INF05010 — Algoritmos avancados
Notas de aula

Marcus Ritt

2025-04-30

Universidade Federal do Rio Grande do Sul
Instituto de Informatica
Departamento de Informatica Teorica

Versao 94f5b3 compilada em 2025-04-30. Obra esta licenciada sob uma Li-
cenca Creative Commons (Atribui¢do-Uso Nao-Comercial-Nao a obras deri-

vadas 4.0 @@ G).

Agradecimentos Agradeco os estudantes dessa disciplina por criticas e co-
mentéarios e em particular o Rafael de Santiago por diversas correcoes e su-
gestoes.

ii

http://creativecommons.org/licenses/by-nc-nd/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0

Conteudo

1. Algoritmos em grafos
1.1. Representacao de grafos . . .

1.1.1. Amostragem de grafos aleatérios

1.2. Caminhos e ciclos Eulerianos
1.3. Arvores geradores
1.4. Caminhos mais curtos

1.4.1. Toépicos

1.4.2. Mais sobre caminhos mais curtos

1.4.3. Notas
1.5. Filas de prioridade e heaps .
1.5.1. Heaps binarios
1.5.2. Heaps binomiais . . .
1.5.3. Heaps Fibonacci . . .
1.5.4. Rank-pairing heaps . .
1.5.5. Heapsocos

1.5.6. Arvores de van Emde Boas

1.5.7. Exercicios
1.6. Fluxosemredes.

1.6.1. O algoritmo de Ford-Fulkerson
1.6.2. O algoritmo de Edmonds-Karp
1.6.3. O algoritmo “caminho mais gordo” (“fattest path”) . . .
1.6.4. O algoritmo push-relabel

1.6.5. Variantes do problema
1.6.6. Aplicagdes

1.6.7. Outros problemas de fluxo.

1.6.8. Exercicios
1.7. Emparelhamentos
1.7.1. Aplicagdes
1.7.2. Grafos bi-partidos . .

1.7.3. Emparelhamentos em grafos nao-bipartidos

1.74. Notas
1.7.5. Exercicios

2. Tabelas hash
2.1. Hashing com listas encadeadas

102
102

103
103

Contetido

2.2. Hashing com enderegamento aberto.
2.3. Cuco hashing
2.4. Filtrosde Bloom L.

3. Algoritmos de aproximacdo
3.1. Problemas, classes e redugdes
3.2. Medidas de qualidade
3.3. Técnicas de aproximagaoo
3.3.1. Algoritmos gulosos oL
3.3.2. Aproximagoes com randomizagdo
3.3.3. Programacgao linear
3.4. Esquemas de aproximacao v i e e
3.5. Aproximando o problema da arvore de Steiner minima
3.6. Aproximandoo PCV
3.7. Aproximando problemas de cortes
3.8. Aproximando empacotamento unidimensional
3.8.1. Um esquema de aproximacao assintotico para min-EU .
3.9. Aproximando problemas de sequénciamento
3.9.1. Um esquema de aproximacao para P || Cpax -« -« « . .
3.10. Exercicios Lo

4. Algoritmos randomizados

4.1. Teoria de complexidade

4.1.1. Amplificacdo de probabilidades

4.1.2. Relagdo entreasclasses
4.2, Selecaoo
4.3. Corteminimo L
4.4. Teste de primalidade L.
4.5. Notas e
4.6. Exercicios

5. Complexidade e algoritmos parametrizados

6. Outros algoritmos
6.1. O problema de soma de intervalos
6.2. Amostragem discretao
6.2.1. Amostragem sem reposicdo
6.2.2. Distribuicoes discretas L oL

A. Material auxiliar
A1, Algoritmoso

Contetido

B. Técnicas para a andlise de algoritmos 177
Bibliografia 179
indice 185

Contetido

Introducao

A disciplina “Algoritmos avancados” foi criada para combinar a teoria e a
pratica de algoritmos. Muitas vezes a teoria de algoritmos e a pratica de im-
plementacoes eficientes é ensinado separadamente, em particular no caso de
algoritmos avancados. Porém a experiéncia mostra que encontramos muitos
obstaculos no caminho de um algoritmo teoricamente eficiente para uma im-
plementacao eficiente. Além disso, o projeto de algoritmos novos néo termina
com uma implementagao eficiente, mas é alimentado pelos resultados expe-
rimentais para produzir melhores algoritmos. A figura abaixo mostra o ciclo
tipico da area emergente de engenharia de algoritmos.

: realistic
algorithm models 1

engineering redl 7 le

2 -

Sfalsifiable N\

(Cansn Yo rypomoses o
_ inducton /
Nnddgten/

L}

suoleoldde «

experiments

dedugction
oerf— implementation >
guarantees | 4
algorithm- |6
libraries
p. A

Engenharia de algoritmos (Algorithm Engineering s.d.).

Seguindo essa filosofia, o nosso objetivo e tanto entender a teoria de algorit-
mos, demonstrado a sua corretude e analisando a sua complexidade, quanto
dominar a pratica de algoritmos, a sua implementacgao e avaliagdo experimen-
tal. Isso é refletido numa sequéncia alternada de aulas tedricas a praticas.

1. Algoritmos em grafos

1.1. Representacao de grafos

Um grafo pode ser representado diretamente de acordo com a sua defini¢ao
por M estruturas que representam os vértices, m estruturas que representam
0s arcos e ponteiros entre as estruturas. Um vértice possui ponteiros para todo
arco incidente sainte ou entrante, e um arco possui ponteiros para o inicio e
término. A representacdo direta possui varias desvantagens. Por exemplo néo
temos acesso direto aos vértices para inserir um arco.

Duas representagoes simples sdo listas (ou vetores) ndo-ordenadas de vértices
ou arestas. Uma outra representacao simples de um grafo G com n vértices é
uma matriz de adjacéncia M = (my;) € B™ ™. Para vértices u,v o elemento
myy = 1 caso existe uma arco entre u e v. Para representar grafos ndo-
direcionados mantemos My, = My, i.e., M é simétrico. A representacio
permite um teste de adjacéncia em O(1). Percorrer todos vizinhos de um
dado vértice v custa O(n). O custo alto de espaco de @(n?) restringe o uso
de uma matriz de adjacéncia para grafos pequenos'.

Uma representacao mais eficiente é por listas ou vetores de adjacéncia. Neste
caso armazenamos para cada vértice os vizinhos em uma lista ou um vetor. As
listas ou vetores mesmos podem ser armazenados em uma lista ou um vetor
global. Com isso a representagdo ocupa espaco @(n + m) para m arestas.
Uma escolha comum é um vetor de vértices que armazena listas de vizinhos.
Esse estrutura permite uma insercdo e delecao simples de arcos. Para facilitar
a delecao de um vértice em grafos nao-direcionados, podemos armazenar junto
com o vizinho u do vértice v a posi¢cdo do vizinho v do vértice u. A repre-
sentacao dos vizinhos por vetores é mais eficiente, e por isso preferivel caso a
estrutura do grafo é estético (Black Jr. e Martel, 1998; Park et al., 2004).
Caso escolhemos armazenar os vértices em uma lista dupla, que armazena uma
lista dupla de vizinhos, em que os vizinhos sao representados por posicoes da
primeira lista, obtemos uma lista dupla de arcos (ingl. doubly connected arc
list, DCAL). Essa estrutura permite uma inserc¢ao e remogao tanto de vértices
quanto de arcos.

Supoe que V = [n]. Uma outra representacao compacta e eficiente conhecido
como forward star para grafos estaticos usa um wvetor de arcos aj,...,0n.
Mantemos a lista de arestas ordenado pelo comeco do arco. Uma permutacao o

1 Ainda mais espaco consuma uma matric de incidéncia entre vértices e arestas em B"x™,

1. Algoritmos em grafos

Tabela 1.1.: Operagoes tipicas em grafos.

Lista de Matriz de Lista de
Operacao arestas vértices adjacéncia adjacéncia
Inserir aresta o) OMm+m) o O(1) ou O(n)

Remover aresta O(m) O(m+m) o(1) O(n)
Inserir vértice o(1) 0(1) 0(n?) o(1)

Remover vértice O(m) O(Mnm+m) 0(n?) Om+m)
Teste uv € E O(m) O(n+m) o(1) 0o(A)
Percorrer vizinhos O(m) 0o(A) O(n) 0o(A)
Grau de um vértice O(m) 0o(A) O(n) o(1)

nos dé as arestas em ordem do término. (O uso de uma permutacio serve para
reduzir o consumo de meméria.) Para percorrer eficientemente os vizinhos
de um vértice armazenamos o indice s, do primeiro arco sainte na lista de
arestas ordenado pelo comego e o indice e, do primeiro arco entrante na lista
de arestas ordenado pelo término com sn4+1 = en+1 = m+ 1 por definicao.

Com isso temos N*(v) ={as,,...,0as, ,,—1} com 8} =sy11 —sy, e N7 (v) =
{Ag(ey)y-+vy Qofey, —1)) cOm 8, = ey,41 — ey. A representacdo precisa espaco
O(n+m).

Tabela 1.1 mostra a complexidade de operagoes tipicas nas diferentes repre-
sentacoes.

1.1.1. Amostragem de grafos aleatérios

Um modelo elementar de grafos aleatérios é de Erdds e Rényi. Na variante
Gn,p temos um grafo com n vertices, e cada uma dss possiveis M = (TZL)
arestas é gerada com probabilidade p; na variante Gn m cada uma das (x)
selegoes de m das M arestas tem a mesma probabilidade. (Todo que segue
funciona também no caso de grafos direcionados, tomando M =n(n—1).)
Para amostrar de acordo com Gy, p, podemos simplesmente percorrer todos M
arestas candidatas e adicionar cada uma com probabilidade p em tempo O(M)
e espaco O(m). Neste caso o nimero de arestas é varidvel, de acordo com
uma distribui¢do binomial B(m,p) com valor esperado de arestas m =pM e
desvio padrao de /mp(1 —p) = O(n/p(1 —p)) = O(n). Uma alternativa
mais rapida pode ser amostrar o nimero de arestas de acordo com B(m,p) e
depois usar o modelo Gy m.

Para amostrar de acordo com Gn m podemos usar um algoritmo de amostra-
gem sem reposicio (ver 6.2.1) para selecionar as arestas em tempo e espago

1.2. Caminhos e ciclos Eulerianos

O(m). (Uma forma simples, mas menos eficiente é aplicar a amostragem
por rejeicdo: repetidamente selecionar uma aresta aleatoria dos M e rejeitar
arestas ja selecionadas. O tempo esperado de amostrar a i-ésima aresta é
M/(M —1) e logo o tempo esperado é
M M M
B == "M ™ T Mome
=M(Hm —Hm-m) < M(InM — In(M — m)).

Com m = pM obtemos M —m = (1 —p)M e logo E[T] = M In ﬁ)

1.2. Caminhos e ciclos Eulerianos

Um caminho Euleriano passa por toda arestas de grafo exatamente uma vez.
Um caminho Euleriano fechado é um ciclo Euleriano. Um grafo é Fuleriano
caso ele possui um ciclo Euleriano que passa por cada vértice (pelo menos uma
vez).

Proposicao 1.1
Uma grafo nao-direcionado G = (V, E) é Euleriano sse G é conectado e cada
vértice tem grau par.

Prova. Por inducdo sobre o nimero de arestas. A base da indugdo é um
grafo com um vértice e nenhuma aresta que satisfaz a proposi¢do. Supoe que
os grafos com < m arestas satisfazem a proposi¢do e temos um grafo G com
m+ 1 arestas. Comeca por um vértice v arbitrario e procura um caminho que
nunca passa duas vezes por uma aresta até voltar para v. Isso sempre é possivel
porque o grau de cada vértice é par: entrando num vértice sempre podemos
sair. Removendo este caminho do grafo, obtemos uma cole¢ao de componentes
conectados com menos que m arestas, e pela hipétese da indugao existem ciclos
Eulerianos em cada componente. Podemos obter um ciclo Euleriano para o
grafo original pela concatengad desses ciclos Eulerianos. |
Pela prova temos o seguinte algoritmo com complexidade O(|E|) para encontrar
um ciclo Euleriano na componente de G = (V, E) que contém v € V:

Algoritmo 1.1 (Caminho Euleriano)

1 Euler(G=(VE),veV) :=

2 if |[E/|=0 return v

3 procura um caminho comegando em Vv

4 sem repetir arestas voltando para v

1. Algoritmos em grafos

5 seja v=vi,V2,...,Vy =V esse caminho

6 remove as arestas ViV, V)V3, ..., Vh_1Vv, de G
7 para obter G;

8 return Euler(Gy,vi)+ -+ Euler(Gn_1,vn_1) +vn

9

10 // Usamos + para concatenacgio de caminhos.
11 // Gy & Gi_1 com as arestas do

12 // caminho Euler(Gi_1,vi_1) removidos, i.e

13 /7 Gi:=(V,E(Gi1) \ E(Euler(Gi—1,vi—1))

Algoritmo 1.1 é de Hierholzer (1873).

1.3. Arvores geradores

Exemplo 1.1
Arvore geradora minima através do algoritmo de Prim.
Algoritmo 1.2 (Arvore geradora minima)

Entrada Um grafo conexo nao-direcionado ponderado G = (V, E, ¢)

Saida Uma 4rvore T C E de menor custo total.

1 V':={vo} para um vo €V

2 T:=0

3 while V' #YV do

4 escolhe e ={u,v} de custo minimo

5 entre V' e V\V’' (com ueV/ veV\V")
6 V' =V U{v}

7 T:=TU{e}

8

end while

Algoritmo 1.3 (Prim refinado)
Implementacao mais concreta:

1 T:=0
2 for ueV\{v} do
3 if ue N(v) then

4 value(u) = cyuy
5 pred(u) :=v
6 else

1.4. Caminhos mais curtos

7 value(u) := oo

8 end if

9 insert(Q, (value(u),u)) { pares (chave,elemento) }
10 end for

11 while Q#0 do

12 v := deletemin(Q)
13 T:=TU{pred(v)v}
14 for ue N(v) do

15 if wueQ e cyy < value(u) then
16 value(u) = cyuy

17 pred(u) :=v

18 update(Q, 1, Cyy,)

19 end if

20 end for
21 end while

Custo? n x insert + n x deletemin + m x update.

O

Observagao 1.1

Implementacio com vetor de distancias: insert = O(1)?, deletemin = O(n),
update = O(1), e temos custo O(n +n? +m) = O(n? +m). Isso é assintoti-
camente 6timo para grafos densos, i.e. m = Q(n?). O

Observagao 1.2
Implementacao com lista ordenada: insert = O(n), deletemin = O(1), update =
O(n), e temos custo O(n? +n +mn) = O(mn)3. O

Observagao 1.3

Implementacdo com uma lista de /n blocos de /1 elementos, insert, delete-
min e update podem ser implementados em tempo O(+/1), logo o algoritmo
de Prim e de Dijkstra tem complexidade O(my/n). %

1.4. Caminhos mais curtos

Um problema fundamental em grafos é encontrar caminhos mais curtos entre
pares de vértices. O algoritmo de Dijkstra resolve o problema das distancia de
um vértice origem para todos demais em grafos com distancias ndo-negativas.

2Com chaves compactas [1,n].
3Na hipétese razodvel que m > n.

1. Algoritmos em grafos

Exemplo 1.2
Caminhos mais curtos com o algoritmo de Dijkstra

Algoritmo 1.4 (Dijkstra)
Entrada Um grafo direcionado G = (V,;A) com pesos de > 0 nos arcos
arestas a € A, e um vértice s € V.

Saida A distancia minima d, entre s e cada vértice v € V.

1 ds:=0;d, :=00,VveV\{s}

2 visited(v) := false, Vv € V

3 Q=0

4 insert(Q, (s,0))

5 while Q#0 do

6 v := deletemin(Q)

7 visited(v) := true

8 for ue N*t(v) do

9 if not visited(u) then
10 if dy = o0 then
11 dy :==dy + dyu
12 insert(Q, (u,dy))
13 else if d, +d,. <dy
14 dy :=d, +dyu
15 update(Q, (u, du))
16 end if
17 end if

18 end for
19 end while

Observagao 1.4
A fila de prioridade contém pares de vértices e distancias. O algoritmo se
aplica igualmente a um grafo nao-direcionado. O

Proposicao 1.2
O algoritmo de Dijkstra possui complexidade

O(n) +n x deletemin + n x insert + m x update.

Prova. O pré-processamento (1-3) tem custo O(n). O lago principal é domi-
nado por no maximo n operagoes insert, n operagoes deletemin, e m operagoes
update. A complexidade concreta depende da implementacdo desses opera-
coes. |

10

1.4. Caminhos mais curtos

Proposicao 1.3
O algoritmo de Dijkstra é correto.

Prova. Seja dist(s,x) a menor distdncia entre s e x. Provaremos por inducio
que para cada vértice v selecionado na linha 6 do algoritmo d, = dist(s,x).
Como base isso é correto parav = s. Sejav # s um vértice selecionado na linha
6, e supoe que existe um caminho P =s---xy---v de comprimento menor que
dy, tal que y é o primeiro vértice que nao foi processado (i.e. selecionado na
linha 6) ainda. (E possivel que y =v.) Sabemos que

dy < dy +dyy porque x ja foi processado
= dist(s, x) + dxy pela hipétese dy = dist(s,x)
< d(P) dist(s,x) < dp(s,x) e P passa por xy
< dy, pela hipétese

uma contradi¢do com a minimalidade do elemento extraido na linha 6. (No-
tacdo: d(P): distncia total do caminho P; dp(s,x): distdncia entre s e x no
caminho P.) [| O

Observagao 1.5

Podemos ordenar n elementos usando um heap com n operagoes “insert”
e n operagoes “deletemin”. Pelo limite de Q(nlogn) para ordenacdo via
comparagao, podemos concluir que o custo de “insert” mais “deletemin” é
Q(logn). Portanto, pelo menos uma das operacoes ¢ Q(logn). %

O caso médio do algoritmo de Dijkstra Dado um grafo G = (V,E) e um
vértice inicial arbitririo supoe que temos um conjunto C(v) de pesos positivos
com |[C(v)] = I[N~ (v)| para cada v € V. Atribuiremos permutagdes dos pesos
em C(v) aleatoriamente para os arcos entrantes em v.

