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3.5. Aproximando o problema da árvore de Steiner mı́nima . . . . . 109
3.6. Aproximando o PCV . . . . . . . . . . . . . . . . . . . . . . . . 110
3.7. Aproximando problemas de cortes . . . . . . . . . . . . . . . . 111
3.8. Aproximando empacotamento unidimensional . . . . . . . . . . 115

3.8.1. Um esquema de aproximação assintótico para min-EU . 120
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Conteúdo

Introdução

A disciplina “Algoritmos avançados” foi criada para combinar a teoria e a
prática de algoritmos. Muitas vezes a teoria de algoritmos e a prática de im-
plementações eficientes é ensinado separadamente, em particular no caso de
algoritmos avançados. Porém a experiência mostra que encontramos muitos
obstáculos no caminho de um algoritmo teoricamente eficiente para uma im-
plementação eficiente. Além disso, o projeto de algoritmos novos não termina
com uma implementação eficiente, mas é alimentado pelos resultados experi-
mentais para produzir melhores algoritmos. A figura abaixo mostra o ciclo
t́ıpico da área emergente de engenharia de algoritmos.

Engenharia de algoritmos (Algorithm Engineering).

Seguindo essa filosofia, o nosso objetivo e tanto entender a teoria de algorit-
mos, demonstrado a sua corretude e analisando a sua complexidade, quanto
dominar a prática de algoritmos, a sua implementação e avaliação experimen-
tal. Isso é refletido numa sequência alternada de aulas teóricas a praticas.
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1. Algoritmos em grafos

1.1. Representação de grafos

Um grafo pode ser representado diretamente de acordo com a sua definição
por n estruturas que representam os vértices, m estruturas que representam
os arcos e ponteiros entre as estruturas. Um vértice possui ponteiros para todo
arco incidente sainte ou entrante, e um arco possui ponteiros para o ińıcio e
término. A representação direta possui várias desvantagens. Por exemplo não
temos acesso direto aos vértices para inserir um arco.
Duas representações simples são listas (ou vetores) não-ordenadas de vértices
ou arestas. Uma outra representação simples de um grafo G com n vértices é
uma matriz de adjacência M = (mij) ∈ Bn×n. Para vértices u, v o elemento
muv = 1 caso existe uma arco entre u e v. Para representar grafos não-
direcionados mantemos muv = mvu, i.e., M é simétrico. A representação
permite um teste de adjacência em O(1). Percorrer todos vizinhos de um
dado vértice v custa O(n). O custo alto de espaço de Θ(n2) restringe o uso
de uma matriz de adjacência para grafos pequenos1.
Uma representação mais eficiente é por listas ou vetores de adjacência. Neste
caso armazenamos para cada vértice os vizinhos em uma lista ou um vetor. As
listas ou vetores mesmos podem ser armazenados em uma lista ou um vetor
global. Com isso a representação ocupa espaço Θ(n+m) para m arestas.
Uma escolha comum é um vetor de vértices que armazena listas de vizinhos.
Esse estrutura permite uma inserção e deleção simples de arcos. Para facilitar
a deleção de um vértice em grafos não-direcionados, podemos armazenar junto
com o vizinho u do vértice v a posição do vizinho v do vértice u. A repre-
sentação dos vizinhos por vetores é mais eficiente, e por isso prefeŕıvel caso
a estrutura do grafo é estático (Jr. e Martel, 1998; Park, Penner e Prasanna,
2004).
Caso escolhemos armazenar os vértices em uma lista dupla, que armazena uma
lista dupla de vizinhos, em que os vizinhos são representados por posições da
primeira lista, obtemos uma lista dupla de arcos (ingl. doubly connected arc
list, DCAL). Essa estrutura permite uma inserção e remoção tanto de vértices
quanto de arcos.
Supõe que V = [n]. Uma outra representação compacta e eficiente conhecido
como forward star para grafos estáticos usa um vetor de arcos a1, . . . , am.

1Ainda mais espaço consuma uma matrix de incidência entre vértices e arestas em Bn×m.

5



1. Algoritmos em grafos

Tabela 1.1.: Operações t́ıpicas em grafos.

Lista de Matriz de Lista de
Operação arestas vértices adjacência adjacência

Inserir aresta O(1) O(n+m) O(1) O(1) ou O(n)
Remover aresta O(m) O(n+m) O(1) O(n)
Inserir vértice O(1) O(1) O(n2) O(1)

Remover vértice O(m) O(n+m) O(n2) O(n+m)
Teste uv ∈ E O(m) O(n+m) O(1) O(∆)

Percorrer vizinhos O(m) O(∆) O(n) O(∆)
Grau de um vértice O(m) O(∆) O(n) O(1)

Mantemos a lista de arestas ordenado pelo começo do arco. Uma permutação σ
nos dá as arestas em ordem do término. (O uso de uma permutação serve para
reduzir o consumo de memória.) Para percorrer eficientemente os vizinhos
de um vértice armazenamos o ı́ndice sv do primeiro arco sainte na lista de
arestas ordenado pelo começo e o ı́ndice ev do primeiro arco entrante na lista
de arestas ordenado pelo término com sn+1 = en+1 = m + 1 por definição.
Com isso temos N+(v) = {asv , . . . , asv+1−1} com δ+v = sv+1 − sv, e N−(v) =
{aσ(ev), . . . , aσ(ev+1−1)} com δ−v = ev+1 − ev. A representação precisa espaço
O(n+m).
A tabela 1.1 compara a complexidade de operações t́ıpicas nas diferentes re-
presentações.

1.2. Caminhos e ciclos Eulerianos

Um caminho Euleriano passa por toda arestas de grafo exatamente uma vez.
Um caminho Euleriano fechado é um ciclo Euleriano. Um grafo é Euleriano
caso ele possui um ciclo Euleriano que passa por cada vértice (pelo menos
uma vez).

Proposição 1.1
Uma grafo não-direcionado G = (V, E) é Euleriano sse G é conectado e cada
vértice tem grau par.

Prova. Por indução sobre o número de arestas. A base da indução é um
grafo com um vértice e nenhuma aresta que satisfaz a proposição. Supõe que
os grafos com ≤ m arestas satisfazem a proposição e temos um grafo G com
m+1 arestas. Começa por um vértice v arbitrário e procura um caminho que
nunca passa duas vezes por uma aresta até voltar para v. Isso sempre é posśıvel
porque o grau de cada vértice é par: entrando num vértice sempre podemos
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1.2. Caminhos e ciclos Eulerianos

sair. Removendo este caminho do grafo, obtemos uma coleção de componentes
conectados com menos quem arestas, e pela hipótese da indução existem ciclos
Eulerianos em cada componente. Podemos obter um ciclo Euleriano para o
grafo original pela concatençaõ desses ciclos Eulerianos. �
Pela prova temos o seguinte algoritmo com complexidadeO(|E|) para encontrar
um ciclo Euleriano na componente de G = (V, E) que contém v ∈ V:

1 Euler (G = (V, E) ,v ∈ V ) :=
2 i f |E| = 0 return v
3 procura um caminho começando em v
4 sem r e p e t i r a r e s t a s voltando para v
5 s e j a v = v1, v2, . . . , vn = v e s s e caminho
6 remove as a r e s t a s v1v2 , v2v3 , . . . , vn−1vn de G
7 para obter G1
8 return Euler(G1, v1) + Euler(G2, v2) + · · ·+ Euler(Gn−1, nvn−1) + vn
9 // Usamos + para concatenaç ão de caminhos .

10 // Gi é Gi−1 com as a r e s t a s do
11 // caminho Euler(Gi−1, vi−1) removidos , i . e
12 // Gi := (V, E(Gi−1) \ E(Euler(Gi−1, vi−1))

7



1. Algoritmos em grafos

1.3. Filas de prioridade e heaps

Uma fila de prioridade mantem um conjunto de chaves com prioridades de
forma que a atualizar prioridades e acessar o elemento de menor prioridade é
eficiente. Ela possui aplicações em algoritmos para calcular árvores geradores
mı́nimas, caminhos mais curtos de um vértice para todos outros (algoritmo
de Dijkstra) e em algoritmos de ordenaçao (heapsort).

Exemplo 1.1
Árvore geradora mı́nima através do algoritmo de Prim.

Algoritmo 1.1 (Árvore geradora mı́nima)
Entrada Um grafo conexo não-orientado ponderado G = (V, E, c)

Sáıda Uma árvore T ⊆ E de menor custo total.

1 V ′ := {v0} para um v0 ∈ V
2 T := ∅
3 while V ′ 6= V do
4 e s c o l h e e = {u, v} com custo mı́nimo
5 ent re V ′ e V \ V ′ (com u ∈ V ′, v ∈ V \ V ′ )
6 V ′ := V ′ ∪ {v}
7 T := T ∪ {e}
8 end while

Algoritmo 1.2 (Prim refinado)
Implementação mais concreta:

1 T := ∅
2 for u ∈ V \ {v} do
3 i f u ∈ N(v) then
4 value(u) := cuv
5 pred(u) := v
6 else
7 value(u) :=∞
8 end i f
9 insert(Q, (value(u), u)) { pares (chave , elemento) }

10 end for
11 while Q 6= ∅ do
12 v := deletemin(Q)

8



1.3. Filas de prioridade e heaps

13 T := T ∪ {pred(v)v}
14 for u ∈ N(v) do
15 i f u ∈ Q e cvu < value(u) then
16 value(u) := cuv
17 pred(u) := v
18 update(Q,u, cvu)
19 end i f
20 end for
21 end while

Custo? n× insert + n× deletemin +m× update.
♦

Observação 1.1
Implementação com vetor de distâncias: insert = O(1)2, deletemin = O(n),

update = O(1), e temos custo O(n+ n2 +m) = O(n2 +m). Isso é assintoti-
camente ótimo para grafos densos, i.e. m = Ω(n2). ♦

Observação 1.2
Implementação com lista ordenada: insert = O(n), deletemin = O(1), update =

O(n), e temos custo O(n2 + n+mn) = O(mn)3. ♦

Observação 1.3
Implementação com uma lista de

√
n blocos de

√
n elementos, insert, delete-

min e update podem ser implementados em tempo O(
√
n), logo o algoritmo

de Prim e de Dijkstra tem complexidade O(m
√
n). ♦

Exemplo 1.2
Caminhos mais curtos com o algoritmo de Dijkstra

Algoritmo 1.3 (Dijkstra)
Entrada Grafo G = (V, E) com pesos ce ≥ 0 nas arestas e ∈ E, e um

vértice s ∈ V.

Sáıda A distância mı́nima dv entre s e cada vértice v ∈ V.

1 ds := 0;dv :=∞,∀v ∈ V \ {s}
2 visited(v) := false, ∀v ∈ V

2Com chaves compactas [1, n].
3Na hipótese razoável que m ≥ n

9



1. Algoritmos em grafos

3 Q := ∅
4 insert(Q, (s, 0))
5 while Q 6= ∅ do
6 v := deletemin(Q)
7 visited(v) := true
8 for u ∈ N(v) do
9 i f not visited(u) then

10 i f du =∞ then
11 du := dv + dvu
12 insert(Q, (u, du))
13 else i f dv + dvu < du
14 du := dv + dvu
15 update(Q, (u, du))
16 end i f
17 end i f
18 end for
19 end while

A fila de prioridade contém pares de vértices e distâncias.

Proposição 1.2
O algoritmo de Dijkstra possui complexidade

O(n) + n× deletemin + n× insert +m× update.

Prova. O pré-processamento (1-3) tem custo O(n). O laço principal é
dominado por no máximo n operações insert, n operações deletemin, e m
operações update. A complexidade concreta depende da implementação des-
ses operações. �

Proposição 1.3
O algoritmo de Dijkstra é correto.

Prova. Seja dist(s, x) a menor distância entre s e x. Provaremos por indução
que para cada vértice v selecionado na linha 6 do algoritmo dv = dist(s, x).
Como base isso é correto para v = s. Seja v 6= s um vértice selecionado na linha
6, e supõe que existe um caminho P = s · · · xy · · · v de comprimento menor que
dv, tal que y é o primeiro vértice que não foi processado (i.e. selecionado na
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1.3. Filas de prioridade e heaps

linha 6) ainda. (É posśıvel que y = v.) Sabemos que

dy ≤ dx + dxy porque x já foi processado

= dist(s, x) + dxy pela hipótese dx = dist(s, x)

≤ d(P) dP(s, x) ≥ dist(s, x) e P passa por xy

< dv, pela hipótese

uma contradição com a minimalidade do elemento extráıdo na linha 6. (Notação:
d(P): distância total do caminho P; dP(s, x): distância entre s e x no caminho
P.) � ♦

Observação 1.4
Podemos ordenar n elementos usando um heap com n operações “insert”
e n operações “deletemin”. Pelo limite de Ω(n logn) para ordenação via
comparação, podemos concluir que o custo de “insert” mais “deletemin” é
Ω(logn). Portanto, pelo menos uma das operações é Ω(logn). ♦

O caso médio do algoritmo de Dijkstra Dado um grafo G = (V, E) e um
vértice inicial arbitrário supõe que temos um conjunto C(v) de pesos positivos
com |C(v)| = |N−(v)| para cada v ∈ V. Atribuiremos permutações dos pesos
em C(v) aleatoriamente para os arcos entrantes em v.

Proposição 1.4 (Noshita (1985))
O algoritmo de Dijkstra chama update em média n log(m/n) vezes neste mo-
delo.

Prova. Para um vértice v os arcos que podem levar a uma operação update
em v são de forma (u, v) com dist(s, u) ≤ dist(s, v). Supõe que existem k
arcos (u1, v), . . . , (uk, v) desse tipo, ordenado por dist(s, ui) não-decrescente.
Independente da atribuição dos pesos aos arcos, a ordem de processamento
mantem-se. O arco (ui, v) leva a uma operação update caso

dist(s, ui) + duiv < min
j:j<i

dist(s, uj) + dujv.

Com isso temos duiv < minj:j<i dujv, i.e., duiv é um mı́nimo local na sequência
dos pesos dos k arcos. O número esperado de máximos locais de uma per-
mutação aleatória é Hk − 1 ≤ lnk e considerando as permutações inversas,
temos o mesmo número de mı́nimos locais. Como k ≤ δ−(v) temos um limite
superior para o número de operações update em todos vértices de∑

v∈V

ln δ−(v) = n
∑
v∈V

(1/n) ln δ−(v) ≤ n ln
∑
v∈V

(1/n)δ−(v) = n lnm/n.
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1. Algoritmos em grafos

A desigualdade é é justificada pela equação (A.6) observando que lnn é con-
cava. �
Com isso complexidade média do algoritmo de Dijkstra é

O(m+ n× deletemin + n× insert + n ln(m/n)× update).

Usando uma implementação da fila de prioridade por um heap binário que
realiza todas operações em O(logn) a complexidade média do algoritmo de
Dijkstra é O(m+ n logm/n logn).

1.3.1. Heaps binários

Teorema 1.1 (Williams (1964))
Uma fila de prioridade pode ser implementado com custo insert = O(logn),
deletemin = O(logn), update = O(logn). Portanto, uma árvore geradora
mı́nima pode ser calculado em tempo O(n logn+m logn).

Um heap é uma árvore com chaves nos vértices que satisfazem um critério de
ordenação.

• min-heap: as chaves dos filhos são maior ou igual que a chave do pai;

• max-heap: as chaves dos filhos são menor ou igual que a chave do pai.

Um heap binário é um heap em que cada vértice possui no máximo dois filhos.
Implementaremos uma fila de prioridade com um heap binário completo. Um
heap completo fica organizado de forma que possui folhas somente no último
ńıvel, da esquerda para direita. Isso garante uma altura de O(logn).

Positivo: Achar a chave com valor mı́nimo (operação findmin) custa O(1).
Como implementar a inserção? Idéia: Colocar na última posição e restabelecer
a propriedade do min-heap, caso a chave é menor que a do pai.

1 i n s e r t (H ,c) :=
2 i n s e r e c na ú l t ima pos i ç ã o p
3 heapi fy up(H ,p)
4

12



1.3. Filas de prioridade e heaps

5 heapi fy up(H ,p) :=
6 i f root (p) return
7 i f key ( parent (p))>key (p) then
8 swap ( key ( parent (p ) ) , key (p ) )
9 heapi fy up(H , parent (p ) )

10 end i f

Lema 1.1
Seja T um min-heap. Decremente a chave do nó p. Após heapify-up(T, P)
temos novamente um min-heap. A operação custa O(logn).

Prova. Por indução sobre a profundidade k de p. Caso k = 1: p é a raiz,
após o decremento já temos um min-heap e heapify-up não altera ele. Caso
k > 1: Seja c a nova chave de p e d a chave de parent(p). Caso d ≤ c já temos
um min-heap e heapify-up não altera ele. Caso d > c heapify-up troca c e
d e chama heapify-up(T ,parent(p)) recursivamente. Podemos separar a troca
em dois passos: (i) copia d para p. (ii) copia c para parent(p). Após passo
(i) temos um min-heap T ′ e passo (ii) diminui a chave de parent(p) e como
a profundidade de parent(p) é k− 1 obtemos um min-heap após da chamada
recursiva, pela hipótese da indução.
Como a profundidade de T é O(logn), o número de chamadas recursivas
também, e como cada chamada tem complexidade O(1), heapify-up tem com-
plexidade O(logn). �
Como remover? A idéia básica é a mesma: troca a chave com o menor filho.
Para manter o heap completo, colocaremos primeiro a chave da última posição
na posição do elemento removido.

1 d e l e t e (H ,p):=
2 t roca ú l t ima pos i ç ã o com p
3 heapi fy down(H ,p)
4
5 heapi fy down(H ,p):=
6 i f (p não pos su i f i l h o s ) return
7 i f (p pos su i um f i l h o ) then
8 i f key ( l e f t (p))<key (p ) ) then swap ( key ( l e f t (p ) ) , key (p ) )
9 end i f
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10 { p possui dois f i lhos }
11 i f key (p)>key ( l e f t (p ) ) or key (p)>key ( r i g h t (p ) ) then
12 i f ( key ( l e f t (p))<key ( r i g h t (p ) ) then
13 swap ( key ( l e f t (p ) ) , key (p ) )
14 heapi fy down(H , l e f t (p ) )
15 else
16 swap ( key ( r i g h t (p ) ) , key (p ) )
17 heapi fy down(H , r i g h t (p ) )
18 end i f
19 end i f

Lema 1.2
Seja T um min-heap. Incremente a chave do nó p. Após heapify-down(T, p)
temos novamente um min-heap. A operação custa O(logn).

Prova. Por indução sobre a altura k de p. Caso k = 1, p é uma folha e após o
incremento já temos um min-heap e heapify-down não altera ele. Caso k > 1:
Seja c a nova chave de p e d a chave do menor filho f. Caso c ≤ d já temos
um min-heap e heapify-down não altera ele. Caso c > d heapify-down troca c
e d e chama heapify-down(T ,f) recursivamente. Podemos separar a troca em
dois passos: (i) copia d para p. (ii) copia c para f. Após passo (i) temos um
min-heap T ′ e passo (ii) aumenta a chave de f e como a altura de f é k − 1,
obtemos um min-heap após da chamada recursiva, pela hipótese da indução.
Como a altura de T é O(logn) o número de chamadas recursivas também, e
como a cada chamada tem complexidade O(1), heapify-up tem complexidade
O(logn). �
Última operação: atualizar a chave.

1 update (H ,p ,v) :=
2 i f v < key(p) then
3 key (p):=v
4 heapi fy up(H ,p)
5 else
6 key (p):=v
7 heapi fy down(H ,p)
8 end i f
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Sobre a implementação Uma árvore binária completa pode ser armazenado
em um vetor v que contém as chaves. Um pontador p a um elemento é
simplesmente o ı́ndice no vetor. Caso o vetor contém n elementos e possui
ı́ndices a partir de 0 podemos definir

1 root (p) := return p = 0
2 parent (p) := return b(p− 1)/2c
3 key (p) := return v[p]
4 l e f t (p) := return 2p+ 1
5 r i g h t (p) := return 2p+ 2
6 numchildren (p) := return max(min(n− left(p), 2), 0)

Outras observações:

• Para chamar update, temos que conhecer a posição do elemento no heap.
Para um conjunto de chaves compactos [0, n) isso pode ser implementado
usando um vetor pos, tal que pos[c] é o ı́ndice da chave c no heap.

• A fila de prioridade não possui teste u ∈ Q (linha 15 do algoritmo 1.2)
eficiente. O teste pode ser implementado usando um vetor visited, tal
que visited[u] sse u 6∈ Q.

1.3.2. Heaps binomiais

Um heap binomial é um coleção de árvores binomiais que satisfazem a or-
denação de um heap. A árvore binomial B0 consiste de um único vértice. A
árvore binomial Bi possui uma raiz com filhos B0, . . . , Bi−1. O posto de Bk é
k. Um heap binomial contém no máximo uma árvore binomial de cada posto.

B0 B1 B2 B3 B4

Lema 1.3
Uma árvore binomial tem as seguintes caracteŕısticas:

1. Bn possui 2n vértices, 2n−1 folhas (para n > 0), e tem altura n+ 1.
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2. O ńıvel k de Bn (a raiz tem ńıvel 0) tem
(
n
k

)
vértices. (Isso explica o

nome.)

Prova. Exerćıcio. �

Observação 1.5
Podemos combinar dois Bi obtendo um Bi+1 e mantendo a ordenação do heap:
Escolhe a árvore com menor chave na raiz, e torna a outra filho da primeira.
Chamaremos essa operação “link”. Ela tem custoO(1) (veja observações sobre
a implementação).

Bi + Bi = Bi

Bi

♦

Observação 1.6
Um Bi possui 2i vértices. Um heap com n chaves consiste emO(logn) árvores.
Isso permite juntar dois heaps binomiais em tempo O(logn). A operação é
semelhante à soma de dois números binários com “carry”. Começa juntar os
B0. Caso tem zero, continua, case tem um, inclui no heap resultante. Caso
tem dois o heap resultante não recebe um B0. Define como “carry” o link dos
dois B0’s. Continua com os B1. Sem tem zero ou um ou dois, procede como
no caso dos B0. Caso tem três, incluindo o “carry”, inclui um no resultado, e
define como “carry” o link dos dois restantes. Continue desse forma com os
restantes árvores. Para heaps h1, h2 chamaremos essa operação meld(h1,h2).

♦

Com a operação meld, podemos definir as seguintes operações:

• makeheap(c): Retorne um B0 com chave c. Custo: O(1).

• insert(h,c): meld(h,makeheap(c)). Custo: O(logn).

• getmin(h): Mantendo um link para a árvore com o menor custo: O(1).

• deletemin(h): Seja Bk a árvore com o menor chave. Remove a raiz.
Define dois heaps: h1 é h sem Bk, h2 consiste dos filhos de Bk, i.e.
B0, . . . , Bk−1. Retorne meld(h1,h2). Custo: O(logn).

• updatekey(h,p,c): Como no caso do heap binário completo com custo
O(logn).
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1.3. Filas de prioridade e heaps

• delete(h,c): decreasekey(h,c,−∞); deletemin(h)

Em comparação com um heap binário completo ganhamos nada no caso pessi-
mista. De fato, a operação insert possui complexidade pessimista O(1) amor-
tizada. Um insert individual pode ter custo O(logn). Do outro lado, isso
acontece raramente. Uma análise amortizada mostra que em média sobre
uma série de operações, um insert só custa O(1). Observe que isso não é uma
análise da complexidade média, mas uma análise da complexidade pessimista
de uma série de operações.

Análise amortizada

Exemplo 1.3
Temos um contador binário com k bits e queremos contar de 0 até 2k − 1.
Análise “tradicional”: um incremento tem complexidade O(k), porque no caso
pior temos que alterar k bits. Portanto todos incrementos custam O(k2k).
Análise amortizada: “Poupamos” operações extras nos incrementos simples,
para “gastá-las” nos incrementos caros. Concretamente, setando um bit, gas-
tamos duas operações, uma para setar, outra seria “poupada”. Incremen-
tando, usaremos as operações “poupadas” para zerar bits. Desta forma, um
incremento custa O(1) e temos custo total O(2k).
Uma outra forma da análise amortizada é através uma função potencial ϕ,
que associa a cada estado de uma estrutura de dados um valor positivo (a
“poupança”). O custo amortizado de uma operação que transforma uma
estrutura e1 em uma estrutura e2 e c − ϕ(e1) + ϕ(e2), com c o custo de
operação. No exemplo do contador, podemos usar como ϕ(i) o número de
bits na representação binário de i. Agora, se temos um estado e1

11 · · · 1︸ ︷︷ ︸
p bits um

0 · · ·︸︷︷︸
q bits um

com ϕ(e1) = p+ q, o estado após de um incremento é

00 · · · 0︸ ︷︷ ︸
0

1 · · ·︸︷︷︸
q

com ϕ(e2) = 1 + q. O incremento custa c = p + 1 operações e portanto o
custo amortizado é

c−ϕ(e1) +ϕ(e2) = p+ 1− p− q+ 1+ q = 2 = O(1).

♦
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Resumindo: Dado um série de chamadas de uma operação com custos c1, . . . , cn
o custo amortizado da operação é

∑
1≤i≤n ci/n. Caso temos m operações di-

ferentes, o custo amortizado da operação que ocorre nos ı́ndices J ⊆ [1,m] é∑
i∈J ci/|J|.

As somas podem ser dif́ıceis de avaliar diretamente. Um método para simpli-
ficar o cálculo do custo amortizado é o método potencial. Acha uma função
potencial ϕ que atribui cada estrutura de dados antes da operação i um va-
lor não-negativo ϕi ≥ 0 e normaliza ela tal que ϕ1 = 0. Atribui um custo
amortizado

ai = ci −ϕi +ϕi+1

a cada operação. A soma dos custos não ultrapassa os custos originais, porque∑
ai =

∑
ci −ϕi +ϕi+1 = ϕn+1 −ϕ1 +

∑
ci ≥

∑
ci

Portanto, podemos atribuir a cada tipo de operação J ⊆ [1,m] o custo amorti-
zado

∑
i∈J ai/|J|. Em particular, se cada operação individual i ∈ J tem custo

amortizado ai ≤ F, o custo amortizado desse tipo de operação é F.

Exemplo 1.4
Queremos implementar uma tabela dinâmica para um número desconhecido
de elementos. Uma estratégia é reserver espaço para n elementos, manter a
última posição livre p, e caso p > n alocara uma nova tabela de tamanho
maior. Uma implementação dessa ideia é

1 i n s e r t (x):=
2 i f p > n then
3 a loca nova tabe l a de tamanho t = max{2n, 1}
4 cop ia os e lementos xi, 1 ≤ i < p para nova tabe l a
5 n := t
6 end i f
7 xp := x
8 p := p+ 1

com valores iniciais n := 0 e p := 0. O custo de insert é O(1) caso existe ainda
espaço na tabela, mas O(n) no pior caso.
Uma análise amortizada mostra que a complexidade amortizada de uma operação
é O(1). Seja Cn o custo das linhas 3–5 e D o custo das linhas 7–8. Escolhe a
função potencial ϕ(n) = 2Cp−Dn. A função ϕ é satisfaz os critérios de um
potencial, porque p ≥ n/2, e inicialmente temos ϕ(0) = 0. Com isso o custo
amortizado caso tem espaço na tabela é

ai = ci −ϕ(i− 1) +ϕ(i)

= D− (2C(p− 1) −Dn) + (2Cp−Dn) = C+ 2C = O(1).
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Caso temos que alocar uma nova tabela o custo é

ai = ci −ϕ(i− 1) +ϕ(i) = D+ Cn− (2C(p− 1) −Dn) + (2Cp− 2Dn)

= C+Dn+ 2C−Dn = O(1).

♦

Custo amortizado do heap binomial Nosso potencial no caso do heap bi-
nomial é o número de árvores no heap. O custo de getmin e updatekey não
altera o potencial e por isso permanece o mesmo. makeheap cria uma árvore
que custa mais uma operação, mas permanece O(1). deletemin pode criar
O(logn) árvores novas, porque o heap contém no máximo um Bdlogne que
tem O(logn) filhos, e permanece também com custo O(logn). Finalmente,
insert reduz o potencial para cada link no meld e portanto agora custa somente
O(1) amortizado, com o mesmo argumento que no exemplo 1.3.
Desvantagem: a complexidade (amortizada) assintótica de calcular uma árvore
geradora mı́nima permanece O(n logn+m logn).

Meld preguiçosa Ao invés de reorganizar os dois heaps em um meld, pode-
mos simplesmente concatená-los em tempo O(1). Isso pode ser implementado
sem custo adicional nas outras operações. A única operação que não tem com-
plexidade O(1) é deletemin. Agora temos uma coleção de árvores binomiais
não necessariamente de posto diferente. O deletemin reorganiza o heap, tal
que obtemos um heap binomial com árvores de posto único novamente. Para
isso, mantemos um vetor com as árvores de cada posto, inicialmente vazio.
Sequencialmente, cada árvore no heap, será integrado nesse vetor, executando
operações link só for necessário. O tempo amortizado de deletemin permanece
O(logn).
Usaremos um potencial ϕ que é o dobro do número de árvores. Supondo que
antes do deletemin temos t árvores e executamos l operações link, o custo
amortizado é

(t+ l) − 2t+ 2(t− l) = t− l.

Mas t − l é o número de árvores depois o deletemin, que é O(logn), porque
todas árvores possuem posto diferente.

Sobre a implementação Um forma eficiente de representar heaps binomiais,
é em forma de apontadores. Além das apontadores dos filhos para o os pais,
cada pai possui um apontador para um filho e os filhos são organizados em
uma lista encadeada dupla. Mantemos uma lista encadeada dupla também
das ráızes. Desta forma, a operação link pode ser implementada em O(1).
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1.3.3. Heaps Fibonacci

Um heap Fibonacci é uma modificação de um heap binomial, com uma operação
decreasekey de custo O(1). Com isso, uma árvore geradora mı́nima pode ser
calculada em tempo O(m+n logn). Para conseguir decreasekey em O(1) não
podemos mais usar heapify-up, porque heapify-up custa O(logn).
Primeira tentativa:

• delete(h,p): Corta p de h e executa um meld entre o resto de h e os filhos
de p. Uma alternativa é implementar delete(h,p) como decreasekey(h,p,−∞)
e deletemin(h).

• decreasekey(h,p): A ordenação do heap pode ser violada. Corta p é
execute um meld entre o resto de h e p.

Problema com isso: após de uma série de operações delete ou decreasekey, a
árvore pode se tornar “esparso”, i.e. o número de vértices não é mais expo-
nencial no posto da árvore. A análise da complexidade das operações como
deletemin depende desse fato para garantir que temos O(logn) árvores no
heap. Consequência: Temos que garantir, que uma árvore não fica “podado”
demais. Solução: Permitiremos cada vértice perder no máximo dois filhos.
Caso o segundo filho é removido, cortaremos o próprio vértice também. Para
cuidar dos cortes, cada nó mantém ainda um valor booleana que indica, se já
foi cortado um filho. Observe que um corte pode levar a uma série de cortes
e por isso se chama de corte em cascatas (ingl. cascading cuts). Um corte
em cascata termina na pior hipótese na raiz. A raiz é o único vértice em que
permitiremos cortar mais que um filho. Por isso não mantemos flag na raiz.

Implementações Denotamos com h um heap, c uma chave e p um elemento
do heap. minroot(h) é o elemento do heap que correspondo com a raiz da
chave mı́nima, e cut(p) é uma marca que verdadeiro, se p já perdeu um filho.
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1 i n s e r t (h , c) :=
2 meld ( makeheap (c ) )
3
4 getmin (h) :=
5 return minroot (h)
6
7 d e l e t e (h ,p) :=
8 decreasekey (h ,p ,−∞)
9 de letemin (h)

10
11 meld (h1 ,h2 ) :=
12 h := l i s t a com r a ı́ z e s de h1 e h2 (em O(1))
13 minroot (h) :=
14 i f key ( minroot (h1))<key ( minroot (h2 ) ) h1 else h2
15
16 decreasekey (h ,p ,c) :=
17 key (p):= c
18 i f c < key ( minRoot (h ) )
19 minRoot (h) := p
20 i f not root (p)
21 i f key ( parent (p))>key (p)
22 cor ta p e ad i c i ona na l i s t a de r a ı́ z e s de h
23 cut (p) := f a l s e
24 cascading cut (h , parent (p ) )
25
26 cascading cut (h ,p) :=
27 { p perdeu um fi lho }
28 i f root (p)
29 return
30 i f ( not cut (p ) ) then
31 cut (p) := true
32 else
33 cor ta p e ad i c i ona na l i s t a de r a ı́ z e s de h
34 cut (p) := f a l s e
35 cascading cut (h , parent (p ) )
36 end i f
37
38 de letemin (h) :=
39 remover minroot (h)
40 juntar as l i s t a s do r e s t o de h e dos f i l h o s de minroot (h)
41 { reorganizar heap }
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42 determina o posto máximo M =M(n) de h
43 ri := undefined para 0 ≤ i ≤M
44 for toda r a ı́ z r do
45 remove r da l i s t a de r a ı́ z e s
46 d := degree(r)
47 while (rd not undefined) do
48 r := l i n k (r, rd )
49 rd := undefined
50 d := d+ 1
51 end while
52 rd := r
53 end for
54 d e f i n i r a l i s t a de r a ı́ z e s pe l a s entradas d e f i n i d a s ri
55 determinar o novo minroot
56
57 l i n k (h1 ,h2 ) :=
58 i f ( key (h1)<key (h2 ) )
59 h := makechild (h1 ,h2 )
60 else
61 h := makechild (h2 ,h1 )
62 cut (h1 ) := f a l s e
63 cut (h2 ) := f a l s e
64 return h

Para concluir que a implementação tem a complexidade desejada temos que
provar que as árvores com no máximo um filho cortado não ficam esparsos
demais e analisar o custo amortizado das operações.

