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Introducao

A disciplina “Algoritmos avancados” foi criada para combinar a teoria e a
pratica de algoritmos. Muitas vezes a teoria de algoritmos e a pratica de im-
plementagoes eficientes é ensinado separadamente, em particular no caso de
algoritmos avancados. Porém a experiéncia mostra que encontramos muitos
obstaculos no caminho de um algoritmo teoricamente eficiente para uma im-
plementacao eficiente. Além disso, o projeto de algoritmos novos nao termina
com uma implementacao eficiente, mas é alimentado pelos resultados experi-
mentais para produzir melhores algoritmos. A figura abaixo mostra o ciclo
tipico da area emergente de engenharia de algoritmos.
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Engenharia de algoritmos (Algorithm Engineering).

Seguindo essa filosofia, o nosso objetivo e tanto entender a teoria de algorit-
mos, demonstrado a sua corretude e analisando a sua complexidade, quanto
dominar a pratica de algoritmos, a sua implementagao e avaliagao experimen-
tal. Isso é refletido numa sequéncia alternada de aulas tedricas a praticas.






1. Algoritmos em grafos

1.1. Representacao de grafos

Um grafo pode ser representado diretamente de acordo com a sua defini¢ao
por n estruturas que representam os vértices, m estruturas que representam
os arcos e ponteiros entre as estruturas. Um vértice possui ponteiros para todo
arco incidente sainte ou entrante, e um arco possui ponteiros para o inicio e
término. A representagio direta possui varias desvantagens. Por exemplo nao
temos acesso direto aos vértices para inserir um arco.

Duas representagoes simples sdo listas (ou vetores) nao-ordenadas de vértices
ou arestas. Uma outra representagdo simples de um grafo G com n vértices é
uma matriz de adjacéncia M = (my;) € B™*™. Para vértices u,v o elemento
M,y = 1 caso existe uma arco entre u e v. Para representar grafos nao-
direcionados mantemos My, = My, i.e., M é simétrico. A representacao
permite um teste de adjacéncia em O(1). Percorrer todos vizinhos de um
dado vértice v custa O(n). O custo alto de espaco de @(n?) restringe o uso
de uma matriz de adjacéncia para grafos pequenos'.

Uma representacao mais eficiente é por listas ou vetores de adjacéncia. Neste
caso armazenamos para cada vértice os vizinhos em uma lista ou um vetor. As
listas ou vetores mesmos podem ser armazenados em uma lista ou um vetor
global. Com isso a representagdo ocupa espaco @(n + m) para m arestas.
Uma escolha comum é um vetor de vértices que armazena listas de vizinhos.
Esse estrutura permite uma insergao e delecao simples de arcos. Para facilitar
a delegao de um vértice em grafos nao-direcionados, podemos armazenar junto
com o vizinho u do vértice v a posi¢ao do vizinho v do vértice u. A repre-
sentagao dos vizinhos por vetores é mais eficiente, e por isso preferivel caso
a estrutura do grafo é estédtico (Jr. e Martel, 1998; Park, Penner e Prasanna,
2004).

Caso escolhemos armazenar os vértices em uma lista dupla, que armazena uma
lista dupla de vizinhos, em que os vizinhos sao representados por posicoes da
primeira lista, obtemos uma lista dupla de arcos (ingl. doubly connected arc
list, DCAL). Essa estrutura permite uma insergao e remogao tanto de vértices
quanto de arcos.

Supde que V = [n]. Uma outra representacdo compacta e eficiente conhecido
como forward star para grafos estaticos usa um vetor de arcos ap,...,Qm.

1 Ainda mais espaco consuma uma matriz de incidéncia entre vértices e arestas em B™X™.



1. Algoritmos em grafos

Tabela 1.1.: Operacoes tipicas em grafos.

Lista de Matriz de Lista de
Operacao arestas  vértices  adjacéncia adjacéncia
Inserir aresta o(1) O(n+m) o(1) O(1) ou O(n)

Remover aresta O(m) OMm+m) o) Oon)
Inserir vértice o(1) o(1) O(n?) o(1)

Remover vértice O(m) Omn+m) O(n?) On+m)
Teste uv € E O(m) OMm+m) o) o(A)
Percorrer vizinhos O(m) o(A) O(n) 0o(A)
Grau de um vértice O(m) o(A) O(n) o(1)

Mantemos a lista de arestas ordenado pelo comeco do arco. Uma permutacao o
nos dé as arestas em ordem do término. (O uso de uma permutacao serve para
reduzir o consumo de meméria.) Para percorrer eficientemente os vizinhos
de um vértice armazenamos o indice s, do primeiro arco sainte na lista de
arestas ordenado pelo comego e o indice e, do primeiro arco entrante na lista
de arestas ordenado pelo término com s, 11 = en1 = m+ 1 por definigdo.

Com isso temos N*(v) ={as,,...,0as, ,,—1} com 8} = sy 1 —sy, e N"(v) =
{Ag(ey)yervy Qofey 1—1)) COM B, = €y — ey. A representacao precisa espago
O(n+m).

A tabela 1.1 compara a complexidade de operagdes tipicas nas diferentes re-
presentacoes.

1.2. Caminhos e ciclos Eulerianos

Um caminho Euleriano passa por toda arestas de grafo exatamente uma vez.
Um caminho Euleriano fechado é um ciclo Euleriano. Um grafo é Fuleriano
caso ele possui um ciclo Euleriano que passa por cada vértice (pelo menos
uma vez).

Proposicao 1.1
Uma grafo nao-direcionado G = (V, E) é Euleriano sse G é conectado e cada
vértice tem grau par.

Prova. Por inducao sobre o nimero de arestas. A base da indugao é um
grafo com um vértice e nenhuma aresta que satisfaz a proposicao. Supoe que
os grafos com < m arestas satisfazem a proposicao e temos um grafo G com
m+1 arestas. Comega por um vértice v arbitrario e procura um caminho que
nunca passa duas vezes por uma aresta até voltar para v. Isso sempre é possivel
porque o grau de cada vértice é par: entrando num vértice sempre podemos
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1.2. Caminhos e ciclos Eulerianos

sair. Removendo este caminho do grafo, obtemos uma colegao de componentes
conectados com menos que m arestas, e pela hipétese da indugao existem ciclos
Eulerianos em cada componente. Podemos obter um ciclo Euleriano para o
grafo original pela concatengac desses ciclos Eulerianos. |
Pela prova temos o seguinte algoritmo com complexidade O(|E|) para encontrar
um ciclo Euleriano na componente de G = (V, E) que contém v € V:

Euler (G=(V,E),veV) =
if |[E|=0 return v
procura um caminho comegando em Vv
sem repetir arestas voltando para v
seja v=vi,v2,...,V, =V esse caminho
remove as arestas Viva, Vavi, ..., Vvp_1vnp de G
para obter Gj
return Euler(Gq,v1) + Euler(Gz,v3) + -+ -+ Euler(Gr_1,nvn 1) + v
// Usamos + para concatenagdo de caminhos.
// Gi é Gi_1 com as arestas do
//  caminho Euler(Gi_1,vi—1) remowvidos, i.e
//  Gi=(V,E(Gi_1) \ E(Euler(G;i_1,vi_1))



1. Algoritmos em grafos

1.3. Filas de prioridade e heaps

Uma fila de prioridade mantem um conjunto de chaves com prioridades de
forma que a atualizar prioridades e acessar o elemento de menor prioridade é
eficiente. Ela possui aplicagoes em algoritmos para calcular drvores geradores
minimas, caminhos mais curtos de um vértice para todos outros (algoritmo
de Dijkstra) e em algoritmos de ordenagao (heapsort).

Exemplo 1.1
Arvore geradora minima através do algoritmo de Prim.

Algoritmo 1.1 (Arvore geradora minima)
Entrada Um grafo conexo nao-orientado ponderado G = (V, E, ¢)

Saida Uma arvore T C E de menor custo total.

1 V':i={vg} para um vo €V

2 T:=0

3 while V' #V do

4 escolhe e={u,v} com custo minimo

5 entre V' e VAV’ (com ueV/ veV\V')
6 V=V U{v}

7 T:=TU{e}

8

end while

Algoritmo 1.2 (Prim refinado)
Implementagao mais concreta:

1 T:=0

2 for ueV\{v} do

3 if ue N(v) then

4 value(u) := cyuy

5 pred(u) :=v

6 else

7 value(u) := oo

8 end if

9 insert(Q, (value(u),u)) { pares (chave,elemento) }

10 end for
11 while Q #0 do
12 v := deletemin(Q)
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13 T:=T U{pred(v)v}
14 for ue N(v) do

15 if ueQ e cyy < value(u) then
16 value(u) = cyuy

17 pred(u) :=v

18 update(Q,u, Cyy)

19 end if

20 end for
21 end while

Custo? n X insert + n x deletemin + m x update.

O

Observagao 1.1

Implementacdo com vetor de distincias: insert = O(1)2, deletemin = O(n),
update = O(1), e temos custo O(n +n? +m) = O(n? +m). Isso é assintoti-
camente 6timo para grafos densos, i.e. m = Q(n?). O

Observagao 1.2
Implementagao com lista ordenada: insert = O(n), deletemin = O(1), update =
O(n), e temos custo O(n? + n + mn) = O(mn)?. O

Observagao 1.3

Implementacao com uma lista de v/n blocos de v/n elementos, insert, delete-
min e update podem ser implementados em tempo O(+/1), logo o algoritmo
de Prim e de Dijkstra tem complexidade O(m4/n). O

Exemplo 1.2
Caminhos mais curtos com o algoritmo de Dijkstra

Algoritmo 1.3 (Dijkstra)
Entrada Grafo G = (V,E) com pesos c. > 0 nas arestas e € E, e um
vértice s € V.

Saida A distancia minima d, entre s e cada vértice v € V.

1 ds :=0;d, := 00, Vv € V\ {s}
2 visited(v) := false, Vv € V

2Com chaves compactas [1,n].
3Na hipétese razodvel que m > n
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3 Q:=0

4 insert(Q, (s,0))

5 while Q #0 do

6 v := deletemin(Q)
7 visited(v) = true
8 for ue N(v) do

9 if not visited(u) then
10 if dy = o then
11 dy :=d, + dyy
12 insert(Q, (u,dy))
13 else if d, +d,, <dy.
14 dy:=d, +dyu
15 update(Q, (u, d.,))
16 end if
17 end if
18 end for

19 end while

A fila de prioridade contém pares de vértices e distancias.

Proposicao 1.2
O algoritmo de Dijkstra possui complexidade

O(n) +n x deletemin + n x insert + m x update.

Prova. O pré-processamento (1-3) tem custo O(n). O lago principal é
dominado por no méximo n operacoes insert, n operagoes deletemin, e m
operagoes update. A complexidade concreta depende da implementacao des-
ses operacoes. |

Proposigao 1.3
O algoritmo de Dijkstra é correto.

Prova. Seja dist(s,x) a menor distancia entre s e x. Provaremos por indugao
que para cada vértice v selecionado na linha 6 do algoritmo d, = dist(s,x).
Como base isso é correto parav = s. Sejav # s um vértice selecionado na linha
6, e supoe que existe um caminho P =s---xy---v de comprimento menor que
dy, tal que y é o primeiro vértice que néo foi processado (i.e. selecionado na

10



1.3. Filas de prioridade e heaps

linha 6) ainda. (E possivel que y = v.) Sabemos que

dy < dx +dyy porque x ja foi processado
= dist(s, x) + dxy pela hipétese dy = dist(s, x)
< d(P) dp(s,x) > dist(s,x) e P passa por xy
< dy, pela hipétese

uma contradigdo com a minimalidade do elemento extraido na linha 6. (Notagao:
d(P): distancia total do caminho P; dp(s,x): distancia entre s e x no caminho
P) n 0

Observagao 1.4

Podemos ordenar n elementos usando um heap com m operacoes “insert”
e n operacoes “deletemin”. Pelo limite de Q(nlogn) para ordenacéo via
comparagao, podemos concluir que o custo de “insert” mais “deletemin” é
Q(logn). Portanto, pelo menos uma das operagoes é Q(logn). O

O caso médio do algoritmo de Dijkstra Dado um grafo G = (V;E) e um
vértice inicial arbitrdrio supoe que temos um conjunto C(v) de pesos positivos
com |C(v)] = [N~ (v)| para cada v € V. Atribuiremos permutacoes dos pesos
em C(v) aleatoriamente para os arcos entrantes em v.

Proposicao 1.4 (Noshita (1985))
O algoritmo de Dijkstra chama update em média nlog(m/n) vezes neste mo-
delo.

Prova. Para um vértice v os arcos que podem levar a uma operacao update
em v sdo de forma (u,v) com dist(s,u) < dist(s,v). Supde que existem k
arcos (u1,v),..., (u,v) desse tipo, ordenado por dist(s,u;) ndo-decrescente.
Independente da atribuicao dos pesos aos arcos, a ordem de processamento
mantem-se. O arco (uy,V) leva a uma operacdo update caso

dist(s, ui) + dy,v < jr;jli<11idist(s,uj) + du;v-
Com isso temos dy;y < minj;j<; duyjv, L., dugv é um minimo local na sequéncia
dos pesos dos k arcos. O numero esperado de maximos locais de uma per-
mutacao aleatéria é Hiy — 1 < Ink e considerando as permutagoes inversas,
temos o mesmo numero de minimos locais. Como k < 8~ (v) temos um limite
superior para o numero de operagoes update em todos vértices de

Y s (v)=n) (I/M)lnd (v)<nln) (1/n)8 (v) =nlnm/n.

vev vev vev

11
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1. Algoritmos em grafos

A desigualdade ¢ é justificada pela equacdo (A.6) observando que Inn é con-
cava. |
Com isso complexidade média do algoritmo de Dijkstra é

O(m + n x deletemin + n x insert + nln(m/n) x update).

Usando uma implementacao da fila de prioridade por um heap binario que
realiza todas operacoes em O(logn) a complexidade média do algoritmo de
Dijkstra é O(m + nlogm/nlogn).

1.3.1. Heaps binarios

Teorema 1.1 (Williams (1964))

Uma fila de prioridade pode ser implementado com custo insert = O(logn),
deletemin = O(logn), update = O(logn). Portanto, uma arvore geradora
minima pode ser calculado em tempo O(nlogn + mlogn).

Um heap é uma arvore com chaves nos vértices que satisfazem um critério de
ordenagao.

e min-heap: as chaves dos filhos sao maior ou igual que a chave do pai;
e maz-heap: as chaves dos filhos sao menor ou igual que a chave do pai.

Um heap binédrio é um heap em que cada vértice possui no maximo dois filhos.
Implementaremos uma fila de prioridade com um heap binédrio completo. Um
heap completo fica organizado de forma que possui folhas somente no tltimo
nivel, da esquerda para direita. Isso garante uma altura de O(logn).

Positivo: Achar a chave com valor minimo (operagao findmin) custa O(1).
Como implementar a inser¢ao? Idéia: Colocar na tltima posicao e restabelecer
a propriedade do min-heap, caso a chave é menor que a do pai.

insert (H,c) :=
insere ¢ na udltima posicao p
heapify up(H,p)

12



1.3. Filas de prioridade e heaps

5 heapify up(H,p) :=

6 if root(p) return

7 if key(parent(p))>key(p) then
8 swap (key (parent (p)) ,key(p))
9 heapify up(H,parent(p))

0

1 end if

Lema 1.1
Seja T um min-heap. Decremente a chave do né p. Apds heapify-up(T, P)
temos novamente um min-heap. A operacao custa O(logn).

Prova. Por indugao sobre a profundidade k de p. Caso k = 1: p é a raiz,
apds o decremento ja temos um min-heap e heapify-up nao altera ele. Caso
k > 1: Seja ¢ a nova chave de p e d a chave de parent(p). Caso d < c jd temos
um min-heap e heapify-up nao altera ele. Caso d > c heapify-up troca c e
d e chama heapify-up(T,parent(p)) recursivamente. Podemos separar a troca
em dois passos: (i) copia d para p. (ii) copia ¢ para parent(p). Apds passo
(i) temos um min-heap T’ e passo (ii) diminui a chave de parent(p) e como
a profundidade de parent(p) é k — 1 obtemos um min-heap apés da chamada
recursiva, pela hipétese da indugao.

Como a profundidade de T é O(logn), o niimero de chamadas recursivas
também, e como cada chamada tem complexidade O(1), heapify-up tem com-
plexidade O(logn). |
Como remover? A idéia bésica é a mesma: troca a chave com o menor filho.
Para manter o heap completo, colocaremos primeiro a chave da tltima posicao
na posi¢ao do elemento removido.

delete (H,p):=
troca ultima posigao com p
heapify down(H,p)

heapify down(H,p):=
if (p ndo possui filhos) return
if (p possui um filho) then

it ey (left (p)) <key (p)) then swap(key (left (p)) ey (p)
end i

© 00 O U Wi+
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1. Algoritmos em grafos

{ p possui dois filhos }
if key(p)>key(left(p)) or key(
if (key(left (p))<key(right(p
swap (key (1eft (p))  key (p))
heapify down(H,left (p))
else
swap (key (right (p)) key(p))
heapify down(H,right(p))
end if
end if

p)>key(right (p)) then
)) then

Lema 1.2
Seja T um min-heap. Incremente a chave do né p. Apds heapify-down(T, p)
temos novamente um min-heap. A operacdo custa O(logn).

Prova. Por inducao sobre a altura k de p. Caso k =1, p é uma folha e apés o
incremento ja temos um min-heap e heapify-down nao altera ele. Caso k > 1:
Seja ¢ a nova chave de p e d a chave do menor filho f. Caso ¢ < d ja temos
um min-heap e heapify-down nao altera ele. Caso ¢ > d heapify-down troca c
e d e chama heapify-down(T,f) recursivamente. Podemos separar a troca em
dois passos: (i) copia d para p. (ii) copia ¢ para f. Apds passo (i) temos um
min-heap T’ e passo (ii) aumenta a chave de f e como a altura de f é k — 1,
obtemos um min-heap apds da chamada recursiva, pela hipétese da inducao.
Como a altura de T é O(logn) o nimero de chamadas recursivas também, e
como a cada chamada tem complexidade O(1), heapify-up tem complexidade
O(logmn). |
Ultima operagao: atualizar a chave.

update (H,p,v) :=
if v<key(p) then

key (p):=v

heapify up(H,p)
else

key (p):=v

heapify down(H,p)
end if

14
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1.3. Filas de prioridade e heaps

Sobre a implementacao Uma arvore bindria completa pode ser armazenado
em um vetor v que contém as chaves. Um pontador p a um elemento é
simplesmente o indice no vetor. Caso o vetor contém n elementos e possui
indices a partir de 0 podemos definir

root (p) := return p=0

parent (p) := return |(p—1)/2]

key (p) := return v[p]

left (p) := return 2p+1

right (p) := return 2p+2

numchildren (p) := return max(min(n — left(p),2),0)
Outras observagoes:

e Para chamar update, temos que conhecer a posi¢ao do elemento no heap.
Para um conjunto de chaves compactos [0, n) isso pode ser implementado
usando um vetor pos, tal que poslc] é o indice da chave ¢ no heap.

e A fila de prioridade nao possui teste u € Q (linha 15 do algoritmo 1.2)
eficiente. O teste pode ser implementado usando um vetor visited, tal
que visited[u] sse u & Q.

1.3.2. Heaps binomiais

Um heap binomial é um colecao de drvores binomiais que satisfazem a or-
denagao de um heap. A arvore binomial By consiste de um 1nico vértice. A
arvore binomial B; possui uma raiz com filhos Bg,...,Bi_1. O posto de By é
k. Um heap binomial contém no maximo uma arvore binomial de cada posto.

Bo Bi Bz Bs B4
° :/.\z W
Lema 1.3

Uma &arvore binomial tem as seguintes caracteristicas:

1. By, possui 2™ vértices, 2"~ folhas (para n > 0), e tem altura n + 1.

15
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2. O nivel k de By, (a raiz tem nivel 0) tem () vértices. (Isso explica o
nome.)
Prova. Exercicio. |

Observagao 1.5

Podemos combinar dois B; obtendo um B;, 1 e mantendo a ordenagao do heap:
Escolhe a arvore com menor chave na raiz, e torna a outra filho da primeira.
Chamaremos essa operacao “link”. Ela tem custo O(1) (veja observagoes sobre
a implementacao).

O

Observagao 1.6

Um B; possui 2 vértices. Um heap com n chaves consiste em O(logn) drvores.
Isso permite juntar dois heaps binomiais em tempo O(logn). A operagao é
semelhante a soma de dois nimeros binarios com “carry”. Comega juntar os
Bo. Caso tem zero, continua, case tem um, inclui no heap resultante. Caso
tem dois o heap resultante nao recebe um By. Define como “carry” o link dos
dois Bg’s. Continua com os B;. Sem tem zero ou um ou dois, procede como
no caso dos Bg. Caso tem trés, incluindo o “carry”, inclui um no resultado, e
define como “carry” o link dos dois restantes. Continue desse forma com os
restantes drvores. Para heaps hy, h, chamaremos essa operagao meld(hy,h;).

%
Com a operagao meld, podemos definir as seguintes operagoes:
e makeheap(c): Retorne um By com chave c¢. Custo: O(1).
e insert(h,c): meld(h,makeheap(c)). Custo: O(logn).
e getmin(h): Mantendo um link para a drvore com o menor custo: O(1).

e deletemin(h): Seja By a drvore com o menor chave. Remove a raiz.
Define dois heaps: hy é h sem By, h, consiste dos filhos de By, i.e.
Bo, ..., Bx—1. Retorne meld(hj,h;). Custo: O(logn).

e updatekey(h,p,c): Como no caso do heap bindrio completo com custo
O(logn).

16



1.3. Filas de prioridade e heaps

e delete(h,c): decreasekey(h,c,—o0); deletemin(h)

Em comparagao com um heap binario completo ganhamos nada no caso pessi-
mista. De fato, a operagao insert possui complexidade pessimista O(1) amor-
tizada. Um insert individual pode ter custo O(logn). Do outro lado, isso
acontece raramente. Uma andlise amortizada mostra que em média sobre
uma série de operagdes, um insert sé custa O(1). Observe que isso ndo é uma
analise da complexidade média, mas uma analise da complexidade pessimista
de uma série de operagoes.

Analise amortizada

Exemplo 1.3

Temos um contador bindrio com k bits e queremos contar de 0 até 2K — 1.
Analise “tradicional”: um incremento tem complexidade O(k), porque no caso
pior temos que alterar k bits. Portanto todos incrementos custam O(k2¥).
Anélise amortizada: “Poupamos” operagoes extras nos incrementos simples,
para “gasté-las” nos incrementos caros. Concretamente, setando um bit, gas-
tamos duas operagoes, uma para setar, outra seria “poupada”. Incremen-
tando, usaremos as operagoes “poupadas” para zerar bits. Desta forma, um
incremento custa O(1) e temos custo total O(2%).

Uma outra forma da andlise amortizada é através uma funcao potencial @,
que associa a cada estado de uma estrutura de dados um valor positivo (a
“poupanga”). O custo amortizado de uma operagdo que transforma uma
estrutura e; em uma estrutura e; e ¢ — @(e7) + @(e2), com ¢ o custo de
operacdo. No exemplo do contador, podemos usar como @(i) o nimero de
bits na representagio binario de i. Agora, se temos um estado e;

S~—— ~~—
Pp bits um g bits um

com @(ey) =p + q, o estado apés de um incremento é

00---01 ---
——
0 q

com @(ez) =14 q. O incremento custa ¢ = p 4+ 1 operagdes e portanto o
custo amortizado é

c—pler) +ole) =p+T1—p—q+1+q=2=0().

17
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Resumindo: Dado um série de chamadas de uma operagao com custos €1, ...,Cn
o custo amortizado da operacdo é Y ;. ci/n. Caso temos m operagoes di-

ferentes, o custo amortizado da operacao que ocorre nos indices | C [1,m] é

Zie] Cl/m

As somas podem ser dificeis de avaliar diretamente. Um método para simpli-

ficar o cédlculo do custo amortizado é o método potencial. Acha uma funcdo

potencial @ que atribui cada estrutura de dados antes da operagao i um va-

lor nado-negativo @; > 0 e normaliza ela tal que @1 = 0. Atribui um custo

amortizado

ai =Ci — @i+ Qi+

a cada operacao. A soma dos custos nao ultrapassa os custos originais, porque

D ai=) Pt =ni—e1+) =)

Portanto, podemos atribuir a cada tipo de operacdo ] C [1, m] o custo amorti-
zado Zie] ai/|J|. Em particular, se cada operagdo individual i € ] tem custo
amortizado a; < F, o custo amortizado desse tipo de operacao é F.

Exemplo 1.4

Queremos implementar uma tabela dindmica para um ntmero desconhecido
de elementos. Uma estratégia é reserver espago para n elementos, manter a
dltima posicao livre p, e caso p > n alocara uma nova tabela de tamanho
maior. Uma implementacao dessa ideia é

insert (x):=
if p>n then
aloca nova tabela de tamanho t = max{2n,1}
copia os elementos xi,1 <i<p para nova tabela
n:=t
end if
Xp ==X
Pp=p+1
com valores iniciais n:= 0 e p := 0. O custo de insert é O(1) caso existe ainda
espaco na tabela, mas O(n) no pior caso.
Uma andlise amortizada mostra que a complexidade amortizada de uma operagao
é O(1). Seja Cn o custo das linhas 3-5 e D o custo das linhas 7-8. Escolhe a
funcao potencial @(n) =2Cp —Dn. A funcao ¢ é satisfaz os critérios de um
potencial, porque p > 1n/2, e inicialmente temos @(0) = 0. Com isso o custo
amortizado caso tem espago na tabela é

ai=ci—@i-T1)+ (i)
=D —(2C(p—1)—Dn) + (2Cp —Dn) = C +2C = O(1).
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1.3. Filas de prioridade e heaps

Caso temos que alocar uma nova tabela o custo é

ai=ci—ei—-1)+{i)=D+Cn—(2C(p—1)—Dn) + (2Cp — 2Dn)
—C+Dn+2C—Dn=0(1).

O

Custo amortizado do heap binomial Nosso potencial no caso do heap bi-
nomial é o nimero de arvores no heap. O custo de getmin e updatekey nao
altera o potencial e por isso permanece o mesmo. makeheap cria uma arvore
que custa mais uma operagao, mas permanece O(1). deletemin pode criar
O(logn) drvores novas, porque o heap contém no maximo um Bpgn que
tem O(logn) filhos, e permanece também com custo O(logn). Finalmente,
insert reduz o potencial para cada link no meld e portanto agora custa somente
O(1) amortizado, com o mesmo argumento que no exemplo 1.3.
Desvantagem: a complexidade (amortizada) assintética de calcular uma arvore
geradora minima permanece O(nlogn + mlogn).

Meld preguicosa Ao invés de reorganizar os dois heaps em um meld, pode-
mos simplesmente concatend-los em tempo O(1). Isso pode ser implementado
sem custo adicional nas outras operagoes. A 1nica operac¢ao que nao tem com-
plexidade O(1) é deletemin. Agora temos uma colecido de arvores binomiais
nao necessariamente de posto diferente. O deletemin reorganiza o heap, tal
que obtemos um heap binomial com arvores de posto tinico novamente. Para
isso, mantemos um vetor com as arvores de cada posto, inicialmente vazio.
Sequencialmente, cada arvore no heap, sera integrado nesse vetor, executando
operacoes link sé for necessario. O tempo amortizado de deletemin permanece
O(logmn).

Usaremos um potencial ¢ que é o dobro do nimero de drvores. Supondo que
antes do deletemin temos t arvores e executamos 1 operagoes link, o custo
amortizado é

(t+1)—2t+2t—1)=t—L

Mas t — 1 é o nidmero de drvores depois o deletemin, que é O(logn), porque
todas arvores possuem posto diferente.

Sobre a implementacao Um forma eficiente de representar heaps binomiais,
é em forma de apontadores. Além das apontadores dos filhos para o os pais,
cada pai possui um apontador para um filho e os filhos sdo organizados em
uma lista encadeada dupla. Mantemos uma lista encadeada dupla também
das raizes. Desta forma, a operacdo link pode ser implementada em O(1).

19



1. Algoritmos em grafos

1.3.3. Heaps Fibonacci

Um heap Fibonacci é uma modificagdo de um heap binomial, com uma operagao
decreasekey de custo O(1). Com isso, uma arvore geradora minima pode ser
calculada em tempo O(m+mnlogn). Para conseguir decreasekey em O(1) nao
podemos mais usar heapify-up, porque heapify-up custa O(logn).

Primeira tentativa:

e delete(h,p): Corta p de h e executa um meld entre o resto de h e os filhos
de p. Uma alternativa é implementar delete(h,p) como decreasekey(h,p,—oc0)
e deletemin(h).

e decreasekey(h,p): A ordenagdo do heap pode ser violada. Corta p é
execute um meld entre o resto de h e p.

Problema com isso: apds de uma série de operacoes delete ou decreasekey, a
arvore pode se tornar “esparso”’, i.e. o numero de vértices nao é mais expo-
nencial no posto da arvore. A analise da complexidade das operagbes como
deletemin depende desse fato para garantir que temos O(logmn) arvores no
heap. Consequéncia: Temos que garantir, que uma arvore nao fica “podado”
demais. Solugao: Permitiremos cada vértice perder no maximo dois filhos.
Caso o segundo filho é removido, cortaremos o préprio vértice também. Para
cuidar dos cortes, cada né mantém ainda um valor booleana que indica, se ja
foi cortado um filho. Observe que um corte pode levar a uma série de cortes
e por isso se chama de corte em cascatas (ingl. cascading cuts). Um corte
em cascata termina na pior hipétese na raiz. A raiz é o tinico vértice em que
permitiremos cortar mais que um filho. Por isso nao mantemos flag na raiz.