Proposicao 1.4 (Noshita (1985))
O algoritmo de Dijkstra chama update em média nlog(m/n) vezes neste mo-
delo.

Prova. Para um vértice v os arcos que podem levar a uma operacao update
em v sdo de forma (u,v) com dist(s,u) < dist(s,v). Supde que existem k
arcos (u1,v),..., (u,v) desse tipo, ordenado por dist(s,u;) nao-decrescente.
Independente da atribuicao dos pesos aos arcos, a ordem de processamento

11

1. Algoritmos em grafos

sempre é 1,2,...,k. O arco (ui,v) leva a uma operacao update caso
dist(s, ui) + du,v < min(dist(s, 1) + du;v).
ji<i
< min (dist(s,u;) + du;v).
ji<i
< dist(s,uy) + min dy, ..
jij<i
Com isso temos dy;v < minj,j<i du].v7 i.e., dy,;v € um minimo local na sequén-
cia dos pesos dos k arcos. O ntmero esperado de méximos locais de uma
permutagao aleatéria é Hy —1 < Ink e considerando as permutagoes inversas,
temos o mesmo nimero de minimos locais. Como k < 8~ (v) temos um limite
superior para o ntimero de operag¢des update em todos vértices de

Z nd (v)=n Z(]/n) Ind (v) <nln Z(1/n)5*(v) =nlnm/n.

vev vev vev

A desigualdade é justificada pela equagao (A.6) observando que Inn é concava.
|
Com isso complexidade média do algoritmo de Dijkstra é

O(m + n x deletemin + n x insert + nln(m/n) x update).

Usando uma fila de prioridade implementada por um heap binario que executa
todas operacoes em O(logn) a complexidade média do algoritmo de Dijkstra
é O(m+nlogm/nlogn).

1.4.1. Topicos
Fast marching method
A equacao Eikonal (grego eikon, imagem)

||VT(X)HF(X) = 1» X € Qa
Tloa =0,

define o tempo de chegada de uma superficie que inicia no tempo 0 na fronteira
0Q de um subconjunto aberto Q C R3 e se propaga com velocidade F(x) > 0
na direcdo normal*. O fast marching method resolve a equacio Eikonal por
discretizar o espaco regularmente, aproximar as derivadas do gradiente ||V T]|
por diferencas finitas e propagar os valores com um método igual ao algoritmo
de Dijkstra.

40 método também funciona para F(x) < 0, mas ndo para F(x) com sinais diferentes.

12

1.4. Caminhos mais curtos

Com

VT = (0T/0x — 1,0T/0x;,0T/0x3)
temos

IVTII? = (8T/9x1)? + (9T/9x2)* + (3T/dx3)* = 1/F%.
Definindo as diferencas finitas
DT =T(xy + 1,x2,x3) — T(x); DT =T(kx)—T(x1 —1,%x2,%3)
podemos aproximar
0T/0x1 =~ Ty, = max{D ' T,—D ™ T, 0}

e com aproximagoes similares para as dire¢bes y e z obtemos uma equagio
quadratica em T(x)

IVTI? =~ T2, + T2, + T2, =1/F? (1.1)

Na solugao dessa equacdo valores ainda desconhecidos de T sao ignorados. O
fast marching method define T = 0 para os pontos iniciais em 9Q e coloca-os
numa fila de prioridade. Repetidamente o ponto de menor tempo é extraido
da fila, os vizinhos ainda néo visitados sdo atualizados de acordo com (1.1)
e entram na fila, caso ainda nao fazem parte. (Na terminologia do fast mar-
ching method, os pontos com distancia ji conhecida sdo “vivos” (alive), os
pontos na fila formam a “faixa estreita” (narrow band), os restantes pontos
sao “distantes” (far away).)

Busca informada

O algoritmo de Dijkstra encontra o caminho mais curto de um vértice origem
s € V para todos os outros vértices num grafo ponderado G = (V, E,d). Caso
estamos interessados somente no caminho mais curto para um tnico vértice
destino t € T, podemos parar o algoritmo depois de processar t. Isso é uma
aplicacao muito comum, por exemplo na busca da rota mais curta em sistemas
de navegacao. Uma busca informada processa vértices que estimadamente sao
mais proximos do destino com preferéncia. O objetivo é processar menos
vértices antes de encontrar o destino. Um dos algoritmos mais conhecidos de
busca informada é o algoritmo A*. Para cada vértice v € V com distancia
g(v) da origem s, ele usa uma funcdo heuristica h : V.— R>o que estima a

13

0O J O UL i W N+

1. Algoritmos em grafos

distancia para o destino t e processa os vértices em ordem crescente do custo
total estimado

f(v) = g(v) + h(v). (1.2)

O desempenho do algoritmo A* depende da qualidade de heuristica h. Ele
pode, diferente do algoritmo de Dijkstra, processar vértices multiplas vezes,
case ele descobre um caminho mais curto para um vértice ja processado. Isso
é a principal diferenca com o algoritmo de Dijkstra. Uma outra modificacao é
que substituimos o campo “visited” usando no algoritmo Dijkstra 1.4 por um
conjunto V de vértices ja visitados, porque o A* é frequentemente aplicado em
grafos com um nimero grande de vértices, que sao explorados passo a passo
sem armazenar todos vértices do grafo na memoria.

g(s) +h(s)

(D { vértices ja visitados }
0

KD(T;E

1nsert(Q, (s,T(s)))
while Q #0 do
v := deletemin(Q)
C:=Cu{v}
if v=t { destino encontrado }
return X
for ue N*t(v) do
if we Q then { ainda aberto: atualiza }
g(u) == min(g(v) + dvy, g(u))
f(u) :== g(u) + h(u)
update(Q, (u, f(u)))
else if uw e C then
if g(v) 4+ dyy < g(u) then
{ caminho menor p/ vértice ja processado }
C:=C\{u}
g(w) == g(v) + dyu,
f(u) :=g(u) + h(u)
insert(Q, (u, f(u)))
end if
else { novo vértice }
g(u) :==gv) + dyu
f(u) :==g(u) + h(u)
insert(Q, (u, f(u)))

end if

14

29
30

1.4. Caminhos mais curtos

end for
end while

Observacgao 1.6
O algoritmo de Dijkstra e a busca A* funcionam de forma idéntica quando
substituimos o vértice destino t € V por um conjunto de vértices destino

TCV. o

Existe uma formulacio alternativa, equivalente do algoritmo A*. Ao invés
de sempre processar o vértice aberto de menor valor f podemos processar
sempre o vértice aberto de menor distdncia § num grafo com pesos modificados
duy = duy — h(w) + h(v). Com pesos modificados obtemos para a distancia
total de um caminho uv arbitrario P

ﬁ(u)v) = Z au’v’ = Z dyrye *h(u/) +h(vl)

(u’,v")epP (u’,v’)eP
=h(v)—h(wW+ > dun =h(v)—h(u)+g(u,v).
(uw’,v)erP

Com §(u) = g(s,u) obtemos

Logo a ordem de processamento por menor § ou por menor valor f é equiva-
lente.

Para garantir a otimalidade de uma solucao a heuristica h tem que ser ad-
missivel. Caso h é consistente o algoritmo A* ndo somente retorna a solucao
6tima, mas processa cada vértice somente uma vez.

Defini¢ao 1.1 (Admissibilidade e consisténcia)
xxx Seja dist(v, t) a distAncia minima do vértice v ao destino t. Uma heuristica
h é admissivel caso h é um limitante inferior & distdncia minima, i.e.

h(v) < dist(v, t). (1.3)

Uma heuristica é consistente caso o seu valor diminui de acordo com o pesos
do grafo: para um arco (u,v) € A

h(v) > h(w) — duy. (1.4)

Na representacio alternativa (1.3), o critério de consisténcia (1.4) é equivalente
com dyy = duy — h(u) + h(v) > 0. Com isso temos diretamente o

15

1. Algoritmos em grafos

Teorema 1.1
Caso h é consistente o algoritmo A* nunca processa um vértice mais que uma
vez.

Prova. Neste caso dyy > 0. Logo todas distancias sdo positivas é o algoritmo
A* é equivalente com o algoritmo de Dijkstra. Por um argumento similar ao
da proposicao (1.3) o A* nunca processa um vértice duas vezes. |

Lema 1.1

Caso h é consistente e h(t) =0 (i.e reconhece o destino t), h é admissivel.

Prova. Seja P =vgyVvy ...V um caminho de vo =u a vy =t. Entéo

4P)= Y dve v >3 Rlve 1) —hiv) = h(w) - h(t) = h(w).
ie(k] ie(k]

Em particular, para um caminho P* 6timo de u a t temos h(u) < d(P*)
S(u).

Teorema 1.2
Caso existe uma solu¢do minima e h é admissivel o algoritmo A* encontra a
solucao minima.

Prova. Seja P* = vovi...vx um caminho 6timo de vo = s a v = t. Caso
A* nao terminou, t ainda nao foi explorado. Logo existe um vértice aberto de
menor indice vi em P*. Agora supde que o préximo vértice explorado é t, mas
o valor de t ndo é 6timo, i.e. f(t) > d(P*). Mas entdo f(vi) = g(vi) + h(vi) <
g(vi) + 8(vi) = d(P*) < f(t), porque h é admissivel, em contradigdo com a
exploracao de t. |

Exemplo 1.3

Figure 1.1 mostra uma grafo com trés fungdes heuristicos h diferentes. A
heuristica no grafo da esquerda néo é admissivel em u (marcado por T). O A*
expande s, v e depois t e termina com a distancia sub-6tima 5 para chegar em
t. A heuristica no grafo do meio é admissivel, mas nao consistente: h(u) <
h(v)+1 nao é satisfeito. O A* expande s, v, u, v, t, i.e. o vértice v é processado
duas vezes. Finalmente a heuristica no grafo da direita é consistente (e por
isso admissivel). O A* expande cada vértice uma vez, na ordem s, u, t (ou s,
u, v, t).

O

Exemplo 1.4
A Figura 1.2 compara uma busca com o algoritmo de Dijkstra com uma busca
com o A* num grafo geométrico com 5000 vértices e uma aresta entre vértices

16

1.4. Caminhos mais curtos

0
2
303 0
1
3
5T

Figura 1.1.: Esquerda: Heuristica ndo-admissivel. A* produz o valor sub-6timo 5.
Centro: Heuristica admissivel, mas inconsistente (arco vermelho). A*
visita v duas vezes. Direita: Heuristica admissivel e consistente. A*
visita cada vértice somente uma vez.

Figura 1.2.: Comparagdo de uma busca com o algoritmo de Dijkstra (es-
querda) e o A* (direita).

17

1. Algoritmos em grafos

de distdncia no méximo 0.02. Vértices ndao explorados sdo pretos, vértices
explorados claros. A claridade corresponde com a ordem de exploracao.

O

1.4.2. Mais sobre caminhos mais curtos

Define um arco a = uv € A como relazado caso d, < d. + dy., sendo tenso.
Para relaxar temos a operacao

relax(a) := d,:=min{d,,dy + duy}.
Similarmente, define t, := min,en-—(v) du + duy. Podemos definir um vértice
v como relazado caso d, < t,, e sendo tenso. Para relaxar podemos aplicar

relax(v) := d, :=t,.
Com isso temos dois algoritmos simples que melhoram (super-)estimativas d,
das distancias dist(s,v), inicialmente ds =0, e d, = oo, para todos v # s.

o Dijkstra: em ordem de d,, relaxa a € N*(v); tempo O(nlogn + m).
o Bellman-Ford: repete ate n vezes: relaxa todos a € A; tempo O(nm).

O algoritmo de Bellman-Ford também funciona para pesos negativos, na au-
séncia de ciclos negativos. (E neste caso é um dos melhores algoritmos atual-
mente para todas distdncias de uma origem.)

Potenciais Chama p,, v € V um potencial caso
duv > Py — Pu, a=uv€A. (1.5)

Teorema 1.3
Um potencial existe sse todo circuito (ciclo direcionado) tem comprimento
nao-negativo.

Prova. “=": Considere o circuito C = (vo,V1y...,Vm), Vim = Vo. Entdo
d(C) = Z dvi v 2 Z Pvi = Pvioy =Pm —Po=0.
ie[m] ie[m]

“&”: seleciona algum s € V, define p,, := dist(s,v). Isso claramente satis-
faz (1.5). |
Logo: podemos definir

dyy = duy — (pv 7pu) > 0) (16)

uma transformacdo que mantém caminhos mais curtos.
Agora: como podemos encontrar circuitos negativos?

18

1.4. Caminhos mais curtos

Teorema 1.4
Um circuito negativo pode ser encontrado em tempo O(nm).

Prova. Roda Bellman-Ford para obter distancias d° d',...,d™. Assume
d™' # d", com testemunha t € V, ie. d < dM'. Logo existe uma st-
caminhada P de distancia d(P) = di* e de comprimento |[P| = n. Como ela
tem n arcos, contém um circuito C. Remove C de P para obter uma caminhada
P’ com menos que 1 arcos. Como

d(P) > d™1(t) > d™(t) = d(P),

temos d(C) < 0. Caso d™ ! = d™ nenhum circuito negativo é alcancivel. W

Teorema 1.5
Um potencial pode ser encontrado em tempo O(nm) caso nao tem circuitos
negativos.

Prova. Adiciona um vértice s e arcos sv para todo v € V com ds, = 0,
roda Bellman-Ford e define p, = d,. Como ndo tem circuitos negativos
d, = dist(s,v) e logo dy, > dist(s,v) — dist(s,u) = py — pu.]

Caminhos mais curtos entre todos pares de vértices. Seja dy(s,t) a distan-
cia entre s e t usando somente vértices {s,t,v1,..., v} para alguma ordem de
vértices vi1,va,...,vn e define do(s,t) = ds¢ caso st € A e oo caso contrario.
O algoritmo de Floyd- Warshall computa

dk+1 (S)t) = min{dk(s) t)) dk(s)vk+1) + dk(kar])t)};

isso custa tempo O(n?) por iteracio, logo ndo mais que O(n3) em total.
Com potenciais, podemos melhorar a complexidade (Johnson 1973): encontra
um potencial p, aplica a transformagio (1.6) e roda o algoritmo de Dijkstra
n vezes. Isso custa somente O(n(nlogn +m)) = O(nm +n?logn) e caso o
grafo tem m = Q(nlogm) arcos temos custo O(nm).

O método de Dial Assume distancias inteiras e que temos um limite superior
A > max, ¢y dist(s,v). Neste caso podemos substituir a fila de prioridade no
algoritmo de Dijkstra por A + 1 “baldes” Ly,...,La (implementados como
listas) onde balde L; contém os vértices de distancia d, = i. Mantendo o
nimero do menor balde nao-vazio u, é simples de ver que

¢ podemos atualizar 1 em tempo amortizado O(1) sobre todas n iteragoes
(porque p 86 aumenta para pesos ndo negativos);

19

1. Algoritmos em grafos

e podemos atualizar os baldes em tempo constante sobre atualizagoes de
distancias.

Logo: temos uma complexidade de O(m + A) = O(m + nD), e caso D :=
maxqecA dq-

1.4.3. Notas

O algoritmo (assintoticamente) mais rédpido para arvores geradoras minimas
usa soft heaps é possui complexidade O(ma(m,n)), com « a fungao inversa
de Ackermann (Chazelle, 2000; Kaplan e Zwick, 2009).

Karger propos uma variante de heaps de Fibonacci que substituem a marca
“cut” usado nos cortes em cascata por uma decisdo randoémica: com proba-
bilidade 0.5 continua cortando, sendo para. Além disso o heap é construido
novamente com probabilidade 1/n depois de cada operacdo. Com isso “de-
letemin” possui complexidade esperada amortizada ©(log? n/loglogn) (Lie
Peebles, 2015).

Armazenar e atravessar arvores em ordem de van Emde Boas usando indices,
similar ao ordem por busca em largura é possivel (Brodal et al., 2001). O
consumo de memoria das arvores de van Emde Boas pode ser reduzido para
O(n) (Dementiev et al., 2004; Cormen et al., 2009).

Mais sobre o fast marching method se encontra em Sethian (1999). Uma
aplicacdo interessante é a solugdo do caixeiro viajante continuo (Andrews e
Sethian, 2007).

20

ST W N

1.5. Filas de prioridade e heaps

1.5. Filas de prioridade e heaps

Uma fila de prioridade mantem um conjunto de chaves com prioridades de
forma que a atualizar prioridades e acessar o elemento de menor prioridade é
eficiente. Ela possui aplicagoes em algoritmos para calcular arvores geradores
minimas, caminhos mais curtos de um vértice para todos outros (algoritmo de
Dijkstra) e em algoritmos de ordenagao (heapsort).

1.5.1. Heaps binarios

Teorema 1.6

Uma fila de prioridade pode ser implementado com custo insert = O(logn),
deletemin = O(logn), update = O(logn). Portanto, uma &rvore geradora
minima pode ser calculado em tempo O(nlogn + mlogn).

Um heap é uma arvore com chaves nos vértices que satisfazem um critério de
ordenagao.

o min-heap: as chaves dos filhos sdo maior ou igual que a chave do pai;
e maz-heap: as chaves dos filhos sdo menor ou igual que a chave do pai.

Um heap binario é um heap em que cada vértice possui no maximo dois filhos.
Implementaremos uma fila de prioridade com um heap binario completo. Um
heap completo fica organizado de forma que possui folhas somente no tltimo
nivel, da esquerda para direita. Isso garante uma altura de O(logn).

Positivo: Achar a chave com valor minimo (operagiao findmin) custa O(1).
Como implementar a inser¢ao? Idéia: Colocar na ltima posicao e restabelecer
a propriedade do min-heap, caso a chave é menor que a do pai.

insert(H,c) :=
insere ¢ na ultima posigdo p
heapify-up(H,p)

heapify-up(H,p) :=
if root(p) return

21

1

—_

© 0o

0

S © 00 JO Ui W

1. Algoritmos em grafos

if key(parent(p))>key(p) then
swap (key (parent (p)) ,key (p))
heapify-up(H,parent (p))

end if

Lema 1.2
Seja T um min-heap. Decremente a chave do né p. Apéds heapify-up(T, P)
temos novamente um min-heap. A operacao custa O(logn).

