml[c]))

113 else

114 T.max := element (subtree(e),max(T.bottom[subtree(e)]))

Com essas implementagoes cada funcao executa uma chamada recursiva e um
trabalho constante a mais e logo precisa tempo O(logh). Em particular, na
funcéo “insert” caso a sub-arvore do elemento é vazia na linha 80 a segunda
chamada “insert” na linha 82 precisa tempo constante. Similarmente, ou a
delegdo recursiva na linha 103 nao remove o iltimo elemento, e talvez custa
O(logh), e logo a delecao da linha 106 ndo é executada, ou ela remove o tltimo
elemento e custo somente O(1).

1.3.7. Tépicos
Fast marching method

A equacio Eikonal (grego eikon, imagem)

IVT(x)I[F(x) =1, x € Q,
T |aQ = O)

define o tempo de chegada de uma superficie que inicia no tempo 0 na fronteira
9Q de um subconjunto aberto Q C R3 e se propaga com velocidade F(x) > 0
na direcdo normal*. O fast marching method resolve a equacio Eikonal por
discretizar o espaco regularmente, aproximar as derivadas do gradiente ||V T||
por diferencas finitas e propagar os valores com um método igual ao algoritmo
de Dijkstra.

40 método também funciona para F(x) < 0, mas néo para F(x) com sinais diferentes.
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Com
VT = (0T/0x,0T/dy, 0T/0z)
temos
IVTI[? = (3T/dx)? + (3T/dy)? + (3T/dz)* = 1/F>.
Definindo as diferengas finitas
DT =T(x1 + 1,x2,%x3) — T(x); DT =T(x) — T(x1 — 1,x2,%3)
podemos aproximar
0T/0x ~ T, = max{D *T,—D**T, 0}

e com aproximacoes similares para as diregoes y e z obtemos uma equagao
quadratica em T(x)

IVTII> = T2 4+ T3 +T7 = 1/F (L1)

Na solugdo dessa equagdo valores ainda desconhecidos de T sdo ignorados. O
fast marching method define T = 0 para os pontos iniciais em 9Q) e coloca-os
numa fila de prioridade. Repetidamente o ponto de menor tempo é extraido
da fila, os vizinhos ainda ndo visitados sdo atualizados de acordo com (1.1)
e entram na fila, caso ainda nao fazem parte. (Na terminologia do fast mar-
ching method, os pontos com distancia ji conhecida sdo “vivos” (alive), os
pontos na fila formam a “faixa estreita” (narrow band), os restantes pontos
sdo “distantes” (far away).)

Busca informada

O algoritmo de Dijkstra encontra o caminho mais curto de um vértice origem
s € V para todos os outros vértices num grafo ponderado G = (V, E,d). Caso
estamos interessados somente no caminho mais curto para um tnico vértice
destino t € T, podemos parar o algoritmo depois de processar t. Isso é uma
aplicagdo muito comum, por exemplo na busca da rota mais curta em sistemas
de navegacdo. Uma busca informada processa vértices que estimadamente sao
mais préoximos do destino com preferéncia. O objetivo é processar menos
vértices antes de encontrar o destino. Um dos algoritmos mais conhecidos de
busca informada é o algoritmo A*. Para cada vértice v € V com disténcia g(v)
do origem s, ele usa uma funcdo heuristica h(v) que estima a distancia para
o destino t e processa os vértices em ordem crescente do custo total estimado

f(v) = g(v) + h(v). (1.2)
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1.3. Filas de prioridade e heaps

O desempenho do algoritmo A* depende da qualidade de heuristica h. Ele
pode, diferente do algoritmo de Dijkstra, processar vértices multiplas vezes,
depois de descobrir um caminho mais curto para um vértice ja processado.
Isso é a principal diferenga com o algoritmo de Dijkstra. Uma outra é que
substituimos o campo “visited” usando no algoritmo Dijkstra 1.4 por um con-
junto V de vértices ja visitados, porque o A* é frequentemente aplicado em
grafos com um nimero grande de vértices, que sdo explorados passo a passo
sem armagzenar todos vértices do grafo na memoria.

g(s) =0

f(s) :=g(s) + h(s)

V:i=( { vértices ja visitados }

insert(Q, (s, f(s)))

while Q #0 do
v := deletemin(Q)

== |

V:i=VUu{}
if v=t { destino encontrado }
return X

for ue N*t(v) do
if w€ Q then { ainda aberto: atualiza }
g(u) = miH(Q(V) + dyu, g(u))
f(u) == g(u) + h(u)
update(Q, (u, f(u)))
else if u €V then
if g(v) 4+ dyu < g(u) then
{ caminho menor p/ vértice ja processado }
V:=V\{u}
g(u) ==g(v) + dvu
f(u) :=g(u) + h(u)
insert(Q, (u, f(u)))
end if
else { novo vértice }

insert(Q, (u, f(u)))
end if
end for
end while

Observagao 1.10
O algoritmos de Dijkstra e A* funcionam de forma idéntica quando substi-
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tulmos o vértice destino t € V por um conjunto de vértices destino T C V.

O

Existe uma formulacdo alternativa, equivalente do algoritmo A*. Ao invés
de sempre processar o vértice aberto de menor valor f podemos processar
sempre o vértice aberto de menor distdncia § num grafo com pesos modificados
duy = duy — h(w) + h(v). Com pesos modificados obtemos para a distancia
total de um caminho uv arbitrario P

guv)= Y  duw = )Y  dun —hu)+h()

(u/,v/)eP (u/,v/)eP
=h(v)—h(u+ Y  duv =h{v)—h(w) +g(u,v).
(u’,v")eprP

Com §(u) = g(s,u) obtemos

f(u) < f(v) <= g(u) + h(u) < g(v) +h(v)
& g(u) +h(s) < g(v) +h(s)
= g(u) <g(v).
Logo a ordem de processamento por menor § ou por menor valor f é equiva-
lente.
Para garantir a otimalidade de uma solu¢ao a heuristica h tem que ser ad-

missivel. Caso h é consistente o algoritmo A* nao somente retorna a solucao
Otima, mas processa cada vértice somente uma vez.

Definicao 1.1 (Admissibilidade e consisténcia)
Seja 6(v) a distancia minima do vértice v ao destino t. Uma heuristica h é
admissivel caso h é um limitante inferior a distdncia minima, i.e.

h(v) < 5(v). (1.3)

Uma heuristica é consistente caso o seu valor diminui de acordo com o pesos
do grafo: para um arco (u,v) € A

h(v) > h(u) — duy. (1.4)

Na representagdo alternativa, o critério de consisténcia (1.4) é equivalente com
duv = duy — h(u) + h(v) > 0. Com isso temos diretamente o

Teorema 1.5
Caso h é consistente o algoritmo A* nunca processa um vértice mais que uma
vez.
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Prova. Neste caso dy, > 0. Logo todas distancias sdo positivas é o algoritmo
A* é equivalente com o algoritmo de Dijkstra. Por um argumento similar ao
da proposicao (1.3) o A* nunca processa um vértice duas vezes. ]

Lema 1.11
Caso h é consistente, h é admissivel.

Prova. Seja P =vyvy...vx um caminho de vo =u a vy =t. Entao

d(P) =) dv. ,w > ) h(vi)—h{vi) =h(w) —h(t) > h(u).
ie(k] ie(k]

Em particular, para um caminho P* 6timo de u a t temos h(u) < d(P*)

S(u).

Teorema 1.6
Caso existe uma solugdo minima e h é admissivel o algoritmo A* encontra a
solugao minima.

Prova. Seja P* = vovi...vi um caminho 6timo de vo = s a vy = t. Caso
A* ndo terminou, t ainda nao foi explorado. Logo existe um vértice aberto de
menor indice v; em P*. Agora supde que o préximo vértice explorado é t, mas
o valor de t ndo é 6timo, i.e. f(t) > d(P*). Mas entao f(v;) < d(P*) < f(t),
porque h é admissivel, em contradicdo com a exploracao de t. |

Exemplo 1.5

Figure 1.10 mostra uma grafo com trés fungdes heuristicos h diferentes. A
heuristica no grafo da esquerda nao é admissivel em u (marcado por T). O A*
expande s, v e depois t e termina com a distancia errada de 5 para chegar em
t. A heurfstica no grafo do meio é admissivel, mas nao consistente: h(u) <
h(v)+1 nao é satisfeito. O A* expande s, v, u, v, t, i.e. o vértice v é processado
duas vezes. Finalmente a heuristica no grafo da direita é consistente (e por
isso admissivel). O A* expande cada vértice uma vez, na ordem s, u, t (ou s,
u, v, t).

O

Exemplo 1.6

A Figura 1.11 compara uma busca com o algoritmo de Dijkstra com uma busca
com o A* num grafo geométrico com 5000 vértices e uma aresta entre vértices
de distancia no maximo 0.02. Vértices nao explorados sdo pretos, vértices
explorados claros. A claridade corresponde com a ordem de exploragao.

O
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0
2
303 0
1
3
5T

Figura 1.10.: Esquerda: Heuristica nao-admissivel. A* produz o valor errado
5. Centro: Heuristica admissivel, mas inconsistente. A* visita
v duas vezes. Direita: Heuristica admissivel e consistente. A*
visita cada vértice somente uma vez.

Figura 1.11.: Comparacio de uma busca com o algoritmo de Dijkstra (es-
querda) e o A* (direita).
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1.3.8. Notas

O algoritmo (assintoticamente) mais rdpido para &rvores geradoras minimas
usa soft heaps é possui complexidade O(ma(m,mn)), com « a funcdo inversa
de Ackermann (Chazelle, 2000; Kaplan e Zwick, 2009).

Karger propés uma variante de heaps de Fibonacci que substituem a marca
“cut” usado nos cortes em cascata por uma decisao randémica: com probabi-
lidade 0.5 continua cortando, sendo para. Caso além disso o heap é construido
novamente com probabilidade 1/n depois de cada operagao, “deletemin” pos-
sui complexidade ©(log® n/loglogn) (Li e Pecbles, 2015).

Armazenar e atravessar arvores em ordem de van Emde Boas usando indices,
similar ao ordem por busca em largura é possivel (Brodal, Fagerberg e Ja-
cob, 2001). O consumo de memoria das drvores de van Emde Boas pode ser
reduzido para O(n) (Dementiev et al., 2004; Cormen et al., 2009).

Mais sobre o fast marching method se encontra em Sethian (1999). Uma
aplicagdo interessante é a solugdo do caixeiro viajante continuo (Andrews e
Sethian, 2007).

1.3.9. Exercicios

Exercicio 1.1
Prove lema 1.3. Dica: Use inducao sobre n.

Exercicio 1.2
Prove que um heap binomial com n vértices possui O(logn) arvores. Dica:
Por contradigao.

Exercicio 1.3 (Laboratério 1)
1. Implementa um heap binédrio. Escolhe casos de teste adequados e verifica
o desempenho experimentalmente.

2. Implementa o algoritmo de Prim usando o heap binario. Novamente
verifica o desempenho experimentalmente.

Exercicio 1.4 (Laboratério 2)
1. Implementa um heap binomial.

2. Verifica o desempenho dele experimentalmente.

3. Verifica o desempenho do algoritmo de Prim com um heap Fibonacci
experimentalmente.

Exercicio 1.5
A proposicéo 1.3 continua ser correto para grafos com pesos negativos? Jus-
tifique.
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Figura 1.12.: Grafo (esquerda) com circulacao (direita)

1.4. Fluxos em redes

Seja G = (V,A,c) um grafo direcionado e capacitado com capacidades c :
A — R nos arcos. Uma atribuicdo de fluxos aos arcos f : A — R em G se
chama circulagio, se os fluxos respeitam os limites da capacidade (fq < cq) €
satisfazem a conservacao do fluxo

= ) fa Z fo=0 (1.5)

aeN+(v) aeN—(v)

(ver Fig. 1.12).

Lema 1.12
Qualquer atribuigao de fluxos f satisfaz ) | . f(v) =0.

Prova.

Sw-r F - ¥ on

vev veV aeN+(v aeN—(v)

Il
M
-
<
e
|
=M
Piay)
F
=
|
o

|
A circulagdo vira um fluzo, se o grafo possui alguns vértices que sdo fontes
ou destinos de fluxo, e portanto ndo satisfazem a conservacdo de fluxo. Um
fluxo s—t possui um tnico fonte s e um tnico destino t. Um objetivo comum
(transporte, etc.) é achar um fluxo s—t maximo.
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FLUXO s—t MAXIMO

Instancia Grafo direcionado G = (V, A, c¢) com capacidades ¢ nos arcos,
um vértice origem s € V e um vértice destino t € V.

Solucdo Um fluxo f, com f(v) =0, Vv € V\ {s, t}.

Objetivo Maximizar o fluxo f(s).

Lema 1.13
Um fluxo s—t satisfaz f(s) + f(t) = 0.

Prova. Pelo lema 1.12 temos ) .\ f(v) = 0. Mas } ., f(v) = f(s) + f(t)
pela conservacgio de fluxo nos vértices em V \ {s, t}. |

Uma formulagdo como programa linear é

maximiza f(s) (1.6)
sujeito a f(v) =0, Yv e V\{s,t},
0<fq <cg, Va e A.

Observagao 1.11

O programa (1.6) possui uma solucao, porque fq = 0 é uma solugao vidvel. O
sistema nao ¢é ilimitado, porque todas varidveis sdo limitadas, e por isso possui
uma solugdo 6tima. O problema de encontrar um fluxo s—t maximo pode ser
resolvido em tempo polinomial via programacao linear. O

1.4.1. O algoritmo de Ford-Fulkerson

Nosso objetivo: Achar um algoritmo combinatorial mais eficiente. Idéia bé-
sica: Comegar com um fluxo vidavel f; = 0 e aumentar ele gradualmente.
Observacao: Se temos um s—t-caminho P = (vo = s,v1,...,Vn_1,Vn = 1),
podemos aumentar o fluxo atual f um valor que corresponde ao “gargalo”

g(f,P):= min  cq — fq.
a=vi,vit1)
0<i<n

Observagao 1.12
Repetidamente procurar um caminho com gargalo positivo e aumentar nem
sempre produz um fluxo maximo. Na Fig. 1.13 o fluxo méaximo possivel é
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20

20 O

Figura 1.13.: Esquerda: Grafo com capacidades. Centro: Fluxo com valor 30.
Direita: O grafo residual correspondente.

Figura 1.14.: Manter a conservacao do fluxo.

40, obtido pelo aumentos de 10 no caminho Py = (s,u,t) e 30 no caminho

Py = (s,w,t). Mas, se aumentamos 10 no caminho P; = (s,u, w, t) e depois
20 no caminho P, = (s,w,t) obtemos um fluxo de 30 e o grafo ndo possui
mais caminho que aumenta o fluxo. O

Problema no caso acima: para aumentar o fluxo e manter a conservagao do
fluxo num vértice interno v temos quatro possibilidades: (i) aumentar o fluxo
num arco entrante e sainte, (ii) aumentar o fluxo num arco entrante, e diminuir
num outro arco entrante, (iii) diminuir o fluxo num arco entrante e diminuir
num arco sainte e (iv) diminuir o fluxo num arco entrante e aumentar num
arco entrante (ver Fig. 1.14).

Isso é a motivagao para definir para um dado fluxo f o grafo residual Gy com

e Vértices V
o Arcos para frente (“forward”) A com capacidade cq — fq, caso fq < Cq.

o Arcos para atras (“backward”) A’ ={(v,u) | (u,v) € A} com capacidade
Clvyu) = f(u,v]z caso f(u)\,) > 0.
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Observe que na Fig. 1.13 o grafo residual possui um caminho P = (s, w,u,t)
que aumenta o fluxo por 10. O algoritmo de Ford-Fulkerson (Ford e Fulkerson,
1956) consiste em, repetidamente, aumentar o fluxo num caminho s—t no grafo
residual.

Algoritmo 1.5 (Ford-Fulkerson)
Entrada Grafo G = (V, A, c) com capacidades cq nos arcos.

Saida Um fluxo f.

1 for all a€A: fgo:=0

while existe um caminho s--t em G; do
Seja P um caminho s--t simples
Aumenta o fluxo f um valor ¢(f,P)

end while

S O W N

return f

Analise de complexidade Na andlise da complexidade, consideraremos so-
mente capacidades em N (ou equivalente em Q: todas capacidades podem ser
multiplicadas pelo menor miiltiplo em comum das denominadores das capaci-
dades.)

Lema 1.14
Para capacidades inteiras, todo fluxo intermediario e as capacidades residuais
sao inteiros.

Prova. Por indugdo sobre o ntimero de iteragdes. Inicialmente fq = 0. Em
cada iteracdo, o “gargalo” g(f, P) é inteiro, porque as capacidades e fluxos sdo
inteiros. Portanto, o fluxo e as capacidades residuais apés do aumento sao
novamente inteiros. ]
Lema 1.15

Em cada iteragao, o fluxo aumenta por pelo menos 1.

Prova. O caminho s—t possui por defini¢do do grafo residual uma capacidade
“gargalo” g(f,P) > 0. O fluxo f(s) aumenta exatamente g(f,P). [ |

Lema 1.16
O namero de iteragoes do algoritmo Ford-Fulkerson é limitado por C = ZaeN+(s) Ca-
Portanto ele tem complexidade O((n + m)C).

Prova. C é um limite superior do fluxo maximo. Como o fluxo inicial-
mente possui valor 0 e aumenta ao menos 1 por iteracdo, o algoritmo de
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Ford-Fulkerson termina em no méximo C itera¢des. Em cada iteragdo temos
que achar um caminho s—t em G¢. Representando G por listas de adjacén-
cia, isso é possivel em tempo O(n + m) usando uma busca por profundidade.
O aumento do fluxo precisa tempo O(n) e a atualizagdo do grafo residual é
possivel em O(m), visitando todos arcos. [ |

Corretude do algoritmo de Ford-Fulkerson

Definicao 1.2

Seja X := V\ X. Escrevemos F(X,Y) :={(x,y) | x € X,y € Y} para os arcos
passando do conjunto X para Y. O fluxo de X para Y é f(X,Y) := ZaeF(ny) fa-
Ainda estendemos a notagao do fluxo total de um vértice (1.5) para conjuntos:
£(X) := f(X, X) — (X, X) é o fluxo neto do saindo do conjunto X.
Analogamente, escrevemos para as capacidades c(X,Y) := > aeF(x,Y) Ca- Uma
particdo (X,X) é um corte s-t,se s € Xete X.

Um arco a se chama saturado para um fluxo f, caso f, = cq.

Lema 1.17 ~
Para qualquer corte (X, X) temos f(X) = f(s).

Prova.
f(X) = (X, X) = f(X,X) = >_f(v)
veX
(O tltimo passo é correto, porque para todo v € X, v # s, temos f(v) = 0 pela
conservagao do fluxo.) |

Lema 1.18
O valor ¢(X, X) de um corte s—t é um limite superior para um fluxo s—t.

Prova. Seja f um fluxo s—t. Temos

f(s) = f(X) = (X, X) — f(X,X) < f(X,X) < ¢(X,X).

|
Consequéncia: O fluxo maximo é menor ou igual a o corte minimo. De fato,
a relacdo entre o fluxo maximo e o corte minimo é mais forte:

Teorema 1.7 (Fluxo maximo — corte minimo)
O valor do fluxo méximo entre dois vértices s e t é igual ao valor do corte
minimo.

Lema 1.19
Quando o algoritmo de Ford-Fulkerson termina, o valor do fluxo é maximo.
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1.4. Fluxos em redes

Prova. O algoritmo termina se ndo existe um caminho entre s e t em Gy.
Podemos definir um corte (X, X), tal que X é o conjunto de vértices alcancaveis
em Gy a partir de s. Qual o valor do fluxo nos arcos entre X e X? Para um
arco a € F(X,X) temos fq = cq, sendo G terd um arco “forward” a, uma
contradi¢io. Para um arco a = (u,v) € F(X,X) temos fq = 0, sendo Gy tera
um arco “backward” a’ = (v, u), uma contradi¢ido. Logo

f(s) = f(X) = (X, X) — f(X,X) = f(X, X) = c¢(X, X).

Pelo lema 1.18, o valor de um fluxo arbitrario é menor ou igual que c(X,X),
portanto f é um fluxo maximo. [ |
Prova. (Do teorema 1.7) Pela andlise do algoritmo de Ford-Fulkerson. ]

Desvantagens do algoritmo de Ford-Fulkerson O algoritmo de Ford-Fulkerson
tem duas desvantagens:

(1) O ntimero de iteragoes C pode ser alto, e existem grafos em que C
iteragoes sdo necessérias (veja Fig. 1.15). Além disso, o algoritmo com
complexidade O((n + m)C) é somente pseudo-polinomial.

(2) E possivel que o algoritmo ndo termina para capacidades reais (veja
Fig. 1.15). Usando uma busca por profundidade para achar caminhos
s—t ele termina, mas é ineficiente (Dean, Goemans e Immorlica, 2006).

1.4.2. O algoritmo de Edmonds-Karp

O algoritmo de Edmonds-Karp elimina esses problemas. O principio dele é
simples: Para achar um caminho s—t simples, usa busca por largura, i.e. sele-
cione o caminho mais curto entre s e t. Nos temos

Teorema 1.8
O algoritmo de Edmonds-Karp precisa O(nm) iteragdes, e portanto termina
em tempo O(nm?).

Lema 1.20
Seja 6¢(v) a distdncia entre s e v em G¢. Durante a execugio do algoritmo de
Edmonds-Karp 8¢(v) cresce monotonicamente para todos vértices em V.

Prova. Para v = s o lema é evidente. Supde que uma iteracdo modificando o
fluxo f para f’ diminuird o valor de um vértice v € V\{s}, i.e., d¢(v) > 8¢/ (v).
Supoe ainda que v é o vértice de menor distancia ¢/(v) em G/ com essa
caracteristica. Seja P = (s,...,u,v) um caminho mais curto de s para v
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1. Algoritmos em grafos

Figura 1.15.: Esquerda: Pior caso para o algoritmo de Ford-Fulkerson com pe-
sos inteiros aumentando o fluxo por 2N vezes por 1 nos cami-
nhos (s,u,v,t) e (s,v,u,t). Direita: Menor grafo com pesos irra-
cionais em que o algoritmo de Ford-Fulkerson falha (Zwick, 1995).
M >3 er = (1++v1—-4A)/2 =~ 0.682 com A =~ 0.217 a tUnica
raiz real de 1 —5x 4+ 2x> — x>. Aumentar (s,v1,vs,t) e depois re-
petidamente (s,v2,va,Vv1,v3,t), (s,v2,V3,V1,Va,t), (S,V1,V3,V2,Va,t),
e (s,v1,v4,Vv2,v3,t) converge para o fluxo maximo 2 + r+ 1~ sem ter-
minar.

em Gy¢. O valor de u ndo diminuiu nessa iteracio (pela escolha de v), i.e.,
() < 8pr () (%).

O arco (u,v) ndo existe in Gy, sendo a distancia do v in G¢ é no maximo a
distancia do v in G¢/: Supondo (u,v) € A(Gy) temos

S¢(v) < &f(u) +1 pela desigualdade triangular
< 8p/(u) + 1 ()
< 8¢/ (V) porque uv estd num caminho minimo em Gg/,

uma contradicdo com a hipodtese que a distdncia de v diminuiu. Portanto,
(u,v) € A(G¢) mas (u,v) € A(Gy/). Isso s6 é possivel se o fluxo de v para u
aumentou nessa iteracdo. Em particular, vu foi parte de um caminho minimo
de s para u. Para v =t isso é uma contradi¢do imediata. Caso v # t, temos

5¢(v) = 8¢(u) —1
< §p(u) —1 *)
=06¢/(v) —2 porque uv estd num caminho minimo em Gg/,

novamente uma contradicdo com a hipétese que a distancia de v diminuiu.
Logo, o vértice v nao existe. |
Prova. (do teorema 1.8)
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1.4. Fluxos em redes

Chama um arco num caminho que aumenta o fluxo com capacidade igual
ao gargalo critico. Em cada iteragdo existe ao menos um arco critico que
desaparece do grafo residual. Provaremos que cada arco pode ser critico no
méaximo n/2 — 1 vezes, que implica em no maximo m(n/2 — 1) = O(mn)
iteracoes.

No grafo G em que um arco uv € A é critico pela primeira vez temos 6¢(u) =
d¢(v)—1. O arco s6 aparece novamente no grafo residual caso alguma iteracao
diminui o fluxo em uv, i.e., aumenta o fluxo vu. Nessa iteracao, com fluxo f’,
d¢r(v) = d¢/(u) — 1. Em soma temos

50(u) = 8¢ (v) + 1
> d¢(v) +1 pelo lema 1.20

= (Sf(u) + Za

i.e., a distdncia do u entre dois instantes em que uv é critico aumenta por
pelo menos dois. Enquanto u é alcangavel por s, a sua distdncia é no maximo
n — 2, porque o caminho nao contém s nem t, e por isso a aresta uv pode ser
critico por no méaximo (n —2)/2=n/2 —1 vezes. [ ]
Zadeh (1972) apresenta instancias em que o algoritmo de Edmonds-Karp pre-
cisa @(n3) iteracoes, logo o resultado do teorema 1.8 é o melhor possivel para
grafos densos.

1.4.3. O algoritmo “caminho mais gordo” (“fattest path”)

Idéia (Edmonds e Karp, 1972): usar o caminho de maior gargalo para aumen-
tar o fluxo. (Exercicio 1.6 pede provar que isso é possivel com uma modificagao
do algoritmo de Dijkstra em tempo O(nlogn + m).)

Lema 1.21
Um fluxo f pode ser decomposto em fluxos fq,...,fx com k < m tal que o
fluxo f; é positivo somente num caminho p; entre s e t.