Custo amortizado Para análise usaremos um potencial de c1t+ c2m sendo
t o número de árvores, m o número de vértices marcados e c1, c2 constantes.
As operações makeheap, insert, getmin e meld (preguiçoso) possuem comple-
xidade (real) O(1). Para decreasekey temos que considerar o caso em que o
corte em cascata remove mais que uma subárvore. Supondo que cortamos
n árvores, o número de ráızes é t + n após dos cortes. Para todo corte em
cascata, a árvore cortada é desmarcada, logo temos no máximo m − (n − 1)
marcas depois. Portanto custo amortizado é

O(n) − (c1t+ c2m) + (c1(t+ n) + c2(m− (n− 1))) = c0n− (c2 − c1)n+ c2

e com c2 − c1 ≥ c0 temos custo amortizado constante c2 = O(1).
Com posto máximo M, a operação deletemin tem o custo real O(M+ t), com
as seguintes contribuições
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• Linha 43: O(M).

• Linhas 44–51: O(M + t) com t o número inicial de árvores no heap. A
lista de ráızes contém no máximo as t árvores de h e mais M filhos da
raiz removida. O laço total não pode executar mais que M+t operações
link, porque cada um reduz o número de ráızes por um.

• Linhas 54–55: O(M).

Seja m o número de marcas antes do deletemin e m ′ o número depois. Como
deletemin marca nenhum vértice, temos m ′ ≤ m. O número de árvores t ′

depois de deletemin satisfaz t ′ ≤ M porque deletemin garante que existe no
máximo uma árvore de cada posto. Portanto, o potencial depois de deletemin
e ϕ ′ = c1t+ c2m

′ ≤ c1M+ c2m, e o custo amortizado é

O(M+ t) − (c1t+ c2m) +ϕ ′ ≤ O(M+ t) − (c1t+ c2m) + (c1M+ c2m)

= (c0 + c1)M+ (c0 − c1)t

e com c1 ≥ c0 temos custo amortizado O(M).

Um limite para M Para provar que deletemin tem custo amortizado logn,
temos que provar que M = M(n) = O(logn). Esse fato segue da maneira
”cautelosa” com que cortamos vértices das árvores.

Lema 1.4
Seja p um vértice arbitrário de um heap Fibonacci. Considerando os filhos
na ordem temporal em que eles foram introduzidos, filho i possui pelo menos
i− 2 filhos.

Prova. No instante em que o filho i foi introduzido, p estava com pelo menos
i − 1 filhos. Portanto i estava com pelo menos i − 1 filhos também. Depois
filho i perdeu no máximo um filho, e portanto possui pelo menos i− 2 filhos.
�
Quais as menores árvores, que satisfazem esse critério?

F0 F1 F2 F3 F4

23



1. Algoritmos em grafos

Lema 1.5
Cada subárvore com uma raiz p com k filhos possui pelo menos Fk+2 vértices.

Prova. Seja Sk o número mı́nimo de vértices para uma subárvore cuja raiz
possui k filhos. Sabemos que S0 = 1, S1 = 2. Define S−2 = S−1 = 1. Com
isso obtemos para k ≥ 1

Sk =
∑
0≤i≤k

Sk−2 = Sk−2 + Sk−3 + · · ·+ S−2 = Sk−2 + Sk−1.

Comparando Sk com os números Fibonacci

Fk =

{
k se 0 ≤ k ≤ 1
Fk−2 + Fk−1 se k ≥ 2

e observando que S0 = F2 e S1 = F3 obtemos Sk = Fk+2. Usando que
Fn ∈ Θ(Φn) com Φ = (1+

√
5)/2 (exerćıcio!) conclui a prova. �

Corolário 1.1
O posto máximo de um heap Fibonacci com n elementos é O(logn).

Sobre a implementação A implementação da árvore é a mesma que no caso
de heaps binomiais. Uma vantagem do heap Fibonacci é que podemos usar os
nós como ponteiros – lembre que a operação decreasekey precisa isso, porque
os heaps não possuem uma operação de busca eficiente. Isso é posśıvel, porque
sem heapify-up e heapify-down, os ponteiros mantem-se válidos.

1.3.4. Rank-pairing heaps

Haeupler, Sen e Tarjan (2009) propõem um rank-pairing heap (um heap “em-
parelhando postos”) com as mesmas garantias de complexidade que um heap
Fibonacci e uma implementação simplificada e mais eficiente na prática (ver
observação 1.9).

Torneios Um torneio é uma representação alternativa de heaps. Começando
com todos elementos, vamos repetidamente comparar pares de elementos, e
promover o vencedor para o próximo ńıvel (Fig. 1.1(a)). Uma desvantagem
de representar torneios explicitamente é o espaço para chaves redundantes.
Por exemplo, o campeão (i.e. o menor elemento) ocorre O(logn) vezes. A
figura 1.1(b) mostra uma representação sem chaves repetidas. Cada chave
é representado somente na comparação mais alta que ele ganhou, as outras
comparações ficam vazias. A figura 1.1(c) mostra uma representação compacta
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(a)

3

3

4

13 4

3

3 8

5

5

5 17

7

11 7

(b)

3

4

13 8

5

17

7

11

(c)

3

5

7

11 17

4

13 8

Figura 1.1.: Representações de heaps.

em forma de semi-árvore. Numa semi-árvore cada elemento possui um filho
ordenado (na figura o filha da esquerda) e um filho não-ordenado (na figura
o filho da direita). O filho ordenado é o perdedor da comparação direta com
o elemento, enquanto o filho não-ordenado é o perdedor da comparação com
o irmão vazio. A raiz possui somente um filho ordenado.
Cada elemento de um torneio possui um posto. Por definição, o posto de uma
folha é 0. Uma comparação justa entre dois elementos do mesmo posto r
resulta num elemento com posto r + 1 no próximo ńıvel. Numa comparação
injusta entre dois elementos com postos diferentes, o posto do vencedor é
definido pelo maior dois postos dos participantes (uma alternativa é que o
posto fica o mesmo). O posto de um elemento representa um limite inferior
do número de elementos que perderam contra-lo:

Lema 1.6
Um torneio com campeão de posto k possui pelo menos 2k elementos.

Prova. Por indução. Caso um vencedor possui posto k temos duas possibi-
lidades: (i) foi o resultado de uma comparação justa, com dois participantes
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com posto k − 1 e pela hipótese da indução com pelo menos 2k−1 elementos,
tal que o vencedor ganhou contra pelo menos 2k elementos. (ii) foi resultado
de uma comparação injusta. Neste caso um dos participantes possúıu posto k
e o vencedor novamente ganhou contra pelo menos 2k elementos. �

Cada comparação injusta torna o limite inferior dado pelo posto menos preciso.
Por isso uma regra na construção de torneios é fazer o maior número de
comparações justas posśıveis. A representação de um elemento de heap é
possui quatro campos para a chave (c), o posto (r), o filho ordenado (o) e o
filho não-ordendo (u):

1 de f Node ( c , r , o , u )

Podemos implementar as operações de uma fila de prioridade (sem update ou
decreasekey) como segue:

1 { compara duas árvores }
2 l i n k (t1 ,t2 ) :=
3 i f t1 . c < t2 . c then
4 return makechild (t1 ,t2 )
5 else
6 return makechild (t2 ,t1 )
7 end i f
8
9 makechild ( s , t ) :=

10 t . u := s . o
11 s . o := t
12 se t rank ( t )
13 s . r := s . r + 1
14 return s
15
16 se t rank ( t ) :=
17 i f t . o . r = t . u . r
18 t . r = t . o . r + 1
19 else
20 t . r = max( t . o . r , t . u . r )
21 end i f
22
23 { cria um heap com um único elemento com chave c }
24 make heap ( c ) := return Node ( c , 0 , undefined ,undefined)
25
26 { inserte chave c no heap }
27 i n s e r t (h , c ) := l i n k (h , make heap ( c ) )
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28
29 { união de dois heaps }
30 meld (h1 ,h2 ) := l i n k (h1 ,h2 )
31
32 { elemento ḿınimo do heap }
33 getmin (h) := return h
34
35 { deleção do elemento ḿınimo do heap }
36 de letemin (h) :=
37 a loca array r0 . . . rh.o.r+1
38 t = h . o
39 while t not undefined do
40 t ′ := t . u
41 t . u := undefined
42 r e g i s t e r ( t , r )
43 t := t ′

44 end while
45 h ′ := undefined
46 for i = 0, . . . , h.o.r+ 1 do
47 i f ri not undefined
48 h ′ := l i n k (h ′ ,ri )
49 end i f
50 end for
51 return h ′

52 end
53
54 r e g i s t e r ( t , r ) :=
55 i f rt.o.r+1 i s undefined then
56 rt.o.r+1 := t
57 else
58 t := l i n k ( t , rt.o.r+1 )
59 rt.o.r+1 := undefined
60 r e g i s t e r ( t , r )
61 end i f
62 end

(A figura 1.2 visualiza a operação “link”.)

Observação 1.7
Todas comparações de “register” são justas. As comparações injustas ocorrem
na construção da árvore final nas linhas 35–39. ♦
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link( t1 t2 ) = t1

t2

Figura 1.2.: A operação “link” para semi-árvores no caso t1.c < t2.c.

Lema 1.7
Num torneio balanceado o custo amortizado de “make-heap”, “insert”, “meld”
e “getmin” é O(1), o custo amortizado de “deletemin” é O(logn).

Prova. Usaremos o número de comparações injustas no torneio como poten-
cial. “make-heap” e “getmin” não alteram o potencial, “insert” e “meld” au-
mentam o potencial por no máximo um. Portanto a complexidade amortizada
dessas operações é O(1). Para analisar “deletemin” da raiz r do torneio vamos
supor que houve k comparações injustas com r. Além dessas comparações in-
justas, r participou em no máximo logn comparações justas pelo lema 1.6.
Em soma vamos liberar no máximo k + logn árvores, que reduz o potencial
por k, e com no máximo k + logn comparações podemos produzir um novo
torneio. Dessas k+logn comparações no máximo logn são comparações injus-
tas. Portanto o custo amortizado é k+ logn− k+ logn = 2 logn = O(logn).
�

Heaps binomiais com varredura única O custo de representar o heap numa
árvore única é permitir comparações injustas. Uma alternativa é permitir
somente comparações justas, que implica em manter uma coleção de O(logn)
árvores. A estrutura de dados resultante é similar com os heaps binomiais:
manteremos uma lista (simples) de ráızes das árvores, junto com um ponteiro
para a árvore com a ráız de menor valor. O heap é representado pela ráız de
menor valor, ver Fig. 1.3.

1 i n s e r t (h , c ) :=
2 i n s e r e make heap ( c ) na l i s t a de r a i z e s
3 a t u a l i z e a á rvore mı́nima
4
5 meld (h1 ,h2 ) :=
6 concatena as l i s t a s de h1 e h2
7 a t u a l i z e a á rvore mı́nima

Somente “deletemin” opera diferente agora:
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h,min

last

t1 t2 t3 t4

Figura 1.3.: Representação de um heap binomial.

1 de letemin (h) :=
2 a loca um array de l i s t a s r0 . . . rdlogne
3 remove a á rvore mı́nima da l i s t a de r a i z e s
4 d i s t r i b u i as r e s t a n t e s á rvo re s sobre r
5
6 t := h.o
7 while t not undefined do
8 t ′ := t.u
9 t.u := undefined

10 i n s e r e t na l i s t a rt.o.r+1
11 t := t ′

12 end while
13
14 { executa o maior número poss ı́vel }
15 { de comparações justas num único passo }
16
17 h := undefined { l i s t a f ina l de raizes }
18 for i = 0, . . . , dlogne do
19 while |ri| ≥ 2
20 t := l i n k (ri . head , ri . head . next )
21 i n s e r e t na l i s t a h
22 remove ri . head , ri . head . next da l i s t a ri
23 end i f
24 i f |ri| = 1 i n s e r e ri.head na l i s t a h
25 end for
26 return h

Observação 1.8
Continuando com comparações justas até sobrar somente uma árvore de cada
posto, obteremos um heap binomial. ♦
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Lema 1.8
Num heap binomial com varredura única o custo amortizado de “make-heap”,
“insert”, “meld”, “getmin” é O(1), o custo amortizado de “deletemin” é
O(logn).

Prova. Usaremos o dobro do número de árvores como potencial. “getmin”
não altera o potencial. “make-heap”, “insert” e “meld” aumentam o potencial
por no máximo dois (uma árvore), e portanto possuem custo amortizado O(1).
“deletemin” libera no máximo logn árvores, porque todas comparações foram
justas. Com um número total de h árvores, o custo de deletemin é O(h).
Sem perda de generalidade vamos supor que o custo é h. A varredura final
executa pelo menos (h−logn)/2−1 comparações justas, reduzindo o potencial
por pelo menos h − logn − 2. Portanto o custo amortizado de “deletemin” é
h− (h− logn− 2) = logn+ 2 = O(logn). �

rp-heaps O objetivo do rp-heap é adicionar ao heap binomial de varredura
única uma operação “decreasekey” com custo amortizado O(1). A idéıa e
os problemas são os mesmos do heap Fibonacci: (i) para tornar a operação
eficiente, vamos cortar a sub-árvore do elemento cuja chave foi diminúıda. (ii)
o heap Fibonacci usava cortes em cascata para manter um número suficiente
de elementos na árvore; no rp-heap ajustaremos os postos do heap que perde
uma sub-árvore. Para poder cortar sub-árvores temos que permitir uma folga
nos postos. Num heap binomial a diferença do posto de um elemento com o
posto do seu pai (caso existe) sempre é um. Num rp-heap do tipo 1, exigimos
somente que os dois filhos de um elemento possuem diferença do posto 1 e 1,
ou 0 e ao menos 1. Num rp-heap do tipo 2, exigimos que os dois filhos de
um elemento possuem diferença do posto 1 e 1, 1 e 2 ou 0 e pelo menos 2.
(Figura 1.4.)
Com isso podemos implementar o “decreasekey” (para rp-heaps do tipo 2)
como segue:

1 decreasekey (h , e ,∆) :=
2 e . c := e . c − ∆
3 i f root ( e )
4 return
5 i f parent ( e ) . o = e then
6 parent ( e ) . o := e . u
7 else
8 parent ( e ) . u := e . u
9 end i f

10 parent ( e ) . u := parent ( e )
11 e . u := undefined
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(a)

r

r+ 1 r+ 1

r

r+ 0 ≥ r+ 1

r

≥ r+ 1 r+ 0

(b)

r

r+ 1 r+ 1

r

r+ 1 r+ 2

r

r+ 2 r+ 1

r

r+ 0 ≥ r+ 2
r

≥ r+ 2 r+ 0

Figura 1.4.: Diferenças no posto de rp-heaps do tipo 1 (a) e tipo 2 (b).

e

→ + e

e

→ + e

Figura 1.5.: A operação “decreasekey”.
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12 u := parent ( e )
13 parent ( e ) := undefined
14 i n s e r e e na l i s t a de r a ı́ z e s de h
15 decreaserank (u)
16
17 rank ( e ) :=
18 i f e i s undefined
19 return −1
20 else
21 return e . r
22
23 decreaserank (u) :=
24 i f root (u)
25 return
26 i f rank (u . o ) > rank (u . u)+1 then
27 k := rank (u . o )
28 else i f rank (u . u) > rank (u . o)+1 then
29 k := rank (u . u)
30 else
31 k = max( rank (u . o ) , rank (u . u))+1
32 end i f
33 i f u . r = k then
34 return
35 else
36 u . r := k
37 decreaserank ( parent (u ) )
38
39 d e l e t e (h , e ) :=
40 decreasekey (h , e ,−∞)
41 de letemin (h)

Observação 1.9
Para implementar o rp-heap precisamos além dos ponteiros para o filho or-
denado e não-ordenado um ponteiro para o pai do elemento. A (suposta)
eficiência do rp-heap vem do fato que o decreasekey altera os postos do heap,
e pouco da estrutura dele e do fato que ele usa somente três ponteiros por
elemento, e não quatro como o heap Fibonacci. ♦

Lema 1.9
Uma semi-árvore do tipo 2 com posto k contém pelo menos φk elementos,

sendo φ = (1+
√
5)/2 a razão áurea.
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r

f

r f

= +

Figura 1.6.: Separar uma semi-árvore de posto k em duas.

Tabela 1.2.: Complexidade das operações de uma fila de prioridade. Comple-
xidades em negrito são amortizados. (1): meld preguiçoso.

insert getmin deletemin update decreasekey delete
Vetor O(1) O(1) O(n) O(1) (update) O(1)
Lista ordenada O(n) O(1) O(1) O(n) (update) O(1)
Heap binário O(logn) O(1) O(logn) O(logn) (update) O(logn)
Heap binomial O(1) O(1) O(logn) O(logn) (update) O(logn)
Heap binomial(1) O(1) O(1) O(log n) O(logn) (update) O(logn)
Heap Fibonacci O(1) O(1) O(logn) - O(1) O(logn)
rp-heap O(1) O(1) O(log n) - O(1) O(log n)

Prova. Por indução. Para folhas o lema é válido. Caso a raiz com posto k
não é folha podemos obter duas semi-árvores: a primeira é o filho da raiz sem
o seu filho não-ordenado, e a segunda é a raiz com o filho não ordenado do
seu filho ordenado (ver Fig. 1.6). Pelas regras dos postos de árvores de tipo
dois, essas duas árvores possuem postos k− 1 e k− 1, ou k− 1 e k− 2 ou k e
no máximo k − 2. Portanto, o menor número de elementos nk contido numa
semi-árvore de posto k satisfaz a recorrência

nk = nk−1 + nk2

que é a recorrência dos números Fibonacci. �

Lema 1.10
As operações “decreasekey” e “delete” possuem custo amortizado O(1) e
O(logn)

Prova. Ver (Haeupler, Sen e Tarjan, 2009). �

Resumo: Filas de prioridade A tabela 1.2 resume a complexidade das operações
para diferentes implementações de uma fila de prioridade.

1.3.5. Árvores de van Emde Boas

Pela observação 1.4 é imposśıvel implementar uma fila de prioridade baseado
em comparação de chaves com todas operações em o(logn) . Porém existem
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algoritmos que ordenam n números em o(n logn), aproveitando o fato que as
chaves são números com k bits, como por exemplo o radix sort que ordena em
tempo O(kn), ou aproveitando que as chaves possuem um domı́nio limitado,
como por exemplo o counting sort que ordena n números em [k] em tempo
O(n+ k).
Uma árvore de van Emde Boas (árvore vEB) T realiza as operações

• member(T, e): elemento e pertence a T?

• insert(T, e): insere e em T

• delete(T, e): remove e de T

• min(T) e max(T): elemento mı́nimo e máximo de T , ou “undefined” caso
não existe

• succ(T, e) e pred(T, e): successor e predecessor de e em T ; e não precisa
pertencer a T

no universo de chaves [0, u− 1] em tempo O(log logu) e espaço O(u).
Outras operações compostas podem ser implementados, por exemplo

1 de letemin (T ) :=
2 e := min(T) ; d e l e t e (e ) ; return e
3 deletemax (T ) :=
4 e := max(T) ; d e l e t e (e ) ; return e

Árvores binárias em ordem vEB Na discussão da implementação de árvores
binárias na página 15 discutimos uma representação em ordem da busca por
profundidade (BFS order). A ideia da ordem vEB é “cortar” a altura (número
de ńıveis) h de uma árvore binária (que possui n = 2h−1 nodos e 2h−1 folhas)
pela metade. Com isso obtemos

• uma árvore superior T0 de altura bh/2c

• e b = 2bh/2c = Θ(2h/2) = Θ(
√
n) árvores inferiores T1, . . . , Tb de altura

dh/2e e com 2dh/2e − 1 = Θ(
√
n) nodos.

Os nodos dessa árvore são armazenados em ordem T0, T1, . . . , Tb e toda árvore
Ti é ordenado recursivamente da mesma maneira, até chegar numa árvore de
altura h = 1, como a Figura 1.7 mostra.
Armazenar uma árvore binária em ordem de vEB não altera a complexi-
dade das operações. Uma busca, por exemplo, continua com complexidade
O(h). Porém, armazenado em ordem da busca por profundidade, uma busca
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Figura 1.7.: Organização de árvores binárias em ordem de van Emde Boas para
h ∈ [4]. As folhas são rotuladas por “cluster.sub́ındice”. Abaixo
da árvore a ordem do armazenamento do vértices é dado. Os Ti
correspondem com as subárvores do primeiro ńıvel de recursão.

pode gerar Θ(h) falhas no cache, no pior caso. Na ordem de vEB, a busca
sempre atravessa Ω(log2 B) ńıveis, com B o tamanho de uma linha de ca-
che, antes de gerar uma nova falha no cache. Logo uma busca gera somente
O(log2 n/ log2 B) = O(logB n) falhas no cache. O layout se chama cache obli-
vious porque funciona sem conhecer o tamanho de uma linha de cache B.

Árvores vEB A estrutura básica de uma árvore de vEB é

1. Usar uma árvore binária de altura h representar 2h−1 elementos nas
folhas.

2. Cada folha armazena um bit, que é 1 caso o elemento correspondente
pertence ao conjunto representado.

3. Os bits internos servem como resumo da sub-árvore: eles representam
a conjunção dos bits dos filhos, i.e. um bit interno é um, caso na sua
sub-árvore existe pelo menos uma folha que pertence ao conjunto repre-
sentado.

Todas as operações da estrutura acima podem ser implementadas em tempo
O(h) = O(logu). Para melhorar isso, vamos aplicar a mesma ideia da ordem
de van Emde Boas: a árvore é separada em uma árvore superior, e uma série
de árvores inferiores, cada uma com altura ≈ h/2. As folhas da árvore superior
contém o resumo das ráızes das árvores inferiores: por isso a árvore superior
possui altura bh/2c+ 1, uma a mais comparado com a ordem de vEB.
Fig. 1.8 mostra essa representação. A altura da árvore está armazenada no
campo h. Além disso temos um ponteiro “top” para a árvore superior, e
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h

top bottom

0 1 b− 1

h

2

top bottom

0 1

(a) (b)

Figura 1.8.: Representação da primeira versão de uma árvore vEB. (a) Forma
geral. (b) Caso base.

um vetor de ponteiros “bottom” de tamanho b = 2bh/2c para as ráızes das
árvores inferiores. No caso base com h = 2, abusaremos os campos “top”
e “bottom” para armazenar os bits da raiz e dos dois filhos: um ponteiro
arbitrário diferente de undefined representa um bit 1, o ponteiro undefined o
bit 0. Para isso servem as funções auxiliares

1 s e t (p) := p := 1
2 c l e a r (p) := p := undefined
3 b i t (p) := return p 6= undefined

Observe que as folhas 0, 1, . . . , 2h−1−1 podem ser representadas com h−1 bits.
Os primeiros bh/2c bits representam o número da sub-árvore que contém a
folha, e os últimos dh/2e−1 bits o ı́ndice (relativo) da folha na sua sub-árvore.
Isso explica a definição das funções auxiliares

1 subt ree (e) := e� dh/2e− 1
2 subindex (e) := e&(1� dh/2e− 1) − 1
3 element (s ,i) := (s� dh/2e− 1) | i

para extrair de um elemento o número da sub-árvore correspondente, ou o seu
ı́ndice nesta sub-árvore, e para determinar o ı́ndice na árvore atual do i-ésimo
elemento da sub-árvore s.
Com isso podemos implementar as operações como segue.

1 member(T ,e) :=
2 i f T.h = 2
3 return b i t (T . bottom [ e ] )

4 return member (T . bottom [ subt ree (e ) ] , subindex (e ) )
5
6 min (T ,e) :=
7 i f T.h = 2
8 i f b i t (T . bottom [ 0 ] )
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9 return 0
10 i f b i t (T . bottom [ 1 ] )
11 return 1
12 return undefined
13

14 c := min (T . top )
15 i f c = undefined
16 return c
17 return element (c , min (T . bottom [ c ] ) )
18
19 succ (T ,e) :=
20 i f T.h = 2
21 i f e = 0 and b i t (T . bottom [ 1 ])=1
22 return 1
23 return 0
24
25 s := succ (T . bottom [ subt ree (e ) ] , subindex (e ) )
26 i f s 6= undefined
27 return element ( subt ree (e ) ,s)
28
29 c := succ (T . top , subt ree (e ) )
30 i f c = undefined
31 return c
32 return element (c , min (T . bottom [ c ] ) )
33
34 i n s e r t (T ,e) :=
35 i f T.h = 2
36 s e t (T . bottom [ e ] )
37 s e t (T . top )
38 else

39 insert (T . bottom [ subt ree (e ) ] , subindex (e ) )

40 insert (T . top , subt ree (e ) )
41
42 d e l e t e (T ,e) :=
43 i f T.h = 2
44 c l e a r (T . bottom [ e ] )
45 i f ( b i t (T . bottom [ 1− e ])=0
46 c l e a r (T . top )
47 else

48 delete (T . bottom [ subt ree (e ) ] , subindex (e ) )
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49 s :=min (T . bottom [ subt ree (e ) ] )
50 i f s = undefined

51 delete (T . top , subt ree (e ) )
As complexidades das operações implementadas no caso pessimista são (ver
as chamadas recursivas acima em vermelho):

member T(h) = T(dh/2e) +O(1) = Θ(logh) = Θ(log logu).

min T(h) = T(bh/2c + 1) + T(dh/2e) + O(1) = 2T(h/2) + O(1) = Θ(h) =
Θ(logu).

insert T(h) = T(dh/2e+ T(bh/2c+ 1) +O(1) = Θ(h) = Θ(logu).

succ/delete T(h) = T(dh/2e) + T(bh/2c + 1) + O(h) = 2T(h/2) + O(h) =
Θ(h logh) = Θ(logu log logu) (com um trabalho extra de O(h) para
chamar “min”).

Logo todas operações com mais que uma chamada recursiva não possuem
a complexidade desejada O(log logu). A introdução de dois campos “min”
e “max” que armazenam o elemento mı́nimo e máximo, junto com algumas
modificações resolvem este problema.

1. Armazenar somente o mı́nimo, a operação “min” custa somente O(1) é
“insert”, “succ” e “delete” consequentemente somente O(h).

2. Armazenado também o máximo, sabemos na operação “succ” se o su-
cessor está na árvore atual sem buscar, logo a operação “succ” pode ser
implementada em O(log logu).

3. A última modificação é não armazenar o elemento mı́nimo na sub-árvore
correspondente. Com isso a primeira inserção somente modifica a árvore
de resumo (top) e a segunda e as demais operações modificam somente
a sub-árvore correspondente. A deleção funciona similarmente: ela re-
move ou um elemento na sub-árvore, ou o último elemento, modificando
somente a árvore de resumo (top). Com isso todas operações podem ser
implementadas em O(log logu).

Na base armazenaremos os elementos somente nos campos “min” e “max”.
Por convenção setamos “min” maior que “max” numa árvore vazia. As se-
guintes funções auxiliares permitem remover os elementos de uma árvore base
e determinar se uma árvore possui nenhum, um ou mais elementos.

1 c l e a r (T ) :=
2 T . min:=1 ; T . max:=0 ; // convenção
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Figura 1.9.: Representação uma árvore vEB. (a) Forma geral. (b) Caso base.

3
4 empty (T ) :=
5 return T . min>T . max
6
7 s i n g l e t o n (T ) :=
8 return T . min=T . max
9

10 f u l l (T ) :=
11 return T . min<T . max

1 member(T ,e) :=
2 i f empty (T )
3 return f a l s e
4 i f T . min = e or T . max = e
5 return t rue
6
7 { não é ‘ ‘min’ ’ nem ‘ ‘max’ ’? a base não contém o elemento }
8 i f T . h = 2
9 return f a l s e

10

11 return member (T . bottom [ subt ree (e ) ] , subindex (e ) )
12
13 min (T ) :=
14 i f empty (T )
15 return undefined
16 return T . min
17
18 max(T ) :=
19 i f empty (T )
20 return undefined
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21 return T . max
22
23 succ (T ,e) :=
24 i f T . h=2
25 i f e = 0 and T.max = 1
26 return 1
27 return undefined
28
29 i f not empty (T ) and e < T.min
30 return T . min
31
32 { sucessor na árvore atual }
33 m:=max(T . bottom [ subt ree (e ) ] )
34 i f m 6= undefined and subindex (e)<m
35 return element ( subt ree (e ) ,
36 succ (T . bottom [ subt ree (e ) ] , subindex (e ) ) )
37
38 { ḿınimo na árvore sucessora }
39 c := succ (T . top , subt ree (e ) )
40 i f c = undefined
41 return c
42 return element (c , min (T . bottom [ c ] ) )
43
44 pred (T , e ) :=
45 i f T . h=2
46 i f e = 1 and T . min=0
47 return 0
48 return undefined
49
50 i f not empty (T ) and T . max < e
51 return T . max
52
53 { predecessor na árvore atual }
54 m:=min (T . bottom [ subt ree ( e ) ] )
55 i f m 6= undefined and m <subindex (e)
56 return element ( subt ree (e ) ,

57 pred (T . bottom [ subt ree (e ) ] , subindex (e ) ) )

58
59 { máximo na árvore predecessora }
60 c:= pred (T . top , subt ree (e ) )
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61 i f c = undefined
62 i f not empty (T ) and T . min<e
63 return T . min
64 else
65 return undefined
66
67 return element (c ,max(T . bottom [ c ] ) )
68
69 i n s e r t (T ,e) :=
70 i f empty (T )
71 T . min := T . max := e
72 return
73
74 { novo ḿınimo: setar min, insere min anterior }
75 i f e < T.min
76 swap (T . min , e)
77
78 { insere recursivamente }
79 i f T.h > 2
80 i f empty (T . bottom [ subt ree (e ) ] )

81 insert (T . top , subt ree (e ) )

82 insert (T . bottom [ subt ree (e ) ] , subindex (e ) )
83
84 { novo máximo: atualiza }
85 i f T.max < e
86 T.max := e
87
88 d e l e t e (T ,e) :=
89 i f empty (T )
90 return
91
92 i f s i n g l e t o n (T )
93 i f T.min = e
94 c l e a r (T )
95 return
96
97 { novo ḿınimo? }
98 i f e = T.min
99 T . min := element ( min (T . top ) , min (T . bottom [ min (T . top ) ] ) )

100 e := T . min
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101
102 { remove e da árvore }
103 delete (T . bottom [ subt ree (e ) ] , subindex (e ) )
104
105 i f empty (T . bottom [ subt ree (e ) ] )

106 delete (T . top , subt ree (e ) )
107 i f e = T.max
108 c:=max(T . top )
109 i f c = undefined
110 T . max := T . min
111 else
112 T . max := element (c ,max(T . bottom [ c ] ) )
113 else
114 T . max := element ( subt ree (e ) ,max(T . bottom [ subt ree (e ) ] ) )

Com essas implementações cada função executa uma chamada recursiva e um
trabalho constante a mais e logo precisa tempo O(logh). Em particular, na
função “insert” caso a sub-árvore do elemento é vazia na linha 80 a segunda
chamada “insert” na linha 82 precisa tempo constante. Similarmente, ou a
deleção recursiva na linha 103 não remove o último elemento, e talvez custa
O(logh), e logo a deleção da linha 106 não é executada, ou ela remove o último
elemento e custo somente O(1).