Prova. Por indugdo sobre a profundidade k de p. Caso k = 1: p ¢ a raiz,
ap6s o decremento ja temos um min-heap e heapify-up nao altera ele. Caso
k > 1: Seja ¢ a nova chave de p e d a chave de parent(p). Caso d < c jé temos
um min-heap e heapify-up ndo altera ele. Caso d > c¢ heapify-up troca c e
d e chama heapify-up(T,parent(p)) recursivamente. Podemos separar a troca
em dois passos: (i) copia d para p. (ii) copia ¢ para parent(p). Apds passo
(i) temos um min-heap T’ e passo (ii) diminui a chave de parent(p) e como
a profundidade de parent(p) é k — 1 obtemos um min-heap apds da chamada
recursiva, pela hipdtese da indugao.

Como a profundidade de T é O(logn), o niimero de chamadas recursivas tam-
bém é, e como cada chamada tem complexidade O(1), heapify-up tem com-
plexidade O(logn). [|

Como remover? A idéia basica é a mesma: troca a chave com a menor chave
dos filhos. Para manter o heap completo, colocaremos primeiro a chave da
dltima posi¢do na posi¢ao do elemento removido.

delete(H,p):=
troca dltima posigdo com p
heapify-down (H,p)

heapify-down(H,p):=
if p n8o possui filhos return
if p possui um filho then
if key(left(p))<key(p)) then swap(key(left(p)),key(p))
return
end if

22

11
12
13
14
15
16
17
18
19
20

03O Ui Wi+

1.5. Filas de prioridade e heaps

{ p possui dois filhos }
if key(p)>key(left(p)) or key(p)>key(right(p)) then
if (key(left(p))<key(right(p)) then
swap (key (left (p)),key(p))
heapify-down(H,left (p))
else
swap (key (right (p)) ,key (p))
heapify-down(H,right (p))
end if
end if

Lema 1.3
Seja T um min-heap. Incremente a chave do né p. Apds heapify-down(T,p)
temos novamente um min-heap. A operacdo custa O(logn).

Prova. Por indugédo sobre a altura k de p. Caso k = 1, p é uma folha e apds o
incremento ja temos um min-heap e heapify-down nao altera ele. Caso k > 1:
Seja ¢ a nova chave de p e d a chave do menor filho f. Caso ¢ < d ja temos
um min-heap e heapify-down nao altera ele. Caso ¢ > d heapify-down troca c
e d e chama heapify-down(T,f) recursivamente. Podemos separar a troca em
dois passos: (i) copia d para p. (ii) copia ¢ para f. Apds passo (i) temos um
min-heap T’ e passo (ii) aumenta a chave de f e como a altura de f é k — 1,
obtemos um min-heap apés da chamada recursiva, pela hipétese da indugao.
Como a altura de T é O(logn) o nimero de chamadas recursivas também, e
como a cada chamada tem complexidade O(1), heapify-up tem complexidade
O(logmn). [|
Ultima operacio: atualizar a chave.

update (H,p,v) :=
if v<key(p) then

key (p):=v

heapify-up(H,p)
else

key (p):=v

heapify-down (H,p)
end if

23

SO W N~

1. Algoritmos em grafos

Sobre a implementacdao Uma arvore bindria completa pode ser armazenado
em um vetor v que contém as chaves. Um pontador p a um elemento é
simplesmente o indice no vetor. Caso o vetor contém n elementos e possui
indices a partir de 0 podemos definir

root(p) := return p=0

parent (p) := return |[(p—1)/2]

key(p) := return v[p]

left(p) := return 2p+1

right(p) := return 2p+2

numchildren(p) := return max(min(n — left(p),2),0)

Outras observagoes:

o Para chamar update, temos que conhecer a posi¢ao do elemento no heap.
Para um conjunto de chaves compactos [0, n) isso pode ser implementado
usando um vetor pos, tal que pos[c] é o indice da chave ¢ no heap.

« A fila de prioridade nao possui teste u € Q (linha 15 do algoritmo 1.3)
eficiente. O teste pode ser implementado usando um vetor visited, tal
que visited[u] sse u € Q.

1.5.2. Heaps binomiais

Um heap binomial é um colecao de drvores binomiais que satisfazem a orde-
nacgao de um heap. A &arvore binomial By consiste de um tnico vértice. A
arvore binomial B; possui uma raiz com filhos By,...,Bi_1. O posto de By é
k. Um heap binomial contém no maximo uma arvore binomial de cada posto.

Bo Bi B2 B; B4
° :/.\: W
Lema 1.4

Uma arvore binomial tem as seguintes caracteristicas:

1. B, possui 2™ vértices, 2™~ folhas (para n > 0), e tem altura n + 1.

24

1.5. Filas de prioridade e heaps

2. O nivel k de By, (a raiz tem nivel 0) tem (}}) vértices. (Isso explica o
nome.)
Prova. Exercicio. |

Observagao 1.7

Podemos combinar dois B; obtendo um B;; e mantendo a ordenagao do heap:
Escolhe a arvore com menor chave na raiz, e torna a outra filho da primeira.
Chamaremos essa operacao “link”. Ela tem custo O(1) (veja observagoes sobre
a implementagao).

O

Observagao 1.8

Um B; possui 2 vértices. Um heap com n chaves consiste em O(logn) arvores.
Isso permite juntar dois heaps binomiais em tempo O(logn). A operagio é
semelhante & soma de dois niimeros binarios com “carry”. Comega juntar os
Bo. Caso tem zero, continua, case tem um, inclui no heap resultante. Caso
tem dois o heap resultante ndo recebe um By. Define como “carry” o link dos
dois By’s. Continua com os By. Sem tem zero ou um ou dois, procede como
no caso dos By. Caso tem trés, incluindo o “carry”, inclui um no resultado,
e define como “carry” o link dos dois restantes. Continue desse forma com os
restantes drvores. Para heaps hy, h, chamaremos essa operagio meld(hj,hy).

O
Com a operagao meld, podemos definir as seguintes operagoes:
o makeheap(c): Retorne um By com chave c. Custo: O(1).
o insert(h,c): meld(h,makeheap(c)). Custo: O(logn).
o getmin(h): Mantendo um link para a drvore com o menor custo: O(1).

o deletemin(h): Seja By a &rvore com o menor chave. Remove a raiz.
Define dois heaps: hy é h sem By, h, consiste dos filhos de By, i.e.
Bo, ..., Bk—1. Retorne meld(hy,h;). Custo: O(logn).

« updatekey(h,p,c): Como no caso do heap bindrio completo com custo
O(logmn).

25

1. Algoritmos em grafos

o delete(h,c): decreasekey(h,c,—o0); deletemin(h)

Em comparagdo com um heap binario completo ganhamos nada no caso pessi-
mista. De fato, a operagao insert possui complexidade pessimista O(1) amor-
tizada. Um insert individual pode ter custo O(logn). Do outro lado, isso
acontece raramente. Uma andlise amortizada mostra que em média sobre
uma série de operagdes, um insert s6 custa O(1). Observe que isso ndo é uma
analise da complexidade média, mas uma anélise da complexidade pessimista
de uma série de operagoes.

Analise amortizada

Exemplo 1.5

Temos um contador bindrio com k bits e queremos contar de 0 até 2X—1. Ana-
lise “tradicional”: um incremento tem complexidade O(k), porque no caso pior
temos que alterar k bits. Portanto todos incrementos custam O(k2%). Ané-
lise amortizada: “Poupamos” operacdes extras nos incrementos simples, para
“gasta-las” nos incrementos caros. Concretamente, setando um bit, gastamos
duas operagdes, uma para setar, outra seria “poupada”. Incrementando, usa-
remos as operacoes “poupadas” para zerar bits. Desta forma, um incremento
custa O(1) e temos custo total O(2).

Uma outra forma da andlise amortizada é através uma func¢do potencial @, que
associa a cada estado de uma estrutura de dados um valor positivo (a “pou-
panca”). O custo amortizado de uma operagao que transforma uma estrutura
e; em uma estrutura e; e ¢ — @(ej) + @(ez2), com c o custo de operagdo. No
exemplo do contador, podemos usar como @ (1) o nimero de bits na represen-
tacdo binario de i. Agora, se temos um estado eq

11---10
——

P bits um g bits um
com @(e7) =p + q, o estado apds de um incremento é

00---01 ---
e
q

com @(ez) =14 q. O incremento custa ¢ = p + 1 operagdes e portanto o
custo amortizado é

c—oler)+ole2)=p+1—p—q+14+q9=2=0(1).

26

0 O Ui Wi

1.5. Filas de prioridade e heaps

Resumindo: Dado um série de chamadas de uma operagao com custos Cq,...,Cn
o custo amortizado da operacdo é) ;.;., €i/n. Caso temos m operacoes di-

2

ferentes, o custo amortizado da operagao que ocorre nos indices | C [T, m] é
Zie] CL/U'

As somas podem ser dificeis de avaliar diretamente. Um método para simpli-
ficar o cédlculo do custo amortizado é o método potencial. Acha uma fungdo
potencial @ que atribui cada estrutura de dados antes da operagdo i um va-
lor ndo-negativo @; > 0 e normaliza ela tal que @7 = 0. Atribui um custo
amortizado

ai =Ci — @i + @it

a cada operacgdo. A soma dos custos ndo ultrapassa os custos originais, porque

Zai:ZCi_(Pi+(Pi+1 :@n+1—<P1+ZCiZZCi

Portanto, podemos atribuir a cada tipo de operacao | C [1, m] o custo amorti-
zado Zie] ai/|J|. Em particular, se cada operagéo individual 1 €] tem custo
amortizado a; < F, o custo amortizado desse tipo de operacao é F.

Exemplo 1.6

Queremos implementar uma tabela dindmica para um nimero desconhecido
de elementos. Uma estratégia é reserver espaco para n elementos, manter a
ultima posigdo livre p, e caso p > n alocara uma nova tabela de tamanho
maior. Uma implementacao dessa ideia é

insert (x):=
if p>mn then
aloca nova tabela de tamanho t = max{2n,1}
copia os elementos xi,1 <i<p para nova tabela
n:=t
end if
Xp i= X
p=p+1
com valores iniciais n:= 0 e p := 0. O custo de insert é O(1) caso existe ainda
espago na tabela, mas O(n) no pior caso.
Uma anélise amortizada mostra que a complexidade amortizada de uma ope-
racdo é O(1). Seja Cn o custo das linhas 3-5 e D o custo das linhas 7-8.
Escolhe a funcao potencial @(n) =2Cp — Dn. A funcdo ¢ é satisfaz os crité-
rios de um potencial, porque p > n/2; e inicialmente temos @(0) = 0. Com
isso o custo amortizado caso tem espago na tabela é

ai=ci—@(i-1)+oe(i)
=D—(2C(p—1)—Dn) + (2Cp —Dn) = C + 2C = O(1).

27

1. Algoritmos em grafos

Caso temos que alocar uma nova tabela o custo é

ai=ci—oei—1)+¢ei)=D+Cn—(2C(p—1)—Dn) + (2Cp — 2Dn)
— C+Dn+2C—Dn=0(1).

O

Custo amortizado do heap binomial Nosso potencial no caso do heap bi-
nomial é o nimero de arvores no heap. O custo de getmin e updatekey nao
altera o potencial e por isso permanece o mesmo. makeheap cria uma arvore
que custa mais uma operacao, mas permanece O(1). deletemin pode criar
O(logn) érvores novas, porque o heap contém no maximo um Bpgn que
tem O(logn) filhos, e permanece também com custo O(logn). Finalmente,
insert reduz o potencial para cada link no meld e portanto agora custa somente
O(1) amortizado, com o mesmo argumento que no exemplo 1.5.
Desvantagem: a complexidade (amortizada) assintética de calcular uma arvore
geradora minima permanece O(nlogn + mlogn).

Meld preguicosa Ao invés de reorganizar os dois heaps em um meld, pode-
mos simplesmente concatend-los em tempo O(1). Isso pode ser implementado
sem custo adicional nas outras operagoes. A tnica operac¢do que nao tem com-
plexidade O(1) é deletemin. Agora temos uma colecdo de arvores binomiais
ndo necessariamente de posto diferente. O deletemin reorganiza o heap, tal
que obtemos um heap binomial com arvores de posto inico novamente. Para
isso, mantemos um vetor com as arvores de cada posto, inicialmente vazio.
Sequencialmente, cada arvore no heap, sera integrado nesse vetor, executando
operacoes link sé for necessario. O tempo amortizado de deletemin permanece
O(logmn).

Usaremos um potencial ¢ que é o dobro do niimero de drvores. Supondo que
antes do deletemin temos t arvores e executamos | operagoes link, o custo
amortizado é

(t+1)—2t+2(t—1) =t—1L

Mas t — 1 é o niimero de arvores depois o deletemin, que é O(logn), porque
todas arvores possuem posto diferente.

Sobre a implementacao Um forma eficiente de representar heaps binomiais,
é em forma de apontadores. Além das apontadores dos filhos para o os pais,
cada pai possui um apontador para um filho e os filhos sdo organizados em
uma lista encadeada dupla. Mantemos uma lista encadeada dupla também
das raizes. Desta forma, a operacao link pode ser implementada em O(1).

28

1.5. Filas de prioridade e heaps

1.5.3. Heaps Fibonacci

Um heap Fibonacci é uma modificacdo de um heap binomial, com uma opera-
¢ao decreasekey de custo O(1). Com isso, uma arvore geradora minima pode
ser calculada em tempo O(m + nlogn). Para conseguir decreasekey em O(1)
nao podemos mais usar heapify-up, porque heapify-up custa O(logn).
Primeira tentativa:

« delete(h,p): Corta p de h e executa um meld entre o resto de h e os filhos
de p. Uma alternativa é implementar delete(h,p) como decreasekey(h,p,—o0)
e deletemin(h).

o decreasekey(h,p): A ordenacdo do heap pode ser violada. Corta p é
execute um meld entre o resto de h e p.

Problema com isso: apds de uma série de operagoes delete ou decreasekey, a
arvore pode se tornar “esparso”, i.e. o nimero de vértices nao é mais expo-
nencial no posto da arvore. A andlise da complexidade das operacoes como
deletemin depende desse fato para garantir que temos O(logn) arvores no
heap. Consequéncia: Temos que garantir, que uma arvore nao fica “podado”
demais. Solugdo: Permitiremos cada vértice perder no méximo dois filhos.
Caso o segundo filho é removido, cortaremos o préprio vértice também. Para
cuidar dos cortes, cada n6é mantém ainda um valor booleana que indica, se ja
foi cortado um filho. Observe que um corte pode levar a uma série de cortes
e por isso se chama de corte em cascatas (ingl. cascading cuts). Um corte
em cascata termina na pior hipétese na raiz. A raiz é o Uinico vértice em que
permitiremos cortar mais que um filho. Por isso ndo mantemos flag na raiz.

Implementacdées Denotamos com h um heap, ¢ uma chave e p um elemento
do heap. minroot(h) é o elemento do heap que correspondo com a raiz da
chave minima, e cut(p) é uma marca que verdadeiro, se p ja perdeu um filho.

29

OO UL W N+

1. Algoritmos em grafos

insert(h, c¢) :=
meld (makeheap(c))

getmin(h) :=
return minroot (h)

delete (h,p) :=
decreasekey (h,p,—o0)
deletemin (h)

meld (h;,hy) :=
h := lista com raizes de hy e hy (em O(1))
minroot (h) :=
if key(minroot (hy))<key(minroot(hy)) h; else h;

decreasekey(h,p,c) :=

key(p):= c
if ¢ < key(minRoot (h))
minRoot (h) := p

if not root(p)
if key(parent (p))>key(p)
corta p e adiciona na lista de raizes de h
cut (p) := false
cascading-cut (h,parent (p))

cascading-cut (h,p) :=
{ p perdeu um filho }

if root(p)
return
if (not cut(p)) then
cut (p) := true
else
corta p e adiciona na lista de raizes de h
cut (p) := false
cascading-cut (h,parent (p))
end if

deletemin(h) :=
remover minroot (h)
juntar as listas do resto de h e dos filhos de minroot (h)
{ reorganizar heap 1}

30

42
43
44
45
46
47
48
49
50
51
52
93
o4
95
56
o7
98
99
60
61
62
63
64

1.5. Filas de prioridade e heaps

determina o posto madximo M =M(n) de h
T; := undefined para 0<i<M
for toda raiz r do
remove T da lista de raizes
d := degree(r)
while (rq not undefined) do
T := link(r,T1q)
T4 := undefined
d := d+1
end while
Tq = T
end for
definir a lista de raizes pelas entradas definidas 1
determinar o novo minroot

link (hy,hy) :=
if (key(hy)<key(hz))
h := makechild(h;,hy)

else

h := makechild(h,,hy)
cut (h;) := false
cut (hy) := false

return h
Para concluir que a implementagdo tem a complexidade desejada temos que
provar que as arvores com no maximo um filho cortado nao ficam esparsos
demais e analisar o custo amortizado das operagoes.

Custo amortizado Para analise usaremos um potencial de ¢it + com sendo
t o niimero de arvores, m o nimero de vértices marcados e cy,cy constantes.
As operagoes makeheap, insert, getmin e meld (preguigoso) possuem comple-
xidade (real) O(1). Para decreasekey temos que considerar o caso em que o
corte em cascata remove mais que uma subarvore. Supondo que cortamos
n arvores, o numero de raizes é t + n apds dos cortes. Para todo corte em
cascata, a arvore cortada é desmarcada, logo temos no maximo m — (n — 1)
marcas depois. Portanto custo amortizado é

OMm)—(cit+com)+(ci(t+n)+ca(m—(Mm—1))) =con—(c2—ci)n+c2
e com Cy —Cq > ¢ temos custo amortizado constante ¢, = O(1).

Com posto maximo M, a operagao deletemin tem o custo real O(M +t), com
as seguintes contribuigoes

31

1. Algoritmos em grafos

e Linha 43: O(M).

e Linhas 44-51: O(M +t) com t o ndmero inicial de arvores no heap. A
lista de raizes contém no maximo as t arvores de h e mais M filhos da
raiz removida. O lago total ndo pode executar mais que M+t operagoes
link, porque cada um reduz o nimero de raizes por um.

e Linhas 54-55: O(M).