Prova. Dado um fluxo f, encontra um caminho p de s para t usando somente
arcos com fluxo positivo. Define um fluxo no caminho cujo valor é o valor do
menor fluxo de algum arco em p. Subtraindo esse fluxo do fluxo f obtemos
um novo fluxo reduzido. Repete até o valor do fluxo f é zero.

Em cada iteracao pelo menos um arco com fluxo positivo tem fluxo zero depois
da subtracdo do caminho p. Logo o algoritmo termina em no maximo m
iteragoes. |

Teorema 1.9
O caminho com o maior gargalo aumenta o fluxo por pelo menos OPT/m.
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1. Algoritmos em grafos

Prova. Considera o fluxo maximo. Pelo lema 1.21 existe uma decomposi¢do
do fluxo em no méximo m fluxos em caminhos s-t. Logo um dos caminhos
possui valor pelo menos OPT/m. |

Teorema 1.10

A complexidade do algoritmo de Ford-Fulkerson usando o caminho de maior
gargalo é O((nlogn + m)mlog C) para um limitante superior C do fluxo
maximo.

Prova. Seja f; o valor do caminho encontrado na i-ésima iteracgéo, G; o grafo
residual apds do aumento e OPT; o fluxo maximo em Gi. Observe que G é
o grafo de entrada e OPTy = OPT o fluxo maximo. Temos

OPTy,1 = OPT; — f; < OPT; — OPT;/(2m) = (1 — 1/(2m))OPT;.

A desigualdade é valida pelo teorema 1.9, considerando que o grafo residual
possui no maximo 2m arcos. Logo

OPT; < (1 —1/(2m))*OPT < e /2™ QPT.
O algoritmo termina caso OPT; < 1, por isso niimero de iteragdes é no maximo
2mIn OPT + 1. Cada iteracao custa O(m + nlogn). [ |

Coroléario 1.3
Caso U é um limite superior da capacidade de um arco, o algoritmo termina
em no maximo O(mlogmU) passos.

1.4.4. O algoritmo push-relabel

O algoritmo push-relabel é um representante da classe de algoritmos que nao
trabalha com um fluxo e caminhos aumentantes, mas mantém um pré-fluzo f
que satisfaz

o os limites de capacidade (0 < f, < cq)
e e requer somente que o excessos e(v) = —f(v) de um vértice v # s é
nao-negativo.

Um vértice v # t com e(v) > 0 é chamado ativo. A ideia do algoritmo é
que vértices possuem uma “altura” e o fluxo passa para vértices de altura
mais baixa (“operagdo push”) ou, caso isso ndo é possivel a altura de um
vértice ativo aumenta (“operacao relabel”). Concretamente, manteremos um
potencial (“altura”) p, para cada v € V, tal que,

Ps=1n; pt=0; (*)
Pv Z Pu —1 (u,v) € A(Gf)
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Observe que o segundo parte da condi¢do precisa ser satisfeita somente para
arcos no grafo residual.

Observagao 1.13

Pela condigao (*), para um caminho vo,v1,...,Vk em Gy temos py, < py, +
]Spvz+2§§pvk+k <>
Lema 1.22

A condicao (*) pode ser satisfeita sse G¢ nao possui caminho s—t.

“

Prova. “=7: Suplbe existe um caminho s—t simples vo = s,vi,..., v = t.
Pela observagdo (1.13)

Ps = Pvo Spvk+k:pt+k:k<n*1a

uma contradi¢do. “<”: Sejam X os vértices alcancaveis em Gy a partir de s
(incluindo s). Define p, =n parav € X e p, =0 para v € X. |
O lema mostra que enquanto algoritmos de caminho aumentante sao algorit-
mos primais, mantendo uma solugao factivel, até encontrar o 6timo, algoritmos
da classe push-relabel podem ser vistos como algoritmos duais: eles mantém
o critério de otimalidade (*), até encontrar uma solugao factivel.

Podemos realizar as operacoes “push” e “relabel” como segue. A operacao
“push(u,v)” num arco (u,v) € A(G¢) manda o fluxo min{c,e(v)} de u para
v. A operagdo “relabel(v) aumenta a altura p,, do vértice v por uma unidade.

push(u,v) :=
{ pré-condig8o: u é& ativo }
{ pré-condig8o: py,=py—1 }
{ pré-condigdo: (u,v) € A(Gs) }
aumenta o fluxo em (u,v) por min{c(y,),e(u)}
{ atualiza G; de acordo }
end

relabel(v) :=
{ pré-condigdo: v & ativo }
{ pré-condig8o: ndo existe (w,v) € A(Gf) com py=py—1 }
pvi=pv+1

end
Observe que as duas operac¢oes mantém a condicao (*).

Algoritmo 1.6 (Push-relabel)
Entrada Grafo G = (V, A, c) com capacidades ¢, no arcos.

Saida Um fluxo f.
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1. Algoritmos em grafos

1 ps:==n; py:=0, Yv e V\{s}
2 fqai=cq, Ya€ NT(s) sendo fy,:=0
3 while existe vértice ativo do
4 escolhe o vértice ativo u de maior Py
5 repete até u é inativo
6 if existe arco (u,v) € Gf com p, =py —1 then
7 push(u,v)
8 else
9 relabel(u)
10 end if
11 end
12 end while
13 return f
Lema 1.23

O algoritmo push-relabel é parcialmente correto (i.e. correto caso termina).

Prova. Ao terminar nao existe vértice ativo. Logo f é um fluxo. Pelo lema
1.22 nao existe caminho s—t em G¢. Logo pelo teorema 1.7 o fluxo é 6timo. B
A terminacéao é garantido por

Teorema 1.11
O algoritmo push-relabel executa O(n3) operacdes push e O(n?) operacoes
relabel.

Prova. Um vértice ativo v tem excesso de fluxo, logo existe um caminho v—s
em G¢. Por (1.13) p, < ps+(n—1) < 2n, e o ndmero de operagoes relabel é no
0O(n?). Supée que uma operacio push satura um arco a = (u,v) (i.e. manda
fluxo cq). Para mandar fluxo novamente, temos que mandar primeiramente
fluxo de v para u; isso s6 pode ser feito depois de pelo menos duas operacoes
relabel em v. Logo o nimero de operacoes push saturantes é O(mn). Para
operagoes push ndo-saturantes, podemos observar que entre duas operagdes
relabel temos no maximo n desses operagoes, porque cada uma torna o vértice
de maior p, inativo (talvez ativando vértices de menor potentical), logo tem
no méximo O(n3) deles. |
Para garantir uma complexidade de O(n?) temos que implementar um “push”
em O(1) e um “relabel” em O(n). Para este fim, manteremos uma lista dos
vértices em ordem do potencial. Para cada vértice manteremos uma lista de
arcos candidatos para operacdes push, i.e. arcos para vizinhos com potencial
um a menos com capacidade residual positiva.

Uma busca linear na lista de vértices encontra o vértice de maior potencial.
Entre dois operagdes relabel a busca pode continuar no dltimo ponto e precisa
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Tabela 1.3.: Complexidade de diversos algoritmos de fluxo méximo (Schrijver,

2003).
Ano Referéncia Complexidade Obs
1951 Dantzig O(n*mcQC) Simplex
1955  Ford & Fulkerson Oo(mcC ) O(mnU) Cam. aument.
1970  Dinitz O(nm?) Cam. min. aument.
1972 Edmonds & Karp O(m?log C) Escalonamento
1973  Dinitz O(nmlog C) Escalonamento
1974 Karzanov on?) Preflow-Push
1977  Cherkassky Om?m'/?) Preflow-Push
1986  Goldberg & Tarjan O(nm log( n?/m)) Push-Relabel
1987  Ahuja & Orlin O(nm +n?log C) Push-Relabel & Esc.
1990  Cheriyan et al. O(n?/logn)
1990 Alon O(nm+n¥3logn)
1992 King et al. O(nm+n2*¢)
1997  Goldberg & Rao 0(m?*?log(n?/m)log C)

0O(n**mlog(n?/m)log C)

2012  Orlin O(nm)

tempo O(n) em total, logo a busca custa no méaximo O(n3) sobre toda exe-
cucao do algoritmo. Para a operagao push podemos simplesmente consultar
a lista de candidatos. Para um push saturante, o candidato serd removido.
Isso custa O(1). Finalmente no caso de um relabel temos que encontrar em
O(n) a nova posi¢ao do vértice na lista, e reconstruir a lista de candidatos,
que também precisa tempo O(n). Logo todas operagoes relabel custam néo
mais que O(n3).

1.4.5. Variantes do problema

Fontes e destinos miltiplos Para G = (V, A, ¢) define um conjunto de fontes
S C V e um conjunto de destinos T C V, com SNT = (), e considera

maximiza f(S)
sujeito a f(v) = YveV\ (SUT), (1.7)
f(1 S CCL) Va 6 A
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1. Algoritmos em grafos

Figura 1.16.: Redugbes entre variantes do problema do fluxo méximo. Es-
querda: Fontes e destinos multiplos. Direita: Limite inferior e
superior para a capacidade de arcos.

O problema (1.7) pode ser reduzido para um problema de fluxo méximo sim-
plesem G’ = (V/;A’,¢’) (veja Fig. 1.16(a)) com

V' =Vu{s*,t*}

A'=AU{(s%s) s e StU{(t,t") [teT) (1.8)
Ca, acA,
Cél: clo, )» a:(S*)S)a

S
T,T), a=(tt*).

Lema 1.24
Se f’ é solugdo maxima de (1.8), f = f’|5 é uma solugdo méxima de (1.7). Por
outro lado, se f é uma solugdo méxima de (1.7),

fa, acA,
f(’l = f(S), a= (S*)S)»
_f(t)) a= (t) t*))

¢ uma solugdo maxima de (1.8).

Prova. Supode f é solucio maxima de (1.7). Seja f’ uma solugdo de (1.8)
com valor f’(s*) maior. Entéo f’|5 é um fluxo valido para (1.7) com solugao
f’|A(S) = f'(s*) maior, uma contradicao.

Por outro lado, para cada fluxo valido f em G, a extensdo f’ definida acima é
um fluxo vélido em G’ com o mesmo valor. Portanto o valor do maior fluxo
em G’ é maior ou igual ao valor do maior fluxo em G. |
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Q00 00,0
5 . 5

o0 e}

Figura 1.17.: Dois exemplos da transformacao do lema 1.25. Esquerda: Grafo
sem solucdo vidvel e grafo transformado com fluxo méaximo 4.
Direita: Grafo com solugao viavel e grafo transformado com fluxo
maximo 5.

Limites inferiores Para G = (V,A,b,c) com limites inferiores b : A — R
considere o problema

maximiza f(s)
sujeito a f(v) =0, Yv e V\{s,t}, (1.9)
bagfagca, acA.

O problema (1.9) pode ser reduzido para um problema de fluxo méximo sim-
plesem G’ = (V' A’ ¢’) (veja Fig. 1.16(b)) com

V/ = VU{s* t}
A" =AU{(u,t") | (u,v) € AFU{(s",v) | (u,v) € AJU{(t,s)} (1.10)

Ca — ba, a€A,

¢l = 2ven+(w) Py @ = (wt7),
ZueN*(v)b(u,V)’ a=(s*,v),
00, a=(t,s).

Chama um fluxo em 1.10 saturado, caso ele satura todos arcos auxiliares
{(u, t*) [ (w,v) € AFU{(s", V) | (u,v) € A}

Lema 1.25
Problema (1.9) possui um fluxo vidvel sse (1.10) possui um fluxo saturado.
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Prova. Caso f é um fluxo vidvel em (1.9),

fa —ba, acA,

f(’l _ ZueN+(v)b(v,u]> a= (v,t*),
2 ueN-(v) Pluy)y a=(s*u),
f(s), a=(t,s).

é um fluxo saturado de (1.10). Por outro lado, se f’ é um fluxo saturado para
(1.10), fq = f. +bg é um fluxo méximo em (1.9). |
Como um fluxo saturado tem que ser méximo, ele pode ser obtido por um
algoritmo de fluxo méximo aplicado a (1.10). Caso o fluxo méximo néo satura,
nao tem solugdo vidvel, sendo podemos extrair uma solugdo vidvel de (1.9) pela
construgdo acima. Para obter um fluxo méximo de (1.9) podemos maximizar
o fluxo a partir da solucdo viavel obtida, com qualquer variante do algoritmo
de Ford-Fulkerson. Na execucdo temos que garantir que um fluxo minimo de
b ¢ mantido em cada arco a = (u,v). Logo, o grafo residual de um fluxo f
tem arcos “backward” a = (v, u) de capacidade reduzida cg = fq — bg.

Uma alternativa para obter um fluxo factivel com limites inferiores nos arcos
é primeiro mandar o limite inferior de cada arco, i.e. setar f = b, e depois
considerar demandas d, = —f(v). Uma circulacdo factivel com limites 0 <
f < ¢ —Db corresponde com um fluxo factivel f 4+ b no grafo original.

Existéncia de uma circulacdo com demandas Para G = (V, A,c) com de-
mandas d,, com d, > 0 para destinos e d,, < 0 para fontes, considere

existe f
s.a f(v) = —d,, Yv ey, (1.11)
fa < cCq, acA.

Evidentemente ) | .\ d, = 0 é uma condigao necesséaria (lema (1.12)). O
problema (1.11) pode ser reduzido para um problema de fluxo méximo em
G’ = (V/,A’) com

V' =VU{s*, t*}

A'=AU{s"v)|veVd, <0tu{v,t")|veVd, >0} (1.12)
Ca,y acA,
Ca = _d\z) a= (S*,V),

dv» a= (Vat*)-
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Lema 1.26
Problema (1.11) possui uma solugdo sse problema (1.12) possui uma solugao

com fluxo maximo D = Zv:dv>0 dy.

Prova. (Exercicio.) |

Circulacdes com limites inferiores Para G = (V; A, b,c) com limites inferi-
ores e superiores, considere

existe f
s.a f(v) = d,, Yv ey, (1.13)
bo <fq <cq, acA.

O problema pode ser reduzido para a existéncia de uma circulagdo com so-
mente limites superiores em G’ = (V/;A’,c’,d’) com

V=V

A=A (1.14)

Cqa=Cq—bg

I =d, — Zb+ Zb (1.15)
aeN— aeN*(v

Lema 1.27

O problema (1.13) possui solucao sse problema (1.14) possui solugao.

Prova. (Exercicio.) [ |

1.4.6. Aplicacoes

Projeto de pesquisa de opinidao O objetivo é projetar uma pesquisa de opi-
niao, com as restricoes

¢ Cada cliente i recebe ao menos c; perguntas (para obter informagao sufi-
ciente) mas no maximo c¢{ perguntas (para ndo cansar ele). As perguntas
podem ser feitas somente sobre produtos que o cliente ja comprou.

o Para obter informacoes suficientes sobre um produto, entre p; e p{ cli-
entes tem que ser interrogados sobre ele.

Um modelo é um grafo bi-partido entre clientes e produtos, com aresta (ci,p;)
caso cliente i ja comprou produto j. O fluxo de cada aresta possui limite
inferior 0 e limite superior 1. Para representar os limites de perguntas por
produto e por cliente, introduziremos ainda dois vértices s, e t, com arestas
(s,ci) com fluxo entre c; e c{ e arestas (pj,t) com fluxo entre pj e pj' e uma
aresta (t,s).
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Segmentacdo de imagens O objetivo é segmentar um imagem em duas par-
tes, por exemplo “foreground” e “background”. Supondo que temos uma “pro-
babilidade” a; de pertencer ao “foreground” e outra “probabilidade” de per-
tencer ao “background” b; para cada pixel i, uma abordagem direta é definir
que pixels com a; > by sdo “foreground” e os outros “background”. Um exem-
plo pode ser visto na Fig. 1.19 (b). A desvantagem dessa abordagem é que a
separagdo ignora o contexto de um pixel. Um pixel, “foreground” com todos
pixel adjacentes em “background” provavelmente pertence ao “background”
também. Portanto obtemos um modelo melhor introduzindo penalidades py;
para separar (atribuir & categorias diferentes) pixel adjacentes i e j. Um par-
ticao do conjunto de todos pixels I em A U B tem um valor de

qAB) =) ai+) bi— Y  py

ieA ieB (i,j)EAXB

nesse modelo, e 0 nosso objetivo é achar uma particdo que maximiza q(A, B).
Isso é equivalente a minimizar

Q(A,B) ZZai+bi—Zai—Zbi+ Z Pij

iel ieA ieB (i,j)EAXB
DTS ILED W
ieB ieA (i,j)EAXB

A solugédo minima de Q(A, B) pode ser visto como corte minimo num grafo.
O grafo possui um vértice para cada pixel e uma aresta com capacidade py;
entre dois pixels adjacentes i e j. Ele possui ainda dois vértices adicionais
s e t, arestas (s,1i) com capacidade a; para cada pixel i e arestas (i,t) com
capacidade b; para cada pixel i (ver Fig. 1.18).

Sequenciamento O objetivo é programar um transporte com um numero k
de veiculos disponiveis, dado pares de origem-destino com tempo de saida e
chegada. Um exemplo é um conjunto de voos é

1. Porto Alegre (POA), 6.00 — Florianopolis (FLN), 7.00
2. Florianopolis (FLN), 8.00 — Rio de Janeiro (GIG), 9.00
3. Fortaleza (FOR), 7.00 — Joao Pessoa (JPA), 8.00

4. Sao Paulo (GRU), 11.00 — Manaus (MAO), 14.00

5. Manaus (MAO), 14.15 — Belem (BEL), 15.15
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i j k1
a 30 19 12 10
b 20 15 16 25

Figura 1.18.: Exemplo da construcéo para uma imagem 2 x 2. Direita: Tabela
com valores pele/nao-pele. Esquerda: Grafo com penalidade fixa
Pij = 10.

Figura 1.19.: Segmentacao de imagens com diferentes penalidades p. Acima:
(a) Imagem original (b) Segmentagdo somente com probabilida-
des (p = 0) (¢) p = 1000 (d) p = 10000. Abaixo: (a) Walter
Gramatté, Selbstbildnis mit rotem Mond, 1926 (b) Segmentagio
com p = 10000. A probabilidade de um pixel representar pele
foi determinado conforme Jones e Rehg (1998).
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6. Salvador (SSA), 17.00 — Recife (REC), 18.00

O mesmo avido pode ser usado para mais que um par de origem e destino, se
o destino do primeiro é o origem do segundo, em tem tempo suficiente entre
a chegada e safda (para manutengdo, limpeza, etc.) ou tem tempo suficiente
para deslocar o avido do destino para o origem.

Podemos representar o problema como grafo direcionado aciclico. Dado pa-
res de origem destino, ainda adicionamos pares de destino-origem que sao
compativeis com as regras acimas. A idéia é representar avides como fluxo:
cada aresta origem-destino é obrigatério, e portanto recebe limites inferiores
e superiores de 1, enquanto uma aresta destino-origem é facultativa e recebe
limite inferior de 0 e superior de 1. Além disso, introduzimos dois vértices s
e t, com arcos facultativos de s para qualquer origem e de qualquer destino
para t, que representam os comegos e finais da viagem completa de um avido.
Para decidir se existe um solugdao com k avides, finalmente colocamos um arco
(t,s) com limite inferior de 0 e superior de k e decidir se existe uma circulagao
nesse grafo.

O problema P | pmtn,r; | Lyax Primeiramente resolveremos um problema
mais simples: serd que existe um sequenciamento tal que toda tarefa i executa
dentro do seu intervalo [ri, di]? Equivalentemente, serd que existe uma solugao
com L. =07

Seja {t1, tz,..., tx} ={r1,m2,...Tn}U{d1,d2,...,dn}, com t; <tp < -0 <ty
(Observe que k < 2n, e k < 2n no caso de tempos repetidos.) Podemos ver os
t; como eventos em que uma tarefa fica disponivel ou tem que terminar o seu
processamento. Os t; definem k—1 intervalos I; = [ti, ti11] parai € [k—1] com
duragdo S; = ti41 —t; correspondente. Cada tarefa j pode ser executada no
intervalo T; caso I; C [ri, di]. Logo podemos modelar o problema via um grafo
direcionado bipartido com vértices T U I, sendo T = [n] o conjunto de tarefas
e I ={I; |i€ [k—1]} o conjunto de intervalos, e com arcos (j,1) caso tarefa j
pode ser executada no intervalo i. Para completar o grafo adicionaremos um
arco (s,j) de um vértice origem s para cada tarefa j, e um arco (i,t) de cada
intervalo para um vértice destino t. Um fluxo nesse grafo representa tempo,
e teremos capacidades p; entre s e tarefa j, S; entre tarefa j e intervalo i, e
mS; entre T; e t, sendo mS; o tempo total disponivel durante o intervalo i. A
figura 1.20 mostra a construgdo completa.

Logo P | pmtn, 7; | Limax pode ser resolvido em tempo O(mnlogL).

Com essa abordagem podemos resolver o problema original por busca binéria:
para cada valor do L.y entre 0 e L testaremos se existe uma solucéo tal que
cada tarefa executa no intervalo [ri, di + Linax]. Um limite superior simples é
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P1 msS;
\ i ‘/
Pj . ms;
Pn : : msk

Figura 1.20.: Problema de fluxo para resolver a versao de decisao do problema
P ‘ pmtn, Ti ‘ I—maLx-

L = max; T + ) ; pi — min; di executando todas tarefas apds a liberacao da
ultima numa Unica maquina em ordem arbitraria.

Agendamento de projetos Suponha que temos n projetos, cada um com
lucro pi € Z, i € [n], e um grafo de dependéncias G = ([n], A) sobre os
projetos. Caso (i,j) € A, a execugdo do projeto i é pré-requisito para a
execucgao do projeto j. Um lucro pode ser negativo: neste caso tem uma perda
efetiva. Este problema pode ser reduzido para um problema de fluxo maximo
s-t: cria um grafo G’ com vértices {s, t} U [n] é

e uma aresta (s,v) para todo v € [n] com p,, > 0, com capacidade p.,
e uma aresta (v,t) para todo v € [n] com p, < 0, com capacidade —p,, e

e uma aresta (u,Vv) para toda dependéncia (v,u) € A, com capacidade oo.

Lema 1.28

O valor de um corte (X,X) em G’ é minimo, sse o lucro total dos projetos
S = X\ {s} ¢ maximo. Além disso um corte minimo em G’ corresponde a uma
selecao factivel de projetos S.

Prova. Cada corte (X,X) corresponde com uma selecio de projetos S =
X\ {s}. Seja S =m]\S. Uma selecio de projetos S é vélida, caso para todo
projeto p € S, ela contém também todos projetos pré-requisitos de p. O corte
correspondente nao possui arcos com capacidade co. Como o valor do corte

73



1. Algoritmos em grafos

(s, V\{s}) é ), jlpy; >0 Pij © corte minimo ¢ finito, e logo factivel, porque nao
. > Y . . . ~ .

existe um arco entre um projeto selecionado e um projeto néo selecionado.

O valor de um corte factivel é

(XK= Y = Y p— Y by
aeF(X,X) peS|pi; >0 pESIpi; <0

e nos temos

Z Py —c(X,X) = Z Py — Z Pij + Z Pij

penlipi; >0 pEMmllpi; >0 pESIpi;>0 PES|pi; <0
= Z Pij + Z Pij
peS\pi,->O 'pGS\pij<O
=) Py
peS

i.e o lucro total da selecdo S. Logo o lucro total é méximo sse o valor do corte
é minimo. |

1.4.7. Qutros problemas de fluxo

Obtemos um outro problema de fluxo em redes introduzindo custos de trans-
porte por unidade de fluxo:

FLUXO DE MENOR CUSTO

Entrada Grafo direcionado G = (V, A) com capacidades ¢ € RLLE‘ e custos

E - . s .
T E RL' nos arcos, um vértice origem s € V, um vértice destino
teV,evalorveR,.

Solucdao Um fluxo s-t f com valor v.

Objetivo Minimizar o custo }_ Cafq do fluxo.

acA

Diferente do problema de menor fluxo, o valor do fluxo é fixo.

1.4.8. Exercicios

Exercicio 1.6

Mostra como podemos modificar o algoritmo de Dijkstra para encontrar o ca-
minho mais curto entre dois vértices num um grafo para encontrar o caminho
com o maior gargalo entre dois vértices. (Dica: Enquanto o algoritmo de
Dijkstra procura o caminho com a menor soma de distdncias, estamos procu-
rando o caminho com o maior capacidade minimo.)

74



1.5. Emparelhamentos

1.5. Emparelhamentos

Dado um grafo nao-direcionado G = (V, A), um emparelhamento é uma selecdo
de arestas M C A tal que todo vértice tem no maximo grau 1 em G’ = (V, M).
(Notagdo: M = {ujv,uzva,...}.) O nosso interesse em emparelhamentos é
maximizar o nimero de arestas selecionados ou, no caso as arestas possuem
pesos, maximizar o peso total das arestas selecionados.

Para um grafo com pesos ¢ : A — Q, seja ¢(M) = } .. Ce 0 valor do
emparelhamento M.

EMPARELHAMENTO MAXIMO (EM)
Entrada Um grafo nio-direcionado G = (V, A).

Solucdo Um emparelhamento M C A i.e. um conjunto de arcos, tal que
para todos vértices v temos [N(v) N M| < 1.

Objetivo Maximiza |M/|.

EMPARELHAMENTO DE PESO MAXIMO (EPM)

Entrada Um grafo nao-direcionado G = (V, A,c) com pesos ¢ : A — Q
nas arestas.

Solucdo Um emparelhamento M C A.
Objetivo Maximiza o valor ¢(M) de M.