1.3.6. Tópicos

Fast marching method

A equação Eikonal (grego eikon, imagem)

||∇T(x)||F(x) = 1, x ∈ Ω,
T |∂Ω = 0,

define o tempo de chegada de uma superf́ıcie que inicia no tempo 0 na fronteira
∂Ω de um subconjunto aberto Ω ⊆ R3 e se propaga com velocidade F(x) > 0
na direção normal4. O fast marching method resolve a equação Eikonal por
discretizar o espaço regularmente, aproximar as derivadas do gradiente ||∇T ||
por diferenças finitas e propagar os valores com um método igual ao algoritmo
de Dijkstra.
Com

∇T = (∂T/∂x, ∂T/∂y, ∂T/∂z)

4O método também funciona para F(x) < 0, mas não para F(x) com sinais diferentes.
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temos

||∇T ||2 = (∂T/∂x)2 + (∂T/∂z)2 + (∂T/∂z)2 = 1/F2.

Definindo as diferença finitas

D+x = T(x1 + 1, x2, x3) − T(x); D−x = T(x) − T(x1 − 1, x2, x3)

podemos aproximar

∂T/∂x ≈ Tx = max{D−xT,−D+xT, 0}

e com aproximações similares para as direções y e z obtemos uma equação
quadrática em T(x)

||∇T ||2 ≈ T2x + T2y + T2z = 1/F2 (1.1)

Na solução dessa equação valores ainda desconhecidos de T são ignorados. O
fast marching method define T = 0 para os pontos iniciais em ∂Ω e coloca-os
numa fila de prioridade. Repetidamente o ponto de menor tempo é extráıdo
da fila, os vizinhos ainda não visitados são atualizados de acordo com (1.1)
e entram na fila, caso ainda não fazem parte. (Na terminologia do fast mar-
ching method, os pontos com distância já conhecida são “vivos” (alive), os
pontos na fila formam a “faixa estreita” (narrow band), os restantes pontos
são “distantes” (far away).)

Busca informada

O algoritmo de Dijkstra encontra o caminho mais curto de um vértice origem
s ∈ V para todos os outros vértices num grafo ponderado G = (V, E, d). Caso
estamos interessados somente no caminho mais curto para um único vértice
destino t ∈ T , podemos parar o algoritmo depois de processar t. Isso é uma
aplicação muito comum, por exemplo na busca da rota mais curta em sistemas
de navegação. Uma busca informada processa vértices que estimadamente
são mais próximos do destino com preferência. O objetivo é processar menos
vértices antes de encontrar o destino. Um dos algoritmos mais conhecidos de
busca informada é o algoritmo A∗. Para cada vértice v ∈ V com distância g(v)
do origem s, ele usa uma função h(v) que estima a distância para o destino t
e processa os vértices em ordem crescente do custo total estimado

f(v) = g(v) + h(v). (1.2)

O desempenho do algoritmo A∗ depende da qualidade de heuŕıstica h. Ele
pode, diferente do algoritmo de Dijkstra, processar vértices múltiplas vezes,
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1. Algoritmos em grafos

depois de descobrir um caminho mais curto para um vértice já processado.
Isso é a principal diferença com o algoritmo de Dijkstra. Uma outra é que
substitúımos o campo “visited” usando no algoritmo Dijkstra 1.3 por um
conjunto V de vértices já visitados, porque o A∗ é frequentemente aplicado
em grafos com um número grande de vértices, que são explorados passo a
passo sem armazenar todos vértices do grafo na memoria.

1 g(s) := 0
2 f(s) := g(s) + h(s)
3 V := ∅ { vértices já visitados }
4 Q := ∅
5 insert(Q, (s, f(s)))
6 while Q 6= ∅ do
7 v := deletemin(Q)
8 V := V ∪ {v}
9 i f v = t { destino encontrado }

10 return
11 for u ∈ N(v) do
12 i f u ∈ Q then { ainda aberto : atualiza }
13 g(u) := min(g(v) + dvu, g(u))
14 f(u) := g(u) + h(u)
15 update(Q, (u, f(u)))
16 else i f u ∈ V then
17 i f g(v) + dvu < g(u) then
18 { caminho menor p/ vértice já processado }
19 V := V \ {u}
20 g(u) := g(v) + dvu
21 f(u) := g(u) + h(u)
22 insert(Q, (u, f(u)))
23 end i f
24 else { novo vértice }
25 g(u) := g(v) + dvu
26 f(u) := g(u) + h(u)
27 insert(Q, (u, f(u)))
28 end i f
29 end for
30 end while

Observação 1.10
O algoritmos de Dijkstra e A∗ funcionam de forma idêntica quando subs-
titúımos o vértice destino t ∈ V por um conjunto de vértices destino T ⊆ V.

♦
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Existe uma formulação alternativa, equivalente do algoritmo A∗. Ao invés
de sempre processar o vértice aberto de menor valor f podemos processar
sempre o vértice aberto de menor distância ĝ num grafo com pesos modificados
d̂uv = duv − h(u) + h(v). Com pesos modificados obtemos para a distância
total de um caminho uv arbitrário P

ĝ(u, v) =
∑

(u ′,v ′)∈P

d̂u ′v ′ =
∑

(u ′,v ′)∈P

du ′v ′ − hu ′ + hv ′

= h(v) − h(u) +
∑

(u ′,v ′)∈P

du ′v ′ = h(v) − h(u) + g(u, v).

Com ĝ(u) = ĝ(s, u) obtemos

f(u) ≤ f(v)⇐⇒ g(u) + h(u) ≤ g(v) + h(v)⇐⇒ ĝ(u) + h(s) ≤ ĝ(v) + h(s)⇐⇒ ĝ(u) ≤ ĝ(v).

Logo a ordem de processamento por menor ĝ ou por menor valor f é equiva-
lente.
Para garantir a otimalidade de uma solução a heuŕıstica h tem que ser ad-
misśıvel. Caso h é consistente o algoritmo A∗ não somente retorna a solução
ótima, mas processa cada vértice somente uma vez.

Definição 1.1 (Admissibilidade e consistência)
Seja δ(v) a distância mı́nima do vértice v ao destino t. Uma heuŕıstica h é
admisśıvel caso h é um limitante inferior à distância mı́nima, i.e.

h(v) ≤ δ(v). (1.3)

Uma heuŕıstica é consistente caso o seu valor diminui de acordo com o pesos
do grafo: para um arco (u, v) ∈ A

h(v) ≥ h(u) − duv. (1.4)

Na representação alternativa, o critério de consistência (1.4) é equivalente com
d̂uv = duv − h(u) + h(v) ≥ 0. Com isso temos diretamente o

Teorema 1.2
Caso h é consistente o algoritmo A∗ nunca processa um vértice mais que uma
vez.

Prova. Neste caso d̂uv ≥ 0. Logo todas distâncias são positivas é o algoritmo
A∗ é equivalente com o algoritmo de Dijkstra. Por um argumento similar ao
da proposição (1.3) o A∗ nunca processa um vértice duas vezes. �
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Lema 1.11
Caso h é consistente, h é admisśıvel.

Prova. Seja P = v0v1 . . . vk um caminho de v0 = u a vk = t. Então

d(P) =
∑
i∈[k]

dvi−1,vi ≥
∑
i∈[k]

h(vi−1) − h(vi) = h(u) − h(t) ≥ h(u).

Em particular, para um caminho P∗ ótimo de u a t temos h(u) ≤ d(P∗) =
δ(P∗). �

Teorema 1.3
Caso existe uma solução mı́nima e h é admisśıvel o algoritmo A∗ encontra a
solução mı́nima.

Prova. Seja P∗ = v0v1 . . . vk um caminho ótimo de v0 = s a vk = t. Caso
A∗ não terminou, t ainda não foi explorado. Logo existe um vértice aberto de
menor ı́ndice vi em P∗. Agora supõe que o próximo vértice explorado é t, mas
o valor de t não é ótimo, i.e. f(t) > d(P∗). Mas então f(vi) ≤ d(P∗) < f(t),
porque h é admisśıvel, em contradição com a exploração de t. �

Exemplo 1.5
Figure 1.10 mostra uma grafo com três funções heuŕısticos h diferentes. A
heuŕıstica no grafo da esquerda não é admisśıvel em u (marcado por ↑). O A∗

expande s, v e depois t e termina com a distância errada de 5 para chegar em
t. A heuŕıstica no grafo do meio é admisśıvel, mas não consistente: h(u) ≤
h(v)+1 não é satisfeito. O A∗ expande s, v, u, v, t, i.e. o vértice v é processado
duas vezes. Finalmente a heuŕıstica no grafo da direita é consistente (e por
isso admisśıvel). O A∗ expanda cada vértice uma vez, na ordem s, u, t (ou s,
u, v, t).

♦

Exemplo 1.6
A Figura 1.11 compara uma busca com o algoritmo de Dijkstra com uma busca
com o A∗ num grafo geométrico com 5000 vértices e uma aresta entre vértices
de distância no máximo 0.02. Vértices não explorados são pretos, vértices
explorados claros. A claridade corresponde com a ordem de exploração.

♦

1.3.7. Notas

O algoritmo (assintoticamente) mais rápido para árvores geradoras mı́nimas
usa soft heaps é possui complexidade O(mα(m,n)), com α a função inversa
de Ackermann (Chazelle, 2000; Kaplan e Zwick, 2009).
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Figura 1.10.: Esquerda: Heuŕıstica não-admisśıvel. A∗ produz o valor errado
5. Centro: Heuŕıstica admisśıvel, mas inconsistente. A∗ visita
v duas vezes. Direita: Heuŕıstica admisśıvel e consistente. A∗

visita cada vértice somente uma vez.

Figura 1.11.: Comparação de uma busca com o algoritmo de Dijkstra (es-
querda) e o A∗ (direita).
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Karger propôs uma variante de heaps de Fibonacci que substituem a marca
“cut” usado nos cortes em cascata por uma decisão randômica: com probabi-
lidade 0.5 continua cortando, senão para. Caso além disso o heap é constrúıdo
novamente com probabilidade 1/n depois de cada operação, “deletemin” pos-
sui complexidade Θ(log2 n/ log logn) (Li e Peebles, 2015).
Armazenar e atravessar árvores em ordem de van Emde Boas usando ı́ndices,
similar ao ordem por busca em largura é posśıvel (Brodal, Fagerberg e Ja-
cob, 2001). O consumo de memoria das árvores de van Emde Boas pode ser
reduzido para O(n) (Dementiev et al., 2004; Cormen et al., 2009).
Mais sobre o fast marching method se encontra em Sethian (1999). Uma
aplicação interessante é a solução do caixeiro viajante cont́ınuo (Andrews e
Sethian, 2007).

1.3.8. Exerćıcios

Exerćıcio 1.1
Prove lema 1.3. Dica: Use indução sobre n.

Exerćıcio 1.2
Prove que um heap binomial com n vértices possui O(logn) árvores. Dica:
Por contradição.

Exerćıcio 1.3 (Laboratório 1)
1. Implementa um heap binário. Escolhe casos de teste adequados e verifica

o desempenho experimentalmente.

2. Implementa o algoritmo de Prim usando o heap binário. Novamente
verifica o desempenho experimentalmente.

Exerćıcio 1.4 (Laboratório 2)
1. Implementa um heap binomial.

2. Verifica o desempenho dele experimentalmente.

3. Verifica o desempenho do algoritmo de Prim com um heap Fibonacci
experimentalmente.

Exerćıcio 1.5
A proposição 1.3 continua ser correto para grafos com pesos negativos? Jus-
tifique.
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Figura 1.12.: Grafo (esquerda) com circulação (direita)

1.4. Fluxos em redes

Definição 1.2
Para um grafo direcionado G = (V, E) (E ⊆ V×V) escrevemos δ+(v) = {(v, u) |
(v, u) ∈ E} para os arcos saintes de v e δ−(v) = {(u, v) | (u, v) ∈ E} para os
arcos entrantes em v.

Seja G = (V, E, c) um grafo direcionado e capacitado com capacidades c :
E → R nos arcos. Uma atribuição de fluxos aos arcos f : E → R em G se
chama circulação, se os fluxos respeitam os limites da capacidade (fe ≤ ce) e
satisfazem a conservação do fluxo

f(v) :=
∑

e∈δ+(v)

fe −
∑

e∈δ−(v)

fe = 0 (1.5)

(ver Fig. 1.12).

Lema 1.12
Qualquer atribuição de fluxos f satisfaz

∑
v∈V f(v) = 0.

Prova. ∑
v∈V

f(v) =
∑
v∈V

∑
e∈δ+(v)

fe −
∑

e∈δ−(v)

fe

=
∑

(v,u)∈E

f(v,u) −
∑

(u,v)∈E

f(u,v) = 0

�
A circulação vira um fluxo, se o grafo possui alguns vértices que são fontes
ou destinos de fluxo, e portanto não satisfazem a conservação de fluxo. Um
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fluxo s–t possui um único fonte s e um único destino t. Um objetivo comum
(transporte, etc.) é achar um fluxo s–t máximo.

Fluxo s–t máximo

Instância Grafo direcionado G = (V, E, c) com capacidades c nos arcos,
um vértice origem s ∈ V e um vértice destino t ∈ V.

Solução Um fluxo f, com f(v) = 0, ∀v ∈ V \ {s, t}.

Objetivo Maximizar o fluxo f(s).

Lema 1.13
Um fluxo s–t satisfaz f(s) + f(t) = 0.

Prova. Pelo lema 1.12 temos
∑
v∈V f(v) = 0. Mas

∑
v∈V f(v) = f(s) + f(t)

pela conservação de fluxo nos vértices em V \ {s, t}. �

Uma formulação como programa linear é

maximiza f(s) (1.6)

sujeito a f(v) = 0 ∀v ∈ V \ {s, t}

0 ≤ fe ≤ ce ∀e ∈ E.

Observação 1.11
O programa (1.6) possui uma solução, porque fe = 0 é uma solução viável. O
sistema não é ilimitado, porque todas variáveis são limitadas, e por isso possui
uma solução ótima. O problema de encontrar um fluxo s–t máximo pode ser
resolvido em tempo polinomial via programação linear. ♦

1.4.1. O algoritmo de Ford-Fulkerson

Nosso objetivo: Achar um algoritmo combinatorial mais eficiente. Idéia
básica: Começar com um fluxo viável fe = 0 e aumentar ele gradualmente.
Observação: Se temos um s–t-caminho P = (v0 = s, v1, . . . , vn−1, vn = t),
podemos aumentar o fluxo atual f um valor que corresponde ao “gargalo”

g(f, P) := min
e=(vi,vi+1)

0≤i<n

ce − fe.
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Figura 1.13.: Esquerda: Grafo com capacidades. Centro: Fluxo com valor 30.
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Figura 1.14.: Manter a conservação do fluxo.

Observação 1.12
Repetidamente procurar um caminho com gargalo positivo e aumentar nem
sempre produz um fluxo máximo. Na Fig. 1.13 o fluxo máximo posśıvel é
40, obtido pelo aumentos de 10 no caminho P1 = (s, u, t) e 30 no caminho
P2 = (s,w, t). Mas, se aumentamos 10 no caminho P1 = (s, u,w, t) e depois
20 no caminho P2 = (s,w, t) obtemos um fluxo de 30 e o grafo não possui
mais caminho que aumenta o fluxo. ♦

Problema no caso acima: para aumentar o fluxo e manter a conservação do
fluxo num vértice interno v temos quatro possibilidades: (i) aumentar o fluxo
num arco entrante e sainte, (ii) aumentar o fluxo num arco entrante, e diminuir
num outro arco entrante, (iii) diminuir o fluxo num arco entrante e diminuir
num arco sainte e (iv) diminuir o fluxo num arco entrante e aumentar num
arco entrante (ver Fig. 1.14).
Isso é a motivação para definir para um dado fluxo f o grafo residual Gf com

• Vértices V

• Arcos para frente (“forward”) E com capacidade ce − fe, caso fe < ce.
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• Arcos para atras (“backward”) E ′ = {(v, u) | (u, v) ∈ E} com capacidade
c(v,u) = f(u,v), caso f(u,v) > 0.

Observe que na Fig. 1.13 o grafo residual possui um caminho P = (s,w, u, t)
que aumenta o fluxo por 10. O algoritmo de Ford-Fulkerson (Ford e Fulkerson,
1956) consiste em, repetidamente, aumentar o fluxo num caminho s–t no grafo
residual.

Algoritmo 1.4 (Ford-Fulkerson)
Entrada Grafo G = (V, E, c) com capacidades ce no arcos.

Sáıda Um fluxo f.

1 for a l l e ∈ E : fe := 0
2 while e x i s t e um caminho s t em Gf do
3 Se ja P um caminho s t s imp le s
4 Aumenta o f l u x o f um va lo r g(f, P)
5 end while
6 return f

Análise de complexidade Na análise da complexidade, consideraremos so-
mente capacidades em N (ou equivalente em Q: todas capacidades podem ser
multiplicadas pelo menor múltiplo em comum das denominadores das capaci-
dades.)

Lema 1.14
Para capacidades inteiras, todo fluxo intermediário e as capacidades residuais
são inteiros.

Prova. Por indução sobre o número de iterações. Inicialmente fe = 0. Em
cada iteração, o “gargalo” g(f, P) é inteiro, porque as capacidades e fluxos são
inteiros. Portanto, o fluxo e as capacidades residuais após do aumento são
novamente inteiros. �

Lema 1.15
Em cada iteração, o fluxo aumenta por pelo menos 1.

Prova. O caminho s–t possui por definição do grafo residual uma capacidade
“gargalo” g(f, P) > 0. O fluxo f(s) aumenta exatamente g(f, P). �

Lema 1.16
O número de iterações do algoritmo Ford-Fulkerson é limitado por C =

∑
e∈δ+(s) ce.

Portanto ele tem complexidade O((n+m)C).
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Prova. C é um limite superior do fluxo máximo. Como o fluxo inicial-
mente possui valor 0 e aumenta ao menos 1 por iteração, o algoritmo de
Ford-Fulkerson termina em no máximo C iterações. Em cada iteração temos
que achar um caminho s–t em Gf. Representando G por listas de adjacência,
isso é posśıvel em tempo O(n+m) usando uma busca por profundidade. O au-
mento do fluxo precisa tempo O(n) e a atualização do grafo residual é posśıvel
em O(m), visitando todos arcos. �

Corretude do algoritmo de Ford-Fulkerson

Definição 1.3
Seja X̄ := V \ X. Escrevemos F(X, Y) := {(x, y) | x ∈ X, y ∈ Y} para os arcos
passando do conjunto X para Y. O fluxo de X para Y é f(X, Y) :=

∑
e∈F(X,Y) fe.

Ainda estendemos a notação do fluxo total de um vértice (1.5) para conjuntos:
f(X) := f(X, X̄) − f(X̄, X) é o fluxo neto do saindo do conjunto X.
Analogamente, escrevemos para as capacidades c(X, Y) :=

∑
e∈F(X,Y) ce. Uma

partição (X, X̄) é um corte s–t, se s ∈ X e t ∈ X̄.
Um arco e se chama saturado para um fluxo f, caso fe = ce.

Lema 1.17
Para qualquer corte (X, X̄) temos f(X) = f(s).

Prova.

f(X) = f(X, X̄) − f(X̄, X) =
∑
v∈X

f(v) = f(s).

(O último passo é correto, porque para todo v ∈ X, v 6= s, temos f(v) = 0 pela
conservação do fluxo.) �

Lema 1.18
O valor c(X, X̄) de um corte s–t é um limite superior para um fluxo s–t.

Prova. Seja f um fluxo s–t. Temos

f(s) = f(X) = f(X, X̄) − f(X̄, X) ≤ f(X, X̄) ≤ c(X, X̄).

�
Consequência: O fluxo máximo é menor ou igual a o corte mı́nimo. De fato,
a relação entre o fluxo máximo e o corte mı́nimo é mais forte:

Teorema 1.4 (Fluxo máximo – corte mı́nimo)
O valor do fluxo máximo entre dois vértices s e t é igual ao valor do corte
mı́nimo.
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Lema 1.19
Quando o algoritmo de Ford-Fulkerson termina, o valor do fluxo é máximo.

Prova. O algoritmo termina se não existe um caminho entre s e t em Gf.
Podemos definir um corte (X, X̄), tal que X é o conjunto de vértices alcançáveis
em Gf a partir de s. Qual o valor do fluxo nos arcos entre X e X̄? Para um
arco e ∈ F(X, X̄) temos fe = ce, senão Gf terá um arco “forward” e, uma
contradição. Para um arco e = (u, v) ∈ F(X̄, X) temos fe = 0, senão Gf terá
um arco “backward” e ′ = (v, u), uma contradição. Logo

f(s) = f(X) = f(X, X̄) − f(X̄, X) = f(X, X̄) = c(X, X̄).

Pelo lema 1.18, o valor de um fluxo arbitrário é menor ou igual que c(X, X̄),
portanto f é um fluxo máximo. �
Prova. (Do teorema 1.4) Pela análise do algoritmo de Ford-Fulkerson. �

Desvantagens do algoritmo de Ford-Fulkerson O algoritmo de Ford-Fulkerson
tem duas desvantagens:

(1) O número de iterações C pode ser alto, e existem grafos em que C iterações
são necessárias (veja Fig. 1.15). Além disso, o algoritmo com complexi-
dade O((n+m)C) é somente pseudo-polinomial.

(2) É posśıvel que o algoritmo não termina para capacidades reais (veja Fig. 1.15).
Usando uma busca por profundidade para achar caminhos s–t ele termina,
mas é ineficiente (Dean, Goemans e Immorlica, 2006).

1.4.2. O algoritmo de Edmonds-Karp

O algoritmo de Edmonds-Karp elimina esses problemas. O prinćıpio dele é
simples: Para achar um caminho s–t simples, usa busca por largura, i.e. sele-
cione o caminho mais curto entre s e t. Nos temos

Teorema 1.5
O algoritmo de Edmonds-Karp precisa O(nm) iterações, e portanto termina

em tempo O(nm2).

Lema 1.20
Seja δf(v) a distância entre s e v em Gf. Durante a execução do algoritmo de
Edmonds-Karp δf(v) cresce monotonicamente para todos vértices em V.

Prova. Para v = s o lema é evidente. Supõe que uma iteração modificando o
fluxo f para f ′ diminuirá o valor de um vértice v ∈ V \ {s}, i.e., δf(v) > δf ′(v).
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Figura 1.15.: Esquerda: Pior caso para o algoritmo de Ford-Fulkerson com pe-
sos inteiros aumentando o fluxo por 2N vezes por 1 nos caminhos
(s, u, v, t) e (s, v, u, t). Direita: Menor grafo com pesos irracio-
nais em que o algoritmo de Ford-Fulkerson falha (Zwick, 1995).
M ≥ 3, e r = (1 +

√
1 − 4λ)/2 ≈ 0.682 com λ ≈ 0.217 a única

raiz real de 1 − 5x + 2x2 − x3. Aumentar (s, v1, v4, t) e depois re-
petidamente (s, v2, v4, v1, v3, t), (s, v2, v3, v1, v4, t), (s, v1, v3, v2, v4, t),
e (s, v1, v4, v2, v3, t) converge para o fluxo máximo 2+ r+ r2 sem ter-
minar.

Supõe ainda que v é o vértice de menor distância δf ′(v) em Gf ′ com essa
caracteŕıstica. Seja P = (s, . . . , u, v) um caminho mais curto de s para v
em Gf ′ . O valor de u não diminuiu nessa iteração (pela escolha de v), i.e.,
δf(u) ≤ δf ′(u) (*).
O arco (u, v) não existe in Gf, senão a distãncia do v in Gf é no máximo a
distância do v in Gf ′ : Supondo (u, v) ∈ E(Gf) temos

δf(v) ≤ δf(u) + 1 pela desigualdade triangular

≤ δf ′(u) + 1 (*)

≤ δf ′(v) porque uv está num caminho mı́nimo em Gf ′ ,

uma contradição com a hipótese que a distância de v diminuiu. Portanto,
(u, v) 6∈ E(Gf) mas (u, v) ∈ E(Gf ′). Isso só é posśıvel se o fluxo de v para u
aumentou nessa iteração. Em particular, vu foi parte de um caminho mı́nimo
de s para u. Para v = t isso é uma contradição imediata. Caso v 6= t, temos

δf(v) = δf(u) − 1

≤ δf ′(u) − 1 (*)

= δf ′(v) − 2 porque uv está num caminho mı́nimo em Gf ′ ,

novamente uma contradição com a hipótese que a distância de v diminuiu.
Logo, o vértice v não existe. �
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Prova. (do teorema 1.5)
Chama um arco num caminho que aumenta o fluxo com capacidade igual
ao gargalo cŕıtico. Em cada iteração existe ao menos um arco cŕıtico que
desaparece do grafo residual. Provaremos que cada arco pode ser cŕıtico no
máximo n/2 − 1 vezes, que implica em no máximo m(n/2 − 1) = O(mn)
iterações.
No grafo Gf em que um arco uv ∈ E é cŕıtico pela primeira vez temos δf(u) =
δf(v)−1. O arco só aparece novamente no grafo residual caso alguma iteração
diminui o fluxo em uv, i.e., aumenta o fluxo vu. Nessa iteração, com fluxo f ′,
δf ′(v) = δf ′(u) − 1. Em soma temos

δf ′(u) = δf ′(v) + 1

≥ δf(v) + 1 pelo lema 1.20

= δf(u) + 2,

i.e., a distância do u entre dois instantes em que uv é cŕıtico aumenta por
pelo menos dois. Enquanto u é alcançável por s, a sua distância é no máximo
n− 2, porque o caminho não contém s nem t, e por isso a aresta uv pode ser
cŕıtico por no máximo (n− 2)/2 = n/2− 1 vezes. �
Zadeh (1972) apresenta instâncias em que o algoritmo de Edmonds-Karp pre-
cisa Θ(n3) iterações, logo o resultado do teorema 1.5 é o melhor posśıvel para
grafos densos.

1.4.3. O algoritmo “caminho mais gordo” (“fattest path”)

Idéia (Edmonds e Karp, 1972): usar o caminho de maior gargalo para aumen-
tar o fluxo. (Exerćıcio 1.6 pede provar que isso é posśıvel com uma modificação
do algoritmo de Dijkstra em tempo O(n logn+m).)

Lema 1.21
Um fluxo f pode ser decomposto em fluxos f1, . . . , fk com k ≤ m tal que o
fluxo fi é positivo somente num caminho pi entre s e t.

Prova. Dado um fluxo f, encontra um caminho p de s para t usando somente
arcos com fluxo positivo. Define um fluxo no caminho cujo valor é o valor do
menor fluxo de algum arco em p. Subtraindo esse fluxo do fluxo f obtemos
um novo fluxo reduzido. Repete até o valor do fluxo f é zero.
Em cada iteração pelo menos um arco com fluxo positivo tem fluxo zero depois
da subtração do caminho p. Logo o algoritmo termina em no máximo m
iterações. �

Teorema 1.6
O caminho com o maior gargalo aumenta o fluxo por pelo menos OPT/m.
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Prova. Considera o fluxo máximo. Pelo lema 1.21 existe uma decomposição
do fluxo em no máximo m fluxos em caminhos s-t. Logo um dos caminhos
possui valor pelo menos OPT/m. �

Teorema 1.7
A complexidade do algoritmo de Ford-Fulkerson usando o caminho de maior
gargalo é O((n logn + m)m logC) para um limitante superior C do fluxo
máximo.

Prova. Seja fi o valor do caminho encontrado na i-ésima iteração, Gi o grafo
residual após do aumento e OPTi o fluxo máximo em Gi. Observe que G0 é
o grafo de entrada e OPT0 = OPT o fluxo máximo. Temos

OPTi+1 = OPTi − fi ≤ OPTi − OPTi/(2m) = (1− 1/(2m))OPTi.

A desigualdade é válida pelo teorema 1.6, considerando que o grafo residual
possui no máximo 2m arcos. Logo

OPTi ≤ (1− 1/(2m))iOPT ≤ e−i/(2m)OPT.

O algoritmo termina caso OPTi < 1, por isso número de iterações é no máximo
2m ln OPT + 1. Cada iteração custa O(m+ n logn). �

Corolário 1.2
Caso U é um limite superior da capacidade de um arco, o algoritmo termina
em no máximo O(m log mU) passos.

1.4.4. O algoritmo push-relabel

O algoritmo push-relabel é um representante de classe de algoritmos, que não
trabalha com um fluxo e caminhos aumentantes, mas mantém um pré-fluxo f
que satisfaz

• os limites de capacidade (0 ≤ fe ≤ ce)

• e requer somente que o excesso e(v) = −f(v) de um vértice v 6= s é
não-negativo.

Um vértice v 6= t com e(v) > 0 é chamado ativo. A ideia do algoritmo é
que vértices possuem uma “altura” e o fluxo passa para vértices de altura
mais baixa (“operação push”) ou, caso isso não é posśıvel a altura de um
vértice ativo aumenta (“operação relabel”). Concretamente, manteremos um
potencial (“altura”) pv para cada v ∈ V, tal que,

ps = n; pt = 0; (*)

pv ≥ pu − 1 (u, v) ∈ A(Gf).
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Observe que o segundo parte da condição precisa ser satisfeita somente para
arcos no grafo residual.

Observação 1.13
Pela condição (*), para um caminho v0, v1, . . . , vk em Gf temos pv0 ≤ pv1 +
1 ≤ pv2 + 2 ≤ · · · ≤ pvk + k. ♦

Lema 1.22
A condição (*) pode ser satisfeita sse Gf não possui caminho s–t.

Prova. “⇒”: Supõe existe um caminho s–t simples v0 = s, v1, . . . , vk = t.
Pela observação (1.13)

ps = pv0 ≤ pvk + k = pt + k = k < n− 1,

uma contradição. “⇐”: Sejam X os vértices alcançáveis em Gf a partir de s
(incluindo s). Define pv = n para v ∈ X e pv = 0 para v ∈ X. �
O lema mostra que enquanto algoritmos de caminho aumentante são algorit-
mos primais, mantendo uma solução fact́ıvel, até encontrar o ótimo, algoritmos
da classe push-relabel podem ser vistos como algoritmos duais: eles mantém
o critério de otimalidade (*), até encontrar uma solução fact́ıvel.
Podemos realizar as operações “push” e “relabel” como segue. A operação
“push(u, v)” num arco (u, v) ∈ A(Gf) manda o fluxo min{ca, e(v)} de u para
v. A operação “relabel(v) aumenta a altura pv do vértice v por uma unidade.

1 push(u, v) :=
2 { pré condição : u é ativo }
3 { pré condição : pv = pu − 1 }
4 { pré condição : (u, v) ∈ A(Gf) }
5 aumenta o f l u x o em (u, v) por min{c(u,v), e(u)}
6 { atualiza Gf de acordo }
7 end
8
9 r e l a b e l (v) :=

10 { pré condição : v é ativo }
11 { pré condição : não existe (u, v) ∈ A(Gf) com pv = pu − 1 }
12 pv := pv + 1
13 end

Observe que as duas operações mantém a condição (*).

Algoritmo 1.5 (Push-relabel)
Entrada Grafo G = (V,A, c) com capacidades ca no arcos.
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Sáıda Um fluxo f.

1 ps := n ; pv := 0, ∀v ∈ V \ {s}
2 fa := ca , ∀a ∈ δ+(s) senão fa := 0
3 while e x i s t e v é r t i c e a t i vo do
4 e s c o l h e o v é r t i c e a t i vo u de maior pu
5 repe t e at é u é i n a t i v o
6 i f e x i s t e arco (u, v) ∈ Gf com pv = pu − 1 then
7 push(u, v)
8 else
9 r e l a b e l (u)

10 end i f
11 end
12 end while
13 return f

Lema 1.23
O algoritmo push-relabel é parcialmente correto (i.e. correto caso termina).

Prova. Ao terminar não existe vértice ativo. Logo f é um fluxo. Pelo lema
1.22 não existe caminho s–t em Gf. Logo pelo teorema 1.4 o fluxo é ótimo. �
A terminação é garantido por

Teorema 1.8
O algoritmo push-relabel executa O(n3) operações push e O(n2) operações
relabel.