Seja m o nimero de marcas antes do deletemin e m’ o nimero depois. Como
deletemin marca nenhum vértice, temos m’ < m. O nimero de arvores t’
depois de deletemin satisfaz t’ < M porque deletemin garante que existe no
maximo uma arvore de cada posto. Portanto, o potencial depois de deletemin
e @' =cit+com’ <c¢iM + com, e o custo amortizado é

OM+1t)—(cit+com)+ @' <OM+1t)— (cit+com) + (c1M +com)
=(co+c1)M+(co—ci)t

e com Cj > Co temos custo amortizado O(M).

Um limite para M Para provar que deletemin tem custo amortizado logn,
temos que provar que M = M(n) = O(logn). Esse fato segue da maneira
“cautelosa” com que cortamos vértices das arvores.

Lema 1.5
Seja p um vértice arbitrario de um heap Fibonacci. Considerando os filhos

na ordem temporal em que eles foram introduzidos, filho 1 possui pelo menos
i— 2 filhos.

Prova. No instante em que o filho i foi introduzido, p estava com pelo menos
i—1 filhos. Portanto i estava com pelo menos i — 1 filhos também. Depois

filho i perdeu no maximo um filho, e portanto possui pelo menos i — 2 filhos.
|
Quais as menores arvores, que satisfazem esse critério?

Fb Fi B F3 Fa

R e e

32

1.5. Filas de prioridade e heaps

Lema 1.6
Cada subarvore com uma raiz p com k filhos possui pelo menos Fy_, vértices.

Prova. Seja Sy o nimero minimo de vértices para uma subdrvore cuja raiz
possui k filhos. Sabemos que So =1, S; = 2. Define S_, =S 7 =1. Com
isso obtemos para k > 1

Sk = Z Sk—2 =Sx—2+Sk—3+--+S_2 =Sk + Sk_1.
0<i<k

Comparando S com os ntumeros Fibonacci

Fo k se0<k<1
kT Froo+Fr1 sek>2
e observando que So = F, e S = F3 obtemos Sy = Fy,2. Usando que
Fp € ©(®™) com @ = (14 1/5)/2 (exercicio!) conclui a prova. [|

Corolario 1.1
O posto méximo de um heap Fibonacci com n elementos é O(logn).

Sobre a implementacdo A implementagio da arvore é a mesma que no caso
de heaps binomiais. Uma vantagem do heap Fibonacci é que podemos usar os
nds como ponteiros — lembre que a operacgdo decreasekey precisa isso, porque
o0s heaps nao possuem uma operacao de busca eficiente. Isso é possivel, porque
sem heapify-up e heapify-down, os ponteiros mantem-se validos.

1.5.4. Rank-pairing heaps

Haeupler et al. (2009) propéem um rank-pairing heap (um heap “empare-
lhando postos”) com as mesmas garantias de complexidade que um heap Fi-
bonacci e uma implementagio simplificada e mais eficiente na pratica (ver
observagao 1.11).

Torneios Um torneio é uma representagao alternativa de heaps. Comegando
com todos elementos, vamos repetidamente comparar pares de elementos, e
promover o vencedor para o préximo nivel (Fig. 1.3(a)). Uma desvantagem
de representar torneios explicitamente é o espaco para chaves redundantes.
Por exemplo, o campedo (i.e. 0 menor elemento) ocorre O(logn) vezes. A
figura 1.3(b) mostra uma representacio sem chaves repetidas. Cada chave
é representado somente na comparacao mais alta que ele ganhou, as outras
comparagoes ficam vazias. A figura 1.3(c) mostra uma representacao compacta

33

1. Algoritmos em grafos

Figura 1.3.: Representacoes de heaps.

em forma de semi-drvore. Numa semi-arvore cada elemento possui um filho
ordenado (na figura o filha da esquerda) e um filho ndo-ordenado (na figura o
filho da direita). O filho ordenado é o perdedor da comparagio direta com o
elemento, enquanto o filho ndo-ordenado é o perdedor da comparagao com o
irméo vazio. A raiz possui somente um filho ordenado.

Cada elemento de um torneio possui um posto. Por defini¢do, o posto de uma
folha é 0. Uma comparagido justa entre dois elementos do mesmo posto
resulta num elemento com posto T+ 1 no préximo nivel. Numa comparacio
injusta entre dois elementos com postos diferentes, o posto do vencedor é
definido pelo maior dois postos dos participantes (uma alternativa é que o
posto fica 0 mesmo). O posto de um elemento representa um limite inferior
do ntimero de elementos que perderam contra-lo:

Lema 1.7
Um torneio com campedo de posto k possui pelo menos 2% elementos.

Prova. Por indugdo. Caso um vencedor possui posto k temos duas possibi-
lidades: (i) foi o resultado de uma comparacao justa, com dois participantes

34

0O Uik Wi

I I I I I N B N B N R e e e R e e i e T T
NN OO U R WNH OO Uik W eE OO

1.5. Filas de prioridade e heaps

com posto k — 1 e pela hipétese da inducdo com pelo menos 2%~ elementos,
tal que o vencedor ganhou contra pelo menos 2% elementos. (ii) foi resultado
de uma comparacao injusta. Neste caso um dos participantes possuiu posto
k e o vencedor novamente ganhou contra pelo menos 2% elementos. |

Cada comparacao injusta torna o limite inferior dado pelo posto menos preciso.
Por isso uma regra na construcdo de torneios é fazer o maior nimero de
comparagoes justas possiveis. A representagdo de um elemento de heap é
possui quatro campos para a chave (c), o posto (r), o filho ordenado (o) e o
filho nao-ordendo (u):

def Node(c,r,o,u)
Podemos implementar as operacoes de uma fila de prioridade (sem update ou
decreasekey) como segue:

{ compara duas &rvores 1}
link (t7,ty) :=
if ty.c < ty.c then
return makechild (ty,ty)
else
return makechild (ty,tq)
end if

makechild(s,t) :=

t.u = s.0

s.o = t
setrank (t)

s.r := s.r + 1

return s

setrank(t) :=

if t.o.r = t.u.r

t.r = t.o.r + 1
else

t.r = max(t.o.r,t.u.r)
end if

{ cria um heap com um dnico elemento com chave c }
make-heap(c) := return Node(c,0,undefined,undefined)

{ insere chave c no heap 1}
insert(h,c) := link(h,make-heap(c))

35

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
95
o6
o7
58
59
60
61
62

1. Algoritmos em grafos

{ unido de dois heaps }
meld(hy,hy) := link(h;,hy)

{ elemento minimo do heap }
getmin(h) := return h

{ delegdo do elemento minimo do heap }

deletemin(h) :=
aloca array To...Th.o.r+1
t = h.o
while t not undefined do
t' = t.u
t.u := undefined
register(t,r)
ti=t'
end while
h’ := undefined
for i=0,...,h.or+1 do
if 1y not undefined
h’ := link(h’,r1y)
end if
end for
return h’
end

register (t,r) :=

if T{o.rr1 is undefined then
Ttor+1 = T

else
t:=link (t,Tt.0rr1)
Tt.orse1 := undefined
register (t,r)

end if

end

(A figura 1.4 visualiza a operagao “link”.)

Observagao 1.9

Todas comparagoes de “register” sdo justas. As comparagoes injustas ocorrem
na construcao da arvore final nas linhas 35-39. O

36

1.5. Filas de prioridade e heaps

ST

Figura 1.4.: A operagao “link” para semi-arvores no caso tj.c < tj.c.

last

h, min /?/—\

Figura 1.5.: Representacao de um heap binomial.

Lema 1.8
Num torneio balanceado o custo amortizado de “make-heap”, “insert”, “meld”
e “getmin” é O(1), o custo amortizado de “deletemin” é O(logn).

Prova. Usaremos o nimero de comparagoes injustas no torneio como poten-
cial. “make-heap” e “getmin” nao alteram o potencial, “insert” e “meld” au-
mentam o potencial por no maximo um. Portanto a complexidade amortizada
dessas operagoes é O(1). Para analisar “deletemin” da raiz r do torneio vamos
supor que houve k comparacoes injustas com r. Além dessas comparagoes in-
justas, r participou em no méximo logn comparagoes justas pelo lema 1.7.
Em soma vamos liberar no maximo k 4 logn arvores, que reduz o potencial
por k, e com no méximo k + logn comparagoes podemos produzir um novo
torneio. Dessas k+logn comparac¢des no maximo log n sao comparagoes injus-
tas. Portanto o custo amortizado é k+logn —k +logn = 2logn = O(logn).
]

Heaps binomiais com varredura tinica O custo de representar o heap numa
arvore Unica é permitir comparagoes injustas. Uma alternativa é permitir
somente comparagoes justas, que implica em manter uma cole¢ao de O(logn)
arvores. A estrutura de dados resultante é similar com os heaps binomiais:
manteremos uma lista (simples) de raizes das drvores, junto com um ponteiro
para a arvore com a raiz de menor valor. O heap é representado pela raiz de
menor valor, ver Fig. 1.5.

37

N O U W N~

CO O Ui W N+

NN NN NN DN = = = = s e e
U WD O OO0 Uik WwWwNnEF— oo

1. Algoritmos em grafos

insert(h,c) :=
insere make-heap(c) na lista de raizes
atualize a arvore minima

meld(h;,hy) :=
concatena as listas de h; e hy
atualize a arvore minima
Somente “deletemin” opera diferente agora:

deletemin(h) :=
aloca um array de listas To...T[logn]
remove a arvore minima da lista de raizes
distribui as restantes &arvores sobre T

t:=h.o

while t not undefined do
t':=tu
t.u := undefined
insere t na lista Tt o.r4+1
ti=t'

end while

{ executa o maior nimero possivel }
{ de comparagdes justas num dnico passo }

h := undefined { lista final de raizes }
for 1=0,...,[logn] do
while [ri| > 2
t := link(ri.head,ri.head.next)
insere t na lista h
remove Tij.head,rj.head.next da lista Ti
end if
if |rjf=1 insere ri.head na lista h
end for
return h

Observagao 1.10
Continuando com comparagoes justas até sobrar somente uma arvore de cada
posto, obteremos um heap binomial. O

Lema 1.9
Num heap binomial com varredura tnica o custo amortizado de “make-heap”,
“insert”, “meld”, “getmin” é O(1), o custo amortizado de “deletemin” é O(logn).

38

1.5. Filas de prioridade e heaps

VNN AN

(a) r+1 r+1 r4+0 >r+1 >r+1 r+0

SN N NN

(b) r+1 r+1 r+1 r+2 rv+2 r+1 v+0 >r+2

N

>r+2 r+0
Figura 1.6.: Diferengas no posto de rp-heaps do tipo 1 (a) e tipo 2 (b).

Prova. Usaremos o dobro do ntimero de arvores como potencial. “getmin”
nao altera o potencial. “make-heap”, “insert” e “meld” aumentam o potencial
por no méaximo dois (uma arvore), e portanto possuem custo amortizado O(1).
“deletemin” libera no maximo logn arvores, porque todas comparagoes foram
justas. Com um ntmero total de h &rvores, o custo de deletemin é O(h).
Sem perda de generalidade vamos supor que o custo é h. A varredura final
executa pelo menos (h—logn)/2—1 comparacgoes justas, reduzindo o potencial
por pelo menos h —logn — 2. Portanto o custo amortizado de “deletemin” é
h—(h—logn—2) =logn+ 2= 0O(logn). []

rp-heaps O objetivo do rp-heap é adicionar ao heap binomial de varredura
lnica uma operacao “decreasekey” com custo amortizado O(1). A ideia e
os problemas sdo os mesmos do heap Fibonacci: (i) para tornar a operagao
eficiente, vamos cortar a sub-arvore do elemento cuja chave foi diminuida. (ii)
o heap Fibonacci usava cortes em cascata para manter um ntimero suficiente
de elementos na arvore; no rp-heap ajustaremos os postos do heap que perde
uma sub-arvore. Para poder cortar sub-arvores temos que permitir uma folga
nos postos. Num heap binomial a diferenga do posto de um elemento com o
posto do seu pai (caso existe) sempre é um. Num rp-heap do tipo 1, exigimos
somente que os dois filhos de um elemento possuem diferenga do posto 1 e 1,
ou 0 e ao menos 1. Num rp-heap do tipo 2, exigimos que os dois filhos de
um elemento possuem diferenca do posto 1T e 1, T e 2 ou 0 e pelo menos 2.
(Figura 1.6.)

Com isso podemos implementar o “decreasekey” (para rp-heaps do tipo 2)
como segue:

39

1. Algoritmos em grafos
A

Figura 1.7.: A operagdo “decreasekey”.

1 decreasekey(h,e,A) :=

2 e.c := e.c —A

3 if root(e)

4 return

5 if parent(e).o = e then

6 parent(e).o := e.u

7 else

8 parent(e).u := e.u

9 end if

10 parent(e).u := parent(e)

11 e.u := undefined

12 u := parent(e)

13 parent (e) := undefined

14 insere e na lista de raizes de h
15 decreaserank (u)

16

17 rank(e) :=

18 if e is undefined

19 return —1

20 else

21 return e.r

22

23 decreaserank(u) :=

24 if root(u)

25 return

26 if rank(u.o) > rank(u.u)+1 then
27 k := rank(u.o)

28 else if rank(u.u) > rank(u.o)+1 then
29 k := rank(u.u)

30 else

40

31
32
33
34
35
36
37
38
39
40
41

1.5. Filas de prioridade e heaps

k = max(rank(u.o),rank(u.u))+1

end if

if u.r = k then
return

else
u.r := k

decreaserank (parent (u))

delete(h,e) :=
decreasekey(h,e,—00)
deletemin (h)

Observagao 1.11

Para implementar o rp-heap precisamos além dos ponteiros para o filho or-
denado e nao-ordenado um ponteiro para o pai do elemento. A (suposta)
eficiéncia do rp-heap vem do fato que o decreasekey altera os postos do heap,
e pouco da estrutura dele e do fato que ele usa somente trés ponteiros por
elemento, e ndo quatro como o heap Fibonacci. %

Lema 1.10
Uma semi-arvore do tipo 2 com posto k contém pelo menos ¢* elementos,

sendo ¢ = (14 v/5)/2 a razdo 4urea.

Prova. Por inducdo. Para folhas o lema é valido. Caso a raiz com posto k
nao é folha podemos obter duas semi-arvores: a primeira é o filho da raiz sem
o seu filho ndo-ordenado, e a segunda é a raiz com o filho ndo ordenado do
seu filho ordenado (ver Fig. 1.8). Pelas regras dos postos de arvores de tipo
dois, essas duas arvores possuem postos k—lek—T,ouk—lek—2ouke
no maximo k — 2. Portanto, o menor nimero de elementos ny contido numa
semi-arvore de posto k satisfaz a recorréncia

N = Ng—1 + Ny,

que é a recorréncia dos nimeros Fibonacci. |
Lema 1.11

As operagoes “decreasekey” e “delete” possuem custo amortizado O(1) e O(logn)
Prova. Ver (Haeupler et al., 2009). |

1.5.5. Heaps ocos
Introducdo

Objetivo: operagoes com a mesma complexidade amortizada que heaps de
Fibonacci. Para um heap h, chave k e elemento e temos as operagoes:

41

T W N =

1. Algoritmos em grafos

Figura 1.8.: Separar uma semi-arvore de posto k em duas.

make-heap(): O(1)
find-min(h)/getmin(h): O(1)
meld(hy,hz): O(1)
insert(e,k,h): O(1)
decrease-key(e,k,h): O(1)
delete(e,h): O(logn)
delete-min(h): O(logn)

Ideia principal: a operagio delete esvazia nés, produzindo nés ocos (ingl. hol-
low nodes), a operagdo decrease-key é um delete, seguido por um insert.
Teremos duas medidas:

n Nimero de elementos no heap

N Numero de nés no heap = # de elementos + # de nés ocos = # operagoes

insert + # operagoes decrease-key

Variantes de heaps ocos:

Heaps ansiosos (ingl. “eager heaps”) com multiplas raizes.

e Heaps ansiosos com uma tUnica raiz.

o Heaps preguicosos.

def

Node =

item // elemento
key // chave

fc
ns

42

// ponteiro para primeiro filho
// ponteiro para prdéximo irmdo

—_
= O © 00O Utk Wi -

—_

O © 0O

1.5. Filas de prioridade e heaps

rank // posto do nd

def Item =
no // ndé correspondente
// mais dados satelites

Operacdo basica: link Um link gera um vencedor e um perdedor, que se
torna filho do vencedor, e aumenta o posto do vencedor.

(ranked)link (t;,ty) :=
if ty.key < ty.key
return makechild (ty,ty)
else
return makechild (ty,t7)

makechild (w,l) :=
1l.ns = w.fc
w.fc =1
w.rank := w.rank+1

return w

Representacao basica

o Lista simples circular de drvores com ordenacao do heap, representada
por um ponteiro & drvore cuja rafz contém a menor chave (chamada a
raiz minima).

e Cada nd cheia armazena um item. Podem existir nds ocos sem item.

e Noés ocos nunca mais ficam cheias, eles podem somente ser destruidos.

o Filhos ficam armazenados em listas simples, em ordem néao-crescente de
postos.

43

© 00~ O U= W+

1.

44

Algoritmos em grafos

make-heap() := return null

make-heap(e,k) := return Node(e,k,null,self,0)
getmin(h) := h

findmin(h) := return h is not null? h.item : null

meld(hq,hy) :=
if hy; is null return hy
if hy is null return hy
swap(h;.ns,hy.ns) // cria uma lista circular simples
if hy.key < hy.key return hy else return h;

insert(e,k,h) := meld(make-heap(e,k),h)

decrease-key(e,k,h) :=
u = e.node
v = make-heap(e,k)
v.rank = max{0,u.rank-2}

// desloca os filhos de postos 0,...,rank-2 para v
if u.rank > 2

v.fc := u.fc.ns.ns

u.fc.ns.ns := null

return meld(v,h)

delete(e,h) :=
e.node.item := null
if e.node = h
delete-min (h)

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
93
o4
95
56
o7
a8
99
60
61
62
63
64
65
66
67
68

delete-min(h) :=
if h is null: return

// repetidamente remove raizes ocos e une os heaps

h.node.item := null
aloca um array Rp,R7,...,Rm
r:=h
repeat
rn := r.ns
link-heap(r,R)
r:=rn

until r==h

// reconstréi o heap
h:=null
for i=0,...,M
if Ry is not null
Ri.ns e Ri
h := meld(h,R;)
return h

link-heap(h,R) :=
if h is hollow
r:=h.fc
while r is not null
rn := r.ns
link-heap(r,R)
r := rn
destroy node h
else
i := h.rank
while R; is not null
h := link(h,R;)

Ri := null
i =1 + 1
end
Ri :=nh

1.5. Filas de prioridade e heaps

45

1. Algoritmos em grafos

Invariantes
1. Ordenacéo do heap.