Um emparelhamento se chama perfeito se todo vértice possui vizinho em M.
Uma variacdo comum do problema é

EMPARELHAMENTO PERFEITO DE PESO MiNIMO (EPPM)

Entrada Um grafo nao-direcionado G = (V, A,¢) com pesos ¢ : A — Q
nas arestas.

Solucdao Um emparelhamento perfeito M C A, i.e. um conjunto de arcos,
tal que para todos vértices v temos |[N(v) "M 1.

Objetivo Minimiza o valor ¢(M) de M.

Observe que os pesos em todos problemas podem ser negativos. O problema de
encontrar um emparelhamento de peso minimo em G = (V, A, ¢) é equivalente
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com EPM em —G := (V;A,—c) (por qué?). Até EPPM pode ser reduzido
para EPM.

Teorema 1.12
EPM e EPPM sao problemas equivalentes.

Prova. Seja G = (V,A,c) uma instdncia de EPM. Define um conjunto de

vértices V'’ que contém V e mais |V| novos vértices e um grafo completo G’ =
(V, V' x V' ¢') com

, _)J—Ca casoa€A
0 caso contrério

Dado um emparelhamento M em G podemos definir um emparelhamento
perfeito M’ em G’: M’ inclui todas arestas em M. Além disso, um vértice em
V nao emparelhado em M serd emparelhado com o novo vértice correspondente
em V'’ com uma aresta de custo 0 em M’. Similarmente, os restantes vértices
nao emparelhados em V' sao emparelhados em M’ com arestas de custo O
entre si. Pela construcao, o valor de M’ é ¢/(M’) = —c(M). Dado um
emparelhamento M’ em G’ podemos obter um emparelhamento M em G com
valor —c(M’) removendo as arestas que ndo pertencem a G. Portanto, um
EPPM em G’ é um EPM em G.

Por outro lado, seja G = (V,A,c) uma instancia de EPPM. Define C :=
T+ > qcalcal, novos pesos ¢, = C —ce e um grafo G’ = (V,A,c’). Para
emparelhamentos M e M, em G arbitrarios temos

C(MZ)_C(Ml) < Z Ca — Z Ca = Z ‘Ca|<C-

acA acA acA
cq=>0 caq<0

Portanto, um emparelhamento de peso miximo em G’ também é um empa-
relhamento de cardinalidade méaxima: Para [M;| < |[M;| temos

¢'(My) = CIMy|— (M) < CIM4|+ C —¢(M3) < CIM,| — (M) =¢'(M3).

Se existe um emparelhamento perfeito no grafo original G, entdo o EPM em
G’ é perfeito e as arestas do EPM em G’ definem um EPPM em G. |
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Formulacdes com programacdo inteira A formulagdo do problema do em-
parelhamento perfeito minimo para G = (V, A, c) é

minimiza Z CaXa (1.16)
acA

sujeito a Z Xuy = 1, YvevVv
UueEN (v)
Xaq € B.

A formulagéo do problema do emparelhamento méximo é

maximiza Z CaXa (1.17)
acA
sujeito a Z Xuv < 1, YveVv
ueN(v)
Xq € B.

Observagao 1.14

A matriz de coeficientes de (1.16) e (1.17) é totalmente unimodular no caso bi-
partido (pelo teorema de Hoffman-Kruskal). Portanto: a solugdo da relaxagio
linear é inteira. (No caso geral isso néo é verdadeiro, K3 é um contra-exemplo,
com solugao 6tima 3/2.). Observe que isso resolve o caso ponderado sem custo
adicional. O

Observagao 1.15
O dual da relaxagdo linear de (1.16) é

CIM: maximiza Zyv (1.18)
vev
sujeito a Yy, + Yy, < cuy,y Yuv € A
Yy € R.

e o dual da relaxacfo linear de (1.17)

MVC: minimiza Z Yy (1.19)
vev
sujeito a Yy + Yy > Cyv, Yuv € A
Yyv € Ry
Com pesos unitdrios ¢y, = 1 e restringindo y, € B o primeiro dual é a

formulacdo do conjunto independente maximo e o segundo da cobertura de
vértices minima. Portanto, a observacao 1.14 rende no caso nado-ponderado:
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1. Algoritmos em grafos

Teorema 1.13 (Berge, 1951)
Em grafos bi-partidos o tamanho da menor cobertura de vértices é igual ao
tamanho do emparelhamento maximo.

Proposicao 1.5

Um subconjunto de vértices I C V de um grafo nao-direcionado G = (V,;A) é
um conjunto independente sse V \ I é um cobertura de vértices. Em particu-
lar um conjunto independente maximo I corresponde com uma cobertura de
vértices minima V \ L.

Prova. (Exercicio 1.8.) | O

1.5.1. Aplicacées

Alocacao de tarefas Queremos alocar n tarefas a n trabalhadores, tal que
cada tarefa é executada, e cada trabalhador executa uma tarefa. O custos de
execucao dependem do trabalhar e da tarefa. Isso pode ser resolvido como
problema de emparelhamento perfeito minimo.

Particionamento de poligonos ortogonais

Teorema 1.14 (Sack e Urrutia (2000, cap. 11, th. 1))

Um poligono ortogonal com 1 vértices de reflexo (ingl. reflex vertex, i.e., com
angulo interno maior que 7), h buracos (ingl. holes) pode ser minimalmente
particionado em n — 1 — h + 1 retdngulos. A varidvel 1 é o niimero maximo
de cordas (diagonais) horizontais ou verticais entre vértices de reflexo sem
interseccao.

O ntimero 1 é o tamanho do conjunto independente méximo no grafo de in-
tersecgao das cordas: cada corda é representada por um vértice, e uma aresta
representa a duas cordas com intersecao. Pela proposi¢do 1.7 podemos obter
uma cobertura minima via um emparelhamento maximo, que é o complemento
de um conjunto independente maximo. Podemos achar o emparelhamento em
tempo O(n°/2) usando o algoritmo de Hopcroft-Karp, porque o grafo de in-
terseccao é bi-partido (por qué?).

Problemas de agendamento O problema 1| p; =p | 3 w;Tj é resolvido
por um emparelhamento perfeito entre as tarefas e os intervalos de execucdo
[(i—1)p,ip), i € [n]. Podemos resolver ainda 1 | p; = 1,75 | }_w;Tj, obser-
vando que sempre existe uma solugdo com as tarefas executando nos intervalos
[ti, t; + 1], 1 € [n], definido por

to = —o0; ty = max{ti_1 + 1,1}

e supondo que 11 < -+ < 1.

78



1.5. Emparelhamentos

Figura 1.21.: Esquerda: Poligono ortogonal com n = 8 vértices de reflexo
(pontos), h = 0 buracos. As cordas sdo pontilhadas. Direita:
grafo de intersecgao.

1.5.2. Grafos bi-partidos

Na formulagao como programa inteira a solugao do caso bi-partido é mais facil.
Isso também é o caso para algoritmos combinatoriais, e portanto comegamos
estudar grafos bi-partidos.

Reducio para o problema do fluxo maximo

Teorema 1.15
Um EM em grafos bi-partidos pode ser obtido em tempo O(mn).

Prova. Introduz dois vértices s, t, liga s para todos vértices em V7, os vértices
em Vi com vértices em V, e os vértices em V, com t, com todos os pesos
unitarios. Aplica o algoritmo de Ford-Fulkerson para obter um fluxo méaximo.
O numero de aumentos é limitado por n, cada busca tem complexidade O(m),
portanto o algoritmo de Ford-Fulkerson termina em tempo O(mn). |

Teorema 1.16
O valor do fluxo méximo ¢ igual a cardinalidade de um emparelhamento ma-
ximo.

Prova. Dado um emparelhamento maximo M = {vi1v21,...,VinVan}, pode-
mos construir um fluxo com arcos svii, V1ivzi e v2it com valor [MJ.

Dado um fluxo maximo, existe um fluxo integral equivalente (veja lema (1.14)).
Na construcao acima os arcos possuem fluxo 0 ou 1. Escolhe todos arcos entre
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Figura 1.22.: Redugao do problema de emparelhamento méximo para o pro-
blema do fluxo maximo

V7 e V5 com fluxo 1. Nao existe vértice com grau 2, pela conservacao de fluxo.
Portanto, os arcos formam um emparelhamento cuja cardinalidade é o valor
do fluxo. ]

Solucdo ndo-ponderada combinatorial Um caminho P = vivyvsz...v¢ é
alternante em relagdo a M (ou M-alternante) se vivi11 € M sse vij1viy2 € M
para todos 1 <i < k—2. Um vértice v € V é livre em relacdo a M se ele tem
grau 0 em M, e emparelhado caso contrario. Um arco e € E é livre em relagao
a M, se e g M, e emparelhado caso contrario. Escrevemos |P| = k — 1 pelo
comprimento do caminho P.

Observagao 1.16

Caso temos um caminho P = vivovs...var 1 que é M-alternante com vy é

Vor1 livre, podemos obter um emparelhamento M\ (PN M) U (P\ M) de

tamanho IM| —k + (k—1) = IM| + 1. Notacao: Diferenga simétrica M & P =

(M\P)U(P\M). A operaggo M @ P é um aumento do emparelhamento M.
O

Teorema 1.17 (Hopcroft e Karp (1973))

Seja M* um emparelhamento maximo e M um emparelhamento arbitrario. O
conjunto M@M* contém pelo menos k = [M*|—|M| caminhos M-aumentantes
disjuntos (de vértices). Um deles possui comprimento menor que |V|/k — 1.
Prova. Considere os componentes de G em relagido aos arcos M & M*. Cada
vértice possui no maximo grau 2. Portanto, os componentes sdo vértices livres,
caminhos simples ou ciclos. Os caminhos e ciclos possuem alternadamente
arestas de M e M*, logo os ciclos tem comprimento par. Os caminhos de
comprimento impar sdo ou M-aumentantes, porque para a solugdo 6tima M*
nio existem caminhos aumentantes. Ainda temos

IM*\ M| =M*|—M*NM| =[M|-M*"NM|+k =M\ M*|+k
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e portanto M @ M* contém k arcos mais de M* que de M. Isso mostra que
existem pelo menos [M*| — [M| caminhos M-aumentantes, porque somente os
caminhos de comprimento impar possuem exatamente um arco mais de M*.
Pelo menos um desses caminhos tem que ter um comprimento (em arcos)
menor ou igual que |[V|/k — 1, sendo cada um possui pelo menos |V|/k + 1
vértices, i.e. eles contém em total mais que |V| vértices. |

Corolario 1.4 (Berge (1957))
Um emparelhamento é maximo sse nao existe um caminho M-aumentante.

Rascunho de um algoritmo:

Algoritmo 1.7 (Emparelhamento méximo)
Entrada Grafo nao-direcionado G = (V, A).

Saida Um emparelhamento maximo M.

1 M=0

2 while (existe um caminho M-aumentante P) do
3 M:=MgP

4 end while

5 return M

Problema: como achar caminhos M-aumentantes de forma eficiente?

Observagao 1.17

Um caminho M-aumentante comega num vértice livre em Vi e termina num
vértice livre em V;. Idéia: Comega uma busca por largura com todos vértices
livres em V7. Segue alternadamente arcos livres em M para encontrar vizi-
nhos em V> e arcos em M, para encontrar vizinhos em V7. A busca péra ao
encontrar um vértice livre em V, ou apds de visitar todos os vértices. Ela tem
complexidade O(m + n). O

Teorema 1.18

O problema do emparelhamento maximo nao-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(mn).

Prova. Ultima observacio e o fato que o emparelhamento méximo tem ta-
manho O(n). |

Observagao 1.18
O dltimo teorema é o mesmo que teorema (1.15). O
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Observacao 1.19

Pelo teorema (1.17) sabemos que existem varios caminhos M-alternantes dis-
juntos (de vértices) e nos podemos aumentar M com todos eles em paralelo.
Portanto, estruturamos o algoritmo em fases: cada fase procura um conjunto
de caminhos aumentantes disjuntos e aplica-los para obter um novo empare-
lhamento. Observe que pelo teorema (1.17) um aumento com o maior conjunto
de caminhos M-alternantes disjuntos resolve o problema imediatamente, mas
nao sabemos como achar esse conjunto de forma eficiente. Portanto, procura-
mos somente um conjunto maximal de caminhos M-alternantes disjuntos de
menor comprimento.

Podemos encontrar um tal conjunto apds uma busca em profundidade usando
o DAG (grafo direcionado aciclico) definido pela busca por profundidade. (i)
Escolhe um vértice livre em V5. (ii) Segue os predecessores para achar um
caminho aumentante. (iii) Coloca todos vértices em uma fila de delegdo. (iv)
Processa a fila de delecdo: Até que a fila esteja vazia, remove um vértice dela.
Remove todos arcos adjacentes no DAG. Caso um vértice sucessor apds de
remoc¢ao de um arco possui grau de entrada 0, coloca ele na fila. (v) Repete
o procedimento no DAG restante, para achar outro caminho, até ndo existem
mais vértices livres em V,. A nova busca ainda possui complexidade O(m).

O

O que ganhamos com essa nova busca? Os seguintes dois lemas dao a resposta:

Lema 1.29
Em cada fase o comprimento de um caminho aumentante minimo aumenta
por pelo menos dois.

Lema 1.30
O algoritmo termina em no maximo /n fases.

Teorema 1.19

O problema do emparelhamento méximo nao-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(my/n).

Prova. Pelas lemas 1.29 e 1.30 e a observacdo que toda fase pode ser com-
pletada em O(m). |

Usaremos outro lema para provar os dois lemas acima.

Lema 1.31

Seja M um emparelhamento, P um caminho M-aumentante minimo, e Q um
caminho M @ P-aumentante. Entao [Q| > [P+ 2PN Q|. (PN Q denota as
arestas em comum entre P e Q.)
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Prova. Caso P e Q ndo possuem vértices em comum, Q é M-aumentante,
PN Q =0 e a desigualdade é conseqiiéncia da minimalidade de P.

Caso contréario, P e Q possuem um vértice em comum, e logo também uma
aresta, sendo M @ P @ Q possui um vértice de grau dois. P & Q consiste em
dois caminhos, e eventualmente um colecao de ciclos. Os dois caminhos sao
M-aumentantes, pelas seguintes observagoes:

1. O inicio e termino de P é livre em M, porque P é M-aumentante.

2. O inicio e termino de Q ¢é livre em M: eles ndo pertencem a P, porque
sao livres em M & P.

3. Nenhum outro vértice de P ® Q ¢ livre em relagdo a M: P s6 contém
dois vértices livres e Q s6 contém dois vértices livres em Q \ P.

4. Temos dois caminhos M-aumentantes, comecando com um vértice livre
em Q e terminando com um vértice livre em P. O parte do caminho
Q em Q \ P é M-alternante, porque as arestas livres em M @ P sdo
exatamente as arestas livres em M. O caminho Q entra em P e sai de
P com arestas livres, porque todo vértice em P estd emparelhado em
M @ P. Portanto os dois caminhos em P & Q sdo M-aumentantes.

Os dois caminhos M-aumentantes em P& Q tem que ser maiores que |P|. Com
isso temos [P & Q| > 2|P| e

QI=P&Ql+2[PNQ[—[P[>P|+2[PN QI

|
Prova. (dolema 1.29). Seja S o conjunto de caminhos M-aumentantes da fase
anterior, e P um caminho aumentante. Caso P é disjunto de todos caminhos
em S, ele deve ser mais comprido, porque S é um conjunto maximo de caminhos
aumentantes. Caso P possui um vértice em comum com algum caminho em
S, ele possui também um arco em comum (por qué?) e podemos aplicar
lema 1.31. |
Prova. (do lema 1.30). Seja M* um emparelhamento maximo e M o empa-
relhamento obtido apds de /n/2 fases. O comprimento de qualquer caminho
M-aumentante é no minimo /n, pelo lema 1.29. Pelo teorema 1.17 existem
pelo menos |M*| — |[M| caminhos M-aumentantes disjuntos de vértices. Mas
entdo |M*| — IM| < y/n, porque no caso contrario eles possuem mais que n
vértices em total. Como o emparelhamento cresce pelo menos um em cada
fase, o algoritmo executa no méximo mais y/n fases. Portanto, o niimero total

de fases é no maximo 3/2y/n = O(y/n). |
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O (—] —] U

O (—1 (—1 L]
(a) Grafo com emparelhamento M (em negrito) e um caminho
M-aumentante P (em vermelho).

O0—0 - —0 - O—_

U (—1 (—1 il
(b) O mesmo grafo com emparelhamento M @ P (em negrito) e um caminho
M @ P-aumentante Q (em vermelho).

A

) O conjunto de arestas P @ Q (em negrito).

Figura 1.23.: Ilustragao do lema 1.31.

O algoritmo de Hopcroft-Karp é o melhor algoritmo conhecido para encon-
trar emparelhamentos maximos em grafos bipartidos ndao-ponderados espar-
sos®. Para subclasses de grafos bipartidos existem algoritmos melhores. Por
exemplo, existe um algoritmo randomizado para grafos bipartidos regulares
com complexidade de tempo esperado O(nlogn) (Goel, Kapralov e Khanna,
2010).

Sobre a implementacdo A seguir supomos que o conjunto de vértices é
= [1,n] e um grafo G = (V, A) bi-partido com particdo V; U V,. Podemos
representar um emparelhamento usando um vetor mate, que contém, para
cada vértice emparelhado, o indice do vértice vizinho, e 0 caso o vértice é
livre.
O nucleo de uma implementacao do algoritmo de Hopcroft e Karp é descrito
na observagdo 1.19: ele consiste numa busca por largura até encontrar um ou
mais caminhos M-alternantes minimos e depois uma fase que extrai do DAG
definido pela busca um conjunto maximo de caminhos disjuntos (de vértices).
A busca por largura comeca com todos vértices livres em V;. Usamos um
vetor H para marcar os arcos que fazem parte do DAG definido pela busca

5Feder e Motwani (1991) e Feder e Motwani (1995) propuseram um algoritmo em
O(v/nm(2 —log,, m)) que é melhor em grafos densos.

84



03O Ui Wi+

por largura® e um vetor m para marcar os vértices visitados.

search_paths(M) :=

for all veV do m, :=false

U;:={veVy|v livre}

for all ue Uy do dy:=0

do

{ determina vizinhos em U, via arestas livres}

UZ = (Z)
for all ue U; do
m, .= true

for all weA, w¢gM do

if not m, then

dy, :=d, +1
U :=UUv
end if
end for
end for

1.5. Emparelhamentos

{ determina vizinhos em U; via arestas emparelhadas }

found := false
U1 = @
for all ue U, do
m, := true
if (u livre) then
found := true
else
v := mate[u]
if not m, then

dy, :=d, +1
U;:=uU;Uv
end if
end for
end for

while (not found)
end

Apo6s da busca, podemos extrair um conjunto maximo de caminhos M-alternantes

{ pelo menos um caminho encontrado? }

minimos disjuntos. Enquanto existe um vértice livre em V3, nos extraimos um

SH, porque o DAG se chama drvore hiingara na literatura.
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caminho alternante que termina em v como segue:

extract_paths() :=
while existe vértice v livre em V, do
aplica um busca em profundidade a partir de v em H
(procurando um vértice livre em Vi)
remove todos vértices visitados durante a busca
caso um caminho alternante P foi encontrado: M:=M@@P
end while
end

Exemplo 1.7
Segue um exemplo de aplicagdo do algoritmo de Hopcroft-Karp.

Grafo original, arvore Hingara primeira iteracdo e emparelhamento
resultante:

i

Arvore Hingara segunda iteracdo e emparelhamento resultante:

it

Arvore Hungara terceira iteragdo e emparelhamento resultante:
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1.5. Emparelhamentos

Emparelhamentos, coberturas e conjuntos independentes

Proposigcao 1.6

Seja G = (SU T, A) um grafo bipartido e M C A um emparelhamento em G.
Seja R o conjunto de todos vértices livres em S e todos vértices alcangaveis
por uma busca na arvore Hingara (i.e. via arestas livres de S para T e arestas
do emparelhamento de T para S). Entao (S\ R)U (T NR) é uma cobertura de
vértices em G.

Prova. Seja u,v € A uma aresta ndo coberta. Logo u € S\ (S\R) =SNR
eveT\(TNR)=T\R. Casouw € M, uv é parte da arvore Hungara é
v € R, uma contradi¢do. Mas caso uv € M, vu é parte da arvore Hingara e v
precede u, logo v € R, novamente uma contradigao. |

A préximo proposicdo mostra que no caso de um emparelhamento méaximo
obtemos uma cobertura minima.

Proposigcao 1.7
Seja G = (S U TJA). Caso M é um emparelhamento maximo o conjunto
(S\R)U (TNR) é uma cobertura minima.

Prova. O tamanho que qualquer emparelhamento M é um limite inferior para
o tamanho de qualquer cobertura, porque uma cobertura tem que conter pelo
menos um vértice da cada aresta emparelhada. Logo é suficiente demonstrar
que (S\R)U (TNR)| = M|

Temos (S\R)U(TNR)| =[S\ R+ |TNR| porque S e T sdo disjuntos. Vamos
demonstrar que |T N R| = v implica |S \ R| = [M| —v.

Supoe [TNR| =v. Como M é méximo ndo existe caminho M-aumentante,
e logo TN R contém somente vértices emparelhados. Por isso o nimero de
vértices emparelhados em S N R também é v. Além disso S N R contém todos
IS| — IM| vértices livres em S. Logo [S\R| =S| —(|S|—M|]) —v=|M|—v. R

87
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[
0 v
Ul
v
Ul
Ul
| Ul
M| —v{ [ ] ]
| Ul

Figura 1.24.: Tlustragdo da prova da proposicao 1.7.

Observagao 1.20

O complemento V \ C de uma cobertura C é um conjunto independente (por
qué?). Logo um emparelhamento M que define um conjunto R de acordo com
a proposi¢ao (1.6) corresponde com um conjunto independente (SNR)U(T\R),
e caso M é maximo, o conjunto independente também. %

Solucdo ponderada em grafos bi-partidos Dado um grafo G = (S U T, A)
bipartido com pesos ¢ : A — Q, queremos achar um emparelhamento de
maior peso. Escrevemos V =S UT para o conjunto de todos vértices em G.

Observagao 1.21

O caso ponderado pode ser restrito para emparelhamentos perfeitos: caso
S e T possuem cardinalidade diferente, podemos adicionar vértices, e depois
completar todo grafo com arestas de custo 0. O problema de encontrar um
emparelhamento perfeito méximo (ou minimo) em grafos ponderados é conhe-
cido pelo nome “problema de alocagdo” (ingl. assignment problem). O

Observacao 1.22

A redugao do teorema 1.15 para um problema de fluxo méximo nao se aplica
no caso ponderado. Mas, com a simplificagdo da observacao 1.21, podemos
reduzir o problema no caso ponderado para um problema de fluxo de menor
custo: a capacidade de todas arestas é 1, e o custo de transportagdo sdo os
pesos das arestas. Como o emparelhamento é perfeito, procuramos um fluxo
de valor |V|/2, de menor custo. O

O dual do problema 1.19 é a motivacdo para
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1.5. Emparelhamentos

Definig¢ao 1.3

Um rotulamento é uma atribuicdo y : V — R,. Ele é vidvel caso yy + Yy >
Ce para todas arestas e = (u,v). (Um rotulamento vidvel é c-cobertura de
vértices.) Uma aresta é apertada (ingl. tight) caso yy, + Yy = ce. O subgrafo

de arestas apertadas é Gy = (V,A’,c) com A’ ={a € A | a apertada em y}.

Pelo teorema forte de dualidade e o fato que a relaxacdo linear dos sistemas
acima possui uma solugdo integral (ver observagio 1.14) temos

Teorema 1.20 (Egervary (1931))

Para um grafo bi-partido G = (S U T, A, ¢) com pesos nido-negativos ¢ : A —
Q. nas arestas, o maior peso de um emparelhamento perfeito é igual ao peso
da menor c-cobertura de vértices.

O método hingaro Aplicando um caminho M-aumentante P = (viva...voni1)
produz um emparelhamento de peso ¢(M)+3_; (1 0ar Cvivier = 21 par Cvivisr -
Isso motiva a definicdo de uma arvore hiingara ponderada. Para um empare-
lhamento M, seja Hp o grafo direcionado com as arestas e € M orientadas
de T para S com peso l. := w,, e com as restantes arestas a € A\ M ori-
entadas de S para T com peso lg := —wq. Com isso a aplicacdo do caminho
M-aumentante P produz um emparelhamento de peso ¢(M) — 1(P) em que
LP) =2 i<i<on Wivi,, € 0 comprimento do caminho P.

Com isso podemos modificar o algoritmo para emparelhamentos maximos para

Algoritmo 1.8 (Emparelhamento de peso maximo)
Entrada Um grafo nio-direcionado ponderado G = (V, E, c).

Saida Um emparelhamento de maior peso ¢(M).

1 M=0

while (existe um caminho M-aumentante P) do
encontra o caminho M-aumentante minimo P em Hpm
caso l(P)>0: return M;
M=Mo®P

end while

return M

N O UL W N

Chamaremos um emparelhamento M eztremo caso ele possui 0 maior peso
entre todos emparelhamentos de tamanho |M|.

Observagao 1.23
O grafo Hyy de um emparelhamento extremo M nao possui ciclo (par) ne-
gativo. Isso seria uma contradicio com a maximalidade de M. Portanto
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1. Algoritmos em grafos

podemos encontrar o caminho minimo no passo 3 do algoritmo usando o al-
goritmo de Bellman-Ford em tempo O(mn). Com isso a complexidade do
algoritmo é O(mn?). O

Observagao 1.24

Lembrando Bellman-Ford: Seja di(t) a distAncia minima entre s e t com um
caminho usando no maximo k arcos ou oo caso tal caminho nao existe. Temos

dic1(t) = min{di(t), min dy(u)+ Hu,t)}
(u,t)eA

com do(t) = 0 caso t é um vértice livre em S e do(t) = oo caso contrario. O
algoritmo se aplica igualmente para as distdncias de um conjunto de vértices,
como o conjunto de vértices livres em S. A atualizacdo de k para k+ 1 é
possivel em O(m) e como k < 1 o algoritmo possui complexidade O(nm). ¢

Teorema 1.21
Cada emparelhamento encontrado no algoritmo 1.8 é extremo.