Prova. Um vértice ativo v tem excesso de fluxo, logo existe um caminho v–s
em Gf. Por (1.13) pv ≤ ps+(n−1) < 2n, e o número de operações relabel é no
O(n2). Supõe que uma operação push satura um arco a = (u, v) (i.e. manda
fluxo ca). Para mandar fluxo novamente, temos que mandar primeiramente
fluxo de v para u; isso só pode ser feito depois de pelo menos duas operações
relabel em v. Logo o número de operações push saturantes é O(mn). Para
operações push não-saturantes, podemos observar que entre duas operações
relabel temos no máximo n desses operações, porque cada uma torna o vértice
de maior pv inativo (talvez ativando vértices de menor potentical), logo tem
no máximo O(n3) deles. �
Para garantir uma complexidade de O(n3) temos que implementar um “push”
em O(1) e um “relabel” em O(n). Para este fim, manteremos uma lista dos
vértices em ordem do potencial. Para cada vértice manteremos uma lista de
arcos candidatos para operações push, i.e. arcos para vizinhos com potencial
um a menos com capacidade residual positiva.
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Tabela 1.3.: Complexidade de diversos algoritmos de fluxo máximo (Schrijver,
2003).

Ano Referência Complexidade Obs

1951 Dantzig O(n2mC) Simplex
1955 Ford & Fulkerson O(mC) = O(mnU) Cam. aument.

1970 Dinitz O(nm2) Cam. min. aument.

1972 Edmonds & Karp O(m2 logC) Escalonamento
1973 Dinitz O(nm logC) Escalonamento

1974 Karzanov O(n3) Preflow-Push

1977 Cherkassky O(n2m1/2) Preflow-Push

1986 Goldberg & Tarjan O(nm log(n2/m)) Push-Relabel

1987 Ahuja & Orlin O(nm + n2 logC) Push-Relabel & Esc.

1990 Cheriyan et al. O(n3/ logn)

1990 Alon O(nm + n8/3 logn)

1992 King et al. O(nm + n2+ε)

1997 Goldberg & Rao O(m3/2 log(n2/m) logC)

O(n2/3m log(n2/m) logC)
2012 Orlin O(nm)

Uma busca linear na lista de vértices encontra o vértice de maior potencial.
Entre dois operações relabel a busca pode continuar no último ponto e pre-
cisa tempo O(n) em total, logo a busca custa no máximo O(n3) sobre toda
execução do algoritmo. Para a operação push podemos simplesmente consul-
tar a lista de candidatos. Para um push saturante, o candidato será removido.
Isso custa O(1). Finalmente no caso de um relabel temos que encontrar em
O(n) a nova posição do vértice na lista, e reconstruir a lista de candidatos,
que também precisa tempo O(n). Logo todas operações relabel custam não
mais que O(n3).

1.4.5. Variações do problema

Fontes e destinos múltiplos Para G = (V, E, c) define um conjunto de fontes
S ⊆ V e um conjunto de destinos T ⊆ V, com S ∩ T = ∅, e considera

maximiza f(S)

sujeito a f(v) = 0 ∀v ∈ V \ (S ∪ T) (1.7)

fe ≤ ce ∀e ∈ E.
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s∗ t∗
S T
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u v

t∗ s∗

be be

ce − be

Figura 1.16.: Reduções entre variações do problema do fluxo máximo. Es-
querda: Fontes e destinos múltiplos. Direita: Limite inferior e
superior para a capacidade de arcos.

O problema (1.7) pode ser reduzido para um problema de fluxo máximo sim-
ples em G ′ = (V ′, E ′, c ′) (veja Fig. 1.16(a)) com

V ′ = V ∪ {s∗, t∗}

E ′ = E ∪ {(s∗, s) | s ∈ S} ∪ {(t, t∗) | t ∈ T } (1.8)

c ′e =


ce e ∈ E
c(S, S̄) e = (s∗, s)

c(T̄ , T) e = (t, t∗)

Lema 1.24
Se f ′ é solução máxima de (1.8), f = f ′|E é uma solução máxima de (1.7).
Conversamente, se f é uma solução máxima de (1.7),

f ′e =


fe e ∈ E
f(s) e = (s∗, s)

−f(t) e = (t, t∗)

é uma solução máxima de (1.8).

Prova. Supõe f é solução máxima de (1.7). Seja f ′ uma solução de (1.8)
com valor f ′(s∗) maior. Então f ′|E é um fluxo válido para (1.7) com solução
f ′|E(S) = f

′(s∗) maior, uma contradição.

Conversamente, para cada fluxo válido f em G, a extensão f ′ definida acima
é um fluxo válido em G ′ com o mesmo valor. Portanto o valor do maior fluxo
em G ′ é maior ou igual ao valor do maior fluxo em G. �
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Figura 1.17.: Dois exemplos da transformação do lema 1.25. Esquerda: Grafo

sem solução viável e grafo transformado com fluxo máximo 4. Di-
reita: Grafo com solução viável e grafo transformado com fluxo
máximo 5.

Limites inferiores Para G = (V, E, b, c) com limites inferiores b : E → R
considere o problema

maximiza f(s)

sujeito a f(v) = 0 ∀v ∈ V \ {s, t} (1.9)

be ≤ fe ≤ ce e ∈ E.

O problema (1.9) pode ser reduzido para um problema de fluxo máximo sim-
ples em G ′ = (V ′, E ′, c ′) (veja Fig. 1.16(b)) com

V ′ = V ∪ {s∗, t∗}

E ′ = E ∪ {(u, t∗) | (u, v) ∈ E} ∪ {(s∗, v) | (u, v) ∈ E} ∪ {(t∗, s∗)} (1.10)

c ′e =


ce − be e ∈ E∑
v∈N+(u) b(u,v) e = (u, t∗)∑
u∈N−(v) b(u,v) e = (s∗, v)∞ e = (t, s)

Lema 1.25
Problema (1.9) possui uma solução viável sse (1.10) possui uma solução máxima
com todos arcos auxiliares E ′\E saturados. Neste caso, se f é um fluxo máximo
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em (1.9),

f ′e =


fe − be e ∈ E∑
u∈N+(v) b(v,u) e = (v, t∗)∑
u∈N−(v) b(u,v) e = (s∗, u)

f(s) e = (t, s)

é um fluxo máximo de (1.10) com arcos auxiliares saturados. Conversamente,
se f ′ é um fluxo máximo para (1.10) com arcos auxiliares saturados, fe =
f ′e + be é um fluxo máximo em (1.9).

Prova. (Exerćıcio.) �
Para obter um fluxo máximo de (1.9) podemos maximizar o fluxo a partir da
solução viável obtida, com qualquer variante do algoritmo de Ford-Fulkerson.
Uma alternativa para obter um fluxo máximo com limites inferiores nos arcos
é primeiro mandar o limite inferior de cada arco, que torna o problema num
problema de encontrar o fluxo s-t máximo num grafo com demandas.

Existência de uma circulação com demandas Para G = (V, E, c) com de-
mandas dv, com dv > 0 para destinos e dv < 0 para fontes, considere

existe f

s.a f(v) = −dv ∀v ∈ V (1.11)

fe ≤ ce e ∈ E.

Evidentemente
∑
v∈V dv = 0 é uma condição necessária (lema (1.12)). O

problema (1.11) pode ser reduzido para um problema de fluxo máximo em
G ′ = (V ′, E ′) com

V ′ = V ∪ {s∗, t∗}

E ′ = E ∪ {(s∗, v) | v ∈ V, dv < 0} ∪ {(v, t∗) | v ∈ V, dv > 0} (1.12)

ce =


ce e ∈ E
−dv e = (s∗, v)

dv e = (v, t∗)

Lema 1.26
Problema (1.11) possui uma solução sse problema (1.12) possui uma solução
com fluxo máximo D =

∑
v:dv>0

dv.

Prova. (Exerćıcio.) �
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Circulações com limites inferiores Para G = (V, E, b, c) com limites inferio-
res e superiores, considere

existe f

s.a f(v) = dv ∀v ∈ V (1.13)

be ≤ fe ≤ ce e ∈ E.

O problema pode ser reduzido para a existência de uma circulação com so-
mente limites superiores em G ′ = (V ′, E ′, c ′, d ′) com

V ′ = V

E ′ = E (1.14)

ce = ce − be

d ′v = dv −
∑

e∈δ−(v)

be +
∑

e∈δ+(v)

be (1.15)

Lema 1.27
O problema (1.13) possui solução sse problema (1.14) possui solução.

Prova. (Exerćıcio.) �

1.4.6. Aplicações

Projeto de pesquisa de opinião O objetivo é projetar uma pesquisa de
opinião, com as restrições

• Cada cliente i recebe ao menos ci perguntas (para obter informação sufi-
ciente) mas no máximo c ′i perguntas (para não cansar ele). As perguntas
podem ser feitas somente sobre produtos que o cliente já comprou.

• Para obter informações suficientes sobre um produto, entre pi e p ′i cli-
entes tem que ser interrogados sobre ele.

Um modelo é um grafo bi-partido entre clientes e produtos, com aresta (ci, pj)
caso cliente i já comprou produto j. O fluxo de cada aresta possui limite
inferior 0 e limite superior 1. Para representar os limites de perguntas por
produto e por cliente, introduziremos ainda dois vértices s, e t, com arestas
(s, ci) com fluxo entre ci e c ′i e arestas (pj, t) com fluxo entre pj e p ′j e uma
aresta (t, s).
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Segmentação de imagens O objetivo é segmentar um imagem em duas
partes, por exemplo “foreground” e “background”. Supondo que temos uma
“probabilidade” ai de pertencer ao “foreground” e outra “probabilidade” de
pertencer ao “background” bi para cada pixel i, uma abordagem direta é
definir que pixels com ai > bi são “foreground” e os outros “background”. Um
exemplo pode ser visto na Fig. 1.19 (b). A desvantagem dessa abordagem é que
a separação ignora o contexto de um pixel. Um pixel, “foreground” com todos
pixel adjacentes em “background” provavelmente pertence ao “background”
também. Portanto obtemos um modelo melhor introduzindo penalidades pij
para separar (atribuir à categorias diferentes) pixel adjacentes i e j. Um

partição do conjunto de todos pixels I em A
.
∪ B tem um valor de

q(A,B) =
∑
i∈A

ai +
∑
i∈B

bi −
∑

(i,j)∈A×B

pij

nesse modelo, e o nosso objetivo é achar uma partição que maximiza q(A,B).
Isso é equivalente a minimizar

Q(A,B) =
∑
i∈I

ai + bi −
∑
i∈A

ai −
∑
i∈B

bi +
∑

(i,j)∈A×B

pij

=
∑
i∈B

ai +
∑
i∈A

bi +
∑

(i,j)∈A×B

pij.

A solução mı́nima de Q(A,B) pode ser visto como corte mı́nimo num grafo.
O grafo possui um vértice para cada pixel e uma aresta com capacidade pij
entre dois pixels adjacentes i e j. Ele possui ainda dois vértices adicionais
s e t, arestas (s, i) com capacidade ai para cada pixel i e arestas (i, t) com
capacidade bi para cada pixel i (ver Fig. 1.18).

Seqüenciamento O objetivo é programar um transporte com um número k
de véıculos dispońıveis, dado pares de origem-destino com tempo de sáıda e
chegada. Um exemplo é um conjunto de vôos é

1. Porto Alegre (POA), 6.00 – Florianopolis (FLN), 7.00

2. Florianopolis (FLN), 8.00 – Rio de Janeiro (GIG), 9.00

3. Fortaleza (FOR), 7.00 – João Pessoa (JPA), 8.00

4. São Paulo (GRU), 11.00 – Manaus (MAO), 14.00

5. Manaus (MAO), 14.15 – Belem (BEL), 15.15
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k l

i j

t

s

10

10

1010

10

10

10 10

12 10

30 19

16 25

20 15

i j k l

a 30 19 12 10
b 20 15 16 25

Figura 1.18.: Exemplo da construção para uma imagem 2×2. Direita: Tabela
com valores pele/não-pele. Esquerda: Grafo com penalidade fixa
pij = 10.

Figura 1.19.: Segmentação de imagens com diferentes penalidades p. Acima:
(a) Imagem original (b) Segmentação somente com probabilida-
des (p = 0) (c) p = 1000 (d) p = 10000. Abaixo: (a) Walter
Gramatté, Selbstbildnis mit rotem Mond, 1926 (b) Segmentação
com p = 10000. A probabilidade de um pixel representar pele
foi determinado conforme Jones e Rehg (1998).
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1.4. Fluxos em redes

6. Salvador (SSA), 17.00 – Recife (REC), 18.00

O mesmo avião pode ser usado para mais que um par de origem e destino, se
o destino do primeiro é o origem do segundo, em tem tempo suficiente entre
a chegada e sáıda (para manutenção, limpeza, etc.) ou tem tempo suficiente
para deslocar o avião do destino para o origem.

Podemos representar o problema como grafo direcionado aćıclico. Dado pa-
res de origem destino, ainda adicionamos pares de destino-origem que são
compat́ıveis com as regras acimas. A idéia é representar aviões como fluxo:
cada aresta origem-destino é obrigatório, e portanto recebe limites inferiores
e superiores de 1, enquanto uma aresta destino-origem é facultativa e recebe
limite inferior de 0 e superior de 1. Além disso, introduzimos dois vértices s
e t, com arcos facultativos de s para qualquer origem e de qualquer destino
para t, que representam os começos e finais da viagem completa de um avião.
Para decidir se existe um solução com k aviões, finalmente colocamos um arco
(t, s) com limite inferior de 0 e superior de k e decidir se existe uma circulação
nesse grafo.

O problema P | pmtn, ri | Lmax Primeiramente resolveremos um problema
mais simples: será que existe um sequenciamento tal que toda tarefa i executa
dentro do seu intervalo [ri, di]? Equivalentemente, será que existe uma solução
com Lmax = 0?

Seja {t1, t2, . . . , tk} = {r1, r2, . . . rn}∪ {d1, d2, . . . , dn}, com t1 ≤ t2 ≤ · · · ≤ tk.
(Observe que k ≤ 2n, e k < 2n no caso de tempos repetidos.) Podemos ver os
ti como eventos em que uma tarefa fica dispońıvel ou tem que terminar o seu
processamento. Os ti definem k−1 intervalos Ii = [ti, ti+1] para i ∈ [k−1] com
duração Si = ti+1 − ti correspondente. Cada tarefa j pode ser executada no
intervalo Ti caso Ii ⊆ [ri, di]. Logo podemos modelar o problema via um grafo

direcionado bipartido com vértices T
.
∪ I, sendo T = [n] o conjunto de tarefas

e I = {Ii | i ∈ [k − 1]} o conjunto de intervalos, e com arcos (j, i) caso tarefa j
pode ser executada no intervalo i. Para completar o grafo adicionaremos um
arco (s, j) de um vértice origem s para cada tarefa j, e um arco (i, t) de cada
intervalo para um vértice destino t. Um fluxo nesse grafo representa tempo,
e teremos capacidades pj entre s e tarefa j, Si entre tarefa j e intervalo i, e
mSi entre Ti e t, sendo mSi o tempo total dispońıvel durante o intervalo i. A
figura 1.20 mostra a construção completa.

Logo P | pmtn, ri | Lmax pode ser resolvido em tempo O(mn log L̄).

Com essa abordagem podemos resolver o problema original por busca binária:
para cada valor do Lmax entre 0 e L̄ testaremos se existe uma solução tal que
cada tarefa executa no intervalo [ri, di + Lmax]. Um limite superior simples é
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p1
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mS2
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mSk
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Figura 1.20.: Problema de fluxo para resolver a versão de decisão do problema
P | pmtn, ri | Lmax.

L̄ = maxi ri +
∑
i pi − mini di executando todas tarefas após a liberação da

última numa única máquina em ordem arbitrária.

1.4.7. Outros problemas de fluxo

Obtemos um outro problema de fluxo em redes introduzindo custos de trans-
porte por unidade de fluxo:

Fluxo de menor custo

Entrada Grafo direcionado G = (V, E) com capacidades c ∈ R|E|
+ e custos

r ∈ R|E|
+ nos arcos, um vértice origem s ∈ V, um vértice destino

t ∈ V, e valor v ∈ R+.

Solução Um fluxo s-t f com valor v.

Objetivo Minimizar o custo
∑
e∈E cefe do fluxo.

Diferente do problema de menor fluxo, o valor do fluxo é fixo.

1.4.8. Exerćıcios

Exerćıcio 1.6
Mostra como podemos modificar o algoritmo de Dijkstra para encontrar o
caminho mais curto entre dois vértices num um grafo para encontrar o cami-
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nho com o maior gargalo entre dois vértices. (Dica: Enquanto o algoritmo
de Dijkstra procura o caminho com a menor soma de distâncias, estamos
procurando o caminho com o maior capacidade mı́nimo.)
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1. Algoritmos em grafos

1.5. Emparelhamentos

Dado um grafo não-direcionado G = (V, E), um emparelhamento é uma seleção
de arestas M ⊆ E tal que todo vértice tem no máximo grau 1 em G ′ = (V,M).
(Notação: M = {u1v1, u2v2, . . .}.) O nosso interesse em emparelhamentos é
maximizar o número de arestas selecionados ou, no caso as arestas possuem
pesos, maximizar o peso total das arestas selecionados.

Para um grafo com pesos c : E → Q, seja c(M) =
∑
e∈M ce o valor do

emparelhamento M.

Emparelhamento máximo (EM)

Entrada Um grafo não-direcionado G = (V, E).

Solução Um emparelhamento M ⊆ E, i.e. um conjunto de arcos, tal que
para todos vértices v temos |N(v) ∩M| ≤ 1.

Objetivo Maximiza |M|.

Emparelhamento de peso máximo (EPM)

Entrada Um grafo não-direcionado G = (V, E, c) com pesos c : E → Q
nas arestas.

Solução Um emparelhamento M ⊆ E.

Objetivo Maximiza o valor c(M) de M.

Um emparelhamento se chama perfeito se todo vértice possui vizinho em M.
Uma variação comum do problema é

Emparelhamento perfeito de peso ḿınimo (EPPM)

Entrada Um grafo não-direcionado G = (V, E, c) com pesos c : E → Q
nas arestas.

Solução Um emparelhamento perfeito M ⊆ E, i.e. um conjunto de arcos,
tal que para todos vértices v temos |N(v) ∩M |= 1.

Objetivo Minimiza o valor c(M) de M.

Observe que os pesos em todos problemas podem ser negativos. O problema de
encontrar um emparelhamento de peso mı́nimo em G = (V, E, c) é equivalente
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com EPM em −G := (V, E,−c) (por quê?). Até EPPM pode ser reduzido para
EPM.

Teorema 1.9
EPM e EPPM são problemas equivalentes.

Prova. Seja G = (V, E, c) uma instância de EPM. Define um conjunto de
vértices V ′ que contém V e mais |V | novos vértices e um grafo completo G ′ =
(V ′, V ′ × V ′, c ′) com

c ′e =

{
−ce caso e ∈ E
0 caso contrário

.

Dado um emparelhamento M em G podemos definir um emparelhamento per-
feito M ′ em G ′: M ′ inclui todas arestas em M. Além disso, um vértice em
V não emparelhado em M será emparelhado com o novo vértice correspon-
dente em V ′ com uma aresta de custo 0 em M ′. Similarmente, os restantes
vértices não emparelhados em V ′ são emparelhados em M ′ com arestas de
custo 0 entre si. Pela construção, o valor de M ′ é c ′(M ′) = −c(M). Dado
um emparelhamento M ′ em G ′ podemos obter um emparelhamento M em G
com valor −c(M ′) removendo as arestas que não pertencem a G. Portanto,
um EPPM em G ′ é um EPM em G.

Conversamente, seja G = (V, E, c) uma instância de EPPM. Define C :=
1 +
∑
e∈E |ce|, novos pesos c ′e = C − ce e um grafo G ′ = (V, E, c ′). Para

emparelhamentos M1 e M2 em G arbitrários temos

c(M2) − c(M1) ≤
∑
e∈E
ce>0

ce −
∑
e∈E
ce<0

ce =
∑
e∈E

|ce| < C.

Portanto, um emparelhamento de peso máximo em G ′ também é um empa-
relhamento de cardinalidade máxima: Para |M1| < |M2| temos

c ′(M1) = C|M1|− c(M1) < C|M1|+ C− c(M2) ≤ C|M2|− c(M2) = c
′(M2).

Se existe um emparelhamento perfeito no grafo original G, então o EPM em
G ′ é perfeito e as arestas do EPM em G ′ definem um EPPM em G. �
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1. Algoritmos em grafos

Formulações com programação inteira A formulação do problema do em-
parelhamento perfeito mı́nimo para G = (V, E, c) é

minimiza
∑
e∈E

cexe (1.16)

sujeito a
∑

u∈N(v)

xuv = 1, ∀v ∈ V

xe ∈ B.

A formulação do problema do emparelhamento máximo é

maximiza
∑
e∈E

cexe (1.17)

sujeito a
∑

u∈N(v)

xuv ≤ 1, ∀v ∈ V

xe ∈ B.

Observação 1.14
A matriz de coeficientes de (1.16) e (1.17) é totalmente unimodular no caso bi-
partido (pelo teorema de Hoffman-Kruskal). Portanto: a solução da relaxação
linear é inteira. (No caso geral isso não é verdadeiro, K3 é um contra-exemplo,
com solução ótima 3/2.). Observe que isso resolve o caso ponderado sem custo
adicional. ♦

Observação 1.15
O dual da relaxação linear de (1.16) é

CIM: maximiza
∑
v∈V

yv (1.18)

sujeito a yu + yv ≤ cuv, ∀uv ∈ E
yv ∈ R.

e o dual da relaxação linear de (1.17)

MVC: minimiza
∑
v∈V

yv (1.19)

sujeito a yu + yv ≥ cuv, ∀uv ∈ E
yv ∈ R+.

Com pesos unitários cuv = 1 e restringindo yv ∈ B o primeiro dual é a
formulação do conjunto independente máximo e o segundo da cobertura de
vértices mı́nima. Portanto, a observação 1.14 rende no caso não-ponderado:
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Teorema 1.10 (Berge, 1951)
Em grafos bi-partidos o tamanho da menor cobertura de vértices é igual ao
tamanho do emparelhamento máximo.

Proposição 1.5
Um subconjunto de vértices I ⊆ V de um grafo não-direcionado G = (V,A) é
um conjunto independente sse V \ I é um cobertura de vértices. Em particu-
lar um conjunto independente máximo I corresponde com uma cobertura de
vértices mı́nima V \ I.

Prova. (Exerćıcio 1.8.) � ♦

1.5.1. Aplicações

Alocação de tarefas Queremos alocar n tarefas a n trabalhadores, tal que
cada tarefa é executada, e cada trabalhador executa uma tarefa. O custos de
execução dependem do trabalhar e da tarefa. Isso pode ser resolvido como
problema de emparelhamento perfeito mı́nimo.

Particionamento de poĺıgonos ortogonais

Teorema 1.11 (Sack e Urrutia (2000, cap. 11,th. 1))
Um poĺıgono ortogonal com n vértices de reflexo (ingl. reflex vertex, i.e., com
ângulo interno maior que π), h buracos (ingl. holes) pode ser minimalmente
particionado em n − l − h + 1 retângulos. A variável l é o número máximo
de cordas (diagonais) horizontais ou verticais entre vértices de reflexo sem
intersecção.

O número l é o tamanho do conjunto independente máximo no grafo de in-
tersecção das cordas: cada corda é representada por um vértice, e uma aresta
representa a duas cordas com interseção. Pela proposição 1.7 podemos obter
uma cobertura mı́nima via um emparelhamento máximo, que é o complemento
de um conjunto independente máximo. Podemos achar o emparelhamento em
tempo O(n5/2) usando o algoritmo de Hopcroft-Karp, porque o grafo de in-
tersecção é bi-partido (por quê?).

1.5.2. Grafos bi-partidos

Na formulação como programa inteira a solução do caso bi-partido é mais fácil.
Isso também é o caso para algoritmos combinatoriais, e portanto começamos
estudar grafos bi-partidos.
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1. Algoritmos em grafos

Figura 1.21.: Esquerda: Poĺıgono ortogonal com n = 8 vértices de reflexo
(pontos), h = 0 buracos. As cordas são pontilhadas. Direita:
grafo de intersecção.

s t

Figura 1.22.: Redução do problema de emparelhamento máximo para o pro-
blema do fluxo máximo

Redução para o problema do fluxo máximo

Teorema 1.12
Um EM em grafos bi-partidos pode ser obtido em tempo O(mn).

Prova. Introduz dois vértices s, t, liga s para todos vértices em V1, os vértices
em V1 com vértices em V2 e os vértices em V2 com t, com todos os pesos
unitários. Aplica o algoritmo de Ford-Fulkerson para obter um fluxo máximo.
O número de aumentos é limitado por n, cada busca tem complexidade O(m),
portanto o algoritmo de Ford-Fulkerson termina em tempo O(mn). �

Teorema 1.13
O valor do fluxo máximo é igual a cardinalidade de um emparelhamento
máximo.
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Prova. Dado um emparelhamento máximo M = {v11v21, . . . , v1nv2n}, pode-
mos construir um fluxo com arcos sv1i, v1iv2i e v2it com valor |M|.

Dado um fluxo máximo, existe um fluxo integral equivalente (veja lema (1.14)).
Na construção acima os arcos possuem fluxo 0 ou 1. Escolhe todos arcos entre
V1 e V2 com fluxo 1. Não existe vértice com grau 2, pela conservação de fluxo.
Portanto, os arcos formam um emparelhamento cuja cardinalidade é o valor
do fluxo. �

Solução não-ponderada combinatorial Um caminho P = v1v2v3 . . . vk é
alternante em relação aM (ouM-alternante) se vivi+1 ∈M sse vi+1vi+2 6∈M
para todos 1 ≤ i ≤ k − 2. Um vértice v ∈ V é livre em relação a M se ele
tem grau 0 em M, e emparelhado caso contrário. Um arco e ∈ E é livre em
relação a M, se e 6∈M, e emparelhado caso contrário. Escrevemos |P| = k− 1
pelo comprimento do caminho P.

Observação 1.16
Caso temos um caminho P = v1v2v3 . . . v2k+1 que é M-alternante com v1 é
v2k+1 livre, podemos obter um emparelhamento M \ (P ∩M) ∪ (P \M) de
tamanho |M|− k+ (k− 1) = |M|+ 1. Notação: Diferença simétrica M⊕ P =
(M \ P) ∪ (P \M). A operação M⊕ P é um aumento do emparelhamento M.

♦

Teorema 1.14 (Hopcroft e Karp (1973))
Seja M∗ um emparelhamento máximo e M um emparelhamento arbitrário. O
conjuntoM⊕M∗ contém pelo menos k = |M∗|−|M| caminhosM-aumentantes
disjuntos (de vértices). Um deles possui comprimento menor que |V |/k− 1.

Prova. Considere os componentes de G em relação aos arcos M⊕M∗. Cada
vértice possui no máximo grau 2. Portanto, os componentes são vértices livres,
caminhos simples ou ciclos. Os caminhos e ciclos possuem alternadamente
arestas de M e M∗, logo os ciclos tem comprimento par. Os caminhos de
comprimento ı́mpar são ou M-aumentantes, porque para a solução ótima M∗

não existem caminhos aumentantes. Ainda temos

|M∗ \M| = |M∗|− |M∗ ∩M| = |M|− |M∗ ∩M|+ k = |M \M∗|+ k

e portanto M ⊕M∗ contém k arcos mais de M∗ que de M. Isso mostra que
existem pelo menos |M∗|− |M| caminhos M-aumentantes, porque somente os
caminhos de comprimento ı́mpar possuem exatamente um arco mais de M∗.
Pelo menos um desses caminhos tem que ter um comprimento (em arcos)
menor ou igual que |V |/k − 1, senão cada um possui pelo menos |V |/k + 1
vértices, i.e. eles contém em total mais que |V | vértices. �
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Corolário 1.3 (Berge (1957))
Um emparelhamento é máximo sse não existe um caminho M-aumentante.

Rascunho de um algoritmo:

Algoritmo 1.6 (Emparelhamento máximo)
Entrada Grafo não-direcionado G = (V, E).

Sáıda Um emparelhamento máximo M.

1 M = ∅
2 while ( e x i s t e um caminho M aumentante P ) do
3 M :=M⊕ P
4 end while
5 return M

Problema: como achar caminhos M-aumentantes de forma eficiente?

Observação 1.17
Um caminho M-aumentante começa num vértice livre em V1 e termina num
vértice livre em V2. Idéia: Começa uma busca por largura com todos vértices
livres em V1. Segue alternadamente arcos livres em M para encontrar vizi-
nhos em V2 e arcos em M, para encontrar vizinhos em V1. A busca pára ao
encontrar um vértice livre em V2 ou após de visitar todos os vértices. Ela tem
complexidade O(m+ n). ♦

Teorema 1.15
O problema do emparelhamento máximo não-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(mn).
Prova. Última observação e o fato que o emparelhamento máximo tem ta-
manho O(n). �

Observação 1.18
O último teorema é o mesmo que teorema (1.12). ♦

Observação 1.19
Pelo teorema (1.14) sabemos que existem vários caminhos M-alternantes dis-
juntos (de vértices) e nos podemos aumentar M com todos eles em paralelo.
Portanto, estruturamos o algoritmo em fases: cada fase procura um conjunto
de caminhos aumentantes disjuntos e aplicá-los para obter um novo empare-
lhamento. Observe que pelo teorema (1.14) um aumento com o maior conjunto
de caminhos M-alternantes disjuntos resolve o problema imediatamente, mas
não sabemos como achar esse conjunto de forma eficiente. Portanto, procura-
mos somente um conjunto maximal de caminhos M-alternantes disjuntos de
menor comprimento.
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Podemos encontrar um tal conjunto após uma busca em profundidade usando
o DAG (grafo direcionado aćıclico) definido pela busca por profundidade. (i)
Escolhe um vértice livre em V2. (ii) Segue os predecessores para achar um
caminho aumentante. (iii) Coloca todos vértices em uma fila de deleção. (iv)
Processa a fila de deleção: Até que a fila esteja vazia, remove um vértice dela.
Remove todos arcos adjacentes no DAG. Caso um vértice sucessor após de
remoção de um arco possui grau de entrada 0, coloca ele na fila. (v) Repete
o procedimento no DAG restante, para achar outro caminho, até não existem
mais vértices livres em V2. A nova busca ainda possui complexidade O(m).

♦

O que ganhamos com essa nova busca? Os seguintes dois lemas dão a resposta:

Lema 1.28
Em cada fase o comprimento de um caminho aumentante mı́nimo aumenta
por pelo menos dois.

Lema 1.29
O algoritmo termina em no máximo

√
n fases.

Teorema 1.16
O problema do emparelhamento máximo não-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(m

√
n).

Prova. Pelas lemas 1.28 e 1.29 e a observação que toda fase pode ser com-
pletada em O(m). �

Usaremos outro lema para provar os dois lemas acima.

Lema 1.30
Seja M um emparelhamento, P um caminho M-aumentante mı́nimo, e Q um
caminho M ⊕ P-aumentante. Então |Q| ≥ |P| + 2|P ∩ Q|. (P ∩ Q denota as
arestas em comum entre P e Q.)

Prova. Caso P e Q não possuem vértices em comum, Q é M-aumentante,
P ∩Q = ∅ e a desigualdade é conseqüência da minimalidade de P.
Caso contrário, P e Q possuem um vértice em comum, e logo também uma
aresta, senão M ⊕ P ⊕Q possui um vértice de grau dois. P ⊕Q consiste em
dois caminhos, e eventualmente um coleção de ciclos. Os dois caminhos são
M-aumentantes, pelas seguintes observações:

1. O ińıcio e termino de P é livre em M, porque P é M-aumentante.

2. O ińıcio e termino de Q é livre em M: eles não pertencem a P, porque
são livres em M⊕ P.
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(a) Grafo com emparelhamento M (em negrito) e um caminho
M-aumentante P (em vermelho).

(b) O mesmo grafo com emparelhamento M⊕ P (em negrito) e um caminho
M⊕ P-aumentante Q (em vermelho).

(c) O conjunto de arestas P ⊕Q (em negrito).

Figura 1.23.: Ilustração do lema 1.30.

3. Nenhum outro vértice de P ⊕ Q é livre em relação a M: P só contém
dois vértices livres e Q só contém dois vértices livres em Q \ P.

4. Temos dois caminhos M-aumentantes, começando com um vértice livre
em Q e terminando com um vértice livre em P. O parte do caminho
Q em Q \ P é M-alternante, porque as arestas livres em M ⊕ P são
exatamente as arestas livres em M. O caminho Q entra em P e sai de
P com arestas livres, porque todo vértice em P está emparelhado em
M⊕ P. Portanto os dois caminhos em P ⊕Q são M-aumentantes.

Os dois caminhos M-aumentantes em P⊕Q tem que ser maiores que |P|. Com
isso temos |P ⊕Q| ≥ 2|P| e

|Q| = |P ⊕Q|+ 2|P ∩Q|− |P| ≥ |P|+ 2|P ∩Q|.