Implementacdes Denotamos com h um heap, c uma chave e p um elemento
do heap. minroot(h) é o elemento do heap que correspondo com a raiz da
chave minima, e cut(p) é uma marca que verdadeiro, se p ja perdeu um filho.
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insert (h, c¢) :=
meld (makeheap (c))

getmin(h) :=
return minroot (h)

delete (h,p) :=
decreasekey (h,p,—o0)
deletemin (h)

meld(h1 ,hz) =
h := lista com raizes de hy e hy (em O(1))
minroot (h) :=
if key(minroot(h))<key(minroot(hy)) hy else hy

decreasekey (h,p,c) :=
key(p):= ¢
if ¢ < key(minRoot(h))
minRoot (h) = p
if not root(p)
if key(parent(p))>key(p)
corta p e adiciona na lista de raizes de h
cut(p) := false
cascading cut(h,parent(p))

cascading cut(h,p) :=
{ p perdeu um filho }

if root(p)
return
if (not cut(p)) then
cut (p) := true
else
corta p e adiciona na lista de raizes de h
cut(p) := false
cascading cut (h,parent(p))
end if

deletemin (h) :=
remover minroot (h)

juntar as listas do resto de h e dos filhos de minroot(h)

{ reorganizar heap }
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determina o posto miximo M =M(n) de h
11 ;= undefined para 0 <i<M
for toda raiz r do
remove 1 da lista de raizes
d := degree(r)
while (rq not undefined) do
r := link (r,1q)
T4 := undefined
d .= d+1
end while
Tq (= T
end for
definir a lista de raizes pelas entradas definidas 1y
determinar o novo minroot

link(}u ,hz) =
if (key(hy)<key(hz))
h := makechild (hy ,hz)

else

h := makechild (hy ,hy)
cut (hy) := false
cut (hy) := false
return h

Para concluir que a implementagao tem a complexidade desejada temos que
provar que as arvores com no maximo um filho cortado nao ficam esparsos
demais e analisar o custo amortizado das operacoes.

Custo amortizado Para andlise usaremos um potencial de cit + ¢com sendo
t 0 nimero de arvores, m o numero de vértices marcados e ¢y, ¢, constantes.
As operagoes makeheap, insert, getmin e meld (preguigoso) possuem comple-
xidade (real) O(1). Para decreasekey temos que considerar o caso em que o
corte em cascata remove mais que uma subdrvore. Supondo que cortamos
n arvores, o numero de raizes é t +n apds dos cortes. Para todo corte em
cascata, a arvore cortada é desmarcada, logo temos no maximo m — (n — 1)
marcas depois. Portanto custo amortizado é

OMm)—(cit+ecom)+(ci(t+n)+caim—(m—=1))) =con—(c2—c1)n+c2
e com €3 — €7 > ¢ temos custo amortizado constante ¢c; = O(1).

Com posto méaximo M, a operacao deletemin tem o custo real O(M +t), com
as seguintes contribuigoes
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e Linha 43: O(M).

e Linhas 44-51: O(M + t) com t o nimero inicial de adrvores no heap. A
lista de raizes contém no maximo as t arvores de h e mais M filhos da
raiz removida. O laco total nao pode executar mais que M +1t operacoes
link, porque cada um reduz o ntimero de raizes por um.

e Linhas 54-55: O(M).

Seja m o nimero de marcas antes do deletemin e m’ o nimero depois. Como
deletemin marca nenhum vértice, temos m’ < m. O numero de arvores t’
depois de deletemin satisfaz t’ < M porque deletemin garante que existe no
maximo uma arvore de cada posto. Portanto, o potencial depois de deletemin
e @' =cit+coam’ <cyM+cam, e o custo amortizado é

OM+1t)—(crt+com)+ @' <OM+1t) — (crt+com) + (c1M +com)
=(co+c1)M+(co—cy)t

e com Cj > Co temos custo amortizado O(M).

Um limite para M Para provar que deletemin tem custo amortizado logn,
temos que provar que M = M(n) = O(logn). Esse fato segue da maneira
”cautelosa” com que cortamos vértices das arvores.

Lema 1.4
Seja p um vértice arbitrario de um heap Fibonacci. Considerando os filhos
na ordem temporal em que eles foram introduzidos, filho 1 possui pelo menos
i— 2 filhos.

Prova. No instante em que o filho i foi introduzido, p estava com pelo menos
i—1 filhos. Portanto i estava com pelo menos i — 1 filhos também. Depois
filho i perdeu no maximo um filho, e portanto possui pelo menos i — 2 filhos.
|

Quais as menores arvores, que satisfazem esse critério?

Fob B R F3 Fa

R
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Lema 1.5
Cada subérvore com uma raiz p com k filhos possui pelo menos Fy» vértices.

Prova. Seja Sk o nimero minimo de vértices para uma subdrvore cuja raiz
possui k filhos. Sabemos que So =1, Sy = 2. DefineS_ , =S 7 =1. Com
isso obtemos para k > 1

Sy = Z Sk2=Sk2+Sc3+--+S 2= 2+ Sk 1.
0<i<k

Comparando Sy com os nimeros Fibonacci

P k se 0 <k<I1
kT Fro+Fe1 sek>2
e observando que So = F, e S; = F3 obtemos Sx = Fyi2. Usando que
Fn € ©(®™) com @ = (14 +/5)/2 (exercicio!) conclui a prova. [ |

Corolario 1.1
O posto méaximo de um heap Fibonacci com 1 elementos é O(logn).

Sobre a implementacdo A implementagdo da arvore é a mesma que no caso
de heaps binomiais. Uma vantagem do heap Fibonacci é que podemos usar os
nés como ponteiros — lembre que a operagao decreasekey precisa isso, porque
os heaps nao possuem uma operacao de busca eficiente. Isso é possivel, porque
sem heapify-up e heapify-down, os ponteiros mantem-se validos.

1.3.4. Rank-pairing heaps

Haeupler, Sen e Tarjan (2009) propéem um rank-pairing heap (um heap “em-
parelhando postos”) com as mesmas garantias de complexidade que um heap
Fibonacci e uma implementacdo simplificada e mais eficiente na prética (ver
observagao 1.9).

Torneios Um torneio é uma representacao alternativa de heaps. Comegando
com todos elementos, vamos repetidamente comparar pares de elementos, e
promover o vencedor para o préximo nivel (Fig. 1.1(a)). Uma desvantagem
de representar torneios explicitamente é o espago para chaves redundantes.
Por exemplo, o campedo (i.e. 0 menor elemento) ocorre O(logn) vezes. A
figura 1.1(b) mostra uma representacdo sem chaves repetidas. Cada chave
é representado somente na comparacao mais alta que ele ganhou, as outras
comparagoes ficam vazias. A figura 1.1(c) mostra uma representacao compacta
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Figura 1.1.: Representagoes de heaps.

em forma de semi-drvore. Numa semi-arvore cada elemento possui um filho
ordenado (na figura o filha da esquerda) e um filho ndo-ordenado (na figura
o filho da direita). O filho ordenado é o perdedor da comparacao direta com
o elemento, enquanto o filho ndo-ordenado é o perdedor da comparacao com
o irméo vazio. A raiz possui somente um filho ordenado.

Cada elemento de um torneio possui um posto. Por defini¢ao, o posto de uma
folha é 0. Uma comparagao justa entre dois elementos do mesmo posto r
resulta num elemento com posto T+ 1 no préximo nivel. Numa comparacao
injusta entre dois elementos com postos diferentes, o posto do vencedor é
definido pelo maior dois postos dos participantes (uma alternativa é que o
posto fica 0 mesmo). O posto de um elemento representa um limite inferior
do nimero de elementos que perderam contra-lo:

Lema 1.6
Um torneio com campedo de posto k possui pelo menos 25 elementos.

Prova. Por indugao. Caso um vencedor possui posto k temos duas possibi-
lidades: (i) foi o resultado de uma comparagao justa, com dois participantes
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com posto k — 1 e pela hipétese da inducao com pelo menos 2%~ elementos,
tal que o vencedor ganhou contra pelo menos 2% elementos. (ii) foi resultado
de uma comparagao injusta. Neste caso um dos participantes possuiu posto k
e o vencedor novamente ganhou contra pelo menos 2% elementos. |

Cada comparacgao injusta torna o limite inferior dado pelo posto menos preciso.
Por isso uma regra na construcao de torneios é fazer o maior nimero de
comparacoes justas possiveis. A representagdo de um elemento de heap é
possui quatro campos para a chave (c), o posto (r), o filho ordenado (o) e o
filho nao-ordendo (u):

def Node(c,r,o0,u)
Podemos implementar as operagoes de uma fila de prioridade (sem update ou
decreasekey) como segue:

{ compara duas arvores }
link(t1 ,tz) =
if t;.¢c < ty.c then
return makechild (t,t2)
else
return makechild (t2,t7)
end if

makechild (s, t) :=

(
S
s.o = ¢t
(
S
S

setrank (t) :=
if t.o.r = t.u.r
t.r =t.o.r +1
else
t.r = max(t.o.r,t.u.r)
end if

{ cria um heap com um tnico elemento com chave c }
make heap(c) := return Node(c,0 ,undefined ,undefined)

{ inserte chave c no heap }
insert (h,c) := link (h,make heap(c))
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{ unido de dois heaps }
meld(]’u ,]’Lz) = link (h] ,hz)

{ elemento minimo do heap }
getmin (h) := return h

{ dele¢do do elemento minimo do heap }
deletemin (h) :=
aloca array T1o...Th.o.r+1
t = h.o
while t not undefined do
t' = t.u
t.u := undefined
register (t,r)
t:=t'
end while
h’' := undefined
for i=0,...,h.or+1 do
if r; not undefined
h' := link (h',1y)
end if
end for
return h’
end

register (t,r) :=
if T¢{o.re11 is undefined then

Ttor+1l =
else
t:=link (t,Tt.o0r41)
Tt.o.r+1 := undefined
register (t,r)
end if

end
(A figura 1.2 visualiza a operagao “link”.)

Observagao 1.7
Todas comparacoes de “register” sao justas. As comparagoes injustas ocorrem
na construgao da arvore final nas linhas 35-39. O
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link( ) =

Figura 1.2.: A operagdo “link” para semi-drvores no caso ty.c < tz.c.

Lema 1.7
Num torneio balanceado o custo amortizado de “make-heap”, “insert”, “meld”
e “getmin” é O(1), o custo amortizado de “deletemin” é O(logn).

Prova. Usaremos o niimero de comparacoes injustas no torneio como poten-
cial. “make-heap” e “getmin” nao alteram o potencial, “insert” e “meld” au-
mentam o potencial por no maximo um. Portanto a complexidade amortizada
dessas operacgoes é O(1). Para analisar “deletemin” da raiz r do torneio vamos
supor que houve k comparagoes injustas com r. Além dessas comparagoes in-
justas, r participou em no maximo logn comparacoes justas pelo lema 1.6.
Em soma vamos liberar no maximo k + logn arvores, que reduz o potencial
por k, e com no maximo k 4 logn comparagoes podemos produzir um novo
torneio. Dessas k+logn comparagoes no maximo log n sao comparagoes injus-
tas. Portanto o custo amortizado é k+1logn —k +logn = 2logn = O(logn).
|

Heaps binomiais com varredura tnica O custo de representar o heap numa
arvore Unica é permitir comparagoes injustas. Uma alternativa é permitir
somente comparacoes justas, que implica em manter uma cole¢iao de O(logn)
arvores. A estrutura de dados resultante é similar com os heaps binomiais:
manteremos uma lista (simples) de raizes das &rvores, junto com um ponteiro
para a arvore com a raiz de menor valor. O heap é representado pela raiz de
menor valor, ver Fig. 1.3.

insert (h,c) :=
insere make heap(c) na lista de raizes
atualize a 4arvore minima

meld(}u ,hz) =
concatena as listas de hy e hy
atualize a arvore minima
Somente “deletemin” opera diferente agora:
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last

h, min

Figura 1.3.: Representacao de um heap binomial.

deletemin (h) :=

aloca um array de listas To...T[ogn]
remove a &4rvore minima da lista de raizes
distribui as restantes 4arvores sobre r

t:=h.o

while t not undefined do
t/:=tu
t.u := undefined
insere t na lista T¢o.ri1
t:=1t’

end while

{ executa o maior nimero possivel }
{ de comparagées justas num unico passo }

h := undefined { lista final de raizes }
for i=0,...,[logn] do
while [ri| > 2
t := link (7;i.head,r;.head.next)
insere t na lista h
remove Ti.head,r;.head.next da lista r;
end if
if |r;y/=1 insere ri.head na lista h
end for
return h

Observagao 1.8
Continuando com comparagoes justas até sobrar somente uma arvore de cada
posto, obteremos um heap binomial. O
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Lema 1.8

Num heap binomial com varredura tinica o custo amortizado de “make-heap”,
“insert”, “meld”, “getmin” é O(1), o custo amortizado de “deletemin” é
O(logmn).

Prova. Usaremos o dobro do ntimero de arvores como potencial. “getmin”
nao altera o potencial. “make-heap”, “insert” e “meld” aumentam o potencial
por no maximo dois (uma drvore), e portanto possuem custo amortizado O(1).
“deletemin” libera no maximo logn arvores, porque todas comparagoes foram
justas. Com um numero total de h arvores, o custo de deletemin é O(h).
Sem perda de generalidade vamos supor que o custo é h. A varredura final
executa pelo menos (h—logn)/2—1 comparagoes justas, reduzindo o potencial
por pelo menos h — logn — 2. Portanto o custo amortizado de “deletemin” é
h—(h—logn—2)=logn+2=0(logn). |

rp-heaps O objetivo do rp-heap é adicionar ao heap binomial de varredura
Unica uma operacdo “decreasekey” com custo amortizado O(1). A idefa e
os problemas sdo os mesmos do heap Fibonacci: (i) para tornar a operagao
eficiente, vamos cortar a sub-arvore do elemento cuja chave foi diminuida. (ii)
o heap Fibonacci usava cortes em cascata para manter um nimero suficiente
de elementos na arvore; no rp-heap ajustaremos os postos do heap que perde
uma sub-arvore. Para poder cortar sub-arvores temos que permitir uma folga
nos postos. Num heap binomial a diferenca do posto de um elemento com o
posto do seu pai (caso existe) sempre é um. Num rp-heap do tipo 1, exigimos
somente que os dois filhos de um elemento possuem diferenca do posto 1 e 1,
ou 0 e ao menos 1. Num rp-heap do tipo 2, exigimos que os dois filhos de
um elemento possuem diferenca do posto 1 e 1, 1 e 2 ou 0 e pelo menos 2.
(Figura 1.4.)

Com isso podemos implementar o “decreasekey” (para rp-heaps do tipo 2)
como segue:

decreasekey (h,e,A) :=

e.c == e.c —A
if root(e)
return
if parent(e).o = e then
parent(e).o := e.u
else
parent(e).u := e.u
end if
parent (e).u := parent(e)
e.u := undefined

30



1.3. Filas de prioridade e heaps
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Figura 1.4.: Diferengas no posto de rp-heaps do tipo 1 (a) e tipo 2 (b).

A.;' i X’A Aact

Figura 1.5.: A operacao “decreasekey”.
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u := parent(e)

parent (e) := undefined

insere e na lista de raizes de h
decreaserank (u)

rank (e) :=
if e is undefined
return —1
else
return e.r

decreaserank (u) :=
if root(u)
return
if rank(u.o) > rank(u.u)+1 then
k := rank(u.o)
else if rank(u.u) > rank(u.o)+1 then
k := rank(u.u)

else
k = max(rank(u.o),rank(u.u))+1
end if
if u.r = k then
return
else
u.r : = k

decreaserank (parent (u))

delete (h,e) :=
decreasekey (h,e,—o0)
deletemin (h)

Observagao 1.9

Para implementar o rp-heap precisamos além dos ponteiros para o filho or-
denado e nao-ordenado um ponteiro para o pai do elemento. A (suposta)
eficiéncia do rp-heap vem do fato que o decreasekey altera os postos do heap,
e pouco da estrutura dele e do fato que ele usa somente trés ponteiros por
elemento, e nao quatro como o heap Fibonacci. %

Lema 1.9
Uma semi-arvore do tipo 2 com posto k contém pelo menos ¢* elementos,

sendo ¢ = (14 +/5)/2 a razdo 4urea.
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= +

Figura 1.6.: Separar uma semi-arvore de posto k em duas.

Tabela 1.2.: Complexidade das operacoes de uma fila de prioridade. Comple-
xidades em negrito sdo amortizados. (1): meld preguigoso.

insert getmin deletemin update decreasekey  delete
Vetor Oo(1) o(1) O(n) O(1) (update) O(1)
Lista ordenada O(n) o(1) o(1) O(n) (update) O(1)
Heap bindrio O(logm) o(1) O(logm) O(logn) (update) O(logn)
Heap binomial O(1) o(1) O(logmn) O (logn) (update) O (logn)
Heap binomial(1) O(1) o(1) O(logn) O (logn) (update) O (logn)
Heap Fibonacci o(1) o(1) O(logmn) - O(1) O(logn)
rp-heap o(1) o(1) O(logn) - O(1) O(logn)

Prova. Por indugao. Para folhas o lema ¢é vélido. Caso a raiz com posto k
nao é folha podemos obter duas semi-arvores: a primeira é o filho da raiz sem
o seu filho nao-ordenado, e a segunda é a raiz com o filho ndo ordenado do
seu filho ordenado (ver Fig. 1.6). Pelas regras dos postos de drvores de tipo
dois, essas duas arvores possuem postos k—lek—T,ouk—1lek—2ouke
no maximo k — 2. Portanto, o menor nimero de elementos ny contido numa
semi-arvore de posto k satisfaz a recorréncia

Ny = Ng—1 + Ny,

que é a recorréncia dos nimeros Fibonacci. |

Lema 1.10
As operacoes “decreasekey” e “delete” possuem custo amortizado O(1) e
O(logn)

Prova. Ver (Haeupler, Sen e Tarjan, 2009). |

Resumo: Filas de prioridade A tabela 1.2 resume a complexidade das operagoes
para diferentes implementacoes de uma fila de prioridade.

1.3.5. Arvores de van Emde Boas

Pela observacao 1.4 é impossivel implementar uma fila de prioridade baseado
em comparacao de chaves com todas operagdes em o(logn) . Porém existem
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algoritmos que ordenam n nimeros em o(nlogn), aproveitando o fato que as
chaves sao niimeros com k bits, como por exemplo o radix sort que ordena em
tempo O(kn), ou aproveitando que as chaves possuem um dominio limitado,
como por exemplo o counting sort que ordena n nimeros em [k] em tempo
O(n+ k).

Uma drvore de van Emde Boas (drvore vEB) T realiza as operagoes

e member(T, e): elemento e pertence a T?
e insert(T, e): insere e em T
e delete(T,e): remove e de T

e min(T) e max(T): elemento minimo e maximo de T, ou “undefined” caso
nao existe

e succ(Te) e pred(T, e): successor e predecessor de e em T; e nio precisa
pertencer a T

no universo de chaves [0, — 1] em tempo O(loglogu) e espaco O(u).
Outras operagoes compostas podem ser implementados, por exemplo

deletemin (T) :=

e:=min(T); delete(e); return e
deletemax (T) :=

e:=max(T); delete(e); return e

Arvores binarias em ordem vEB  Na discussio da implementacao de arvores
bindrias na pagina 15 discutimos uma representacao em ordem da busca por
profundidade (BFS order). A ideia da ordem vEB é “cortar” a altura (nimero
de niveis) h de uma arvore binaria (que possui n = 2" —1 nodos e 2"~ folhas)
pela metade. Com isso obtemos

e uma arvore superior Tp de altura |h/2]

e ¢ b =22 =@(2"/2) = ©(y/n) 4rvores inferiores Ty,..., Ty de altura
[h/2] e com 2["/21 —1 = @(y/n) nodos.

Os nodos dessa arvore sao armazenados em ordem Ty, Tq,..., Ty e toda arvore
T; é ordenado recursivamente da mesma maneira, até chegar numa arvore de
altura h = 1, como a Figura 1.7 mostra.

Armazenar uma arvore bindria em ordem de vEB nao altera a complexi-
dade das operacoes. Uma busca, por exemplo, continua com complexidade
O(h). Porém, armazenado em ordem da busca por profundidade, uma busca
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T

00.101.0 01.110.0 10.111.0
[ [I2le] DIzleIssTel7] [Izfs[alse]sfof1Te]2]2]7]4]s]

Figura 1.7.: Organizagao de arvores binarias em ordem de van Emde Boas para
h € [4]. As folhas sao rotuladas por “cluster.subindice”. Abaixo
da arvore a ordem do armazenamento do vértices é dado. Os T;
correspondem com as subdarvores do primeiro nivel de recursao.

pode gerar ©(h) falhas no cache, no pior caso. Na ordem de vEB, a busca
sempre atravessa Q(log, B) niveis, com B o tamanho de uma linha de ca-
che, antes de gerar uma nova falha no cache. Logo uma busca gera somente
O(log, n/log, B) = O(logg n) falhas no cache. O layout se chama cache obli-
vious porque funciona sem conhecer o tamanho de uma linha de cache B.

Arvores VEB A estrutura basica de uma arvore de vEB é

1. Usar uma arvore binaria de altura h representar 2"~' elementos nas
folhas.

2. Cada folha armazena um bit, que é 1 caso o elemento correspondente
pertence ao conjunto representado.

3. Os bits internos servem como resumo da sub-arvore: eles representam
a conjuncao dos bits dos filhos, i.e. um bit interno é um, caso na sua
sub-arvore existe pelo menos uma folha que pertence ao conjunto repre-
sentado.

Todas as operagoes da estrutura acima podem ser implementadas em tempo
O(h) = O(logu). Para melhorar isso, vamos aplicar a mesma ideia da ordem
de van Emde Boas: a arvore é separada em uma arvore superior, e uma série
de arvores inferiores, cada uma com altura ~ h/2. As folhas da arvore superior
contém o resumo das raizes das arvores inferiores: por isso a arvore superior
possui altura |h/2| + 1, uma a mais comparado com a ordem de vEB.

Fig. 1.8 mostra essa representacdo. A altura da arvore estd armazenada no
campo h. Além disso temos um ponteiro “top” para a arvore superior, e
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Figura 1.8.: Representagao da primeira versao de uma drvore vEB. (a) Forma
geral. (b) Caso base.

um vetor de ponteiros “bottom” de tamanho b = 2"/2) para as raizes das
arvores inferiores. No caso base com h = 2, abusaremos os campos “top”
e “bottom” para armazenar os bits da raiz e dos dois filhos: um ponteiro
arbitrario diferente de undefined representa um bit 1, o ponteiro undefined o
bit 0. Para isso servem as fungoes auxiliares

set(p) = p=1
clear (p) := p:=undefined
bit (p) := return p # undefined
Observe que as folhas 0, 1,...,2" ' —1 podem ser representadas com h—1 bits.

Os primeiros |h/2] bits representam o ntmero da sub-drvore que contém a
folha, e os tltimos [h/2]—1 bits o indice (relativo) da folha na sua sub-arvore.
Isso explica a defini¢do das funcoes auxiliares

subtree(e) := e> [h/2]—1
subindex (e) = e&(1 < [h/2]—1)—1
element (s,i) = (s« [h/2]—1)]1

para extrair de um elemento o niimero da sub-arvore correspondente, ou o seu
indice nesta sub-arvore, e para determinar o indice na arvore atual do i-ésimo
elemento da sub-arvore s.

Com isso podemos implementar as operagoes como segue.

member (T ,e) :=
if Th=2
return bit (T.bottom[e])

return member (T.bottom [subtree(e)],subindex(e))
min(T,e) =

if Th=2
if bit(T.bottom[0])
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return 0

if bit(T.bottom[1])
return 1

return undefined

c:=min (T.top)
if ¢ =undefined
return c
return element (c,min(T.bottom[c]))

succ(T,e) :=
if Th=2
if e=0 and bit(T.bottom[1])=1
return 1
return 0

s:=succ (T.bottom [subtree (e)],subindex(e))
if s undefined
return element (subtree(e),s)

c:=succ (T.top,subtree(e))
if ¢ =undefined
return c
return element (c,min(T.bottom[c]))

insert (T,e) :=
if Th=2
set (T.bottom[e])
set (T.top)
else
insert (T.bottom [subtree(e)],subindex(e))

insert (T.top,subtree(e))

delete (T ,e) :=
if Th=2
clear (T.bottom [e])
if (bit(T.bottom[1—e])=0
clear (T.top)
else

delete (T.bottom [subtree(e)],subindex(e))
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s :=min(T.bottom [subtree(e)])
if s=undefined

delete (T.top,subtree (e))
As complexidades das operagoes implementadas no caso pessimista sdo (ver
as chamadas recursivas acima em vermelho):

member T(h) =T([h/2]) + O(1) = O(logh) = O(log logu).

min T(h) (|h/2] +1) + T([h/2]) + O(1) = 2T(h/2) + O(1) = ©(h) =

=T
O(logu).
insert T(h) =T([h/2] + T(|h/2] +1)4+ O(1) =0O(h) =B(logu).

T([h/2]) + T(|h/2] + 1) + O(h) = 2T(h/2) + O(h) =

succ/delete T(h) =
= B(loguloglogu) (com um trabalho extra de O(h) para
77).

O(hlogh)
chamar “min

Logo todas operagoes com mais que uma chamada recursiva nao possuem
a complexidade desejada O(loglogu). A introdugdo de dois campos “min”
e “max” que armazenam o elemento minimo e méaximo, junto com algumas
modificagoes resolvem este problema.

1. Armazenar somente o minimo, a operacio “min” custa somente O(1) é
“insert”, “succ” e “delete” consequentemente somente O(h).

2. Armazenado também o méximo, sabemos na operacdo “succ” se o su-
cessor esta na arvore atual sem buscar, logo a operagao “succ” pode ser
implementada em O(loglogu).

3. A ultima modificacao é ndo armazenar o elemento minimo na sub-drvore
correspondente. Com isso a primeira inser¢ao somente modifica a arvore
de resumo (top) e a segunda e as demais operagoes modificam somente
a sub-arvore correspondente. A delecdo funciona similarmente: ela re-
move ou um elemento na sub-arvore, ou o ultimo elemento, modificando
somente a drvore de resumo (top). Com isso todas operagoes podem ser
implementadas em O(loglogu).

Na base armazenaremos os elementos somente nos campos “min” e “max”.
Por convengao setamos “min” maior que “max” numa arvore vazia. As se-
guintes fungoes auxiliares permitem remover os elementos de uma arvore base
e determinar se uma arvore possui nenhum, um ou mais elementos.

clear (T) :=
T.min:=1; T.max:=0; // conveng¢do
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h min max h min max
L L) L [ ]
top bottom top bottom
L LTI TT1] NN
01 b—1 0 1
(a) (b)

Figura 1.9.: Representacao uma arvore vEB. (a) Forma geral. (b) Caso base.

3

4 empty(T) :=

5 return T.min>T.max

6

7 singleton(T) :=

8 return T.min=T.max

9

10 full(T) :=

11 return T.min<T.max

1 member(T,e) :=

2 if empty(T)

3 return false

4 if T.min = e or T.max = e
5 return true

6

7 { ndo é ‘‘min’’ nem ‘‘max’’? a base nao contém o elemento }
8 if T.h = 2

9 return false

10

11 return member (T.bottom [subtree(e)],subindex(e))
12

13 min(T) :=

14 if empty(T)

15 return undefined

16 return T.min

17

18 max(T) :=

19 if empty(T)

20 return undefined
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return T.max

succ (T,e) :=
if T.h=2
if e=0 and Tmax =1
return 1

return undefined

if not empty(T) and e < Tmin
return T.min

{ sucessor na arvore atual }
m:=max (T .bottom [subtree (e)])
if m # undefined and subindex(e)<m
return element (subtree(e),
succ (T.bottom [subtree(e)],subindex(e)))

{ minimo na 4rvore sucessora }
c:=succ (T.top,subtree(e))
if ¢ = undefined
return c
return element (¢, min(T.bottom|[c]))

pred(T,e) :=
if T.h=2
if e=1 and T.min=0
return 0

40

return undefined

if not empty(T) and T.max < e
return T.max

{ predecessor na arvore atual }

m:=min(T.bottom [subtree(e)])

if m # undefined and m <subindex (e)
return element (subtree(e),

pred (T.bottom [subtree(e)],subindex(e)))

{ maximo na drvore predecessora }

c:=pred (T.top,subtree(e))
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61 if ¢ = undefined

62 if not empty(T) and T.min<e

63 return T.min

64 else

65 return undefined

66

67 return element (c,max(T.bottom[c]))
68

69 insert(T,e) :=
70 if empty(T)

71 T.min := T.max := e

72 return

73

74 { novo minimo: setar min, insere min anterior }
75 if e < Tmin

76 swap (T.min,e)

7

78 { insere recursivamente }

79 if Th>2

80 if empty(T.bottom[subtree(e)])

81 insert (T.top,subtree(e))

82 insert (T.bottom[subtree(e)],subindex(e))
83

84 { novo méximo: atualiza }

85 if Tmax<e

86 Tmax := e

87

88 delete(T,e) :=
89 if empty(T)

90 return

91

92 if singleton (T)
93 if Tmin=e

94 clear (T)

95 return

96

97 { novo minimo? }
98 if e=Tmin

99 T.min := element (min(T.top),min(T.bottom [min(T.top)]))
100 e := T.min
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101

102 { remove e da arvore }

103 delete (T.bottom [subtree(e)],subindex(e))
104

105 if empty(T.bottom[subtree(e)])

106 delete (T.top,subtree (e))

107 if e=Tmax

108 c:=max(T.top)

109 if c = undefined

110 T.max := T.min

111 else

112 T.max := element (c,max(T.bottom[c]))
113 else

114 T.max := element (subtree (e),max(T.bottom[subtree(e)]))

Com essas implementagoes cada fungao executa uma chamada recursiva e um
trabalho constante a mais e logo precisa tempo O(logh). Em particular, na
fungao “insert” caso a sub-arvore do elemento é vazia na linha 80 a segunda
chamada “insert” na linha 82 precisa tempo constante. Similarmente, ou a
delecao recursiva na linha 103 nao remove o ultimo elemento, e talvez custa
O(logh), e logo a delecao da linha 106 ndo é executada, ou ela remove o ultimo
elemento e custo somente O(1).

1.3.6. Tépicos
Fast marching method

A equagao Eikonal (grego eikon, imagem)

IVTIF(x) =1, x € Q,
T |6Q = 0>

define o tempo de chegada de uma superficie que inicia no tempo 0 na fronteira
9Q de um subconjunto aberto Q C R3 e se propaga com velocidade F(x) > 0
na direcdo normal*. O fast marching method resolve a equacdo Eikonal por
discretizar o espago regularmente, aproximar as derivadas do gradiente ||V T]]
por diferencas finitas e propagar os valores com um método igual ao algoritmo
de Dijkstra.