2. Invariante do posto: cada né de posto T possui r filhos com postos

0,...,7— 1, exceto no caso r > 2 e o nb foi esvaziada por uma ope-
racdo decrease-key. Neste caso o n6 possui dois filhos de postos 1 — 1 e
r—2.

Corretude

Teorema 1.7
Heaps com noés ocos implementam corretamente todas operagao e mantém as
invariantes.

Prova. Por indugao sobre o ntimero de operacoes. |
Lembranca: os niimeros de Fibonacci sdo definidos por Fo =0,F; = 1,F,, =
Fi + Fitq, para i > 0 e temos Fi, > @, com a razio durea ® = (14 /5)/2.

Teorema 1.8
Um né de posto r possui pelo menos F,3 — 1 descendentes (cheios ou ocos),
incluindo o préprio nd, na arvore.

Prova. Por inducao sobre r. Para r = 0, temos F3 —1 =1, e parar = 1
temos F4 — 1 = 2 e a afirmagdo estd correta, porque para r < 2 um nd nao
perde filhos caso for esvaziado. Para v > 2 pela invariante do posto temos
pelo menos dois filhos com postos 1 — 1 e 12. Pela hipétese da inducao eles
tem pelo menos F.,7 — 1 e F, 2 — 1 descendentes e logo T possui pelo menos
Fry1—14+F2—14+1=F.3—1 descendentes. |

Corolario 1.2

Depois uma operagao delete-min o nimero de drvores é no maximo [logg N| =
O(log N) porque temos no méaximo uma &arvore por posto. Logo podemos
escolher M = [logg, N na operacao delete-min.

Teorema 1.9

O tempo amortizado por operagdo num heap oco é O(1), exceto para as ope-
racoes delete e delete-min, que tem complexidade O(log N) para um heap com
N nés.

Prova. Todas operacoes exceto a delecao do elemento minimo possuem tempo
O(1) no caso pessimista. O custo de uma delecdo é O(H+T) com H o niimero
de nés ocos destruidos, e T o ntimero de arvores antes das operagoes link.
Depois das operacoes link temos no maximo logg N arvores, logo faremos pelo

46

1.5. Filas de prioridade e heaps

Tabela 1.2.: Complexidade das operacoes de uma fila de prioridade. Comple-
xidades em negrito sdo amortizados. (1): meld preguigoso.

insert getmin deletemin update decreasekey delete
Vetor O(1) Oo(1) O(n) o(1) (update) O(1)
Lista ordenada O(n) o(1) Oo(1) O(n) (update) Oo(1)
Heap binario O(logmn) o(1) O (logm) O(logm) (update) O (logm)
Heap binomial 0(1) O(1) O(logn) O(logn) (update) O(logn)
Heap binomial(1) O(1) O(1) O(logn) O(logn) (update) O(logmn)
Heap Fibonacci Oo(1) o(1) O (logmn) - 0(1) O (logmn)
rp-heap o(1) o(1) O(logn) - 0(1) O(logn)

menos T —logg N operagoes link e no maximo logg N operagoes meld. Logo
o custo total é O(1) por destruicio de um né oco, e por link, mas O(log N).

Para contabilizar a destruicdo do um né, aumentamos o custo de cada criagao
(insert, decrease-key) por 1.

Para contabilizar as operagoes link: define um potencial igual ao ntimero de
nds cheias, que nao sao filho de outro né cheia (i.e. raizes e filhos de nds ocos).
Para todas operagoes diferente de delete-min e delete, o aumento do potencial
é constante (no maximo 1 para insert, 3 para decrease-key, 0 para as demais).
Para o delete que remove o elemento minimo e delete-min, o custo amortizado
de cada link é 0, porque um link combina duas raizes cheias, reduzindo o
potencial por 1. Além disso, ao remover um elemento, o potencial aumenta
por no méaximo logg N, um por cada filho do novo né oco. Logo o custo
amortizado de delete e delete-min é O(log N).

Re-otimizando o heap A andlise acima é em funcdo de N. Caso logN =
O(logn) temos um heap assintoticamente 6timo. Caso executamos muitas
operagoes decrease-key, temos que reconstruir o heap periodicamente, para
garantir N = O(n). O método mais simples é: escolhe uma constante ¢ > 1 e
para N > cn reconstréi o heap completamente, destruindo os nés ocos, criando
heaps de um tnico né de todos nés cheios, e aplicando operacdes meld para
unir todos heaps. O custo é O(N) para percorrer todo né uma vez e pode ser
atribuido na andlise amortizada para as operacoes insert e delete-min.

Resumo: Filas de prioridade A tabela 1.2 resume a complexidade das ope-
racgOes para diferentes implementacoes de uma fila de prioridade.

47

=W N

1. Algoritmos em grafos

1.5.6. Arvores de van Emde Boas

Pela observagao 1.5 é impossivel implementar uma fila de prioridade baseado
em comparacio de chaves com todas operagoes em o(logn) . Porém existem
algoritmos que ordenam n ntmeros em o(nlogn), aproveitando o fato que as
chaves sdo numeros com k bits, como por exemplo o radix sort que ordena em
tempo O(kn), ou aproveitando que as chaves possuem um dominio limitado,
como por exemplo o counting sort que ordena 1 nimeros em [k] em tempo
O(n+ k).

Uma drvore de van Emde Boas (drvore vEB) T realiza as operagoes

e member(T, e): elemento e pertence a T?
o insert(T,e): insere e em T
o delete(T,e): remove e de T

e min(T) e max(T): elemento minimo e maximo de T, ou “undefined” caso
nao existe

o succ(T,e) e pred(T, e): successor e predecessor de e em T; e nio precisa
pertencer a T

no universo de chaves [0,u — 1] em tempo O(loglogu) e espago O(u).
Outras operagdes compostas podem ser implementados, por exemplo

deletemin(T) :=

e:=min(T); delete(e); return e
deletemax (T) :=

e:=max(T); delete(e); return e

Arvores binarias em ordem vEB Na discussdo da implementacéo de &rvores
bindrias na pagina 24 discutimos uma representagdo em ordem da busca por
profundidade (BFS order). A ideia da ordem vEB é “cortar” a altura (nimero
de niveis) h de uma arvore binaria (que possui n = 2" —1 nodos e 2"~ folhas)
pela metade. Com isso obtemos

o uma arvore superior Ty de altura |h/2]

e eb =22 —@(2"2) = @(y/n) arvores inferiores T, ..., Ty de altura
[h/2] e com 2["/21 —1 = ©(y/n) nodos.

Os nodos dessa arvore sdo armazenados em ordem Ty, Ty, ..., Ty, e toda arvore
T; é ordenado recursivamente da mesma maneira, até chegar numa arvore de
altura h =1, como a Figura 1.9 mostra.

48

1.5. Filas de prioridade e heaps

Al R

1.1 00.0 00.101.0 01.110.0 10.111.0

I1I2I31 l1I2I4I5I3I6I7I [l2fs[als[o[shohiTehafs7haks]

Figura 1.9.: Organizagao de arvores binarias em ordem de van Emde Boas para
h € [4]. As folhas sao rotuladas por “cluster.subindice”. Abaixo
da arvore a ordem do armazenamento do vértices é dado. Os T;
correspondem com as subdrvores do primeiro nivel de recursao.

Armazenar uma arvore bindria em ordem de vEB néao altera a complexidade
das operagdes. Uma busca, por exemplo, continua com complexidade O(h).
Porém, armazenado em ordem da busca por profundidade, uma busca pode
gerar O(h) falhas no cache, no pior caso. Na ordem de vEB, a busca sem-
pre atravessa () (log, B) niveis, com B o tamanho de uma linha de cache,
antes de gerar uma nova falha no cache. Logo uma busca gera somente
O(log, n/log, B) = O(logg n) falhas no cache. O layout se chama cache
oblivious porque funciona sem conhecer o tamanho de uma linha de cache B.

Arvores VEB A estrutura béasica de uma arvore de vEB é

1. Usar uma &rvore binaria de altura h representar 2"~ ! elementos nas
folhas.

2. Cada folha armazena um bit, que é 1 caso o elemento correspondente
pertence ao conjunto representado.

3. Os bits internos servem como resumo da sub-arvore: eles representam
a conjuncdo dos bits dos filhos, i.e. um bit interno é um, caso na sua
sub-arvore existe pelo menos uma folha que pertence ao conjunto repre-
sentado.

Todas as operacoes da estrutura acima podem ser implementadas em tempo
O(h) = O(logu). Para melhorar isso, vamos aplicar a mesma ideia da ordem
de van Emde Boas: a arvore é separada em uma arvore superior, e uma série
de arvores inferiores, cada uma com altura ~ h/2. As folhas da arvore superior
contém o resumo das raizes das arvores inferiores: por isso a arvore superior
possui altura |h/2| + 1, uma a mais comparado com a ordem de vEB.

49

[\

[\

S U W N

1. Algoritmos em grafos

h h
L]

top bottom top bottom
L] LT TTTT] HEn
0 1 b—1 0 1

Figura 1.10.: Representacdo da primeira versdo de uma arvore vEB. (a) Forma
geral. (b) Caso base.

Fig. 1.10 mostra essa representagdo. A altura da arvore estd armazenada no
campo h. Além disso temos um ponteiro “top” para a arvore superior, e
um vetor de ponteiros “bottom” de tamanho b = 2"/2) para as raizes das
arvores inferiores. No caso base com h = 2, abusaremos os campos “top”
e “bottom” para armazenar os bits da raiz e dos dois filhos: um ponteiro
arbitrario diferente de undefined representa um bit 1, o ponteiro undefined o
bit 0. Para isso servem as fungoes auxiliares

set(p) := p:=1

clear (p) := p:=undefined

bit(p) := return p # undefined
Observe que as folhas 0,1, ...,2" 1 —1 podem ser representadas com h—1 bits.
Os primeiros |h/2] bits representam o ntimero da sub-drvore que contém a
folha, e os ultimos [h/2]—1 bits o indice (relativo) da folha na sua sub-arvore.
Isso explica a definicdo das fungdes auxiliares

subtree(e) := e> [h/2]—1
subindex (e) := e&(1 <« [h/2]—1)—1
element (s,i) := (s<[h/2]—1)[1

para extrair de um elemento o nimero da sub-arvore correspondente, ou o seu
indice nesta sub-arvore, e para determinar o indice na arvore atual do i-ésimo
elemento da sub-arvore s.

Com isso podemos implementar as operagdes como segue.

member (T,e) :=
if Th=2
return bit (T.bottom[e])
return member (T.bottom[subtree(e)],subindex(e))

min(T,e) :=

50

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

1.5. Filas de prioridade e heaps

if Th=2
if bit(T.bottom[0])
return 0
if bit(T.bottom[1])
return 1
return undefined

c:=min (T.top)
if ¢ = undefined
return c
return element(c,min(T.bottoml[c]))

succ(T,e) :=
if Th=2
if e=0 and bit(T.bottom[1])=1
return 1

return 0

s:=succ (T.bottom[subtree(e)],subindex(e))
if s # undefined

return element (subtree(e),s)

¢ :=succ (T.top,subtree(e))
if ¢ = undefined
return c
return element (c,min(T.bottom[c]))

insert(T,e) :=
if Th=2
set (T.bottom[e])
set (T.top)
else
insert (T.bottom[subtree(e)], subindex(e))

insert (T.top,subtree(e))

delete(T,e) :=
if Th=2
clear(T.bottom[e])
if (bit(T.bottom[1—e]l)=0
clear (T.top)

o1

47

48
49
50

51

1. Algoritmos em grafos

else
delete (T.bottom[subtree(e)], subindex(e))
s:=min(T.bottom[subtree(e)])
if s = undefined
delete (T.top,subtree(e))
As complexidades das operagoes implementadas no caso pessimista sao (ver
as chamadas recursivas acima em vermelho):

member T(h) = T([h/2]) + O(1) = B(logh) = O(loglogu).

min T(h) = T(|h/2] + 1) + T([h/2]) + O(1) = 2T(h/2) + O(1) = O(h) =
O(logu).

insert T(h) = T([h/2] + T([h/2] + 1)+ O(1) = ©(h) = O(log u).

succ/delete T(h) = T([h/2]) + T(|h/2] + 1) + O(h) = 2T(h/2) + O(h) =
O(hlogh) = O(loguloglogu) (com um trabalho extra de O(h) para
chamar “min”).

Logo todas operagoes com mais que uma chamada recursiva nao possuem
a complexidade desejada O(loglogu). A introducao de dois campos “min”
e “max” que armazenam o elemento minimo e maximo, junto com algumas
modificagoes resolvem este problema.

1. Armazenar somente o minimo, a operagido “min” custa somente O(1) é
“insert”, “succ” e “delete” consequentemente somente O(h).

2. Armazenado também o méaximo, sabemos na operacao “succ” se o su-
cessor esta na arvore atual sem buscar, logo a operagao “succ” pode ser
implementada em O(loglogu).

3. A ultima modificacdo é ndo armazenar o elemento minimo na sub-arvore
correspondente. Com isso a primeira inser¢do somente modifica a arvore
de resumo (top) e a segunda e as demais operagdes modificam somente
a sub-arvore correspondente. A delecdo funciona similarmente: ela re-
move ou um elemento na sub-arvore, ou o 1ltimo elemento, modificando
somente a arvore de resumo (top). Com isso todas operagdes podem ser
implementadas em O(loglogu).

Na base armazenaremos os elementos somente nos campos “min” e “max”.
Por convencdo setamos “min” maior que “max” numa arvore vazia. As se-
guintes fungoes auxiliares permitem remover os elementos de uma arvore base
e determinar se uma arvore possui nenhum, um ou mais elementos.

92

— O © 00O Uk Wi -

— =

0O Ui Wi

1.5. Filas de prioridade e heaps

h min max
L L) L
top bottom

h min max
[]
top bottom
[1] L L
b—1 0 1

Figura 1.11.: Representacao uma arvore vEB. (a) Forma geral. (b) Caso base.

clear(T) :=

T.min:=1; T.max:=0; // convengéo

empty (T) :=
return T.min>T.max

singleton(T) :=
return T.min=T.max

full(T) :=
return T.min<T.max

member (T,e) :=
if empty(T)
return false

if T.min = e or T.max

return true

{ ndo & “"min'' nem
if T.h = 2
return false

max''? a base nio contém o elemento }

return member (T.bottom[subtree(e)],subindex(e))

min(T) :=
if empty(T)
return undefined
return T.min

max (T) :=

93

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
92
53
54
55
56

o7
o8

1.

Algoritmos em grafos

if empty(T)
return undefined
return T.max

succ(T,e) :=

if T.h=2
if e=0 and Tmax=1
return 1
return undefined

if not empty(T) and e < Tmin
return T.min

{ sucessor na &arvore atual }
m:=max (T.bottom[subtree(e)])
if m # undefined and subindex(e)<m
return element (subtree(e),
succ (T.bottom[subtree(e)],subindex(e)))

{ minimo na &rvore sucessora }
c:=succ (T.top,subtree(e))
if ¢ = undefined
return cC
return element(c,min(T.bottom([c]))

pred(T,e) :=

o4

if T.h=2
if e=1 and T.min=0
return 0
return undefined

if not empty(T) and T.max < e
return T.max

{ predecessor na arvore atual }

m:=min(T.bottom[subtree(e)])

if m # undefined and m <subindex (e)
return element (subtree(e),

pred (T.bottom[subtree(e)], subindex(e)))

99
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

1.5. Filas de prioridade e heaps

{ maximo na &rvore predecessora }
c:=pred (T.top,subtree(e))

if ¢ = undefined
if not empty(T) and T.min<e
return T.min
else
return undefined

return element (c,max(T.bottoml[c]))

insert(T,e) :=
if empty(T)
T.min := T.max := e
return

{ novo minimo: setar min, insere min anterior }

if e < Tmin
swap (T.min,e)

{ insere recursivamente }
if Th>2
if empty(T.bottom[subtree(e)])

insert (T.top,subtree(e))

insert (T.bottom[subtree(e)],subindex(e))

{ novo méaximo: atualiza }
if Tmax<e
Tmax := e

delete(T,e) :=
if empty(T)
return

if singleton(T)
if Tmin=-¢e
clear (T)
return

{ novo minimo? }
if e = Tmin

1. Algoritmos em grafos

99 T.min := element(min(T.top),min(T.bottom[min(T.top)]))
100 e := T.min

101

102 { remove e da &arvore }

103 delete (T.bottom[subtree(e)], subindex(e))

104

105 if empty(T.bottom[subtree(e)])

106 delete (T.top,subtree(e))

107 if e = Tmax

108 c:=max (T.top)

109 if ¢ = undefined

110 T.max := T.min

111 else

112 T.max := element(c,max(T.bottoml[c]))

113 else

114 T.max := element (subtree(e),max(T.bottom[subtree(e)]))

Com essas implementagdes cada fungao executa uma chamada recursiva e um
trabalho constante a mais e logo precisa tempo O(logh). Em particular, na
funcdo “insert” caso a sub-arvore do elemento é vazia na linha 80 a segunda
chamada “insert” na linha 82 precisa tempo constante. Similarmente, ou a
delec@o recursiva na linha 103 nio remove o dltimo elemento, e talvez custa
O(logh), e logo a deleciao da linha 106 ndo é executada, ou ela remove o tltimo
elemento e custo somente O(1).

1.5.7. Exercicios

Exercicio 1.1
Prove lema 1.4. Dica: Use inducao sobre n.

Exercicio 1.2
Prove que um heap binomial com n vértices possui O(logn) arvores. Dica:
Por contradigao.

Exercicio 1.3 (Laboratério 1)
1. Implementa um heap binario. Escolhe casos de teste adequados e verifica
o desempenho experimentalmente.