�
Prova. (do lema 1.28). Seja S o conjunto de caminhosM-aumentantes da fase
anterior, e P um caminho aumentante. Caso P é disjunto de todos caminhos
em S, ele deve ser mais comprido, porque S é um conjunto máximo de caminhos
aumentantes. Caso P possui um vértice em comum com algum caminho em
S, ele possui também um arco em comum (por quê?) e podemos aplicar
lema 1.30. �
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1.5. Emparelhamentos

Prova. (do lema 1.29). Seja M∗ um emparelhamento máximo e M o empa-
relhamento obtido após de

√
n/2 fases. O comprimento de qualquer caminho

M-aumentante é no mı́nimo
√
n, pelo lema 1.28. Pelo teorema 1.14 existem

pelo menos |M∗| − |M| caminhos M-aumentantes disjuntos de vértices. Mas
então |M∗| − |M| ≤

√
n, porque no caso contrário eles possuem mais que n

vértices em total. Como o emparelhamento cresce pelo menos um em cada
fase, o algoritmo executa no máximo mais

√
n fases. Portanto, o número total

de fases é no máximo 3/2
√
n = O(

√
n). �

O algoritmo de Hopcroft-Karp é o melhor algoritmo conhecido para encon-
trar emparelhamentos máximos em grafos bipartidos não-ponderados espar-
sos5. Para subclasses de grafos bipartidos existem algoritmos melhores. Por
exemplo, existe um algoritmo randomizado para grafos bipartidos regulares
com complexidade de tempo esperado O(n logn) (Goel, Kapralov e Khanna,
2010).

Sobre a implementação A seguir supomos que o conjunto de vértices é
V = [1, n] e um grafo G = (V, E) bi-partido com partição V1

.
∪ V2. Podemos

representar um emparelhamento usando um vetor mate, que contém, para
cada vértice emparelhado, o ı́ndice do vértice vizinho, e 0 caso o vértice é
livre.
O núcleo de uma implementação do algoritmo de Hopcroft e Karp é descrito
na observação 1.19: ele consiste numa busca por largura até encontrar um ou
mais caminhos M-alternantes mı́nimos e depois uma fase que extrai do DAG
definido pela busca um conjunto máximo de caminhos disjuntos (de vértices).
A busca por largura começa com todos vértices livres em V1. Usamos um
vetor H para marcar os arcos que fazem parte do DAG definido pela busca
por largura6 e um vetor m para marcar os vértices visitados.

1 search paths (M) :=
2 for a l l v ∈ V do mv := false
3
4 U1 := {v ∈ V1 | v livre}
5 for a l l u ∈ U1 do du := 0
6
7 do
8 { determina vizinhos em U2 via arestas l ivres}
9 U2 := ∅

10 for a l l u ∈ U1 do

5Feder e Motwani (1991) e Feder e Motwani (1995) propuseram um algoritmo em
O(
√
nm(2 − lognm)) que é melhor em grafos densos.

6H, porque o DAG se chama árvore húngara na literatura.
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1. Algoritmos em grafos

11 mu := true
12 for a l l uv ∈ E , uv 6∈M do
13 i f not mv then
14 dv := du + 1
15 U2 := U2 ∪ v
16 end i f
17 end for
18 end for
19
20 { determina vizinhos em U1 via arestas emparelhadas }
21 found := f a l s e { pelo menos um caminho encontrado? }
22 U1 := ∅
23 for a l l u ∈ U2 do
24 mu := true
25 i f (u l i v r e ) then
26 found := true
27 else
28 v := mate[u]
29 i f not mv then
30 dv := du + 1
31 U1 := U1 ∪ v
32 end i f
33 end for
34 end for
35 while ( not found )
36 end

Após da busca, podemos extrair um conjunto máximo de caminhosM-alternantes
mı́nimos disjuntos. Enquanto existe um vértice livre em V2, nos extraimos um
caminho alternante que termina em v como segue:

1 extract paths ( ) :=
2 while e x i s t e v é r t i c e v l i v r e em V2 do
3 a p l i c a um busca em profundidade a p a r t i r de v em H
4 ( procurando um v é r t i c e l i v r e em V1 )
5 remove todos v é r t i c e s v i s i t a d o s durante a busca
6 caso um caminho a l t e r n a n t e P f o i encontrado : M :=M⊕ P
7 end while
8 end

Exemplo 1.7
Segue um exemplo de aplicação do algoritmo de Hopcroft-Karp.

Grafo original, árvore Húngara primeira iteração e emparelhamento
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♦

Emparelhamentos, coberturas e conjuntos independentes

Proposição 1.6
Seja G = (S

.
∪ T, E) um grafo bipartido e M ⊆ E um emparelhamento em G.

Seja R o conjunto de todos vértices livres em S e todos vértices alcançáveis
por uma busca na árvore Húngara (i.e. via arestas livres de S para T e arestas
do emparelhamento de T para S.). Então (S \R)∪ (T ∩R) é uma cobertura de
vértices em G.

Prova. Seja u, v ∈ E uma aresta não coberta. Logo u ∈ S \ (S \ R) = S ∩ R
e v ∈ T \ (T ∩ R) = T \ R. Caso uv 6∈ M, uv é parte da árvore Húngara é
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|S|− |M|

v

|M|− v

v

Figura 1.24.: Ilustração da prova da proposição 1.7.

v ∈ R, uma contradição. Mas caso uv ∈ M, vu é parte da árvore Húngara e
v precede u, logo v ∈ R, novamente uma contradição. �

A próximo proposição mostra que no caso de um emparelhamento máximo
obtemos uma cobertura mı́nima.

Proposição 1.7
Seja G = (S

.
∪ T, E). Caso M é um emparelhamento máximo o conjunto

(S \ R) ∪ (T ∩ R) é uma cobertura mı́nima.

Prova. Como M é máximo não existe caminho M-aumentante, e logo T ∩ R
contém somente vértices emparelhados. Caso |T ∩ R| = v, R também contém
exatamente v vértices emparelhados em S. Além disso R contém |S| − |M|

vértices livres em S. Logo |S \ R| = |S| − (|S| − |M|) − v = |M| − v e |(S \

R) ∪ (T ∩ R)| = |M|, i.e. a cobertura possui a mesma cardinalidade que o
emparelhamento. Mas o tamanho de qualquer emparelhamento é um limite
inferior para a cobertura mı́nima, porque ela tem que conter pelo menos um
vértice da cada aresta emparelhada. Logo (S \ R) ∪ (T ∩ R) é uma cobertura
mı́nima. �
Observação 1.20
O complemento V \ C de uma cobertura C é um conjunto independente (por
quê?). Logo um emparelhamento M que define um conjunto R de acordo com
a proposição (1.6) corresponde com um conjunto independente (S∩R)∪(T \R),
e caso M é máximo, o conjunto independente também. ♦

Solução ponderada em grafos bi-partidos Dado um grafo G = (S
.
∪ T, E)

bipartido com pesos c : E→ Q+ queremos achar um emparelhamento de maior
peso. Escrevemos V = S ∪ T para o conjunto de todos vértices em G.
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Observação 1.21
O caso ponderado pode ser restrito para emparelhamentos perfeitos: caso
S e T possuem cardinalidade diferente, podemos adicionar vértices, e depois
completar todo grafo com arestas de custo 0. O problema de encontrar um em-
parelhamento perfeito máximo (ou mı́nimo) em grafos ponderados é conhecido
pelo nome “problema de alocação” (ingl. assignment problem). ♦

Observação 1.22
A redução do teorema 1.12 para um problema de fluxo máximo não se aplica
no caso ponderado. Mas, com a simplificação da observação 1.21, podemos
reduzir o problema no caso ponderado para um problema de fluxo de menor
custo: a capacidade de todas arestas é 1, e o custo de transportação são os
pesos das arestas. Como o emparelhamento é perfeito, procuramos um fluxo
de valor |V |/2, de menor custo. ♦

O dual do problema 1.19 é a motivação para

Definição 1.4
Um rotulamento é uma atribuição y : V → R+. Ele é viável caso yu + yv ≥
ce para todas arestas e = (u, v). (Um rotulamento viável é c-cobertura de
vértices.) Uma aresta é apertada (ingl. tight) caso yu + yv = ce. O subgrafo
de arestas apertadas é Gy = (V, E ′, c) com E ′ = {e ∈ E | e apertada em y}.

Pelo teorema forte de dualidade e o fato que a relaxação linear dos sistemas
acima possui uma solução integral (ver observação 1.14) temos

Teorema 1.17 (Egerváry (1931))
Para um grafo bi-partidoG = (S

.
∪ T, E, c) com pesos não-negativos c : E→ Q+

nas arestas, o maior peso de um emparelhamento perfeito é igual ao peso da
menor c-cobertura de vértices.

O método húngaro Aplicando um caminhoM-aumentante P = (v1v2 . . . v2n+1)
produz um emparelhamento de peso c(M)+

∑
i ı́mpar cvivi+1 −

∑
i par cvivi+1 .

Isso motiva a definição de uma árvore húngara ponderada. Para um empare-
lhamento M, seja HM o grafo direcionado com as arestas e ∈ M orientadas
de T para S com peso le := we, e com as restantes arestas e ∈ E \M ori-
entadas de S para T com peso le := −we. Com isso a aplicação do caminho
M-aumentante P produz um emparelhamento de peso c(M) − l(P) em que
l(P) =

∑
1≤i≤2n lvivi+1 é o comprimento do caminho P.

Com isso podemos modificar o algoritmo para emparelhamentos máximos para
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Algoritmo 1.7 (Emparelhamento de peso máximo)
Entrada Um grafo não-direcionado ponderado G = (V, E, c).

Sáıda Um emparelhamento de maior peso c(M).

1 M = ∅
2 while ( e x i s t e um caminho M aumentante P ) do
3 encontra o caminho M aumentante mı́nimo P em HM
4 caso l(P) ≥ 0 : return M ;
5 M :=M⊕ P
6 end while
7 return M

Chamaremos um emparelhamento M extremo caso ele possui o maior peso
entre todos emparelhamentos de tamanho |M|.

Observação 1.23
O grafo HM de um emparelhamento extremo M não possui ciclo (par) ne-
gativo. Isso seria uma contradição com a maximalidade de M. Portanto
podemos encontrar o caminho mı́nimo no passo 3 do algoritmo usando o al-
goritmo de Bellman-Ford em tempo O(mn). Com isso a complexidade do
algoritmo é O(mn2). ♦

Observação 1.24
Lembrando Bellman-Ford: Seja dk(t) a distância mı́nima entre s e t com um
caminho usando no máximo k arcos ou∞ caso tal caminho não existe. Temos

dk+1(t) = min{dk(t), min
(u,t)∈A

dk(u) + l(u, t)}

com d0(t) = 0 caso t é um vértice livre em S e d0(t) = ∞ caso contrário. O
algoritmo se aplica igualmente para as distâncias de um conjunto de vértices,
como o conjunto de vértices livres em S. A atualização de k para k + 1 é
posśıvel em O(m) e como k < n o algoritmo possui complexidade O(nm). ♦

Teorema 1.18
Cada emparelhamento encontrado no algoritmo 1.7 é extremo.

Prova. Por indução sobre |M|. Para M = ∅ o teorema é correto. Seja M
um emparelhamento extremo, P o caminho aumentante encontrado pelo algo-
ritmo 1.7 e N um emparelhamento de tamanho |M|+1 arbitrário. Como |N| >
|M|, M ∪ N contém uma componente que é um caminho Q M-aumentante
(por um argumento similar com aquele da prova do teorema de Hopcroft-
Karp 1.14). Sabemos l(Q) ≥ l(P) pela minimalidade de P. N ⊕ Q é um
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Figura 1.25.: Grafo com emparelhamento e grafo auxiliar.

emparelhamento de cardinalidade |M| (Q é um caminho com arestas em N e
M com uma aresta em N a mais), logo c(N⊕Q) ≤ c(M). Com isso temos

c(N) = c(N⊕Q) − l(Q) ≤ c(M) − l(P) = c(M⊕ P)

(observe que o comprimento l(Q) é definido no emparelhamento M). �

Proposição 1.8
Caso não existe caminho M-aumentante com comprimento negativo no algo-
ritmo 1.7, M é máximo.

Prova. Supõe que existe um emparelhamento N com c(N) > c(M). Logo
|N| > |M| porque M é possui o maior peso entre todos emparelhamentos de
cardinalidade no máximo |M|. Pelo teorema de Hopcroft-Karp, existem |N|−
|M| caminhos M-aumentantes disjuntos de vértices em N⊕M. Nenhum deles
tem comprimento negativo, pelo critério de parada do algoritmo. Portanto
c(N) ≤ c(M), uma contradição. �

Fato 1.1
É posśıvel encontrar o caminho mı́nimo no passo 3 em tempo O(m+n logn)
usando uma transformação para distâncias positivas e aplicando o algoritmo
de Dijkstra. Com isso um algoritmo em tempo O(n(m+ n logn)) é posśıvel.

1.5.3. Emparelhamentos em grafos não-bipartidos

O caso não-ponderado Dado um grafo não-direcionado G = (V, E) e um
emparelhamento M, podemos simplificar a árvore húngara para um grafo
direcionado D = (V,A) com A = {(u, v) | ∃x ∈ V : ux ∈ E, xv ∈M}. Qualquer
passeio M-alternante entre dois vértices livres em G corresponde com um
caminho M-alternante em D.
O problema no caso não-bipartido são laços ı́mpares. No caso bi-partido,
todo laço é par e pode ser eliminado sem consequências: de fato o caminho
M-alternante mais curto não possui laço. No caso não bi-partido não todo
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Tabela 1.4.: Resumo emparelhamentos
Cardinalidade Ponderado

Bi-partido O(n
√
mn/ logn) (Alt et al.,

1991) O(m
√
n log(n2/m)

logn
) (Feder e

Motwani, 1995)

O(nm + n2 logn) (Kuhn, 1955;
Munkres, 1957)

Geral O(m
√
n log(n2/m)

logn
) (Goldberg e

Karzanov, 2004; Fremuth-Paeger
e Jungnickel, 2003)

O(n3) (Edmonds, 1965) O(mn +
n2 logn) (Gabow, 1990)

caminho no grafo auxiliar corresponde com um caminhoM-alternante no grafo
original. O caminho v1v3v5v7v9 corresponde com o caminho M-alternante
v1v2v3v4v5v6v7v8v9v10, mas o caminho v1v8c6v5v7v9 que corresponde com
o passeio v1v9v8v7v6v4v5v6v7v8v0v10 não é um caminho M-alternante que
aumento o emparelhamento. O problema é que o laço ı́mpar v6v4v5v6 não
pode ser eliminado sem consequências.

1.5.4. Notas

Duan, Pettie e Su (2011) apresentam técnicas de aproximação para empare-
lhamentos.

1.5.5. Exerćıcios

Exerćıcio 1.7
É posśıvel somar uma constante c ∈ R para todos custos de uma instância do
EPM ou EPPM, mantendo a otimalidade da solução?

Exerćıcio 1.8
Prove a proposição 1.5.
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Em hashing nosso interesse é uma estrutura de dados H para gerenciar um
conjunto de chaves sobre um universo U e que oferece as operações de um
dicionário:

• Inserção de uma chave c ∈ U: insert(c,H)

• Deleção de uma chave c ∈ U: delete(c,H)

• Teste da pertinência: Chave c ∈ H? lookup(c,H)

Uma caracteŕıstica do problema é que tamanho |U| do universo de chaves
posśıveis pode ser grande, por exemplo o conjunto de todos strings ou todos
números inteiros. Portanto usar a chave como ı́ndice de um vetor de booleano
não é uma opção. Uma tabela hash é um alternativa para outros estruturas
de dados de dicionários, p.ex. árvores. O prinćıpio de tabelas hash: aloca
uma tabela de tamanho m e usa uma função hash para calcular a posição de
uma chave na tabela. Como o tamanho da tabela hash é menor que o número
de chaves posśıveis, existem chaves com h(c1) = h(c2), que geram colisões.
Temos dois métodos para lidar com isso:

• Hashing perfeito: Escolhe uma função hash, que para um dado conjunto
de chaves não tem colisões. Isso é posśıvel se o conjunto de chaves é
conhecido e estático.

• Invente outro método de resolução de colisões.

2.1. Hashing com listas encadeadas

Seja h : U → [m] uma função hash. Mantemos uma coleção de m listas
l0, . . . , lm−1 tal que a lista li contém as chaves c com valor hash h(c) = i.
Supondo que a avaliação de h é posśıvel em O(1), a inserção custa O(1), e o
teste é proporcional ao tamanho da lista.
Para obter uma distribuição razoável das chaves nas listas, supomos que h é
uma função hash simples e uniforme:

Pr[h(c) = i] = 1/m. (2.1)
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Seja ni := |li| o tamanho da lista i e cji := Pr[h(i) = j] a variável aleatória
que indica se chave j pertence a lista i. Temos ni =

∑
1≤j≤n cji e com isso

E[ni] = E[
∑
1≤j≤n

cji] =
∑
1≤j≤n

E[cji] =
∑
1≤j≤n

Pr[h(cj) = i] = n/m.

O valor α := n/m é a fator de ocupação da tabela hash.

1 i n s e r t (c ,H) :=
2 i n s e r t (c ,lh(c) )
3
4 lookup (c ,H) :=
5 lookup (c ,lh(c) )
6
7 d e l e t e (c ,H) :=
8 d e l e t e (c ,lh(c) )

Teorema 2.1
Uma busca sem sucesso precisa tempo esperado de Θ(1+ α).

Prova. A chave c tem a probabilidade 1/m de ter um valor hash i. O
tamanho esperado da lista i é α. Uma busca sem sucesso nessa lista precisa
tempo Θ(α). Junto com a avaliação da função hash em Θ(1), obtemos tempo
esperado total Θ(1+ α). �

Teorema 2.2
Uma busca com sucesso precisa tempo esperado de Θ(1+ α).

Prova. Supomos que a chave c é uma das chaves na tabela com probabilidade
uniforme. Então, a probabilidade de pertencer a lista i (ter valor hash i) é
ni/n. Uma busca com sucesso toma tempo Θ(1) para avaliação da função
hash, e mais um número de operações proporcional à posição p da chave na
sua lista. Com isso obtemos tempo esperado Θ(1+ E[p]).
Para determinar a posição esperada na lista, E[p], seja c1, . . . , cn a sequência
em que a chaves foram inseridas. Supondo que inserimos as chaves no inicio
da lista, E[p] é um mais que o número de chaves inseridos depois de c na
mesma lista.
Seja Xij um variável aleatória que indica se chaves ci e cj tem o mesmo valor
hash. E[Xij] = Pr[h(ci) = h(cj)] =

∑
1≤k≤m Pr[h(ci) = k]Pr[h(cj) = k] =

1/m. Seja pi a posição da chave ci na sua lista. Temos

E[pi] = E[1+
∑
j:j>i

Xij] = 1+
∑
j:j>i

E[Xij] = 1+ (n− i)/m
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e para uma chave aleatória c

E[p] =
∑
1≤i≤n

1/n E[pi] =
∑
1≤i≤n

1/n(1+ (n− i)/m)

= 1+ n/m− (n+ 1)/(2m) = 1+ α/2− α/(2n).

Portanto, o tempo esperado de uma busca com sucesso é

Θ(1+ E[p]) = Θ(2+ α/2− α/2n) = Θ(1+ α).

�

Seleção de uma função hash Para implementar uma tabela hash, temos
que escolher uma função hash, que satisfaz (2.1). Para facilitar isso, supomos
que o universo de chaves é um conjunto U = [u] de números inteiros. (Para
tratar outro tipos de chave, costuma-se convertê-los para números inteiros.)
Se cada chave ocorre com a mesma probabilidade, h(i) = i mod m é uma
função hash simples e uniforme. Essa abordagem é conhecida como método
de divisão. O problema com essa função na prática é que não conhecemos a
distribuição de chaves, e ela provavelmente não é uniforme. Por exemplo, se
m é par, o valor hash de chaves pares é par, e de chaves ı́mpares é ı́mpar, e se
m = 2k o valor hash consiste nos primeiros k bits. Uma escolha que funciona
na prática é um número primo “suficientemente” distante de uma potência de
2.
O método de multiplicação define

h(c) = bm {Ac}c .

O método funciona para qualquer valor de m, mas depende de uma escolha
adequada de A ∈ R. Knuth propôs A ≈ (

√
5− 1)/2.

Hashing universal Outra idéia: Para qualquer função hash h fixa, sempre
existe um conjunto de chaves, tal que essa função hash gera muitas colisões.
(Em particular, um “adversário” que conhece a função hash pode escolher
chaves c, tal que h(c) = const.. Para evitar isso podemos escolher uma função
hash randômica de uma famı́lia de funções hash.
Uma famı́lia H de funções hash U→ [m] é universal se

|{h ∈ H | h(c1) = h(c2)}| = ||H/m

ou equivalente
Pr[h(c1) = h(c2)] = 1/m

para qualquer par de chaves c1, c2.
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Teorema 2.3
Se escolhemos uma função hash h ∈ H uniformemente, para uma chave ar-
bitrária c o tamanho esperado de lh(c) é

• α, caso c 6∈ H, e

• 1+ α, caso c ∈ H.

Prova. Para chaves c1, c2 seja Xij = [h(c1) = h(c2)] e temos

E[Xij] = Pr[Xij = 1] = Pr[h(c1) = h(c2)] = 1/m

pela universalidade de H. Para uma chave fixa c seja Yc o número de colisões.

E[Yc] = E

[ ∑
c ′∈H
c ′ 6=c

Xcc ′

]
=
∑
c ′∈H
c ′ 6=c

E[Xcc ′ ] ≤
∑
c ′∈H
c ′ 6=c

1/m.

Para uma chave c 6∈ H, o tamanho da lista é Yc, e portanto o tem tamanho
esperado E[Yc] ≤ n/m = α. Caso c ∈ H, o tamanho da lista é 1 + Yc e com
E[Yc] = (n− 1)/m esperadamente

1+ (n− 1)/m = 1+ α− 1/m < 1+ α.

�
Um exemplo de um conjunto de funções hash universais: Seja c = (c0, . . . , cr)m
uma chave na base m, escolhe a = (a0, . . . , ar)m randomicamente e define

ha =
∑
0≤i≤r

ciai mod m.

Hashing perfeito Hashing é perfeito sem colisões. Isso podemos garantir so-
mente caso conheçemos a chaves a serem inseridos na tabela. Para uma função
aleatória de uma famı́lia universal de funções hash para uma tabela hash de ta-
manhom, o número esperado de colisões é E[

∑
i 6=j Xij =

∑
i6=j E[Xij] ≤ n2/m.

Portanto, caso esolhemos uma tabela de tamanho m > n2 o número esperado
de colisões é menos que um. Em particular, para m > 2n2 a probabilidade de
uma colisão é P[

∑
i 6=j Xij ≥ 0] ≤

∑
i6=j P[Xij = 1] = n

2/m < 1/2.
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2.2. Hashing com endereçamento aberto

Uma abordagem para resolução de colisões, chamada endereçamento aberto,
é escolher uma outra posição para armazenar uma chave, caso h(c) é ocu-
pada. Uma estratégia para conseguir isso é procurar uma posição livre numa
permutação de todos ı́ndices restantes. Assim garantimos que um insert tem
sucesso enquanto ainda existe uma posição livre na tabela. Uma função hash
h(c, i) com dois argumentos, tal que h(c, 1), . . . , h(c,m) é uma permutação
de [m], representa essa estratégia.

1 i n s e r t (c ,H) :=
2 for i in [m]
3 i f H[h(c, i)] = free
4 H[ h( c , i )]= c
5 return
6
7 lookup (c ,H) :=
8 for i in [m]
9 i f H[h(c, i)] = free

10 return f a l s e
11 i f H[h(c, i)] = c
12 return t rue
13 return f a l s e

A função h(c, i) é uniforme, se a probabilidade de uma chave randômica ter
associada uma dada permutação é 1/m!. A seguir supomos que h é uniforme.

Teorema 2.4
As funções lookup e insert precisam no máximo 1/(1− α) testes caso a chave
não está na tabela.

Prova. Seja X o número de testes até achar uma posição livre. Temos

E[X] =
∑
i≥1

iPr[X = i] =
∑
i≥1

∑
j≥i

Pr[X = i] =
∑
i≥1

Pr[X ≥ i].

Com Ti o evento que o teste i ocorre e a posição i é ocupada, podemos escrever

Pr[X ≥ i] = Pr[T1∩· · ·∩Ti−1] = Pr[T1]Pr[T2|T1]Pr[T3|T1, T2] · · ·Pr[Ti−1|T1, . . . , Ti−2].

Agora Pr[T1] = n/m, e como h é uniforme Pr[T2|T1] = n − 1/(m − 1) e em
geral

Pr[Tk|T1, . . . Tk−1] = (n− k+ 1)/(m− k+ 1) ≤ n/m = α.
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Portanto Pr[X ≥ i] ≤ αi−1 e

E[X] =
∑
i≥1

Pr[X ≥ i] ≤
∑
i≥1

αi−1 =
∑
i≥0

αi = 1/(1− α).

�

Lema 2.1
Para i < j, temos Hi −Hj ≤ ln(i) − ln(j).

Prova.

Hi −Hj ≤
∫ i+1
j+1

1

x− 1
dx = ln(i) − ln(j)

�

Teorema 2.5
Caso α < 1 a função lookup precisa esperadamente 1/α ln 1/(1 − α) testes
caso a chave esteja na tabela, e cada chave tem a mesma probabilidade de ser
procurada.

Prova. Seja c a i-gésima chave inserida. No momento de inserção temos
α = (i − 1)/m e o número esperado de testes T até encontrar a posição livre
foi 1/(1 − (i − 1)/m) = m/(m − (i − 1)), e portanto o número esperado de
testes até encontrar uma chave arbitrária é

E[T ] = 1/n
∑
1≤i≤n

m/(m−(i− 1)) = 1/α
∑
0≤i<n

1/(m− i) = 1/α(Hm−Hm−n)

e com Hm −Hm−n ≤ ln(m) − ln(m− n) temos

E[T ] = 1/α(Hm −Hm−n) < 1/α(ln(m) − ln(m− n)) = 1/α ln(1/(1− α)).

�
Remover elementos de uma tabela hash com endereçamento aberto é mais
dif́ıcil, porque a busca para um elemento termina ao encontrar uma posição
livre. Para garantir a corretude de lookup, temos que marcar posições como
“removidas” e continuar a busca nessas posições. Infelizmente, nesse caso,
as garantias da complexidade não mantem-se – após uma série de deleções e
inserções toda posição livre será marcada como “removida” tal que delete e
lookup precisam n passos. Portanto o endereçamento aberto é favorável só se
temos nenhuma ou poucas deleções.
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Funções hash para endereçamento aberto

• Linear: h(c, i) = h(c) + i mod m

• Quadrática: h(c, i) = h(c) + c1i+ c2i
2 mod m

• Hashing duplo: h(c, i) = h1(c) + ih2(c) mod m

Nenhuma das funções é uniforme, mas o hashing duplo mostra um bom de-
sempenho na prática.

2.3. Cuco hashing

Cuco hashing é outra abordagem que procura posições alternativas na tabela
em caso de colisões, com o objetivo de garantir um tempo de acesso constante
no pior caso. Para conseguir isso, usamos duas funções hash h1 e h2, e inse-
rimos uma chave em uma das duas posições h1(c) ou h2(c). Desta forma a
busca e a deleção possuem complexidade constante O(1):

1 lookup (c ,H) :=
2 i f H[h1(c)] = c or H[h2(c)] = c
3 return t rue
4 return f a l s e
5
6 d e l e t e (c ,H) :=
7 i f H[h1(c)] = c
8 H[h1(c)] := free
9 i f H[h2(c)] = c

10 H[h2(c)] := free
Inserir uma chave é simples, caso uma das posições alternativas é livre. No
caso contrário, a solução do cuco hashing é comportar-se como um cuco com
ovos de outras aves que jogá-los fora do seu “ninho”: “insert” ocupa a posição
de uma das duas chaves. A chave “jogada fora” será inserida novamente na
tabela. Caso a posição alternativa dessa chave é livre, a inserção termina.
Caso contrário, o processo se repete. Esse procedimento termina após uma
série de reinserções ou entra num laço infinito. Nesse último caso temos que
realocar todas chaves com novas funções hash.

1 i n s e r t (c ,H) :=
2 i f H[h1(c)] = c or H[h2(c)] = c
3 return
4 p := h1(c)
5 do n vezes
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6 i f H[p] = free
7 H[p] := c
8 return
9 swap (c ,H[p])

10 { escolhe a outra posição da chave atual }
11 i f p = h1(c)
12 p := h2(c)
13 else
14 p := h1(c)
15 rehash (H)
16 i n s e r t (c ,H)

Uma maneira de visulizar uma tabela hash com cuco hashing, é usar o grafo
cuco: Caso foram inseridos as chaves c1, . . . , cn na tabela nas posições p1, . . . , pn,
o grafo é G = (V,A), com V = [m] é (pi, h2(ci)) ∈ A caso h1(ci) = pi
e (pi, h1(ci)) ∈ A caso h2(ci) = pi, i.e., os arcos apontam para a posição
alternativa. O grafo cuco é um grafo direcionado e eventualmente possui
ciclos. Uma caracteŕıstica do grafo cuco é que uma posições p é eventual-
mente analisada na inserção de uma chave c somente se existe um caminho
de h1(c) ou h2(c) para p. Para a analise é suficiente considerar o grafo cuco
não-direcionado.

Exemplo 2.1
Para chaves de dois d́ıgitos c1c2 seja h1(c) = 3c1 + c2 mod m e h2(c) =
4c1 + c2. Para m = 10 obtemos para uma sequencia aleatória de chaves

c 31 41 59 26 53 58 97
h1(c) 0 3 4 2 8 3 4
h2(c) 3 7 9 4 3 8 3

e a seguinte sequencia de tabelas hash

0 1 2 3 4 5 6 7 8 9
Inicial

31 Inserção 31
31 41 Inserção 41
31 41 59 Inserção 59
31 26 41 59 Inserção 26
31 26 41 59 53 Inserção 53
31 26 58 59 41 53 Inserção 58
31 26 58 97 41 53 59 Inserção 59

♦
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Lema 2.2
Para posições i e j e um c > 1 tal que m ≥ 2cn, a probabilidade de existir um

caminho mı́nimo de i para j de comprimento d ≥ 1 é, no máximo, c−d/m.

Prova. Observe que a probabilidade de um item c ter posições i e j como
alternativas é no máximo P[h1(c) = i, h2(c) = j] + P[h1(c) = j, h2(c) = i] =
2/m2. Portanto a probabilidade de pelo menos uma das n chaves ter essa
caracteŕıstica é no máximo 2n/m2 = c−1/m.
A prova do lema é por indução sobre d. Para d = 1 a afirmação está correto
pela observação acima. Para d > 1 existe um caminho mı́nimo de compri-
mento d − 1 de i para um k. A probabilidade disso é no máximo c−(d−1)/m
e a probabilidade de existir um elemento com posições alternativas k e j no
máximo c−1/m. Portanto, para um k fixo, a probabilidade existir um cami-
nho de comprimento d é no máximo c−d/m2 e considerando todas posições k
posśıveis no máximo c−d/m. �
Com isso a probabilidade de existir um caminho entre duas chaves i e j, é
igual a probabilidade de existir um caminho começando em h1(i) ou h2(i) e
terminando em h1(j) ou h2(j), que é no máximo 4

∑
i≥1 c

−i/m ≤ 4/m(c −
1) = O(1/m). Logo o número esperado de itens visitados numa inserção é
4n/m(c− 1) = O(1), caso não é necessário reconstruir a tabela hash.

2.4. Filtros de Bloom

Um filtro de Bloom armazena um conjunto de n chaves, com as seguintes
restrições:

• Não é mais posśıvel remover elementos.

• É posśıvel que o teste de pertinência tem sucesso, sem o elemento fazer
parte do conjunto (“false positive”).

Um filtro de Bloom consiste em m bits Bi, 1 ≤ i ≤ m, e usa k funções hash
h1, . . . , hk.