Com

VT = (0T/0x,0T/0y, 0T/0z)

40 método também funciona para F(x) < 0, mas néo para F(x) com sinais diferentes.
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temos

IVTI|? = (3T/0x)% + (3T/9z)? + (9T/0z)* = 1/F>.
Definindo as diferenca finitas
D™ =T(x1 4+ 1,%x2,%x3) — T(x); D *=T(x)—T(x1 —1,%2,x3)
podemos aproximar
dT/ox ~ T, = max{D*T,—D**T, 0}

e com aproximagoes similares para as direcoes Yy e z obtemos uma equagao
quadrética em T(x)

IVTIP & T7 4+ T3 + T2 =1/F (1.1)

Na solugao dessa equagao valores ainda desconhecidos de T sao ignorados. O
fast marching method define T = 0 para os pontos iniciais em 9Q) e coloca-os
numa fila de prioridade. Repetidamente o ponto de menor tempo é extraido
da fila, os vizinhos ainda nao visitados sdo atualizados de acordo com (1.1)
e entram na fila, caso ainda nao fazem parte. (Na terminologia do fast mar-
ching method, os pontos com distancia j& conhecida sao “vivos” (alive), os
pontos na fila formam a “faixa estreita” (narrow band), os restantes pontos
sao “distantes” (far away).)

Busca informada

O algoritmo de Dijkstra encontra o caminho mais curto de um vértice origem
s € V para todos os outros vértices num grafo ponderado G = (V, E, d). Caso
estamos interessados somente no caminho mais curto para um tunico vértice
destino t € T, podemos parar o algoritmo depois de processar t. Isso é uma
aplicagao muito comum, por exemplo na busca da rota mais curta em sistemas
de navegagao. Uma busca informada processa vértices que estimadamente
sao mais proximos do destino com preferéncia. O objetivo é processar menos
vértices antes de encontrar o destino. Um dos algoritmos mais conhecidos de
busca informada é o algoritmo A*. Para cada vértice v € V com distancia g(v)
do origem s, ele usa uma funcao h(v) que estima a distancia para o destino t
e processa os vértices em ordem crescente do custo total estimado

f(v) =gv) +h(v). (1.2)

O desempenho do algoritmo A* depende da qualidade de heuristica h. Ele
pode, diferente do algoritmo de Dijkstra, processar vértices multiplas vezes,
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1. Algoritmos em grafos

depois de descobrir um caminho mais curto para um vértice ja processado.
Isso é a principal diferenca com o algoritmo de Dijkstra. Uma outra é que
substituimos o campo “visited” usando no algoritmo Dijkstra 1.3 por um
conjunto V de vértices ja visitados, porque o A* é frequentemente aplicado
em grafos com um numero grande de vértices, que sao explorados passo a
passo sem armazenar todos vértices do grafo na memoria.

g(s)=0
f(s) :=g(s) + h(s)
V:=0 { vértices ja visitados }
Q=0
insert(Q, (s, f(s)))
while Q #0 do
v := deletemin(Q)

V. =VU{{}
if v=t { destino encontrado }
return

for ue N(v) do
if ueQ then { ainda aberto: atualiza }
g(u) :=min(g(v) + dyu, g(u))
f(u) :=g(u) + h(u)
update(Q, (u, f(u)))
else if ueV then
if g(v)+dyy < g(u) then
{ caminho menor p/ vértice ja processado }
V=V\{u}
g(w) = g(v) + dye
f(u) :=g(u) + h(u)
insert(Q, (u, f(u)))
end if
else { novo vértice }

end while

Observagao 1.10
O algoritmos de Dijkstra e A* funcionam de forma idéntica quando subs-
tituimos o vértice destino t € V por um conjunto de vértices destino T C V.

¢
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1.3. Filas de prioridade e heaps

Existe uma formulacdo alternativa, equivalente do algoritmo A*. Ao invés
de sempre processar o vértice aberto de menor valor f podemos processar
sempre o vértice aberto de menor distancia § num grafo com pesos modificados
duy = duy — h(w) + h(v). Com pesos modificados obtemos para a distancia
total de um caminho uv arbitrério P

ﬁ(u,v) = Z au’v’ = Z du’v’ _hu’ +hv'

(u’,v")eP (u’,v")erP
=h(v)—hwW+ >  dun =hv) —h(u)+g(u,v).
(u’,v")eP

Com g(u) ="g(s,u) obtemos

(u) < g(v) +h(v)
<g(v) +his)

Logo a ordem de processamento por menor § ou por menor valor f é equiva-
lente.

Para garantir a otimalidade de uma solucao a heuristica h tem que ser ad-
missivel. Caso h é consistente o algoritmo A* nao somente retorna a solugao
Otima, mas processa cada vértice somente uma vez.

Definicao 1.1 (Admissibilidade e consisténcia)
Seja 6(v) a distancia minima do vértice v ao destino t. Uma heuristica h é
admissivel caso h é um limitante inferior a distancia minima, i.e.

h(v) <8(v). (1.3)

Uma heuristica é consistente caso o seu valor diminui de acordo com o pesos
do grafo: para um arco (u,v) € A

h(v) > h(u) — dyy. (1.4)
Na representagao alternativa, o critério de consisténcia (1.4) é equivalente com
duy = duy — h(w) + h(v) > 0. Com isso temos diretamente o

Teorema 1.2
Caso h é consistente o algoritmo A* nunca processa um vértice mais que uma
vez.

Prova. Neste caso dy., > 0. Logo todas distancias sao positivas € o algoritmo
A* é equivalente com o algoritmo de Dijkstra. Por um argumento similar ao
da proposicao (1.3) o A* nunca processa um vértice duas vezes. |
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1. Algoritmos em grafos

Lema 1.11
Caso h é consistente, h é admissivel.

Prova. Seja P =voVvy ...V um caminho de vo =u a vy = t. Entao

d(P)= > dv, ,v > Y h(vi)—h{vi) =h(w) —h(t) > h(u).
ie(k] ielk]

Em particular, para um caminho P* 6timo de u a t temos h(u) < d(P*)
S5(P*).

Teorema 1.3
Caso existe uma solu¢do minima e h é admissivel o algoritmo A* encontra a
solugdo minima.

Prova. Seja P* = vpvy...vx um caminho étimo de vo = s a v = t. Caso
A nao terminou, t ainda nao foi explorado. Logo existe um vértice aberto de
menor indice vi em P*. Agora sup6e que o proximo vértice explorado é t, mas
o valor de t nao é 6timo, i.e. f(t) > d(P*). Mas entao f(vi{) < d(P*) < f(t),
porque h é admissivel, em contradi¢ao com a exploragao de t. |

Exemplo 1.5

Figure 1.10 mostra uma grafo com trés fungoes heuristicos h diferentes. A
heuristica no grafo da esquerda nao é admissivel em u (marcado por T). O A*
expande s, v e depois t e termina com a distancia errada de 5 para chegar em
t. A heuristica no grafo do meio é admissivel, mas nao consistente: h(u) <
h(v)+1 nao é satisfeito. O A* expande s, v, u, v, t, i.e. o vértice v é processado
duas vezes. Finalmente a heuristica no grafo da direita é consistente (e por
isso admissivel). O A* expanda cada vértice uma vez, na ordem s, u, t (ou s,
u, v, t).

¢

Exemplo 1.6

A Figura 1.11 compara uma busca com o algoritmo de Dijkstra com uma busca
com o A* num grafo geométrico com 5000 vértices e uma aresta entre vértices
de distancia no maximo 0.02. Vértices nao explorados sao pretos, vértices
explorados claros. A claridade corresponde com a ordem de exploragao.

O

1.3.7. Notas

O algoritmo (assintoticamente) mais rdpido para drvores geradoras minimas
usa soft heaps é possui complexidade O(ma(m,n)), com « a funcéo inversa
de Ackermann (Chazelle, 2000; Kaplan e Zwick, 2009).
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0
2
303 0
1
3
ST

Figura 1.10.: Esquerda: Heuristica nao-admissivel. A* produz o valor errado
5. Centro: Heuristica admissivel, mas inconsistente. A* visita
v duas vezes. Direita: Heuristica admissivel e consistente. A*
visita cada vértice somente uma vez.

Figura 1.11.: Comparacdo de uma busca com o algoritmo de Dijkstra (es-
querda) e o A* (direita).
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Karger propos uma variante de heaps de Fibonacci que substituem a marca
“cut” usado nos cortes em cascata por uma decisao randémica: com probabi-
lidade 0.5 continua cortando, senao para. Caso além disso o heap é construido
novamente com probabilidade 1/n depois de cada operacao, “deletemin” pos-
sui complexidade ©(log® n/loglogn) (Li e Peebles, 2015).

Armazenar e atravessar arvores em ordem de van Emde Boas usando indices,
similar ao ordem por busca em largura é possivel (Brodal, Fagerberg e Ja-
cob, 2001). O consumo de memoria das drvores de van Emde Boas pode ser
reduzido para O(n) (Dementiev et al., 2004; Cormen et al., 2009).

Mais sobre o fast marching method se encontra em Sethian (1999). Uma
aplicagao interessante é a solucdo do caixeiro viajante continuo (Andrews e
Sethian, 2007).

1.3.8. Exercicios

Exercicio 1.1
Prove lema 1.3. Dica: Use indugao sobre n.

Exercicio 1.2
Prove que um heap binomial com n vértices possui O(logn) arvores. Dica:
Por contradigao.

Exercicio 1.3 (Laboratério 1)
1. Implementa um heap bindrio. Escolhe casos de teste adequados e verifica
o desempenho experimentalmente.

2. Implementa o algoritmo de Prim usando o heap binario. Novamente
verifica o desempenho experimentalmente.

Exercicio 1.4 (Laboratdrio 2)
1. Implementa um heap binomial.

2. Verifica o desempenho dele experimentalmente.

3. Verifica o desempenho do algoritmo de Prim com um heap Fibonacci
experimentalmente.

Exercicio 1.5
A proposi¢ao 1.3 continua ser correto para grafos com pesos negativos? Jus-
tifique.
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1.4. Fluxos em redes

Figura 1.12.: Grafo (esquerda) com circulagao (direita)

1.4. Fluxos em redes

Definicao 1.2

Para um grafo direcionado G = (V,E) (E C V x V) escrevemos 6 (v) = {(v,u) |
(v,u) € E} para os arcos saintes de v e 5~ (v) = {(u,v) | (u,v) € E} para os
arcos entrantes em v.

Seja G = (V,E,c) um grafo direcionado e capacitado com capacidades c
E — R nos arcos. Uma atribuicdo de fluxos aos arcos f : E — R em G se
chama circulagao, se os fluxos respeitam os limites da capacidade (fe < ce) e
satisfazem a conservacao do fluxo

= > fe Z fo=0 (1.5)

ecs+(v ecs—(v)

(ver Fig. 1.12).

Lema 1.12
Qualquer atribuicao de fluxos f satisfaz } | . f(v) = 0.

Prova.

> f(v)

2 2 fem 2

vev veV eedt(v) ecd—(v)
= 2 fow— 2 fuw =
(v,u)€E (u,v)€E

|
A circulagao vira um fluzo, se o grafo possui alguns vértices que sao fontes
ou destinos de fluxo, e portanto nao satisfazem a conservacao de fluxo. Um
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1. Algoritmos em grafos

fluxo s—t possui um tnico fonte s e um tnico destino t. Um objetivo comum
(transporte, etc.) é achar um fluxo s—t mdaximo.

FLUXO s—t MAXIMO

Instancia Grafo direcionado G = (V, E, c) com capacidades ¢ nos arcos,
um vértice origem s € V e um vértice destino t € V.

Solucdo Um fluxo f, com f(v) =0, Vv € V\ {s, t}.

Objetivo Maximizar o fluxo f(s).

Lema 1.13
Um fluxo s—t satisfaz f(s) + f(t) = 0.

Prova. Pelo lema 1.12 temos ) | .\ f(v) = 0. Mas } . f(v) = f(s) + f(t)
pela conservacao de fluxo nos vértices em V \ {s, t}. |

Uma formulacdo como programa linear é

maximiza f(s) (1.6)
sujeito a flv) =0 Yv e V\{s,t}
0<fe<ce Ve e E.

Observagao 1.11

O programa (1.6) possui uma solugéo, porque f. = 0 é uma solugao vidvel. O
sistema nao ¢ ilimitado, porque todas varidveis sao limitadas, e por isso possui
uma solugao 6tima. O problema de encontrar um fluxo s—t méaximo pode ser
resolvido em tempo polinomial via programacao linear. O

1.4.1. O algoritmo de Ford-Fulkerson

Nosso objetivo: Achar um algoritmo combinatorial mais eficiente. Idéia
bésica: Comegar com um fluxo vidvel fo = 0 e aumentar ele gradualmente.
Observacdo: Se temos um s—t-caminho P = (vo = s,vy,...,vn_1,vn = t),
podemos aumentar o fluxo atual f um valor que corresponde ao “gargalo”

g(f,P):= min c.—f..
e=(vi,viq1)
0<i<n
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20

20 ™)

Figura 1.13.: Esquerda: Grafo com capacidades. Centro: Fluxo com valor 30.
Direita: O grafo residual correspondente.

Figura 1.14.: Manter a conservagao do fluxo.

Observagao 1.12

Repetidamente procurar um caminho com gargalo positivo e aumentar nem
sempre produz um fluxo maximo. Na Fig. 1.13 o fluxo méaximo possivel é
40, obtido pelo aumentos de 10 no caminho P; = (s,u,t) e 30 no caminho
P> = (s,w,t). Mas, se aumentamos 10 no caminho P; = (s,u,w,t) e depois
20 no caminho Py = (s,w,t) obtemos um fluxo de 30 e o grafo ndo possui
mais caminho que aumenta o fluxo. O

Problema no caso acima: para aumentar o fluxo e manter a conservacao do
fluxo num vértice interno v temos quatro possibilidades: (i) aumentar o fluxo
num arco entrante e sainte, (ii) aumentar o fluxo num arco entrante, e diminuir
num outro arco entrante, (iii) diminuir o fluxo num arco entrante e diminuir
num arco sainte e (iv) diminuir o fluxo num arco entrante e aumentar num
arco entrante (ver Fig. 1.14).

Isso é a motivagao para definir para um dado fluxo f o grafo residual G com

o Vértices V

e Arcos para frente (“forward”) E com capacidade c. — fe, caso fe < ce.
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1. Algoritmos em grafos

e Arcos para atras (“backward”) E' ={(v,u) | (u,v) € E} com capacidade
Clvyu) = f(u,v}v caso f(u,v) > 0.

Observe que na Fig. 1.13 o grafo residual possui um caminho P = (s, w,u,t)
que aumenta o fluxo por 10. O algoritmo de Ford-Fulkerson (Ford e Fulkerson,
1956) consiste em, repetidamente, aumentar o fluxo num caminho s—t no grafo
residual.

Algoritmo 1.4 (Ford-Fulkerson)
Entrada Grafo G = (V,E,c) com capacidades c. no arcos.

Saida Um fluxo f.

for all ecE: f.:=0

while existe um caminho s t em G; do
Seja P um caminho s t simples
Aumenta o fluxo f um valor g(f,P)

end while

return f

S T W N =

Andlise de complexidade Na anilise da complexidade, consideraremos so-
mente capacidades em N (ou equivalente em Q: todas capacidades podem ser
multiplicadas pelo menor multiplo em comum das denominadores das capaci-

dades.)

Lema 1.14
Para capacidades inteiras, todo fluxo intermediario e as capacidades residuais
sao inteiros.

Prova. Por indugao sobre o nimero de iteracoes. Inicialmente fo = 0. Em
cada iteragdo, o “gargalo” g(f,P) é inteiro, porque as capacidades e fluxos sao
inteiros. Portanto, o fluxo e as capacidades residuais apds do aumento sao
novamente inteiros. [ |

Lema 1.15
Em cada iteragao, o fluxo aumenta por pelo menos 1.

Prova. O caminho s—t possui por defini¢ao do grafo residual uma capacidade
“gargalo” g(f,P) > 0. O fluxo f(s) aumenta exatamente g(f,P). |

Lema 1.16
O niimero de iterages do algoritmo Ford-Fulkerson ¢ limitado por C = ) _ . 5+(s) Ce-
Portanto ele tem complexidade O((n +m)C).
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Prova. C é um limite superior do fluxo méximo. Como o fluxo inicial-
mente possui valor 0 e aumenta ao menos 1 por iteracdo, o algoritmo de
Ford-Fulkerson termina em no méximo C iteragbes. Em cada iteragao temos
que achar um caminho s—t em Gf. Representando G por listas de adjacéncia,
isso é possivel em tempo O(n+m) usando uma busca por profundidade. O au-
mento do fluxo precisa tempo O(n) e a atualizacdo do grafo residual é possivel
em O(m), visitando todos arcos. [ |

Corretude do algoritmo de Ford-Fulkerson

Definigao 1.3

Seja X := V\ X. Escrevemos F(X,Y) := {(x,y) | x € X,y € Y} para os arcos
passando do conjunto X para Y. O fluxo de X para Y é f(X,Y) := ZeeF(X’Y) fe.
Ainda estendemos a notagao do fluxo total de um vértice (1.5) para conjuntos:
f(X) == f(X,X) — f(X,X) é o fluxo neto do saindo do conjunto X.
Analogamente, escrevemos para as capacidades c(X,Y) := ZQGF(X’\,) Ce. Uma
particdo (X, X) é um corte s—t,se s € Xet e X.

Um arco e se chama saturado para um fluxo f, caso fo = ce.

Lema 1.17 ~
Para qualquer corte (X, X) temos f(X) = f(s).

Prova.
f(X) = (X, X) = f(X,X) = ) _f(v) = f(s).
veX

(O 1ltimo passo é correto, porque para todo v € X,v # s, temos f(v) = 0 pela
conservacao do fluxo.) |

Lema 1.18
O valor ¢(X, X) de um corte s—t é um limite superior para um fluxo s—t.

Prova. Seja f um fluxo s—t. Temos

|
Consequéncia: O fluxo maximo é menor ou igual a o corte minimo. De fato,
a relacao entre o fluxo méaximo e o corte minimo é mais forte:

Teorema 1.4 (Fluxo miximo — corte minimo)
O valor do fluxo maximo entre dois vértices s e t é igual ao valor do corte
minimo.
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1. Algoritmos em grafos

Lema 1.19
Quando o algoritmo de Ford-Fulkerson termina, o valor do fluxo é méximo.

Prova. O algoritmo termina se nao existe um caminho entre s e t em Gy.
Podemos definir um corte (X, X), tal que X é o conjunto de vértices alcancéveis
em Gy a partir de s. Qual o valor do fluxo nos arcos entre X e X? Para um
arco e € F(X,X) temos f. = ce, sendo Gy terd um arco “forward” e, uma
contradicdo. Para um arco e = (u,v) € F(X,X) temos f. = 0, sendo Gy terd
um arco “backward” e’ = (v,u), uma contradicao. Logo

f(s) = f(X) = (X, X) — (X, X) = f(X, X) = ¢(X, X).

Pelo lema 1.18, o valor de um fluxo arbitrario é menor ou igual que c(X, X),
portanto f é um fluxo maximo. |
Prova. (Do teorema 1.4) Pela andlise do algoritmo de Ford-Fulkerson. |

Desvantagens do algoritmo de Ford-Fulkerson O algoritmo de Ford-Fulkerson
tem duas desvantagens:

(1) O ntmero de iteragoes C pode ser alto, e existem grafos em que C iteragoes
s@o necessérias (veja Fig. 1.15). Além disso, o algoritmo com complexi-
dade O((n + m)C) é somente pseudo-polinomial.

(2) E possivel que o algoritmo nao termina para capacidades reais (veja Fig. 1.15).
Usando uma busca por profundidade para achar caminhos s—t ele termina,
mas ¢ ineficiente (Dean, Goemans e Immorlica, 2006).

1.4.2. O algoritmo de Edmonds-Karp

O algoritmo de Edmonds-Karp elimina esses problemas. O principio dele é
simples: Para achar um caminho s—t simples, usa busca por largura, i.e. sele-
cione o caminho mais curto entre s e t. Nos temos

Teorema 1.5

O algoritmo de Edmonds-Karp precisa O(nm) iteracoes, e portanto termina
em tempo O(nm?).

Lema 1.20
Seja d¢(v) a distancia entre s e v em Gy¢. Durante a execugdo do algoritmo de
Edmonds-Karp 8¢(v) cresce monotonicamente para todos vértices em V.

Prova. Para v =s o lema é evidente. Supoe que uma iteracdo modificando o
fluxo f para f’ diminuird o valor de um vértice v € V\{s}, i.e., 5¢(v) > 8¢/ (v).
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1.4. Fluxos em redes

Figura 1.15.: Esquerda: Pior caso para o algoritmo de Ford-Fulkerson com pe-
sos inteiros aumentando o fluxo por 2N vezes por 1 nos caminhos
(s,u,v,t) e (s,v,u,t). Direita: Menor grafo com pesos irracio-
nais em que o algoritmo de Ford-Fulkerson falha (Zwick, 1995).
M >3 er = (14++1—-4A)/2 =~ 0.682 com A = 0.217 a tunica
raiz real de 1 —5x + 2x?> — x>. Aumentar (s,vi,vs,t) e depois re-
petidamente (s,v2,va,Vv1,v3,t), (s,v2,V3,V1,va,t), (S,V1,V3,V2,Va,t),
e (s,v1,v4,Vv2,v3,1) converge para o fluxo méximo 2 +r+1° sem ter-
minar.

Supde ainda que v é o vértice de menor distancia ¢/ (v) em G/ com essa
caracteristica. Seja P = (s,...,u,v) um caminho mais curto de s para v
em G¢/. O valor de u ndo diminuiu nessa iteragao (pela escolha de v), i.e.,
dr(u) < o¢/(u) ().

O arco (u,Vv) nado existe in Gy, sendo a distancia do v in G¢ é no maximo a
distancia do v in G¢.: Supondo (u,v) € E(Gy) temos

S¢(v) < &s(u)+1 pela desigualdade triangular
< ¢ (u) +1 (*)
< 8¢r(v) porque uv estd num caminho minimo em Gy,

uma contradi¢ao com a hipétese que a distancia de v diminuiu. Portanto,
(u,v) € E(G¢) mas (u,v) € E(G¢/). Isso s6 é possivel se o fluxo de v para u
aumentou nessa iteracao. Em particular, vu foi parte de um caminho minimo
de s para u. Para v =t isso é uma contradi¢do imediata. Caso v # t, temos

o
iy
—

<
=

I

u)

1 *)

!’ ( -
(v)—2 porque uv estd num caminho minimo em Gy,

IN
o o o

f
f
f

novamente uma contradicao com a hipdtese que a distancia de v diminuiu.
Logo, o vértice v nao existe. |
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1. Algoritmos em grafos

Prova. (do teorema 1.5)

Chama um arco num caminho que aumenta o fluxo com capacidade igual
ao gargalo critico. Em cada iteragao existe ao menos um arco critico que
desaparece do grafo residual. Provaremos que cada arco pode ser critico no
méximo n/2 — 1 vezes, que implica em no maximo m(n/2 — 1) = O(mn)
iteragoes.

No grafo G em que um arco uv € E é critico pela primeira vez temos 6¢(u) =
d¢(v)—1. O arco s6 aparece novamente no grafo residual caso alguma iteracao
diminui o fluxo em wv, i.e., aumenta o fluxo vu. Nessa iteracao, com fluxo f,
O¢/(v) = 8¢/(u) — 1. Em soma temos

6f/(‘ll) = 5f/(V) +1
>0¢(v) +1 pelo lema 1.20

= 5f(u) + 2)

i.e., a distancia do u entre dois instantes em que uv é critico aumenta por
pelo menos dois. Enquanto u é alcangével por s, a sua distancia é no maximo
n — 2, porque o caminho nao contém s nem t, e por isso a aresta uv pode ser
critico por no méximo (n—2)/2 =n/2 — 1 vezes. |
Zadeh (1972) apresenta instancias em que o algoritmo de Edmonds-Karp pre-
cisa ©(n3) iteracdes, logo o resultado do teorema 1.5 é o melhor possivel para
grafos densos.

1.4.3. O algoritmo “caminho mais gordo” (“fattest path”)

Idéia (Edmonds e Karp, 1972): usar o caminho de maior gargalo para aumen-
tar o fluxo. (Exercicio 1.6 pede provar que isso é possivel com uma modificagao
do algoritmo de Dijkstra em tempo O(nlogn + m).)

Lema 1.21
Um fluxo f pode ser decomposto em fluxos fq,...,fi com k < m tal que o
fluxo f; é positivo somente num caminho p; entre s e t.

Prova. Dado um fluxo f, encontra um caminho p de s para t usando somente
arcos com fluxo positivo. Define um fluxo no caminho cujo valor é o valor do
menor fluxo de algum arco em p. Subtraindo esse fluxo do fluxo f obtemos
um novo fluxo reduzido. Repete até o valor do fluxo f é zero.

Em cada iteragao pelo menos um arco com fluxo positivo tem fluxo zero depois
da subtracao do caminho p. Logo o algoritmo termina em no maximo m
iteragoes. |

Teorema 1.6
O caminho com o maior gargalo aumenta o fluxo por pelo menos OPT/m.
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1.4. Fluxos em redes

Prova. Considera o fluxo maximo. Pelo lema 1.21 existe uma decomposicao
do fluxo em no méximo m fluxos em caminhos s-t. Logo um dos caminhos
possui valor pelo menos OPT/m. |

Teorema 1.7

A complexidade do algoritmo de Ford-Fulkerson usando o caminho de maior
gargalo é O((nlogn + m)mlog C) para um limitante superior C do fluxo
maximo.

Prova. Seja f; o valor do caminho encontrado na i-ésima iteragao, G; o grafo

residual apds do aumento e OPT; o fluxo maximo em Gji. Observe que Gy é
o grafo de entrada e OPTy = OPT o fluxo méaximo. Temos

A desigualdade é vélida pelo teorema 1.6, considerando que o grafo residual
possui no maximo 2m arcos. Logo

OPT; < (1—1/(2m))*OPT < e (2™ OPT,

O algoritmo termina caso OPT; < 1, por isso niimero de iteragdes é no maximo
2mIn OPT + 1. Cada iteracao custa O(m + nlogn). [ ]

Corolario 1.2
Caso U é um limite superior da capacidade de um arco, o algoritmo termina
em no maximo O(mlog mU) passos.

1.4.4. O algoritmo push-relabel

O algoritmo push-relabel é um representante de classe de algoritmos, que nao
trabalha com um fluxo e caminhos aumentantes, mas mantém um pré-fluzo f
que satisfaz

e os limites de capacidade (0 < f. < c.)

7

e ¢ requer somente que o excesso e(v) = —f(v) de um vértice v # s é
nao-negativo.
Um vértice v # t com e(v) > 0 é chamado ativo. A ideia do algoritmo é
que vértices possuem uma “altura” e o fluxo passa para vértices de altura
mais baixa (“operacdo push”) ou, caso isso ndo é possivel a altura de um
vértice ativo aumenta (“operagao relabel”). Concretamente, manteremos um
potencial (“altura”) p,, para cada v € V, tal que,

Ps=mn; Ppe=0; (*)
Pv>Pu—1 (u,v) € A(Gy).
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Observe que o segundo parte da condicao precisa ser satisfeita somente para
arcos no grafo residual.

Observagao 1.13
Pela condigao (*), para um caminho vo,v1,...,vk em G¢ temos py, < pv, +
1<p,, +2<---<py, +k

Lema 1.22
A condigao (*) pode ser satisfeita sse G¢ ndo possui caminho s—t.
Prova. “=": Supde existe um caminho s—t simples vp = s,vq,..., v = t.
Pela observagao (1.13)

Ps =Pvo SPv tk=pr+k=k<n—1,

uma contradigao. “&”": Sejam X os vértices alcangaveis em Gy a partir de s
(incluindo s). Define p, =n parav € X e p, = 0 para v € X. |
O lema mostra que enquanto algoritmos de caminho aumentante sao algorit-
mos primais, mantendo uma solugao factivel, até encontrar o 6timo, algoritmos
da classe push-relabel podem ser vistos como algoritmos duais: eles mantém
o critério de otimalidade (*), até encontrar uma solugao factivel.

Podemos realizar as operacgoes “push” e “relabel” como segue. A operagao
“push(u,v)” num arco (u,v) € A(G¢) manda o fluxo min{c,e(v)} de u para
v. A operagado “relabel(v) aumenta a altura p,, do vértice v por uma unidade.

push(u,v) :=
{ pré condicao: u é ativo }
{ pré condicao: py,=p,—1 }
{ pré condigao: (u,v) € A(Gy) }
aumenta o fluxo em (u,v) por min{c(y,),e(u)}
{ atualiza Gf de acordo }
end
relabel(v) :=
{ pré condigdo: v é ativo }
{ pré condigdo: nao existe (u,v) € A(G¢) com p, =p.—1 }
Pvi=pv+1
end

Observe que as duas operagoes mantém a condicao (*).

Algoritmo 1.5 (Push-relabel)
Entrada Grafo G = (V, A, c) com capacidades cq no arcos.
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Saida Um fluxo f.
1 ps:==n; py:=0, Yv e V\ {s}
2 fa:=cq, Vaedt(s) senao fo:=0
3 while existe vértice ativo do
4 escolhe o vértice ativo u de maior py
5 repete até u é inativo
6 if existe arco (u,v) € G com p, =py—1 then
7 push(u,v)
8 else
9 relabel(u)
10 end if
11 end
12 end while
13 return f

Lema 1.23
O algoritmo push-relabel é parcialmente correto (i.e. correto caso termina).

Prova. Ao terminar ndo existe vértice ativo. Logo f é um fluxo. Pelo lema
1.22 nao existe caminho s—t em G¢. Logo pelo teorema 1.4 o fluxo é 6timo. W
A terminacao é garantido por

Teorema 1.8
O algoritmo push-relabel executa O(n3) operacoes push e O(n?) operacoes
relabel.