Prova. Por inducio sobre [M|. Para M = () o teorema é correto. Seja M
um emparelhamento extremo, P o caminho aumentante encontrado pelo algo-
ritmo 1.8 ¢ N um emparelhamento de tamanho |[M|+ 1 arbitrario. Como |N| >
IM|, M UN contém uma componente que é um caminho Q M-aumentante
(por um argumento similar com aquele da prova do teorema de Hopcroft-
Karp 1.17). Sabemos 1(Q) > 1(P) pela minimalidade de P. N @& Q é um
emparelhamento de cardinalidade M| (Q é um caminho com arestas em N e
M com uma aresta em N a mais), logo ¢(N @ Q) < ¢(M). Com isso temos

c(N)=c(N®Q)—1Q) <c¢(M)—1LP)=c(M®P)
(observe que o comprimento 1(Q) é definido no emparelhamento M). |

Proposicao 1.8
Caso nao existe caminho M-aumentante com comprimento negativo no algo-
ritmo 1.8, M é méaximo.

Prova. Supoe que existe um emparelhamento N com ¢(N) > c¢(M). Logo
IN| > M| porque M ¢é possui o maior peso entre todos emparelhamentos de
cardinalidade no maximo |M|. Pelo teorema de Hopcroft-Karp, existem |N| —
IM| caminhos M-aumentantes disjuntos de vértices em N @& M. Nenhum deles
tem comprimento negativo, pelo critério de parada do algoritmo. Portanto
c¢(N) < ¢(M), uma contradicio. |

Fato 1.1

E possivel encontrar o caminho minimo no passo 3 em tempo O(m +nlogn)
usando uma transformacao para distdncias positivas e aplicando o algoritmo
de Dijkstra. Com isso um algoritmo em tempo O(n(m + nlogn)) é possivel.
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RSty

Figura 1.25.: Grafo com emparelhamento e grafo auxiliar.

Tabela 1.4.: Resumo emparelhamentos

Cardinalidade Ponderado

Bi-partido  O(n/mn/logn) (Al et al, O(nm + n’logn) (Kuhn, 1955;
1991) O mfl‘)gl:gT{m (Feder e Munkres, 1957)
Motwani, 1995)

Geral O(mym ™/ (Goldberg e O(n®) (Edmonds, 1965) O(mn +

logn

Karzanov, 2004; Fremuth—Paeger n?logn) (Gabow, 1990)
e Jungnickel, 2003)

1.5.3. Emparelhamentos em grafos nao-bipartidos

O caso ndo-ponderado Dado um grafo ndo-direcionado G = (V,E) e um
emparelhamento M, podemos simplificar a arvore hingara para um grafo
direcionado D = (V,;A) com A = {(u,v) | Ix € V:ux € E,xv € M}. Qualquer
passeio M-alternante entre dois vértices livres em G corresponde com um
caminho M-alternante em D.

O problema no caso nao-bipartido sdo lagos impares. No caso bi-partido,
todo lago é par e pode ser eliminado sem consequéncias: de fato o caminho
M-alternante mais curto nao possui lago. No caso nao bi-partido nao todo
caminho no grafo auxiliar corresponde com um caminho M-alternante no grafo
original. O caminho v{Vv3Vv5v7Vve corresponde com o caminho M-alternante
V1V2V3V4V5V6V7VgVoV1p, Mas 0 caminho vivgCgVsv7ve que corresponde com
0 passeio ViVoVgV7VeVaV5VsV7VgVoVio ndo é um caminho M-alternante que
aumento o emparelhamento. O problema é que o lago impar vgv4vsvg nao
pode ser eliminado sem consequéncias.

1.5.4. Notas

Duan, Pettie e Su (2011) apresentam técnicas de aproximagao para empare-
lhamentos.
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1.5.5. Exercicios

Exercicio 1.7
E possivel somar uma constante ¢ € R para todos custos de uma instancia do
EPM ou EPPM, mantendo a otimalidade da solucao?

Exercicio 1.8
Prove a proposigao 1.5.
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2. Tabelas hash

Em hashing nosso interesse é uma estrutura de dados H para gerenciar um
conjunto de chaves sobre um universo U e que oferece as operagdes de um
diciondrio:

¢ Inser¢do de uma chave ¢ € U: insert(c,H)
e Dele¢ao de uma chave ¢ € U: delete(c,H)
o Teste da pertinéncia: Chave ¢ € H? lookup(c,H)

Uma caracteristica do problema é que tamanho |U| do universo de chaves
possiveis pode ser grande, por exemplo o conjunto de todos strings ou todos
nimeros inteiros. Portanto usar a chave como indice de um vetor de booleano
nao é uma opcao. Uma tabela hash é um alternativa para outros estruturas de
dados de dicionarios, p.ex. arvores. O principio de tabelas hash: aloca uma
tabela de tamanho m e usa uma fun¢io hash h : U — [m] para calcular a
posicdo de uma chave na tabela.

Como o tamanho da tabela hash é menor que o niimero de chaves possiveis,
existem chaves ci,c2 com h(ci) = h(cz), que geram colisées. Logo uma
tabela hash precisa definir um método de resolugdo de colisées. Uma solugao
é Hashing perfeito: escolhe uma funcao hash, que para um dado conjunto de
chaves nao tem colisoes. Isso é possivel se o conjunto de chaves é conhecido e
estatico.

2.1. Hashing com listas encadeadas

Seja h : U — [m] uma func¢do hash. Mantemos uma colecio de m listas
loy ..., lim—1 tal que a lista 1; contém as chaves ¢ com wvalor hash h(c) = i.
Supondo que a avaliagdo de h é possivel em O(1), a inser¢do custa O(1), e o
teste é proporcional ao tamanho da lista.

Para obter uma distribuicao razoavel das chaves nas listas, supomos que h é
uma funcao hash simples e uniforme:

Pr(h(c) =i) = 1/m. (2.1)
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Seja ni := [li| o tamanho da lista i e ¢j; := Pr(h(j) = i) a varidvel aleatoéria
que indica se chave j pertence a lista i. Temos ni = <, ¢ji e com isso

=E[ Z cjil = Z lcji] = Z Pr(h(c;) =1i) =n/m.

1<j<n 1<j<n 1<j<n

O valor o :=n/m é o fator de ocupacao da tabela hash.

insert(c,H) :=
insert (c,ln(c))

lookup(c,H) :=
lookup (c,ly(c))

delete(c,H) :=
delete (c,ly())

Teorema 2.1
Uma busca sem sucesso precisa tempo esperado ©(1 + o).

Prova. A chave ¢ tem a probabilidade 1/m de ter um valor hash i. O
tamanho esperado da lista i é «. Uma busca sem sucesso nessa lista precisa
tempo O(«). Junto com a avaliacdo da funcao hash em ©(1), obtemos tempo
esperado total O(1 + o). [ ]

Teorema 2.2
Uma busca com sucesso precisa tempo esperado O(1 + «).

Prova. Supomos que a chave ¢ é uma das chaves na tabela com probabilidade
uniforme. Entdo, a probabilidade de pertencer a lista i (ter valor hash i) é
ni/n. Uma busca com sucesso toma tempo O(1) para avaliacio da funcao
hash, e mais um ntmero de operagdes proporcional a posi¢do p da chave na
sua lista. Com isso obtemos tempo esperado ©(1 + E[p]).

Para determinar a posigdo esperada na lista, E[p], seja c1,...,cn a sequéncia
na qual as chaves foram inseridas. Supondo que inserimos as chaves no inicio
da lista, E[p] é um mais que o nimero de chaves inseridos depois de ¢ na
mesma lista.

Seja Xi; um varidvel aleatéria que indica se chaves c; e ¢j tem o mesmo valor
hash. E[XU} = Pr(h(ci) = h(C))) = Z]gkgm Pr(h(ci) = k) PI‘(]’L(C]') = k) =
1/m. Seja p;i a posicdo da chave c; na sua lista. Temos

Elpd =E[1+ ) Xyl=T1+) EXyl=1+n—1i)/m

]]>1 )]>1
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e para uma chave aleatdria c

Epl= ) 1/mEpd= )Y 1/n(l+Mn—1i)/m)

1<i<n 1<i<n
=T4+n/m—n+1)/2m) =14+ «/2 — /(2n).
Portanto, o tempo esperado de uma busca com sucesso é
O(1+Ep)) =02+ «/2 — a/2n) = O(1 + ).
]

Selecdo de uma funcdo hash Para implementar uma tabela hash, temos
que escolher uma fungao hash, que satisfaz (2.1). Para facilitar isso, supomos
que o universo de chaves é um conjunto U = [u] de nimeros inteiros. (Para
tratar outros tipos de chaves, costuma-se converté-los para nimeros inteiros.)
Se cada chave ocorre com a mesma probabilidade, h(i) = 1 mod m é uma
funcdo hash simples e uniforme. Essa abordagem é conhecida como método
de divisdo. O problema com essa fungdo na pratica é que ndo conhecemos a
distribuicao de chaves, e ela provavelmente nao é uniforme. Por exemplo, se
m é par, o valor hash de chaves pares é par, e de chaves impares é impar, e se
m = 2¥ o valor hash consiste nos primeiros k bits. Uma escolha que funciona
na pratica é um nimero primo “suficientemente” distante de uma poténcia de
2.

O método de multiplicacio define
h(c) = [m{Ac}|.

O método funciona para qualquer valor de m, mas depende de uma escolha
adequada de A € R. Knuth propés A ~ (v/5—1)/2.

Hashing universal Outra idéia: Para qualquer fun¢do hash h fixa, sempre
existe um conjunto de chaves, tal que essa funcdo hash gera muitas colisoes.
(Em particular, um “adversdrio” que conhece a fungao hash pode escolher
chaves ¢ € h™'(i) para qualquer posicdo i € [m], tal que h(c) =i é constante.
Para evitar isso podemos escolher uma func¢ao hash aleatéria de uma familia
de fungoes hash.

Uma familia H de fungdes hash U — [m] é universal se

lth € H | h(ct) =h(c2)}l = [H|/m

ou equivalente
Pr(h(c1) =h(cz)) =1/m

para qualquer par de chaves cq,cC3.
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Teorema 2.3
Se escolhemos uma funcao hash h € ‘H uniformemente, para uma chave arbi-
traria ¢ o tamanho esperado de lp (¢ ¢

e a,casoc € H,e
e 14+ «, caso c € H.

Prova. Para chaves c1,c; seja Xij; = [h(cq1) = h(c2)] e temos
E[Xij] = Pr(Xy; = 1) = Pr(h(c1) = h(c2)) =1/m

pela universalidade de H. Para uma chave fixa c seja Y. o nimero de colisoes.

E[Yc] —E[ Z ch’:| = Z E[ch’] < Z 1/m-

c’eH c’eH c’eH
c’#c c’'#c c’#c
Para uma chave ¢ ¢ H, o tamanho da lista é Y., e portanto de tamanho

esperado E[Y.] < n/m = «. Caso ¢ € H, o tamanho da lista é 1+ Y, e com
E[Y.] = (n — 1)/m esperadamente

T+n—1)/m=T+a—1/m<1+ .

Um exemplo de um conjunto de fungdes hash universais: Sejac = (co,...,Cr)m
uma chave na base m, escolhe a = (ag,..., a;)m randomicamente e define

hg = Z cia; mod m.

0<i<r

Hashing perfeito Hashing é perfeito sem colisdes. Isso podemos garantir so-
mente caso conhegemos a chaves a serem inseridos na tabela. Para uma fungao
aleatoéria de uma familia universal de fun¢ées hash para uma tabela hash de
tamanho m, o niimero esperado de colisoes é E[Zwéj Xyl = Z#j E[Xyl <
n?/m. Portanto, caso esolhemos uma tabela de tamanho m > n? o nimero
esperado de colisdes é menos que um. Em particular, para m > c¢cn? com ¢ > 1
a probabilidade de uma colisao é Pr(zi?éj Xy >1) < E[Z#j Xy] < n?/m<
1/c onde a primeira desigualdade segue da desigualdade de Markov.
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2.2. Hashing com endere¢camento aberto

2.2. Hashing com enderecamento aberto

Uma abordagem para resolugao de colisdes, chamada enderecamento aberto, é
escolher uma outra posi¢io para armazenar uma chave, caso h(c) é ocupada.
Uma estratégia para conseguir isso é procurar uma posicao livre numa permu-
tacdo de todos indices restantes. Assim garantimos que um insert tem sucesso
enquanto ainda existe uma posi¢éo livre na tabela. Uma fun¢ao hash h(c,1)
com dois argumentos, tal que h(c,1),...,h(c, m) é uma permutacio de [m],
representa essa estratégia.

insert(c,H) :=
for i in [m]
if Hlh(c,1)] = free
H[h(c,i)]=c
return

lookup(c,H) :=
for i in [m]
if Hlh(c,1)] = free
return false
if H[h(c,1)] =c¢
return true
return false
A funcgao h(c,1) é uniforme, se a probabilidade de uma chave randémica ter
associada uma dada permutacdo é 1/m!. A seguir supomos que h é uniforme.

Teorema 2.4
As funcgoes lookup e insert precisam no maximo 1/(1 — «) testes caso a chave
nao estd na tabela.

Prova. Seja X o ntmero de testes até encontrar uma posigao livre. Temos

EIX] = ZiPr(X =1i)= ZZPr(X =1i)= ZPr(X > i),

i>1 i>13>1 i>1

Com T; o evento que o teste 1 ocorre e a posi¢ao 1 é ocupada, podemos escrever

PI’(X > i) = PI‘(T] n-- ~ﬂTi,1) = PY(T1 ) PI"(T2|T1 ) PI"(T3|T1 R Tz) s Pr(Ti,1 [Ty yooe

Agora Pr(T;) = n/m, e como h é uniforme Pr(T2|T;) =n—1/(m—1) e em
geral
Pr(TTh,... Tkmy) =(m—k+1)/(m—k+1) <n/m=«.
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Portanto Pr(X > 1) < ot~ ' e

=) PrX>1)<) o '=) ot =1/(1—-a).

i>1 i>1 i>0
[ |
Lema 2.1
Para i < j, temos H; — Hj < In(i) — In(j).
Prova.
i+1 1
Hi —H; < J dx =In(i) — In(j)
jr1 X
|

Teorema 2.5

Caso a < 1 a funcdo lookup precisa esperadamente 1/axln1/(1 — &) testes
caso a chave esteja na tabela, e cada chave tem a mesma probabilidade de ser
procurada.

Prova. Seja c a i-gésima chave inserida. No momento de inser¢do temos
« = (i—1)/m e o niimero esperado de testes T até encontrar a posi¢ao livre
foi 1/(1—(i—1)/m) = m/(m — (1 —1)), e portanto o niimero esperado de
testes até encontrar uma chave arbitraria é

T=1/n > m/(m—({i-1)=1/a > 1/(m—1)=1/a(Hpn—Hpn n)

1<i<n 0<i<n
ecom Hy, —Hpon <In(m) —In(m —mn) temos
T =1/a¢(Hmn — Hm_n) < 1/x(In(m) —In(m—n)) = 1/aln(1/(1 — «)).

|
Remover elementos de uma tabela hash com enderecamento aberto é mais
dificil, porque a busca para um elemento termina ao encontrar uma posicao
livre. Para garantir a corretude de lookup, temos que marcar posi¢bes como
“removidas” e continuar a busca nessas posi¢des. Infelizmente, nesse caso,
as garantias da complexidade ndo mantem-se — ap6s uma série de delegoes
e insergoes toda posicao livre serd marcada como “removida” tal que delete
e lookup precisam n passos. Portanto o enderegamento aberto é favoravel
somente se temos poucas delecoes.
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2.3. Cuco hashing

Funcdes hash para enderecamento aberto
e Linear: h(c,i) = h(c) +1 mod m
o Quadratica: h(c,i) =h(c)+cii+ c2i? mod m
¢ Hashing duplo: h(c,i) = hy(c) +1ihz(c) mod m

Nenhuma das fungoes é uniforme, mas o hashing duplo mostra um bom de-
sempenho na pratica.

2.3. Cuco hashing

Cuco hashing é outra abordagem que procura posigoes alternativas na tabela
em caso de colisdes, com o objetivo de garantir um tempo de acesso constante
no pior caso. Para conseguir isso, usamos duas funcoes hash h; e hy, e inse-
rimos uma chave em uma das duas posigdes hq(c) ou hy(c). Desta forma a
busca e a dele¢ao possuem complexidade constante O(1):

lookup(c,H) :=
if H[hi(c)] =c or Hha(c)l =c

return true

return false

delete(c,H) :=
if H[h(c)]l=c
H[hq(c)] := free
if H[hy(c)] =c
Hlhy(c)] := free
Inserir uma chave é simples, caso uma das posicoes alternativas é livre. No
caso contrario, a solugdo do cuco hashing é comportar-se como um cuco com
ovos de outras aves que joga-los fora do seu “ninho”: “insert” ocupa a posicao
de uma das duas chaves. A chave “jogada fora” serd inserida novamente na
tabela. Caso a posicdo alternativa dessa chave é livre, a inser¢do termina.
Caso contrario, o processo se repete. Esse procedimento termina apds uma
série de reinsercoes ou entra num laco infinito. Nesse tltimo caso temos que
realocar todas chaves com novas fungoes hash.

insert(c,H) :=
if H[hi(c)] =c or H[ha(c)l =c
return

p:=hi(c)
do n vezes
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if Hp] = free
Hlpl :=c¢
return

swap (c,H[p])

{ escolhe a outra posigdo da chave atual }

if p=hy(c)
p:=hz(c)
else
p = hi(c)
rehash (H)

insert (c,H)

Uma maneira de visualizar uma tabela hash com cuco hashing, é usar o
grafo cuco: caso foram inseridas as chaves cj,...,cn na tabela nas posi-
¢Oes P1y...,Pn, 0 grafo é G = (V,A), com V = [m] é (pi,ha(ci)) € A caso
hi(ci) = pi e (pi,hi(ci)) € A caso ha(ci) = pi, i.e., os arcos apontam para
a posicao alternativa. O grafo cuco é um grafo direcionado e eventualmente
possui ciclos. Uma caracteristica do grafo cuco é que uma posicao p é eventu-
almente analisada na insercao de uma chave c somente se existe um caminho
de hy(c) ou hy(c) para p. Para a analise é suficiente considerar o grafo cuco

nao-direcionado.

Exemplo 2.1

Para chaves de dois digitos cic2 seja hy(c) = 3¢c; + ¢ mod m e hy(c) =
4¢q1 + c3. Para m = 10 obtemos para uma sequencia aleatoria de chaves

c 31 41 59 26 bH3 B8 97

hi(¢c) 0 3 4 2 8 3 4

hafe) 3 7 9 4 3 8 3

e a seguinte sequencia de tabelas hash
O (1] 2|3 |4 ]|5|6|7]|8]|09
Inicial

31 Insercao 31
31 41 Insercao 41
31 41 | 59 Insercao 59
31 26 | 41 | 59 Insercao 26
31 26 | 41 | 59 53 Insercao 53
31 26 | 58 | 59 41 | 53 Insercdo 58
31 26 | 58 | 97 41 | 53 | 59 | Insercao 59

O grafo cuco correspondente é
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Lema 2.2
Para posi¢oes i e j e um ¢ > 1 tal que m > 2cn, a probabilidade de existir
um caminho minimo de i para j de comprimento d > 1 é no maximo ¢~¢/m.

Prova. Observe que a probabilidade de um item c ter posi¢oes i e j como
alternativas é no maximo Pr(hi(c) = i,ha(c) = j) + Pr(hy(c) = j,hal(c) =
i) = 2/m?2. Portanto a probabilidade de pelo menos uma das n chaves ter
posicoes alternativas i e j é no maximo 2n/ms = ¢! /m.

A prova do lema é por indugao sobre d. Para d = 1 a afirmagao esta correto
pela observacao acima. Para d > 1 existe um caminho minimo de compri-
mento d — 1 de 1 para um k. A probabilidade disso ¢ no maximo ¢~ (=1 /m
e a probabilidade de existir um elemento com posigoes alternativas k e j no
méximo ¢~'/m. Portanto, para um k fixo, a probabilidade existir um cami-
nho de comprimento d é no maximo ¢~¢/m? e considerando todas posicoes k
possiveis no maximo c¢~4/m. |
Com isso a probabilidade de existir um caminho entre duas chaves i e j, é
igual a probabilidade de existir um caminho comegando em hq (i) ou h(i) e
terminando em hq(j) ou hz(j), que é no maximo 4 .o, c /m < 4/m(c —
1) = O(1/m). Logo o ntimero esperado de itens visitados numa insercio é
In/m(c—1) = O(1), caso ndo é necessario reconstruir a tabela hash.

2.4. Filtros de Bloom

Um filtro de Bloom armazena um conjunto de n chaves, com as seguintes
restricoes:

e Nao é mais possivel remover elementos.

« E possivel que o teste de pertinéncia tem sucesso, sem o elemento fazer
parte do conjunto (“false positive”).

Um filtro de Bloom consiste em m bits B;, 1 <1 < m, e usa k func¢ées hash
hiy...y hi.
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insert (c,B) :=
for i in 1...k
Oni(e) =1
end for

lookup(c,B) :=
for i in 1...k
if bpe) =0
return false
return true
Apés de inserir n chaves, um dado bit é ainda 0 com probabilidade

kn kn
e 1-3)" = (5 e

que é igual ao valor esperado da fracdo de bits ndo setados'. Sendo p a fracdo
de bits nao setados realmente, a probabilidade de erradamente classificar um
elemento como membro do conjunto é

(-0~ (1 —p) (1 e /m)”

porque p é com alta probabilidade perto do seu valor esperado (Broder e
Mitzenmacher, 2003). Broder e Mitzenmacher (2003) também mostram que
o numero 6timo k de funcoes hash para dados valores de n,m é m/nln2 e
com isso temos um erro de classificacdo ~ (1/2).

Aplicacoes:

1. Hifenacao: Manter uma tabela de palavras com hifenacdo excepcional
(que ndo pode ser determinado pelas regras).

2. Comunicagao efetiva de conjuntos, p.ex. selecdo em bancos de dados
distribuidas. Para calcular um join de dois bancos de dados A, B, pri-
meiramente A filtra os elementos, manda um filtro de Bloom S para B
e depois B executa o join baseado em Sa. Para eliminagdo de eventuais
elementos classificados erradamente, B manda os resultados para A e A
filtra os elementos errados.

1Lembrando que e* > (1 +x/n)™ para n > 0.
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Tabela 2.1.: Complexidade das operagoes em tabelas hash. Complexidades
em negrito sdo amortizados.

insert lookup delete
Listas encadeadas 0(1) 01+ «) O(1 + «)
Enderecamento aberto  O(1/(1 — «)) o(1/(1 — ) -
(com/sem sucesso) O(1/aln1/(1—«)) O(1/xln1/(1 —«)) -
Cuco 0(1) o) (1)
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3. Algoritmos de aproximacao

Para véarios problemas nao conhecemos um algoritmo eficiente. Para proble-
mas NP-completos, em particular, uma solugao eficiente é pouco provavel. Um
algoritmo de aproximagdo calcula uma solucdo aproximada para um problema
de otimizacao. Diferente de uma heuristica, o algoritmo garante a qualidade
da aproximacao no pior caso. Dado um problema e um algoritmo de aproxima-
¢do A, escrevemos A(x) =y para a solugdo aproximada da instancia x, @(x,y)
para o valor dessa solugdo, y* para a solugdo 6tima e OPT(x) = @(x,y*) para
o valor da solucdo 6tima.

3.1. Problemas, classes e reducoes

Definicao 3.1
Um problema de otimizagio TT = (P, @, opt) é uma relagdo bindria P C I x S
com instancias x € I e solugbes y € S, junto com

o uma fungdo de otimizagdo (func¢do de objetivo) ¢ : P = N (ou Q).
e um objetivo: Encontrar minimo ou maximo
OPT(x) = opt{e(x,y) | (x,y) € P}
junto com uma solugdo y* tal que f(x,y*) = OPT(x).
O par (x,y) € P caso y é uma solugdo para x.

Uma insténcia x de um problema de otimizagdo possui solugdes S(x) = {y |
(x,y) € P}

Convencao 3.1
Escrevemos um problema de otimizacao na forma

NOME
Instancia x

Solucdo y
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3. Algoritmos de aproximag¢ao

Objetivo Minimiza ou maximiza @(x,y).

Com um dado problema de otimizagdo correspondem trés problemas:
o Construcao: Dado x, encontra a solugao étima y* e seu valor OPT(x).
e Avaliacdo: Dado x, encontra valor étimo OPT(x).
o Decisao: Dado x e k, decide se OPT(x) > k (maximizacdo) ou OPT(x) <

k (minimizagao).

Definicao 3.2
Uma relacgao binaria R é polinomialmente limitada se

Ip € poly: V(x,y) € R: [yl < p(Ix]).

Definicao 3.3 (Classes de complexidade)

A classe PO consiste dos problemas de otimizacao tal que existe um algoritmo
polinomial A com @(x,A(x)) = OPT(x) para x € 1.

A classe NPO consiste dos problemas de otimizacao tal que

(i) As instancias x € I sdo reconheciveis em tempo polinomial.
(ii) A relagdo P é polinomialmente limitada.