1 i n s e r t (c ,B) :=
2 for i in 1 . . . k
3 bhi(c) := 1
4 end for
5
6 lookup (c ,B) :=
7 for i in 1 . . . k
8 i f bhi(c) = 0
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Tabela 2.1.: Complexidade das operações em tabelas hash. Complexidades
em negrito são amortizados.

insert lookup delete

Listas encadeadas Θ(1) Θ(1 + α) Θ(1 + α)
Endereçamento aberto O(1/(1 − α)) O(1/(1 − α)) -
(com/sem sucesso) O(1/α ln 1/(1 − α)) O(1/α ln 1/(1 − α)) -
Cuco Θ(1) Θ(1) Θ(1)

9 return f a l s e
10 return t rue

Após de inserir n chaves, um dado bit é ainda 0 com probabilidade

p ′ =

(
1−

1

m

)kn
=

(
1−

kn/m

kn

)kn
≈ e−kn/m

que é igual ao valor esperado da fração de bits não setados1. Sendo ρ a fração
de bits não setados realmente, a probabilidade de erradamente classificar um
elemento como membro do conjunto é

(1− ρ)k ≈ (1− p ′)k ≈
(
1− e−kn/m

)k
porque ρ é com alta probabilidade perto do seu valor esperado (Broder e
Mitzenmacher, 2003). Broder e Mitzenmacher (2003) também mostram que
o número ótimo k de funções hash para dados valores de n,m é m/n ln 2 e
com isso temos um erro de classificação ≈ (1/2)k.
Aplicações:

1. Hifenação: Manter uma tabela de palavras com hifenação excepcional
(que não pode ser determinado pelas regras).

2. Comunicação efetiva de conjuntos, p.ex. seleção em bancos de dados dis-
tribúıdas. Para calcular um join de dois bancos de dados A, B, primeiro
A filtra os elementos, mando um filtro de Bloom SA para B e depois B
executa o join baseado em SA. Para eliminação de eventuais elementos
classificados erradamente, B manda os resultados para A e A filtra os
elementos errados.

1Lembrando que ex ≥ (1 + x/n)n para n > 0.
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Para vários problemas não conhecemos um algoritmo eficiente. Para proble-
mas NP-completos, em particular, uma solução eficiente é pouco provável. Um
algoritmo de aproximação calcula uma solução aproximada para um problema
de otimização. Diferente de uma heuŕıstica, o algoritmo garante a qualidade da
aproximação no pior caso. Dado um problema e um algoritmo de aproximação
A, escrevemos A(x) = y para a solução aproximada da instância x, ϕ(x, y)
para o valor dessa solução, y∗ para a solução ótima e OPT(x) = ϕ(x, y∗) para
o valor da solução ótima.

3.1. Problemas, classes e reduções

Definição 3.1
Um problema de otimização Π = (P, ϕ, opt) é uma relação binária P ⊆ I× S
com instâncias x ∈ I e soluções y ∈ S, junto com

• uma função de otimização (função de objetivo) ϕ : P → N (ou Q).

• um objetivo: Encontrar mı́nimo ou máximo

OPT(x) = opt{ϕ(x, y) | (x, y) ∈ P}

junto com uma solução y∗ tal que f(x, y∗) = OPT(x).

O par (x, y) ∈ P caso y é uma solução para x.

Uma instância x de um problema de otimização possui soluções S(x) = {y |

(x, y) ∈ P}.

Convenção 3.1
Escrevemos um problema de otimização na forma

Nome

Instância x

Solução y

Objetivo Minimiza ou maximiza ϕ(x, y).
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Com um dado problema de otimização correspondem três problemas:

• Construção: Dado x, encontra a solução ótima y∗ e seu valor OPT(x).

• Avaliação: Dado x, encontra valor ótimo OPT(x).

• Decisão: Dado x e k, decide se OPT(x) ≥ k (maximização) ou OPT(x) ≤
k (minimização).

Definição 3.2
Uma relação binária R é polinomialmente limitada se

∃p ∈ poly : ∀(x, y) ∈ R : |y| ≤ p(|x|).

Definição 3.3 (Classes de complexidade)
A classe PO consiste dos problemas de otimização tal que existe um algoritmo
polinomial A com ϕ(x,A(x)) = OPT(x) para x ∈ I.
A classe NPO consiste dos problemas de otimização tal que

(i) As instâncias x ∈ I são reconhećıveis em tempo polinomial.

(ii) A relação P é polinomialmente limitada.

(iii) Para y arbitrário, polinomialmente limitado: (x, y) ∈ P é decid́ıvel em
tempo polinomial.

(iv) ϕ é computável em tempo polinomial.

Definição 3.4
Uma redução preservando a aproximação entre dois problemas de minimização
Π1 e Π2 consiste num par de funções f e g (computáveis em tempo polinomial)
tal que para instância x1 de Π1, x2 := f(x1) é instância de Π2 com

OPTΠ2(x2) ≤ OPTΠ1(x1) (3.1)

e para uma solução y2 de Π2 temos uma solução y1 := g(x1, y2) de Π1 com

ϕΠ1(x1, y1) ≤ ϕΠ2(x2, y2) (3.2)

Uma redução preservando a aproximação fornece uma α-aproximação para Π1
dada uma α-aproximação para Π2, porque

ϕΠ1(x1, y1) ≤ ϕΠ2(x2, y2) ≤ αOPTΠ2(x2) ≤ αOPTΠ1(x1).

Observe que essa definição é vale somente para problemas de minimização. A
definição no caso de maximização é semelhante.
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3.2. Medidas de qualidade

Uma aproximação absoluta garante que D(x, y) = |OPT(x) −ϕ(x, y)| ≤ D
para uma constante D e todo x, enquanto uma aproximação relativa garante
que o erro relativo E(x, y) = D(x, y)/max{OPT(x), ϕ(x, y)} ≤ ε ≤ 1 todos
x. Um algoritmo que consegue um aproximação com constante ε também
se chama ε-aproximativo. Tais algoritmos fornecem uma solução que difere
no máximo um fator constante da solução ótima. A classe de problemas de
otimização que permitem uma ε-aproximação em tempo polinomial para uma
constante ε se chama APX.
Uma definição alternativa é a taxa de aproximação R(x, y) = 1/(1−E(x, y)) ≥
1. Um algoritmo com taxa de aproximação r se chama r-aproximativo. (Não
tem perigo de confusão com o erro relativo, porque r ≥ 1.)

Aproximação relativa

ϕ(x, y)

OPT

E(x, y) = D(x,y)
OPT

D(x, y)

ϕ(x, y)

OPT

E(x, y) = D(x,y)
ϕ(x,y)

D(x, y)

Exemplo 3.1
Coloração de grafos planares e a problema de determinar a árvore geradora e
a árvore Steiner de grau mı́nimo (Fürer e Raghavachari, 1994) permitem uma
aproximação absoluta, mas não o problema da mochila.
Os problemas da mochila e do caixeiro viajante métrico permitem uma apro-
ximação absoluta constante, mas não o problema do caixeiro viajante. ♦

3.3. Técnicas de aproximação

3.3.1. Algoritmos gulosos

Cobertura de vértices
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Algoritmo 3.1 (Cobertura de vértices)
Entrada Grafo não-direcionado G = (V, E).

Sáıda Cobertura de vértices C ⊆ V.

1 VC-GV(G) :=
2 (C,G) := Reduz (G)
3 i f V = ∅ then
4 return C

5 else
6 e s c o l h e v ∈ V : deg(v) = ∆(G) { grau máximo }
7 return C ∪ {v} ∪VC-GV(G − v)
8 end i f

Proposição 3.1
O algoritmo VC-GV é uma O(log |V |)-aproximação.
Prova. Seja Gi o grafo depois da iteração i e C∗ uma cobertura ótima, i.e.,
|C∗| = OPT(G).
A cobertura ótima C∗ é uma cobertura para Gi também. Logo, a soma dos
graus dos vértices em C∗ (contando somente arestas em Gi!) ultrapassa o
número de arestas em Gi ∑

v∈C∗
δGi(v) ≥ ‖Gi‖

e o grau médio dos vértices em Gi satisfaz

δ̄Gi(Gi) =

∑
v∈C∗ δGi(v)

|C∗|
≥ ‖Gi‖

|C∗|
=
‖Gi‖

OPT(G)
.

Como o grau máximo é maior que o grau médio temos também

∆(Gi) ≥
‖Gi‖

OPT(G)
.

Com isso podemos estimar∑
0≤i<OPT

∆(Gi) ≥
∑

0≤i<OPT

‖Gi‖
|OPT(G)|

≥
∑

0≤i<OPT

‖GOPT‖
|OPT(G)|

= ‖GOPT‖ = ‖G‖−
∑

0≤i<OPT

∆(Gi)
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ou ∑
0≤i<OPT

∆(Gi) ≥ ‖G‖/2,

i.e. a metade das arestas foi removido em OPT iterações. Essa estimativa
continua a ser válido, logo após

OPT dlg ‖G‖e ≤ OPT d2 log |G|e = O(OPT log |G|)

iterações não tem mais arestas. Como em cada iteração foi escolhido um
vértice, a taxa de aproximação é log |G|. �

Algoritmo 3.2 (Cobertura de vértices)
Entrada Grafo não-direcionado G = (V, E).

Sáıda Um cobertura de vértices C ⊆ V.

1 VC-GE(G) :=
2 (C,G) := Reduz (G)
3 i f E = ∅ then
4 return C

5 else
6 e s c o l h e e = {u, v} ∈ E
7 return C ∪ {u, v} ∪VC-GE(G − {u, v})
8 end i f

Proposição 3.2
Algoritmo VC-GE é uma 2-aproximação para VC.

Prova. Cada cobertura contém pelo menos um dos dois vértices escolhidos,
logo

|C| ≥ φVC-GE(G)/2⇒ 2OPT(G) ≥ φVC-GE(G).

�

Algoritmo 3.3 (Cobertura de vértices)
Entrada Grafo não-direcionado G = (V, E).

Sáıda Cobertura de vértices C ⊆ V.

1 VC-B(G) :=
2 (C,G) := Reduz (G)
3 i f V = ∅ then
4 return C
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5 else
6 e s c o l h e v ∈ V : deg(v) = ∆(G) { grau máximo }
7 C1 := C ∪ {v} ∪VC-B(G − v)
8 C2 := C ∪N(v) ∪VC-B(G − v −N(v))
9 i f |C1| < |C2| then

10 return C1
11 else
12 return C2
13 end i f
14 end i f

Problema da mochila

Knapsack

Instância Um número n de itens com valores vi ∈ N e tamanhos ti ∈ N,
para i ∈ [n], um limite M, tal que ti ≤ M (todo item cabe na
mochila).

Solução Uma seleção S ⊆ [n] tal que
∑
i∈S ti ≤M.

Objetivo Maximizar o valor total
∑
i∈S vi.

Observação: O problema da mochila é NP-completo.

Como aproximar?

• Idéia: Ordene por vi/ti (“valor médio”) em ordem decrescente e enche
o mochila o mais posśıvel nessa ordem.

Abordagem

1 K−G(vi ,ti ) :=
2 ordene os i t e n s t a l que vi/ti ≥ vj/tj , ∀i < j .
3 for i ∈ X do
4 i f ti < M then
5 S := S ∪ {i}
6 M :=M− ti
7 end i f
8 end for
9 return S
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Aproximação boa?

• Considere

v1 = 1, . . . , vn−1 = 1, vn =M− 1

t1 = 1, . . . , tn−1 = 1, tn =M = kn k ∈ N arbitrário

• Então:

v1/t1 = 1, . . . , vn−1/tn−1 = 1, vn/tn = (M− 1)/M < 1

• K-G acha uma solução com valor ϕ(x) = n−1, mas o ótimo é OPT(x) =
M− 1.

• Taxa de aproximação:

OPT(x)/ϕ(x) =
M− 1

n− 1
=
kn− 1

n− 1
≥ kn− k

n− 1
= k

• K-G não possui taxa de aproximação fixa!

• Problema: Não escolhemos o item com o maior valor.

Tentativa 2: Modificação

1 K−G’ ( vi ,ti ) :=
2 S1 := K−G(vi ,ti )
3 v1 :=

∑
i∈S1 vi

4 S2 := {argmaxi vi}
5 v2 :=

∑
i∈S2 vi

6 i f v1 > v2 then
7 return S1
8 else
9 return S2

10 end i f

Aproximação boa?

• O algoritmo melhorou?

• Surpresa

Proposição 3.3
K-G’ é uma 2-aproximação, i.e. OPT(x) < 2ϕK-G ′(x).
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Prova. Seja j o primeiro item que K-G não coloca na mochila. Nesse ponto
temos valor e tamanho

v̄j =
∑
1≤i<j

vi ≤ ϕK-G(x) (3.3)

t̄j =
∑
1≤i<j

ti ≤M (3.4)

Afirmação: OPT(x) < v̄j + vj. Nesse caso

(a) Seja vj ≤ v̄j.

OPT(x) < v̄j + vj ≤ 2v̄j ≤ 2ϕK-G(x) ≤ 2ϕK-G ′

(b) Seja vj > v̄j

OPT(x) < v̄j + vj < 2vj ≤ 2vmax ≤ 2ϕK-G ′

Prova da afirmação: No momento em que item j não cabe, temos espaço
M − t̄j < tj sobrando. Como os itens são ordenados em ordem de densidade
decrescente, obtemos um limite superior para a solução ótima preenchendo
esse espaço com a densidade vj/tj:

OPT(x) ≤ v̄j + (M− t̄j)
vj

tj
< v̄j + vj.

�

3.3.2. Aproximações com randomização

Randomização

• Idéia: Permite escolhas randômicas (“joga uma moeda”)

• Objetivo: Algoritmos que decidem correta com probabilidade alta.

• Objetivo: Aproximações com valor esperado garantido.

• Minimização: E[ϕA(x)] ≤ 2OPT(x)

• Maximização: 2E[ϕA(x)] ≥ OPT(x)

Randomização: Exemplo
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3.3. Técnicas de aproximação

Satisfatibilidade máxima, Maximum SAT

Instância Uma fórmula ϕ ∈ L(V) sobre variáveis V = {v1, . . . , vm}, ϕ =
C1 ∧ C2 ∧ · · ·∧ Cn em FNC.

Solução Uma atribuição de valores de verdade a : V → B.

Objetivo Maximiza o número de cláusulas satisfeitas

|{Ci | [[Ci]]a = 1}| .

Nossa solução

1 SAT−R(ϕ) :=
2 s e j a ϕ = ϕ(v1, . . . , vk)
3 for a l l i ∈ [1, k] do
4 e s c o l h e vi = 1 com probab i l i dade 1/2
5 end for

Observação 3.1
A quantidade [[C]]a é o valor da cláusula C na atribuição a. ♦

Aproximação?

• Surpresa: Algoritmo é 2-aproximação.

Prova. O valor esperado de uma cláusula C com l variáveis é E[[[C]]] =
P[[[C]] = 1] = 1 − 2−l ≥ 1/2. Logo o valor esperado do número total T =∑
i∈[n][[Ci]] de cláusulas satisfeitas é

E[T ] = E[
∑
i∈[n]

[[Ci]]] =
∑
i∈[n]

E[[[Ci]]] ≥ n/2 ≥ OPT/2

pela linearidade do valor esperado. �

Outro exemplo
Cobertura de vértices guloso e randomizado.

1 VC−RG(G) :=
2 s e j a w̄ :=

∑
v∈V deg(v)

3 C := ∅
4 while E 6= ∅ do
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3. Algoritmos de aproximação

5 e s c o l h e v ∈ V com probab i l i dade deg(v)/w̄
6 C := C ∪ {v}
7 G := G− v
8 end while
9 return C ∪ V

Resultado: E[φVC-RG(x)] ≤ 2OPT(x).

3.3.3. Programação linear

Técnicas de programação linear são frequentemente usadas em algoritmo de
aproximação. Entre eles são o arredondamento randomizado e algoritmos
primais-duais.

Exemplo 3.2 (Arredondamento para cobertura por conjuntos)
Considere o problema de cobertura por conjuntos

minimiza
∑
i∈[n]

wixi, (3.5)

sujeito a
∑

i∈[n]|u∈Ci

xi ≥ 1, ∀u ∈ U,

xi ∈ {0, 1}, ∀i ∈ [n].

Seja fe a frequência de um elemento e, i.e. o número de conjuntos que contém
e e f a maior frequência. Um algoritmo de arredondamento simples é dado
por

Teorema 3.1
A seleção dos conjuntos com xi ≥ 1/f na relaxação linear de (3.5) é uma
f-aproximação do problema de cobertura de conjuntos.

Prova. Como |{i ∈ [n] | u ∈ Ci}| ≤ f, temos xi ≥ 1/f em média sobre esse
conjunto. Logo existe, para cada u ∈ U um conjunto com xi ≥ 1/f que cobre
u e a seleção é uma solução válida. O arrendondamento aumenta o custo por
no máximo um fator f, logo temos uma f-aproximação. � ♦

3.4. Esquemas de aproximação

Novas considerações

• Freqüentemente uma r-aproximação não é suficiente. r = 2: 100% de
erro!
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3.4. Esquemas de aproximação

• Existem aproximações melhores? p.ex. para SAT? problema do mochila?

• Desejável: Esquema de aproximação em tempo polinomial (EATP);
polynomial time approximation scheme (PTAS)

– Para cada entrada e taxa de aproximação r:

– Retorne r-aproximação em tempo polinomial.

Um exemplo: Mochila máxima (Knapsack)

• Problema da mochila (veja página 102):

• Algoritmo MM-PD com programação dinâmica (pág. 150): tempoO(n
∑
i vi).

• Desvantagem: Pseudo-polinomial.

Denotamos uma instância do problema da mochila com I = ({vi}, {ti}).

1 MM−PTAS(I ,r) :=
2 vmax := maxi{vi}

3 t :=
⌊
log r−1

r
vmax

n

⌋
4 v ′i := bvi/2tc para i = 1, . . . , n
5 Def ine a nova i n s t â n c i a I ′ = ({v ′i}, {ti})
6 return MM PD(I ′ )

Teorema 3.2
MM-PTAS é uma r-aproximação em tempo O(rn3/(r− 1)).

Prova. A complexidade da preparação nas linhas 1–3 é O(n). A chamada
para MM-PD custa

O

(
n
∑
i

v ′i

)
= O

(
n
∑
i

vi

((r− 1)/r)(vmax/n)

)
= O

(
r

r− 1
n2
∑
i

vi/vmax

)
= O

(
r

r− 1
n3
)
.

Seja S = MM-PTAS(I) a solução obtida pelo algoritmo e S∗ uma solução
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3. Algoritmos de aproximação

ótima.

ϕMM-PTAS(I, S) =
∑
i∈S

vi ≥
∑
i∈S

2t
⌊
vi/2

t
⌋

definição de b·c

≥
∑
i∈S∗

2t
⌊
vi/2

t
⌋

otimalidade de MM-PD sobre v ′i

≥
∑
i∈S∗

vi − 2
t (A.2)

=

(∑
i∈S∗

vi

)
− 2t|S∗|

≥ OPT(I) − 2tn

Portanto

OPT(I) ≤ ϕMM-PTAS(I, S) + 2
tn ≤ ϕMM-PTAS(I, S) +

OPT(x)

vmax
2tn

⇐⇒ OPT(I)

(
1−

2tn

vmax

)
≤ ϕMM-PTAS(I, S)

e com 2tn/vmax ≤ (r− 1)/r

⇐⇒ OPT(I) ≤ rϕMM-PTAS(I, S).

�
Um EATP frequentemente não é suficiente para resolver um problema ade-
quadamente. Por exemplo temos um EATP para

• o problema do caixeiro viajante euclidiano com complexidadeO(n3000/ε)
(Arora, 1996);

• o problema do mochila múltiplo com complexidade O(n12(log 1/ε)/e8)
(Chekuri, Kanna, 2000);

• o problema do conjunto independente máximo em grafos com complexi-

dade O(n(4/π)(1/ε2+1)2(1/ε2+2)2) (Erlebach, 2001).

Para obter uma aproximação com 20% de erro, i.e. ε = 0.2 obtemos algoritmos
com complexidade O(n15000), O(n375000) e O(n523804), respectivamente!
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3.5. Aproximando o problema da árvore de Steiner mı́nima

3

22
1 1

1

2

22
1 1

1

Figura 3.1.: Grafo com fecho métrico.

3.5. Aproximando o problema da árvore de Steiner ḿınima

Seja G = (V,A) um grafo completo, não-direcionado com custos ca ≥ 0 nos
arcos. O problema da árvore Steiner mı́nima (ASM) consiste em achar o
subgrafo conexo mı́nimo que inclui um dado conjunto de vértices necessários
ou terminais R ⊆ V. Esse subgrafo sempre é uma árvore (ex. 3.1). O conjunto
V \ R forma os vértices Steiner. Para um conjunto de arcos A, define o custo
c(A) =

∑
a∈A ca.

Observação 3.2
ASM é NP-completo. Para um conjunto fixo de vértices Steiner V ′ ⊆ V \R, a
melhor solução é a árvore geradora mı́nima sobre R∪V ′. Portanto a dificuldade
é a seleção dos vértices Steiner da solução ótima. ♦

Definição 3.5
Os custos são métricos se eles satisfazem a desigualdade triangular, i.e.

cij ≤ cik + ckj

para qualquer tripla de vértices i, j, k.

Teorema 3.3
Existe uma redução preservando a aproximação de ASM para a versão métrica
do problema.

Prova. O fecho métrico de G = (V,A) é um grafo G ′ completo sobre vértices
e com custos c ′ij := dij, sendo dij o comprimento do menor caminho entre i
e j em G. Evidentemente c ′ij ≤ cij e portanto (3.1) é satisfeita. Para ver que
(3.2) é satisfeita, seja T ′ uma solução de ASM em G ′. Define T como união de
todos caminhos definidos pelos arcos em T ′, menos um conjunto de arcos para
remover eventuais ciclos. O custo de T é no máximo c(T ′) porque o custo de
todo caminho é no máximo o custo da aresta correspondente em T ′. �
Consequência: Para o problema do ASM é suficiente considerar o caso métrico.

109



3. Algoritmos de aproximação

2

2

1 1

1

Figura 3.2.: AGM sobre R e melhor solução. : vértice em R, : vértice
Steiner.

Teorema 3.4
O AGM sobre R é uma 2-aproximação para o problema do ASM.

Prova. Considere a solução ótima S∗ de ASM. Duplica todas arestas1 tal
que todo vértice possui grau par. Encontra um ciclo Euleriano nesse grafo.
Remove vértices duplicados nesse caminho. O custo do caminho C obtido
dessa forma não é mais que o dobro do custo original: o grafo com todas
arestas custa 2c(S∗) e a remoção de vértices duplicados não aumenta esse
custo, pela metricidade. Como esse caminho é uma árvore geradora, temos
c(A) ≤ c(C) ≤ 2c(S∗) para AGM A. �

3.6. Aproximando o PCV

Teorema 3.5
Para qualquer função α(n) computável em tempo polinomial o PCV não pos-
sui α(n)-aproximação em tempo polinomial, caso P 6= NP.

Prova. Via redução de HC para PCV. Para uma instância G = (V,A) de HC
define um grafo completo G ′ com

ca =

{
1 a ∈ A
α(n)n caso contrário

Se G possui um ciclo Hamiltoniano, então o custo da menor rota é n. Caso
contrário qualquer rota usa ao menos uma aresta de custo α(n)n e portanto
o custo total é ≥ α(n)n. Portanto, dado uma α(n)-aproximação de PCV
podemos decidir HC em tempo polinomial. �

Caso métrico No caso métrico podemos obter uma aproximação melhor.
Determina uma rota como segue:

1Isso transforma G num multigrafo.
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3.7. Aproximando problemas de cortes

1. Determina uma AGM A de G.

2. Duplica todas arestas de A.

3. Acha um ciclo Euleriano nesse grafo.

4. Remove vértices duplicados.

Teorema 3.6
O algoritmo acima define uma 2-aproximação.

Prova. A melhor solução do PCV menos uma aresta é uma árvore geradora
de G. Portanto c(A) ≤ OPT. A solução S obtida pelo algoritmo acima satisfaz
c(S) ≤ 2c(A) e portanto c(S) ≤ 2OPT, pelo mesmo argumento da prova do
teorema 3.4. �
O fator 2 dessa aproximação é resultado do passo 2 que duplica todas arestas
para garantir a existência de um ciclo Euleriano. Isso pode ser garantido
mais barato: A AGM A possui um número par de vértices com grau ı́mpar
(ver exerćıcio 3.2), e portanto podemos calcular um emparelhamento perfeito
mı́nimo E entre esse vértices. O grafo com arestas A ∪ E possui somente
vértices com grau par e portanto podemos aplicar os restantes passos nesse
grafo.

Teorema 3.7 (Cristofides)
A algoritmo usando um emparelhamento perfeito mı́nimo no passo 2 é uma
3/2-aproximação.

Prova. O valor do emparelhamento E não é mais que OPT/2: remove vértices
não emparelhados em E da solução ótima do PCV. O ciclo obtido dessa forma
é a união dois emparelhamentos perfeitos E1 e E2 formados pelas arestas pares
ou ı́mpares no ciclo. Com E1 o emparelhamento de menor custo, temos

c(E) ≤ c(E1) ≤ (c(E1) + c(E2))/2 = OPT/2

e portanto

c(S) = c(A) + c(E) ≤ OPT + OPT/2 = 3/2OPT.

�

3.7. Aproximando problemas de cortes

Seja G = (V,A, c) um grafo conectado com pesos c nas arestas. Lembramos
que um corte C é um conjunto de arestas que separa o grafo em dois partes
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3. Algoritmos de aproximação

Figura 3.3.: Identificação de dois terminais e um corte no grafo reduzido.
Vértices em verde, terminais em azul. A grafo reduzido possui
múltiplas arestas entre vértices.

S
.
∪ V \ S. Dado dois vértices s, t ∈ V, o problema de achar um corte mı́nimo

que separa s e t pode ser resolvido via fluxo máximo em tempo polinomial.
Generalizações desse problema são:

• Corte múltiplo mı́nimo (CMM): Dado terminais s1, . . . , sk determine o
menor corte C que separa todos.

• k-corte mı́nimo (k-CM): Mesmo problema, sem terminais definidos. (Ob-
serve que todos k componentes devem ser não vazios).

Fato 3.1
CMM é NP-dif́ıcil para qualquer k ≥ 3. k-CM possui uma solução polinomial

em tempo O(nk
2

) para qualquer k, mas é NP-dif́ıcil, caso k faz parte da
entrada (Goldschmidt e Hochbaum, 1988).

Solução de CMM Chamamos um corte que separa um vértice dos outros
um corte isolante. Idéia: A união de cortes isolantes para todo si é um
corte múltiplo. Para calcular o corte isolante para um dado terminal si,
identificamos os restantes terminais em um único vértice S e calculamos um
corte mı́nimo entre si e S. (Na identificação de vértices temos que remover
self-loops, e somar os pesos de múltiplas arestas.)
Isso leva ao algoritmo

Algoritmo 3.4 (CI)
Entrada Grafo G = (V,A, c) e terminais s1, . . . , sk.

Sáıda Um corte múltiplo que separa os si.
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3.7. Aproximando problemas de cortes

Figura 3.4.: Corte múltiplo e decomposição em cortes isolantes.

1 Para cada i ∈ [1, k] : Calcu la o c o r t e i s o l a n t e Ci de si .
2 Remove o maior d e s s e s c o r t e s e r e to rne a uni ão dos

r e s t a n t e s .

Teorema 3.8
Algoritmo 3.4 é uma 2− 2/k-aproximação.

Prova. Considere o corte mı́nimo C∗. De acordo com a Fig. 3.4 ele pode ser
representado pela união de k cortes que separam os k componentes individu-
almente:

C∗ =
⋃
i∈[k]

C∗i .

Cada aresta de C∗ faz parte das cortes das duas componentes adjacentes, e
portanto ∑

i∈[k]

w(C∗i ) = 2w(C
∗)

e ainda w(Ci) ≤ w(C∗i ) para os cortes Ci do algoritmo 3.4, porque usamos o
corte isolante mı́nimo de cada componente. Logo, para o corte C retornado
pelo algoritmo temos

w(C) ≤ (1− 1/k)
∑
i∈[k]

w(Ci) ≤ (1− 1/k)
∑
i∈[k]

w(C∗i ) ≤ 2(1− 1/k)w(C∗).

�
A análise do algoritmo é ótimo, como o exemplo da Fig. 3.5 mostra. O menor
corte que separa si tem peso 2− ε, portanto o algoritmo retorne um corte de
peso (2 − ε)k − (2 − ε) = (k − 1)(2 − ε), enquanto o menor corte que separa
todos terminais é o ciclo interno de peso k.
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3. Algoritmos de aproximação

Figura 3.5.: Exemplo de um grafo em que o algoritmo 3.4 retorne uma 2−2/k-
aproximação.

Solução de k-CM Problema: Como saber a onde cortar?

Fato 3.2
Existem somente n−1 cortes diferentes num grafo. Eles podem ser organizados
numa árvore de Gomory-Hu (AGH) T = (V, T). Cada aresta dessa árvore
define um corte associado em G pelos dois componentes após a sua remoção.

1. Para cada u, v ∈ V o menor corte u–v em G é igual a o menor corte u–v
em T (i.e. a aresta de menor peso no caminho único entre u e v em T).

2. Para cada aresta a ∈ T , w ′(a) é igual a valor do corte associado.

Por conseqüência, a AGH codifica o valor de todos cortes em G.
Ele pode ser calculado determinando n− 1 cortes s–t mı́nimos:

1. Define um grafo com um único vértice que representa todos vértices do
grafo original. Chama um vértice que representa mais que um vértice
do grafo original gordo.

2. Enquanto existem vértices gordos:

a) Escolhe um vértice gordo e dois vértices do grafo original que ele
representa.

b) Calcula um corte mı́nimo entre esses vértices.

c) Separa o vértice gordo de acordo com o corte mı́nimo encontrado.

Observação: A união dos cortes definidos por k− 1 arestas na AGH separa G
em pelo menos k componentes. Isso leva ao seguinte algoritmo.

Algoritmo 3.5 (KCM)
Entrada Grafo G = (V,A, c).
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3.8. Aproximando empacotamento unidimensional

Saida Um k-corte.

1 Calcu la uma AGH T em G .
2 Forma a uni ão dos k− 1 c o r t e s mais l e v e s

d e f i n i d o s por k− 1 a r e s t a s em T .

Teorema 3.9
Algoritmo 3.5 é uma 2− 2/k-aproximação.

Prova. Seja C∗ =
⋃
i∈[k] C

∗
i um corte mı́nimo, decomposto igual à prova

anterior. O nosso objetivo é demonstrar que existem k − 1 cortes definidos
por uma aresta em T que são mais leves que os C∗i .
Removendo C∗ de G gera componentes V1, . . . , Vk: Define um grafo sobre
esses componentes contraindo os vértices de uma componente, com arcos da
AGH T entre os componentes, e eventualmente removendo arcos até obter
uma nova árvore T ′. Seja C∗k o corte de maior peso, e define Vk como raiz
da árvore. Desta forma, cada componente V1, . . . , Vk−1 possui uma aresta
associada na direção da raiz. Para cada dessas arestas (u, v) temos

w(C∗i ) ≥ w ′(u, v)

porque C∗i isola o componente Vi do resto do grafo (particularmente separa u
e v), e w ′(u, v) é o peso do menor corte que separa u e v. Logo

w(C) ≤
∑
a∈T ′

w ′(a) ≤
∑
1≤i<k

w(C∗i ) ≤ (1−1/k)
∑
i∈[k]

w(C∗i ) = 2(1−1/k)w(C
∗).

�

3.8. Aproximando empacotamento unidimensional

Dado n itens com tamanhos si ∈ Z+, i ∈ [n] e contêineres de capacidade
S ∈ Z+ o problema do empacotamento unidimensional é encontrar o menor
número de contêineres em que os itens podem ser empacotados.

Empacotamento unidimensional (min-EU) (Bin packing)

Entrada Um conjunto de n itens com tamanhos si ∈ Z+, i ∈ [n] e o
tamanho de um contêiner S.

Solução Uma partição de [n] = C1∪· · ·∪Cm tal que
∑
i∈Ck si ≤ S para

k ∈ [m].

115



3. Algoritmos de aproximação

Objetivo Minimiza o número de partes (“contêineres”) m.

A versão de decisão do empacotamento unidimensional (EU) pede decidir se
o itens cabem em m contêineres.

Fato 3.3
EU é fortemente NP-completo.

Proposição 3.4
Para um tamanho S fixo EU pode ser resolvido em tempo O(nS

S

).

Prova. Podemos supor, sem perda de generalidade, que os itens possuem
tamanhos 1, 2, . . . , S − 1. Um padrão de alocação de um contêiner pode ser
descrito por uma tupla (t1, . . . , tS−1) sendo ti o número de itens de tamanho
i. Seja T o conjunto de todas padrões que cabem num contêiner. Como
0 ≤ ti ≤ S o número total de padrões T é menor que (S+ 1)S−1 = O(SS).
Uma ocupação de m contêineres pode ser descrito por uma tupla (n1, . . . , nT )
com ni sendo o número de contêineres que usam padrão i. O número de
contêineres é no máximo n, logo 0 ≤ ni ≤ n e o número de alocações diferentes
é no máximo (n+1)T = O(nT ). Logo podemos enumerar todas possibilidades
em tempo polinomial. �

Proposição 3.5
Para um m fixo, EU pode ser resolvido em tempo pseudo-polinomial.