Prova. Um vértice ativo v tem excesso de fluxo, logo existe um caminho v—s
em Gy. Por (1.13) py < ps+(n—1) < 2n, e o nimero de operagoes relabel é no
O(n?). Supde que uma operacio push satura um arco a = (u,v) (i.e. manda
fluxo ¢q). Para mandar fluxo novamente, temos que mandar primeiramente
fluxo de v para u; isso s6 pode ser feito depois de pelo menos duas operagoes
relabel em v. Logo o niimero de operagdes push saturantes é O(mn). Para
operagoes push nao-saturantes, podemos observar que entre duas operagoes
relabel temos no maximo n desses operagoes, porque cada uma torna o vértice
de maior p,, inativo (talvez ativando vértices de menor potentical), logo tem
no maximo O(n3?) deles. |
Para garantir uma complexidade de O(n3) temos que implementar um “push”
em O(1) e um “relabel” em O(n). Para este fim, manteremos uma lista dos
vértices em ordem do potencial. Para cada vértice manteremos uma lista de
arcos candidatos para operacoes push, i.e. arcos para vizinhos com potencial
um a menos com capacidade residual positiva.
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Tabela 1.3.: Complexidade de diversos algoritmos de fluxo maximo (Schrijver,

2003).
Ano Referéncia Complexidade Obs
1951 Dantzig 0(n’mC) Simplex
1955 Ford & Fulkerson O(mC) = O(mnlU) Cam. aument.
1970 Dinitz O(nm?) Cam. min. aument.
1972  Edmonds & Karp O(m?log C) Escalonamento
1973  Dinitz O(nm log C) Escalonamento
1974 Karzanov O(n ) Preflow-Push
1977  Cherkassky o(n?m'/?) Preflow-Push
1986  Goldberg & Tarjan O(nm log( 2/m)) Push-Relabel
1987 Ahuja & Orlin O(nm+ n?log C) Push-Relabel & Esc.
1990 Cheriyan et al. 0(n®/logn)
1990  Alon O(nm +n®3logn)
1992  King et al. O(nm 4 n>*¢)
1997 Goldberg & Rao 0(m3/?log(n?/m) log C)

0(m?3mlog(n?/m)log C)

2012  Orlin O(nm)

Uma busca linear na lista de vértices encontra o vértice de maior potencial.
Entre dois operagoes relabel a busca pode continuar no dltimo ponto e pre-
cisa tempo O(n) em total, logo a busca custa no méaximo O(n?) sobre toda
execugao do algoritmo. Para a operacao push podemos simplesmente consul-
tar a lista de candidatos. Para um push saturante, o candidato sera removido.
Isso custa O(1). Finalmente no caso de um relabel temos que encontrar em
O(n) a nova posigao do vértice na lista, e reconstruir a lista de candidatos,
que também precisa tempo O(n). Logo todas operagoes relabel custam nao
mais que O(n3).

1.4.5. Variacoes do problema

Fontes e destinos miultiplos Para G = (V, E,¢) define um conjunto de fontes
S C V e um conjunto de destinos T C V, com SNT = (), e considera

maximiza f(S)
sujeito a f(v) = YweV\(SUT) (1.7)
fe < ce Ve € E.
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Ce — be

be be

Figura 1.16.: Reducoes entre variagoes do problema do fluxo méaximo. Es-
querda: Fontes e destinos multiplos. Direita: Limite inferior e
superior para a capacidade de arcos.

O problema (1.7) pode ser reduzido para um problema de fluxo méximo sim-
ples em G’ = (V/,E’,c’) (veja Fig. 1.16(a)) com

V' =Vu{s*,t*}

E'=EBEuU{(s*s)|scSTU{(t,t*) |t T} (1.8)
Ce eckE
ct=1cl5,5) e=(s"s

Lema 1.24
Se f’ é solucao méxima de (1.8), f = f'|[g é uma solucdo maxima de (1.7).
Conversamente, se f é uma solugdo maxima de (1.7),

fe eckE
fe=<"f(s) e=(s"s)
—f(t) e=(t,t*)

é uma solugao méxima de (1.8).

Prova. Supde f é solugdo maxima de (1.7). Seja f’ uma solucdo de (1.8)
com valor f'(s*) maior. Entao f’[¢ é um fluxo vélido para (1.7) com solugéo
f'lg(S) = f'(s*) maior, uma contradicao.

Conversamente, para cada fluxo vdlido f em G, a extensdo f’ definida acima
¢ um fluxo vélido em G’ com o mesmo valor. Portanto o valor do maior fluxo
em G’ é maior ou igual ao valor do maior fluxo em G. |
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‘5/10‘ 0/4 ‘ ‘5/10 ‘ 0/5 .
5 5

o0

Figura 1.17.: Dois exemplos da transformagao do lema 1.25. Esquerda: Grafo
sem solucdo vidvel e grafo transformado com fluxo maximo 4. Di-
reita: Grafo com solugdo vidvel e grafo transformado com fluxo
maximo 5.

(0.¢]

Limites inferiores Para G = (V,E,b,c) com limites inferiores b : E — R
considere o problema

maximiza f(s)
sujeito a f(v) =0 vv e V\({s,t} (1.9)
be < fe <ce eck.

O problema (1.9) pode ser reduzido para um problema de fluxo méximo sim-
ples em G’ = (V/,E’,c’) (veja Fig. 1.16(b)) com

V' =Vu{s*t*}
B =Eu{(u,t") | (u,v) e B}U{(s*,v) ]| (u,v) € E}U{(t*,s*)} (1.10)
Ce — be eckE
¢! — ZvGN"’(u) by e=(u,t")
‘ 2 ueN—(v) Py €=(s",V)
00 e=(t,s)

Lema 1.25
Problema (1.9) possui uma solugao vidvel sse (1.10) possui uma solugdo méxima
com todos arcos auxiliares E’\ E saturados. Neste caso, se f é um fluxo méximo
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em (1.9),

fe —be eck
ZueN*(v) b("»u) €= (V, t*)
2 uen—(v) Py e=(s"u)
f(s) e=(t,s)

é um fluxo maximo de (1.10) com arcos auxiliares saturados. Conversamente,
se ' ¢ um fluxo méximo para (1.10) com arcos auxiliares saturados, f. =
fl 4+ be é um fluxo mdximo em (1.9).

Prova. (Exercicio.) [ |
Para obter um fluxo méximo de (1.9) podemos maximizar o fluxo a partir da
solugao viavel obtida, com qualquer variante do algoritmo de Ford-Fulkerson.
Uma alternativa para obter um fluxo méaximo com limites inferiores nos arcos
¢é primeiro mandar o limite inferior de cada arco, que torna o problema num
problema de encontrar o fluxo s-t maximo num grafo com demandas.

Existéncia de uma circulacdo com demandas Para G = (V,E,c) com de-
mandas d,, com d, > 0 para destinos e d,, < 0 para fontes, considere

existe f
s.a f(v) =—d, VeV (1.11)
fe < ce e € k.

Evidentemente ) | .\ d, = 0 é uma condigdo necessédria (lema (1.12)). O
problema (1.11) pode ser reduzido para um problema de fluxo méximo em
G’'=(V',E’) com

V/ =V U{s*, t)

E'=EuU{(s*,v)|veV,d, <0}U{(v,t*) |veV,d, >0} (1.12)
Ce eckE
Ce =4 —d, e=(s*vV)

d, €= (Va t*)

Lema 1.26
Problema (1.11) possui uma solugdo sse problema (1.12) possui uma solugéo
com fluxo maximo D =} | 4 _,dy.

Prova. (Exercicio.) |
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Circulacdes com limites inferiores Para G = (V,E, b, c) com limites inferio-
res e superiores, considere

existe f
s.a f(v) =d, YWweV (1.13)
be < fe <ce eckE.

O problema pode ser reduzido para a existéncia de uma circulagdo com so-
mente limites superiores em G’ = (V/,E’,c¢’,d’) com

vV =V
E'=E (1.14)
Ce = Ce — bp

fd—ZbJer (1.15)

ecd—(v) e€d™(v)

Lema 1.27
O problema (1.13) possui solucdo sse problema (1.14) possui solugao.

Prova. (Exercicio.) [ |

1.4.6. Aplicacoes

Projeto de pesquisa de opiniao O objetivo é projetar uma pesquisa de
opiniao, com as restrigoes

e (Cada cliente i recebe ao menos c¢; perguntas (para obter informagao sufi-
ciente) mas no méximo ¢{ perguntas (para néo cansar ele). As perguntas
podem ser feitas somente sobre produtos que o cliente ja comprou.

e Para obter informacdes suficientes sobre um produto, entre p; e p{ cli-
entes tem que ser interrogados sobre ele.

Um modelo é um grafo bi-partido entre clientes e produtos, com aresta (ci,p;)
caso cliente 1 ja comprou produto j. O fluxo de cada aresta possui limite
inferior 0 e limite superior 1. Para representar os limites de perguntas por
produto e por cliente, introduziremos ainda dois vértices s, e t, com arestas
(s,ci) com fluxo entre c; e c] e arestas (pj,t) com fluxo entre p; e pj’ e uma
aresta (t,s).
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Segmentacao de imagens O objetivo é segmentar um imagem em duas
partes, por exemplo “foreground” e “background”. Supondo que temos uma
“probabilidade” a; de pertencer ao “foreground” e outra “probabilidade” de
pertencer ao “background” b; para cada pixel i, uma abordagem direta é
definir que pixels com a; > b; sao “foreground” e os outros “background”. Um
exemplo pode ser visto na Fig. 1.19 (b). A desvantagem dessa abordagem é que
a separagao ignora o contexto de um pixel. Um pixel, “foreground” com todos
pixel adjacentes em “background” provavelmente pertence ao “background”
também. Portanto obtemos um modelo melhor introduzindo penalidades pi;
para separar (atribuir & categorias diferentes) pixel adjacentes i e j. Um
particdo do conjunto de todos pixels I em A U B tem um valor de

q(A,B) = Zai+zbi_ Z Pij
icA icB (i,j)EAXB

nesse modelo, e 0 nosso objetivo é achar uma parti¢do que maximiza q(A, B).
Isso é equivalente a minimizar

QAB)=) ai+bi—) ai—) bi+ Y  py

iel ieA ieB (i,j)EAXB
= E a; + E bi + E Pij-
ieB icA (i,j)EAXB

A solucdo minima de Q(A,B) pode ser visto como corte minimo num grafo.
O grafo possui um vértice para cada pixel e uma aresta com capacidade pi;
entre dois pixels adjacentes i e j. Ele possui ainda dois vértices adicionais
s e t, arestas (s,1) com capacidade a; para cada pixel 1 e arestas (i,t) com
capacidade b; para cada pixel i (ver Fig. 1.18).

Seqiienciamento O objetivo é programar um transporte com um ntimero k
de veiculos disponiveis, dado pares de origem-destino com tempo de saida e
chegada. Um exemplo é um conjunto de voos é

1. Porto Alegre (POA), 6.00 — Florianopolis (FLN), 7.00
2. Florianopolis (FLN), 8.00 — Rio de Janeiro (GIG), 9.00
3. Fortaleza (FOR), 7.00 — Jodo Pessoa (JPA), 8.00

4. Sao Paulo (GRU), 11.00 — Manaus (MAO), 14.00

5. Manaus (MAO), 14.15 — Belem (BEL), 15.15
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i 5 ok 1
a 30 19 12 10
b 20 15 16 25

Figura 1.18.: Exemplo da construcao para uma imagem 2 x 2. Direita: Tabela
com valores pele/nao-pele. Esquerda: Grafo com penalidade fixa
pij =10.

Figura 1.19.: Segmentacgao de imagens com diferentes penalidades p. Acima:
(a) Imagem original (b) Segmentagdo somente com probabilida-
des (p = 0) (¢) p = 1000 (d) p = 10000. Abaixo: (a) Walter
Gramatté, Selbstbildnis mit rotem Mond, 1926 (b) Segmentagao
com p = 10000. A probabilidade de um pixel representar pele
foi determinado conforme Jones e Rehg (1998).
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6. Salvador (SSA), 17.00 — Recife (REC), 18.00

O mesmo aviao pode ser usado para mais que um par de origem e destino, se
o destino do primeiro é o origem do segundo, em tem tempo suficiente entre
a chegada e saida (para manutengdo, limpeza, etc.) ou tem tempo suficiente
para deslocar o aviao do destino para o origem.

Podemos representar o problema como grafo direcionado aciclico. Dado pa-
res de origem destino, ainda adicionamos pares de destino-origem que sao
compativeis com as regras acimas. A idéia é representar avides como fluxo:
cada aresta origem-destino é obrigatério, e portanto recebe limites inferiores
e superiores de 1, enquanto uma aresta destino-origem é facultativa e recebe
limite inferior de O e superior de 1. Além disso, introduzimos dois vértices s
e t, com arcos facultativos de s para qualquer origem e de qualquer destino
para t, que representam os comegos e finais da viagem completa de um aviao.
Para decidir se existe um solugao com k avioes, finalmente colocamos um arco
(t,s) com limite inferior de O e superior de k e decidir se existe uma circulagao
nesse grafo.

O problema P | pmtn,7; | Lyax Primeiramente resolveremos um problema
mais simples: sera que existe um sequenciamento tal que toda tarefa i executa
dentro do seu intervalo [ri, di]? Equivalentemente, serd que existe uma solucao
com L. =07

Seja{thtZ)-")tk} :{THT'Z»'-~rn}U{d1)d2)--~adn}; comt; <t <--- <ty
(Observe que k < 2n, e k < 2n no caso de tempos repetidos.) Podemos ver os
t; como eventos em que uma tarefa fica disponivel ou tem que terminar o seu
processamento. Os t; definem k—1 intervalos I; = [ti, ti11] parai € [k—1] com
duragao S; = ti11 — ti correspondente. Cada tarefa j pode ser executada no
intervalo T; caso I; C [ri, di]. Logo podemos modelar o problema via um grafo
direcionado bipartido com vértices T U I, sendo T = [n] o conjunto de tarefas
e I ={I; |1 € [k—1]} o conjunto de intervalos, e com arcos (j,1) caso tarefa j
pode ser executada no intervalo i. Para completar o grafo adicionaremos um
arco (s,j) de um vértice origem s para cada tarefa j, e um arco (i,t) de cada
intervalo para um vértice destino t. Um fluxo nesse grafo representa tempo,
e teremos capacidades p; entre s e tarefa j, S; entre tarefa j e intervalo i, e
mS; entre T; e t, sendo mS; o tempo total disponivel durante o intervalo i. A
figura 1.20 mostra a construgao completa.

Logo P | pmtn, 7 | Limax pode ser resolvido em tempo O(mnlogL).

Com essa abordagem podemos resolver o problema original por busca binéria:
para cada valor do Lax entre 0 e L testaremos se existe uma solucio tal que
cada tarefa executa no intervalo [ri, d; + Lyax]. Um limite superior simples é
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P2
P

Pn

Figura 1.20.: Problema de fluxo para resolver a versao de decisao do problema
P | pmtnv Ti | Lmax~

L = max; 1 + > i Pi — min; d; executando todas tarefas apds a liberacao da
tltima numa tinica maquina em ordem arbitraria.
1.4.7. Outros problemas de fluxo

Obtemos um outro problema de fluxo em redes introduzindo custos de trans-
porte por unidade de fluxo:

FLUXO DE MENOR CUSTO

Entrada Grafo direcionado G = (V, E) com capacidades ¢ € R‘E e custos

E -y . (o .
T E RL‘ nos arcos, um vértice origem s € V, um vértice destino
teV,evalorveR,.

Solucdo Um fluxo s-t f com valor v.

Objetivo Minimizar o custo } . g cefe do fluxo.

Diferente do problema de menor fluxo, o valor do fluxo é fixo.

1.4.8. Exercicios

Exercicio 1.6
Mostra como podemos modificar o algoritmo de Dijkstra para encontrar o
caminho mais curto entre dois vértices num um grafo para encontrar o cami-
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nho com o maior gargalo entre dois vértices. (Dica: Enquanto o algoritmo
de Dijkstra procura o caminho com a menor soma de distancias, estamos
procurando o caminho com o maior capacidade minimo.)
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1.5. Emparelhamentos

Dado um grafo nao-direcionado G = (V, E), um emparelhamento é uma selecao
de arestas M C E tal que todo vértice tem no mdximo grau 1 em G’ = (V, M).
(Notagao: M = {ujvy,uzvy,...}.) O nosso interesse em emparelhamentos é

maximizar o nimero de arestas selecionados ou, no caso as arestas possuem

pesos, maximizar o peso total das arestas selecionados.
Para um grafo com pesos ¢ : E — Q, seja ¢c(M) = ZeeM Ce 0 wvalor do
emparelhamento M.

EMPARELHAMENTO MAXIMO (EM)
Entrada Um grafo ndo-direcionado G = (V, E).

Solugcdo Um emparelhamento M C E, i.e. um conjunto de arcos, tal que
para todos vértices v temos [N(v) " M| < 1.

Objetivo Maximiza |M]|.

EMPARELHAMENTO DE PESO MAXIMO (EPM)

Entrada Um grafo nao-direcionado G = (V,E,c) com pesos ¢ : E — Q
nas arestas.

Solucdo Um emparelhamento M C E.

Objetivo Maximiza o valor ¢(M) de M.

Um emparelhamento se chama perfeito se todo vértice possui vizinho em M.
Uma variagao comum do problema é

EMPARELHAMENTO PERFEITO DE PESO MINIMO (EPPM)

Entrada Um grafo nao-direcionado G = (V,E,c¢) com pesos ¢ : E — Q
nas arestas.

Solucao Um emparelhamento perfeito M C E, i.e. um conjunto de arcos,
tal que para todos vértices v temos [N(v) "M E 1.

Objetivo Minimiza o valor ¢(M) de M.

Observe que os pesos em todos problemas podem ser negativos. O problema de
encontrar um emparelhamento de peso minimo em G = (V, E, ¢) é equivalente
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com EPM em —G := (V| E, —c) (por qué?). Até EPPM pode ser reduzido para
EPM.

Teorema 1.9
EPM e EPPM sao problemas equivalentes.

Prova. Seja G = (V,E,c) uma instancia de EPM. Define um conjunto de
vértices V' que contém V e mais |V| novos vértices e um grafo completo G’ =
(V, V' x V' ¢’) com

—Ce casoe€E
0 caso contrario

Dado um emparelhamento M em G podemos definir um emparelhamento per-
feito M’ em G’: M’ inclui todas arestas em M. Além disso, um vértice em
V nao emparelhado em M serd emparelhado com o novo vértice correspon-
dente em V'’ com uma aresta de custo 0 em M’. Similarmente, os restantes
vértices nao emparelhados em V' sdo emparelhados em M’ com arestas de
custo 0 entre si. Pela construcao, o valor de M’ é ¢/(M’) = —c¢(M). Dado
um emparelhamento M’ em G’ podemos obter um emparelhamento M em G
com valor —c(M’) removendo as arestas que nao pertencem a G. Portanto,
um EPPM em G’ é um EPM em G.

Conversamente, seja G = (V,E,c¢) uma instancia de EPPM. Define C :=
1+ ) .celcel, novos pesos ¢, = C —ce e um grafo G’ = (V,E,c’). Para
emparelhamentos M e M em G arbitrarios temos

c(Ma)—c(Mi) < Y ce— ) ce=D) leel<C.

eckE eckE ecE
ce>0 ce<O0

Portanto, um emparelhamento de peso maximo em G’ também é um empa-
relhamento de cardinalidade mdxima: Para |Mj| < |M3| temos

¢'(My) = CIMy| —c(M1) < CIM4| + C —¢(M;) < CIM3| — ¢(M3) =c¢'(M,).

Se existe um emparelhamento perfeito no grafo original G, entao o EPM em
G’ é perfeito e as arestas do EPM em G’ definem um EPPM em G. |
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Formulagdes com programacao inteira A formulacdo do problema do em-
parelhamento perfeito minimo para G = (V, E,c) é

minimiza Z CeXe (1.16)
eckt

sujeito a Z Xuy = 1, YveVv
ueEN (v)
Xe € B.

A formulagdo do problema do emparelhamento méximo é

maximiza Z CeXe (1.17)
ecE
sujeito a Z Xuv < 1 YweV
ueN(v)
Xe € B.

Observagao 1.14

A matriz de coeficientes de (1.16) e (1.17) é totalmente unimodular no caso bi-
partido (pelo teorema de Hoffman-Kruskal). Portanto: a solugao da relaxagao
linear é inteira. (No caso geral isso ndo é verdadeiro, K3 é um contra-exemplo,
com solugdo 6tima 3/2.). Observe que isso resolve o caso ponderado sem custo
adicional. O

Observagao 1.15
O dual da relaxacao linear de (1.16) é

CIM: maximiza Z Yy (1.18)
vev
sujeito a Yu + Yy < Cuvy Yuv € E
Yy, € R.

e o dual da relaxacao linear de (1.17)

MVC: minimiza Z Yy (1.19)
vev
sujeito a Yu + Yy = Cuvy Yuv e E
Yv € Ry
Com pesos unitdrios cy, = 1 e restringindo y, € B o primeiro dual é a

formulacao do conjunto independente méaximo e o segundo da cobertura de
vértices minima. Portanto, a observacao 1.14 rende no caso nao-ponderado:
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1.5. Emparelhamentos

Teorema 1.10 (Berge, 1951)
Em grafos bi-partidos o tamanho da menor cobertura de vértices é igual ao
tamanho do emparelhamento méaximo.

Proposigao 1.5

Um subconjunto de vértices I C V de um grafo nao-direcionado G = (V,A) é
um conjunto independente sse V \ I é um cobertura de vértices. Em particu-
lar um conjunto independente maximo I corresponde com uma cobertura de
vértices minima V '\ 1.

Prova. (Exercicio 1.8.) [ | O

1.5.1. Aplicacoes

Alocacao de tarefas Queremos alocar n tarefas a n trabalhadores, tal que
cada tarefa é executada, e cada trabalhador executa uma tarefa. O custos de
execucao dependem do trabalhar e da tarefa. Isso pode ser resolvido como
problema de emparelhamento perfeito minimo.

Particionamento de poligonos ortogonais

Teorema 1.11 (Sack e Urrutia (2000, cap. 11,th. 1))

Um poligono ortogonal com n vértices de reflexo (ingl. reflex vertex, i.e., com
angulo interno maior que 7t), h buracos (ingl. holes) pode ser minimalmente
particionado em n — 1l — h + 1 retdngulos. A varidvel 1 é o ndimero méximo
de cordas (diagonais) horizontais ou verticais entre vértices de reflexo sem
interseccao.

O numero 1 é o tamanho do conjunto independente méximo no grafo de in-
terseccao das cordas: cada corda é representada por um vértice, e uma aresta
representa a duas cordas com intersecao. Pela proposicao 1.7 podemos obter
uma cobertura minima via um emparelhamento maximo, que é o complemento
de um conjunto independente maximo. Podemos achar o emparelhamento em
tempo O(n>/2) usando o algoritmo de Hopcroft-Karp, porque o grafo de in-
terseccao é bi-partido (por qué?).

1.5.2. Grafos bi-partidos

Na formulacao como programa inteira a solucao do caso bi-partido é mais facil.
Isso também ¢é o caso para algoritmos combinatoriais, e portanto comegamos
estudar grafos bi-partidos.
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8

Figura 1.21.: Esquerda: Poligono ortogonal com n = 8 vértices de reflexo
(pontos), h = 0 buracos. As cordas sao pontilhadas. Direita:

grafo de intersecgao.

Figura 1.22.: Redugao do problema de emparelhamento maximo para o pro-
blema do fluxo méximo

Reducao para o problema do fluxo maximo

Teorema 1.12
Um EM em grafos bi-partidos pode ser obtido em tempo O(mmn).

Prova. Introduz dois vértices s, t, liga s para todos vértices em V7, os vértices
em Vi com vértices em V> e os vértices em V> com t, com todos os pesos
unitarios. Aplica o algoritmo de Ford-Fulkerson para obter um fluxo maximo.
O ndmero de aumentos é limitado por n, cada busca tem complexidade O(m),
portanto o algoritmo de Ford-Fulkerson termina em tempo O(mn). |

Teorema 1.13
O valor do fluxo méximo é igual a cardinalidade de um emparelhamento
maximo.
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1.5. Emparelhamentos

Prova. Dado um emparelhamento mdximo M = {v11v21,...,VinVan}, pode-
mos construir um fluxo com arcos svii, V1iv2i € vait com valor |[M|.

Dado um fluxo méximo, existe um fluxo integral equivalente (veja lema (1.14)).
Na construcao acima os arcos possuem fluxo 0 ou 1. Escolhe todos arcos entre
Vi1 e V2 com fluxo 1. Nao existe vértice com grau 2, pela conservacao de fluxo.
Portanto, os arcos formam um emparelhamento cuja cardinalidade é o valor

do fluxo. ]

Solugcdo nao-ponderada combinatorial Um caminho P = vivovs...vy é
alternante em relagdo a M (ou M-alternante) se vivi;1 € M sse vip1vigs € M
para todos 1 < 1 < k—2. Um vértice v € V é livre em relacao a M se ele
tem grau 0 em M, e emparelhado caso contrario. Um arco e € E é livre em
relagdo a M, se e € M, e emparelhado caso contrario. Escrevemos |[P| =k — 1
pelo comprimento do caminho P.

Observagao 1.16

Caso temos um caminho P = vivyvs ...V 1 que é M-alternante com vy é

Vaks1 livre, podemos obter um emparelhamento M\ (PN M) U (P\ M) de

tamanho [M| —k + (k —1) = [M| + 1. Notacdo: Diferenca simétrica M & P =

(MA\P)U(P\M). A operagio M @ P é um aumento do emparelhamento M.
o

Teorema 1.14 (Hopcroft e Karp (1973))

Seja M* um emparelhamento maximo e M um emparelhamento arbitrario. O
conjunto M@M* contém pelo menos k = |[M*|—|M| caminhos M-aumentantes
disjuntos (de vértices). Um deles possui comprimento menor que [V|/k — 1.
Prova. Considere os componentes de G em relacao aos arcos M @ M*. Cada
vértice possui no maximo grau 2. Portanto, os componentes sao vértices livres,
caminhos simples ou ciclos. Os caminhos e ciclos possuem alternadamente
arestas de M e M*, logo os ciclos tem comprimento par. Os caminhos de
comprimento impar sao ou M-aumentantes, porque para a solugao 6tima M*
nao existem caminhos aumentantes. Ainda temos

IM*\ M| =|M*| —IM*NM|=M|—IM*"NM|+k =M\ M+k

e portanto M @ M* contém k arcos mais de M* que de M. Isso mostra que
existem pelo menos [M*| — [M| caminhos M-aumentantes, porque somente os
caminhos de comprimento impar possuem exatamente um arco mais de M*.
Pelo menos um desses caminhos tem que ter um comprimento (em arcos)
menor ou igual que |[V|/k — 1, sendo cada um possui pelo menos |V|/k + 1
vértices, i.e. eles contém em total mais que [V| vértices. |
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1. Algoritmos em grafos

Coroldrio 1.3 (Berge (1957))
Um emparelhamento é maximo sse nao existe um caminho M-aumentante.

Rascunho de um algoritmo:

Algoritmo 1.6 (Emparelhamento maximo)
Entrada Grafo nao-direcionado G = (V, E).

Saida Um emparelhamento maximo M.

1 M=90

2 while (existe um caminho M aumentante P) do
3 M:=M®oP

4 end while

5 return M

Problema: como achar caminhos M-aumentantes de forma eficiente?
Observagao 1.17

Um caminho M-aumentante comega num vértice livre em V7 e termina num
vértice livre em V. Idéia: Comecga uma busca por largura com todos vértices
livres em Vj. Segue alternadamente arcos livres em M para encontrar vizi-
nhos em V3 e arcos em M, para encontrar vizinhos em V7. A busca péara ao
encontrar um vértice livre em V> ou apds de visitar todos os vértices. Ela tem
complexidade O(m + n). O

Teorema 1.15

O problema do emparelhamento maximo nao-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(mn).

Prova. Ultima observacao e o fato que o emparelhamento maximo tem ta-

manho O(n). |
Observagao 1.18
O 1ltimo teorema é o mesmo que teorema (1.12). O

Observagao 1.19

Pelo teorema (1.14) sabemos que existem varios caminhos M-alternantes dis-
juntos (de vértices) e nos podemos aumentar M com todos eles em paralelo.
Portanto, estruturamos o algoritmo em fases: cada fase procura um conjunto
de caminhos aumentantes disjuntos e aplicé-los para obter um novo empare-
lhamento. Observe que pelo teorema (1.14) um aumento com o maior conjunto
de caminhos M-alternantes disjuntos resolve o problema imediatamente, mas
nao sabemos como achar esse conjunto de forma eficiente. Portanto, procura-
mos somente um conjunto maximal de caminhos M-alternantes disjuntos de
menor comprimento.
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Podemos encontrar um tal conjunto apds uma busca em profundidade usando
o DAG (grafo direcionado aciclico) definido pela busca por profundidade. (i)
Escolhe um vértice livre em V,. (ii) Segue os predecessores para achar um
caminho aumentante. (iii) Coloca todos vértices em uma fila de delegao. (iv)
Processa a fila de delegao: Até que a fila esteja vazia, remove um vértice dela.
Remove todos arcos adjacentes no DAG. Caso um vértice sucessor apds de
remogao de um arco possui grau de entrada 0, coloca ele na fila. (v) Repete
o procedimento no DAG restante, para achar outro caminho, até nao existem
mais vértices livres em V>. A nova busca ainda possui complexidade O(m).

O

O que ganhamos com essa nova busca? Os seguintes dois lemas dao a resposta:

Lema 1.28
Em cada fase o comprimento de um caminho aumentante minimo aumenta
por pelo menos dois.

Lema 1.29
O algoritmo termina em no méximo /n fases.

Teorema 1.16

O problema do emparelhamento maximo nao-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(my/m).

Prova. Pelas lemas 1.28 e 1.29 e a observacao que toda fase pode ser com-
pletada em O(m). [ |

Usaremos outro lema para provar os dois lemas acima.

Lema 1.30

Seja M um emparelhamento, P um caminho M-aumentante minimo, e Q um
caminho M @ P-aumentante. Entao [Q| > [P|+ 2PN Q]. (PN Q denota as
arestas em comum entre P e Q.)

Prova. Caso P e Q nao possuem vértices em comum, Q é M-aumentante,
PN Q =0 e a desigualdade é conseqiiéncia da minimalidade de P.

Caso contrério, P e Q possuem um vértice em comum, e logo também uma
aresta, senao M @ P @ Q possui um vértice de grau dois. P & Q consiste em
dois caminhos, e eventualmente um colecao de ciclos. Os dois caminhos sao
M-aumentantes, pelas seguintes observagoes:

1. O inicio e termino de P é livre em M, porque P é M-aumentante.

2. O inicio e termino de Q é livre em M.: eles ndo pertencem a P, porque
sao livres em M & P.
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O (—] —] U

O (—1 (—1 L]
(a) Grafo com emparelhamento M (em negrito) e um caminho
M-aumentante P (em vermelho).

O0—0 - —0 - O—_

U (—1 (—1 il
(b) O mesmo grafo com emparelhamento M @ P (em negrito) e um caminho
M @ P-aumentante Q (em vermelho).

IR i

) O conjunto de arestas P @ Q (em negrito).

Figura 1.23.: Ilustragao do lema 1.30.

3. Nenhum outro vértice de P @ Q ¢ livre em relacao a M: P sé contém
dois vértices livres e Q s6 contém dois vértices livres em Q \ P.