(iii) Para y arbitrario, polinomialmente limitado: (x,y) € P é decidivel em
tempo polinomial.

(iv) @ é computéivel em tempo polinomial.

Definicao 3.4

Uma redugdo preservando a aproximacao entre dois problemas de minimizagao
TTy e TT, consiste num par de fungdes f e g (computédveis em tempo polinomial)
tal que para instancia xq de TTq, x3 := f(x7) é instancia de TT; com

OPTh, (x2) < OPTyy, (x1) (3.1)
e para uma solucgdo y, de TT, temos uma solugéo y; := g(x1,yz2) de TT; com

o, (x1,y1) < om, (x2,Y2) (3.2)

Uma redugdo preservando a aproximacao fornece uma x-aproximacao para Iy
dada uma o-aproximacao para TT;, porque

o, (x1,Y1) < @, (x2,Y2) < aOPTyy, (x2) < aOP Ty, (x1).

Observe que essa definigdo é vale somente para problemas de minimizagdo. A
defini¢do no caso de maximizacao é semelhante.
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3.2. Medidas de qualidade

Uma aprozimagio absoluta garante que D(x,y) = |OPT(x) — @(x,y)| < D
para uma constante D e todo x, enquanto uma aprorimacdo relativa garante
que o erro relativo E(x,y) = D(x,y)/ max{OPT(x), (x,y)} < € < 1 todos
x. Um algoritmo que consegue um aproximacao com constante € também
se chama e-aproximativo. Tais algoritmos fornecem uma solugdo que difere
no maximo um fator constante da solugao étima. A classe de problemas de
otimizacao que permitem uma e-aproximacio em tempo polinomial para uma
constante € se chama APX.

Uma defini¢do alternativa é a taza de aproximagio R(x,y) =1/(1—E(x,y)) >
1. Um algoritmo com taxa de aproximagao 1 se chama r-aproximativo. (Nao
tem perigo de confusdo com o erro relativo, porque r > 1.)

Aproximacao relativa

+  OPT(x) - 9xy)
D(x,y) D(x,y)
+  exy) 1+ OPT(x)
_ D(xy)
E(x,y) = 2 E(0Y) = 5y

Exemplo 3.1

Coloragao de grafos planares e a problema de determinar a arvore geradora e
a arvore Steiner de grau minimo (Fiirer e Raghavachari, 1994) permitem uma
aproximagao absoluta, mas nao o problema da mochila.

Os problemas da mochila e do caixeiro viajante métrico permitem uma apro-
ximagao absoluta constante, mas nao o problema do caixeiro viajante. O

3.3. Técnicas de aproximacao

3.3.1. Algoritmos gulosos

Cobertura de vértices
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Algoritmo 3.1 (Cobertura de vértices)
Entrada Grafo nao-direcionado G = (V, E).

Saida Cobertura de vértices C C V.

1 VC-GV(G) :=

2 (C,G) := Reduz(G)

3 if V=0 then

4 return C

5 else

6 escolhe v € V:deg(v) =A(G) { grau maximo }
7 return CU{v}UVC-GV(G —v)

8 end if

Proposicao 3.1

O algoritmo VC-GV é uma O(log|V|)-aproximacao.

Prova. Seja Gi o grafo depois da iteragdo i e C* uma cobertura étima, i.e.,
|C*| = OPT(G).

A cobertura 6tima C* é uma cobertura para G; também. Logo, a soma dos
graus dos vértices em C* (contando somente arestas em Gj!) ultrapassa o
numero de arestas em Gj

> 56, (v) > |Gy

vecH
e o grau médio dos vértices em G; satisfaz

] T oee- 86,0 _IGd lIGi]
0g. (Gy) = v - > = .
6:(G) T =~ OPT(G)

Como o grau maximo é maior que o grau médio temos também

_ 1G]l
A(Gl)zizﬁ;f(éj-

Com isso podemos estimar

1G4 IGorrl
2 A6 ) opwe > 2 [opT)

0<i<OPT 0<i<OPT 0<i<OPT
= IGorrl =[G — Y A(GY)
0<i<OPT
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ou
S AGY) = [6ll/2,
0<i<OPT
i.e. a metade das arestas foi removido em OPT iteracoes. Essa estimativa
continua a ser valido, logo apos

OPT [1g||G]|] < OPT [21og|G|] = O(OPT log|Gl)

iteracbes nao tem mais arestas. Como em cada iteracdao foi escolhido um
vértice, a taxa de aproximagao é log|G]. |

Algoritmo 3.2 (Cobertura de vértices)
Entrada Grafo ndo-direcionado G = (V, E).

Saida Um cobertura de vértices C C V.

1 VC-GE(G) :=

2 (C,G) := Reduz(G)

3 if E=( then

4 return C

5 else

6 escolhe e={u,v}€E

7 return CU{u,v}UVC-GE(G —{u,v})
8 end if

Proposicao 3.2
Algoritmo VC-GE é uma 2-aproximagao para VC.

Prova. Cada cobertura contém pelo menos um dos dois vértices escolhidos,
logo
ICl > dvece(G)/2 = 20PT(G) > dve.qe(G).

Algoritmo 3.3 (Cobertura de vértices)
Entrada Grafo nao-direcionado G = (V, E).

Saida Cobertura de vértices C C V.

1 VC-B(G) :=

2 (C,G) := Reduz(G)

3 if V=( then

4 return C

5 else

6 escolhe v e V:deg(v) =A(G) { grau méximo }
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7 C; :=CU{MIUVC-B(G — V)

8 C2:=CUN((W)UVC-B(G —v—N(v))
9 if |Ci| < |Cz|] then

10 return C;

11 else

12 return C;

13 end if

14 end if

Problema da mochila
KNAPSACK

Instancia Um nimero n de itens com valores vi € N e tamanhos t; € N,
para i € [n], um limite M, tal que t; < M (todo item cabe na
mochila).

Solucdo Uma selecao S C [n] tal que ) ; ¢ty <M.

Objetivo Maximizar o valor total } ;¢ vi.

Observagao: O problema da mochila é NP-completo.

Como aproximar?

o Idéia: Ordene por v;i/t; (“valor médio”) em ordem decrescente e enche
o mochila o mais possivel nessa ordem.

Abordagem

K—G(vy,t;) :=
ordene os itens tal que vi/t; >vj/t;, Vi<j.
for i€ X do
if t{ <M then
S:=SuUf{i}
M=M-—-t
end if
end for
return S
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Aproximacao boa?
o Considere
vi=lh...,vh1=lvp=M-—1
ty=1,..,tha1=Lt, =M=kn k € N arbitrario
« Entao:
vi/ti=T1,...,va1/thor =Tvp/th =M —=1)/M < 1
¢ K-G acha uma solugdo com valor @(x) = n—1, mas o 6timo é OPT(x) =
M—1.
o Taxa de aproximacao:

M—-1 kn—1 kn—k
= >

OPT(x)/e@(x) = n—-1 n—-1°~- n—1

=k

¢ K-G néo possui taxa de aproximacao fixa!

o Problema: Néo escolhemos o item com o maior valor.

Tentativa 2: Modificacao

K—G"' (vi,ty)
S1 1= K—G(vi,ty)
Vi = Zie&v’.L
S, {argmax; vi}
vy := Zheszvi
if vy >vy then
return S,
else
return S»
end if

O © 00O Uk WK

Aproximacao boa?
e O algoritmo melhorou?

e Surpresa

Proposicao 3.3
K-G’ é uma 2-aproximacao, i.e. OPT(x) < 2¢k.q’(x).
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Prova. Seja j o primeiro item que K-G nao coloca na mochila. Nesse ponto
temos valor e tamanho

vi= ) wi<oekal (3.3)
1<i<j

=) <M (3.4)
1<i<j

Afirmagao: OPT(x) < vj +vj. Nesse caso
(a) Seja vj <vj.
OPT(x) <vj +vj < 2v; < 29k.c(x) < 2¢x.q
(b) Seja vj > vj

OPT(X) < V_] +v; < Zvj < 2Viax < 29K.q7
Prova da afirmac¢do: No momento em que item j ndo cabe, temos espago
M —t; < t;j sobrando. Como os itens sao ordenados em ordem de densidade

decrescente, obtemos um limite superior para a solu¢do étima preenchendo
esse espago com a densidade vj/t;:

OPT(x) < v —i—(M—t})lﬁ <V v
j

3.3.2. Aproximacées com randomizacao
Randomizacao
o Idéia: Permite escolhas randémicas (“joga uma moeda”)
e Objetivo: Algoritmos que decidem correta com probabilidade alta.
e Objetivo: Aproximagoes com valor esperado garantido.
o Minimizacdo: E[@a(x)] < 20PT(x)

e Maximizacao: 2E[@a (x)] > OPT(x)

Randomizacdao: Exemplo
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SATISFATIBILIDADE MAXIMA, MAXIMUM SAT

Instdncia Uma férmula ¢ € £L(V) sobre varidveis V = {vq,...,vim}, © =
C] /\Cz/\~~~/\Cn em FNC.

Solucdo Uma atribuicdo de valores de verdade a:V — B.

Objetivo Maximiza o nimero de cldusulas satisfeitas

HCi [ [Cil, =T}

Nossa solucao

SAT—R(p) :=
seja ®=0@WV1,...,vx)
for all ie[l,k] do
escolhe vi =1 com probabilidade 1/2
end for

Observagao 3.1
A quantidade [C], é o valor da cldusula C na atribuigao a. O

Aproximacao?

e Surpresa: Algoritmo é 2-aproximacao.

Prova. O valor esperado de uma cldusula C com 1 varidveis é E[[C]]
Pr([C] =1) =1—2"' > 1/2. Logo o valor esperado do ntmero total T
Zie[n] [Ci] de clausulas satisfeitas é

E[TI=E[) [Cill= ) EICI>n/2>OPT/2
ien]

ien]

pela linearidade do valor esperado. |

Outro exemplo
Cobertura de vértices guloso e randomizado.

VC—RG(G) :=

seja wi=) . deg(v)
C=0
while E#0 do
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escolhe VEV com probabilidade deg(v)/w
C:=Cu{v}
G=G—v
end while
return CUV
Resultado: E[bve.ra(x)] < 20PT(x).

3.3.3. Programacao linear

Técnicas de programacao linear sdo frequentemente usadas em algoritmo de
aproximacgdo. FEntre eles sdo o arredondamento randomizado e algoritmos
primais-duais.

Exemplo 3.2 (Arredondamento para cobertura por conjuntos)
Considere o problema de cobertura por conjuntos

minimiza Z WiXi, (3.5)
ie[n]

sujeito a Z xi > 1, vu e U,
ien]lueCy
x; € {0, 1}, Vi e [n].

Seja fe a frequéncia de um elemento e, i.e. o niimero de conjuntos que contém
e e f a maior frequéncia. Um algoritmo de arredondamento simples é dado
por

Teorema 3.1
A selegdo dos conjuntos com x; > 1/f na relaxacgdo linear de (3.5) é uma
f-aproximacgao do problema de cobertura de conjuntos.

Prova. Como [{i € [n] | u € Ci}| < f, temos x; > 1/f em média sobre esse
conjunto. Logo existe, para cada u € U um conjunto com x; > 1/f que cobre

u e a selegdo é uma solugao véalida. O arrendondamento aumenta o custo por
no maximo um fator f, logo temos uma f-aproximagao. | O

3.4. Esquemas de aproximacao
Novas consideracoes

o Frequentemente uma r-aproximagao nao é suficiente. 1 = 2: 100% de
erro!
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3.4. Esquemas de aproximacgao
o Existem aproximagoes melhores? p.ex. para SAT? problema do mochila?

e Desejavel: Esquema de aproximacdo em tempo polinomial (EATP);
polynomial time approximation scheme (PTAS)

— Para cada entrada e taxa de aproximagao r:

— Retorne r-aproximacao em tempo polinomial.

Um exemplo: Mochila maxima (Knapsack)

e Problema da mochila (veja pagina 110):

« Algoritmo MM-PD com programacao dindmica (pag. 160): tempo O(n )_; vi).

o Desvantagem: Pseudo-polinomial.

Denotamos uma instancia do problema da mochila com I = ({vi}, {t;}).

MM—PTAS(I,7r) :=
Vnax = maxi{vi}
i [log ==12m |
v{:=|vi/2'] para i=1,...,n
Define a nova instancia I'= ({v{},{t})
return MM-PD(I’)

Teorema 3.2
MM-PTAS é uma r-aproximacido em tempo O(rn3/(r —1)).

Prova. A complexidade da preparagdo nas linhas 1-3 é O(n). A chamada
para MM-PD custa

/ — V1
o(r ) =0 ("L =)
T T
=0 <r_]n2 ZVi/Vmax> =0 <]~_]n3> ’

Seja S = MM-PTAS(I) a solugao obtida pelo algoritmo e S* uma solucio
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3. Algoritmos de aproximag¢ao
otima.

eav-pras(LS) =) vi> Y 2% [vi/2!] definigao de |- |
i€s ie$s

> Z 2t Lvi/ZtJ otimalidade de MM-PD sobre v/
ieS*
>3 w2t (A.2)
ieS*
= < > w) — 287
ieS*
> OPT(I) — 2'n

Portanto

OPT(x)

Vmax

OPT(I) < mm-pras(L,S) +2'n < oavvi-pras(L,S) + 2'n

2tn

max

< OPT(I) <1 — ) < emm-pras(], S)

e com 2'n/Viax < (r—1) /7

& OPT(I) < romm-pras(, S).

Um EATP frequentemente nao é suficiente para resolver um problema ade-
quadamente. Por exemplo temos um EATP para

« o problema do caixeiro viajante euclidiano com complexidade O(n3°00/¢)

(Arora, 1996);

« 0 problema do mochila multiplo com complexidade O(n'2lles1/€)/ 68)
(Chekuri, Kanna, 2000);

e 0 problema do conjunto independente maximo em grafos com complexi-

dade O(n@/m1/e*+1)*(1/e*+2)*) (Erlebach, 2001).

Para obter uma aproximagao com 20% de erro, i.e. € = 0.2 obtemos algoritmos
com complexidade O(n'5009) O(n375000) ¢ O(n>23804) respectivamente!
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3.5. Aproximando o problema da arvore de Steiner minima

Figura 3.1.: Grafo com fecho métrico.

3.5. Aproximando o problema da arvore de Steiner minima

Seja G = (V, A) um grafo completo, ndo-direcionado com custos ¢, > 0 nos
arcos. O problema da arvore Steiner minima (ASM) consiste em achar o
subgrafo conexo minimo que inclui um dado conjunto de wvértices necessdrios
ou terminais R C V. Esse subgrafo sempre é uma 4rvore (ex. 3.1). O conjunto
V\ R forma os wvértices Steiner. Para um conjunto de arcos A, define o custo

c(A) =) 4eaCa

Observagao 3.2

ASM é NP-completo. Para um conjunto fixo de vértices Steiner V/ C V\R, a
melhor solu¢ao é a drvore geradora minima sobre RUV’. Portanto a dificuldade
¢ a selecdo dos vértices Steiner da solugdo étima. O

Definicao 3.5
Os custos sao métricos se eles satisfazem a desigualdade triangular, i.e.

Cij < Cix +Cyj
para qualquer tripla de vértices i, j, k.

Teorema 3.3
Existe uma redugao preservando a aproximagio de ASM para a versao métrica
do problema.

Prova. O fecho métrico de G = (V, A) é um grafo G’ completo sobre vértices
e com custos c{j := djj, sendo di; o comprimento do menor caminho entre i
ej em G. Evidentemente c{; < cyj e portanto (3.1) ¢ satisfeita. Para ver que
(3.2) é satisfeita, seja T’ uma solucio de ASM em G’. Define T como unido de
todos caminhos definidos pelos arcos em T’, menos um conjunto de arcos para
remover eventuais ciclos. O custo de T é no mdximo ¢(T’) porque o custo de
todo caminho é no maximo o custo da aresta correspondente em T’. |
Consequéncia: Para o problema do ASM é suficiente considerar o caso métrico.
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3. Algoritmos de aproximag¢ao

2

Figura 3.2.: AGM sobre R e melhor solucio. @: vértice em R, ©: vértice
Steiner.

Teorema 3.4
O AGM sobre R é uma 2-aproximacao para o problema do ASM.

Prova. Considere a solucio étima S* de ASM. Duplica todas arestas® tal
que todo vértice possui grau par. Encontra um ciclo Euleriano nesse grafo.
Remove vértices duplicados nesse caminho. O custo do caminho C obtido
dessa forma nao é mais que o dobro do custo original: o grafo com todas
arestas custa 2¢(S*) e a remocao de vértices duplicados ndo aumenta esse
custo, pela metricidade. Como esse caminho é uma arvore geradora, temos
c(A) < c(C) < 2¢(S*) para AGM A. |

3.6. Aproximando o PCV

Teorema 3.5
Para qualquer fun¢do o(n) computavel em tempo polinomial o PCV nao pos-
sui o(n)-aproximacio em tempo polinomial, caso P # NP.

Prova. Via redugdo de HC para PCV. Para uma instdncia G = (V, A) de HC
define um grafo completo G’ com

1, aeA,
Ca = .-
a(n)n, caso contrério.

Se G possui um ciclo Hamiltoniano, entao o custo da menor rota é n. Caso
contrario qualquer rota usa ao menos uma aresta de custo o(n)n e portanto
o custo total é > «(n)n. Portanto, dado uma «(n)-aproximacido de PCV
podemos decidir HC em tempo polinomial. |

Caso métrico No caso métrico podemos obter uma aproximagao melhor.
Determina uma rota como segue:

Hsso transforma G num multigrafo.
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3.7. Aproximando problemas de cortes

1. Determina uma AGM A de G.
2. Duplica todas arestas de A.
3. Acha um ciclo Euleriano nesse grafo.

4. Remove vértices duplicados.

Teorema 3.6
O algoritmo acima define uma 2-aproximagao.

Prova. A melhor solu¢do do PCV menos uma aresta é uma &arvore geradora
de G. Portanto c(A) < OPT. A solugao S obtida pelo algoritmo acima satisfaz
c(S) < 2¢(A) e portanto c(S) < 20PT, pelo mesmo argumento da prova do
teorema 3.4. |
O fator 2 dessa aproximacédo ¢é resultado do passo 2 que duplica todas arestas
para garantir a existéncia de um ciclo Euleriano. Isso pode ser garantido
mais barato: A AGM A possui um niimero par de vértices com grau impar
(ver exercicio 3.2), e portanto podemos calcular um emparelhamento perfeito
minimo E entre esse vértices. O grafo com arestas AUE possui somente vértices
com grau par e portanto podemos aplicar os restantes passos nesse grafo.

Teorema 3.7 (Cristofides)
A algoritmo usando um emparelhamento perfeito minimo no passo 2 é uma
3/2-aproximagao.

Prova. O valor do emparelhamento E nao é mais que OPT/2: remove vértices
nao emparelhados em E da solugdo 6tima do PCV. O ciclo obtido dessa forma
¢é a uniao dois emparelhamentos perfeitos E; e E; formados pelas arestas pares
ou fmpares no ciclo. Com E; o emparelhamento de menor custo, temos

c(E) <c(Er) < (c(E1) +¢(E2))/2=0OPT/2
e portanto

¢(S) = c(A) +¢(E) < OPT + OPT/2 = 3/20PT.

3.7. Aproximando problemas de cortes

Seja G = (V, A, c) um grafo conectado com pesos ¢ nas arestas. Lembramos
que um corte C é um conjunto de arestas que separa o grafo em dois partes
S UV\S. Dado dois vértices s,t € V, o problema de achar um corte minimo
que separa s e t pode ser resolvido via fluxo médximo em tempo polinomial.
Generalizacoes desse problema sao:
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3. Algoritmos de aproximag¢ao

Figura 3.3.: Identificagdo de dois terminais e um corte no grafo reduzido. Vér-
tices em verde, terminais em azul. O grafo reduzido possui mil-
tiplas arestas entre vértices.

o Corte multiplo minimo (CMM): Dado terminais s1,..., sk determine o
menor corte C que separa todos.

o k-corte minimo (k-CM): Mesmo problema, sem terminais definidos. (Ob-
serve que todos k componentes devem ser nao vazios).

Fato 3.1
CMM ¢é NP-dificil para qualquer k > 3. k-CM possui uma solugdo polinomial

em tempo O(nkz) para qualquer k, mas é NP-dificil, caso k faz parte da
entrada (Goldschmidt e Hochbaum, 1988).

Solucdo de CMM Chamamos um corte que separa um vértice dos outros um
corte isolante. Idéia: A unido de cortes isolantes para todo s; é um corte mul-
tiplo. Para calcular o corte isolante para um dado terminal s;, identificamos
os restantes terminais em um Unico vértice S e calculamos um corte minimo
entre s; e S. (Na identificacio de vértices temos que remover self-loops, e
somar os pesos de miltiplas arestas.)

Isso leva ao algoritmo

Algoritmo 3.4 (CI)
Entrada Grafo G = (V, A, c) e terminais sq,..., Sk.

Saida Um corte multiplo que separa os sj.

1 Para cada i€ [l,k]: Calcula o corte isolante C; de s;.
2 Remove o maior desses cortes e retorne a unifo dos
restantes.
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3.7. Aproximando problemas de cortes

Figura 3.4.: Corte miltiplo e decomposi¢do em cortes isolantes.

Teorema 3.8
Algoritmo 3.4 é uma 2 — 2/k-aproximagao.

Prova. Considere o corte minimo C*. De acordo com a Fig. 3.4 ele pode ser
representado pela unido de k cortes que separam os k componentes individu-
almente:

=J«a

ie[k]

Cada aresta de C* faz parte das cortes das duas componentes adjacentes, e
portanto

Z w(C;) =2w(C™)

ie[k]

e ainda w(Ci) < w(C7) para os cortes C; do algoritmo 3.4, porque usamos o
corte isolante minimo de cada componente. Logo, para o corte C retornado
pelo algoritmo temos

w(C) < (1=1/k) ) w(C)<(1=1/k) ) w(CP) <2(1—1/kw(C).

ielk] ielk]

]
A andlise do algoritmo é étimo, como o exemplo da Fig. 3.5 mostra. O menor
corte que separa s; tem peso 2 — €, portanto o algoritmo retorne um corte de
peso (2—e)k—(2—¢€) = (k—1)(2 — €), enquanto 0 menor corte que separa
todos terminais é o ciclo interno de peso k.
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3. Algoritmos de aproximag¢ao

Figura 3.5.: Exemplo de um grafo em que o algoritmo 3.4 retorna uma 2—2/k-
aproximacao.

Solucdo de k-CM  Problema: Como saber a onde cortar?

Fato 3.2

Existem somente n—1 cortes diferentes num grafo. Eles podem ser organizados
numa arvore de Gomory-Hu (AGH) T = (V,T). Cada aresta dessa &rvore
define um corte associado em G pelos dois componentes apds a sua remogao.

1. Para cada u,v € V o menor corte u—v em G é igual a o menor corte u—v
em T (i.e. a aresta de menor peso no caminho tnico entre w e v em T).

2. Para cada aresta a € T, w/(a) é igual a valor do corte associado.

Por consequéncia, a AGH codifica o valor de todos cortes em G.
Ele pode ser calculado determinando n — 1 cortes s—t minimos:

1. Define um grafo com um tnico vértice que representa todos vértices do
grafo original. Chama um vértice que representa mais que um vértice
do grafo original gordo.

2. Enquanto existem vértices gordos:

a) Escolhe um vértice gordo e dois vértices do grafo original que ele
representa.

b) Calcula um corte minimo entre esses vértices.

¢) Separa o vértice gordo de acordo com o corte minimo encontrado.

Observacao: A unido dos cortes definidos por k — 1 arestas na AGH separa G
em pelo menos k componentes. Isso leva ao seguinte algoritmo.
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3.8. Aproximando empacotamento unidimensional

Algoritmo 3.5 (KCM)
Entrada Grafo G = (V,A,c).

Saida Um k-corte.

1 Calcula uma AGH T em G.
2 Forma a unido dos k—1 cortes mais leves
definidos por k—1 arestas em T.

Teorema 3.9
Algoritmo 3.5 é uma 2 — 2/k-aproximacao.

Prova. Seja C* = Uie[k] C! um corte minimo, decomposto igual & prova
anterior. O nosso objetivo é demonstrar que existem k — 1 cortes definidos
por uma aresta em T que sdo mais leves que os C}.

Removendo C* de G gera componentes Vi,..., Vk: Define um grafo sobre
esses componentes contraindo os vértices de uma componente, com arcos da
AGH T entre os componentes, e eventualmente removendo arcos até obter
uma nova arvore T'. Seja C§ o corte de maior peso, e define Vi como raiz
da arvore. Desta forma, cada componente Vi,...,Vx_1 possui uma aresta
associada na direcdo da raiz. Para cada dessas arestas (u,v) temos

w(C}) > w'(u,)

porque C7 isola o componente V; do resto do grafo (particularmente separa u
ev), e w (u,v) é o peso do menor corte que separa u e v. Logo

w(O < ) wil@s< 3 wC)<(1-1/k) ) w(C) =2(1-1/kjw(C").
i€[k]

aeT’ 1<i<k

3.8. Aproximando empacotamento unidimensional

Dado n itens com tamanhos s; € Z,, 1 € [n] e contéineres de capacidade
S € Z, o problema do empacotamento unidimensional é encontrar o menor
nimero de contéineres em que os itens podem ser empacotados.

EMPACOTAMENTO UNIDIMENSIONAL (MIN-EU) (BIN PACKING)

Entrada Um conjunto de n itens com tamanhos s; € Z,, i € n] e o
tamanho de um contéiner S.
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3. Algoritmos de aproximag¢ao

Solucdo Uma particdo de [n] = C;U---UC,y, tal que ZieCk sy < S para
k € [ml].