Prova. Seja B(S1, . . . , Sm, i) ∈ {falso, verdadeiro} a resposta se itens i, i +
1, . . . , n cabem em m contêineres com capacidades S1, . . . , Sm. B satisfaz

B(S1, . . . , Sm, i) =

{∨
1≤j≤m
si≤Sj

B(S1, . . . , Sj − sj, . . . , Sm, i+ 1) i ≤ n

verdadeiro i > n

e B(S, . . . , S, 1) é a solução do EU2. A tabela B possui no máximo n(S+ 1)m

entradas, cada uma computável em tempo O(m), logo o tempo total é no
máximo O(mn(S+ 1)m). �

Observação 3.3
Em tempo adicional O(S) podemos resolver também min-EU, procurando o
menor i tal que B(S, . . . , S︸ ︷︷ ︸

i vezes

, 0, . . . , 0, n) é verdadeiro. ♦

A proposição 3.4 pode ser melhorada usando programação dinâmica.

2Observe que a disjunção vazia é falso.
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3.8. Aproximando empacotamento unidimensional

Proposição 3.6
Para um número fixo k de tamanhos diferentes, min-EU pode ser resolvido

em tempo O(n2k).

Prova. Seja B(i1, . . . , ik) o menor número de contêineres necessário para
empacotar ij itens do j-ésimo tamanho e T o conjunto de todas padrões de
alocação de um contêiner. B satisfaz

B(i1, . . . , ik) =

{
1+ min t∈T

t≤i
B(i1 − t1, . . . , ik − tk) caso (i1, . . . , ik) 6∈ T

1 caso contrário

e B(n1, . . . , nk) é a solução do EU, com ni o número de itens de tamanho i na
entrada. A tabela B tem no máximo nk entradas. Como o número de itens
em cada padrão de alocação é no máximo n, temos |T | ≤ nk e logo o tempo
total para preencher B é no máximo O(n2k). �

Corolário 3.1
Para um tamanho S fixo min-EU pode ser resolvido em tempo O(n2S).

Abordagem prática?

• Idéia simples: Próximo que cabe (PrC).

• Por exemplo: Itens 6, 7, 6, 2, 5, 10 com limite 12.

6 7 6

2

5 10

Aproximação?

• Interessante: PrC é 2-aproximação.

• Observação: PrC é um algoritmo on-line.
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3. Algoritmos de aproximação

Prova. Seja B o número de contêineres usadas, V =
∑
i∈[n] si. B ≤ 2 dVe

porque dois contêineres consecutivas contém uma soma > 1. Mas precisa-
mos pelo menos dVe contêineres, logo OPT(x) ≥ dVe. Portanto, ϕPrC(x) ≤
2 dVe ≤ 2OPT(x). �

Aproximação melhor?

• Isso é a melhor estimativa posśıvel para este algoritmo!

• Considere os 4n itens

1/2, 1/2n, 1/2, 1/2n, . . . , 1/2, 1/2n︸ ︷︷ ︸
2n vezes

• O que faz PrC? ϕPrC(x) = 2n: contêineres com

1/2

1/2n

1/2

1/2n

1/2

1/2n

1/2

1/2n

1/2

1/2n

1/2

1/2n

. . .

• Ótimo: n contêineres com dois elementos de 1/2 + um com 2n elementos
de 1/2n. OPT(x) = n = 1.

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2n
1/2n
1/2n
1/2n

1/2n
1/2n

. . .

...

• Portanto: Assintoticamente a taxa de aproximação 2 é estrito.

Melhores estratégias

• Primeiro que cabe (PiC), on-line, com “estoque” na memória

• Primeiro que cabe em ordem decrescente: PiCD, off-line.
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3.8. Aproximando empacotamento unidimensional

• Taxa de aproximação?

ϕPiC(x) ≤ d1.7OPT(x)e
ϕPiCD(x) ≤ 1.5OPT(x) + 1

Prova. (Da segunda taxa de aproximação.) Considere a partição A∪B∪C∪
D = {v1, . . . , vn} com

A = {vi | vi > 2/3}

B = {vi | 2/3 ≥ vi > 1/2}
C = {vi | 1/2 ≥ vi > 1/3}
D = {vi | 1/3 ≥ vi}

PiCD primeiro vai abrir |A| contêineres com os itens do tipo A e depois |B|
contêineres com os itens do tipo B. Temos que analisar o que acontece com
os itens em C e D.

Supondo que um contêiner contém somente itens do tipoD, os outros contêineres
tem espaço livre menos que 1/3, senão seria posśıvel distribuir os itens do tipo
D para outros contêineres. Portanto, nesse caso

B ≤
⌈
V

2/3

⌉
≤ 3/2V + 1 ≤ 3/2OPT(x) + 1.

Caso contrário (nenhum contêiner contém somente itens tipo D), PiCD en-
contra a solução ótima. Isso pode ser justificado pelos seguintes observações:

1) O número de contêineres sem itens tipo D é o mesmo (eles são os últimos
distribúıdos em não abrem um novo contêiner). Logo é suficiente mostrar

ϕPiCD(x \D) = OPT(x \D).

2) Os itens tipo A não importam: Sem itens D, nenhum outro item cabe
junto com um item do tipo A. Logo:

ϕPiCD(x \D) = |A|+ϕPiCD(x \ (A ∪D)).

3) O melhor caso para os restantes itens são pares de elementos em B e C:
Nesse situação, PiCD acha a solução ótima.

�
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3. Algoritmos de aproximação

Aproximação melhor?

• Tese doutorado D. S. Johnson, 1973, 70 pág

ϕPiCD(x) ≤
11

9
OPT(x) + 4

• Baker, 1985

ϕPiCD(x) ≤
11

9
OPT(x) + 3

3.8.1. Um esquema de aproximação assintótico para min-EU

Duas ideias permitem aproximar min-EU em (1+ε)OPT(I)+1 para ε ∈ (0, 1].

Ideia 1: Arredondamento Para uma instância I, define uma instância R
arredondada como segue:

1. Ordene os itens de forma não-decrescente e forma grupos de k itens.

2. Substitui o tamanho de cada item pelo tamanho do maior elemento no
seu grupo.

Lema 3.1
Para uma instância I e a instância R arredondada temos

OPT(R) ≤ OPT(I) + k

Prova. Supõe que temos uma solução ótima para I. Os itens da i-ésima grupo
de R cabem nos lugares dos itens da i+ 1-ésima grupo dessa solução. Para o
último grupo de R temos que abrir no máximo k contêineres. �

Ideia 2: Descartando itens menores

Lema 3.2
Supõe temos temos um empacotamento para itens de tamanho maior que s0
em B contêineres. Então existe um empacotamento de todos itens com no
máximo

max
{
B,
∑
i∈[n]

si/(S− s0) + 1
}

contêineres.
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3.8. Aproximando empacotamento unidimensional

Prova. Empacota os itens menores gulosamente no primeiro contêiner com
espaço suficiente. Sem abrir um novo contêiner o limite é obviamente correto.
Caso contrário, supõe que precisamos B ′ contêineres. B ′−1 contêineres contém
itens de tamanho total mais que S − s0. A ocupação total W deles tem que
ser menor que o tamanho total dos itens, logo

(B ′ − 1)(S− s0) ≤W ≤
∑
i∈[n]

si.

�

Juntando as ideias

Teorema 3.10
Para ε ∈ (0, 1] podemos encontrar um empacotamento usando no máximo
(1+ ε)OPT(I) + 1 contêineres.

Prova. O algoritmo tem dois passos:

1. Empacota todos itens de tamanho maior que s0 = dε/2 Se usando arre-
dondamento.

2. Empacota os itens menores depois.

Seja I ′ a instância com os n ′ ≤ n itens maiores. No primeiro passo, formamos
grupos com

⌊
n ′ε2/4

⌋
itens. Isso resulta em no máximo

n ′

bn ′ε2/4c
≤ 2n ′

n ′ε2/4
=
8

ε2

grupos. (A primeira desigualdade usa bxc ≥ x/2 para x ≥ 1. Podemos supor
que n ′ε2/4 ≥ 1, i.e. n ′ ≥ 4/ε2. Caso contrário podemos empacotar os itens
em tempo constante usando a proposição 3.6.)
Arredondando essa instância de acordo com lema 3.1 podemos obter uma

solução em tempo O(n16/ε
2

) pela proposição 3.6. Sabemos que OPT(I ′) ≥
n ′ dε/2 Se /S ≥ n ′ε/2. Logo temos uma solução com no máximo

OPT(I ′) +
⌊
nε2/4

⌋
≤ OPT(I ′) + n ′ε2/4 ≤ (1+ ε/2)OPT(I ′) ≤ (1+ ε/2)OPT(I)

contêineres.
O segundo passo, pelo lema 3.2, produz um empacotamento com no máximo

max

{
(1+ ε/2)OPT(I),

∑
i∈[n]

si/(S− s0) + 1

}
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3. Algoritmos de aproximação

contêineres, mas∑
i∈[n] si

S− s0
≤
∑
i∈[n] si

S(1− ε/2)
≤ OPT(I)

1− ε/2
≤ (1+ ε)OPT(I).

�

3.9. Aproximando problemas de sequênciamento

Problemas de sequênciamento recebem nomes da forma

α | β | γ

com campos

Máquina α
1 Um processador
P processadores paralelos
Q processadores relacionados
R processadores arbitrários
Restrições β
di Deadlines
ri Release times
pi = p Tempo uniforme p
prec Precedências
Função objetivo γ
Cmax maximum completion (duração máxima)∑
i Ci duração média

Li lateness Ci − di
Ti tardiness max(Li, 0)

Relação com empacotamento unidimensional:

tempo ou tamanho

processadores ou contêineres
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3.9. Aproximando problemas de sequênciamento

• Empacotamento unidimensional: Dado Cmax minimize o número de pro-
cessadores.

• P || Cmax: Dado um número de contêineres, minimiza o tamanho dos
contêineres.

Sequenciamento em processores paralelos (P || Cmax)

Entrada O númerom de processadores e n tarefas com tempo de execução
pi, i ∈ [n].

Solução Um sequenciamento, definido por uma alocação M1

.
∪ · · ·

.
∪

Mm = [n] das tarefas às máquinas.

Objetivo Minimizar o makespan (tempo de término) Cmax = maxj∈[m] Cj,
com Cj =

∑
i∈Mj

pi o tempo de término da máquina j.

Fato 3.4
O problema P || Cmax é fortemente NP-completo.

Um limite inferior para C∗max = OPT é

LB = max
{

max
i∈[n]

pi,
∑
i∈[n]

pi/m
}
.

Uma classe de algoritmos gulosos para este problema são os algoritmos de
sequenciamento em lista (inglês: list scheduling). Eles processam as tarefas
em alguma ordem, e alocam a tarefa atual sempre à máquina de menor tempo
de término atual.

Proposição 3.7
Sequenciamento em lista com ordem arbitrária permite uma 2−1/m-aproximação
em tempo O(n logn).

Prova. Seja Cmax o resultado do sequenciamento em lista. Considera uma
máquina com tempo de término Cmax. Seja j a última tarefa alocada nessa
máquina e C o término da máquina antes de alocar tarefa j. Logo,

Cmax = C+ pj ≤
∑

i∈[j−1]

pi/m+ pj ≤
∑
i∈[n]

pi/m− pj/m+ pj

≤ LB + (1− 1/m)LB = (2− 1/m)LB ≤ (2− 1/m)C∗max.

A primeira desigualdade é correto, porque alocando tarefa j a máquina tem
tempo de término mı́nimo. Usando uma fila de prioridade a máquina com o
menor tempo de término pode ser encontrada em tempo O(logn). �
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3. Algoritmos de aproximação

Observação 3.4
Pela prova da proposição 3.7 temos

LB ≤ C∗max ≤ 2LB.

♦

O que podemos ganhar com algoritmos off-line? Uma abordagem é ordenar
as tarefas por tempo execução não-crescente e aplicar o algoritmo gulos. Essa
abordagem é chamada LPT (largest processing time).

Proposição 3.8
LPT é uma 4/3−m/3-aproximação em tempo O(n logn).

Prova. Seja p1 ≥ p2 ≥ · · ·pn e supõe que isso é o menor contra-exemplo
em que o algoritmo retorne Cmax > (4/3 −m/3)C∗max. Não é posśıvel que a
alocação do item j < n resulta numa máquina com tempo de término Cmax,
porque p1, . . . , pj seria um contra-exemplo menor (mesmo Cmax, menor C∗max).
Logo a alocação de pn define o resultado Cmax.
Caso pn ≤ C∗max/3 pela prova da proposição 3.7 temos Cmax ≤ (4/3 −
m/3)C∗max, uma contradição. Mas caso pn > C

∗
max/3 todas tarefas possuem

tempo de execução pelo menos C∗max/3 e no máximo duas podem ser execu-
tadas em cada máquina. Logo Cmax ≤ 2/3C∗max, outra contradição. �

3.9.1. Um esquema de aproximação para P || Cmax

Pela observação 3.4 podemos reduzir o P || Cmax para o empacotamento unidi-
mensional via uma busca binária no intervalo [LB, 2LB]. Pela proposição 3.5
isso é posśıvel em tempo O(log LB mn(2LB + 1)m).
Com mais cuidado a observação permite um esquema de aproximação em
tempo polinomial assintótico: similar com o esquema de aproximação para
empacotamento unidimensional, vamos remover elementos menores e arre-
dondar a instância.

Algoritmo 3.6 (Sequencia)
Entrada Uma instância I de P || Cmax, um término máximo C e um

parâmetro de qualidade ε.

1 Sequencia (I ,C ,ε) :=
2 remove as t a r e f a s menores com pj < εC , j ∈ [n]

3 arredonda cada pj ∈ [εC(1 + ε)i, εC(1 + ε)i+1) para algum i

para p ′j = εC(1 + ε)
i

4 r e s o l v e a i n s t â n c i a arredondada com programação
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3.9. Aproximando problemas de sequênciamento

dinâmica (proposição 3.6)

5 empacota os i t e n s menores gulosamente , usando
novas máquinas para manter o t érmino (1 + ε)C

Lema 3.3
O algoritmo Sequencia gera um sequenciamento que termina em no máximo

(1 + ε)C em tempo O(n2dlog1+ε 1/εe). Ele não usa mais máquinas que o
mı́nimo necessário para executar as tarefas com término C

Prova. Para cada intervalo válido temos εC(1 + ε)i ≤ C, logo o número de
intervalos é no máximo k = dlog1+ε 1/εe. O valor k também é um limite
para o número de valores p ′j distintos e pela proposição 3.6 o terceiro passo

resolve a instância arredondada em tempo O(n2k). Essa solução com os itens
de tamanho original termina em no máximo (1+ ε)C, porque pj/p

′
j < 1+ ε.

O número mı́nimo de máquinas para executar as tarefas em tempo C é o valor
m := min-EU(C, (pj)j∈[n]) do problema de empacotamento unidimensional
correspondente. Caso o último passo do algoritmo não usa novas máquinas
ele precisa ≤ m máquinas, porque a instância arredondada foi resolvida exa-
tamente. Caso contrário, uma tarefa com tempo de execução menor que εC
não cabe nenhuma máquina, e todas máquinas usadas tem tempo de término
mais que C. Logo o empacotamento ótimo com término C tem que usar pelo
menos o mesmo número de máquinas. �

Proposição 3.9
O resultado da busca binária usando o algoritmo Sequencia Cmax = min{C ∈
[LB, 2LB] | Sequencia(I, C, ε) ≤ m} é no máximo C∗max.

Prova. Com Sequencia(I, C, ε) ≤ min-EU(C, (pi)i∈[n]) temos

Cmax = min{C ∈ [LB, 2LB] | Sequencia(I, C, ε) ≤ m}

≤ min{C ∈ [LB, 2LB] | min-EU(C, (pi)i∈[n]) ≤ m}

= C∗max

�

Teorema 3.11
A busca binária usando o algoritmo Sequencia para determinar determina

um sequenciamento em tempo O(n2dlog1+ε 1/εe log LB) de término máximo
(1+ ε)C∗max.

Prova. Pelo lema 3.3 e a proposição 3.9. �
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3. Algoritmos de aproximação

3.10. Exerćıcios

Exerćıcio 3.1
Por que um subgrafo conexo de menor custo sempre é uma árvore?

Exerćıcio 3.2
Mostra que o número de vértices com grau ı́mpar num grafo sempre é par.

Exerćıcio 3.3
Um aluno propõe a seguinte heuŕıstica para o empacotamento unidimensional:
Ordene os itens em ordem crescente, coloca o item com peso máximo junto com
quantas itens de peso mı́nimo que é posśıvel, e depois continua com o segundo
maior item, até todos itens foram colocados em bins. Temos o algoritmo

1 ordene i t e n s em ordem c r e s c e n t e
2 m := 1 ; M := n
3 while (m <M) do
4 abre novo cont ê ine r , co l o ca vM , M :=M− 1
5 while (vm cabe e m <M) do
6 co l o ca vm no c o n t ê i n e r a tua l
7 m := m+ 1
8 end while
9 end while

Qual a qualidade desse algoritmo? É um algoritmo de aproximação? Caso
sim, qual a taxa de aproximação dele? Caso não, por quê?

Exerćıcio 3.4
Prof. Rapidez propõe o seguinte pré-processamento para o algoritmo SAT-R de
aproximação para MAX-SAT (página 105): Caso a instância contém claúsulas
com um único literal, vamos escolher uma delas, definir uma atribuição parcial
que satisfazê-la, e eliminar a variável correspondente. Repetindo esse procedi-
mento, obtemos uma instância cujas claúsulas tem 2 ou mais literais. Assim,
obtemos l ≥ 2 na análise do algoritmo, o podemos garantir que E[X] ≥ 3n/4,
i.e. obtemos uma 4/3-aproximação.
Este análise é correto ou não?
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4. Algoritmos randomizados

Um algoritmo randomizado usa eventos randômicos na sua execução. Modelos
computacionais adequadas são máquinas de Turing randômicas – mais usadas
na área de complexidade – ou máquinas RAM com um comando do tipo
random(S) que retorne um elemento randômico do conjunto S.
Veja alguns exemplos de probabilidades:

• Probabilidade morrer caindo da cama: 1/2×106 (Roach e Pieper, 2007).

• Probabilidade acertar 6 números de 60 na mega-sena: 1/50063860.

• Probabilidade que a memória falha: em memória moderna temos 1000
FIT/MBit, i.e. 6× 10−7 erros por segundo num memória de 256 MB.1

• Probabilidade que um meteorito destrói um computador em cada milis-
segundo: ≥ 2−100 (supondo que cada milênio ao menos um meteorito
destrói uma área de 100m2).

Portanto, um algoritmo que retorna uma resposta falsa com baixa probabi-
lidade é aceitável. Em retorno um algoritmo randomizado frequentemente
é

• mais simples;

• mais eficiente: para alguns problemas, um algoritmo randomizado é o
mais eficiente conhecido;

• mais robusto: algoritmos randomizados podem ser menos dependente
da distribuição das entradas.

• a única alternativa: para alguns problemas, conhecemos só algoritmos
randômicos.

4.1. Teoria de complexidade

Classes de complexidade

1FIT é uma abreviação de “failure-in-time” e é o número de erros cada 109 segundos. Para
saber mais sobre erros em memória veja (Terrazon, 2004).
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Definição 4.1
Seja Σ algum alfabeto e R(α,β) a classe de linguagens L ⊆ Σ∗ tal que existe
um algoritmo de decisão em tempo polinomial A que satisfaz

• x ∈ L⇒ Pr[A(x) = sim] ≥ α.

• x 6∈ L⇒ Pr[A(x) = não] ≥ β.

(A probabilidade é sobre todas sequências de bits randômicos r. Como o
algoritmo executa em tempo polinomial no tamanho da entrada |x|, o número
de bits randômicas |r| é polinomial em |x| também.)
Com isso podemos definir

• a classe RP := R(1/2, 1) (randomized polynomial), dos problemas que
possuem um algoritmo com erro unilateral (no lado do “sim”); a classe
co− RP = R(1, 1/2) consiste dos problemas com erro no lado de “não”;

• a classe ZPP := RP ∩ co− RP (zero-error probabilistic polynomial) dos
problemas que possuem algoritmo randomizado sem erro;

• a classe PP := R(1/2 + ε, 1/2 + ε) (probabilistic polynomial), dos pro-
blemas com erro 1/2+ ε nos dois lados; e

• a classe BPP := R(2/3, 2/3) (bounded-error probabilistic polynomial),
dos problemas com erro 1/3 nos dois lados.

Algoritmos que respondem corretamente somente com uma certa probabili-
dade também são chamados do tipo Monte Carlo, enquanto algoritmos que
usam randomização somente internamente, mas respondem sempre correta-
mente são do tipo Las Vegas.

Exemplo 4.1 (Teste de identidade de polinomios)
Dado dois polinômios p(x) e q(x) de grau máximo d, como saber se p(x) ≡
q(x)? Caso temos os dois na forma canônica p(x) =

∑
0≤i≤d pix

i ou na forma
fatorada p(x) =

∏
1≤i≤d(x − ri) isso é simples responder por comparação de

coeficientes em tempo O(n). E caso contrário? Uma conversão para a forma
canônica pode custar Θ(d2) multiplicações. Uma abordagem randomizada
é vantajosa, se podemos avaliar o polinômio mais rápido (por exemplo em
O(d)):

1 i d e n t i c o (p , q ) :=
2 S e l e c i o n a um número randômico r no i n t e r v a l o [1, 100d] .
3 Caso p(r) = q(r) r e to rne ‘ ‘ sim ’ ’ .
4 Caso p(r) 6= q(r) r e to rne ‘ ‘ não ’ ’ .
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Caso p(x) ≡ q(x), o algoritmo responde “sim” com certeza. Caso contrário
a resposta pode ser errada, se p(r) = q(r) por acaso. Qual a probabilidade
disso? p(x) − q(x) é um polinômio de grau d e possui no máximo d ráızes.
Portanto, a probabilidade de encontrar um r tal que p(r) = q(r), caso p 6≡ q
é d/100d = 1/100. Isso demonstra que o teste de identidade pertence à classe
co− RP. ♦

Observação 4.1
É uma pergunta em aberto se o teste de identidade pertence a P. ♦

4.1.1. Amplificação de probabilidades

Caso não estamos satisfeitos com a probabilidade de 1/100 no exemplo acima,
podemos repetir o algoritmo k vezes, e responder “sim” somente se todas k
repetições responderam “sim”. A probabilidade erradamente responder “não”
para polinômios idênticos agora é (1/100)k, i.e. ela diminui exponencialmente
com o número de repetições.
Essa técnica é uma amplificação da probabilidade de obter a solução correta.
Ela pode ser aplicada para melhorar a qualidade de algoritmos em todas clas-
ses “Monte Carlo”. Com um número constante de repetições, obtemos uma
probabilidade baixa nas classes RP, co− RP e BPP. Isso não se aplica a PP:
é posśıvel que ε diminui exponencialmente com o tamanho da instância. Um
exemplo de amplificação de probabilidade encontra-se na prova do teorema 4.6.

Teorema 4.1
R(α, 1) = R(β, 1) para 0 < α,β < 1.

Prova. Sem perda de generalidade seja α < β. Claramente R(β, 1) ⊆ R(α, 1).
Supõe que A é um algoritmo que testemunha L ∈ R(α, 1). Execute A no
máximo k vezes, respondendo “sim” casoA responde “sim” em alguma iteração
e “não” caso contrário. Chama esse algoritmo A ′. Caso x 6∈ L temos P[A ′(x) =
“não”] = 1. Caso x ∈ L temos P[A ′(x) = “sim”] ≥ 1 − (1 − α)k, logo para
k ≥ ln 1− β/ ln 1− α, P[A ′(x) = “sim”] ≥ β. �

Corolário 4.1
RP = R(α, 1) para 0 < α < 1.

Teorema 4.2
R(α,α) = R(β,β) para 1/2 < α,β.

Prova. Sem perda de generalidade seja α < β. Claramente R(β,β) ⊆
R(α,α).
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4. Algoritmos randomizados

Supõe que A é um algoritmo que testemunha L ∈ R(α,α). Executa A k vezes,
responde “sim” caso a maioria de respostas obtidas foi “sim”, e “não” caso
contrário. Chama esse algoritmo A ′. Para x ∈ L temos

P[A ′(x) = “sim”] = P[A(x) = “sim” ≥ bk/2c+ 1 vezes] ≥ 1− e−2k(α−1/2)
2

e para k ≥ ln(β− 1)/2(α− 1/2)2 temos P[A ′(x) = “sim”] ≥ β. Similarmente,
para x 6∈ L temos P[A ′(x) = “não”] ≥ β. Logo L ∈ R(β,β). �

Corolário 4.2
BPP = R(α,α) para 1/2 < α.

Observação 4.2
Os resultados acima são válidos ainda caso o erro dimiui polinomialmente
com o tamanho da instância, i.e. α,β ≥ n−c no caso do teorema 4.1 e α,β ≥
1/2+n−c no caso do teorema 4.2 para um constante c (ver por exemplo Arora
e Barak (2009)). ♦

4.1.2. Relação entre as classes

Duas caracterizações alternativas de ZPP

Definição 4.2
Um algoritmo A é honesto se

i) ele responde ou “sim”, ou “não” ou “não sei”,

ii) Pr[A(x) = não sei] ≤ 1/2, e

iii) no caso ele responde, ele não erra, i.e., para x tal que A(x) 6= “não sei”
temos A(x) = “sim”⇐⇒ x ∈ L.

Uma linguagem é honesta caso ela possui um algoritmo honesto. Com isso
também podemos falar da classe das linguagens honestas.

Teorema 4.3
ZPP é a classe das linguagens honestas.

Lema 4.1
Caso L ∈ ZPP existe um algoritmo um algoritmo honesto para L.

Prova. Para um L ∈ ZPP existem dois algoritmos A1 ∈ RP e A2 ∈ co− RP.
Vamos construir um algoritmo
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4.1. Teoria de complexidade

1 i f A1(x) = “não” e A2(x) = “não” then
2 return ‘ ‘ não ’ ’
3 else i f A1(x) = “não” e A2(x) = “sim” then
4 return ‘ ‘ não s e i ’ ’
5 else i f A1(x) = “sim” e A2(x) = “não” then
6 { caso impossı́vel }
7 else i f A1(x) = “sim” e A2(x) = “sim” then
8 return ‘ ‘ sim ’ ’
9 end i f

O algoritmo responde corretamente “sim” e “não”, porque um dos dois al-
goritmos não erra. Qual a probabilidade do segundo caso? Para x ∈ L,
Pr[A1(x) = “não” ∧ A2(x) = “sim”] ≤ 1/2 × 1 = 1/2. Similarmente, para
x 6∈ L, Pr[A1(x) = “não” ∧A2(x) = “sim”] ≤ 1× 1/2 = 1/2. �

Lema 4.2
Caso L possui um algoritmo honesto L ∈ RP e L ∈ co− RP.

Prova. Seja A um algoritmo honesto. Constrói outro algoritmo que sempre
responde “não” caso A responde “não sei”, e senão responde igual. No caso de
co− RP analogamente constrói um algoritmos que responde “sim” nos casos
“não sei” de A. �

Definição 4.3
Um algoritmo A é sem falha se ele sempre responde “sim” ou “não” corre-
tamente em tempo polinomial esperado. Com isso podemos também falar de
linguagens sem falha e a classe das linguagens sem falha.

Teorema 4.4
ZPP é a classe das linguagens sem falha.

Lema 4.3
Caso L ∈ ZPP existe um algoritmo sem falha para L.

Prova. Sabemos que existe um algoritmo honesto para L. Repete o algo-
ritmo honesto até encontrar um “sim” ou “não”. Como o algoritmo honesto
executa em tempo polinomial p(n), o tempo esperado desse algoritmo ainda
é polinomial: ∑

k>0

k2−kp(n) ≤ 2p(n)

�

Lema 4.4
Caso L possui um algoritmo A sem falha, L ∈ RP e L ∈ co− RP.
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4. Algoritmos randomizados

Prova. Caso A tem tempo esperado p(n) executa ele para um tempo 2p(n).
Caso o algoritmo responde, temos a resposta certa. Caso contrário, responde
“sim”. Pela desigualdade de Markov temos uma resposta com probabilidade
P[T ≥ 2p(n)] ≤ p(n)/2p(n) = 1/2. Isso mostra que existe um algoritmo
honesto para L, e pelo lema 4.2 L ∈ RP. O argumento para L ∈ co− RP é
similar. �

Mais relações

Teorema 4.5
RP ⊆ NP e co− RP ⊆ co− NP

Prova. Supõe que temos um algoritmo em RP para algum problema L. Pode-
mos, não-deterministicamente, gerar todas seqüencias r de bits randômicos e
responder “sim” caso alguma execução encontra “sim”. O algoritmo é correto,
porque caso para um x 6∈ L, não existe uma sequência randômica r tal que o
algoritmo responde “sim”. A prova do segundo caso é similar. �

Teorema 4.6
RP ⊆ BPP e co− RP ⊆ BPP.

Prova. Seja A um algoritmo para L ∈ RP. Constrói um algoritmo A ′

1 i f A(x) = “não” e A(x) = “não” then
2 return ‘ ‘ não ’ ’
3 else
4 return ‘ ‘ sim ’ ’
5 end i f

Caso x 6∈ L, Pr[A ′(x) = “não”] = Pr[A(x) = “não”∧A(x) = “não”] = 1× 1 =
1. Caso x ∈ L,

Pr[A ′(x) = “sim”] = 1− Pr[A ′(x) = “não”] = 1− Pr[A(x) = “não” ∧A(x) = “não”]

≥ 1− 1/2× 1/2 = 3/4 > 2/3.

(Observe que para k repetições de A obtemos Pr[A ′(x) = “sim”] ≥ 1 − 1/2k,
i.e., o erro diminui exponencialmente com o número de repetições.) O argu-
mento para co− RP é similar. �

Relação com a classe NP e abundância de testemunhas Lembramos que a
classe NP contém problemas que permitem uma verificação de uma solução em
tempo polinomial. Não-determińısticamente podemos “chutar” uma solução
e verificá-la. Se o número de soluções positivas de cada instância é mais que
a metade do número total de soluções, o problema pertence a RP: podemos
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4.2. Seleção

ZPP

co− RP

co− NP

PP = co− PP

NP

RP

BPP = co− BPP

P

?

Figura 4.1.: Relações entre classes de complexidade para algoritmos randomi-
zados.

gerar uma solução randômica e testar se ela possui a caracteŕıstica desejada.
Uma problema desse tipo possui uma abundância de testemunhas. Isso de-
monstra a importância de algoritmos randomizados. O teste de equivalência
de polinômios acima é um exemplo de abundância de testemunhas.

4.2. Seleção

O algoritmo determińıstico para selecionar o k-ésimo elemento de uma se-
quencia não ordenada x1, . . . , xn discutido na seção A.1 (página 151) pode ser
simplificado usando randomização: escolheremos, um elemento pivô m = xi
aleatório. Com isso o algoritmo A.1 fica mais simples:
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4. Algoritmos randomizados

Algoritmo 4.1 (Seleção randomizada)
Entrada Números x1, . . . , xn, posição k.

Sáıda O k-ésimo maior número.

1 S(k, {x1, . . . , xn}) :=
2 i f n ≤ 1
3 c a l c u l a e r e to rne o k és imo elemento
4 end i f
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4.2. Seleção

5 m := xi para um i ∈ [n] a l e a t ó r i a
6 L := {xi | xi < m, 1 ≤ i ≤ n}
7 R := {xi | xi ≥ m, 1 ≤ i ≤ n}
8 i := |L|+ 1
9 i f i = k then

10 return m
11 else i f i > k then
12 return S(k, L)
13 else
14 return S(k− i, R)
15 end i f

Para determinar a complexidade podemos observar que com probabilidade
1/n temos |L| = i e |R| = n − i e o caso pessimista é uma chamada recursiva
com max{i, n− i} elementos. Logo, com custo cn para particionar o conjunto
e os testes temos

T(n) ≤
∑
i∈[0,n]

1/nT(max{n− i, i}) + cn

= 1/n

 ∑
i∈[0,bn/2c]

T(n− i) +
∑

i∈[dn/2e,n]

T(i)

+ cn

2/n
∑

i∈[0,bn/2c]

T(n− i) + cn

Separando o termo T(n) do lado direito obtemos

(1− 2/n)T(n) ≤ 2/n
∑

i∈[1,bn/2c]

T(n− i) + cn

⇐⇒T(n) ≤ 2

n− 2
(
∑

i∈[1,bn/2c]

T(n− i) + cn2/2).