4. Temos dois caminhos M-aumentantes, comegando com um vértice livre
em Q e terminando com um vértice livre em P. O parte do caminho
Q em Q \ P é M-alternante, porque as arestas livres em M @ P sfo
exatamente as arestas livres em M. O caminho Q entra em P e sai de
P com arestas livres, porque todo vértice em P estd emparelhado em
M @ P. Portanto os dois caminhos em P & Q sao M-aumentantes.

Os dois caminhos M-aumentantes em P@® Q tem que ser maiores que |P|. Com
isso temos [P @ Q| > 2|P| e

Q=[P QI+2[PNQI—IPI > PI+2[PNQl

|
Prova. (dolema 1.28). Seja S o conjunto de caminhos M-aumentantes da fase
anterior, e P um caminho aumentante. Caso P é disjunto de todos caminhos
em S, ele deve ser mais comprido, porque S é um conjunto maximo de caminhos
aumentantes. Caso P possui um vértice em comum com algum caminho em
S, ele possui também um arco em comum (por qué?) e podemos aplicar
lema 1.30. |
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Prova. (do lema 1.29). Seja M* um emparelhamento méximo e M o empa-
relhamento obtido apds de v/n/2 fases. O comprimento de qualquer caminho
M-aumentante é no minimo /n, pelo lema 1.28. Pelo teorema 1.14 existem
pelo menos |M*| — |[M| caminhos M-aumentantes disjuntos de vértices. Mas
entao |M*| — IM| < \/n, porque no caso contririo eles possuem mais que n
vértices em total. Como o emparelhamento cresce pelo menos um em cada
fase, o algoritmo executa no maximo mais y/n fases. Portanto, o nimero total
de fases é no maximo 3/2y/n = O(y/n). [ |
O algoritmo de Hopcroft-Karp é o melhor algoritmo conhecido para encon-
trar emparelhamentos maximos em grafos bipartidos nao-ponderados espar-
sos”. Para subclasses de grafos bipartidos existem algoritmos melhores. Por
exemplo, existe um algoritmo randomizado para grafos bipartidos regulares
com complexidade de tempo esperado O(nlogn) (Goel, Kapralov e Khanna,
2010).

Sobre a implementacao A seguir supomos que o conjunto de vértices é
V = [1,n] e um grafo G = (V, E) bi-partido com particao V; U V,. Podemos
representar um emparelhamento usando um vetor mate, que contém, para
cada vértice emparelhado, o indice do vértice vizinho, e 0 caso o vértice é
livre.

O nicleo de uma implementacao do algoritmo de Hopcroft e Karp é descrito
na observagao 1.19: ele consiste numa busca por largura até encontrar um ou
mais caminhos M-alternantes minimos e depois uma fase que extrai do DAG
definido pela busca um conjunto méximo de caminhos disjuntos (de vértices).
A busca por largura comeca com todos vértices livres em V;. Usamos um
vetor H para marcar os arcos que fazem parte do DAG definido pela busca
por largura® e um vetor m para marcar os vértices visitados.

search_paths(M) :=
for all veV do m, :=false

Uy :={veVi|vlivre}
for all uelU; do d,:=0

do
{ determina vizinhos em U, via arestas livres}
UZ :Z(Z)
for all uelU; do

5Feder e Motwani (1991) e Feder e Motwani (1995) propuseram um algoritmo em
O(v/nm(2 — log,, m)) que é melhor em grafos densos.
SH, porque o DAG se chama drvore hingara na literatura.
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m, = true
for all wek, w¢gM do
if not m, then

d,:=d,+1
W :=U,Uv
end if
end for
end for

{ determina vizinhos em U; via arestas emparelhadas }
found := false { pelo menos um caminho encontrado?
U] ::@
for all ue U, do
my = true
if (u livre) then
found := true
else
v := mate[u]
if not m, then

dy:=dy +1
U;=uU;uv
end if
end for
end for
while (not found)

end

Ap6s da busca, podemos extrair um conjunto maximo de caminhos M-alternantes
minimos disjuntos. Enquanto existe um vértice livre em V>, nos extraimos um
caminho alternante que termina em v como segue:

extract_paths() :=
while existe vértice v livre em V> do
aplica um busca em profundidade a partir de v em H
(procurando um vértice livre em Vi)
remove todos vértices visitados durante a busca
caso um caminho alternante P foi encontrado: M:=M@P
end while
end

Exemplo 1.7
Segue um exemplo de aplicagao do algoritmo de Hopcroft-Karp.

Grafo original, arvore Hungara primeira iteragao e emparelhamento
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resultante:

Arvore Hungara segunda iteracao e emparelhamento resultante:

Arvore Hingara terceira iteragdo e emparelhamento resultante:

;

Emparelhamentos, coberturas e conjuntos independentes

Proposigao 1.6

Seja G = (S U T, E) um grafo bipartido e M C E um emparelhamento em G.
Seja R o conjunto de todos vértices livres em S e todos vértices alcangaveis
por uma busca na &rvore Hiingara (i.e. via arestas livres de S para T e arestas
do emparelhamento de T para S.). Entao (S\R)U(TNR) é uma cobertura de
vértices em G.

Prova. Seja u,v € E uma aresta nao coberta. Logou e S\ (S\R) =SNR
eveT\(TNR)=T\R. Casouw ¢ M, uv é parte da arvore Hungara é
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[
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v
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Figura 1.24.: Tlustragao da prova da proposigao 1.7.

v € R, uma contradi¢do. Mas caso uv € M, vu é parte da arvore Hingara e
v precede u, logo v € R, novamente uma contradigao. |

A préximo proposi¢do mostra que no caso de um emparelhamento méximo
obtemos uma cobertura minima.

Proposicao 1.7

Seja G = (S U T,E). Caso M é um emparelhamento maximo o conjunto
(S\R)U (TNR) é uma cobertura minima.

Prova. Como M é méaximo nao existe caminho M-aumentante, e logo T N R
contém somente vértices emparelhados. Caso [T N R| = v, R também contém

exatamente v vértices emparelhados em S. Além disso R contém |S| — |[M|
vértices livres em S. Logo S\ Rl = |S|=(IS|—=M|]) —v = M| —v e |(S\
R) U (T N R)| = [M|, i.e. a cobertura possui a mesma cardinalidade que o

emparelhamento. Mas o tamanho de qualquer emparelhamento é um limite
inferior para a cobertura minima, porque ela tem que conter pelo menos um
vértice da cada aresta emparelhada. Logo (S\ R) U (T NR) é uma cobertura
minima. |
Observagao 1.20

O complemento V \ C de uma cobertura C é um conjunto independente (por
qué?). Logo um emparelhamento M que define um conjunto R de acordo com
a proposigao (1.6) corresponde com um conjunto independente (SNR)U(T\R),
e caso M é méximo, o conjunto independente também. O

Solucdo ponderada em grafos bi-partidos Dado um grafo G = (S U T, E)

bipartido com pesos ¢ : E — Q. queremos achar um emparelhamento de maior
peso. Escrevemos V =S UT para o conjunto de todos vértices em G.
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Observagao 1.21

O caso ponderado pode ser restrito para emparelhamentos perfeitos: caso
S e T possuem cardinalidade diferente, podemos adicionar vértices, e depois
completar todo grafo com arestas de custo 0. O problema de encontrar um em-
parelhamento perfeito maximo (ou minimo) em grafos ponderados é conhecido
pelo nome “problema de alocagdo” (ingl. assignment problem). O

Observagao 1.22

A reducao do teorema 1.12 para um problema de fluxo méximo néo se aplica
no caso ponderado. Mas, com a simplificacdo da observacao 1.21, podemos
reduzir o problema no caso ponderado para um problema de fluxo de menor
custo: a capacidade de todas arestas € 1, e o custo de transportagdao sao os
pesos das arestas. Como o emparelhamento é perfeito, procuramos um fluxo
de valor [V|/2, de menor custo. %

O dual do problema 1.19 é a motivacao para

Definigao 1.4

Um rotulamento é uma atribuicao y: V — Ry. Ele é vidvel caso yy + Yy >
Ce para todas arestas e = (u,v). (Um rotulamento vidvel é c-cobertura de
vértices.) Uma aresta é apertada (ingl. tight) caso yy, + yy = ce. O subgrafo

de arestas apertadas é Gy = (V,;E’,c) com E' ={e € E| e apertada em y}.

Pelo teorema forte de dualidade e o fato que a relaxagao linear dos sistemas
acima possui uma solugao integral (ver observacao 1.14) temos

Teorema 1.17 (Egervary (1931))

Para um grafo bi-partido G = (S U T, E, ¢) com pesos nio-negativos ¢ : E — Q.
nas arestas, o maior peso de um emparelhamento perfeito é igual ao peso da
menor c-cobertura de vértices.

O método hingaro Aplicando um caminho M-aumentante P = (viva ... Voni1)
produz um emparelhamento de peso ¢c(M)+3_; fmpar Cvivi 1 — 2 par Cvivis -
Isso motiva a definicdo de uma arvore hingara ponderada. Para um empare-
lhamento M, seja Hyp o grafo direcionado com as arestas e € M orientadas
de T para S com peso l. := W, e com as restantes arestas e € E\ M ori-
entadas de S para T com peso le := —w,. Com isso a aplicagao do caminho
M-aumentante P produz um emparelhamento de peso ¢(M) — 1(P) em que
LP) =2 i <i<on Wiviys € 0 comprimento do caminho P.

Com isso podemos modificar o algoritmo para emparelhamentos maximos para

\ \
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Algoritmo 1.7 (Emparelhamento de peso maximo)
Entrada Um grafo ndo-direcionado ponderado G = (V, E, c).

Saida Um emparelhamento de maior peso c¢(M).

1 M=0

while (existe um caminho M aumentante P) do
encontra o caminho M aumentante minimo P em Hm
caso L(P)>0: return M;
M=MoP

end while

return M

N O Uk W N

Chamaremos um emparelhamento M extremo caso ele possui o maior peso
entre todos emparelhamentos de tamanho |M|.

Observagao 1.23

O grafo Hy de um emparelhamento extremo M nao possui ciclo (par) ne-
gativo. Isso seria uma contradicdo com a maximalidade de M. Portanto
podemos encontrar o caminho minimo no passo 3 do algoritmo usando o al-
goritmo de Bellman-Ford em tempo O(mn). Com isso a complexidade do
algoritmo é O(mn?). O

Observagao 1.24
Lembrando Bellman-Ford: Seja di(t) a distdncia minima entre s e t com um
caminho usando no maximo k arcos ou oo caso tal caminho nao existe. Temos

dic1(t) = min{di(t), min dy(u) + Hu, t)}
(u,t)EA
com do(t) =0 caso t é um vértice livre em S e do(t) = oo caso contrario. O
algoritmo se aplica igualmente para as distancias de um conjunto de vértices,
como o conjunto de vértices livres em S. A atualizacdo de k para k+ 1 é
possivel em O(m) e como k < 1 o algoritmo possui complexidade O(nm). ¢

Teorema 1.18
Cada emparelhamento encontrado no algoritmo 1.7 é extremo.

Prova. Por inducao sobre [M|. Para M = () o teorema é correto. Seja M
um emparelhamento extremo, P o caminho aumentante encontrado pelo algo-
ritmo 1.7 ¢ N um emparelhamento de tamanho |[M|+ 1 arbitrario. Como |N| >
IM|, M UN contém uma componente que é um caminho Q M-aumentante
(por um argumento similar com aquele da prova do teorema de Hopcroft-
Karp 1.14). Sabemos 1(Q) > 1(P) pela minimalidade de P. N & Q é um
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Figura 1.25.: Grafo com emparelhamento e grafo auxiliar.

emparelhamento de cardinalidade [M| (Q é um caminho com arestas em N e
M com uma aresta em N a mais), logo ¢(N @ Q) < ¢(M). Com isso temos

c(N)=c(N® Q) -UQ) <cM)—1(P)=c(M&P)

(observe que o comprimento 1(Q) é definido no emparelhamento M). [ ]

Proposigao 1.8
Caso nao existe caminho M-aumentante com comprimento negativo no algo-
ritmo 1.7, M é méaximo.

Prova. Supde que existe um emparelhamento N com c(N) > c¢(M). Logo
IN| > M| porque M ¢é possui o maior peso entre todos emparelhamentos de
cardinalidade no mdximo |M|. Pelo teorema de Hopcroft-Karp, existem |[N| —
IM| caminhos M-aumentantes disjuntos de vértices em N @ M. Nenhum deles
tem comprimento negativo, pelo critério de parada do algoritmo. Portanto
¢(N) < ¢(M), uma contradicao. |

Fato 1.1

E possivel encontrar o caminho minimo no passo 3 em tempo O(m + nlogn)
usando uma transformagao para distancias positivas e aplicando o algoritmo
de Dijkstra. Com isso um algoritmo em tempo O(n(m + nlogn)) é possivel.

1.5.3. Emparelhamentos em grafos nao-bipartidos

O caso nao-ponderado Dado um grafo ndo-direcionado G = (V,E) e um
emparelhamento M, podemos simplificar a arvore hingara para um grafo
direcionado D = (V,;A) com A = {(u,v) | Ix € V:ux € E,xv € M}. Qualquer
passeio M-alternante entre dois vértices livres em G corresponde com um
caminho M-alternante em D.

O problema no caso nao-bipartido sdo lagos fmpares. No caso bi-partido,
todo lago é par e pode ser eliminado sem consequéncias: de fato o caminho
M-alternante mais curto nao possui lago. No caso nao bi-partido nao todo

85
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Tabela 1.4.: Resumo emparelhamentos
Cardinalidade Ponderado

Bi-partido O(n\/mn/logn) (Alt et al., O(mm + n’logn) (Kuhn, 1955;
1991) O floglggr{m (Feder e Munkres, 1957)

Motwani, 1990)
Geral O(my/nien=/m /m (Goldberg e O(n®) (Edmonds, 1965) O(mn +

logn

Karzanov, 2004 Fremuth—Paeger n?logn) (Gabow, 1990)
e Jungnickel, 2003)

caminho no grafo auxiliar corresponde com um caminho M-alternante no grafo
original. O caminho v{v3Vv5v;ve corresponde com o caminho M-alternante
V1V2V3V4V5VeV7V8VoV1p, Mas O caminho V1Vg8CsV5V7Ve que corresponde com
0 passeio ViVoVgV7VgVaV5VsV7VgVoVip nao é um caminho M-alternante que
aumento o emparelhamento. O problema é que o lago impar vgv4vsvg nao
pode ser eliminado sem consequéncias.

1.5.4. Notas

Duan, Pettie e Su (2011) apresentam técnicas de aproximagio para empare-
lhamentos.

1.5.5. Exercicios

Exercicio 1.7
E possivel somar uma constante ¢ € R para todos custos de uma instancia do
EPM ou EPPM, mantendo a otimalidade da solugao?

Exercicio 1.8
Prove a proposigao 1.5.
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2. Tabelas hash

Em hashing nosso interesse é uma estrutura de dados H para gerenciar um
conjunto de chaves sobre um universo U e que oferece as operagoes de um
diciondrio:

e Inser¢ao de uma chave ¢ € U: insert(c,H)
e Delecao de uma chave ¢ € U: delete(c,H)
e Teste da pertinéncia: Chave ¢ € H? lookup(c,H)

Uma caracteristica do problema é que tamanho [U| do universo de chaves
possiveis pode ser grande, por exemplo o conjunto de todos strings ou todos
nimeros inteiros. Portanto usar a chave como indice de um vetor de booleano
nao é uma opgao. Uma tabela hash é um alternativa para outros estruturas
de dados de dicionarios, p.ex. arvores. O principio de tabelas hash: aloca
uma tabela de tamanho m e usa uma fun¢do hash para calcular a posigao de
uma chave na tabela. Como o tamanho da tabela hash é menor que o nimero
de chaves possiveis, existem chaves com h(ci) = h(cz), que geram colisdes.
Temos dois métodos para lidar com isso:

e Hashing perfeito: Escolhe uma fungao hash, que para um dado conjunto
de chaves nao tem colisoes. Isso é possivel se o conjunto de chaves é
conhecido e estatico.

e Invente outro método de resolucao de colisoes.

2.1. Hashing com listas encadeadas

Seja h : U — [m] uma funcdo hash. Mantemos uma colecdo de m listas
loy...,lm—1 tal que a lista l; contém as chaves ¢ com wvalor hash h(c) = i.
Supondo que a avaliagdo de h é possivel em O(1), a insercao custa O(1), e o
teste é proporcional ao tamanho da lista.

Para obter uma distribuicao razoavel das chaves nas listas, supomos que h é
uma funcao hash simples e uniforme:

Prih(c) =il = 1/m. (2.1)
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2. Tabelas hash

Seja ny = [li| o tamanho da lista i e ¢cj; := Pr[h(i) = j] a varidvel aleatéria
que indica se chave j pertence a lista i. Temos n; = Zl<j<n Cji € com isso

Enid=El Y cil= Y Elil= Y Prlh(g) =i =n/m.

1<j<n 1<5<n 1<j<n

O valor «:=n/m é a fator de ocupa¢do da tabela hash.

insert (c,H) :=
insert (Cvlh(c))

lookup (c,H) :=
lookup (c,ln(c))

delete(c,H) :=
delete (c,ln(e))

Teorema 2.1
Uma busca sem sucesso precisa tempo esperado de (1 + ).

Prova. A chave ¢ tem a probabilidade 1/m de ter um valor hash i. O
tamanho esperado da lista i é «. Uma busca sem sucesso nessa lista precisa
tempo O(«). Junto com a avaliacado da funcdo hash em ©(1), obtemos tempo
esperado total ©(1 + «). [ ]

Teorema 2.2
Uma busca com sucesso precisa tempo esperado de O(1 + o).

Prova. Supomos que a chave ¢ é uma das chaves na tabela com probabilidade
uniforme. Entdo, a probabilidade de pertencer a lista i (ter valor hash i) é
ni/n. Uma busca com sucesso toma tempo ©(1) para avaliacdo da fungéo
hash, e mais um nimero de operagoes proporcional a posi¢ao p da chave na
sua lista. Com isso obtemos tempo esperado ©(1 + E[p]).

Para determinar a posigao esperada na lista, E[p], seja c1,...,cn a sequéncia
em que a chaves foram inseridas. Supondo que inserimos as chaves no inicio
da lista, E[p] é um mais que o nimero de chaves inseridos depois de ¢ na
mesma lista.

Seja Xi; um varidvel aleatéria que indica se chaves c¢; e ¢j tem o mesmo valor
hash. E[Xi;] = Pr[h(ci) = h(cy)] = Z]gkngr[h(Ci) = kI Prlh(cj) = k] =
1/m. Seja p;i a posicdo da chave c; na sua lista. Temos

Epd =E[1+ ) Xyl=T1+) EXyl=1+n—1i)/m

j>1i jii>i
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2.1. Hashing com listas encadeadas

e para uma chave aleatéria c

Epl= > 1/mEpd= > 1/n(1+n—1i)/m)

1<i<n 1<i<n

=14+n/m—(n+1)/2m) =1+ «/2 — /(2n).
Portanto, o tempo esperado de uma busca com sucesso é
O(1+Ep) =02+ /2 —/2n) =O(1 + «).
|

Selecdo de uma funcao hash Para implementar uma tabela hash, temos
que escolher uma fungéo hash, que satisfaz (2.1). Para facilitar isso, supomos
que o universo de chaves é um conjunto U = [u] de nimeros inteiros. (Para
tratar outro tipos de chave, costuma-se converté-los para nimeros inteiros.)
Se cada chave ocorre com a mesma probabilidade, h(i) = 1 mod m é uma
funcao hash simples e uniforme. Essa abordagem é conhecida como método
de divisao. O problema com essa fungao na pratica é que nao conhecemos a
distribuicao de chaves, e ela provavelmente nao é uniforme. Por exemplo, se
m é par, o valor hash de chaves pares é par, e de chaves impares é impar, e se
m = 2¥ o valor hash consiste nos primeiros k bits. Uma escolha que funciona
na pratica é um numero primo “suficientemente” distante de uma poténcia de
2.

O método de multiplicacao define

h(c) = [m{Ac}].

O método funciona para qualquer valor de m, mas depende de uma escolha
adequada de A € R. Knuth propos A ~ (v/5—1)/2.

Hashing universal Outra idéia: Para qualquer funcao hash h fixa, sempre
existe um conjunto de chaves, tal que essa fungao hash gera muitas colisoes.
(Em particular, um “adversario” que conhece a funcao hash pode escolher
chaves c, tal que h(c) = const.. Para evitar isso podemos escolher uma funcao
hash randomica de uma familia de funcoes hash.

Uma familia H de funcdes hash U — [m] é universal se

{h € H|h(er) =h(e2)}l =[H/m

ou equivalente
Prlh(c1) = h(c2)l =1/m

para qualquer par de chaves cq,cC3.
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2. Tabelas hash

Teorema 2.3
Se escolhemos uma funcao hash h € H uniformemente, para uma chave ar-
bitrdria ¢ o tamanho esperado de ly () é

e x,casoc € H, e
e 1+, casoc € H.

Prova. Para chaves c1,c; seja Xij; = [h(cq1) = h(c2)] e temos
E[Xy;] = Pr[Xy; = 1] =Pr[h(ci) =h(cz)l =1/m

pela universalidade de H. Para uma chave fixa c seja Y. o ntimero de colisoes.

ELY.] =E[ > x} =) EXeed< ) 1/m

c’eH c’'eH c’eH
c’'#c c’'#c c’'#c

Para uma chave ¢ € H, o tamanho da lista é Y, e portanto o tem tamanho
esperado E[Y.] < n/m = «. Caso ¢ € H, o tamanho da lista é 1+ Y. e com
ElY.] = (n—1)/m esperadamente

T+n—=1)/m=T4+a—1/m< 1+ .

Um exemplo de um conjunto de fun¢ées hash universais: Sejac = (coy...,Cr)m
uma chave na base m, escolhe a = (ag,..., a;)m randomicamente e define

ha: Z ciay mod m.

0<i<r

Hashing perfeito Hashing é perfeito sem colisoes. Isso podemos garantir so-
mente caso conhecemos a chaves a serem inseridos na tabela. Para uma funcao
aleatéria de uma familia universal de funcoes hash para uma tabela hash de ta-
manho m, o niimero esperado de colisoes é E[Z#j Xy = Z#j E[Xy] < n?/m.
Portanto, caso esolhemos uma tabela de tamanho m > n? o nimero esperado
de colisdes é menos que um. Em particular, para m > 2n? a probabilidade de

uma colisao é P[Z#j Xy > 0] < Z#j PXy =1]= n?/m<1/2.
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2.2. Hashing com enderecamento aberto

2.2. Hashing com enderecamento aberto

Uma abordagem para resolugao de colisoes, chamada enderecamento aberto,
é escolher uma outra posicao para armazenar uma chave, caso h(c) é ocu-
pada. Uma estratégia para conseguir isso é procurar uma posi¢ao livre numa
permutagao de todos indices restantes. Assim garantimos que um insert tem
sucesso enquanto ainda existe uma posigao livre na tabela. Uma fungao hash
h(c,1i) com dois argumentos, tal que h(c,1),...,h(c,m) é uma permutacao
de [m], representa essa estratégia.

insert (c,H) :=
for i in [m]

if Hfh(c,1)] = free
i)

H[h(c,1)]=

return

lookup (¢c,H) :=
for i in [m]
if Hfh(c,1)] = free
return false
if H[h(c,1)] =c
return true
return false
A fungéo h(c,1) é uniforme, se a probabilidade de uma chave randémica ter
associada uma dada permutagao é 1/m!. A seguir supomos que h é uniforme.

Teorema 2.4
As funcoes lookup e insert precisam no méaximo 1/(1 — «) testes caso a chave
nao esta na tabela.

Prova. Seja X o numero de testes até achar uma posicao livre. Temos

X] :ZiPr[X:i] :ZZPr[X:i] :ZPr[Xzi].

i>1 i>1§>i i>1
Com T; o evento que o teste i ocorre e a posigao i é ocupada, podemos escrever
Pr(X >i] = Pr[TiN---NTi_1] = Pr[T1] Pr[T2|Th] Pr[T3|Tq, T2] - - - Pr[Ti 1 [Ty, ..., Ti 2]

Agora Pr[T;] = n/m, e como h é uniforme Pr[T2|Ty] =n—1/(m—1) e em
geral
Pr[Tk|Ty,... Tkql=n—=k+1)/(m—k+1) <n/m=«.
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2. Tabelas hash

Portanto Pr[X > 1] < ot~ T e

ZPrX>1 <Zoc :Z ot =1/(1— ).

i>1 i>1 i>0
[ |
Lema 2.1
Para i < j, temos H; — Hj < In(i) — In(j).
Prova.
i+1 1
Hi —H; < J dx = In(i) — In(j)
1 x— 1
[ |

Teorema 2.5

Caso a < 1 a funcdo lookup precisa esperadamente 1/axln1/(1 — «) testes
caso a chave esteja na tabela, e cada chave tem a mesma probabilidade de ser
procurada.

Prova. Seja c a i-gésima chave inserida. No momento de insercao temos
o = (i—1)/m e o nimero esperado de testes T até encontrar a posigao livre
foi 1/(1—(i—1)/m) = m/(m — (i —1)), e portanto o nimero esperado de
testes até encontrar uma chave arbitraria é

Tl=1/n > m/(m—({i-1)=1/a > 1/(m—1)=1/a(Hpn—Hpn_n)

1<i<n 0<i<n
e com Hy, —Hpon <In(m) —In(m —n) temos
T =1/a(Hn —Hm_n) < 1/x(In(m) —In(m —n)) = 1/xIn(1/(1 — «)).

|
Remover elementos de uma tabela hash com enderecamento aberto é mais
dificil, porque a busca para um elemento termina ao encontrar uma posicao
livre. Para garantir a corretude de lookup, temos que marcar posigoes como
“removidas” e continuar a busca nessas posi¢oes. Infelizmente, nesse caso,
as garantias da complexidade nao mantem-se — apds uma série de delegoes e
insergoes toda posicao livre serd marcada como “removida” tal que delete e
lookup precisam n passos. Portanto o enderecamento aberto é favoravel s se
temos nenhuma ou poucas delegoes.
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2.3. Cuco hashing

Funcoes hash para enderecamento aberto
e Linear: h(c,i) = h(c) +1 mod m
e Quadratica: h(c,i) =h(c) 4+ ci1i+c2i? mod m
e Hashing duplo: h(c,i) = hq(c) +1ihz(c) mod m

Nenhuma das funcoes é uniforme, mas o hashing duplo mostra um bom de-
sempenho na pratica.

2.3. Cuco hashing

Cuco hashing é outra abordagem que procura posigoes alternativas na tabela
em caso de colisoes, com o objetivo de garantir um tempo de acesso constante
no pior caso. Para conseguir isso, usamos duas func¢ées hash h; e hy, e inse-
rimos uma chave em uma das duas posi¢oes hq(c) ou hy(c). Desta forma a
busca e a delegdo possuem complexidade constante O(1):

lookup (¢ ,H) :=
if Hhi(c)]=c or Hlhy(c)l=¢

return true

return false

delete(c,H) :=
if Hhi(c)l=c
H[hq(c)] := free
if Hhy(c)] =c
Hlh,(c)] := free
Inserir uma chave é simples, caso uma das posicoes alternativas é livre. No
caso contrario, a solugao do cuco hashing é comportar-se como um cuco com
ovos de outras aves que joga-los fora do seu “ninho”: “insert” ocupa a posicao
de uma das duas chaves. A chave “jogada fora” serd inserida novamente na
tabela. Caso a posicao alternativa dessa chave é livre, a inser¢do termina.
Caso contrario, o processo se repete. Esse procedimento termina apds uma
série de reinsercoes ou entra num lago infinito. Nesse tltimo caso temos que
realocar todas chaves com novas fungoes hash.

insert (c,H) :=
if H[hi(c)] =c or H[ha(c)l=c
return

p = hy(c)
do n vezes
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2. Tabelas hash

if Hip] = free
Hlp]l :=c¢
return
swap (¢ ,Hlp])
{ escolhe a outra posicao da chave atual }
if P= hy (C)
p = hz(c)
else
p = hi(c)
rehash (H)
insert (c,H)
Uma maneira de visulizar uma tabela hash com cuco hashing, é usar o grafo
cuco: Caso foram inseridos as chaves c1, ..., ¢y, na tabela nas posi¢oes 1y ..., Pn,
o grafo é G = (V,A), com V = [m] é (pi,ha(ci)) € A caso hi(ci) = pi
e (pi,hi(ci)) € A caso ha(ci) = pi, i.e., 0s arcos apontam para a posigao
alternativa. O grafo cuco é um grafo direcionado e eventualmente possui
ciclos. Uma caracteristica do grafo cuco é que uma posigoes p é eventual-
mente analisada na inser¢ao de uma chave ¢ somente se existe um caminho
de hy(c) ou hy(c) para p. Para a analise é suficiente considerar o grafo cuco
nao-direcionado.

Exemplo 2.1
Para chaves de dois digitos cicy seja hy(c) = 3¢y + ¢c2 mod m e hy(c) =
4¢q1 + c3. Para m = 10 obtemos para uma sequencia aleatoria de chaves

c 31 41 59 26 53 58 97
hi(c) 0 3 4 2 8 3 4
hp(¢) 3 7 9 4 3 8 3

e a seguinte sequencia de tabelas hash

0|12 |34 |5|6|7]|8]|9
Inicial

31 Insercao 31
31 41 Insercao 41
31 41 | 59 Insercao 59
31 26 | 41 | 59 Insercao 26
31 26 | 41 | 59 53 Insercao 53
31 26 | 58 | 59 41 | 53 Insercao 58
31 26 | 58 | 97 41 | 53 | 59 | Insergao 59

94



0O Ui Wi+

2.4. Filtros de Bloom

Lema 2.2
Para posicoes i e j e um ¢ > 1 tal que m > 2cn, a probabilidade de existir um
caminho minimo de i para j de comprimento d > 1 é, no maximo, ¢c~4/m.

Prova. Observe que a probabilidade de um item c ter posicoes i e j como
alternativas é no maximo P[h;(c) = i,ha(c) = jl + Plhi(c) = j, ha(c) =il =
2/m?. Portanto a probabilidade de pelo menos uma das n chaves ter essa
caracteristica é no méximo 2n/m? =¢~'/m.