Objetivo Minimiza o ntimero de partes (“contéineres”) m.

A versdo de decis@o do empacotamento unidimensional (EU) pede decidir se
os itens cabem em m contéineres.

Fato 3.3
EU é fortemente NP-completo.

Proposicao 3.4 .
Para um tamanho S fixo EU pode ser resolvido em tempo O(nS).

Prova. Podemos supor, sem perda de generalidade, que os itens possuem
tamanhos 1,2,...,S — 1. Um padrao de alocagdo de um contéiner pode ser
descrito por uma tupla (ty,...,ts_1) sendo t; o nimero de itens de tamanho
i. Seja T o conjunto de todos padrdes que cabem num contéiner. Como
0 < t; < S o ntimero total de padrdes T é menor que (S 4+ 1)5~1 = O(SS).

Uma ocupacio de m contéineres pode ser descrito por uma tupla (nq,...,nr)
com My sendo o numero de contéineres que usam padrao i. O numero de
contéineres é no maximo n, logo 0 < ny < n e o nimero de alocagoes diferentes
é no maximo (n+1)T = O(n"). Logo podemos enumerar todas possibilidades
em tempo polinomial. |

Proposicao 3.5
Para um m fixo, EU pode ser resolvido em tempo pseudo-polinomial.

Prova. Seja B(Sq,...,Sm,1) € {falso, verdadeiro} a resposta se itens i,1 +
1,...,m cabem em m contéineres com capacidades Sy,...,Sn,. B satisfaz

Sz B(Styeeey S = 850, Syt 1), L<n
3(51,...,sm,i)—{\/15<"<<5j Drnd T D ’

verdadeiro, i>mn,

e B(S,...,S,1) é a solucdo do EU?. A tabela B possui no maximo n(S +1)™
entradas, cada uma computével em tempo O(m), logo o tempo total é no
méximo O(mn(S+1)™). |

Observagao 3.3
Com um fator adicional de O(log m) podemos resolver também MIN-EU, pro-
curando o menor 1 tal que B(S,...,S,0,...,0,n) é verdadeiro. %

i vezes

20bserve que a disjuncio vazia é falsa.
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3.8. Aproximando empacotamento unidimensional

A proposic¢ao 3.4 pode ser melhorada usando programagio dindmica.

Proposigcao 3.6
Para um ntmero fixo k de tamanhos diferentes, min-EU pode ser resolvido
em tempo O(n?¥).

Prova. Seja B(i1,...,1x) 0 menor nimero de contéineres necessario para
empacotar i;j itens do j-ésimo tamanho e T o conjunto de todas padroes de
alocacao de um contéiner. B satisfaz

1 +mint€<T B(iy —tiy..., ik — tx), caso (i1,...,ix) €T,
t<i

B(ih"')ik):{

1, caso contrario,

e B(ny,...,nk) é a solugdo do EU, com n; o ntimero de itens de tamanho i
na entrada. A tabela B tem no maximo n* entradas. Como o niimero de itens
em cada padrdo de alocacdo é no maximo n, temos |T| < n* e logo o tempo
total para preencher B é no méaximo O(n?¥). |

Corolario 3.1
Para um tamanho S fixo min-EU pode ser resolvido em tempo O(n?%).

Abordagem pratica?
o Idéia simples: Préximo que cabe (PrC).

e Por exemplo: Itens 6,7,6,2,5,10 com limite 12.

Aproximacao?

o Interessante: PrC é 2-aproximacao.
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3. Algoritmos de aproximag¢ao

e Observagdo: PrC é um algoritmo on-line.

Prova. Seja B o niimero de contéineres usadas, V = 3 i, si- Como dois
contéineres consecutivos contém uma soma > 1, temos |B/2] < V e com

B/2—1/2 < |B/2] ainda B—1 < 2V ou B < 2V. Mas precisamos pelo menos
[V] contéineres, logo [V]| < OPT(x). Portanto, @p,c(x) <2V < 2[V] <
20PT(x). |
Aproximacao melhor?
e Isso é a melhor estimativa possivel para este algoritmo!
o Considere os 4n itens
1/2,1/2n,1/2,1/2n,...,1/2,1/2n

2n vezes

e O que faz PrC? @p,c(x) = 2n: contéineres com

[1/n)1/2n1 /2]t /2n)]

B

« Otimo: n contéineres com dois elementos de 1/2 4+ um com 2n elementos
de 1/2n. OPT(x)=n=1.

172 | 172 | 172 | 12 1/2 1/2
172 | 172 | 172 | 12 1/2 1/2

o Portanto: Assintoticamente a taxa de aproximacao 2 é estrito.

Melhores estratégias
o Primeiro que cabe (PiC), on-line, com “estoque” na memoria

e Primeiro que cabe em ordem decrescente: PiCD, off-line.
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3.8. Aproximando empacotamento unidimensional

e Taxa de aproximacao?

eric(x) < [1.70PT(x)]
@picp(x) < T.50PT(x) + 1

Prova. (Da segunda taxa de aproximagao.) Considere a particaio AUBUCU
D ={vq,...,vn} com

A ={vi |vi >2/3}
B={vi|2/3>vi>1/2}
C={vi|1/2>v;>1/3}
D={vi|1/3>vi}

PiCD primeiro vai abrir |A| contéineres com os itens do tipo A e depois |B]
contéineres com os itens do tipo B. Temos que analisar o que acontece com
os itens em C e D.

Supondo que um contéiner contém somente itens do tipo D, os outros contéi-
neres tem espago livre menos que 1/3, senéo seria possivel distribuir os itens
do tipo D para outros contéineres. Portanto, nesse caso

\%
B < {2/3} <3/2V+1<3/20PT(x) + 1.

Caso contrario (nenhum contéiner contém somente itens tipo D), PiCD en-
contra a solugdo 6tima. Isso pode ser justificado pelas seguintes observagoes:

1) O ntimero de contéineres sem itens tipo D é o mesmo (eles sdo os tltimos
distribuidos em néo abrem um novo contéiner). Logo é suficiente mostrar

@picp(x\ D) = OPT(x\ D).

2) Os itens tipo A nao importam: Sem itens D, nenhum outro item cabe
junto com um item do tipo A. Logo:

@picp(x\ D) = |A[ + @picp(x \ (AU D)).

3) O melhor caso para os restantes itens sdo pares de elementos em B e C:
Nessa situagdo, PiCD encontra a solugdo 6tima.
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3. Algoritmos de aproximag¢ao

Garantia ou aproximacao melhor?
o Johnson (1973, Tese de doutorado)

epicp(x) < 11/20PT(x) + 4

o Baker (1985)
@picp(x) < 11/9OPT(x) + 3

e Uma variante de PiCD (Johnson e Garey, 1985):

epricpm(x) < 71/60 OPT(x) + 31/6

3.8.1. Um esquema de aproximacdo assintético para min-EU

Duas ideias permitem aproximar min-EU em (1+¢€)OPT(I)+1 para € € (0, 1].

Ideia 1: Arredondamento Para uma instancia I, define uma instincia R
arredondada como segue:

1. Ordene os itens de forma nao-decrescente e forma grupos de k itens.
2. Substitui o tamanho de cada item pelo tamanho do maior elemento no
seu grupo.
Lema 3.1
Para uma instancia I e a instdncia R arredondada temos

OPT(R) < OPT(I) + k

Prova. Supde que temos uma solugdo 6tima para 1. Os itens do i-ésimo
grupo de R cabem nos lugares dos itens do i+ 1-ésimo grupo dessa solucao.
Para o ultimo grupo de R temos que abrir no maximo k contéineres. |

Ideia 2: Descartando itens menores

Lema 3.2

Supde temos temos um empacotamento para itens de tamanho maior que sg
em B contéineres. Entao existe um empacotamento de todos itens com no
maximo

max{B, Z si/(S—so)+1}

ie[n]

contéineres.

128



3.8. Aproximando empacotamento unidimensional

Prova. Empacota os itens menores gulosamente no primeiro contéiner com
espago suficiente. Sem abrir um novo contéiner o limite é obviamente correto.
Caso contrério, supoe que precisamos B’ contéineres. B’—1 contéineres contém
itens de tamanho total mais que S — sg. A ocupagao total W deles tem que
ser menor que o tamanho total dos itens, logo

(B'=1)(S—s0) SW< ) s

ie[n]

Juntando as ideias

Teorema 3.10
Para € € (0,1] podemos encontrar um empacotamento usando no maximo

(14 €)OPT(I) 4+ 1 contéineres em tempo O(nw/EZ ).
Prova. O algoritmo tem dois passos:

1. Empacota todos itens de tamanho maior que so = [€/2S] usando arre-
dondamento.

2. Empacota os itens menores depois.

Seja I’ a instancia com os n’ < n itens maiores. No primeiro passo, formamos
)
grupos com Ln’ e? /4J itens. Isso resulta em no maximo
n’ < 2n’ 8
In‘eZ/4] ~ m'e2/4 €2

grupos. (A primeira desigualdade usa |x] > x/2 para x > 1. Podemos supor
que n'e?/4 > 1,ie. n’ > 4/e?. Caso contrario podemos empacotar os itens
em tempo constante usando a proposicao 3.6.)

Arredondando essa instancia de acordo com lema 3.1 podemos obter uma
solu¢do em tempo O(nm/ez) pela proposicao 3.6. Sabemos que OPT(I') >
n'[e/25]/S >n’e/2. Logo temos uma solugdo com no maximo

OPT(I') + |ne?/4] < OPT(I') +n'e?/4 < (1+¢€/2)OPT(I') < (1 + ¢/2)OPT(I)

contéineres.
O segundo passo, pelo lema 3.2, produz um empacotamento com no maximo

max{(1+e/z JOPT(I), }  si/(S— so) +1}

ie[n]
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contéineres, mas

2icm St 2iemSi _ OPT(I)
< < < .
S50 SS0_e/2) =1 ¢z = I+eOPT)

3.9. Aproximando problemas de sequénciamento

Problemas de sequénciamento recebem nomes da forma

x| By
com campos
Maquina o
1 Um processador
P Processadores paralelos
Q Processadores relacionados
R Processadores arbitrarios
Restrigoes
D; Prazo méximo (deadline)
di Prazo previsto (due dates)
1 Tempo de liberagdo (release time)
Pi=p Tempo uniforme p
prec Precedéncias
Fungéo objetivo v
Cmax Maior tempo de término (maximum completion time)
> .G Tempo de término total (total completion time)
L; Atraso (lateness) Ci — di
Ti Tardiness max{L;, 0}

Relagdo com empacotamento unidimensional:
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tempo ou tamanho

processadores ou contéineres

e Empacotamento unidimensional: Dado C,,.x minimiza o niimero de pro-
cessadores.

e P || Chax: Dado um ntmero de contéineres, minimiza o tamanho dos
contéineres.

SEQUENCIAMENTO EM PROCESSORES PARALELOS (P || Cpax)
Entrada O niimero m de processadores e n tarefas com tempo de execu-

¢do pi, 1 € [n].

Solucdo Um sequenciamento, definido por uma alocacio My U --- U
M. = [n] das tarefas as maquinas.

Objetivo Minimizar o makespan (tempo de término) Cpax = maxjem Cj,
com Cj = ZieM,» pi o tempo de término da maquina j.

Fato 3.4
O problema P || Cp.x é fortemente NP-completo.

Um limite inferior para C} .. = OPT ¢

LB = max{{rel%ﬁpi, Z pi/m}.

ien]

Uma classe de algoritmos gulosos para este problema sdo os algoritmos de
sequenciamento em lista (inglés: list scheduling). Eles processam as tarefas
em alguma ordem, e alocam a tarefa atual sempre a maquina de menor tempo
de término atual.

131



3. Algoritmos de aproximag¢ao

Proposigao 3.7
Sequenciamento em lista com ordem arbitraria permite uma 2—1/m-aproximacao
em tempo O(nlogn).

Prova. Seja C.x o resultado do sequenciamento em lista. Considera uma
maquina com tempo de término Cp.x. Seja j a Ultima tarefa alocada nessa
maquina e C o término da maquina antes de alocar tarefa j. Logo,

Coax =CH+p; < ) pi/m+p;< ) pi/m—pj/m+p;
ielj—1] ien]

<ILB+(1—1/mLB=(2—1/mLB< (2—1/m)Cl.,.

A primeira desigualdade é correta, porque alocando tarefa j a maquina tem
tempo de término minimo. Usando uma fila de prioridade a méquina com o
menor tempo de término pode ser encontrada em tempo O(logn). |

Observagao 3.4
Pela prova da proposi¢do 3.7 temos

LB < C!.. <2LB.

max
¢

O que podemos ganhar com algoritmos off-line? Uma abordagem é ordenar
as tarefas por tempo execugdo ndo-crescente e aplicar o algoritmo gulos. Essa
abordagem é chamada LPT (largest processing time).

Proposicao 3.8
LPT é uma 4/3 — m/3-aproximacio em tempo O(nlogmn).

Prova. Seja p; > p2 > --- > pn e supde que isso é o menor contra-exemplo
em que o algoritmo retorne Cpax > (4/3 —m/3)Ck .. Nao é possivel que a
alocacdo do item j < n resulta numa maquina com tempo de término Cpax,
porque pi,...,Ppj seria um contra-exemplo menor (mesmo Cpax, menor C . ).
Logo a alocagao de py define o resultado Cpax.

Caso pn < Ci../3 pela prova da proposicdo 3.7 temos Cpax < (4/3 —
m/3)C} ., uma contradicdo. Mas caso pn > C} .. /3 todas tarefas possuem
tempo de execugdo pelo menos C} .. /3 e no miximo duas podem ser execu-
tadas em cada maquina. Logo Cpa.x < 2/3C% outra contradigao. |

max?

3.9.1. Um esquema de aproximacdo para P || Cp.x

Pela observagéo 3.4 podemos reduzir o P || Cpnax para o empacotamento unidi-
mensional via uma busca bindria no intervalo [LB,2LB]. Pela proposi¢ao 3.5
isso é possivel em tempo O(logLB mn(2LB + 1)™).
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Com mais cuidado a observagdo permite um esquema de aproximagdo em
tempo polinomial assintético: similar com o esquema de aproximagao para
empacotamento unidimensional, vamos remover elementos menores e arre-
dondar a instancia.

Algoritmo 3.6 (Sequencia)
Entrada Uma instancia I de P || Cpax, um término méximo C e um
parametro de qualidade €.

1 Sequencia(l,C,e):=
remove as tarefas menores com p;j < eC, j€& [n]
arredonda cada pj € [eC(1+¢€)',eC(1+¢€)""') para algum i
para pj =eC(1+e¢)

4 resolve a instdncia arredondada com programacgéo
din&dmica (proposig8o 3.6)
5 empacota os itens menores gulosamente, usando novas

maquinas para manter o término (1+€)C

Lema 3.3
O algoritmo Sequencia gera um sequenciamento que termina em no maximo

(1 + €)C em tempo O(n? 1081 1.c 1/4). Ele nao usa mais méiquinas que o
minimo necessario para executar as tarefas com término C

Prova. Para cada intervalo valido temos eC(1 4+ €)' < C, logo o ntimero de
intervalos é no méximo k = [log;,.1/€]. O valor k também ¢é um limite
para o numero de valores ‘pj’ distintos e pela proposi¢do 3.6 o terceiro passo
resolve a instancia arredondada em tempo O(n?*). Essa solucdo com os itens
de tamanho original termina em no maximo (1 + €)C, porque pj/pj’ <l+e.
O nimero minimo de maquinas para executar as tarefas em tempo C é o valor
m := min-EU(C, (pj)jem)) do problema de empacotamento unidimensional
correspondente. Caso o tultimo passo do algoritmo ndo usa novas maquinas
ele precisa < m mdaquinas, porque a instancia arredondada foi resolvida exa-
tamente. Caso contrario, uma tarefa com tempo de execu¢ao menor que €C
nao cabe nenhuma maéaquina, e todas maquinas usadas tem tempo de término
mais que C. Logo o empacotamento étimo com término C tem que usar pelo
menos 0 mesmo nimero de maquinas. |

Proposicao 3.9

O resultado da busca bindria usando o algoritmo Sequencia Cp,.x = min{C €
[LB, 2LB] | Sequencia(I, C, €) < m} é no maximo C} ..
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Prova. Com Sequencia(l, C, e) < min-EU(C, (pi)iem]) temos

Cmax = min{C € [LB, 2LB] | Sequencia(l, C,e) < m}
< min{C € [LB, 2LB] | min-EU(C, (pi)ie[n]) <m}

max

Teorema 3.11
A busca binaria usando o algoritmo Sequencia para determinar determina

um sequenciamento em tempo O(n? [logy e 1/¢] log LB) de término méximo
(1+¢€)C;

max*

Prova. Pelo lema 3.3 e proposicao 3.9. |

3.10. Exercicios

Exercicio 3.1
Por que um subgrafo conexo de menor custo sempre é uma arvore?

Exercicio 3.2
Mostra que o nimero de vértices com grau impar num grafo sempre é par.

Exercicio 3.3

Um aluno propde a seguinte heuristica para o empacotamento unidimensional:
Ordene os itens em ordem crescente, coloca o item com peso méximo junto com
quantas itens de peso minimo que é possivel, e depois continua com o segundo
maior item, até todos itens foram colocados em bins. Temos o algoritmo

ordene itens em ordem crescente
m:=1; M:=n
while (m< M) do
abre novo contéiner, coloca vpm, M:=M —1
while (v, cabe e m< M) do
coloca v, no contéiner atual
m:=m-+1
end while
end while

Qual a qualidade desse algoritmo? E um algoritmo de aproximacao? Caso
sim, qual a taxa de aproximacao dele? Caso nao, por qué?
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Exercicio 3.4

Prof. Rapidez propoe o seguinte pré-processamento para o algoritmo SAT-R de
aproximagao para MAX-SAT (pégina 113): Caso a instincia contém clatisulas
com um unico literal, vamos escolher uma delas, definir uma atribuic¢éo parcial
que satisfazé-la, e eliminar a varidvel correspondente. Repetindo esse procedi-
mento, obtemos uma instancia cujas clatisulas tem 2 ou mais literais. Assim,
obtemos 1 > 2 na anélise do algoritmo, o podemos garantir que E[X] > 3n/4,
i.e. obtemos uma 4/3-aproximagao.

Esta andlise estd correta ou nao?

135






4. Algoritmos randomizados

Um algoritmo randomizado usa eventos aleatérios na sua execugdo. Mo-
delos computacionais adequadas sdo maquinas de Turing probabilisticas —
mais usadas na area de complexidade — ou maquinas RAM com um comando
random(8) que retorne um elemento aleatério do conjunto S.

Veja alguns exemplos de probabilidades:

Probabilidade morrer caindo da cama: 1/2x 10° (Roach e Pieper, 2007).
Probabilidade acertar 6 niimeros de 60 na mega-sena: 1/50063860.

Probabilidade que a meméria falha: em memoria moderna temos 1000
FIT/MBit, i.e. 6 x 10~ erros por segundo num meméria de 256 MB.!

Probabilidade que um meteorito destréi um computador em cada milis-
segundo: > 271%° (supondo que cada milénio a0 menos um meteorito
destr6i uma drea de 100 m?).

Portanto, um algoritmo que retorna uma resposta falsa com baixa probabi-
lidade é aceitdavel. Em retorno um algoritmo randomizado frequentemente

7

e

4.1.

mais simples;

mais eficiente: para alguns problemas, um algoritmo randomizado é o
mais eficiente conhecido;

mais robusto: algoritmos randomizados podem ser menos dependente
da distribuicdo das entradas.

a Unica alternativa: para alguns problemas, conhecemos sé algoritmos
randomizados.

Teoria de complexidade

Classes de complexidade

LFIT é uma abreviagdo de “failure-in-time” e é o ntimero de erros cada 107 segundos. Para
saber mais sobre erros em memoria veja (Terrazon, 2004).
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Definigao 4.1
Seja L algum alfabeto e R(«, f) a classe de linguagens L C X* tal que existe
um algoritmo de decis@o em tempo polinomial A que satisfaz

e x € L= Pr(A(x) =sim) > «.
e x ¢ L= Pr(A(x) =néo) > p.

(A probabilidade é sobre todas sequéncias de bits aleatérios r. Como o algo-
ritmo executa em tempo polinomial no tamanho da entrada [x|, o niimero de
bits aleatérios |r| é polinomial em [x| também.)

Com isso podemos definir

o a classe RP := R(1/2,1) (randomized polynomial), dos problemas que
possuem um algoritmo com erro unilateral (no lado do “sim”); a classe
co — RP = R(1,1/2) consiste dos problemas com erro no lado de “nao”;

o a classe ZPP := RP N co — RP (zero-error probabilistic polynomial) dos
problemas que possuem algoritmo randomizado sem erro;

e aclasse PP := Uee(O,]/Z] R(1/2+ €,1/2 + €) (probabilistic polynomial),
dos problemas com erro 1/2 4 € nos dois lados; e

o a classe BPP := R(2/3,2/3) (bounded-error probabilistic polynomial),
dos problemas com erro 1/3 nos dois lados.

Algoritmos que respondem corretamente somente com uma certa probabili-
dade também sdao chamados do tipo Monte Carlo, enquanto algoritmos que
usam randomizacao somente internamente, mas respondem sempre correta-
mente sao do tipo Las Vegas.

Exemplo 4.1 (Teste de identidade de polinomios)

Dado dois polinémios p(x) e q(x) de grau maximo d, como saber se p(x) =
q(x)? Caso temos os dois na forma canénica p(x) = ) ;<4 pix! ou na forma
fatorada p(x) = [ <icq(x —1i) isso é simples responder por comparacio
de coeficientes em tempo O(n). E caso contrario? Converter para a forma
canénica pode custar ©(d?) multiplicacdes. Uma abordagem randomizada
é vantajosa, se podemos avaliar o polindmio mais rdpido (por exemplo em

0(d)):

identico(p,q) :=
Seleciona um ntimero aleatério T no intervalo [1,100d].
Caso p(r) =q(r) retorne ~“sim'"'.
Caso p(r) #q(r) retorne ~“ndo'"'.
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4.1. Teoria de complexidade

Caso p(x) = q(x), o algoritmo responde “sim” com certeza. Caso contrério
a resposta pode ser errada, se p(r) = q(r) por acaso. Qual a probabilidade
disso? p(x) — q(x) é um polinébmio de grau d e possui no maximo d raizes.
Portanto, a probabilidade de encontrar um r tal que p(r) = q(r), caso p #Z q
¢ d/100d = 1/100. Isso demonstra que o teste de identidade pertence a classe
co — RP. O

Observacgao 4.1
E uma pergunta em aberto se o teste de identidade pertence a P. %

4.1.1. Amplificacao de probabilidades

Caso nao estamos satisfeitos com a probabilidade de 1/100 no exemplo acima,
podemos repetir o algoritmo k vezes, e responder “sim” somente se todas k
repeti¢des responderam “sim”. A probabilidade erradamente responder “néo”
para polinémios idénticos agora é (1/100)¥, i.e. ela diminui exponencialmente
com o numero de repetigoes.

Essa técnica é uma amplificagdo da probabilidade de obter a solucdo correta.
Ela pode ser aplicada para melhorar a qualidade de algoritmos em todas clas-
ses “Monte Carlo”. Com um numero constante de repeti¢cdes, obtemos uma
probabilidade baixa nas classes RP, co — RP e BPP. Isso nao se aplica a PP:
é possivel que € diminui exponencialmente com o tamanho da instancia. Um
exemplo de amplificagdo de probabilidade encontra-se na prova do teorema 4.6.

Teorema 4.1

R(a, 1) =R(B,1) para 0 < o, B < 1.

Prova. Sem perda de generalidade seja & < . Claramente R(3,1) C R(«, 1).
Supde que A é um algoritmo que testemunha L € R(x,1). Execute A no
maximo k vezes, respondendo “sim” caso A responde “sim” em alguma ite-
ragdo e “nao” caso contrario. Chama esse algoritmo A’. Caso x ¢ L temos
Pr(A’(x) = “ndo”) = 1. Caso x € L temos Pr(A’(x) = “sim”) > 1 — (1 — «)¥,
logo para k > In(1 —3)/In(1 — o), Pr(A’(x) = “sim”) > B. |

Corolario 4.1
RP = R(a, 1) para 0 < o < 1.

Teorema 4.2
R(o, &) = R(B, B) para 1/2 < «, .

Prova. Sem perda de generalidade seja o« < (. Claramente R(f3,3) C
R, ).
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Supde que A é um algoritmo que testemunha L € R(«, o). Executa A k vezes,
responde “sim” caso a maioria de respostas obtidas foi “sim”, e “nao” caso
contrario. Chama esse algoritmo A’. Para x € L temos

Pr(A’(x) = “sim”) = Pr(A(x) = “sim” > |k/2] + 1 vezes) > 1 — e~ 2k(x—1/2)?

eparak > In(p—1)/2(x—1/2)? temos Pr(A’(x) = “sim”) > B. Similarmente,
para x € L temos Pr(A’(x) = “nao”) > pB. Logo L € R(B, B). [ ]

Corolario 4.2

BPP = R(«a, ) para 1/2 < «.

Observacao 4.2

Os resultados acima sdo validos ainda caso o erro dimiui polinomialmente
com o tamanho da instancia, i.e. &, 3 > n~° no caso do teorema 4.1 e &, 3 >
1/24-17¢ no caso do teorema 4.2 para um constante ¢ (ver por exemplo Arora
e Barak (2009)). O
4.1.2. Relacdo entre as classes

Duas caracterizacoes alternativas de ZPP

Definicao 4.2
Um algoritmo A é honesto se

i) ele responde ou “sim”, ou “nao” ou “néo sei”,
ii) Pr(A(x) =nao sei) <1/2, e

iii) no caso ele responde, ele nao erra, i.e., para x tal que A(x) # “nao sei”
temos A(x) = “sim” &= x € L.