2. Implementa o algoritmo de Prim usando o heap binario. Novamente
verifica o desempenho experimentalmente.

Exercicio 1.4 (Laboratério 2)
1. Implementa um heap binomial.

o6

1.5. Filas de prioridade e heaps

2. Verifica o desempenho dele experimentalmente.

3. Verifica o desempenho do algoritmo de Prim com um heap Fibonacci
experimentalmente.

Exercicio 1.5
A proposicao 1.3 continua ser correto para grafos com pesos negativos? Jus-
tifique.

57

1. Algoritmos em grafos

1.6. Fluxos em redes

Seja G = (V,A,c) um grafo direcionado e capacitado com capacidades ¢ :
A — R nos arcos. Uma atribui¢do de fluxos aos arcos f : A — R em G se
chama circulagdo, se os fluxos respeitam os limites da capacidade (fq < c4) e
satisfazem a conservacao de fluxo f(v) = 0 com

fv)= > fa— > fa (1.7)
aeEN+(v) aeN—(v)
(ver Fig. 1.12).

Definicao 1.2

Para X, Y C V sejam A(X,Y) := (X x Y) N A os arcos passando de X para Y.
O fluxo de X para Y é f(X,Y) := ZaeA(X,Y) fq. Ainda estendemos a notacio
do fluxo total de um vértice (1.7) para conjuntos: f(X) = f(X,X) — f(X,X)
é o fluxo neto do saindo do conjunto X, onde X := V \ X. Analogamente,
escrevemos para as capacidades c(X,Y) := ZaeA(X,Y) Ca.

Lema 1.12

Para qualquer conjunto de vértices X C V temos Y_ f(v) = f(X).

veX
Prova.
Zf(v):Z< Z fa_ Z fa)
veX veX raeNt(v) aeN—(v)
_< > ot) fa)< > ot) fa>
acA(X,X) acA(X,X) acA(X,X) acA(X,X)
=) fa > fa=fX,X) = f(X,X) = f(X).
acA(X,X) acA(X,X)
|
Corolario 1.3
Qualquer atribuigao de fluxos f satisfaz) | . f(v) =0.
Prova.
D V) =F(V) =V, V) —f(V,V) =0—0=0.
vev
|

Uma circulagdo vira um fluzo, se o grafo possui alguns vértices que sdo fontes
ou destinos (“sorvedouros”) de fluxo, e portanto ndo satisfazem a conservagio
de fluxo. Um fluxo s—t possui uma tnica fonte s e um tnico destino t. Um
objetivo comum (transporte, etc.) é encontrar um fluxo s—t mdximo.

o8

1.6. Fluxos em redes

Figura 1.12.: Grafo (esquerda) com circulagio (direita)

FLUXO s—t MAXIMO

Instancia Grafo direcionado G = (V| A, c) com capacidades ¢ nos arcos,
um vértice origem s € V e um vértice destino t € V.

Solucdo Um fluxo f, com f(v) =0, Vv € V \ {s, t}.

Objetivo Maximizar o fluxo f(s).

Lema 1.13
Um fluxo s—t satisfaz f(s) + f(t) = 0.
Prova. Temos
(1.3)

f(s)+f(t) =) fv) =0,

vev

onde a primeira igualdade vale pela conservagdo de fluxo nos vértices em
VA {s, t}. []

Uma formulagdo como programa linear é

maximiza f(s) (1.8)
sujeito a f(v) =0, Vv e V\ {s, t},
0<fq <cg, Ya e A.

Observagao 1.12
O programa (1.8) possui uma solucdo, porque fq = 0 é uma solugao vidvel. O
sistema nao ¢ ilimitado, porque todas variaveis sdo limitadas, e por isso possui

59

1. Algoritmos em grafos

20

20 O

Figura 1.13.: Esquerda: Grafo com capacidades. Centro: Fluxo com valor 30.
Direita: O grafo residual correspondente.

uma solugdo 6tima. O problema de encontrar um fluxo s—t maximo pode ser
resolvido em tempo polinomial via programacao linear. O

1.6.1. O algoritmo de Ford-Fulkerson

Nosso objetivo: Achar um algoritmo combinatorial mais eficiente. Idéia bé-
sica: Comegar com um fluxo vidvel fo = 0 e aumentar ele gradualmente.
Observacao: caso temos um s—t-caminho P = (v = s,vi,...,Vn_1,Vn = t),
podemos aumentar o fluxo atual f um valor que corresponde ao “gargalo”

g(f,P):= min cq — fq.
a=(vi_1,vi)
ien]

Observacgao 1.13
Repetidamente procurar um caminho de gargalo positivo e aumentar nem
sempre produz um fluxo maximo. Na Fig. 1.13 o fluxo maximo possivel é

40, obtido pelo aumentos de 10 no caminho P; = (s,u,t) e 30 no caminho
P, = (s,w,t). Mas, se aumentamos 10 no caminho P; = (s,u,w,t) e depois
20 no caminho P, = (s,w,t) obtemos um fluxo de 30 e o grafo ndo possui
mais caminho que aumenta o fluxo. O

Problema no caso acima: para aumentar o fluxo e manter a conservacao de
fluxo num vértice interno v temos quatro possibilidades: (i) aumentar o fluxo
num arco entrante e sainte, (ii) aumentar o fluxo num arco entrante, e diminuir
num outro arco entrante, (iii) diminuir o fluxo num arco entrante e diminuir

60

1.6. Fluxos em redes

Figura 1.14.: Manter a conservacao de fluxo.

num arco sainte e (iv) diminuir o fluxo num arco entrante e aumentar num
arco entrante (ver Fig. 1.14).
Isso é o motivo para definir para um dado fluxo f o grafo residual G¢ com

o Vértices V
e Arcos para frente (“forward”) A com capacidade cq — fq, caso fq < cq.

e Arcos para atras (“backward”) A’ ={(v,u) | (u,v) € A} com capacidade
Clv,u) = f(u,v)a Caso f(u,v) > 0.

Observe que na Fig. 1.13 o grafo residual possui um caminho P = (s, w,u,t)
que aumenta o fluxo por 10. O algoritmo de Ford-Fulkerson (Ford e Fulkerson,
1956) consiste em, repetidamente, aumentar o fluxo num caminho s—t no grafo
residual.

Algoritmo 1.5 (Ford-Fulkerson)
Entrada Grafo G = (V, A, c) com capacidades ¢, nos arcos.

Saida Um fluxo f.

1 for all a€ A: fq:=0

2 while existe um caminho s-t em G¢ do
3 Seja P um caminho s-t simples

4 Aumenta o fluxo f um valor ¢(f,P)

5 end while

6 return f

Analise de complexidade Na andlise da complexidade, consideraremos so-
mente capacidades em N (ou equivalente em Q: todas capacidades podem ser
multiplicadas pelo menor miiltiplo em comum dos denominadores das capaci-
dades.)

61

1. Algoritmos em grafos

Lema 1.14
Para capacidades inteiras, todo fluxo intermediario e as capacidades residuais
sao inteiros.

Prova. Por indugdo sobre o ntimero de iteragoes. Inicialmente fq = 0. Em
cada iteracdo, o “gargalo” g(f,P) é inteiro, porque as capacidades e fluxos sdo
inteiros. Portanto, o fluxo e as capacidades residuais apds do aumento sdao
novamente inteiros. [|

Lema 1.15
Em cada iteragdo, o fluxo aumenta por pelo menos 1.

Prova. O caminho s—t possui por defini¢do do grafo residual uma capacidade
“gargalo” g(f,P) > 0. O fluxo f(s) aumenta exatamente g(f, P). |

Lema 1.16
O algoritmo Ford-Fulkerson precisa no maximo C =)_ aeN+(s) Ca iteragoes.
Portanto ele tem complexidade O((n + m)C).

Prova. C é um limite superior do fluxo méximo. Como o fluxo inicial-
mente possui valor 0 e aumenta ao menos 1 por iteracdo, o algoritmo de
Ford-Fulkerson termina em no maximo C itera¢bes. Em cada iteragdo temos
que achar um caminho s—t em G¢. Representando G por listas de adjacén-
cia, isso é possivel em tempo O(n + m) usando uma busca por profundidade.
O aumento do fluxo precisa tempo O(n) e a atualizacdo do grafo residual é
possivel em O(m), visitando todos arcos. |

Corretude do algoritmo de Ford-Fulkerson

Definicao 1.3 -
Uma partigdo (X,X) de V é um corte s—t, se s € X et € X. Um arco a é
saturado para um fluxo f, caso fq = cq.

Lema 1.17 -
Para qualquer corte (X, X) temos f(X) = f(s).

Prova.

100 =)+ Y) =f(s).

veX\{s}
(O tltimo passo é correto, porque para todo v € X, v # s, temos f(v) = 0 pela
conservagao de fluxo.) |
Lema 1.18

O valor ¢(X, X) de um corte s—t é um limite superior para um fluxo s—t.

62

1.6. Fluxos em redes

Prova. Seja f um fluxo s—t. Temos

f(s) "2 F(X) = £X,X) = F(X,X) < £(X,X) < e(X,X).
]
Consequéncia: O fluxo méaximo é menor ou igual a o corte minimo. De fato,
a relagdo entre o fluxo maximo e o corte minimo é mais forte:

Teorema 1.10 (Fluxo méximo — corte minimo)

O valor do fluxo maximo entre dois vértices s e t é igual ao valor do corte
minimo.

Lema 1.19

Quando o algoritmo de Ford-Fulkerson termina, o valor do fluxo é maximo.

Prova. O algoritmo termina se nio existe um caminho entre s e t em Gy.
Podemos definir um corte (X, X), tal que X é o conjunto de vértices alcancaveis
em Gy a partir de s. Agora considere os arcos entre X e X. Para um arco a €
A(X, X) temos fq = cq, sendo Gy terd um arco “forward” a, uma contradicso.
Para um arco a = (u,v) € A(X,X) temos fq = 0, sendo G terd um arco
“backward” a’ = (v, u), uma contradi¢do. Logo

f(s) = f(X) = (X, X) — f(X,X) = f(X, X) = c¢(X, X).

Pelo lema 1.18, o valor de um fluxo arbitrario é menor ou igual que c(X,X),
portanto f é um fluxo maximo. |
Prova. (Do teorema 1.10) Pela andlise do algoritmo de Ford-Fulkerson. W

Desvantagens do algoritmo de Ford-Fulkerson O algoritmo de Ford-Fulkerson
tem duas desvantagens:

(1) O ntmero de iteragoes C pode ser alto, e existem grafos em que C
iteragoes sdo necessérias (veja Fig. 1.15). Além disso, o algoritmo com
complexidade O((n + m)C) é somente pseudo-polinomial.

(2) E possivel que o algoritmo ndo termina para capacidades reais (veja
Fig. 1.15). Usando uma busca por profundidade para achar caminhos
s—t ele termina, mas ¢ ineficiente (Dean et al., 2006).

1.6.2. O algoritmo de Edmonds-Karp

O algoritmo de Edmonds-Karp elimina esses problemas. O principio dele é
simples: Para achar um caminho s—t simples, usa busca por largura, i.e. sele-
cione o caminho mais curto entre s e t. Nos temos

63

1. Algoritmos em grafos

Figura 1.15.: Esquerda: Pior caso para o algoritmo de Ford-Fulkerson com pe-
sos inteiros aumentando o fluxo por 2N vezes por 1 nos cami-
nhos (s,u,v,t) e (s,v,u,t). Direita: Menor grafo com pesos irra-
cionais em que o algoritmo de Ford-Fulkerson falha (Zwick, 1995).
M >3 er = (1++V1—-4A)/2 =~ 0.682 com A =~ 0.217 a tUnica
raiz real de 1 —5x 4+ 2x> — x>. Aumentar (s,v1,vs,t) e depois re-
petidamente (s,v2,va,Vv1,v3,t), (s,v2,V3,V1,Va,t), (S,V1,V3,V2,Va,t),
e (s,v1,v4,Vv2,v3,t) converge para o fluxo maximo 2 + r + 1~ sem ter-
minar.

Teorema 1.11
O algoritmo de Edmonds-Karp precisa O(nm) iteracoes, e portanto termina
em tempo O(nm?).

Lema 1.20
Seja d¢(v) a distancia entre s e v em Gy¢. Durante a execugdo do algoritmo de
Edmonds-Karp 6¢(v) cresce monotonicamente para todos vértices em V.

Prova. Para v = s o lema é evidente. Supbe que uma iteracdo modificando o
fluxo f para f’ diminuird o valor de um vértice v € V\ {s}, i.e., d¢(v) > &¢/(v)
(o). Sejav o vértice de menor distdncia d¢/(v) em G, com essa caracteristica, e
P = (s,...,u,Vv) um caminho mais curto de s parav em G¢,. Logo &;/(u)+1 =
8¢/ (v) (A). Pela escolha de v, o valor de u nao diminuiu nessa iteragio, i.e.,
5+(1) < 5p/(u) (%),

Supondo uv € A(Gy), temos

*) A
5e(v) < 8¢(w) +1 < 5po(u) +1'E 8¢ (v),
uma contradigdo com a hipétese (o) que a distdncia de v diminuiu. Logo o

arco uv nao existe in G, mas uv € A(Gy/). Isso sé é possivel se o fluxo de v
para u aumentou nessa iteragdo. Em particular, vu era parte de um caminho

64

1.6. Fluxos em redes

minimo de s para u e logo &¢(v) + 1 = &¢(u) (). Para v = t isso é uma
contradigdo imediata. Caso v # t, temos

8ev) L) =1 < 80 (w) —1 2 5 (v) — 2,

novamente uma contradi¢ido com a hipdtese (o) que a distancia de v diminuiu.
Logo, o vértice v nao existe. |
Prova. (do teorema 1.11)

Chama um arco num caminho que aumenta o fluxo com capacidade igual
ao gargalo critico. Em cada iteracdo existe ao menos um arco critico que
desaparece do grafo residual. Provaremos que cada arco pode ser critico no
maximo n/2 — 1 vezes, e logo nao temos mais que m(n/2 — 1) = O(mn)
iteragoes.

No grafo G em que um arco uv € A é critico pela primeira vez temos d¢(u) =
d¢(v)—1. O arco s6 aparece novamente no grafo residual caso alguma iteracéo
posterior diminui o fluxo em uv, i.e., aumenta o fluxo vu. Nessa iteragao, com
fluxo f/, d¢/(v) = 6¢/(u) — 1. Juntamente com o fato de que a distncia s6
aumenta (lema (1.20)) obtemos

(1.20)
Sf/(u) :5f/(\))+1 > 5f(\))+] :6f(u)—|—2,

i.e., a distdncia do u entre dois instantes em que uv é critico aumenta por
pelo menos dois. Enquanto u é alcangével por s, a sua distancia é no maximo
n — 2, porque o caminho ndo contém s nem t, e por isso a aresta uv pode ser
critico por no méximo (n —2)/2 =n/2 —1 vezes. |
Zadeh (1972) apresenta instdncias em que o algoritmo de Edmonds-Karp pre-
cisa ©(n3) iteragodes, logo o resultado do teorema 1.11 é o melhor possivel para
grafos densos.

1.6.3. O algoritmo “caminho mais gordo” (“fattest path”)

Idéia (Edmonds e Karp, 1972): usar o caminho de maior gargalo para aumen-
tar o fluxo. (Exercicio 1.6 pede provar que isso é possivel com uma modificagao
do algoritmo de Dijkstra em tempo O(nlogn + m).)

Teorema 1.12
O caminho de maior gargalo aumenta o fluxo atual f de valor v por pelo menos
OPT/m, onde OPT é o fluxo maximo no grafo residual Gy.

Prova. Considere um arco critico a no caminho de maior gargalo, com ca-
pacidade cq no grafo residual Gg4. Particiona V =S U T, onde S contém s e

65

1. Algoritmos em grafos

todos vértices alcangéaveis por arcos de capacidade maior que c4. Por constru-
¢do T contém pelo menos t. O corte (S, T) tem capacidade no méximo mcg,
logo pelo teorema 1.10 v < OPT < mc,. Por isso o fluxo aumenta por pelo
menos cq > OPT/m. [|

Teorema 1.13

A complexidade do algoritmo de Ford-Fulkerson usando o caminho de maior
gargalo é O((nlogn + m)mlog C) para um limitante superior C do fluxo
maximo.

Prova. Seja f; o valor do caminho encontrado na i-ésima iteragdo, G; o grafo
residual apds do aumento e OPT; o fluxo maximo em Gi. Observe que Gy é
o grafo de entrada e OPTy = OPT o fluxo maximo. Temos

A desigualdade é vélida pelo teorema 1.12, considerando que o grafo residual
possui no maximo 2m arcos. Logo

OPT; < (1—1/(2m))*OPT < e /2™ QPT.

O algoritmo termina caso OPT; < 1, por isso niimero de iteragdes é no maximo
2mIn OPT + 1. Cada iteracao custa O(m +nlogn). []

Corolario 1.4
Caso U é um limite superior da capacidade de um arco, o algoritmo termina
em no maximo O(mlogmU) passos.

1.6.4. O algoritmo push-relabel

O algoritmo push-relabel representa uma classe de algoritmos que néo traba-
lha com um fluxo e caminhos aumentantes, mas mantém um pré-fluzo f que
satisfaz

o os limites de capacidade (0 < f, < cq)

,

e e requer somente que o excesso e(v) = —f(v) de um vértice v # s é
nao-negativo.

Um vértice v # t com e(v) > 0 é chamado ativo. A ideia do algoritmo é
que vértices possuem uma “altura” e o fluxo passa para vértices de altura
mais baixa (“operacdo push”) ou, caso isso ndo é possivel a altura de um

66

0~ O Ui W N -

1.6. Fluxos em redes

vértice ativo aumenta (“operacdo relabel”). Concretamente, manteremos um
potencial (“altura”) p, para cada v € V, tal que,

Ps=mn; Pp:=0; (*)
Pv > Ppu—1 (u,v) € A(Gy).

Nota que a segunda parte da condicdo tem que ser satisfeita somente para
arcos no grafo residual.

Observagao 1.14

Pela condigao (*), para um caminho vo,v1,..., vk em G¢ temos py, < py, +
1 Spvz +2§ S'ka +k.
Lema 1.21

Condigao (*) pode ser satisfeita sse Gy ndo possui caminho s—t.