A prova do lema é por indugao sobre d. Para d =1 a afirmacéo estd correto
pela observagdo acima. Para d > 1 existe um caminho minimo de compri-
mento d — 1 de i para um k. A probabilidade disso é no méximo ¢4~ /m
e a probabilidade de existir um elemento com posigoes alternativas k e j no
méximo ¢~ '/m. Portanto, para um k fixo, a probabilidade existir um cami-
nho de comprimento d é no maximo ¢~9/m? e considerando todas posicoes k
possiveis no maximo ¢~ /m. ]
Com isso a probabilidade de existir um caminho entre duas chaves i e j, é
igual a probabilidade de existir um caminho comecando em hq(i) ou hy(i) e
terminando em hq(j) ou hy(j), que é no maximo 4y .o ;¢ */m < 4/m(c —
1) = O(1/m). Logo o ntmero esperado de itens visitados numa insercio é
In/m(c—1) = O(1), caso nao é necessario reconstruir a tabela hash.

2.4. Filtros de Bloom

Um filtro de Bloom armazena um conjunto de n chaves, com as seguintes
restricoes:

e Nao é mais possivel remover elementos.

e L possivel que o teste de pertinéncia tem sucesso, sem o elemento fazer
parte do conjunto (“false positive”).

Um filtro de Bloom consiste em m bits By, 1 <1 < m, e usa k fungoes hash
hi,..., hg.

insert (c,B) :=
for i in 1...k
bri(e) =1
end for

lookup (c¢,B) :=

for i in 1...k
if by ) =0
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Tabela 2.1.: Complexidade das operagoes em tabelas hash. Complexidades
em negrito sao amortizados.

insert lookup delete
Listas encadeadas (1) O(1 + «) 01+ «)
Enderegamento aberto  O(1/(1 — «)) o(1/(1 — ) -
(com/sem sucesso) O(1/aln1/(1—«)) O(1/xIn1/(1—«)) -
Cuco 0O(1) o) o(1)

return false
return true
Apés de inserir n chaves, um dado bit é ainda 0 com probabilidade

kn kn
p'= <1 — 111) = <1 — kT]::Lm) A e kn/m

que é igual ao valor esperado da fracdo de bits ndo setados'. Sendo p a fracdo
de bits nao setados realmente, a probabilidade de erradamente classificar um
elemento como membro do conjunto é

(I—pf~0-p)~ (1 —~ e—‘m/m)k

porque p é com alta probabilidade perto do seu valor esperado (Broder e
Mitzenmacher, 2003). Broder e Mitzenmacher (2003) também mostram que
o numero 6timo k de fungoes hash para dados valores de n,m é m/nin2 e
com isso temos um erro de classificacio ~ (1/2).

Aplicacoes:

1. Hifenagdo: Manter uma tabela de palavras com hifenagdo excepcional
(que nao pode ser determinado pelas regras).

2. Comunicacao efetiva de conjuntos, p.ex. selecdo em bancos de dados dis-
tribuidas. Para calcular um join de dois bancos de dados A, B, primeiro
A filtra os elementos, mando um filtro de Bloom S para B e depois B
executa o join baseado em Sa. Para eliminagao de eventuais elementos
classificados erradamente, B manda os resultados para A e A filtra os
elementos errados.

1Lembrando que e* > (1 +x/n)™ para n > 0.
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3. Algoritmos de aproximacao

Para varios problemas nao conhecemos um algoritmo eficiente. Para proble-
mas NP-completos, em particular, uma solugao eficiente é pouco provavel. Um
algoritmo de aproximacdo calcula uma solugao aproximada para um problema
de otimizacao. Diferente de uma heuristica, o algoritmo garante a qualidade da
aproximagao no pior caso. Dado um problema e um algoritmo de aproximagao
A, escrevemos A(x) = y para a solucdo aproximada da instancia x, @(x,y)
para o valor dessa solugdo, y* para a solugdo 6tima e OPT(x) = @(x,y*) para
o valor da solugao étima.

3.1. Problemas, classes e reducoes

Definigao 3.1
Um problema de otimizagao TT = (P, @,opt) é uma relagio bindria P C 1 x S
com instancias x € I e solugdes y € S, junto com

e uma fungao de otimizagao (funcdo de objetivo) @ : P — N (ou Q).
e um objetivo: Encontrar minimo ou maximo
OPT(x) = opt{e(x,y) | (x,y) € P}
junto com uma solugao y* tal que f(x,y*) = OPT(x).
O par (x,y) € P caso y é uma solugdo para x.

Uma instancia x de um problema de otimizagdo possui solugdes S(x) = {y |
(x,y) € Ph

Convengao 3.1
Escrevemos um problema de otimizacgao na forma

NoME
Instancia x
Solugdo y

Objetivo Minimiza ou maximiza @(x,y).
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Com um dado problema de otimizagao correspondem trés problemas:
e Construgdo: Dado x, encontra a solugdo étima y* e seu valor OPT(x).
e Avaliagao: Dado x, encontra valor 6timo OPT(x).
e Decisao: Dado x e k, decide se OPT(x) > k (maximizacao) ou OPT(x) <

k (minimizagao).

Definicao 3.2
Uma relagao bindria R é polinomialmente limitada se

Jp € poly : V(x,y) € R: |yl < p(x]).

Definicao 3.3 (Classes de complexidade)

A classe PO consiste dos problemas de otimizagao tal que existe um algoritmo
polinomial A com @(x,A(x)) = OPT(x) para x € 1.

A classe NPO consiste dos problemas de otimizagao tal que

(i) As instancias x € I s@o reconheciveis em tempo polinomial.
(ii) A relagdo P é polinomialmente limitada.

(iii) Para y arbitrdrio, polinomialmente limitado: (x,y) € P é decidivel em
tempo polinomial.

(iv) @ é computavel em tempo polinomial.
Definicao 3.4
Uma redu¢ao preservando a aproximagao entre dois problemas de minimizagao

Ty e TT, consiste num par de fungdes f e g (computéveis em tempo polinomial)
tal que para instancia xq de TTq, x3 := f(x7) é instancia de TT; com

OPTh, (x2) < OPTry, (x1) (3.1)
e para uma solugéo yz de TT, temos uma solugéo y; := g(x1,yz2) de TT; com

o, (x1,Y1) < @, (x2,Y2) (32)

Uma redugao preservando a aproximacao fornece uma x-aproximacao para Iy
dada uma o-aproximacao para IT,, porque

o, (x1,y1) < o, (x2,Y2) < xOPT, (x2) < «OPTry, (x1).

Observe que essa definigao é vale somente para problemas de minimizagao. A
definigao no caso de maximizagao é semelhante.
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3.2. Medidas de qualidade

3.2. Medidas de qualidade

Uma aproximagao absoluta garante que D(x,y) = |[OPT(x) — @(x,y)| < D
para uma constante D e todo x, enquanto uma aprorimac¢ao relativa garante
que o erro relativo E(x,y) = D(x,y)/ max{OPT(x), ¢(x,y)} < € < 1 todos
x. Um algoritmo que consegue um aproximagao com constante € também
se chama e-aproximativo. Tais algoritmos fornecem uma solugao que difere
no méaximo um fator constante da solugao 6tima. A classe de problemas de
otimizacao que permitem uma e-aproximacao em tempo polinomial para uma
constante € se chama APX.

Uma defini¢do alternativa é a taza de aprorimacdo R(x,y) =1/(1—E(x,y)) >
1. Um algoritmo com taxa de aproximagao r se chama r-aproximativo. (Nao
tem perigo de confusdo com o erro relativo, porque v > 1.)

Aproximacao relativa

+ OPT - oxy)
D(x,y) D(x,y)
+  oxy) - OPT
X P D(X\ )
E(x,y) = Z5pd E(Y) = S5y

Exemplo 3.1

Coloragao de grafos planares e a problema de determinar a arvore geradora e
a arvore Steiner de grau minimo (Firer e Raghavachari, 1994) permitem uma
aproximagao absoluta, mas nao o problema da mochila.

Os problemas da mochila e do caixeiro viajante métrico permitem uma apro-
ximacao absoluta constante, mas nao o problema do caixeiro viajante. O

3.3. Técnicas de aproximacao

3.3.1. Algoritmos gulosos

Cobertura de vértices

99



3. Algoritmos de aproximag¢ao

Algoritmo 3.1 (Cobertura de vértices)
Entrada Grafo nao-direcionado G = (V, E).

Saida Cobertura de vértices C C V.

1 VC-GV(G) :=

2 (C,G) := Reduz(G)

3 if V=0 then

4 return C

5 else

6 escolhe v e V:deg(v) =A(G) { grau maximo }
7 return CU{v}UVC-GV(G —v)

8 end if

Proposicao 3.1

O algoritmo VC-GV é uma O(log|V|)-aproximacao.

Prova. Seja Gi o grafo depois da iteracao i e C* uma cobertura 6tima, i.e.,
|C*| = OPT(G).

A cobertura 6tima C* é uma cobertura para G; também. Logo, a soma dos
graus dos vértices em C* (contando somente arestas em Gi!) ultrapassa o
numero de arestas em Gy

D 36, (v) > |Gy

veC*

e o grau médio dos vértices em G; satisfaz

- 2 vec- 96 (V) _ |IGi| |G|
6 . i = v : > = .
a.(Gy) | “ ¢+ ~ OPT(G)

Como o grau maximo é maior que o grau médio temos também

_ 1G]l
A(Gy) > OPT(G)

Com isso podemos estimar

|G+l Gopr|l
2 MGz 2 GErE) 2, OPT(G)

0<i<OPT 0<i<OPT 0<i<OPT
= |Gorrll =[G — Y A(GY)
0<i<OPT
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3.3. Técnicas de aproximacgao

ou

> A(Gi) > G]l/2,

0<i<OPT

i.e. a metade das arestas foi removido em OPT iteracoes. Essa estimativa
continua a ser valido, logo apés

OPT [Ig||G|]] < OPT [2log|G|] = O(OPT log|G|)

iteragcbes nao tem mais arestas. Como em cada iteragao foi escolhido um
vértice, a taxa de aproximacao é log|G]. |

Algoritmo 3.2 (Cobertura de vértices)
Entrada Grafo nao-direcionado G = (V, E).

Saida Um cobertura de vértices C C V.

1 VC-GE(G) :=

2 (C,G) := Reduz(G)

3 if E=( then

4 return C

5 else

6 escolhe e={u,vleE

7 return CU{u,v}UVC-GE(G —{u,v})
8 end if

Proposigcao 3.2
Algoritmo VC-GE é uma 2-aproximagao para VC.

Prova. Cada cobertura contém pelo menos um dos dois vértices escolhidos,
logo
ICl > dvecr(G)/2 = 20PT(G) > dve.ge(G).

Algoritmo 3.3 (Cobertura de vértices)
Entrada Grafo nao-direcionado G = (V, E).

Saida Cobertura de vértices C C V.

1 VC-B(G) :=

2 (C,G) := Reduz(G)
3 if V=0 then

4 return C
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5 else

6 escolhe v e V:deg(v) =A(G) { grau maximo }
7 Ci:=CU{MUVC-B(G —v)

8 C,:=CUN(({W)UVC-B(G—v—N({))

9 if |C1‘<|C2‘ then

10 return C;

11 else

12 return C;

13 end if

14 end if

Problema da mochila

KNAPSACK

Instancia Um ntmero n de itens com valores v; € N e tamanhos t; € N,
para i € [n], um limite M, tal que t; < M (todo item cabe na
mochila).

Solugdo Uma selecao S C [n] tal que ) ;.o ti <M.

Objetivo Maximizar o valor total } ;s Vi.

Observacgao:

O problema da mochila é NP-completo.

Como aproximar?

e Idéia: Ordene por v;/t; (“valor médio”) em ordem decrescente e enche
o mochila o mais possivel nessa ordem.

Abordagem
K-G ( vi,ti )

ordene os itens tal que vi/t; >v;/t;, Vi<j.
for ie X do
if ti <M then
S:=SuUf{i}
M=M-—-t;
end if

end for

return S
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3.3. Técnicas de aproximacgao

Aproximacao boa?
e Considere
v = 1,...,Vn_1 = 1,\)“ =M-1

tih=1..,th=Lt, =M=kn k € N arbitrario

e Entao:

V1/t1 :1)'-')an1/tn71 :])Vn/tn: (M_])/M<1

e K-G acha uma solugdo com valor @(x) = n—1, mas o 6timo é OPT(x) =
M—1.

Taxa de aproximacao:

M—-1 kn —1 kn —k
= >

OPT(x)/e@(x) = n—-1 n—-1°~- n—-1

=k

e K-G néo possui taxa de aproximacao fixa!

e Problema: Nao escolhemos o item com o maior valor.

Tentativa 2: Modificacao

1 K—G’(Vi,ti) =

2 S1 = K—G(Vi,ti)
3 VI o= D ies, Vi

4 S, = {argmax; vi}
5 V) = Zieszvi

6 if vi >v, then
7 return $;

8 else

9 return S;

0 end if

Aproximacao boa?
e O algoritmo melhorou?

e Surpresa

Proposicao 3.3
K-G’ é uma 2-aproximagao, i.e. OPT(x) < 2¢k.q’(x).
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3. Algoritmos de aproximag¢ao

Prova. Seja j o primeiro item que K-G nao coloca na mochila. Nesse ponto
temos valor e tamanho

Vj = Z vi < 9ka(x) (3.3)
1<i<j

=) t<M (3.4)
1<i<j

Afirmacao: OPT(x) < vj +vj. Nesse caso
(a) Seja v; <vj.

OPT(x) <vj +v; <2v; < 20k.a(x) < 2¢k.qr
(b) Seja vj > vj

OPT(X) < V_] +V] < ZVJ S vaax S 2(pK_G/
Prova da afirmacdo: No momento em que item j nao cabe, temos espaco
M —t; < tj sobrando. Como os itens sao ordenados em ordem de densidade

decrescente, obtemos um limite superior para a solugao étima preenchendo
esse espago com a densidade vj/t;:

OPT(x) < v —i—(M—t})lﬁ <V v
j

3.3.2. Aproximacdes com randomizacao

Randomizacao

e Idéia: Permite escolhas randémicas (“joga uma moeda”)

Objetivo: Algoritmos que decidem correta com probabilidade alta.

Objetivo: Aproximacgoes com valor esperado garantido.
e Minimizacao: E[@a (x)] < 20PT(x)
e Maximizacao: 2E[@a (x)] > OPT(x)

Randomizacao: Exemplo
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SATISFATIBILIDADE MAXIMA, MAXIMUM SAT

Instancia Uma férmula ¢ € L£(V) sobre varidveis V ={vi,...,vin}, @ =
C] /\Cz/\~~-/\Cn em FNC.

Solucao Uma atribuicdo de valores de verdade a:V — B.

Objetivo Maximiza o nimero de cldusulas satisfeitas

HCi [ [Cil, =TH.

Nossa solucao

SAT-R(¢) =
seja @ =@(Vi,..., )
for all ie([l,k] do
escolhe vi =1 com probabilidade 1/2
end for

Observagao 3.1
A quantidade [C], é o valor da cldusula C na atribuicao a. O

Aproximacao?

e Surpresa: Algoritmo é 2-aproximagao.

Prova. O valor esperado de uma cldusula C com 1 varidveis é E[[C]]
PIIC] =11 =1—2"' > 1/2. Logo o valor esperado do nimero total T
Zie[n] [C;i] de clausulas satisfeitas é

E[T] = E[Z [Cil] = Z E[[Cil] > n/2> OPT/2
ie[n]

ie[n]

pela linearidade do valor esperado. |

Outro exemplo
Cobertura de vértices guloso e randomizado.

VC-RG(G) :=
seja w:i=) . deg(v)
C:=0
while E#0 do
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escolhe veV com probabilidade deg(v)/w
C:=Cu{v}
G=G—v
end while
return CUV
Resultado: E[pvera(x)] < 20PT(x).

3.3.3. Programacio linear

Técnicas de programagao linear sao frequentemente usadas em algoritmo de
aproximagao. Entre eles sao o arredondamento randomizado e algoritmos
primais-duais.

Exemplo 3.2 (Arredondamento para cobertura por conjuntos)
Considere o problema de cobertura por conjuntos

minimiza Z WiXi, (3.5)
ien]

sujeito a Z xi > 1, Yu e U,
ie[n]lueC;
x; € {0, 1} Vi€ [n].

Seja f. a frequéncia de um elemento e, i.e. o nimero de conjuntos que contém
e e f a maior frequéncia. Um algoritmo de arredondamento simples é dado
por

Teorema 3.1
A selegdo dos conjuntos com x; > 1/f na relaxagao linear de (3.5) é uma
f-aproximacgao do problema de cobertura de conjuntos.

Prova. Como [{i € [n] | u € Ci}| < f, temos x; > 1/f em média sobre esse
conjunto. Logo existe, para cada u € U um conjunto com x; > 1/f que cobre

u e a selegao é uma solucao valida. O arrendondamento aumenta o custo por
no maximo um fator f, logo temos uma f-aproximagao. | O

3.4. Esquemas de aproximacao
Novas consideracoes

e Fregiientemente uma r-aproximacao nao é suficiente. 1 = 2: 100% de
erro!
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3.4. Esquemas de aproximacgao
e Existem aproximacoes melhores? p.ex. para SAT? problema do mochila?

e Desejavel: Esquema de aproximagdo em tempo polinomial (EATP);
polynomial time approximation scheme (PTAS)

— Para cada entrada e taxa de aproximagao r:

— Retorne r-aproximacao em tempo polinomial.

Um exemplo: Mochila maxima (Knapsack)
e Problema da mochila (veja pigina 102):
e Algoritmo MM-PD com programacao dinamica (pag. 150): tempo O(n }_; vi).
e Desvantagem: Pseudo-polinomial.

Denotamos uma instancia do problema da mochila com I = ({vi}, {ti}).

1 MMVEPTAS(I,r) :=

Define a nova instancia I'= ({v{},{ti})
return MM PD(I")

2 Vimax = maxi{vi}

3 t = |log =1 Yamax |

4 v{:=|vi/2'] para i=1,...,n
5

6

Teorema 3.2
MM-PTAS é uma r-aproximacio em tempo O(rn3/(r —1)).

Prova. A complexidade da preparagao nas linhas 1-3 é O(n). A chamada
para MM-PD custa

/ — V1
O(“Z) - O<“; (= rmwr)
T T
=0 <r_]n2 ZVi/Vmax> =0 <]~_]n3> ’

Seja S = MM-PTAS(I) a solugdo obtida pelo algoritmo e S* uma solucao
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3. Algoritmos de aproximag¢ao
otima.

eavpras(LS) =) vi> ) 2% [vi/2!] definigao de |- |
i€s ie$s

> Z 2t Lvi /ZtJ otimalidade de MM-PD sobre v/
ieS*
>y w2t (A.2)
ies*
= ( > vi) — 2487
ies*
> OPT(I) — 2tn

Portanto

OPT(x)

Vmax

OPT(I) < omm-pras(L, S) +2'n < oummpras(L, S) + 2'n
2tn

VI’II&X

< OPT(]) (1 — ) < emm-pras(], S)

€ com thL/Vmax < (T - ])/T'

& OPT(I) < r@mm-pras(L,S).

Um EATP frequentemente nao é suficiente para resolver um problema ade-
quadamente. Por exemplo temos um EATP para

e o problema do caixeiro viajante euclidiano com complexidade O(n3°00/¢)

(Arora, 1996);

e 0 problema do mochila multiplo com complexidade O(n'2(les1/ e)/e’ )
(Chekuri, Kanna, 2000);

e o problema do conjunto mdependente méximo em grafos com complexi-
dade O(n(#/m01/e*+1)*(1/e*+2)%) (Erlebach, 2001).

Para obter uma aproximagao com 20% de erro, i.e. € = 0.2 obtemos algoritmos
com complexidade O(n'°090) O (n37°000) ¢ O(n>23804)  respectivamente!
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3.5. Aproximando o problema da arvore de Steiner minima

Figura 3.1.: Grafo com fecho métrico.

3.5. Aproximando o problema da arvore de Steiner minima

Seja G = (V, A) um grafo completo, nao-direcionado com custos ¢, > 0 nos
arcos. O problema da drvore Steiner minima (ASM) consiste em achar o
subgrafo conexo minimo que inclui um dado conjunto de wvértices necessdrios
ou terminais R C V. Esse subgrafo sempre é uma drvore (ex. 3.1). O conjunto
V' \ R forma os vértices Steiner. Para um conjunto de arcos A, define o custo

c(A) =) 4cacCa:

Observagao 3.2

ASM é NP-completo. Para um conjunto fixo de vértices Steiner V' C V\R, a
melhor solugao é a drvore geradora minima sobre RUV’. Portanto a dificuldade
é a selecao dos vértices Steiner da solugao 6tima. O

Definicao 3.5
Os custos sao métricos se eles satisfazem a desigualdade triangular, i.e.

Cij < Cik + Cyj
para qualquer tripla de vértices i, j, k.

Teorema 3.3
Existe uma reducao preservando a aproximacao de ASM para a versao métrica
do problema.

Prova. O fecho métrico de G = (V, A) é um grafo G’ completo sobre vértices
e com custos C{j := djj, sendo di; o comprimento do menor caminho entre i
e¢j em G. Evidentemente c{; < cyj e portanto (3.1) ¢ satisfeita. Para ver que
(3.2) é satisfeita, seja T’ uma solu¢do de ASM em G’. Define T como unido de
todos caminhos definidos pelos arcos em T’, menos um conjunto de arcos para
remover eventuais ciclos. O custo de T é no mdximo ¢(T’) porque o custo de
todo caminho é no méximo o custo da aresta correspondente em T’. |
Consequéncia: Para o problema do ASM é suficiente considerar o caso métrico.
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2

Figura 3.2.: AGM sobre R e melhor solucao. @: vértice em R, ©: vértice
Steiner.

Teorema 3.4
O AGM sobre R é uma 2-aproximacdo para o problema do ASM.

Prova. Considere a solucio 6tima S* de ASM. Duplica todas arestas® tal
que todo vértice possui grau par. Encontra um ciclo Euleriano nesse grafo.
Remove vértices duplicados nesse caminho. O custo do caminho C obtido
dessa forma nao é mais que o dobro do custo original: o grafo com todas
arestas custa 2c(S*) e a remogao de vértices duplicados ndo aumenta esse
custo, pela metricidade. Como esse caminho é uma &rvore geradora, temos
c(A) <c(C) < 2¢(S*) para AGM A. |

3.6. Aproximando o PCV

Teorema 3.5
Para qualquer fungdo a(n) computdvel em tempo polinomial o PCV néo pos-
sui a(n)-aproximagdo em tempo polinomial, caso P # NP.

Prova. Via reducao de HC para PCV. Para uma instancia G = (V,; A) de HC
define um grafo completo G’ com

1 aceA
Ca = 7.
a(n)n caso contririo

Se G possui um ciclo Hamiltoniano, entao o custo da menor rota é n. Caso
contrario qualquer rota usa ao menos uma aresta de custo a(n)n e portanto
o custo total é > «(n)n. Portanto, dado uma «(n)-aproximacio de PCV
podemos decidir HC em tempo polinomial. |

Caso métrico No caso métrico podemos obter uma aproximagao melhor.
Determina uma rota como segue:

Hsso transforma G num multigrafo.
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3.7. Aproximando problemas de cortes

1. Determina uma AGM A de G.

[\

. Duplica todas arestas de A.
3. Acha um ciclo Euleriano nesse grafo.

4. Remove vértices duplicados.

Teorema 3.6
O algoritmo acima define uma 2-aproximagcao.

Prova. A melhor solugao do PCV menos uma aresta é uma arvore geradora
de G. Portanto c(A) < OPT. A solugao S obtida pelo algoritmo acima satisfaz
c(S) < 2¢(A) e portanto c(S) < 20PT, pelo mesmo argumento da prova do
teorema 3.4. |
O fator 2 dessa aproximagao é resultado do passo 2 que duplica todas arestas
para garantir a existéncia de um ciclo Euleriano. Isso pode ser garantido
mais barato: A AGM A possui um numero par de vértices com grau impar
(ver exercicio 3.2), e portanto podemos calcular um emparelhamento perfeito
minimo E entre esse vértices. O grafo com arestas A U E possui somente
vértices com grau par e portanto podemos aplicar os restantes passos nesse
grafo.

Teorema 3.7 (Cristofides)
A algoritmo usando um emparelhamento perfeito minimo no passo 2 é uma
3/2-aproximagao.

Prova. O valor do emparelhamento E nao é mais que OPT/2: remove vértices
nao emparelhados em E da solugao 6tima do PCV. O ciclo obtido dessa forma
¢é a uniao dois emparelhamentos perfeitos E; e E; formados pelas arestas pares
ou impares no ciclo. Com E; o emparelhamento de menor custo, temos

c(BE) < c(kq1) < (c(Eq) +c(E2))/2=OPT/2
e portanto

¢(S) = ¢(A) +¢(E) < OPT + OPT/2 = 3/20PT.

3.7. Aproximando problemas de cortes

Seja G = (V,A,c¢) um grafo conectado com pesos ¢ nas arestas. Lembramos
que um corte C é um conjunto de arestas que separa o grafo em dois partes
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Do 4

Figura 3.3.: Identificagdo de dois terminais e um corte no grafo reduzido.
Vértices em verde, terminais em azul. A grafo reduzido possui
multiplas arestas entre vértices.

SUV\S. Dado dois vértices s,t € V, o problema de achar um corte minimo
que separa s e t pode ser resolvido via fluxo méximo em tempo polinomial.
Generalizagoes desse problema sao:

e Corte multiplo minimo (CMM): Dado terminais s1,..., sk determine o
menor corte C que separa todos.

e k-corte minimo (k-CM): Mesmo problema, sem terminais definidos. (Ob-
serve que todos k componentes devem ser nao vazios).

Fato 3.1
CMM é NP-dificil para qualquer k > 3. k-CM possui uma solugdo polinomial

em tempo O(nkz) para qualquer k, mas é NP-dificil, caso k faz parte da
entrada (Goldschmidt e Hochbaum, 1988).

Solucao de CMM Chamamos um corte que separa um vértice dos outros
um corte isolante. Idéia: A uniao de cortes isolantes para todo s; é um
corte multiplo. Para calcular o corte isolante para um dado terminal sj,
identificamos os restantes terminais em um tnico vértice S e calculamos um
corte minimo entre s; e S. (Na identificagdo de vértices temos que remover
self-loops, e somar os pesos de miltiplas arestas.)

Isso leva ao algoritmo

Algoritmo 3.4 (CI)
Entrada Grafo G = (V, A,c) e terminais sy,..., Sk.

Saida Um corte miltiplo que separa os sj.
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Figura 3.4.: Corte multiplo e decomposicao em cortes isolantes.

1 Para cada i€ [l,k]: Calcula o corte isolante C; de s;.
2 Remove o maior desses cortes e retorne a unido dos
restantes.

Teorema 3.8
Algoritmo 3.4 é uma 2 — 2/k-aproximacao.

Prova. Considere o corte minimo C*. De acordo com a Fig. 3.4 ele pode ser
representado pela uniao de k cortes que separam os k componentes individu-

almente:
= U ¢
ie(k]

Cada aresta de C* faz parte das cortes das duas componentes adjacentes, e

portanto
> w(C;) =2w(CY)
i€[k]

e ainda w(C;) < w(C5) para os cortes C; do algoritmo 3.4, porque usamos o
corte isolante minimo de cada componente. Logo, para o corte C retornado
pelo algoritmo temos

w(C) < (1=1/k) ) w(Cy) < (1T=1/k) Y w(CP) <2(1—1/k)w(C).
ie[k] ie(k]

|
A anélise do algoritmo ¢ étimo, como o exemplo da Fig. 3.5 mostra. O menor
corte que separa s; tem peso 2 — €, portanto o algoritmo retorne um corte de
peso (2—e)k—(2—¢€) = (k—1)(2 — €), enquanto o menor corte que separa
todos terminais é o ciclo interno de peso k.
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Figura 3.5.: Exemplo de um grafo em que o algoritmo 3.4 retorne uma 2—2/k-
aproximagao.

Solucdo de k-CM  Problema: Como saber a onde cortar?

Fato 3.2

Existem somente n—1 cortes diferentes num grafo. Eles podem ser organizados
numa arvore de Gomory-Hu (AGH) T = (V,T). Cada aresta dessa arvore
define um corte associado em G pelos dois componentes apds a sua remocao.

1. Para cada u,v € V o menor corte u—v em G é igual a o menor corte u—v
em T (i.e. a aresta de menor peso no caminho nico entre uw e v em T).

2. Para cada aresta a € T, w/(a) é igual a valor do corte associado.

Por conseqiiéncia, a AGH codifica o valor de todos cortes em G.
Ele pode ser calculado determinando n — 1 cortes s—t minimos:

1. Define um grafo com um tnico vértice que representa todos vértices do
grafo original. Chama um vértice que representa mais que um vértice
do grafo original gordo.

2. Enquanto existem vértices gordos:

a) Escolhe um vértice gordo e dois vértices do grafo original que ele
representa.

b) Calcula um corte minimo entre esses vértices.

¢) Separa o vértice gordo de acordo com o corte minimo encontrado.

Observagao: A unido dos cortes definidos por k — 1 arestas na AGH separa G
em pelo menos k componentes. Isso leva ao seguinte algoritmo.

Algoritmo 3.5 (KCM)
Entrada Grafo G = (V,A,c).
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3.8. Aproximando empacotamento unidimensional

Saida Um k-corte.

1 Calcula uma AGH T em G.
2 Forma a uniao dos k—1 cortes mais leves
definidos por k—1 arestas em T.

Teorema 3.9
Algoritmo 3.5 é uma 2 — 2/k-aproximacao.

Prova. Seja C* = Uie[kJ C} um corte minimo, decomposto igual & prova
anterior. O nosso objetivo é demonstrar que existem k — 1 cortes definidos
por uma aresta em T que sao mais leves que os C}.

Removendo C* de G gera componentes Vi,..., Vik: Define um grafo sobre
esses componentes contraindo os vértices de uma componente, com arcos da
AGH T entre os componentes, e eventualmente removendo arcos até obter
uma nova drvore T'. Seja C§ o corte de maior peso, e define Vi como raiz
da arvore. Desta forma, cada componente Vi,...,Vx_1 possui uma aresta
associada na direcdo da raiz. Para cada dessas arestas (u,v) temos

w(C}) = w'(u,v)

porque C7 isola o componente V; do resto do grafo (particularmente separa u
ev), e w (u,v) é o peso do menor corte que separa u e v. Logo

w(C) < Y wi@) < Y w(C) < (1-1/k) Y w(C) =2(1-1/kjw(C").
ielk]

aeT’ 1<i<k

3.8. Aproximando empacotamento unidimensional

Dado n itens com tamanhos s; € Z,, 1 € [n] e contéineres de capacidade
S € Z, o problema do empacotamento unidimensional é encontrar o menor
nimero de contéineres em que os itens podem ser empacotados.