Provaremos por indução que T(n) ≤ c ′n para uma constante c ′. Para um
n ≤ n0 o problema pode ser claramente resolvido em tempo constante (por
exemplo em O(n0 logn0) via ordenação). Logo, supõe que T(i) ≤ c ′i para
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4. Algoritmos randomizados

i < n. Demonstraremos que T(n) ≤ c ′n. Temos

T(n) ≤ 2

n− 2
(
∑

i∈[1,bn/2c]

T(n− i) + cn2/2)

≤ 2c ′

n− 2
(
∑

i∈[1,bn/2c]

n− i+ cn2/2c ′)

=
2c ′

n− 2
((2n− bn/2c− 1) bn/2c /2+ cn2/2c ′)

e com 2n− bn/2c− 1 ≤ 3/2n

≤ c ′

n− 2
(3/4n2 + cn2/c ′)

= c ′n
(3/4+ c/c ′)n

n− 2

Para n ≥ n0 := 16 temos n/(n− 2) ≤ 8/7 e com um c ′ > 8c temos

T(n) ≤ c ′n(3/4+ 1/8)8/7 ≤ c ′n.

4.3. Corte ḿınimo

Corte ḿınimo

Entrada Grafo não-direcionado G = (V,A) com pesos c : A → Z+ nas
arestas.

Solução Uma partição V = S ∪ (V \ S).

Objetivo Minimizar o peso do corte
∑

{u,v}∈A
u∈S,v∈V\S

c{u,v}.

Soluções determińısticas:

• Calcular a árvore de Gomory-Hu: a aresta de menor peso define o corte
mı́nimo.

• Calcular o corte mı́nimo (via fluxo máximo) entre um vértice fixo s ∈ V
e todos outros vértices: o menor corte encontrado é o corte mı́nimo.

Custo em ambos casos: O(n) aplicações de um algoritmo de fluxo máximo,
i.e. O(mn2) usando o algoritmo de Orlin.
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4.3. Corte mı́nimo

Solução randomizada para pesos unitários No que segue supomos que os
pesos são unitários, i.e. ca = 1 para a ∈ A. Uma abordagem simples é
baseada na seguinte observação: se escolhemos uma aresta que não faz parte
de um corte mı́nimo, e contráımo-la (i.e. identificamos os vértices adjacentes),
obtemos um grafo menor, que ainda contém o corte mı́nimo. Se escolhemos
uma aresta randomicamente, a probabilidade de por acaso escolher uma aresta
de um corte mı́nimo é baixa.

1 cmr (G) :=
2 while G pos su i mais que do i s v é r t i c e s
3 e s c o l h e uma a r e s t a {u, v} randômicamente
4 i d e n t i f i c a u e v em G
5 end while
6 return o c o r t e d e f i n i d o pe l o s do i s v é r t i c e s em G

Exemplo 4.2
Uma sequencia de contrações (das arestas vermelhas).

♦

Dizemos que uma aresta “sobrevive” uma contração, caso ele não foi contráıdo.

Lema 4.5
A probabilidade que os k arestas de um corte mı́nimo sobrevivem n − t con-

trações (de n para t vértices) é Ω((t/n)2).

Prova. Como o corte mı́nimo é k, cada vértice possui grau pelo menos k, e
portanto o número de arestas após iteração 0 ≤ i < n − t e maior ou igual
a k(n − i)/2 (com a convenção que a “iteração 0” produz o grafo inicial).
Supondo que as k arestas do corte mı́nimo sobreviveram a iteração i, a pro-
babilidade de não sobreviver a próxima iteração é k/(k(n− i)/2) = 2/(n− i).
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4. Algoritmos randomizados

Logo, a probabilidade do corte sobreviver todas iterações é ao menos∏
0≤i<n−t

1−
2

n− i
=

∏
0≤i<n−t

n− i− 2

n− i

=
(n− 2)(n− 3) · · · t− 1
n(n− 1) · · · t+ 1

=

(
t

2

)
/

(
n

2

)
= Ω((t/n)2).

�
Teorema 4.7
Dado um corte mı́nimo C de tamanho k, a probabilidade do algoritmo cmr

retornar C é Ω(n−2).

Prova. Caso o grafo possui n vértices, o algoritmo termina em n−2 iterações:
podemos aplicar o lema acima com t = 2. �

Observação 4.3
O que acontece se repetirmos o algoritmo algumas vezes? Seja Ci uma variável
que indica se o corte mı́nimo foi encontrado repetição i. Temos P[Ci = 1] ≥
2n−2 e portanto P[Ci = 0] ≤ 1−2n−2. Para kn2 repetições, vamos encontrar
C =

∑
Ci cortes mı́nimos com probabilidade

P[C ≥ 1] = 1− P[C = 0] ≥ 1− (1− 2n−2)kn
2

≥ 1− e−2k.

Para k = logn obtemos P[C ≥ 1] ≥ 1− n−2. ♦

Logo, se repetimos esse algoritmo n2 logn vezes e retornamos o menor corte
encontrado, achamos o corte mı́nimo com probabilidade razoável. Se a imple-
mentação realiza uma contração em O(n) o algoritmo possui complexidade
O(n2) e com as repetições em total O(n4 logn).

Implementação de contrações Para garantir a complexidade acima, uma
contração tem que ser implementada em O(n). Isso é posśıvel tanto na repre-
sentação por uma matriz de adjacência, quanto na representação pela listas
de adjacência. A contração de dois vértices adjacentes resulta em um novo
vértice, que é adjacente aos vizinhos dos dois. Na contração arestas de um
vértice com si mesmo são removidas. Múltiplas arestas entre dois vértices tem
que ser mantidas para garantir a corretude do algoritmo.

Um algoritmo melhor O problema principal com o algoritmo acima é que
nas últimas iterações, a probabilidade de contrair uma aresta do corte mı́nimo
é grande. Para resolver esse problema, executaremos o algoritmo duas vezes
para instâncias menores, para aumentar a probabilidade de não contrair o
corte mı́nimo.
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4.3. Corte mı́nimo

1 cmr2 (G) :=
2 i f (G pos su i menos que 6 v é r t i c e s )
3 determina o co r t e mı́nimo C por exaust ão
4 return C
5 else

6 t :=
⌈
1+ n/

√
2
⌉

7 s e j a G1 o r e s u l t a d o de n− t cont ra ç õ e s em G
8 s e j a G2 o r e s u l t a d o de n− t cont ra ç õ e s em G
9 C1 :=cmr2 (G1 )

10 C2 :=cmr2 (G2 )
11 return o menor dos do i s c o r t e s C1 e C2
12 end i f

Esse algoritmo possui complexidade de tempo O(n2 logn) e encontra um corte
mı́nimo com probabilidade Ω(1/ logn).

Lema 4.6
A probabilidade de um corte mı́nimo sobreviver t =

⌈
1+ n/

√
2
⌉

contrações é

no mı́nimo 1/2.

Prova. Pelo lema 4.5 a probabilidade é

⌈
1+ n/

√
2
⌉
(
⌈
1+ n/

√
2
⌉
− 1)

n(n− 1)
≥ (1+ n/

√
2)(n/

√
2)

n(n− 1)
=

√
2+ n

2(n− 1)
≥ n

2n
=
1

2
.

�

Seja P(t) a probabilidade que um corte com k arestas sobrevive caso o grafo
possui t vértices. Temos

P[o corte sobrevive em H1] ≥ 1/2P(
⌈
1+ t/

√
2
⌉
)

P[o corte sobrevive em H2] ≥ 1/2P(
⌈
1+ t/

√
2
⌉
)

P[o corte não sobrevive em H1 e H2] ≤ (1− 1/2P(
⌈
1+ t/

√
2
⌉
))2

P(t) = P[o corte sobrevive em H1 ou H2] ≥ 1− (1− 1/2P(
⌈
1+ t/

√
2
⌉
))2

= P(
⌈
1+ t/

√
2
⌉
) − 1/4P(

⌈
1+ t/

√
2
⌉
)2
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4. Algoritmos randomizados

Para resolver essa recorrência, define Q(k) = P(
√
2
k
) com base Q(0) = 1 para

obter a recorrência simplificada

Q(k+ 1) = P(
√
2
k+1

) = P(
⌈
1+
√
2
k
⌉
) − 1/4P(

⌈
1+
√
2
k
⌉
)2

≈ P(
√
2
k
) − P(

√
2
k
)2/4 = Q(k) −Q(k)2/4

e depois R(k) = 4/Q(k) − 1 com base R(0) = 3 para obter

4

R(k+ 1) + 1
=

4

R(k) + 1
−

4

(R(k) + 1)2
⇐⇒ R(k+ 1) = R(k) + 1+ 1/R(k).

R(k) satisfaz

k < R(k) < k+Hk−1 + 3

Prova. Por indução. Para k = 1 temos 1 < R(1) = 13/3 < 1 + H0 + 3 = 5.
Caso a HI está satisfeito, temos

R(k+ 1) = R(k) + 1+ 1/R(k) > R(k) + 1 > k+ 1

R(k+ 1) = R(k) + 1+ 1/R(k) < k+Hk−1 + 3+ 1+ 1/k = (k+ 1) +Hk + 3

�
Logo, R(k) = k + Θ(log k), e com isso Q(k) = Θ(1/k) e finalmente P(t) =
Θ(1/ log t).
Para determinar a complexidade do algoritmo cmr2 observe que temosO(logn)
ńıveis recursivos e cada contração pode ser feito em tempo O(n2), portanto

Tn = 2T(
⌈
1+ n/

√
2
⌉
) +O(n2).

Aplicando o teorema de Akra-Bazzi obtemos a equação caracteŕıstica 2(1/
√
2)p =

1 com solução p = 2 e

Tn ∈ Θ(n2(1+
∫n
1

cu2

u3
du)) = Θ(n2 logn).

4.4. Teste de primalidade

Um problema importante na criptografia é encontrar números primos grandes
(p.ex. RSA). Escolhendo um número n randômico, qual a probabilidade de n
ser primo?
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Teorema 4.8 (Hadamard (1896), Vallée Poussin (1896))
(Teorema dos números primos.)
Para π(n) = |{p ≤ n | p primo}| temos

lim
n→∞ π(n)

n/ lnn
= 1.

(Em particular π(n) = Θ(n/ lnn).)

Portanto, a probabilidade de um número randômico no intervalo [2, n] ser
primo assintoticamente é somente 1/ lnn. Então para encontrar um número
primo, temos que testar se n é primo mesmo. Observe que isso não é igual
a fatoração de n. De fato, temos testes randomizados (e determińısticos) em
tempo polinomial, enquanto não sabemos fatorar nesse tempo. Uma aborda-
gem simples é testar todos os divisores:

1 Primo1 (n) :=

2 for i = 2, 3, 5, 7, . . . ,
⌊√
n
⌋

do
3 i f i|n return ‘ ‘ Não ’ ’
4 end for
5 return ‘ ‘ Sim ’ ’

O tamanho da entrada n é t = logn bits, portanto o número de iterações
é Θ(
√
n) = Θ(2t/2) e a complexidade Ω(2t/2) (mesmo contando o teste de

divisão com O(1)) desse algoritmo é exponencial. Para testar a primalidade
mais eficiente, usaremos uma caracteŕıstica particular dos números primos.

Teorema 4.9 (Fermat, Euler)
Para p primo e a ≥ 0 temos

ap ≡ a mod p.

Prova. Por indução sobre a. Base: evidente. Seja ap ≡ a. Temos

(a+ 1)p =
∑
0≤i≤p

(
p

i

)
ai

e para 0 < i < p

p|

(
p

i

)
=
p(p− 1) · · · (p− i+ 1)

i(i− 1) · · · 1
porque p é primo. Portanto (a+ 1)p ≡ ap + 1 e

(a+ 1)p − (a+ 1) ≡ ap + 1− (a+ 1) = ap − a ≡ 0.

(A última identidade é a hipótese da indução.) �
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4. Algoritmos randomizados

Definição 4.4
Para a, b ∈ Z denotamos com (a, b) o maior divisor em comum (MDC) de a
e b. No caso (a, b) = 1, a e b são coprimo.

Teorema 4.10 (Divisão modulo p)
Se p primo e (b, p) = 1

ab ≡ cb mod p⇒ a ≡ c mod p.

(Em palavras: Numa identidade modulo p podemos dividir por números co-
primos com p.)

Prova.

ab ≡ cd⇐⇒ ∃k ab+ kp = cb⇐⇒ ∃k a+ kp/b = c

Como a, c ∈ Z, temos kp/b ∈ Z e b|k ou b|p. Mas (b, p) = 1, então b|k.
Definindo k ′ := k/b temos ∃k ′ a+ k ′p = c, i.e. a ≡ c. �
Logo, para p primo e (a, p) = 1 (em particular se 1 ≤ a < p)

ap−1 ≡ 1 mod p. (4.1)

Um teste melhor então é

1 Primo2 (n) :=
2 s e l e c i o n a a ∈ [1, n− 1] randômicamente
3 i f (a, n) 6= 1 return ‘ ‘ Não ’ ’

4 i f an−1 ≡ 1 return ‘ ‘ Sim ’ ’
5 return ‘ ‘ Não ’ ’

Complexidade: Uma multiplicação e divisão com logn d́ıgitos é posśıvel em
tempo O(log2 n). Portanto, o primeiro teste (o algoritmo de Euclides em logn
passos) pode ser feito em tempo O(log3 n) e o segundo teste (exponenciação
modular) é posśıvel implementar com O(logn) multiplicações (exerćıcio!).
Corretude: O caso de uma resposta “Não” é certo, porque n não pode ser
primo. Qual a probabilidade de falhar, i.e. do algoritmo responder “Sim”,
com n composto? O problema é que o algoritmo falha no caso de números
Carmichael.

Definição 4.5
Um número composto n que satisfaz an−1 ≡ 1 mod a é um número pseudo-
primo com base a. Um número Carmichael é um número pseudo-primo para
qualquer base a com (a, n) = 1.
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Os primeiros números Carmichael são 561 = 3 × 11 × 17, 1105 e 1729 (veja
OEIS A002997). Existe um número infinito deles:

Teorema 4.11 (Alford, Granville e Pomerance (1994))
Seja C(n) o número de números Carmichael até n. Assintoticamente temos

C(n) > n2/7.

Exemplo 4.3
C(n) até 1010 (OEIS A055553):

n 1 2 3 4 5 6 7 8 9 10
C(10n) 0 0 1 7 16 43 105 255 646 1547⌈
(10n)2/7

⌉
2 4 8 14 27 52 100 194 373 720

. ♦

Caso um número n não é primo, nem número de Carmichael, mais que n/2 dos
a ∈ [1, n− 1] com (a, n) = 1 não satisfazem (4.1) ou seja, com probabilidade
> 1/2 acharemos um testemunha que n é composto. O problema é que no
caso de números Carmichael não temos garantia.

Teorema 4.12 (Raiz modular)
Para p primo temos

x2 ≡ 1 mod p⇒ x ≡ ±1 mod p.

O teste de Miller-Rabin usa essa caracteŕıstica para melhorar o teste acima.
Podemos escrever n− 1 = 2tu para um u ı́mpar. Temos an−1 = (au)2

t ≡ 1.
Portanto, se an−1 ≡ 1,

Ou au ≡ 1 mod p ou existe um menor i ∈ [0, t] tal que (au)2
i

≡ 1

Caso p é primo,
√
(au)2i = (au)2

i−1 ≡ −1 pelo teorema (4.12) e a minimali-
dade de i (que exclui os caso ≡ 1). Por isso:

Definição 4.6
Um número n é um pseudo-primo forte com base a caso

Ou au ≡ 1 mod p ou existe um menor i ∈ [0, t− 1] tal que (au)2
i

≡ −1
(4.2)

1 Primo3 (n) :=
2 s e l e c i o n a a ∈ [1, n− 1] randômicamente
3 i f (a, n) 6= 1 return ‘ ‘ Não ’ ’
4 s e j a n− 1 = 2tu
5 i f au ≡ 1 return ‘ ‘ Sim ’ ’

6 i f (au)2
i ≡ −1 para um i ∈ [0, t− 1] return ‘ ‘ Sim ’ ’

7 return ‘ ‘ Não ’ ’
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Teorema 4.13 (Monier (1980) e Rabin (1980))
Caso n e composto e ı́mpar, mais que 3/4 dos a ∈ [1, n − 1] com (a, n) = 1
não satisfazem o critério (4.2) acima.

Portanto com k testes randômicos, a probabilidade de falhar P[Sim | n composto] ≤
(1/4)k = 2−2k. Na prática a probabilidade é menor:

Teorema 4.14 (Damg̊ard, Landrock e Pomerance, 1993)
A probabilidade de um único teste falhar para um número com k bits e ≤
k242−

√
k.

Exemplo 4.4
Para n ∈ [2499, 2500−1] a probabilidade de não detectar um n composto com
um único teste é menor que

4992 × 42−
√
499 ≈ 2−22.

♦

Teste determińıstico O algoritmo pode ser convertido em um algoritmo de-
termińıstico, testando ao menos 1/4 dos a com (a, n) = 1. De fato, temos
para menor o testemunha w(n) de um número n ser composto

Se o HGR é verdade w(n) < 2 log2 n (4.3)

com HGR a hipótese generalizada de Riemann (uma conjetura aberta). Su-
pondo HGR, obtemos um algoritmo determińıstico com complexidadeO(log5 n).
Em 2002, Agrawal, Kayal e Saxena (2004) descobriram um algoritmo deter-
mińıstico (sem a necessidade da HGR) em tempo Õ(log12 n) que depois foi
melhorado para Õ(log6 n).
Para testar: http://www.jjam.de/Java/Applets/Primzahlen/Miller_Rabin.
html.

4.5. Exerćıcios

Exerćıcio 4.1
Encontre um primo p e um valor b tal que a identidade do teorema 4.10 não
é correta.

Exerćıcio 4.2
Encontre um número p não primo tal que a identidade do teorema 4.12 não é
correta.
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5. Complexidade e algoritmos parametrizados

A complexidade de um problema geralmente é resultado de diversos elementos.
Um algoritmo parametrizado separa explicitamente os elementos que tornam
um problema dif́ıcil, dos que são simples de tratar. A análise da complexidade
parametrizada quantifica essas partes separadamente. Por isso, a complexi-
dade parametrizada é chamada uma “complexidade de duas dimensões”.

Exemplo 5.1
O problema de satisfatibilidade (SAT) é NP-completo, i.e. não conhecemos um
algoritmo cuja complexidade cresce somente polinomialmente com o tamanho
da entrada. Porém, a complexidade deste problema cresce principalmente com
o número de variáveis, e não com o tamanho da entrada: com k variáveis e en-
trada de tamanho n solução trivial resolve o problema em tempo O(2kn). Em
outras palavras, para parâmetro k fixo, a complexidade é linear no tamanho
da entrada. ♦

Definição 5.1
Um problema que possui um parâmetro k ∈ N (que depende da instância) e

permite um algoritmo de complexidade f(k)|x|O(1) para entrada x e com f uma
função arbitrária, se chama tratável por parâmetro fixo (ingl. fixed-parameter
tractable, fpt). A classe de complexidade correspondente é FPT.

Um problema tratável por parâmetro fixo se torna tratável na prática, se o
nosso interesse são instâncias com parâmetro pequeno. É importante observar
que um problema permite diferentes parametrizações. O objetivo de projeto
de algoritmos parametrizados consiste em descobrir para quais parâmetros
que são pequenos na prática o problema possui um algoritmo parametrizado.
Neste sentido, o algoritmo parametrizado para SAT não é interessante, porque
o número de variáveis na prática é grande.
A seguir consideramos o problema NP-complete de cobertura de vértices. Uma
versão parametrizada é

k-cobertura de vértices

Instância Um grafo não-direcionado G = (V,A) e um número k1.

Solução Uma cobertura C, i.e. um conjunto C ⊆ V tal que ∀a ∈ A :
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a ∩ C 6= ∅.
Parâmetro O tamanho k da cobertura.

Objetivo Minimizar |C|.

Abordagem com força bruta:

1 mvc(G = (V,A)) :=
2 i f A = ∅ return ∅
3 s e l e c i o n a a r e s t a {u, v} ∈ A não coberta
4 C1 := {u} ∪mvc(G \ {u})
5 C2 := {v} ∪mvc(G \ {v})
6 return a menor ent re as cober tura s C1 e C2

Supondo que a seleção de uma aresta e a redução dos grafos é posśıvel em
O(n), a complexidade deste abordagem é dado pela recorrência

Tn = 2Tn−1 +O(n)

com solução Tn = O(2n). Para achar uma solução com no máximo k vértices,
podemos podar a árvore de busca definido pelo algoritmo mvc na profundidade
k. Isso resulta em

Teorema 5.1
O problema k-cobertura de vértices é tratável por parâmetro fixo em O(2kn).

Prova. Até o ńıvel k vamos visitar O(2k) vértices na árvore de busca, cada
um com complexidade O(n). �

O projeto de algoritmos parametrizados frequentemente consiste em

• achar uma parametrização tal que o parte super-polinomial da com-
plexidade é limitada para um parte do problema que depende de um
parâmetro k que é pequeno na prática;

• encontrar o melhor algoritmo posśıvel para o parte super-polinomial.

Exemplo 5.2
Considere o algoritmo direto (via uma árvore de busca, ou backtracking) para
SAT.

1 BT−SAT(ϕ,α) :=
2 i f α é a t r i b u i ç ã o completa : return ϕ(α)
3 i f alguma c l á u s u l a não é s a t i s f e i t a : return f a l s e
4 i f BT−SAT(ϕ,α1) return t rue
5 return BT SAT(ϕ,α0)

1Introduzimos k na entrada, porque k mede uma caracteŕıstica da solução. Para evitar
complexidades artificias, entende-se que k nestes casos é codificado em unário.
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δv ≥ 3

Figura 5.1.: Subproblemas geradas pela decisão da inclusão de um vértice v.
Vermelho: vértices selecionadas para a cobertura.

(α0 e α1 denotam extensões de uma atribuição parcial das variáveis.)
Aplicado para 3SAT , das 8 atribuições por cláusula podemos excluir uma que
não a satisfaz. Portanto a complexidade de BT-SAT é O(7n/3) = O( 3

√
7
n
) =

O(1.9129n). (Exagerando – mas não mentindo – podemos dizer que isso é
uma aceleração exponencial sobre a abordagem trivial que testa todas 2n

atribuições.)
O melhor algoritmo para 3-SAT possui complexidade O(1.324n). ♦

Um algoritmo melhor para cobertura de vértices Consequência: O projeto
cuidadoso de uma árvore de busca pode melhorar a complexidade. Vamos
aplicar isso para o problema de cobertura de vértices.
Um melhor algoritmo para a k-cobertura de vértices pode ser obtido pelas
seguintes observações

• Caso o grau máximo ∆ de G é 2, o problema pode ser resolvido em
tempo O(n), porque G é uma coleção de caminhos simples e ciclos.

• Caso contrário, temos pelo menos um vértice v de grau δv ≥ 3. Ou esse
vértice faz parte da cobertura mı́nima, ou todos seus vizinhos N(v) (veja
figura 5.1).

1 mvc ’ (G) :=
2 i f ∆(G) ≤ 2 then
3 determina a cobertura mı́nima C em tempo O(n)
4 return C
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5 end i f
6 s e l e c i o n a um v é r t i c e v com grau δv ≥ 3
7 C1 := {v} ∪mvc ′(G \ {v})
8 C2 := N(v) ∪mvc ′(G \N(v))
9 return a menor cobertura ent re C1 e C2

O algoritmo resolve o problema de cobertura de vértices mı́nima de forma
exata. Se podamos a árvore de busca após selecionar k vértices obtemos um
algoritmo parametrizado para k-cobertura de vértices. O número de vértices
nessa árvore é

Vi ≤ Vi−1 + Vi−4 + 1.

Lema 5.1
A solução dessa recorrência é Vi = O(1.3803

i).

Teorema 5.2
O problema k-cobertura de vértices é tratável por parâmetro fixo emO(1.3803kn).

Prova. Considerações acima com trabalho limitado por O(n) por vértice na
árvore de busca. �
Prova. (Do lema acima.) Com o ansatz Vi ≤ ci obtemos uma prova por
indução se para um i ≥ i0

Vi ≤ Vi−1 + Vi−4 + 1 ≤ ci−1 + ci−4 + 1 ≤ ci⇐⇒ ci−4(c4 − c3 − 1) ≥ 1⇐⇒ c4 − c3 − 1 ≥ 0

(O último passo é justificado porque para c > 1 e i0 suficientemente grande o
produto vai ser ≥ 1.) c4 − c3 − 1 possui uma única raiz positiva ≈ 1.32028 e
para c ≥ 1.3803 temos c3 − c2 − 1 ≥ 0. �
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Definições

Definição A.1
Uma relação binária R é polinomialmente limitada se

∃p ∈ poly : ∀(x, y) ∈ R : |y| ≤ p(|x|)

Definição A.2 (Pisos e tetos)
Para x ∈ R o piso bxc é o maior número inteiro menor que x e o teto dxe é o
menor número inteiro maior que x. Formalmente

bxc = max{y ∈ Z | y ≤ x}
dxe = min{y ∈ Z | y ≥ x}

O parte fracionário de x é {x} = x− bxc.

Observe que o parte fracionário sempre é positivo, por exemplo {−0.3} = 0.7.

Proposição A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem

x ≤ dxe < x+ 1 (A.1)

x− 1 < bxc ≤ x (A.2)

Definição A.3
Uma função f é convexa se ela satisfaz a desigualdade de Jensen

f
(
Θx+ (1−Θ)y

)
≤ Θf(x) + (1−Θ)f(y). (A.3)

Similarmente uma função f é concava caso −f é convexo, i.e., ela satisfaz

f(Θx+ (1−Θ)y) ≥ Θf(x) + (1−Θ)f(y). (A.4)

Exemplo A.1
Exemplos de funções convexas são x2k, 1/x. Exemplos de funções concavas
são log x,

√
x. ♦
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Proposição A.2
Para

∑
i∈[n]Θi = 1 e pontos xi, i ∈ [n] uma função convexa satisfaz

f
(∑
i∈[n]

Θixi
)
≤
∑
i∈[n]

Θif(xi) (A.5)

e uma função concava

f
(∑
i∈[n]

Θixi
)
≥
∑
i∈[n]

Θif(xi) (A.6)

Prova. Provaremos somente o caso convexo por indução, o caso concavo
sendo similar. Para n = 1 a desigualdade é trivial, para n = 2 ela é válida
por definição. Para n > 2 define Θ̄ =

∑
i∈[2,n]Θi tal que Θ + Θ̄ = 1. Com

isso temos

f
(∑
i∈[n]

Θixi
)
= f
(
Θ1x1 +

∑
i∈[2,n]

Θixi
)
= f(Θ1x1 + Θ̄y)

onde y =
∑
j∈[2,n](Θj/Θ̄)xj, logo

f
(∑
i∈[n]

Θixi
)
≤ Θ1f(x1) + Θ̄f(y)

= Θ1f(x1) + Θ̄f
( ∑
j∈[2,n]

(Θj/Θ̄)xj
)

≤ Θ1f(x1) + Θ̄
∑
j∈[2,n]

(Θj/Θ̄)f(xj) =
∑
i∈[n]

Θixi

�

A.1. Algoritmos

Soluções do problema da mochila com Programação Dinâmica

Mochila máxima (Knapsack)

• Seja S∗(k, v) a solução de tamanho menor entre todas soluções que

– usam somente itens S ⊆ [1, k] e

– tem valor exatamente v.
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M(k, n)

x1 x2 x3 x4 x5 x6 xn· · ·Entrada

Medianos

mMediano

m

i

xi < m xi ≥ mPartição

Recursão k < i : k = i : k > i :

M(k, i − 1) Encontrado M(k − i, n − i)

Figura A.1.: Funcionamento do algoritmo recursivo para seleção.

• Temos

S∗(k, 0) = ∅
S∗(1, v1) = {1}

S∗(1, v) = undef para v 6= v1

Mochila máxima (Knapsack)

• S∗ obedece a recorrência

S∗(k, v) = min
tamanho

{
S∗(k − 1, v − vk) ∪ {k} se vk ≤ v e S∗(k − 1, v − vk) definido

S∗(k − 1, v)

• Menor tamanho entre os dois∑
i∈S∗(k−1,v−vk)

ti + tk ≤
∑

i∈S∗(k−1,v)

ti.

• Melhor valor: Escolhe S∗(n, v) com o valor máximo de v definido.

• Tempo e espaço: O(n
∑
i vi).

Seleção Dado um conjunto de números, o problema da seleção consiste
em encontrar o k-ésimo maior elemento. Com ordenação o problema possui
solução em tempo O(n logn). Mas existe um outro algoritmo mais eficiente.
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Podemos determinar o mediano de grupos de cinco elementos, e depois o re-
cursivamente o mediano m desses medianos. Com isso, o algoritmo particiona
o conjunto de números em um conjunto L de números menores que m e um
conjunto R de números maiores que m. O mediano m é na posição i := |L|+ 1
desta sequência. Logo, caso i = k m é o k-ésimo elemento. Caso i > k te-
mos que procurar o k-ésimo elemento em L, caso i < k temos que procurar o
k− i-ésimo elemento em R (ver figura A.1).
O algoritmo é eficiente, porque a seleção do elemento particionador m garante
que o subproblema resolvido na segunda recursão é no máximo um fator 7/10
do problema original. Mais preciso, o número de medianos é maior que n/5,
logo o número de medianos antes de m é maior que n/10 − 1, o número de
elementos antes de m é maior que 3n/10−3 e com isso o número de elementos
depois de m é menor que 7n/10+ 3. Por um argumento similar, o número de
elementos antes de m é também menor que 7n/10 + 3. Portanto temos um
custo no caso pessimista de

T(n) =

{
Θ(1) se n ≤ 5
T(dn/5e) +Θ(7n/10+ 3) +Θ(n) caso contrário

e com 5−p + (7/10)p = 1 temos p = log2 7 ≈ 0.84 e

T(n) = Θ

(
np
(
1+

∫n
1

u−pdu

))
= Θ(np(1+ (n1−p/(1− p) − 1/(1− p)))

= Θ(c1n
p + c2n) = Θ(n).

Algoritmo A.1 (Seleção)
Entrada Números x1, . . . , xn, posição k.

Sáıda O k-ésimo maior número.

1 S(k, {x1, . . . , xn}) :=
2 i f n ≤ 5
3 c a l c u l a e r e to rne o k és imo elemento
4 end i f
5 mi := median(x5i+1, . . . , xmin(5i+5,n)) para 0 ≤ i < dn/5e .
6 m := S(ddn/5e /2e ,m1, . . . ,mdn/5e−1)
7 L := {xi | xi < m, 1 ≤ i ≤ n}
8 R := {xi | xi ≥ m, 1 ≤ i ≤ n}
9 i := |L|+ 1
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10 i f i = k then
11 return m
12 else i f i > k then
13 return S(k, L)
14 else
15 return S(k− i, R)
16 end i f
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B. Técnicas para a análise de algoritmos

Análise de recorrências

Teorema B.1 (Akra-Bazzi e Leighton)
Dado a recorrência

T(x) =

{
Θ(1) se x ≤ x0∑
1≤i≤k aiT(bix+ hi(x)) + g(x) caso contrário

com constantes ai > 0, 0 < bi < 1 e funções g, h, tal que

|g ′(x)| ∈ O(xc); |hi(x)| ≤ x/ log1+ε x

para um ε > 0 e a constante x0 e suficientemente grande

T(x) ∈ Θ
(
xp
(
1+

∫x
1

g(u)

up+1
du

))
com p tal que

∑
1≤i≤k aib

p
i = 1.

Teorema B.2 (Graham, Knuth e Patashnik (1988))
Dado a recorrência

T(n) =

{
Θ(1) n ≤ max1≤i≤k di∑
i αiT(n− di) caso contrário

seja α a raiz com a maior valor absoluto com multiplicidade l do polinômio
caracteŕıstico

zd − α1z
d−d1 − · · ·− αkzd−dk

com d = maxk dk. Então

T(n) = Θ(nlαn) = Θ∗(αn).
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s–t máximo, 50
com fontes e destinos múltiplos,
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uniforme, 91
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