Prova. “=7: Supde que existe um caminho s—t simples vop = s,v1,...,vx =t.
Pela observagao (1.14)

Ps =Pvo S Pv, Tk=pr+k=k<n,

uma contradicdo. “«<”: Sejam X os vértices alcancaveis em Gy a partir de s
(incluindo s). Como Gy ndo possui caminho s-t, t € X. Logo setando p, =n
para v € X e p, = 0 para v € X satisfaz (*). mO
lema mostra que enquanto algoritmos de caminho aumentante sao algoritmos
primais, mantendo uma solucao factivel, até encontrar o 6timo, algoritmos da
classe push-relabel podem ser vistos como algoritmos duais: eles mantém o
critério de otimalidade (*), até encontrar uma solugdo factivel.

Podemos realizar as operagoes “push” e “relabel” como segue. A operacao
“push(u,v)” num arco (u,v) € A(G¢) manda o fluxo min{cg, e(v)} de u para
v. A operagdo “relabel(v) aumenta a altura p, do vértice v por uma unidade.

push(u,v) :=
{ pré-condigdo: u é& ativo }
{ pré-condig8o: py=py—1 }
{ pré-condigdo: (u,v) € A(Gs) }
aumenta o fluxo em (u,v) por min{cy,),e(u)}
{ atualiza G; de acordo }
end

relabel(v) :=
{ pré-condigéo: v & ativo }
{ pré-condigfo: ndo existe (w,v) € A(Gf) com py=pu—1}
pvi=pv+1

end

67

1. Algoritmos em grafos

Observe que as duas operagoes mantém a condigdo (*).

Algoritmo 1.6 (Push-relabel)
Entrada Grafo G = (V, A, c) com capacidades ¢, no arcos.

Saida Um fluxo f.
1 ps=mn; p,:=0, Yv e V\{s}

2 fqa:i=cCq, Va€NT(s) sendo fq:=0

3 while existe vértice ativo do

4 escolhe o vértice ativo u de maior Py

5 repete até u é inativo

6 if existe arco (uw,v) € Gf com p, =py—1 then
7 push(u,v)

8 else

9 relabel(u)

10 end if

11 end

12 end while
13 return f

Lema 1.22
O algoritmo push-relabel é parcialmente correto (i.e. correto caso termina).

Prova. Ao terminar ndo existe vértice ativo. Logo f é um fluxo. Pelo lema
1.21 nao existe caminho s—t em Gy. Logo pelo teorema 1.10 o fluxo é 6timo.
|

A terminacdo é garantida por

Teorema 1.14
O algoritmo push-relabel executa O(n3) operacdes push e O(n?) operacoes
relabel.

Prova. Um vértice ativo v tem excesso de fluxo, logo existe um caminho v—s
em G¢. Por (1.14) p, < ps+(n—1) < 2n, e logo o ntimero de operagoes relabel
é O(n?). Supde que uma operacio push satura um arco a = (u,v) (i.e. manda
fluxo cq). Para mandar fluxo novamente, temos que mandar primeiramente
fluxo de v para u; isso s6 pode ser feito depois de pelo menos duas operagoes
relabel em v. Logo o nimero de operagoes push saturantes é O(mn). Para
operagoes push nao-saturantes, podemos observar que entre duas operagoes
relabel temos no maximo n desses operagoes, porque cada uma torna o vértice
de maior p, inativo (talvez ativando vértices de menor potencial), logo tem
no maximo O(n3) deles. |

68

1.6. Fluxos em redes

Tabela 1.3.: Complexidade de diversos algoritmos de fluxo méximo (partes de
Schrijver, 2003).

Ano Referéncia Complexidade Obs

1951 Dantzig O(n*mcQC) Simplex

1955 Ford & Fulkerson O(mC) = O(mnu) Cam. aument.

1970 Dinitz O(nm?) Cam. min. aument.

1972 Edmonds & Karp O(m?log C) Escalonamento

1973 Dinitz O(nm log C) Escalonamento

1974 Karzanov On) Preflow-Push

1977 Cherkassky o(n*m'/?) Preflow-Push

1986 Goldberg & Tarjan O(nm log(n?/m)) Push-Relabel

1987 Ahuja & Orlin O(nm +n?log C) Push-Relabel & Esc.

1990 Cheriyan et al. O(n?/logn)

1990 Alon O(nm +n¥3logn)

1992 King et al. O(nm+n2*¢)

1997 Goldberg & Rao 0(m?*?1og(n?/m)log C)
0O(n**mlog(n?/m)log C)

2012 Orlin O(nm)

2022 Chen et al. o(m'*re(M) Pontos interiores

Para garantir uma complexidade de O(n3?) temos que implementar um “push”
em O(1) e um “relabel” em O(n). Para este fim, manteremos uma lista dos
vértices em ordem do potencial. Para cada vértice manteremos uma lista de
arcos candidatos para operacoes push, i.e. arcos para vizinhos com potencial
um a menos com capacidade residual positiva.

Uma busca linear na lista de vértices encontra o vértice de maior potencial.
Entre duas operacoes relabel a busca pode continuar no dltimo ponto e precisa
tempo O(n) em total, logo a busca custa no maximo O(n3) sobre toda exe-
cugao do algoritmo. Para a operagao push podemos simplesmente consultar
a lista de candidatos. Para um push saturante, o candidato sera removido.
Isso custa O(1). Finalmente no caso de um relabel temos que encontrar em
O(n) a nova posicao do vértice na lista, e reconstruir a lista de candidatos,
que também precisa tempo O(n). Logo todas operagoes relabel custam nao
mais que O(n3).

69

1. Algoritmos em grafos

1.6.5. Variantes do problema

Fontes e destinos miltiplos Para G = (V, A, c¢) define um conjunto de fontes
S C V e um conjunto de destinos T C V, com SNT = (), e considera
maximiza f(S)
sujeito a f(v) =0, Yv eV (SUT), (1.9)
fo < cCaq, Va € A.

O problema (1.9) pode ser reduzido para um problema de fluxo méximo sim-
plesem G’ = (V/,A’,c’) (veja Fig. 1.16(a)) com

=VU{s*, t*}
A'=AU{s*}xSUT x {t*} (1.10)
Ca acA,

Cél: (S g)» a:(S*)S))SES)
c(T,T), a=(t,t*),teT

Lema 1.23

Se f’ é uma solugdo méxima de (1.10), a restrigio f = f’|a é uma solugao
méxima de (1.9) de mesmo valor. Por outro lado, se f é uma solu¢do méxima
de (1.9), a extensdo

fa, acA,
fét = ¢ f(s), a=(s*s),s €S, (1'11)
_f(t)> a:(t)t*))tET)

é uma solugdo maxima de (1.10) de mesmo valor.

Prova. Se f’ é solugao de (1.10), a restri¢ao f = f'|o é uma solucdo de (1.9)
de mesmo valor: f é vidvel porque f(v) = f/(v) = 0 para todov € V\S\T
e f(S) = ZSES f(s) = f'(s*). Similarmente, dado um fluxo védlido f em G, a
extensdo f’ (1.11) é um fluxo vdlido em G’ de mesmo valor: ' é vidvel porque
além de f'(v) = f(v) = 0 para todo v € V\ (SUT), também f’(v) = 0 para
veSuUT,ef'(s*) =3 s f(s) =f(S). []

Limites inferiores Para G = (V,A,b,c) com limites inferiores b : A — R
considere o problema
maximiza f(s)
sujeito a f(v) = Vv e V\ {s, t}, (1.12)
bo <fq <cq, acA.

70

1.6. Fluxos em redes

Cq —bg
— /7 T\ b b

Figura 1.16.: Redugoes entre variantes do problema do fluxo méaximo. Es-
querda: Fontes e destinos multiplos. Direita: Limite inferior e
superior para a capacidade de arcos.

‘5/10‘ 0/4 . ‘5/10‘ 0/5 ‘

T ® :
5 4
) 00
Figura 1.17.: Dois exemplos da transformagao do lema 1.24. Esquerda: Grafo
sem solucdo viavel e grafo transformado com fluxo méaximo 4.

Direita: Grafo com solugao viavel e grafo transformado com fluxo
maximo 5.

71

1. Algoritmos em grafos

O problema (1.12) pode ser reduzido para um problema de fluxo méximo
simples em G’ = (V/,A’;¢’) (veja Fig. 1.16(b)) com

V' =VUu{s*t*}
Al =AU{,t") | (w,v) € AJU{(s",V) | (u,v) € A}U{(t,s)} (1.13)

Ca — ba» ac A,
¢! = ZvEN*(u) b(U,V)’ a=(u,t*),
¢ ZueN*(v) b(u»\/)’ a=(s*v),
00, a=(ts).

Chama um fluxo em 1.13 saturado, caso ele satura todos arcos auxiliares
{(w, t) [(w,v) € AJU{(s™,v) | (u,v) € A}

Lema 1.24
Problema (1.12) possui um fluxo viavel sse (1.13) possui um fluxo saturado.

Prova. Caso f é um fluxo vidvel em (1.12),

fa — ba’ ac A,
Zu€N+(v) b(V»U—b a=(v,t%),

ZuEN*(V) b(u;\’b a= (S*)UL
f(s), a=(t,s).

é um fluxo saturado de (1.13). Por outro lado, se f’ é um fluxo saturado para
(1.13), fq = f. + by é um fluxo vidvel em (1.12). B Como
um fluxo saturado tem que ser maximo, ele pode ser obtido por um algoritmo
de fluxo méximo aplicado a (1.13). Caso o fluxo miximo néo satura, nio
tem solugdo vidvel, sendo podemos extrair uma solucao vidvel de (1.12) pela
construgdo acima. Para obter um fluxo méximo de (1.12) podemos maximizar
o fluxo a partir da solucdo viavel obtida, com qualquer variante do algoritmo
de Ford-Fulkerson. Na execuc¢do temos que garantir que um fluxo minimo de
b é mantido em cada arco a = (u,v). Logo, o grafo residual de um fluxo f
tem arcos “backward” a = (v, u) de capacidade reduzida cg = fq — bg.

Uma alternativa para obter um fluxo factivel com limites inferiores nos arcos
é primeiro mandar o limite inferior de cada arco, i.e. setar f = b, e depois
considerar demandas d, = —f(v). Uma circulacio factivel com limites 0 <
f < ¢ —Db corresponde com um fluxo factivel f + b no grafo original.

72

1.6. Fluxos em redes

Existéncia de uma circulacio com demandas nos vértices Para G = (V| A, ¢)
com demandas d,, com d, > 0 para destinos e d,, < 0 para fontes, considere

existe f
s.a f(v) = —d,, Yvevy, (1.14)
fa < cCaq, acA.
Evidentemente » .\, dy, = 0 é uma condi¢do necessaria (lema (1.3)). O

problema (1.14) pode ser reduzido para um problema de fluxo méximo em
G’ = (V',A’) com

V/ = VU{s* t}

A =AU{(s*V)|veV,d <0ju{vt")|veVd, >0} (1.15)
Ca, a€eA,
Ca = _dva a= (S*)V)a

dy, a= (v, t*).

Lema 1.25
Problema (1.14) possui uma solugdo sse problema (1.15) possui uma solugio
com fluxo mximo D =} | 4 _,dy.

Prova. (Exercicio.) |

Circulacdes com limites inferiores Para G = (V, A, b,c) com limites inferi-
ores e superiores, considere

existe f
s.a f(v) = d,, Yv ey, (1.16)
bo < fq <cq, acA.

O problema pode ser reduzido para a existéncia de uma circulagdo com so-
mente limites superiores em G’ = (V/;A’,c’,d’) com
V=V
A=A (1.17)
Cqa =Cq—bg
r=d, — Zb+ Zb (1.18)
aeN— aeN*(v

Lema 1.26
O problema (1.16) possui solucdo sse problema (1.17) possui solugao.

Prova. (Exercicio.) |

73

1. Algoritmos em grafos

1.6.6. Aplicacoes

Projeto de pesquisa de opinidao O objetivo é projetar uma pesquisa de opi-
niao, com as restricoes

o Cada cliente i recebe ao menos c; perguntas (para obter informagéo sufi-
ciente) mas no maximo c{ perguntas (para ndo cansar ele). As perguntas
podem ser feitas somente sobre produtos que o cliente ja comprou.

o Para obter informagoes suficientes sobre um produto, entre p; e p{ cli-
entes tem que ser interrogados sobre ele.

Um modelo é um grafo bi-partido entre clientes e produtos, com aresta (ci, pj)
caso cliente i ja comprou produto j. O fluxo de cada aresta possui limite
inferior 0 e limite superior 1. Para representar os limites de perguntas por
produto e por cliente, introduziremos ainda dois vértices s, e t, com arestas
(s,ci) com fluxo entre ¢ e ¢] e arestas (pj,t) com fluxo entre p; e p]-’ € uma
aresta (t,s).

Segmentacdo de imagens O objetivo é segmentar um imagem em duas par-
tes, por exemplo “foreground” e “background”. Supondo que temos uma “pro-
babilidade” a; de pertencer ao “foreground” e outra “probabilidade” de per-
tencer ao “background” b; para cada pixel i, uma abordagem direta é definir
que pixels com a; > b; sdo “foreground” e os outros “background”. Um exem-
plo pode ser visto na Fig. 1.19 (b). A desvantagem dessa abordagem é que a
separacao ignora o contexto de um pixel. Um pixel, “foreground” com todos
pixel adjacentes em “background” provavelmente pertence ao “background”
também. Portanto obtemos um modelo melhor introduzindo penalidades py;
para separar (atribuir & categorias diferentes) pixels adjacentes 1 e j. Um
particdo do conjunto de todos pixels I em A U B tem um valor de

qAB) =) ai+) bi— Y py

ieA ieB (i,j)EAXB

nesse modelo, e 0 nosso objetivo é achar uma partigdo que maximiza q(A, B).
Isso é equivalente a minimizar

QAB)=) ai+bi—) ai—) bi+ > py

iel ieA ieB (i,j)EAXB
“YarY s Y by
ieB ieA (i,j)EAXB

74

1.6. Fluxos em redes

i k1
a 30 19 12 10
b 20 15 16 25

Figura 1.18.: Exemplo da construcéo para uma imagem 2 x 2. Direita: Tabela
com valores pele/nao-pele. Esquerda: Grafo com penalidade fixa
Pij = 10.

A solucdo minima de Q(A, B) pode ser visto como corte minimo num grafo.
O grafo possui um vértice para cada pixel e uma aresta com capacidade pi;
entre dois pixels adjacentes i e j. Ele possui ainda dois vértices adicionais
s e t, arestas (s,1) com capacidade a; para cada pixel i e arestas (i,t) com
capacidade b; para cada pixel i (ver Fig. 1.18).

Sequenciamento O objetivo é programar um transporte com um nimero k
de veiculos disponiveis, dado pares de origem-destino com tempo de saida e
chegada. Um exemplo é um conjunto de vbos é

1. Porto Alegre (POA), 6.00 — Florianopolis (FLN), 7.00
2. Florianopolis (FLN), 8.00 — Rio de Janeiro (GIG), 9.00
3. Fortaleza (FOR), 7.00 — Joao Pessoa (JPA), 8.00

4. Sao Paulo (GRU), 11.00 — Manaus (MAO), 14.00

5. Manaus (MAO), 14.15 — Belem (BEL), 15.15

6. Salvador (SSA), 17.00 — Recife (REC), 18.00

O mesmo avido pode ser usado para mais que um par de origem e destino, se
o destino do primeiro é o origem do segundo, em tem tempo suficiente entre
a chegada e saida (para manutengao, limpeza, etc.) ou tem tempo suficiente
para deslocar o aviao do destino para o origem.

(6]

1. Algoritmos em grafos

Figura 1.19.: Segmentacdo de imagens com diferentes penalidades p. Acima:

76

(a) Imagem original (b) Segmentagdo somente com probabilida-
des (p = 0) (¢) p = 1000 (d) p = 10000. Abaixo: (a) Walter
Gramatté, Selbstbildnis mit rotem Mond, 1926 (b) Segmentagio
com p = 10000. A probabilidade de um pixel representar pele
foi determinado conforme Jones e Rehg (1998).

1.6. Fluxos em redes

Podemos representar o problema como grafo direcionado aciclico. Dado pa-
res de origem destino, ainda adicionamos pares de destino-origem que sao
compativeis com as regras acimas. A idéia é representar avides como fluxo:
cada aresta origem-destino é obrigatério, e portanto recebe limites inferiores
e superiores de 1, enquanto uma aresta destino-origem é facultativa e recebe
limite inferior de 0 e superior de 1. Além disso, introduzimos dois vértices s
e t, com arcos facultativos de s para qualquer origem e de qualquer destino
para t, que representam os comegos e finais da viagem completa de um aviao.
Para decidir se existe um solugdo com k avioes, finalmente colocamos um arco
(t,s) com limite inferior de O e superior de k e decidir se existe uma circulagio
nesse grafo.

O problema P | pmtn,r; | L.y Primeiramente resolveremos um problema
mais simples: serd que existe um sequenciamento tal que toda tarefa i executa
dentro do seu intervalo [ri, di]? Equivalentemente, serd que existe uma solucao
com Ly =07

Seja {t1,t2,...,tx} ={r1,72,... 70 }U{d1,d2,...,dn}, com t; <ty <--- <ty
(Observe que k < 2n, e k < 2n no caso de tempos repetidos.) Podemos ver os
t; como eventos em que uma tarefa fica disponivel ou tem que terminar o seu
processamento. Os t; definem k—1 intervalos I; = [ti, tiy1] parai € [k—1] com
duragdo S; = ti1 — ti correspondente. Cada tarefa j pode ser executada no
intervalo T caso I; C [ri, di]. Logo podemos modelar o problema via um grafo
direcionado bipartido com vértices T U I, sendo T = [n] o conjunto de tarefas
e I ={I; |i€ [k— 1]} o conjunto de intervalos, e com arcos (j,1) caso tarefa j
pode ser executada no intervalo i. Para completar o grafo adicionaremos um
arco (s,j) de um vértice origem s para cada tarefa j, e um arco (i,t) de cada
intervalo para um vértice destino t. Um fluxo nesse grafo representa tempo,
e teremos capacidades p; entre s e tarefa j, S; entre tarefa j e intervalo i, e
mS$; entre T; e t, sendo mS; o tempo total disponivel durante o intervalo 1.
Figura 1.20 mostra a construcao completa.