EMPACOTAMENTO UNIDIMENSIONAL (MIN-EU) (BIN PACKING)

Entrada Um conjunto de n itens com tamanhos s; € Z,, 1 € [n] e o
tamanho de um contéiner S.

Solugdo Uma particao de [n] = CyU---UCy tal que } ;. si < S para
k € [m].
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3. Algoritmos de aproximag¢ao

Objetivo Minimiza o nimero de partes (“contéineres”) m.

A versao de decisao do empacotamento unidimensional (EU) pede decidir se
o itens cabem em m contéineres.

Fato 3.3
EU é fortemente NP-completo.

Proposigao 3.4 .
Para um tamanho S fixo EU pode ser resolvido em tempo O(n®").

Prova. Podemos supor, sem perda de generalidade, que os itens possuem
tamanhos 1,2,...,S — 1. Um padrao de alocagao de um contéiner pode ser
descrito por uma tupla (tq,...,ts_1) sendo t; o nimero de itens de tamanho
i. Seja T o conjunto de todas padrdes que cabem num contéiner. Como
0 < t; < S o ntimero total de padrdes T é menor que (S+ 1)5~1 = O(S3S).

Uma ocupagao de m contéineres pode ser descrito por uma tupla (ni,...,nr)
com my sendo o nimero de contéineres que usam padrao i. O numero de
contéineres é no maximo n, logo 0 < n; < n e o nimero de alocagoes diferentes
é no maximo (n+1)T = O(n'). Logo podemos enumerar todas possibilidades
em tempo polinomial. |

Proposicao 3.5
Para um m fixo, EU pode ser resolvido em tempo pseudo-polinomial.

Prova. Seja B(Sy,...,Sm,1) € {falso,verdadeiro} a resposta se itens i,1 +
1,...,m cabem em m contéineres com capacidades Sy,...,Sy,. B satisfaz

1<j<m B(S1,...,S5 —85,...,Smyi+ 1) i<n
B(St,..., Sm,i) = vsi]gs,» yeeeyOf TSy ey Omy

verdadeiro i>n
e B(S,...,S,1) é a solucdo do EU?. A tabela B possui no maximo n(S + 1)™
entradas, cada uma computavel em tempo O(m), logo o tempo total é no
méximo O(mn(S +1)™). [ ]

Observagao 3.3

Em tempo adicional O(S) podemos resolver também MIN-EU, procurando o

menor i tal que B(S,...,S,0,...,0,1n) é verdadeiro. O
Lo

i vezes

A proposicao 3.4 pode ser melhorada usando programacao dinamica.

20bserve que a disjuncéo vazia é falso.
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3.8. Aproximando empacotamento unidimensional

Proposigao 3.6
Para um ntimero fixo k de tamanhos diferentes, min-EU pode ser resolvido
em tempo O(n?*).

Prova. Seja B(iy,...,ix) o menor nimero de contéineres necessirio para
empacotar ij itens do j-ésimo tamanho e T o conjunto de todas padroes de
alocacao de um contéiner. B satisfaz

1+ mineer B(iy —ty,...,ik —tx) caso (i1,...,k) €T
t<i

B(ih“')ik) :{

1 caso contrario

e B(ny,...,nk) é a solugao do EU, com n; o ntiimero de itens de tamanho 1 na
entrada. A tabela B tem no maximo nk entradas. Como o niimero de itens
em cada padrdo de alocacdo é no maximo n, temos |T| < n¥ e logo o tempo
total para preencher B é no maximo O(n?¥). |

Corolario 3.1
Para um tamanho S fixo min-EU pode ser resolvido em tempo O(n?%).

Abordagem pratica?
e Idéia simples: Préximo que cabe (PrC).

e Por exemplo: Itens 6,7,6,2,5,10 com limite 12.

Aproximacao?
e Interessante: PrC é 2-aproximacao.

e Observagao: PrC é um algoritmo on-line.
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3. Algoritmos de aproximag¢ao

Prova. Seja B o ntimero de contéineres usadas, V = 3 ;. si. B < 2[V]
porque dois contéineres consecutivas contém uma soma > 1. Mas precisa-
mos pelo menos [V] contéineres, logo OPT(x) > [V]. Portanto, @p,c(x) <

2[V] <20PT(x). n

Aproximacao melhor?
e Isso é a melhor estimativa possivel para este algoritmo!
e Considere os 4n itens

1/2,1/2n,1/2,1/2n,...,1/2,1/2n

2n vezes

e O que faz PrC? @p,c(x) = 2n: contéineres com

-

o Otimo: n contéineres com dois elementos de 1 /2 + um com 2n elementos
de 1/2n. OPT(x) =n=1.

/ 2n
/ 2n
ge /Zn

e Portanto: Assintoticamente a taxa de aproximagcao 2 é estrito.

Melhores estratégias
e Primeiro que cabe (PiC), on-line, com “estoque” na memdria

e Primeiro que cabe em ordem decrescente: PiCD, off-line.
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3.8. Aproximando empacotamento unidimensional

e Taxa de aproximacao?

eric(x) < [1.70PT(x)]
@picp(x) < T.50PT(x) + 1

Prova. (Da segunda taxa de aproximagao.) Considere a particaio AUBUCU
D ={vq,...,vn} com

A={vi|vy>2/3}
B={vi|2/3>v;>1/2}
C={vi|1/2>v;>1/3}
D={vi|1/3>vi}

PiCD primeiro vai abrir |A| contéineres com os itens do tipo A e depois |B]
contéineres com os itens do tipo B. Temos que analisar o que acontece com
os itens em C e D.

Supondo que um contéiner contém somente itens do tipo D, os outros contéineres
tem espago livre menos que 1/3, sendo seria possivel distribuir os itens do tipo
D para outros contéineres. Portanto, nesse caso

\%
B < {2/3} <3/2V+1<3/20PT(x) + 1.

Caso contrério (nenhum contéiner contém somente itens tipo D), PiCD en-
contra a solugao 6tima. Isso pode ser justificado pelos seguintes observagoes:

1) O nimero de contéineres sem itens tipo D é o mesmo (eles sdo os tltimos
distribuidos em nao abrem um novo contéiner). Logo é suficiente mostrar

@picp(x\ D) = OPT(x\ D).

2) Os itens tipo A ndo importam: Sem itens D, nenhum outro item cabe
junto com um item do tipo A. Logo:

@picp(x\ D) =[Al+ @picp(x \ (AUD)).

3) O melhor caso para os restantes itens sao pares de elementos em B e C:
Nesse situagao, PiCD acha a solucao 6tima.
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3. Algoritmos de aproximag¢ao

Aproximacao melhor?

e Tese doutorado D. S. Johnson, 1973, 70 pag

11
@picp(x) < ?OPT(X) +4

e Baker, 1985
11
@picp(x) < ?OPT(X) +3

3.8.1. Um esquema de aproximacao assintético para min-EU

Duas ideias permitem aproximar min-EU em (1+¢)OPT(I)+1 para € € (0, 1].

Ideia 1: Arredondamento Para uma instancia I, define uma instancia R
arredondada como segue:

1. Ordene os itens de forma nao-decrescente e forma grupos de k itens.

2. Substitui o tamanho de cada item pelo tamanho do maior elemento no
seu grupo.

Lema 3.1
Para uma instancia I e a instancia R arredondada temos

OPT(R) < OPT(I) + k

Prova. Supoe que temos uma solucao étima para I. Os itens da i-ésima grupo
de R cabem nos lugares dos itens da i 4 1-ésima grupo dessa solucao. Para o
tltimo grupo de R temos que abrir no maximo k contéineres. |

Ideia 2: Descartando itens menores

Lema 3.2

Supoe temos temos um empacotamento para itens de tamanho maior que sg
em B contéineres. Entao existe um empacotamento de todos itens com no
maximo

max{B, Z si/(S—so0) + 1}

i€[n]

contéineres.

120



3.8. Aproximando empacotamento unidimensional

Prova. Empacota os itens menores gulosamente no primeiro contéiner com
espago suficiente. Sem abrir um novo contéiner o limite é obviamente correto.
Caso contrdrio, supoe que precisamos B’ contéineres. B/—1 contéineres contém
itens de tamanho total mais que S — sg. A ocupagao total W deles tem que
ser menor que o tamanho total dos itens, logo

(B ~1)(S—s0) W< ) si.
ie[n]

Juntando as ideias

Teorema 3.10
Para € € (0,1] podemos encontrar um empacotamento usando no méximo
(1+€)OPT(I) + 1 contéineres.

Prova. O algoritmo tem dois passos:

1. Empacota todos itens de tamanho maior que so = [€/2S] usando arre-
dondamento.

2. Empacota os itens menores depois.

Seja I’ a instancia com os 1’ < n itens maiores. No primeiro passo, formamos
grupos com Ln’ e? /4J itens. Isso resulta em no maximo
n’ < 2n’ 8
[n’e?/4] — n’e?/4 €2

grupos. (A primeira desigualdade usa |x] > x/2 para x > 1. Podemos supor
que n'e?/4 > 1,ie. n’ > 4/e?. Caso contrario podemos empacotar os itens
em tempo constante usando a proposi¢ao 3.6.)

Arredondando essa instancia de acordo com lema 3.1 podemos obter uma
solucdo em tempo O(nm/ez) pela proposicao 3.6. Sabemos que OPT(I’) >
n'[e/2S81/S >n’e/2. Logo temos uma solu¢do com no maximo

OPT(I') + |ne?/4] < OPT(I') +n'e?/4 < (1+¢€/2)OPT(I') < (1 + ¢/2)OPT(I)

contéineres.
O segundo passo, pelo lema 3.2, produz um empacotamento com no maximo

max{(] +¢/2)OPT(I), Y si/(S—s0) + 1}

ien]
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3. Algoritmos de aproximag¢ao

contéineres, mas

2icm]Si _ 2iem i _ OPT(D)
< < < PT(I).
S—se SS(—e/2) STz =+€OPT)

3.9. Aproximando problemas de sequénciamento

Problemas de sequénciamento recebem nomes da forma

x| By
com campos
Maquina o
1 Um processador
P processadores paralelos
Q processadores relacionados
R processadores arbitrarios
Restrigoes 3
d; Deadlines
Ti Release times
Pi=p Tempo uniforme p
prec Precedéncias
Fungao objetivo y
Cmax maximum completion (duragdo méxima)
e duragao média
L; lateness Ci — d;
T; tardiness max(Ly, 0)

Relacao com empacotamento unidimensional:

tempo ou tamanho

processadores ou contéineres
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3.9. Aproximando problemas de sequénciamento

e Empacotamento unidimensional: Dado C,,,,x minimize o niimero de pro-
cessadores.

e P || Chax: Dado um nidmero de contéineres, minimiza o tamanho dos
contéineres.

SEQUENCIAMENTO EM PROCESSORES PARALELOS (P || Cpax)

Entrada O nitimero m de processadores e n tarefas com tempo de execugao
pi, 1 € .

Solucdo Um sequenciamento, definido por uma alocacio M; U --- U
M, = [n] das tarefas as maquinas.

Objetivo Minimizar o makespan (tempo de término) Cpax = maxjem) Cj,
com Cj = ZieMj Ppi o tempo de término da maquina j.

Fato 3.4
O problema P || Cpax € fortemente NP-completo.
Um limite inferior para C},. = OPT ¢é
LB = i i/mp.
max{maxpi, }_ pi/m}

ie[n]

Uma classe de algoritmos gulosos para este problema sao os algoritmos de
sequenciamento em lista (inglés: list scheduling). Eles processam as tarefas
em alguma ordem, e alocam a tarefa atual sempre a maquina de menor tempo
de término atual.

Proposigao 3.7

Sequenciamento em lista com ordem arbitrdria permite uma 2—1/m-aproximagao
em tempo O(nlogn).

Prova. Seja Cpax 0 resultado do sequenciamento em lista. Considera uma
maquina com tempo de término Cpax. Seja j a ultima tarefa alocada nessa
maquina e C o término da maquina antes de alocar tarefa j. Logo,

Chax =C+p; < Z pi/m+pj < Z pi/m—pj/m+p;
ielj—1] ien]
<IB+(1—-1/mLB=(2-1/m)LB< (2—-1/m)C},...
A primeira desigualdade é correto, porque alocando tarefa j a méquina tem

tempo de término minimo. Usando uma fila de prioridade a maquina com o
menor tempo de término pode ser encontrada em tempo O(logn). |
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3. Algoritmos de aproximag¢ao

Observagao 3.4
Pela prova da proposicao 3.7 temos

LB < C}

max

< 2LB.

O

O que podemos ganhar com algoritmos off-line? Uma abordagem ¢é ordenar
as tarefas por tempo execucao nao-crescente e aplicar o algoritmo gulos. Essa
abordagem é chamada LPT (largest processing time).

Proposigao 3.8
LPT é uma 4/3 — m/3-aproximacao em tempo O(nlogn).

Prova. Seja p1 > p2 > ---Pn € supOe que isso é o menor contra-exemplo
em que o algoritmo retorne Cpax > (4/3 — m/3)Ck .. Nao é possivel que a
alocacao do item j < n resulta numa maquina com tempo de término C,x,
porque pi,...,Ppj seria um contra-exemplo menor (mesmo Cpyayx, menor C . ).
Logo a alocagao de py define o resultado Cpax.

Caso pn < Ci../3 pela prova da proposicao 3.7 temos Cpax < (4/3 —
m/3)C} ., uma contradicao. Mas caso pn > C; ../3 todas tarefas possuem
tempo de execucdo pelo menos C¥ . /3 e no méximo duas podem ser execu-

max
tadas em cada maquina. Logo Cpax < 2/3C} .., outra contradigao. |

3.9.1. Um esquema de aproximacdo para P || Cp.x

Pela observacdo 3.4 podemos reduzir o P || Cihax para o empacotamento unidi-
mensional via uma busca bindria no intervalo [LB, 2LB]. Pela proposi¢ao 3.5
isso é possivel em tempo O(logLB mn(2LB 4+ 1)™).

Com mais cuidado a observagdo permite um esquema de aproximagdo em
tempo polinomial assintético: similar com o esquema de aproximagao para
empacotamento unidimensional, vamos remover elementos menores e arre-
dondar a instancia.

Algoritmo 3.6 (Sequencia)
Entrada Uma instancia I de P || Cpax, um término méximo C e um
parametro de qualidade €.

1 Sequencia(I,C,e):=

2 remove as tarefas menores com p; <eC, j€[n]

3 arredonda cada p; € [eC(1+ €)', eC(1 +¢e)"") para algum i
para p; =eC(1+¢€)!

4 resolve a instancia arredondada com programacao
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3.9. Aproximando problemas de sequénciamento

dindmica (proposicao 3.6)
5 empacota os itens menores gulosamente, usando
novas mdquinas para manter o término (1+¢€)C

Lema 3.3
O algoritmo Sequencia gera um sequenciamento que termina em no maximo

(1 4+ €)C em tempo O(‘rtz[log“re I/E]). Ele nao usa mais mdquinas que o
minimo necessério para executar as tarefas com término C

Prova. Para cada intervalo vilido temos eC(1+ €)' < C, logo o ntimero de
intervalos é no méximo k = [log; . 1/€]. O valor k também é um limite
para o numero de valores ‘pj’ distintos e pela proposi¢ao 3.6 o terceiro passo
resolve a instancia arredondada em tempo O(n?*). Essa solucao com os itens
de tamanho original termina em no maximo (1 + €)C, porque pj/p]-’ <T+e.
O numero minimo de maquinas para executar as tarefas em tempo C é o valor
m := min-EU(C, (pj)jem)) do problema de empacotamento unidimensional
correspondente. Caso o tultimo passo do algoritmo nao usa novas méquinas
ele precisa < m méquinas, porque a instancia arredondada foi resolvida exa-
tamente. Caso contrario, uma tarefa com tempo de execucao menor que €C
nao cabe nenhuma maquina, e todas maquinas usadas tem tempo de término
mais que C. Logo o empacotamento étimo com término C tem que usar pelo
menos 0 mesmo numero de maquinas. |

Proposigao 3.9
O resultado da busca binaria usando o algoritmo Sequencia Cp . = min{C €
[LB, 2LB] | Sequencia(l, C, e) < m} é no maximo C} .

Prova. Com Sequencia(l, C, €) < min-EU(C, (pi)icn)) temos

Cmax = min{C € [LB, 2LB] | Sequencia(I, C,€) < m}
< min{C € [LB,2LB] | min-EU(C, (pi)icm)) < m}
= C*

max

Teorema 3.11
A busca binaria usando o algoritmo Sequencia para determinar determina

um sequenciamento em tempo O(n? [10g1 . 1/¢] log LB) de término méximo
(1+e)Cx

max*

Prova. Pelo lema 3.3 e a proposicao 3.9. |
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3. Algoritmos de aproximag¢ao

3.10. Exercicios

Exercicio 3.1
Por que um subgrafo conexo de menor custo sempre é uma arvore?

Exercicio 3.2
Mostra que o nimero de vértices com grau impar num grafo sempre é par.

Exercicio 3.3

Um aluno propoe a seguinte heuristica para o empacotamento unidimensional:
Ordene os itens em ordem crescente, coloca o item com peso maximo junto com
quantas itens de peso minimo que é possivel, e depois continua com o segundo
maior item, até todos itens foram colocados em bins. Temos o algoritmo

ordene itens em ordem crescente
m:=1; M:=n
while (m<M) do
abre novo contéiner, coloca vy, M =M -1
while (v, cabe e m<M) do
coloca v, no contéiner atual
m:=m-+1
end while
end while

Qual a qualidade desse algoritmo? E um algoritmo de aproximacio? Caso
sim, qual a taxa de aproximagao dele? Caso nao, por qué?

Exercicio 3.4

Prof. Rapidez propoe o seguinte pré-processamento para o algoritmo SAT-R de
aproximagao para MAX-SAT (pégina 105): Caso a instancia contém clatisulas
com um unico literal, vamos escolher uma delas, definir uma atribuigao parcial
que satisfazé-la, e eliminar a varidvel correspondente. Repetindo esse procedi-
mento, obtemos uma instancia cujas clatsulas tem 2 ou mais literais. Assim,
obtemos 1 > 2 na anélise do algoritmo, o podemos garantir que E[X] > 3n/4,
i.e. obtemos uma 4/3-aproximacao.

Este analise é correto ou nao?

126



4. Algoritmos randomizados

Um algoritmo randomizado usa eventos randémicos na sua execugao. Modelos
computacionais adequadas sao maquinas de Turing randémicas — mais usadas
na area de complexidade — ou méquinas RAM com um comando do tipo
random(8) que retorne um elemento randémico do conjunto S.

Veja alguns exemplos de probabilidades:

Probabilidade morrer caindo da cama: 1/2x 10° (Roach e Pieper, 2007).
Probabilidade acertar 6 nimeros de 60 na mega-sena: 1/50063860.

Probabilidade que a meméria falha: em memoria moderna temos 1000
FIT/MBit, i.e. 6 x 10~ erros por segundo num meméria de 256 MB.!

Probabilidade que um meteorito destréi um computador em cada milis-
segundo: > 27100 (supondo que cada milénio ao menos um meteorito
destréi uma drea de 100 m?).

Portanto, um algoritmo que retorna uma resposta falsa com baixa probabi-
lidade é aceitdavel. Em retorno um algoritmo randomizado frequentemente

7

e

4.1.

mais simples;

mais eficiente: para alguns problemas, um algoritmo randomizado é o
mais eficiente conhecido;

mais robusto: algoritmos randomizados podem ser menos dependente
da distribuicao das entradas.

a Unica alternativa: para alguns problemas, conhecemos sé algoritmos
randomicos.

Teoria de complexidade

Classes de complexidade

LFIT é uma abreviacio de “failure-in-time” e é o ntiimero de erros cada 107 segundos. Para
saber mais sobre erros em memédria veja (Terrazon, 2004).
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4. Algoritmos randomizados

Definicao 4.1
Seja X algum alfabeto e R(x, ) a classe de linguagens L C X* tal que existe
um algoritmo de decisao em tempo polinomial A que satisfaz

e x € L= Pr[A(x) =sim] > «.
e x ¢ L = Pr[A(x) = nao] > B.

(A probabilidade é sobre todas sequéncias de bits randomicos . Como o
algoritmo executa em tempo polinomial no tamanho da entrada [x|, o ndmero
de bits randomicas [r| é polinomial em |x| também.)

Com isso podemos definir

e a classe RP := R(1/2,1) (randomized polynomial), dos problemas que
possuem um algoritmo com erro unilateral (no lado do “sim”); a classe
co — RP = R(1,1/2) consiste dos problemas com erro no lado de “nao”;

e a classe ZPP := RP N co — RP (zero-error probabilistic polynomial) dos
problemas que possuem algoritmo randomizado sem erro;

e a classe PP := R(1/2+ €,1/2 + €) (probabilistic polynomial), dos pro-
blemas com erro 1/2 + € nos dois lados; e

e a classe BPP := R(2/3,2/3) (bounded-error probabilistic polynomial),
dos problemas com erro 1/3 nos dois lados.

Algoritmos que respondem corretamente somente com uma certa probabili-
dade também sao chamados do tipo Monte Carlo, enquanto algoritmos que
usam randomizagao somente internamente, mas respondem sempre correta-
mente sao do tipo Las Vegas.

Exemplo 4.1 (Teste de identidade de polinomios)

Dado dois polindémios p(x) e q(x) de grau maximo d, como saber se p(x) =
q(x)? Caso temos os dois na forma candnica p(x) = Y ;i 4 Pix' ou na forma
fatorada p(x) = [ ];<;<q(x — Ti) isso é simples responder por comparacao de
coeficientes em tempo O(n). E caso contrério? Uma conversao para a forma
candnica pode custar @(d?) multiplicacoes. Uma abordagem randomizada
é vantajosa, se podemos avaliar o polinémio mais rdpido (por exemplo em

O(d)):

identico(p,q) :=
Seleciona um numero randoémico T no intervalo [1,100d].
Caso p(r) =q(r) retorne ‘‘sim’’.

Caso p(r) #d(r) retorne ¢‘néo

)
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Caso p(x) = q(x), o algoritmo responde “sim” com certeza. Caso contrério
a resposta pode ser errada, se p(r) = q(r) por acaso. Qual a probabilidade
disso? p(x) — q(x) é um polinémio de grau d e possui no maximo d raizes.
Portanto, a probabilidade de encontrar um r tal que p(r) = q(r), caso p Z q
é d/100d = 1/100. Isso demonstra que o teste de identidade pertence a classe
co — RP. O

Observagao 4.1
E uma pergunta em aberto se o teste de identidade pertence a P. %

4.1.1. Amplificacdo de probabilidades

Caso nao estamos satisfeitos com a probabilidade de 1/100 no exemplo acima,
podemos repetir o algoritmo k vezes, e responder “sim” somente se todas k
repeticoes responderam “sim”. A probabilidade erradamente responder “nao”
para polinémios idénticos agora é (1/100), i.e. ela diminui exponencialmente
com o nuimero de repeticoes.

Essa técnica é uma amplificacdo da probabilidade de obter a solugao correta.
Ela pode ser aplicada para melhorar a qualidade de algoritmos em todas clas-
ses “Monte Carlo”. Com um nimero constante de repeticoes, obtemos uma
probabilidade baixa nas classes RP, co — RP e BPP. Isso nao se aplica a PP:
é possivel que € diminui exponencialmente com o tamanho da instancia. Um
exemplo de amplificacao de probabilidade encontra-se na prova do teorema 4.6.

Teorema 4.1
R(a, 1) =R(B,1) para 0 < o, B < 1.

Prova. Sem perda de generalidade seja & < 3. Claramente R(3,1) C R(«, 1).
Supde que A é um algoritmo que testemunha L € R(a,1). Execute A no
maximo k vezes, respondendo “sim” caso A responde “sim” em alguma iteragao
e “nao” caso contrario. Chama esse algoritmo A’. Caso x ¢ L temos P[A/(x) =
“ngo”] = 1. Caso x € L temos P[A’(x) = “sim”] > 1 — (1 — a)¥, logo para
k>InT—f/In1— &, P[A/(x) = “sim”] > B. |

Corolario 4.1
RP =R(e,1) para 0 < v < 1.

Teorema 4.2
R(a, &) = R(B, B) para 1/2 < «, .

Prova. Sem perda de generalidade seja o« < (3. Claramente R(f3,) C
R, ).
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Supde que A é um algoritmo que testemunha L € R(«x, «). Executa A k vezes,
responde “sim” caso a maioria de respostas obtidas foi “sim”, e “nao” caso
contrario. Chama esse algoritmo A’. Para x € L temos

P[A'(x) = “sim”] = P[A(x) = “sim” > |k/2] 4+ 1 vezes] > 1 — e 2k(a—1/2)?

e para k > In(f —1)/2(a—1/2)? temos P[A’(x) = “sim”] > B. Similarmente,
para x € L temos P[A’(x) = “nao”] > B. Logo L € R(B, B). [ |
Corolario 4.2

BPP = R(«, &) para 1/2 < «.

Observagao 4.2

Os resultados acima sao vélidos ainda caso o erro dimiui polinomialmente
com o tamanho da instancia, i.e. &, 3 > n~° no caso do teorema 4.1 e &, 3 >
1/24n"¢ no caso do teorema 4.2 para um constante ¢ (ver por exemplo Arora
e Barak (2009)). %

4.1.2. Relacao entre as classes
Duas caracterizacoes alternativas de ZPP

Definicao 4.2
Um algoritmo A é honesto se

i) ele responde ou “sim”, ou “néo” ou “nao sei”,
ii) Pr[A(x) =nao sei] < 1/2 e

iii) no caso ele responde, ele nao erra, i.e., para x tal que A(x) # “nao sei”
temos A(x) = “sim” & x € L.

Uma linguagem ¢é honesta caso ela possui um algoritmo honesto. Com isso
também podemos falar da classe das linguagens honestas.

Teorema 4.3
ZPP é a classe das linguagens honestas.

Lema 4.1
Caso L € ZPP existe um algoritmo um algoritmo honesto para L.

Prova. Para um L € ZPP existem dois algoritmos A; € RP e Ay € co — RP.
Vamos construir um algoritmo
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if Ai(x) = “nao” e Az(x) = “nado” then

return ‘‘nao’’
else if A;(x) = “nao” e Aj(x)= “sim” then
return ‘‘nao sei’’

else if A (x) = “sim” e Az(x) = “nao” then

{ caso impossivel }
else if A (x)=“im” e Az(x)= “sim” then

return ‘‘sim’’
end if
O algoritmo responde corretamente “sim” e “nao”, porque um dos dois al-
goritmos nao erra. Qual a probabilidade do segundo caso? Para x € L,
PrlA;(x) = “nao” A Az(x) = “sim”] < 1/2 x 1 = 1/2. Similarmente, para
x € L, Pr[A;(x) = “ndo” N Az(x) = “sim”] < 1x1/2=1/2. |

Lema 4.2
Caso L possui um algoritmo honesto L € RP e L € co — RP.

Prova. Seja A um algoritmo honesto. Constréi outro algoritmo que sempre
responde “nao” caso A responde “nao sei”, e senao responde igual. No caso de
co — RP analogamente constréi um algoritmos que responde “sim” nos casos
“nao sei” de A. ]

Definicao 4.3

Um algoritmo A é sem falha se ele sempre responde “sim” ou “nao” corre-
tamente em tempo polinomial esperado. Com isso podemos também falar de
linguagens sem falha e a classe das linguagens sem falha.

Teorema 4.4
ZPP é a classe das linguagens sem falha.

Lema 4.3
Caso L € ZPP existe um algoritmo sem falha para L.

Prova. Sabemos que existe um algoritmo honesto para L. Repete o algo-
ritmo honesto até encontrar um “sim” ou “nao”. Como o algoritmo honesto
executa em tempo polinomial p(n), o tempo esperado desse algoritmo ainda
é polinomial:

D_k2 %p(n) < 2p(n)
k>0

Lema 4.4
Caso L possui um algoritmo A sem falha, L € RP e L € co— RP.
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Prova. Caso A tem tempo esperado p(n) executa ele para um tempo 2p(n).
Caso o algoritmo responde, temos a resposta certa. Caso contrario, responde
“sim”. Pela desigualdade de Markov temos uma resposta com probabilidade
PIT > 2p(n)] < p(n)/2p(n) = 1/2. Isso mostra que existe um algoritmo
honesto para L, e pelo lema 4.2 L € RP. O argumento para L € co—RP ¢
similar. |

Mais relacoes

Teorema 4.5
RP C NP eco—RP Cco— NP

Prova. Supoe que temos um algoritmo em RP para algum problema L. Pode-
mos, nao-deterministicamente, gerar todas seqiiencias r de bits randémicos e
responder “sim” caso alguma execuc¢ao encontra “sim”. O algoritmo é correto,
porque caso para um X ¢ L, ndo existe uma sequéncia randémica r tal que o
algoritmo responde “sim”. A prova do segundo caso é similar. |

Teorema 4.6
RP C BPP ¢ co — RP C BPP.

Prova. Seja A um algoritmo para L € RP. Constréi um algoritmo A’

if A(x) = “nao” e A(x) = “nao” then

return ‘‘nao
else

return ‘‘sim’’
end if

Caso x € L, Prl[A’(x) = “nao”] = Prl[A(x) = “nao” ANA(x) = “nao"] =1x1=
1. Casox € L,

Pr[A’(x) = “sim”] = 1 — Pr[A’(x) = “ndo”] =1 —Pr[A(x) = “nao” AA(x) =
S 1—1/2x1/2=3/4>2/3.

(Observe que para k repeticoes de A obtemos Pr[A’(x) = “sim”] > 1 —1/2¥,
i.e., o erro diminui exponencialmente com o nimero de repetigdes.) O argu-
mento para co — RP é similar. |

Relacao com a classe NP e abundancia de testemunhas Lembramos que a
classe NP contém problemas que permitem uma verificacao de uma solugao em
tempo polinomial. Nao-deterministicamente podemos “chutar” uma solugao
e verificd-la. Se o nimero de solugoes positivas de cada instancia é mais que
a metade do nimero total de solucoes, o problema pertence a RP: podemos
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4.2. Selegao

PP = co— PP

e

NP co— NP
w7

BPP = co — BPP

Figura 4.1.: Relacoes entre classes de complexidade para algoritmos randomi-
zados.

gerar uma solucao randémica e testar se ela possui a caracteristica desejada.
Uma problema desse tipo possui uma abundancia de testemunhas. Isso de-
monstra a importancia de algoritmos randomizados. O teste de equivaléncia
de polinémios acima é um exemplo de abundancia de testemunhas.