Uma linguagem ¢ honesta caso ela possui um algoritmo honesto. Com isso
também podemos falar da classe das linguagens honestas.

Teorema 4.3
ZPP ¢ a classe das linguagens honestas.

Lema 4.1
Caso L € ZPP existe um algoritmo um algoritmo honesto para L.

Prova. Para um L € ZPP existem dois algoritmos A; € RP e A, € co— RP.
Vamos construir um algoritmo
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if A7(x) = ""nfo'' e Az(x) = "ndo'' then
return "~ "ndo''

else if Aj(x) = ""ndo'' e A,(x)=""sim'' then
return °~ "ndo sei''

else if Aj(x) = ""sim'' e Aj(x) = " "n#o'' then
{ caso impossivel }

else if Aj(x)=""sim'' e A,(x) = ""sim'' then
return "~ “sim''

end if

O algoritmo responde corretamente “sim” e “nao”, porque um dos dois al-
goritmos ndo erra. Qual a probabilidade do segundo caso? Para x € L,
Pr(A;(x) = “nao” A Az(x) = “sim”) < 1/2 x 1 = 1/2. Similarmente, para
x €L, Pr(Aj(x) = “ndo” AN Az(x) = “sim”) < 1x1/2=1/2. |

Lema 4.2
Caso L possui um algoritmo honesto L € RP e L € co — RP.

Prova. Seja A um algoritmo honesto. Constréi outro algoritmo que sempre
responde “nao” caso A responde “néo sei”, e sendo responde igual. No caso de
co — RP analogamente constréi um algoritmos que responde “sim” nos casos
“nao sei” de A. ]

Definicao 4.3

Um algoritmo A é sem falha se ele sempre responde “sim” ou “nao” corre-
tamente em tempo polinomial esperado. Com isso podemos também falar de
linguagens sem falha e a classe das linguagens sem falha.

Teorema 4.4
ZPP ¢ a classe das linguagens sem falha.

Lema 4.3
Caso L € ZPP existe um algoritmo sem falha para L.

Prova. Sabemos que existe um algoritmo honesto para L. Repete o algo-
ritmo honesto até encontrar um “sim” ou “nao”. Como o algoritmo honesto
executa em tempo polinomial p(n), o tempo esperado desse algoritmo ainda
¢é polinomial:

D k2 %p(n) < 2p(n)
k>0

Lema 4.4
Caso L possui um algoritmo A sem falha, L € RP e L € co— RP.
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Prova. Caso A tem tempo esperado p(n) executa ele para um tempo 2p(n).
Caso o algoritmo responde, temos a resposta certa. Caso contrario, responde
“sim”. Pela desigualdade de Markov temos uma resposta com probabilidade
Pr(T > 2p(n)) < p(n)/2p(n) = 1/2. Isso mostra que existe um algoritmo
honesto para L, e pelo lema 4.2 L € RP. O argumento para L € co—RP é
similar. |

Mais relacoes

Teorema 4.5
RP C NP e co— RP C co— NP

Prova. Supde que temos um algoritmo em RP para algum problema L. Po-
demos, nao-deterministicamente, gerar todas sequéncias r de bits aleatorios e
responder “sim” caso alguma execucao encontra “sim”. O algoritmo é correto,
porque caso para um x ¢ L, ndo existe uma sequéncia aleatéria r tal que o
algoritmo responde “sim”. A prova do segundo caso é similar. |

Teorema 4.6
RP C BPP e co— RP C BPP.

Prova. Seja A um algoritmo para L € RP. Constr6i um algoritmo A’

if A(x)=""ndo'' e A(x)=""ndo'' then
return "~ "néo''

else
return "~ "sim''

end if

Casox € L, Pr(A’(x) = “nao”) = Pr(A(x) = “ndao” AA(x) = “nao”) = 1x1 =
1. Casox € L,

Pr(A’(x) = “sim”) =1 — Pr(A’(x) = “ndo”) = 1 — Pr(A(x) = “nao” A A(x) =

>1-1/2x1/2=3/4>2/3.

(Observe que para k repeticoes de A obtemos Pr(A’(x) = “sim”) > 1 —
1/2%, i.e., o erro diminui exponencialmente com o ntimero de repeticdes.) O
argumento para co — RP é similar. |

Relacdo com a classe NP e abundancia de testemunhas Lembramos que a
classe NP contém problemas que permitem uma verificacdo de uma solugao em
tempo polinomial. Nao-deterministicamente podemos “chutar” uma solugao
e verificd-la. Se o nimero de solugbes positivas de cada instdncia é mais que
a metade do nimero total de solugbes, o problema pertence a RP: podemos
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4.2. Selegao

PP =co— PP

e

NP co— NP
w7

BPP = co — BPP

Figura 4.1.: Relacoes entre classes de complexidade para algoritmos randomi-
zados.

gerar uma solucao aleatéria e testar se ela possui a caracteristica desejada.
Uma problema desse tipo possui uma abundancia de testemunhas. Isso de-
monstra a importancia de algoritmos randomizados. O teste de equivaléncia
de polinémios acima é um exemplo de abundancia de testemunhas.

4.2. Selecao

O algoritmo deterministico para selecionar o k-ésimo elemento de uma se-
quencia nao ordenada x1,...,xy discutido na se¢do A.1 (pagina 161) pode ser
simplificado usando randomizacdo: escolheremos um elemento pivé m = x4
aleatdrio. Com isso o algoritmo A.1 fica mais simples:

Algoritmo 4.1 (Selecao randomizada)
Entrada Niumeros x1,...,Xn, posicao k.

Saida O k-ésimo maior nimero.

1 S(k,{X1,...,Xn}) =
2 if n<1
3 calcula e retorne o k-ésimo elemento
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0~ O U

11
12
13
14
15

end if
m:=x; para um i€ [n] aleatédria
Li={xi|xi<m1<i<n}
Ri={xi|xi >m,1 <i<n}
1= +1
if i=k then
return m
else if i>k then
return S(k,L)
else
return S(k—1,R)
end if

Para determinar a complexidade podemos observar que com probabilidade
1/n temos |[L| =1 e |R| =n —1 e o caso pessimista é uma chamada recursiva
com max{i,n — i} elementos. Logo, com custo cn para particionar o conjunto
e os testes temos

T(n) < Z 1/nT(max{n —1i,i}) + cn

iel0,n]
_1/n< > Tm-9+ > T(i))+cn
iel0,[n/2]] ie[[n/2],m]

2/n Z Tn—1i)+cn

i€l0,|n/2]]

Separando o termo T(n) do lado direito obtemos

(1-2mTm<2/m Y Th—-i)+cn

ie[l,[n/2]]
2 . 2
&—T(n) < nZ< Z Tn—1)+cn /2).
iell,[n/2]]

Provaremos por indugdo que T(n) < c¢’n para uma constante c’. Para um
n < ng o problema pode ser claramente resolvido em tempo constante (por
exemplo em O(nplogmng) via ordenagdo). Logo, supde que T(i) < c¢’i para
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i < n. Demonstraremos que T(n) < ¢'n. Temos

T(n)§2< > T(ni)Jrcnz/Z)

n—2\.
iell,[n/2]]

2c’ : 2 /
< § _
_n—2< n 1+cn/2c)

iell,[n/2]]

= nzi/z((Zn_ In/2] —1) [n/2] /2 +en?/2c))

ecom 2n—|n/2] —1<3/2n

< ¢ (3/4n% +cn?/c’)
n—2

_ C,n(3/4—i— c/c’n
n—2

Para n > ng := 16 temos n/(n—2) < 8/7 e com um ¢’ > 8¢ temos

Tn) <c¢n(3/4+1/8)8/7 < c'n.

4.3. Corte minimo

CORTE MINIMO

Entrada Grafo ndo-direcionado G = (V,;A) com pesos ¢ : A — Z, nas
arestas.

Solucdo Uma particio V=S U (V\S).

Objetivo Minimizar o peso do corte Y (u,vjea Clu,v}-
ues,veVv\s

Solugoes deterministicas:

e Calcular a arvore de Gomory-Hu: a aresta de menor peso define o corte
minimo.

o Calcular o corte minimo (via fluxo méximo) entre um vértice fixo s € V
e todos outros vértices: o menor corte encontrado é o corte minimo.

Custo em ambos casos: O(n) aplicagoes de um algoritmo de fluxo méximo,
i.e. O(mn?) usando o algoritmo de Orlin.
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Solucdo randomizada para pesos unitarios No que segue supomos que 0s
pesos sdo unitarios, i.e. cq = 1 para a € A. Uma abordagem simples é
baseada na seguinte observacao: se escolhemos uma aresta que nao faz parte
de um corte minimo, e contraimo-la (i.e. identificamos os vértices adjacentes),
obtemos um grafo menor, que ainda contém o corte minimo. Se escolhemos
uma aresta randomicamente, a probabilidade de por acaso escolher uma aresta
de um corte minimo é baixa.

cnr (G) :=
while G possui mais que dois vértices
escolhe uma aresta {u,v} aleatoriamente
identifica u e v em G
end while
return o corte definido pelos dois vértices em G

Exemplo 4.2
Uma sequencia de contragoes (das arestas vermelhas).

O

Dizemos que uma aresta “sobrevive” uma contragao, caso ele nao foi contraido.

Lema 4.5
A probabilidade que os k arestas de um corte minimo sobrevivem n — n’
contragoes (de n para n’ vértices) é Q((n’/n)?).

Prova. Como o corte minimo é k, cada vértice possui grau pelo menos Kk,
e portanto o nimero de arestas apds da iteragdo 0 < i1 < n —n’ e maior
ou igual a k(n —1)/2 (com a convencao que a “iteracdo 0” produz o grafo
inicial). Supondo que as k arestas do corte minimo sobreviveram a iteragao 1i,
a probabilidade de nao sobreviver a proxima iteragido é pelo menos k/(k(n —
1)/2) = 2/(n—1). Logo, a probabilidade do corte sobreviver todas iteragdes é
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pelo menos
2 n—i-2
0<il_‘r‘1[—‘n"I - n—i - 0<i.1_n[—n’ ﬁ
Cmem-3) =) w1,
]

Teorema 4.7
Dado um corte minimo C de tamanho k, a probabilidade do algoritmo cmr
retornar C é Q(n=2).

Prova. Caso o grafo possui n vértices, o algoritmo termina em n—2 iteragdes:
podemos aplicar o lema acima com n’ = 2. |

Observagao 4.3

O que acontece se repetimos o algoritmo algumas vezes? Seja C; uma varidvel
que indica se o corte minimo foi encontrado na repetigdo i. Temos Pr(C; =
1) > 2n2 e portanto Pr(C; = 0) < 1 —2n~2. Para kn? repeticoes, vamos
encontrar C = )_ C; cortes minimos com probabilidade

Pr(C>1)=1-Pr(C=0)>1—(1—2n2)" >1_¢ 2k
Para k = logn obtemos Pr(C>1)>1—n"2. O

Logo, ao repetir o algoritmo n? logn vezes e retornar o menor corte encon-
trado, achamos o corte minimo com probabilidade razoavel. Se a implemen-
tacdo realiza uma contragdo em tempo O(n) o algoritmo possui complexidade
O(n?) e com as repeticdes em total O(n?logn).

Implementacao de contracdoes Para garantir a complexidade acima, uma
contracao tem que ser implementada em O(n). Isso é possivel tanto na repre-
sentacdo por uma matriz de adjacéncia, quanto na representagao pela listas
de adjacéncia. A contragdo de dois vértices adjacentes resulta em um novo
vértice, que é adjacente aos vizinhos dos dois. Na contragdo arestas de um
vértice com si mesmo sao removidas. Multiplas arestas entre dois vértices tem
que ser mantidas para garantir a corretude do algoritmo.

Um algoritmo melhor O problema principal com o algoritmo acima é que
nas tultimas iteragoes, a probabilidade de contrair uma aresta do corte minimo
é grande. Para resolver esse problema, executaremos o algoritmo duas vezes
para instdncias menores, para aumentar a probabilidade de nao contrair o

corte minimo. Define f(n) = [1 + n/ﬂ]
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cmr2(G) :=
if (G possui menos que 6 vértices)
determina o corte minimo C por exaustédo
return C
else
n’ :=f(n)
seja Gy o resultado de n—n’ contragdes em G
seja G2 o resultado de n—n’ contragdes em G
Ci:=cmr2(Gy)
Cy:=cmr2(Gy)
return o menor dos dois cortes C; e Cy
end if
Esse algoritmo possui complexidade de tempo O(n?logn) e encontra um corte
minimo com probabilidade Q(1/logn).

Lema 4.6
A probabilidade de um corte minimo sobreviver n — f(n) contragoes é pelo
menos 1/2.

Prova. Pelo lema 4.5 a probabilidade é pelo menos

f(n)(f(n) —1) _ (T+n/V2)n/v2)  V2+n o1
nn-1) ~ nn-—1) S 2n—=1)"2n 2’

|
Seja P(n) a probabilidade que um corte com k arestas sobrevive caso o grafo
possui 1 vértices. Temos

1/2P(f(n))
1/2P(f(n))
(1—1/2P(f(n)))?
1—(1—1/2P(f(n)))?
P(f(n)) — 1/4P(f(n))?

Pr(o corte sobrevive em Gq) >
>

)

Pr(o corte sobrevive em G»)
Pr(o corte nao sobrevive em G; nem Gy) <
) >

P(n) = Pr(o corte sobrevive em Gi ou G;

Para resolver essa recorréncia, define Q(k) = P(ﬁk) com base Q(0) =1 para
obter a recorréncia simplificada

QUk+1) =P(v2") = P([14v2"]) — 1/4P([1+ V2|2
~ P(VZY) = P(VZ")2/4 = Q(k) — Q(K)2/4
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e depois R(k) =4/Q(k) — 1 com base R(0) = 3 para obter

4 4 4
Rk+1)+1 R(k)+1 (RK)+1)

;& R(k+1)=R(k) +1+1/R(K).

R(k) satisfaz
k<R(k)<k+Hg_1+3

Prova. Por inducgdo. Para k = 1 temos 1 < R(1) =13/3 <1+ Hp+3 =5.
Caso a HI esté satisfeito, temos

R(k+1)=R(k)+1+1/R(K) > R(k) +1>k+1
Rk+1)=RK) +T1+1/R(K) <k+Hr 1 +3+T+1/k=(k+1)+Hy+3

]
Logo, R(k) = k + O(logk), e com isso Q(k) = O(1/k) e finalmente P(n) =
O(1/logn).
Para determinar a complexidade do algoritmo cmr2 observe que temos O(logn)
niveis de recursdo e cada contracio pode ser feita em tempo O(n?), portanto

T = 2T(f(n)) + O(n?).

Aplicando o teorema de Akra-Bazzi obtemos a equacéo caracteristica 2(1/v/2)P =
1 com solugdo p =2 e

cu

Th € O(n?(1 +J ?du)) =0(n?logn).
1

4.4. Teste de primalidade

Um problema importante na criptografia é encontrar niimeros primos grandes
(p-ex. RSA). Escolhendo um niimero n aleatério, qual a probabilidade de n
ser primo?

Teorema 4.8 (Hadamard (1896), Vallée Poussin (1896))
(Teorema dos nimeros primos.)
Para t(n) = [{p < n | p primo}| temos

. m(n)
lim =
n—oon/Inn

(Em particular 7t(n) = O(n/lnn).)
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Portanto, a probabilidade de um niimero aleatério no intervalo [2, n] ser primo
assintoticamente é somente 1/Inn. Entdo para encontrar um nimero primo,
temos que testar se n é primo mesmo. Observe que isso nao é igual a fatoracéo
de 1. De fato, temos testes randomizados (e deterministicos) em tempo poli-
nomial, enquanto ndo sabemos fatorar nesse tempo. Uma abordagem simples
é testar todos os divisores:

Primol(n) :=

for i=2,3,5,7,...,[yn]| do

if ijn return "~ N&o''
end for
return "~ ~Sim''

O tamanho da entrada n é t = logn bits, portanto o nimero de iteragdes
é O(y/n) = B(2'/2) e a complexidade Q(2'/2) (mesmo contando o teste de
divisdo com O(1)) desse algoritmo é exponencial. Para testar a primalidade
mais eficiente, usaremos uma caracteristica particular dos niimeros primos.

Teorema 4.9 (Fermat, Euler)
Para p primo e a > 0 temos

a? =a mod p.
Prova. Por inducéo sobre a. Base: evidente. Seja aP = a. Temos
p .
I i
@er =3 (T
0<i<p

epara0<i<p

& _plp—1---(p—it])
P4 i—1)-1
porque p é primo. Portanto (a+1)P =aP +1e

(a+1VP —(a+1)=ad?+1—(a+1)=aP —a=0.

(A ultima identidade é a hip6tese da indugéo.) |

Definicao 4.4
Para a,b € Z denotamos com (a,b) o maior divisor em comum (MDC) de a
e b. No caso (a,b) =1, a e b sdo nimeros coprimos.

Teorema 4.10 (Divisdo modulo p)
Caso p é primo e (b,p) =1

ab=cb modp=a=c modp.

(Em palavras: Numa identidade modulo p podemos dividir por nimeros co-
primos com p.)
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Prova.

ab=cd & Jkab+kp =cb
& Jdka+kp/b=c

Como a,c € Z, temos kp/b € Z e blk ou blp. Mas (b,p) = 1, entdao blk.
Definindo k' := k/b temos Ik’ a+k'p =¢, i.e. a =c. |
Logo, para p primo e (a,p) =1 (em particular se 1 < a < p)

a®'"=1 modp. (4.1)
Um teste melhor entédo é

Primo2(n) :=

seleciona a€ [l,n—1] aleatoriamente

if (a,n)#1 return ~"N&o''

if a®™'=1 return ~"Sim'"'

return "~ "Ndo''
Complexidade: Uma multiplicacdo e divisdo com logn digitos é possivel em
tempo O(logZ n). Portanto, o primeiro teste (o algoritmo de Euclides em logn
passos) pode ser feito em tempo O(log3 n) e o segundo teste (exponenciagao
modular) é possivel implementar com O(logn) multiplicagoes (exercicio!).
Corretude: O caso de uma resposta “Nao” é certo, porque n ndo pode ser
primo. Qual a probabilidade de falhar, i.e. do algoritmo responder “Sim”,
com n composto? O problema é que o algoritmo falha no caso de ndmeros
Carmichael.

Definicao 4.5

Um ntimero composto n que satisfaz a® ' =1 mod n é um nimero pseudo-
primo com base a. Um nidmero Carmichael é um nimero pseudo-primo para
qualquer base a com (a,n) =1.

Os primeiros nimeros Carmichael sdo 561 = 3 x 11 x 17, 1105 e 1729 (veja
OEIS A002997). Existe um numero infinito deles:

Teorema 4.11 (Alford, Granville e C. Pomerance (1994))
Seja C(n) o nimero de nimeros Carmichael até n. Assintoticamente temos

C(n) >n?/".

Exemplo 4.3
C(n) até 10'° (OEIS A055553):

n 1 23 4 5 6 7 8 9 10
c(1om) 0 0 1 7 16 43 105 255 646 1547 - O
[(0™M)2/7] 2 4 8 14 27 52 100 194 373 720
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Caso um niimero n néo é primo, nem nimero de Carmichael, mais que n/2 dos
a € [l,n—1] com (a,n) =1 nao satisfazem (4.1) ou seja, com probabilidade
> 1/2 acharemos um testemunha que n é composto. O problema é que no
caso de nimeros Carmichael ndo temos garantia.

Teorema 4.12 (Raiz modular)
Para p primo temos

x*=1 modp=x=41 mod p.

O teste de Miller-Rabin usa essa caracteristica para melhorar o teste acima.
t 7 n—1 w2t —
Podemos escrever n — 1 = 2*u para um u impar. Temos a =(a“)* =1.

Portanto, se a™ ! =1,

i

Ou a*=1 mod p ou existe um menor i € [0,t] tal que (a*)? =1

Caso p é primo, W = ((1“)2171 = —1 pelo teorema (4.12) e a minimali-
dade de i (que exclui o caso = 1). Por isso:

Definicao 4.6
Um ntimero n é um pseudo-primo forte com base a caso

Ou a* =1 mod p ou existe um menor i € [0,t — 1] tal que (au)2i =-1
(4.2)

Primo3(n) :=
seleciona a€[l,n—1] aleatoriamente
if (a,n)# 1 return ~“N&o'!'
seja n—1=2%

if a*=1 return "~ Sim'"'
if (a%)? =—-1 para um i€[0,t—1] return "~ Sim"''
return ~"N&o''

Teorema 4.13 (Monier (1980) e Rabin (1980))
Caso n e composto e impar, mais que 3/4 dos a € [1,n— 1] com (a,n) =1
nao satisfazem o critério (4.2) acima.

Portanto com k testes, a probabilidade de falhar Pr(Sim | n composto)
(1/4)% = 2-2%_ De fato a probabilidade é menor:

IN

Teorema 4.14 (Damgard, Landrock e Carl Pomerance, 1993)
A probabilidade de um tunico teste falhar para um ntmero com k bits e
k242_\/E-

IN
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Exemplo 4.4
Para n € [2477,2590 _1] a probabilidade de nio detectar um n composto com
um unico teste é menor que

4992 x 42-VA99 2722
O

Teste deterministico O algoritmo pode ser convertido em um algoritmo de-
terministico, testando pelo menos 1/4 dos a com (a,n) = 1. De fato, para o
menor testemunho w(n) de um nimero n ser composto temos

Se 0 HGR é verdade: w(n) < 2log”n (4.3)

com HGR a hipétese generalizada de Riemann (uma conjetura aberta). Su-
pondo HGR, obtemos um algoritmo deterministico com complexidade O (log5 n.
Em 2002, Agrawal, Kayal e Saxena (2004) descobriram um algoritmo deter-
ministico (sem a necessidade da HGR) em tempo O(log12 n) que depois foi
melhorado para O(log6 n).

Para testar: http://www.jjam.de/Java/Applets/Primzahlen/Miller_Rabin.
html.

4.5. Exercicios

Exercicio 4.1
Encontre um primo p e um valor b tal que a identidade do teorema 4.10 nao
é correta.

Exercicio 4.2
Encontre um niimero p ndo primo tal que a identidade do teorema 4.12 nao é
correta.
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5. Complexidade e algoritmos parametrizados

A complexidade de um problema geralmente é resultado de diversos elementos.
Um algoritmo parametrizado separa explicitamente os elementos que tornam
um problema dificil, dos que sdo simples de tratar. A andlise da complezidade
parametrizada quantifica essas partes separadamente. Por isso, a complexi-
dade parametrizada é chamada uma “complexidade de duas dimensoes”.

Exemplo 5.1

O problema de satisfatibilidade (SAT) é NP-completo, i.e. ndo conhecemos um
algoritmo cuja complexidade cresce somente polinomialmente com o tamanho
da entrada. Porém, a complexidade deste problema cresce principalmente com
o nimero de variaveis, e ndo com o tamanho da entrada: com k variaveis e en-
trada de tamanho n solucéo trivial resolve o problema em tempo O(2*n). Em
outras palavras, para pardmetro k fixo, a complexidade ¢é linear no tamanho
da entrada. O

Definigao 5.1

Um problema que possui um pardmetro k € N (que depende da instancia) e
permite um algoritmo de complexidade f(k)[x|°(") para entrada x e com f uma
funcao arbitraria, se chama tratdvel por pardmetro fixo (ingl. fixed-parameter
tractable, fpt). A classe de complexidade correspondente é FPT.

Um problema tratavel por pardmetro fixo se torna tratavel na pratica, se o
nosso interesse sao instancias com parametro pequeno. E importante observar
que um problema permite diferentes parametrizagées. O objetivo de projeto
de algoritmos parametrizados consiste em descobrir para quais pardmetros
que sao pequenos na pratica o problema possui um algoritmo parametrizado.
Neste sentido, o algoritmo parametrizado para SAT néo é interessante, porque
o nimero de varidveis na pratica é grande.

A seguir consideramos o problema NP-complete de cobertura de vértices. Uma
versao parametrizada é

k-COBERTURA DE VERTICES
Instancia Um grafo nido-direcionado G = (V,; A) e um ntimero k'.

Solucdo Uma cobertura C, i.e. um conjunto C C V tal que Va € A :
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ancC#0.
Parametro O tamanho k da cobertura.

Objetivo Minimizar |C|.

Abordagem com forga bruta:

mvc (G = (VA)) :=

if A=0 return ()

seleciona aresta {u,v}€ A ndo coberta

Cr:={u}Umve(G \ {u})

Cy :={v}Umve(G\{v})

return a menor entre as coberturas C; e Cy
Supondo que a selecdo de uma aresta e a reducao dos grafos é possivel em
0O(n), a complexidade deste abordagem é dado pela recorréncia

Th = 2Tn71 + O(Tl)

com soluc¢ao T, = O(2™). Para achar uma solugdo com no maximo k vértices,
podemos podar a arvore de busca definido pelo algoritmo mvc na profundidade
k. Isso resulta em

Teorema 5.1
O problema k-cobertura de vértices é tratavel por pardmetro fixo em O(2%n).

Prova. Até o nivel k vamos visitar O(2%) vértices na arvore de busca, cada
um com complexidade O(n). |

O projeto de algoritmos parametrizados frequentemente consiste em

e achar uma parametrizacdo tal que o parte super-polinomial da com-
plexidade é limitada para um parte do problema que depende de um
parametro k que é pequeno na pratica;

e encontrar o melhor algoritmo possivel para o parte super-polinomial.