4.2. Selecao

O algoritmo deterministico para selecionar o k-ésimo elemento de uma se-
quencia nao ordenada x1, ..., X, discutido na se¢ao A.1 (pédgina 151) pode ser
simplificado usando randomizagao: escolheremos, um elemento pivo m = x;
aleatdrio. Com isso o algoritmo A.1 fica mais simples:
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4. Algoritmos randomizados

Algoritmo 4.1 (Selecdo randomizada)
Entrada Numeros x1,...,Xn, posicao k.

Saida O k-ésimo maior ntumero.

1 SOk {X1,..0yXn)) ==

2 if n<1
3 calcula e retorne o k ésimo elemento
4 end if
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m:=x; para um i€ [n] aleatdria
{xilxi<m,1<i<n}
{xilxi>m,1<i<n}
=1L +1
f i=k then
return m
else if i>k then
return S(k,L)
else
return S(k—1,R)
end if

L
R
i

i

4.2. Selegao

Para determinar a complexidade podemos observar que com probabilidade
1/n temos |[L| =1 e |R| =n —1e o caso pessimista é uma chamada recursiva
com max{i,n — i} elementos. Logo, com custo cn para particionar o conjunto
e os testes temos

T(n)

IN

Z 1/nT(max{n —1i,i}) + cn

ielo,n]

2/n Z Tn—1)+cn

i€l0,[n/2]]

Separando o termo T(n) do lado direito obtemos

> Tm-9+ >

i€l0,|n/2]] i€([n/2],n]

TA) | +cn

(1-2/M)T(n)<2/n Z Tn—1i)+cn

ie(1,|n/2]]

—=T(n) < i( Z T(n—1) +cn?/2).

iell,|n/2]]

Provaremos por indugao que T(n) < c¢’n para uma constante ¢’. Para um
n < ngp o problema pode ser claramente resolvido em tempo constante (por
exemplo em O(nplogmng) via ordenagao). Logo, supde que T(i) < c’i para
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1 < n. Demonstraremos que T(n) < ¢/n. Temos

T(n) < %( Z Tn—1) + CTLZ/Z)
IE[]»L“/ZJ]
ZL0Y metrena)
ie“,l_n/ZJ]
= nzilz (2n—[n/2] —1) [n/2| /24 cn?/2c")

ecom 2n—|n/2] —1<3/2n

/

< (3/4n% +cn?/c!)
n—2

(3/4 +c/c')n
n—2

=c'n

Para n > ng := 16 temos n/(n—2) < 8/7 e com um ¢’ > 8¢ temos

T(n) <cn(3/4+1/8)8/7 <c'n.

4.3. Corte minimo

CORTE MINIMO

Entrada Grafo ndo-direcionado G = (V, A) com pesos ¢ : A — Z, nas
arestas.

Solucdo Uma particio V=S U (V\S).

Objetivo Minimizar o peso do corte Y (u,vjea Clu,v}-
ueS,veVv\S >

Solugoes deterministicas:

e Calcular a arvore de Gomory-Hu: a aresta de menor peso define o corte
minimo.

e Calcular o corte minimo (via fluxo méximo) entre um vértice fixo s € V
e todos outros vértices: o menor corte encontrado é o corte minimo.

Custo em ambos casos: O(n) aplicagbes de um algoritmo de fluxo méximo,
i.e. O(mn?) usando o algoritmo de Orlin.
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Solucao randomizada para pesos unitarios No que segue supomos que 0s
pesos s@o unitdrios, i.e. cg = 1 para a € A. Uma abordagem simples é
baseada na seguinte observacao: se escolhemos uma aresta que nao faz parte
de um corte minimo, e contraimo-la (i.e. identificamos os vértices adjacentes),
obtemos um grafo menor, que ainda contém o corte minimo. Se escolhemos
uma aresta randomicamente, a probabilidade de por acaso escolher uma aresta
de um corte minimo é baixa.

cmr (G) :=
while G possui mais que dois vértices
escolhe uma aresta {u,v} randdémicamente
identifica uw e v em G
end while
return o corte definido pelos dois vértices em G

Exemplo 4.2
Uma sequencia de contragdes (das arestas vermelhas).

LA

Dizemos que uma aresta “sobrevive” uma contragao, caso ele nao foi contraido.

O

Lema 4.5
A probabilidade que os k arestas de um corte minimo sobrevivem n — t con-
tracoes (de n para t vértices) é Q((t/n)?).

Prova. Como o corte minimo é k, cada vértice possui grau pelo menos k, e
portanto o nimero de arestas apos iteracao 0 < i1 < n —t e maior ou igual
a k(n —1)/2 (com a convencdo que a “iteragdo 0” produz o grafo inicial).
Supondo que as k arestas do corte minimo sobreviveram a iteragao i, a pro-
babilidade de nao sobreviver a préxima iteracao é k/(k(n—1)/2) =2/(n—1).
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Logo, a probabilidade do corte sobreviver todas iteragoes é ao menos

2 n—i-—2
H 1_n—i: H n—i

0<i<n—t 0<i<n—t

(M =2)n—-3)---t—1 [t ny ,
T onn—1)---t+1 - ( >/< )—Q((t/n) ).

Teorema 4.7
Dado um corte minimo C de tamanho k, a probabilidade do algoritmo cmr

retornar C é Q(n=2).

Prova. Caso o grafo possui n vértices, o algoritmo termina em n—2 iteragoes:
podemos aplicar o lema acima com t = 2. |

Observagao 4.3

O que acontece se repetirmos o algoritmo algumas vezes? Seja C; uma varidvel
que indica se o corte minimo foi encontrado repeti¢do i. Temos P[C; = 1] >
2n—2 e portanto P[C; = 0] < 1—2n"2. Para kn? repeticoes, vamos encontrar
C =) C; cortes minimos com probabilidade

PIC>11=1-P[C=0/>1—(1—2n2)x" >1_¢ 2k
Para k = logn obtemos P[C > 1] > 1 —n"2. O

Logo, se repetimos esse algoritmo n? logn vezes e retornamos o menor corte
encontrado, achamos o corte minimo com probabilidade razoavel. Se a imple-
mentagao realiza uma contracdo em O(n) o algoritmo possui complexidade
O(n?) e com as repeticdes em total O(n*logn).

Implementacao de contracoes Para garantir a complexidade acima, uma
contracao tem que ser implementada em O(n). Isso é possivel tanto na repre-
sentacao por uma matriz de adjacéncia, quanto na representacao pela listas
de adjacéncia. A contracdo de dois vértices adjacentes resulta em um novo
vértice, que é adjacente aos vizinhos dos dois. Na contracao arestas de um
vértice com si mesmo sao removidas. Multiplas arestas entre dois vértices tem
que ser mantidas para garantir a corretude do algoritmo.

Um algoritmo melhor O problema principal com o algoritmo acima é que
nas ultimas iteragoes, a probabilidade de contrair uma aresta do corte minimo
é grande. Para resolver esse problema, executaremos o algoritmo duas vezes
para instancias menores, para aumentar a probabilidade de nao contrair o
corte minimo.
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cmr2(G) :=
if (G possui menos que 6 vértices)
determina o corte minimo C por exaustao

return C
else
t:= [1 +n/\ﬁ—‘

seja G; o resultado de n—t contracdoes em G
seja Gz o resultado de n—t contracoes em G
Cyi:=cmr2(Gy)
Cz:=cmr2(Gy)
return o menor dos dois cortes C; e Cy

end if

Esse algoritmo possui complexidade de tempo O(n? logn) e encontra um corte
minimo com probabilidade Q(1/logn).

Lema 4.6

A probabilidade de um corte minimo sobreviver t = [1 +n/ ﬁ—‘ contragoes é

no minimo 1/2.

Prova. Pelo lema 4.5 a probabilidade é

[1+n/v2] (14 m/v2] - 1) L 0+n/V)/VD) _ Vitn

L 1
nn-—1) = nn—1) 2m—1) " 2n  2°
|

Seja P(t) a probabilidade que um corte com k arestas sobrevive caso o grafo
possui t vértices. Temos

Plo corte sobrevive em Hq] > 1/2P( [1 + t/ﬁ—‘)
Plo corte sobrevive em Hy] > 1/2P([1+1/v2])
Plo corte nao sobrevive em Hy e Hy] < (1 —1/2P( [1 + t/\/i—‘ ))?
P(t) = Plo corte sobrevive em Hy ou Ha] > 1— (1 — 1/2P( {1 n t/\ﬁ—‘ )2

- P(ﬁ +t/ﬁ]) - 1/4P([1 +t/\f2b2
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Para resolver essa recorréncia, define Q(k) = P(ﬁk) com base Q(0) =1 para
obter a recorréncia simplificada

Qk+1)=pP2" —p([1 +\f2k])—1/4p([1 +\fzk])2
~ P(V2") = P(V2)2/4 = Q(K) — Q(K)2/4
e depois R(k) =4/Q(k) — 1 com base R(0) = 3 para obter

4 4 4
R(k+1)+1 R(k)+1 (Rk)+1)?2

& R(k+1)=R(k) +1+1/R(k).

R(k) satisfaz
k<R(k)<k+Hg_1+3

Prova. Por inducdo. Para k = 1 temos 1 < R(1) =13/3 <1+ Hpy+3 =5.
Caso a HI estéa satisfeito, temos

Rk+1)=R(k)+1+1/R(k) >R(k)+1>k+1
Rk+1)=R(k)+T+1/R(k)<k+Hx1+3+T1+1/k=(k+1)+H+3
[ |
Logo, R(k) = k + O(logk), e com isso Q(k) = ©(1/k) e finalmente P(t) =
O(1/logt).

Para determinar a complexidade do algoritmo cmr2 observe que temos O(logn)
niveis recursivos e cada contracio pode ser feito em tempo O(n?), portanto

T, = 2T( [1 —&-n/\be +0(n?).

Aplicando o teorema de Akra-Bazzi obtemos a equacéo caracteristica 2(1/v/2)P =
1 com solugdo p =2 e

n o2
Th € O(n?(1 +J %du)) =O(n?logn).
1
4.4. Teste de primalidade

Um problema importante na criptografia é encontrar nimeros primos grandes
(p.ex. RSA). Escolhendo um nimero n randémico, qual a probabilidade de n
ser primo?
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Teorema 4.8 (Hadamard (1896), Vallée Poussin (1896))
(Teorema dos nimeros primos.)
Para mt(n) = [{p < n | p primo}| temos

n(n)

noo n/Inn -
(Em particular 7t(n) = ©(n/Inn).)

Portanto, a probabilidade de um nimero randémico no intervalo [2,m] ser
primo assintoticamente é somente 1/Inn. Entao para encontrar um ntmero
primo, temos que testar se n é primo mesmo. Observe que isso nao é igual
a fatoragdo de n. De fato, temos testes randomizados (e deterministicos) em
tempo polinomial, enquanto ndo sabemos fatorar nesse tempo. Uma aborda-
gem simples é testar todos os divisores:
Primol(n) :=

for 1=2,3,5,7,...,|v/n| do

if in return ‘‘Nao’’

end for

return ‘‘Sim’’
O tamanho da entrada n é t = logn bits, portanto o nimero de iteragdes
é O(y/n) = B(2t/2) e a complexidade Q(2'/2) (mesmo contando o teste de
divisdo com O(1)) desse algoritmo é exponencial. Para testar a primalidade
mais eficiente, usaremos uma caracteristica particular dos nimeros primos.

Teorema 4.9 (Fermat, Euler)
Para p primo e a > 0 temos

aP =a mod p.
Prova. Por inducao sobre a. Base: evidente. Seja aP? = a. Temos
‘p .
P_ i
(a+1) Z <i>a
0<i<p

epara0<i<p

|<P> _plp=1)-(p—i+1)
P\i)~ 1)1

porque p é primo. Portanto (a+1)P =aP +1e
(a+T)P—(a+1)=a’+1—(a+1)=a?—a=0.

(A dltima identidade é a hipétese da indugéo.) |
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Definicao 4.4
Para a,b € Z denotamos com (a,b) o maior divisor em comum (MDC) de a
eb. No caso (a,b) =1, a e b sdo coprimo.

Teorema 4.10 (Divisdo modulo p)
Se p primo e (b,p) =1

ab=cb modp=a=c modp.

(Em palavras: Numa identidade modulo p podemos dividir por nimeros co-
primos com p.)

Prova.

ab=cd & Jkab+kp =cb
& dJka+kp/b=c

Como a,c € Z, temos kp/b € Z e blk ou blp. Mas (b,p) = 1, entdao blk.
Definindo k’ := k/b temos Ik’ a+k'p =¢, i.e. a =c. [ |
Logo, para p primo e (a,p) =1 (em particular se 1 < a < p)

a?”'=1 mod p. (4.1)

Um teste melhor entao é

Primo2(n) :=

seleciona ae€ [l,n—1] randémicamente

if (a,n)#1 return ‘‘Nao’’

if a»' =1 return ‘‘Sim’’

return ‘‘Nao’’
Complexidade: Uma multiplicagao e divisao com logn digitos é possivel em
tempo O(log2 n). Portanto, o primeiro teste (o algoritmo de Euclides em logn
passos) pode ser feito em tempo O(log3 1) e o segundo teste (exponenciagao
modular) é possivel implementar com O(logn) multiplicagoes (exercicio!).
Corretude: O caso de uma resposta “Nao” é certo, porque n nao pode ser
primo. Qual a probabilidade de falhar, i.e. do algoritmo responder “Sim”,
com n composto? O problema é que o algoritmo falha no caso de numeros
Carmichael.

Definicao 4.5

Um ndmero composto n que satisfaz a™~ ' =1 mod a é um ndmero pseudo-
primo com base a. Um namero Carmichael é um nimero pseudo-primo para
qualquer base a com (a,n) =1.
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4.4. Teste de primalidade

Os primeiros nimeros Carmichael sdo 561 = 3 x 11 x 17, 1105 e 1729 (veja
OEIS A002997). Existe um nimero infinito deles:

Teorema 4.11 (Alford, Granville e Pomerance (1994))
Seja C(n) o nimero de nimeros Carmichael até n. Assintoticamente temos
C(n) >n?/7.

Exemplo 4.3
C(n) até 10'° (OEIS A055553):

n 1 2 3 4 5 6 7 8 9 10
c(1om) 0 0 1 7 16 43 105 255 646 1547 . O
[(10™)2/7] 2 4 8 14 27 52 100 194 373 720

Caso um nimero n nao é primo, nem nimero de Carmichael, mais que n/2 dos

€ [1,m—1] com (a,n) =1 néo satisfazem (4.1) ou seja, com probabilidade
> 1/2 acharemos um testemunha que n é composto. O problema é que no
caso de nimeros Carmichael nao temos garantia.

Teorema 4.12 (Raiz modular)
Para p primo temos

x!*=1 modp=x==1 mod p.

O teste de Miller-Rabin usa essa caracteristica para melhorar o teste acima.

z _ t
Podemos escrever n — 1 = 2% para um u fmpar. Temos a™~ ! = (a%)? = 1.
Portanto, se a™ ' =1,

Ou a*'=1 mod p ou existe um menor i € [0, t] tal que (au)zi =1

Caso p é primo, /(a*)2" = (a“)zF1 = —1 pelo teorema (4.12) e a minimali-

dade de 1 (que exclui os caso = 1). Por isso:

Definicao 4.6
Um nimero n é um pseudo-primo forte com base a caso

Ou a*=1 mod p ou existe um menor i € [0,t— 1] tal que (a*)* = —1

Primo3(n) :=
seleciona ae€[l,n—1] randomicamente
if (a,n)#1 return ‘‘N&o’’
seja n—1=2
if a*=1 return ‘‘Sim

7

9

if (a® )Zl =—1 para um i€ [0,t—1] return ‘‘Sim’
return ‘‘Nao’’
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Teorema 4.13 (Monier (1980) e Rabin (1980))
Caso n e composto e ifmpar, mais que 3/4 dos a € [1,n— 1] com (a,n) =1
nao satisfazem o critério (4.2) acima.

Portanto com k testes randoémicos, a probabilidade de falhar P[Sim | n composto] <
(1/4)% = 272%. Na prética a probabilidade é menor:

Teorema 4.14 (Damgard, Landrock e Pomerance, 1993)
A probabilidade de um tunico teste falhar para um ntmero com k bits e <
k2427\/i.

Exemplo 4.4
Paran € [2477,2590 _1] a probabilidade de nio detectar um n composto com
um tunico teste é menor que

4992 x 42-VA99 222
O

Teste deterministico O algoritmo pode ser convertido em um algoritmo de-
terministico, testando ao menos 1/4 dos a com (a,n) = 1. De fato, temos
para menor o testemunha w(n) de um nidmero n ser composto

Se 0 HGR ¢ verdade w(n) < 2log*n (4.3)

com HGR a hipétese generalizada de Riemann (uma conjetura aberta). Su-
pondo HGR, obtemos um algoritmo deterministico com complexidade O (log5 n).
Em 2002, Agrawal, Kayal e Saxena (2004) descobriram um algoritmo deter-
minfstico (sem a necessidade da HGR) em tempo (§(log]2 n) que depois foi
melhorado para O(log6 nj.

Para testar: http://www.jjam.de/Java/Applets/Primzahlen/Miller_Rabin.
html.

4.5. Exercicios

Exercicio 4.1
Encontre um primo p e um valor b tal que a identidade do teorema 4.10 nao
é correta.

Exercicio 4.2
Encontre um nimero p nao primo tal que a identidade do teorema 4.12 nao é
correta.
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5. Complexidade e algoritmos parametrizados

A complexidade de um problema geralmente é resultado de diversos elementos.
Um algoritmo parametrizado separa explicitamente os elementos que tornam
um problema dificil, dos que sao simples de tratar. A andlise da complezidade
parametrizada quantifica essas partes separadamente. Por isso, a complexi-
dade parametrizada é chamada uma “complexidade de duas dimensodes”.

Exemplo 5.1

O problema de satisfatibilidade (SAT) é NP-completo, i.e. ndo conhecemos um
algoritmo cuja complexidade cresce somente polinomialmente com o tamanho
da entrada. Porém, a complexidade deste problema cresce principalmente com
o numero de variaveis, e nao com o tamanho da entrada: com k varidveis e en-
trada de tamanho n solucdo trivial resolve o problema em tempo O(2*n). Em
outras palavras, para parametro k fixo, a complexidade é linear no tamanho
da entrada. O

Definicao 5.1

Um problema que possui um pardametro k € N (que depende da instancia) e
permite um algoritmo de complexidade f(k)[x|°(!) para entrada x e com f uma
fungédo arbitraria, se chama tratdvel por pardmetro fizo (ingl. fixed-parameter
tractable, fpt). A classe de complexidade correspondente é FPT.

Um problema tratavel por parametro fixo se torna trativel na pratica, se o
nosso interesse sao instancias com parametro pequeno. E importante observar
que um problema permite diferentes parametrizacoes. O objetivo de projeto
de algoritmos parametrizados consiste em descobrir para quais parametros
que sao pequenos na pratica o problema possui um algoritmo parametrizado.
Neste sentido, o algoritmo parametrizado para SAT nao é interessante, porque
o numero de varidveis na pratica é grande.

A seguir consideramos o problema NP-complete de cobertura de vértices. Uma
versao parametrizada é

k-COBERTURA DE VERTICES
Instancia Um grafo nio-direcionado G = (V, A) e um ntimero k'.

Solucao Uma cobertura C, i.e. um conjunto C C V tal que Va € A :
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anC#0.

Parametro O tamanho k da cobertura.

Objetivo Minimizar |C|.

Abordagem com forga bruta:

mve(G = (V,A)) :=

if A=0 return 0

seleciona aresta {u,v}€ A nao coberta

Ci ={uw}Umve(G \ {u})

Cy :={Umve(G\ {v})

return a menor entre as coberturas C; e Cy
Supondo que a selecao de uma aresta e a reducao dos grafos é possivel em
O(n), a complexidade deste abordagem é dado pela recorréncia

Tn = ZTn71 + O(Tl)

com solucao T,, = O(2™). Para achar uma solu¢do com no méximo k vértices,
podemos podar a arvore de busca definido pelo algoritmo mvc na profundidade
k. Isso resulta em

Teorema 5.1

O problema k-cobertura de vértices é tratdvel por pardmetro fixo em O(2%n).

Prova. Até o nivel k vamos visitar O(2%) vértices na arvore de busca, cada
um com complexidade O(n). |

O projeto de algoritmos parametrizados frequentemente consiste em

e achar uma parametrizagao tal que o parte super-polinomial da com-
plexidade é limitada para um parte do problema que depende de um
parametro k que é pequeno na pratica;

e encontrar o melhor algoritmo possivel para o parte super-polinomial.

Exemplo 5.2
Considere o algoritmo direto (via uma drvore de busca, ou backtracking) para
SAT.

BT—SAT (@, ) :=
if « é atribuigdo completa: return @(a)
if alguma cldusula nao é satisfeita: return false
if BT-SAT(¢@,x1) return true
return BT SAT (@, «0)

Introduzimos k na entrada, porque k mede uma caracteristica da solucdo. Para evitar
complexidades artificias, entende-se que k nestes casos é codificado em undrio.

146



I R

Figura 5.1.: Subproblemas geradas pela decisao da inclusao de um vértice v.
Vermelho: vértices selecionadas para a cobertura.

(0 e ol denotam extensdes de uma atribuicao parcial das varidveis.)
Aplicado para 3SAT, das 8 atribuigdes por cldusula podemos excluir uma que
néo a satisfaz. Portanto a complexidade de BT-SAT é O(7™/3) = O(v/7 n) =
0(1.9129™). (Exagerando — mas nao mentindo — podemos dizer que isso é
uma aceleracao exponencial sobre a abordagem trivial que testa todas 2™
atribuicoes.)

O melhor algoritmo para 3-SAT possui complexidade O(1.324™). O

Um algoritmo melhor para cobertura de vértices Consequéncia: O projeto
cuidadoso de uma &arvore de busca pode melhorar a complexidade. Vamos
aplicar isso para o problema de cobertura de vértices.

Um melhor algoritmo para a k-cobertura de vértices pode ser obtido pelas
seguintes observacoes

e Caso o grau maximo A de G é 2, o problema pode ser resolvido em
tempo O(n), porque G é uma cole¢ao de caminhos simples e ciclos.

e (Caso contrario, temos pelo menos um vértice v de grau 6, > 3. Ou esse
vértice faz parte da cobertura minima, ou todos seus vizinhos N(v) (veja
figura 5.1).

mve’ (G) =
if A(G) <2 then
determina a cobertura minima C em tempo O(n)
return C
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end if

seleciona um vértice v com grau 6, >3

Ciy ={}Umvc/(G\ {v})

Cy :=N(v)Umvc'(G\ N(v))

return a menor cobertura entre C; e Cy
O algoritmo resolve o problema de cobertura de vértices minima de forma
exata. Se podamos a arvore de busca apés selecionar k vértices obtemos um
algoritmo parametrizado para k-cobertura de vértices. O nimero de vértices
nessa arvore €

Vi<Vi1+Vig+1.

Lema 5.1
A solucdo dessa recorréncia é V; = 0(1.38031).

Teorema 5.2
O problema k-cobertura de vértices é tratavel por parametro fixo em O(1.3803%n).

Prova. Consideragoes acima com trabalho limitado por O(n) por vértice na
arvore de busca. |
Prova. (Do lema acima.) Com o ansatz V; < c¢' obtemos uma prova por
indugao se para um i > ig
Vi<Vig+Vig+l<c T4t 41<cd

— et =2 —1)>1

= ct-cF-1>0
(O ultimo passo é justificado porque para ¢ > 1 e iy suficientemente grande o

produto vai ser > 1.) ¢* — ¢3 — 1 possui uma tnica raiz positiva ~ 1.32028 e
para ¢ > 1.3803 temos ¢ —c? — 1> 0. [
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Definicoes

Definicao A.1
Uma relacao bindria R é polinomialmente limitada se

JIp € poly : ¥(x,y) € R: [yl < p(lx])

Defini¢ao A.2 (Pisos e tetos)
Para x € R o piso |x] é o maior nimero inteiro menor que x e o teto [x]| é o
menor nimero inteiro maior que x. Formalmente

x| =max{y € Z |y <x}
[x] =min{y € Z |y > x}

O parte fraciondrio de x é {x} =x — [x].
Observe que o parte fraciondrio sempre é positivo, por exemplo {—0.3} = 0.7.

Proposicao A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem

x < [x] <x+1 (A1)
x—1< x| <x (A.2)
Definigao A.3
Uma funcao f é conveza se ela satisfaz a desigualdade de Jensen
f(Ox + (1 —0O)y) < Of(x) + (1 —O)f(y). (A.3)

Similarmente uma funcgao f é concava caso —f é convexo, i.e., ela satisfaz

f(Ox + (1 —0)y) > Of(x) + (1 —O)f(y). (A.4)
Exemplo A.1
Exemplos de funcdes convexas sao x2%, 1/x. Exemplos de funcdes concavas
sao0 logx, v/x. O
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Proposicao A.2
Para )_

ie[n]

Z ®1X1 S Z ®if(xi)
ien]

ienl]

e uma fungao concava

f() Oxi)> ) Oif(x)
i€[n]

ien]

®; = 1 e pontos xi, i € [n] uma funcio convexa satisfaz

(A.5)

(A.6)

Prova. Provaremos somente o caso convexo por indugdo, o caso concavo
sendo similar. Para n = 1 a desigualdade é trivial, para n = 2 ela é vélida

por definicio. Para n > 2 define @ = 5_
isso temos

f( Z Oixi) = f(@1x + Z Oixi) = f(©1x; + Oy)
]

ige[2,m]

ie(2,n]

ien
onde y = Zje[z,n](@j/é)xj» logo

f( ) Owxi) <Oif(xi) + Of(y)

ien]

=©f(x1) +Of( Y (©;/0)x;)

jel2,n]
<OIf(x1)+0 ) (6;/0)f(x) =) O
jelzm] i€[n]

A.1. Algoritmos

Solucées do problema da mochila com Programacdo Dinamica

Mochila maxima (Knapsack)

O; tal que ® +O© = 1.

Com

e Seja S*(k, V) a solucdo de tamanho menor entre todas solugdes que

— usam somente itens S C [1,k] e

— tem valor exatamente v.
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M(k,n)

Entrada |X1 X2 X3 X4 X5| X6 | | an

Medianos I:‘ I:‘ I:‘
Mediano

Particao Xy <m | m| Xi > m |
i
Recursao k<i: k=1: k>1i:
M(k,i—1) Encontrado M(k —i,n—1)

Figura A.1.: Funcionamento do algoritmo recursivo para selecéo.

e Temos
“(k,0) =0
S*(1,ve) ={1}
S*(1,v) = undef para v # vy

Mochila maxima (Knapsack)

e S* obedece a recorréncia

N . S*(k—1,v—wvi)U{k} sevk <veS"(k—1,v—vyi) definido
S*(k,v) = min
tamanho s*(kf ],\))

e Menor tamanho entre os dois

Z i+t < Z ti.

1€S* (k—1,v—vy) 1€S* (k—1,v)

e Melhor valor: Escolhe S*(n,v) com o valor méximo de v definido.

e Tempo e espaco: O(m ) ; vi).

Selecao Dado um conjunto de nimeros, o problema da selegdo consiste
em encontrar o k-ésimo maior elemento. Com ordenacao o problema possui
solucdo em tempo O(nlogn). Mas existe um outro algoritmo mais eficiente.
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Podemos determinar o mediano de grupos de cinco elementos, e depois o re-
cursivamente o mediano m desses medianos. Com isso, o algoritmo particiona
o conjunto de nimeros em um conjunto L de niimeros menores que m e um
conjunto R de niimeros maiores que m. O mediano m é na posicao i:=|L|+1
desta sequéncia. Logo, caso i = k m é o k-ésimo elemento. Caso i > k te-
mos que procurar o k-ésimo elemento em L, caso i < k temos que procurar o
k — i-ésimo elemento em R (ver figura A.1).

O algoritmo é eficiente, porque a selegao do elemento particionador m garante
que o subproblema resolvido na segunda recursao é no maximo um fator 7/10
do problema original. Mais preciso, o nimero de medianos é maior que n/5,
logo o nimero de medianos antes de m é maior que n/10 — 1, o ntimero de
elementos antes de m é maior que 3n/10—3 e com isso o niimero de elementos
depois de m é menor que 7n/10+ 3. Por um argumento similar, o nimero de
elementos antes de m é também menor que 7n/10 4+ 3. Portanto temos um
custo no caso pessimista de

Tm) = (1) sen <5
N T([n/5]) + ©(7n/104+ 3) + ©(n) caso contrario

ecom 5P + (7/10)P =1 temos p = log, 7 = 0.84 e

=01+ v )

=OMmP(1+(n'"P/(01—p)—1/(1—p)))
=0(cin? +can) = O(n).

Algoritmo A.1 (Selecdo)
Entrada Numeros x1,...,Xn, posicao k.

Saida O k-ésimo maior ntmero.

1 S(ky{x1y...,xXn}) =
2 if n<5

calcula e retorne o k ésimo elemento
end if
mi = median(XSi—o—])---»Xmin(51+5,n)) para 0<i<[n/5].

(’V|—n/5-| /21 mi,. )m(n/5]—1)
L { |X1<m,1<1<n}
Ri={xi[x¢>m,1<i<n}
1= +1

© 00 O Uk W
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10
11
12
13
14
15
16

if i=%k then
return m
else if i>k then
return S(k,L)
else
return S(k—1,R)
end if

A.1. Algoritmos
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B. Técnicas para a analise de algoritmos

Anadlise de recorréncias

Teorema B.1 (Akra-Bazzi e Leighton)
Dado a recorréncia

T(x) = o(1) se x < Xo
B Z]gigk a;T(bix + hy(x)) + g(x) caso contrario

com constantes a; > 0, 0 < b; < 1 e fungoes g, h, tal que
l9()l € O(x%);  [ha(x)] < x/log' "€ x

para um € > 0 e a constante x¢ e suficientemente grande

T(x) € © <xp (1 n Jx Sﬁlﬂ du))
1

com p tal que Z1§i§k aibf =1.

Teorema B.2 (Graham, Knuth e Patashnik (1988))
Dado a recorréncia

T(n) = o(1) n < maxi<i<k di
B > i xT(n—di) caso contrério

seja o a raiz com a maior valor absoluto com multiplicidade 1 do polinomio

caracteristico
d d—d; d—dy

zo—xyzt T — e — ozt
com d = maxy di. Entao

T(n) =0(nta™) = O*(«M).
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