Exemplo 5.2
Considere o algoritmo direto (via uma arvore de busca, ou backtracking) para
SAT.

BT—SAT(@p,x) :=
if « & atribuigio completa: return @(«)

ntroduzimos k na entrada, porque k mede uma caracteristica da solucdo. Para evitar
complexidades artificias, entende-se que k nestes casos é codificado em undrio.
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Figura 5.1.: Subproblemas geradas pela decisdo da inclusdo de um vértice v.
Vermelho: vértices selecionadas para a cobertura.

if alguma clausula ndo é satisfeita: return false

if BT—SAT(@,xl) return true

return BT-SAT (@, x0)
(0 e ol denotam extensdes de uma atribuicdo parcial das varidveis.)
Aplicado a 3SAT, das 8 atribuig¢oes por clausula podemos excluir uma que
néo a satisfaz. Portanto a complexidade de BT-SAT é O(7™/3) = O(v/7 n) =
0(1.9129™). (Exagerando — mas nao mentindo — podemos dizer que isso é
uma aceleragdo exponencial sobre a abordagem trivial que testa todas 2™
atribuigdes.)
O melhor algoritmo para 3-SAT possui complexidade O(1.324™). %

Um algoritmo melhor para cobertura de vértices Consequéncia: O projeto
cuidadoso de uma arvore de busca pode melhorar a complexidade. Vamos
aplicar isso para o problema de cobertura de vértices.

Um melhor algoritmo para a k-cobertura de vértices pode ser obtido pelas
seguintes observagoes

e Caso o grau maximo A de G é 2, o problema pode ser resolvido em
tempo O(n), porque G é uma cole¢io de caminhos simples e ciclos.

o (Caso contrario, temos pelo menos um vértice v de grau 6, > 3. Ou esse

vértice faz parte da cobertura minima, ou todos seus vizinhos N(v) (veja
figura 5.1).
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mvc'(G) :=
if A(G) <2 then
determina a cobertura minima C em tempo O(n)
return C
end if
seleciona um vértice v com grau 0, >3
Ci ={v}Umvc’(G\ {v})
Cz;:=NHWw)Umvc'(G\N(v))
return a menor cobertura entre C; e C;
O algoritmo resolve o problema de cobertura de vértices minima de forma
exata. Se podamos a arvore de busca apds selecionar k vértices obtemos um
algoritmo parametrizado para k-cobertura de vértices. O ntimero de vértices
nessa arvore é

Vi<Vio1+Vig+1.
Lema 5.1

A solucdo dessa recorréncia é Vi = 0(1.38031).

Teorema 5.2
O problema k-cobertura de vértices é tratdvel por pardmetro fixo em O(1.3803%n).

Prova. Consideragoes acima com trabalho limitado por O(n) por vértice na
arvore de busca. |
Prova. (Do lema acima.) Com o ansatz V; < c¢' obtemos uma prova por
inducao se para um i > ig
Vi<Vig4+Vig+i<c T4t p1<cd

e et = -1 >1

= ct—c3-1>0
(O dltimo passo ¢ justificado porque para ¢ > 1 e i suficientemente grande o

produto vai ser > 1.) ¢* —c3 — 1 possui uma tinica raiz positiva ~ 1.32028 e
para ¢ > 1.3803 temos ¢ —c? —1>0. |
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A. Material auxiliar

Definicoes

Definicao A.1
Uma relagao binaria R é polinomialmente limitada se

Jp € poly : V(x,y) € R: |yl < p(lx])

Definicao A.2 (Pisos e tetos)
Para x € R o piso [x] o maior n mero inteiro menor que x e o teto [x] o
menor n mero inteiro maior que x. Formalmente

x| =max{y € Z |y <x}
[x] =min{y € Z |y > x}

O parte fracion rio de x {x} =x — |x].
Observe que o parte fracion rio sempre positivo, por exemplo {—0.3} = 0.7.

Proposicao A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem

x < [x] <x+1 (A1)
x—1<[x] <x (A.2)
Defini¢ao A.3
Uma fun o f conveza se ela satisfaz a desigualdade de Jensen
f(Ox+ (1 —0)y) < Of(x) + (1 —O)f(y). (A.3)

Similarmente uma fun o f concava caso —f convexo, i.e., ela satisfaz

f(Ox + (1 —0)y) > Of(x) + (1 —0)f(y). (A4)
Exemplo A.1
Exemplos de fun es convexas s o x2%, 1/x. Exemplos de fun es concavas s o
log x, v/x. O
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Proposicao A.2
Para )_ ©; =1 e pontos xi, i € [n] uma fun o convexa satisfaz

f() Omi) < ) Oif(xi) (A.5)
ien]

ien]

ien]

e uma fun o concava
f() Oxi)> ) Oif(x) (A.6)
i€n] ie[n]

Prova. Provaremos somente o caso convexo por indu o, o caso concavo sendo
similar. Paran = 1 a desigualdade trivial, paran = 2 ela v lida por defini o.
Para n > 2 define © = 2 ici2,n ©1 tal que © + © = 1. Com isso temos

f( Z Oixi) = f(O1x + Z ©ixi) = f(@1x1 + Oy)

ie[n] ige[2,m]
onde y = Zje[z,n](ej/é)xj7 logo

f( ) Owxi) <Orif(xi) + Of(y)

ien]

=@1f(X1) +@f( Z (8)-/@)76)')

jel2,n]
<OIf(x1)+0 ) (6;/0)f(x)) =) O
jelzm] i€[n]

A.1l. Algoritmos

Solucdes do problema da mochila com Programacao Dinamica

Mochila maxima (Knapsack)

e Seja S*(k,v) a solu¢do de tamanho menor entre todas solugbes que
— usam somente itens S C [1,Kk] e

— tem valor exatamente v.
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M(k,n)

Entrada |X1 X2 X3 X4 X5| X6 | | an

Medianos I:‘ I:‘ I:‘
Mediano

Particao Xi <m | m| X{ > m |
i
Recursao k<i: k=1: k>1i:
M(k,i—1) Encontrado M(k —i,n—1)

Figura A.1.: Funcionamento do algoritmo recursivo para selecéo.

e Temos

(1,v) = undef para v # vy

Mochila maxima (Knapsack)

o S$* obedece a recorréncia

N . S*(k—1,v—wvi)JU{k} sevk <veS*(k—1,v—vy) definido
S*(k,v) = min
tamanho s*(kf ],\))

¢ Menor tamanho entre os dois

Y o o ttt< Yt

1ES* (k—1,v—vy) 1€S* (k—1,v)

e Melhor valor: Escolhe $*(n,v) com o valor méximo de v definido.
o Tempo e espaco: O(m ) ; vi).
Selecao Dado um conjunto de ntimeros, o problema da sele¢do consiste em

encontrar o k-ésimo maior elemento. Com ordenagdo o problema possui so-
lugdo em tempo O(nlogn). Mas existe um outro algoritmo mais eficiente.
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Podemos determinar o mediano de grupos de cinco elementos, e depois o re-
cursivamente o mediano m desses medianos. Com isso, o algoritmo particiona
o conjunto de niimeros em um conjunto L de niimeros menores que m e um
conjunto R de nimeros maiores que m. O mediano m é na posicao i:=|L|+1
desta sequéncia. Logo, caso i = k m é o k-ésimo elemento. Caso i > k te-
mos que procurar o k-ésimo elemento em L, caso i < k temos que procurar o
k — i-ésimo elemento em R (ver figura A.1).

O algoritmo é eficiente, porque a selecdo do elemento particionador m garante
que o subproblema resolvido na segunda recursao é no maximo um fator 7/10
do problema original. Mais preciso, o nimero de medianos é maior que n/5,
logo o nimero de medianos antes de m é maior que n/10 — 1, o ntimero de
elementos antes de m é maior que 3n/10—3 e com isso o niimero de elementos
depois de m é menor que 7n/10+ 3. Por um argumento similar, o nimero de
elementos antes de m é também menor que 7n/10 + 3. Portanto temos um
custo no caso pessimista de

Tn) = (1) sen <5
N T([n/5]) + ©(7n/10+3) + O(n) caso contrario

ecom 5P+ (7/10)P =1 temos p = log, 7 ~ 0.84 ¢

oo (1< v )

=OMmP(1+(n'""P/(1—p)—1/(1—p)))
=0(cinP +con) = O(n).

Algoritmo A.1 (Selecao)
Entrada Numeros x1,...,Xn, posi¢ao k.

Saida O k-ésimo maior nimero.

1 S(k,{x1,...,xn}) =
2 if n<5

calcula e retorne o k-ésimo elemento
end if
mi = median(x5i+1)---)Xmin(51+5,n)) para 0<i< [n/5].

|_|—TL/5-| /2-|)m1a--->m|'n/5'|71)
L { [xi <m,1<1i<n}
Ri={xi|xi>m,1<1i<n}
=L +1

© 00 ~J O U W
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10
11
12
13
14
15
16

if i=k then
return m
else if i>k then
return S(k,L)
else
return S(k—1,R)
end if

A.1. Algoritmos
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B. Técnicas para a analise de algoritmos

Analise de recorréncias

Teorema B.1 (Akra-Bazzi e Leighton)
Dado a recorréncia

T(x) = o(1) se x < xp
B Zlgigk a;T(bix +hi(x)) + g(x) caso contrario

com constantes a; > 0, 0 < b; < 1 e fungodes g, h, tal que
()l € O(x%);  [ha(x)] < x/log' "€ x

para um € > 0 e a constante x¢ e suficientemente grande

T(x) €® (Xp (1 + J.X Esﬂ du))
1

com p tal que } ;i aib? =1.

Teorema B.2 (Graham, Knuth e Patashnik (1988))
Dado a recorréncia

T(n) = o(1) n < maxi<i<k di
2 i xiT(n—d;i) caso contrario

seja o a raiz com a maior valor absoluto com multiplicidade 1 do polinomio

caracteristico

D

com d = maxy di. Entao

165






Bibliografia

Manindra Agrawal, Neeraj Kayal e Nitin Saxena. “PRIMES is in P”.
Em: Annals of Mathematics 160.2 (2004), pp. 781-793.

W. R. Alford, A. Granville e C. Pomerance. “There are infinitely many
Carmichael numbers”. Em: Annals Math. 140 (1994).

Algorithm Engineering. http://www.algorithm-engineering.de. Deutsche
Forschungsgemeinschaft.

H. Alt et al. “Computing a maximum cardinality matching in a bipartite
graph in time O(n'->y/mlogn)”. Em: Information Processing Letters 37
(1991), pp. 237-240.

June Andrews e J. A. Sethian. “Fast marching methods for the continu-
ous traveling salesman problem”. Em: Proc. Natl. Acad. Sci. USA 104.4
(2007). DOI: 10.1073/pnas.0609910104.

Sanjeev Arora e Boaz Barak. Computational Complexity: A Modern Ap-
proach. Cambridge University Press, 2009.

Brenda S. Baker. “A new proof for the first fit decreasing bin packing
algorithm”. Em: J. Alg. 6 (1985), pp. 49-70. pDo1: 10 . 1016 /0196 -
6774(85)90018-5.

Claude Berge. “Two theorems in graph theory”. Em: Proc. National
Acad. Science 43 (1957), pp. 842-844.

John R. Black Jr. e Charles U. Martel. Designing Fast Graph Data
Structures: An Ezperimental Approach. Rel. téc. Department of Com-
puter Science, University of California, Davis, 1998.

G. S. Brodal, R. Fagerberg e R. Jacob. Cache Oblivious Search Trees
via Binary Trees of Small Height. Rel. téc. RS-01-36. BRICS, 2001.

Andrei Broder e Michael Mitzenmacher. “Network applications of Bloom
filter: A survey”. Em: Internet Mathematics 1.4 (2003), pp. 485-509.

Bernhard Chazelle. “A Minimum Spanning Tree Algorithm with Inverse-
Ackermann Type Complexity”. Em: Journal ACM 47 (2000), pp. 1028—
1047.

Thomas H. Cormen et al. Introduction to Algorithms. 3rd. The MIT
Press, 2009.

167


https://doi.org/10.1073/pnas.0609910104
https://doi.org/10.1016/0196-6774(85)90018-5
https://doi.org/10.1016/0196-6774(85)90018-5

Bibliografia

[14]

[15]

168

Ivan Damgard, Peter Landrock e Carl Pomerance. “Average case error
estimates for the strong probable prime test”. Em: Mathematics of com-
putation 61.203 (1993), pp. 177-194.

Brian C. Dean, Michel X. Goemans e Nicole Immorlica. “Finite ter-
mination of "augmenting path”algorithms in the presence of irrational
problem data” Em: ESA’06: Proceedings of the 14th conference on An-
nual European Symposium. Zurich, Switzerland: Springer-Verlag, 2006,
pp. 268-279. DOI: http://dx.doi.org/10.1007/11841036_26.

R. Dementiev et al. “Engineering a Sorted List Data Structure for 32 Bit
Keys”. Em: Workshop on Algorithm Engineering € Experiments. 2004,
pp. 142-151.

Ran Duan, Seth Pettie e Hsin-Hao Su. “Scaling algorithms for approxi-
mate and exact maximum weight matching”. Em: CoRR abs/1112.0790
(2011).

J. Edmonds. “Paths, Trees, and Flowers”. Em: Canad. J. Math 17 (1965),
pp- 449-467.

J. Edmonds e R. Karp. “Theoretical improvements in algorithmic ef-
ficiency for network flow problems”. Em: JACM 19.2 (1972), pp. 248—
264.

Jend Egervary. “Matrixok kombinatorius tulajdonsigair6l (On combi-
natorial properties of matrices)”. Em: Matematikai és Fizikai Lapok 38
(1931), pp. 16-28.

T. Feder e R. Motwani. “Clique partitions, graph compression and speeding-
up algorithms”. Em: Proceedings of the Twenty Third Annual ACM
Symposium on Theory of Computing (23rd STOC). 1991, pp. 123-133.

T. Feder e R. Motwani. “Clique partitions, graph compression and speeding-
up algorithms”. Em: Journal of Computer and System Sciences 51 (1995),
pp. 261-272.

L. R. Ford e D. R. Fulkerson. “Maximal flow through a network”. Em:
Canadian Journal of Mathematics 8 (1956), pp. 399-404.

C. Fremuth-Paeger e D. Jungnickel. “Balanced network flows VIII: a re-
vised theory of phase-ordered algorithms and the O(y/nmlog(n?/m)/logn
bound for the nonbipartite cardinality matching problem”. Em: Networks
41 (2003), pp. 137-142.

Martin Fiirer e Balaji Raghavachari. “ Approximating the minimu-degree
steiner tree to within one of optimal”. Em: Journal of Algorithms (1994).


https://doi.org/http://dx.doi.org/10.1007/11841036_26

[39]

H. N. Gabow. “Data structures for weighted matching and nearest com-
mon ancestors with linking”. Em: Proc. of the 1st Annual ACM-SIAM
Symposium on Discrete Algorithms (1990), pp. 434-443.

Ashish Goel, Michael Kapralov e Sanjeev Khanna. “Perfect Matchings in
O(nlogn) Time in Regular Bipartite Graphs”. Em: STOC 2010. 2010.

A. V. Goldberg e A. V. Karzanov. “Maximum skew-symmetric flows and
matchings”. Em: Mathematical Programming A 100 (2004), pp. 537-568.

Olivier Goldschmidt e Dorit S. Hochbaum. “Polynomial Algorithm for
the k-Cut Problem”. Em: Proc. 29th FOCS. 1988, pp. 444-451.

Ronald Lewis Graham, Donald Ervin Knuth e Oren Patashnik. Concrete
Mathematics: a foundation for computer science. Addison-Wesley, 1988.

J. Hadamard. “Sur la distribution des zéros de la fonction zeta(s) et ses
conséquences arithmétiques”. Em: Bull. Soc. math. France 24 (1896),
pp. 199-220.

Bernhard Haeupler, Siddharta Sen e Robert E. Tarjan. “Heaps simpli-
fied”. Em: (Preprint) (2009). arXiv:0903.0116.

Carl Hierholzer. “Ueber die Moglichkeit, einen Linienzug ohne Wie-
derholung und ohne Unterbrechung zu umfahren”. Em: Mathematische
Annalen 6 (1873), pp. 30-32. DOL: 10.1007/bf01442866.

J. E. Hopcroft e R. Karp. “An n®/2 algorithm for maximum matching
in bipartite graphs”. Em: SIAM J. Comput. 2 (1973), pp. 225-231.

David S. Johnson. “Near-optimal bin packing algorithms”. Tese de dou-
toramento. Massachusetts Institute of Technology. Dept. of Mathema-
tics, 1973. URL: http://hdl.handle.net/1721.1/57819.

David S. Johnson e Michael R. Garey. “A 71/60 theorem for bin pac-
king”. Em: J. Complez. 1.1 (1985), pp. 65-106. DOI: 10.1016/0885~
064X(85)90022-6.

Michael J. Jones e James M. Rehg. Statistical Color Models with Ap-
plication to Skin Detection. Rel. téc. CRL 98/11. Cambridge Research
Laboratory, 1998.

Haim Kaplan e Uri Zwick. “A simpler implementation and analysis of
Chazelle’s soft heaps”. Em: SODA ’09: Proceedings of the Nineteenth
Annual ACM -SIAM Symposium on Discrete Algorithms. New York,
New York: Society for Industrial e Applied Mathematics, 2009, pp. 477—
485.

H. W. Kuhn. “The Hungarian Method for the assignment problem”. Em:
Naval Rejsearch Logistic Quarterly 2 (1955), pp. 83-97.

169


https://doi.org/10.1007/bf01442866
http://hdl.handle.net/1721.1/57819
https://doi.org/10.1016/0885-064X(85)90022-6
https://doi.org/10.1016/0885-064X(85)90022-6

Bibliografia

[40]

170

Jerry Li e John Peebles. “Replacing Mark Bits with Randomness in
Fibonacci Heaps”. Em: Int. Coloq. Automata, Languages, and Progr.
Ed. por Magnts Halldérsson et al. Vol. 9134. LNCS. 2015, pp. 886—-897.

L. Monier. “Evaluation and comparison of two efficient probabilistic pri-
mality testing algorithms”. Em: Theoret. Comp. Sci. 12 (1980), pp. 97—
108.

J. Munkres. “Algorithms for the assignment and transporation pro-
blems”. Em: J. Soc. Indust. Appl. Math 5.1 (1957), pp. 32-38.

K. Noshita. “A theorem on the expected complexity of Dijkstra’s shor-
test path algorithm”. Em: Journal of Algorithms 6 (1985), pp. 400-408.

Joon-Sang Park, Michael Penner e Viktor K. Prasanna. “Optimizing
Graph Algorithms for Improved Cache Performance”. Em: IEEE Trans.
Par. Distr. Syst. 15.9 (2004), pp. 769-782.

Michael O. Rabin. “Probabilistic algorithm for primality testing”. Em:
J. Number Theory 12 (1980), pp. 128-138.

Emma Roach e Vivien Pieper. “Die Welt in Zahlen”. Em: Brand eins 3
(2007).

J.R. Sack e J. Urrutia, eds. Handbook of computational geometry. Else-
vier, 2000.

Alexander Schrijver. Combinatorial optimization. Polyhedra and effici-
ency. Vol. A. Springer, 2003.

J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer Vi-
ston and Materials Science. Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press, 1999.

Terrazon. Soft Errors in Electronic Memory — A White Paper. Rel. téc.
Terrazon Semiconductor, 2004.

C.-J. de la Vallée Poussin. “Recherches analytiques la théorie des nom-
bres premiers”. Em: Ann. Soc. scient. Bruzelles 20 (1896), pp. 183-256.

Norman Zadeh. “Theoretical Efficiency of the Edmonds-Karp Algorithm
for Computing Maximal Flows”. Em: J. ACM 19.1 (1972), pp. 184-192.

Uri Zwick. “The smallest networks on which the Ford-Fulkerson ma-
ximum flow procedure may fail to terminate”. Em: Theoretical Com-
puter Science 148.1 (1995), pp. 165-170. DOI: DOI : 10. 1016 /0304 -
3975(95)00022-0.


https://doi.org/DOI: 10.1016/0304-3975(95)00022-O
https://doi.org/DOI: 10.1016/0304-3975(95)00022-O

Indice

P || Cmax, 131
APX, 107
NPO, 106

PO, 106

admissivel, 50
Akra, Louay, 165
Akra-Bazzi
método de, 165
algoritmo
e-aproximativo, 107
r-aproximativo, 107
de aproximacao, 105
guloso, 107
parametrizado, 155
primal-dual, 114
randomizado, 137
algoritmo A*, 48
aproximacao
absoluta, 107
relativa, 107

arredondamento randomizado, 114

Baker,Brenda S., 128
Bazzi, Mohamad, 165
bin packing

empacotamento unidimensional,

124

Bloom, Burton Howard, 101

busca informada, 48

caminho
alternante, 80
Euleriano, 6

mais curto, 8, 53
algoritmo de Dijkstra, 8, 53
caminho mais gordo
algoritmo de, 61-62
circulagao, 54
cobertura de vértices, 108, 155
aproximacao, 108
complexidade
amortizada, 16
parametrizada, 155
consistente, 50
corte
em cascatas, 20
cuco hashing, 99

desigualdade

de Jensen, 159
desigualdade triangular, 117
dicionéario, 93
Dijkstra

algoritmo de, 8, 48, 53
Dijkstra, Edsger Wybe, 8

Edmonds, Jack R., 59
Edmonds-Karp

algoritmo de, 59-61
empacotamento unidimensional, 124
emparelhamento, 75

de peso maximo, 75

méaximo, 75

perfeito, 75

de peso minimo, 75

enderecamento aberto, 97

171



Indice

equacgao Eikonal, 47
excesso, 62

fator de ocupacao, 94
fecho métrico, 117
fila de prioridade, 8-53
com lista ordenada, 9
com vetor, 9
filtro de Bloom, 101
fluxo, 54
s—t maximo, 55
com fontes e destinos multi-
plos, 66
de menor custo, 74
formulacao linear, 55
Ford, Lester Randolph, 55
Ford-Fulkerson
algoritmo de, 55-59
forward star, 5
Fulkerson, Delbert Ray, 55
funcdo de otimizacgao, 105
funcdo hash, 93
com divisao, 95
com multiplicagao, 95
universal, 95, 96
fung¢do objetivo, 105
fun o
concava, 159
convexa, 159

grafo
Euleriano, 6
grafo residual, 57

hashing
com enderecamento aberto, 97
com listas encadeadas, 93
cuco, 99
perfeito, 93, 96
universal, 95

heap, 8-53

172

binomial, 15, 28, 53
custo armotizado, 19
binario, 12, 53
implementacao, 15
Fibonacci, 20
oco, 32
rank-pairing, 24, 30
Hierholzer
algoritmo de, 7
Hierholzer,Carl, 7

Jensen
desigualdade de, 159
Johnson, David Stifler, 128

Karp, Richard Manning, 59
Knapsack, 110

método de divisao, 95
método de multiplicagao, 95

ordem
van Emde Boas, 39

permutacao, 97
piso, 159
Prim
algoritmo de, 8
Prim,Robert Clay, 8
problema
da mochila, 160
de avaliacao, 106
de construcao, 106
de decisao, 106
de otimizacao, 105
problema da mochila, 110, 160
pré-fluxo, 62

relacao
polinomialmente limitada, 106

SAT, 155



Indice

satisfatibilidade

de férmulas booleanas, 155
semi-arvore, 25
sequenciamento

em processores paralelos, 131

terminal, 117

teto, 159

torneio, 24

tratavel por parametro fixo, 155

uniforme, 97

valor hash, 93
van Emde Boas, Peter, 40
vertex cover, 108
aproximagcao, 108
vértice
ativo, 62
emparelhado, 80
livre, 80

Williams, J. W. J., 12

arvore

binomial, 15

van Emde Boas, 39-47
arvore geradora minima, 8

algoritmo de Prim, 8
arvore Steiner minima, 117

173



	Conteúdo
	Algoritmos em grafos
	Representação de grafos
	Caminhos e ciclos Eulerianos
	Filas de prioridade e heaps
	Heaps binários
	Heaps binomiais
	Heaps Fibonacci
	Rank-pairing heaps
	Heaps ocos
	Árvores de van Emde Boas
	Tópicos
	Notas
	Exercícios

	Fluxos em redes
	O algoritmo de Ford-Fulkerson
	O algoritmo de Edmonds-Karp
	O algoritmo ``caminho mais gordo'' (``fattest path'')
	O algoritmo push-relabel
	Variantes do problema
	Aplicações
	Outros problemas de fluxo
	Exercícios

	Emparelhamentos
	Aplicações
	Grafos bi-partidos
	Emparelhamentos em grafos não-bipartidos
	Notas
	Exercícios


	Tabelas hash
	Hashing com listas encadeadas
	Hashing com endereçamento aberto
	Cuco hashing
	Filtros de Bloom

	Algoritmos de aproximação
	Problemas, classes e reduções
	Medidas de qualidade
	Técnicas de aproximação
	Algoritmos gulosos
	Aproximações com randomização
	Programação linear

	Esquemas de aproximação
	Aproximando o problema da árvore de Steiner mínima
	Aproximando o PCV
	Aproximando problemas de cortes
	Aproximando empacotamento unidimensional
	Um esquema de aproximação assintótico para min-EU

	Aproximando problemas de sequênciamento
	Um esquema de aproximação para PCmax

	Exercícios

	Algoritmos randomizados
	Teoria de complexidade
	Amplificação de probabilidades
	Relação entre as classes

	Seleção
	Corte mínimo
	Teste de primalidade
	Exercícios

	Complexidade e algoritmos parametrizados
	Material auxiliar
	Algoritmos

	Técnicas para a análise de algoritmos
	Bibliografia
	Bibliografia
	Índice
	Índice