Logo P | pmtn, 7 | Liax pode ser resolvido em tempo O(mnlogL).

Com essa abordagem podemos resolver o problema original por busca bindria:
para cada valor do L. entre 0 e L testaremos se existe uma solucao tal que
cada tarefa executa no intervalo [ri, d; + Lyax]. Um limite superior simples é
L = max;mi + Zi pi — min; di executando todas tarefas apés a liberacao da
dltima numa Unica maquina em ordem arbitraria.

Agendamento de projetos Suponha que temos n projetos, cada um com
lucro p; € Z, i € [n], e um grafo de dependéncias G = ([n], A) sobre os
projetos. Caso (i,j) € A, a execugdo do projeto i é pré-requisito para a

7

1. Algoritmos em grafos

mS1

D
o ..
Pn . : mS "
Figura 1.20.: Problema de fluxo para resolver a versao de decisao do problema
P | pmtn, 7i | Lyax.

execucao do projeto j. Um lucro pode ser negativo, e neste caso representa
uma perda. Este problema pode ser reduzido para um problema de fluxo
méximo s-t: cria um grafo G’ com vértices V = {s, t} U [n] é

e uma aresta (s,v) para todo v € [n] com p,, > 0, com capacidade p.,

e uma aresta (v,t) para todo v € [n] com p,, < 0, com capacidade —p., e

e uma aresta (u,Vv) para toda dependéncia (v,u) € A, com capacidade oco.
(Note que projetos v € V com p, = 0 ndo geram arcos (s,v) nem (v,t).)

Lema 1.27

O valor de um corte (X,X) em G’ é minimo, sse o lucro total dos projetos
S = X\ {s} é¢ méximo. Além disso um corte minimo em G’ corresponde a uma
selecao factivel de projetos S.

Prova. Cada corte (X, X) corresponde com uma selecao de projetos S = X\{s}.
Seja S =] \'S. Uma selecio de projetos S é vélida, caso para todo projeto
p € S, ela contém também todos projetos pré-requisitos de p. Logo, o corte
correspondente ndo possui arcos com capacidade co. Como o valor do corte
(s, V\{s}) é Zve[n]\pv>0 Csyv O corte minimo é finito, e logo factivel, porque nao
pode conter um arco entre um projeto selecionado e um projeto pré-requisito
nao selecionado.

78

1.6. Fluxos em redes

O valor de um corte factivel é

C(X)X) = Z Ca = Z Pv — Z Pv

acA(X,X) veS|py>0 veS|py <0

e nos temos

Z Pv — C(X) X) = Z Pv — Z Py + Z Pv

venllpy,>0 venllpy>0 veS|p,>0 veES|py<0
= > Pt X P
veS|py >0 veS|py <0
=D _Pw
VvES

i.e. o lucro total da selecao S. Logo o lucro total é méximo sse o valor do corte
é minimo. |

Vencendo um torneio. Suponha que temos um torneio de n equipes e que
elas ja ganharam wy, ..., wy vezes até agora. Para cada par de equipes, ainda
temos gij jogos pela frente (g é simétrico). A equipe 1 ainda pode terminar
em primeiro lugar, ou seja, ter o maior nimero de vitérias?

Para a equipe 1, seja 1y = Zj gij o numero de jogos restantes. Precisamos que
i) a equipe 1 vence todos os seus T7 jogos restantes, portanto, tem wq + 14
vitérias, e ii) todas as outras equipes i € T = [2,n] vencem no maximo m;
jogos, dado por wi +m; < wi+717 i.e. my = wy 417 —w; (ignorando empates).
Uma redugdo para um problema de fluxo é como segue. Cria um grafo com
vértices s, G = G), T, e t e com os seguintes arcos:

* (s,g) para todo g = (i,j) € G de capacidade gij,
e (g,1) e (g,j) para todo g = (i,j) € G de capacidade oo,
e (i,t) para todo i € T de capacidade m;.

Nos temos

Lema 1.28
Equipe 1 ainda pode vencer sse o grafo acima possui um fluxo st que satura

(i.e. de valor 3 _; 5 g 9ij)-

Prova. (Exercicio. Nota que o que “flui” sdo jogos, e mandar fluxo em (g, 1)
ou (g,j) codifica que vence.) |

79

1. Algoritmos em grafos

1.6.7. Qutros problemas de fluxo

Obtemos um outro problema de fluxo em redes introduzindo custos de trans-
porte por unidade de fluxo:

FLUXO DE MENOR CUSTO

Entrada Grafo direcionado G = (V, A) com capacidades c € le‘ e custos
k € R‘fl nos arcos, um vértice origem s € V, um vértice destino
teV,evalorveR,.

Solucdo Um fluxo s-t f com valor v, respeitando as capacidades (f < c).

Objetivo Minimizar o custo } . kafa do fluxo.

Diferente do problema de menor fluxo, o valor do fluxo é fixo.

1.6.8. Exercicios

Exercicio 1.6

Mostra como podemos modificar o algoritmo de Dijkstra para encontrar o ca-
minho mais curto entre dois vértices num um grafo para encontrar o caminho
com o maior gargalo entre dois vértices. (Dica: Enquanto o algoritmo de
Dijkstra procura o caminho com a menor soma de distancias, estamos procu-
rando o caminho com o maior capacidade minimo.)

80

1.7. Emparelhamentos

1.7. Emparelhamentos

Dado um grafo nao-direcionado G = (V, A), um emparelhamento é uma selecdo
de arestas M C A tal que todo vértice tem no maximo grau 1 em G’ = (V, M).
(Notagdo: M = {ujv,uzva,...}.) O nosso interesse em emparelhamentos é
maximizar o nimero de arestas selecionados ou, no caso as arestas possuem
pesos, maximizar o peso total das arestas selecionados.

Para um grafo com pesos ¢ : A — Q, seja ¢(M) = 3 .. Ce 0 valor do
emparelhamento M.

EMPARELHAMENTO MAXIMO (EM)
Entrada Um grafo nio-direcionado G = (V, A).

Solucdo Um emparelhamento M C A, i.e. um conjunto de arestas, tal
que para todos vértices v temos [N(v) " M| < 1.

Objetivo Maximiza |M/|.

EMPARELHAMENTO DE PESO MAXIMO (EPM)

Entrada Um grafo nao-direcionado G = (V, A,c) com pesos ¢ : A — Q
nas arestas.

Solucdo Um emparelhamento M C A.
Objetivo Maximiza o valor ¢(M) de M.

Um emparelhamento se chama perfeito se todo vértice possui vizinho em M.
Uma variacdo comum do problema é

EMPARELHAMENTO PERFEITO DE PESO MiNIMO (EPPM)

Entrada Um grafo nao-direcionado G = (V, A,c) com pesos ¢ : A — Q
nas arestas.

Solucdao Um emparelhamento perfeito M C A, i.e. um conjunto de ares-
tas, tal que para todos vértices v temos [N(v) "M = 1.

Objetivo Minimiza o valor ¢(M) de M.

Observe que os pesos em todos problemas podem ser negativos. O problema de
encontrar um emparelhamento de peso minimo em G = (V, A, ¢) é equivalente

81

1. Algoritmos em grafos

com EPM em —G := (V;A,—c) (por qué?). Até EPPM pode ser reduzido
para EPM.

Teorema 1.15
EPM e EPPM sao problemas equivalentes.

Prova. Seja G = (V,A,c) uma instdncia de EPM. Define um conjunto de
vértices V! = VU VT que contém além de V mais |V| vértices novos VT =
{v*|v eV}, e um grafo completo G’ = (V/, V' x V', ¢’) com

;o {ca, caso a € A,

0, caso contrario.

Um emparelhamento M em G de custo ¢(M) corresponde com um empare-
lhamento M’ em G’ como segue. Dado M, define

M ' =MU{uv' Juw e M}u{w’|v livre em M},

dado M’ define M = M’ N V2. Ambas construcdes sé adicionam ou removem
arestas de custo 0 e o custo das demais arestas ¢ invertido, logo ¢/(M’) =
—c(M). Portanto, um EPPM em G’ é um EPM em G.

Por outro lado, seja G = (V,A,c) uma instancia de EPPM. Define C :=
T4 > 4calcal, novos pesos ¢, = C —ce e um grafo G’ = (V,A,c’). Para
emparelhamentos M7 e M em G arbitrarios temos

c(Mz)—c(M1) < Y ca—) ca=) leal<C. (*)

acA a€cA acA
cq=>0 caq<0

Portanto, um emparelhamento de peso méximo em G’ também é um empa-
relhamento de cardinalidade maxima: Para [M;| < |[M3| temos
¢/ (Mq) = CIMy| = c¢(M1) < CIM4] + C —¢(M2) < C[Mz| —¢c(M2) = ¢'(M2),

onde a primeira desigualdade segue por (*). Se existe um emparelhamento
perfeito no grafo original G, entdo o EPM em G’ é perfeito e as arestas do
EPM em G’ definem um EPPM em G. |

Formulacdes com programacdo inteira A formulacdo do problema do em-
parelhamento perfeito minimo para G = (V, A, c) é

EPPM: minimiza) CaXq (1.19)
acA
sujeito a Z Xuv = 1, Yv eV,
ueN(v)
Xq € B.

82

1.7. Emparelhamentos

A formulacdo do problema do emparelhamento méximo é

EPM: maximiza Z CaXa (1.20)
acA
sujeito a Z Xuv < 1, Yv eV
ueN(v)
Xq € B.

Observagao 1.15

A matriz de coeficientes de (1.19) e (1.20) é totalmente unimodular no caso bi-
partido (pelo teorema de Hoffman-Kruskal). Portanto: a solugdo da relaxagéo
linear é inteira. (No caso geral isso néo é verdadeiro, K3 é um contra-exemplo,
com solugao étima 3/2.). Observe que isso resolve o caso ponderado sem custo
adicional. O

Observacgao 1.16
O dual da relaxacao linear de (1.19) é

CIM: maximiza) vy, (1.21)
vev
sujeito a Yy, +y, < cuy,y Yuv € A,
Yy € R.
e o dual da relaxagdo linear de (1.20)
MVC: minimiza Zyv (1.22)
vev
sujeito a Yy +Yy, > cyy, Yuv € A,
Yv € Ry
Com pesos unitarios cy, = 1 e restringindo y, € B o primeiro dual é a

formulacdo do conjunto independente maximo e o segundo da cobertura de
vértices minima. Portanto, a observacao 1.15 rende no caso nao-ponderado:
Teorema 1.16 (Berge, 1951)

Em grafos bi-partidos o tamanho da menor cobertura de vértices é igual ao
tamanho do emparelhamento méaximo.

Proposicao 1.5

Um subconjunto de vértices I C V de um grafo nao-direcionado G = (V;A) é
um conjunto independente sse V' \ I é um cobertura de vértices. Em particu-
lar um conjunto independente maximo I corresponde com uma cobertura de
vértices minima V \ L.

Prova. (Exercicio 1.8.) | O

83

1. Algoritmos em grafos

Figura 1.21.: Esquerda: Poligono ortogonal com n = 8 vértices de reflexo
(pontos), h = 0 buracos. As cordas sdo pontilhadas. Direita:
grafo de interseccgao.

1.7.1. Aplicacées

Alocacao de tarefas Queremos alocar n tarefas a n trabalhadores, tal que
cada tarefa é executada, e cada trabalhador executa uma tarefa. O custos de
execucao dependem do trabalhar e da tarefa. Isso pode ser resolvido como
problema de emparelhamento perfeito minimo.

Particionamento de poligonos ortogonais

Teorema 1.17 (Sack e Urrutia (2000, cap. 11, Th. 1))

Um poligono ortogonal com n vértices de reflexo (ingl. reflex vertex, i.e., com
angulo interno maior que 7), h buracos (ingl. holes) pode ser minimalmente
particionado em n — 1 — h + 1 retangulos. A varidvel 1 é o nimero méximo
de cordas (diagonais) horizontais ou verticais entre vértices de reflexo sem
interseccao.

O namero 1 é o tamanho do conjunto independente maximo no grafo de in-
terseccao das cordas: cada corda é representada por um vértice, e uma aresta
representa a duas cordas com intersecdo. Pela proposi¢do 1.7 podemos obter
uma cobertura minima via um emparelhamento maximo, que é o complemento
de um conjunto independente maximo. Podemos achar o emparelhamento em
tempo O(n>/2) usando o algoritmo de Hopcroft-Karp, porque o grafo de in-
tersecgdo é bi-partido (por qué?).

84

1.7. Emparelhamentos

Figura 1.22.: Reducao do problema de emparelhamento maximo para o pro-
blema do fluxo maximo

Problemas de agendamento O problema 1| p; =p | > wjTj é resolvido
por um emparelhamento perfeito entre as tarefas e os intervalos de execugao
[i—Dyp,ipl, i € [n]l. Podemos resolver ainda 1 | p; = 1,7; [3_w;T;j, obser-
vando que sempre existe uma solugdo com as tarefas executando nos intervalos
[ti, ti + 1], 1 € [n], definido por

to=—o0; ti =max{ti1 +1;7i}

e supondo que 11 < -+ < 1.

1.7.2. Grafos bi-partidos

Na formulagao como programa inteira a solugao do caso bi-partido é mais facil.
Isso também é o caso para algoritmos combinatoriais, e portanto comegamos
estudar grafos bi-partidos.

Reducao para o problema do fluxo maximo

Teorema 1.18
Um EM em grafos bi-partidos pode ser obtido em tempo O(mn).

Prova. Introduz dois vértices s, t, liga s para todos vértices em V7, os vértices
em Vi com vértices em V> e os vértices em V, com t, com todos os pesos
unitarios. Aplica o algoritmo de Ford-Fulkerson para obter um fluxo maximo.
O numero de aumentos é limitado por n, cada busca tem complexidade O(m),
portanto o algoritmo de Ford-Fulkerson termina em tempo O(mn). |

Teorema 1.19
O valor do fluxo méximo é igual a cardinalidade de um emparelhamento méa-
xXimo.

85

1. Algoritmos em grafos

Prova. Dado um emparelhamento méximo M = {v11v21,...,V1nV2n}, pode-
mos construir um fluxo com arcos svii, viiv2i e vait com valor [M|.

Dado um fluxo méximo, existe um fluxo integral equivalente (veja lema (1.14)).
Na construgdo acima os arcos possuem fluxo 0 ou 1. Escolhe todos arcos entre
V1 e V, com fluxo 1. Nao existe vértice com grau 2, pela conservacao de fluxo.
Portanto, os arcos formam um emparelhamento cuja cardinalidade é o valor

do fluxo. [|

Solucdo ndo-ponderada combinatorial Um caminho P = vivyvsz...v¢ é
alternante em relagdo a M (ou M-alternante) se vivi11 € M sse vip1viy2 € M
para todos 1 <1 < k—2. Um vértice v € V é livre em relagdo a M se ele
tem grau 0 em M, e emparelhado caso contrario. Uma aresta e € E € livre em
relacdo a M, se e € M, e emparelhado caso contrario. Escrevemos [P| =k —1
pelo comprimento do caminho P.

Observagao 1.17

Caso temos um caminho P = vivyv3...va que é M-alternante com vi é

vax livre, podemos obter um emparelhamento M \ (PN M) U (P \ M) de

tamanho [M|+k — (k — 1) = M| + 1. Notacao: Diferenca simétrica M & P =

(M\P)U(P\M). A operacao M @ P é um aumento do emparelhamento M.
O

Teorema 1.20 (Hopcroft e Karp (1973))

Seja M* um emparelhamento maximo e M um emparelhamento arbitrario. O
conjunto M@M* contém pelo menos k = [M*|—|M| caminhos M-aumentantes
disjuntos (de vértices). Um deles possui comprimento no maximo [V|/k — 1.
Prova. Considere os componentes de G em relagdo as arestas M@ M*. Cada
vértice possui no maximo grau 2. Portanto, os componentes sao vértices livres,
caminhos simples ou ciclos, todos disjuntos de vértices, por construgao. Os
caminhos e ciclos possuem alternadamente ares

M\ M|=M*—M*"NM|=M|—IM*"NM|+k =M\ M*+k

e portanto M @ M* contém k arestas mais de M* que de M. Isso mostra que
existem pelo menos |[M*| — [M| caminhos M-aumentantes, porque somente os
caminhos de comprimento impar possuem exatamente uma aresta mais de M*.
Pelo menos um desses caminhos tem que ter um comprimento (em arestas)
menor ou igual que [V|/k — 1, sendo cada um possui pelo menos |V|/k + 1
vértices, i.e. eles contém em total mais que |V| vértices. |

Corolario 1.5 (Berge (1957))
Um emparelhamento é maximo sse nao existe um caminho M-aumentante.

Rascunho de um algoritmo:

86

1.7. Emparelhamentos

Algoritmo 1.7 (Emparelhamento maximo)
Entrada Grafo nao-direcionado G = (V, A).

Saida Um emparelhamento maximo M.

1 M=0

2 while (existe um caminho M-aumentante P) do
3 M:=MgP

4 end while

5 return M

Problema: como encontrar caminhos M-aumentantes eficientemente?

Observagao 1.18

Um caminho M-aumentante comeca num vértice livre em Vi e termina num
vértice livre em V,. Idéia: comeca uma busca por largura com todos vértices
livres em V7. Segue alternadamente arcos livres em M para encontrar vizi-
nhos em V> e arcos em M, para encontrar vizinhos em V7. A busca para ao
encontrar um vértice livre em V; ou apds de visitar todos os vértices. Ela tem
complexidade O(m + n). O

Teorema 1.21

O problema do emparelhamento méximo nao-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(mn).

Prova. Ultima observacao e o fato que o emparelhamento maximo tem ta-
manho O(n). |

Observagao 1.19
O tltimo teorema é o mesmo que teorema (1.18). O

Observagao 1.20

Pelo teorema (1.20) sabemos que existem varios caminhos M-alternantes dis-
juntos (de vértices) e nos podemos aumentar M com todos eles em paralelo.
Portanto, estruturamos o algoritmo em fases: cada fase procura um conjunto
de caminhos aumentantes disjuntos e aplica-los para obter um novo empare-
lhamento. Observe que pelo teorema (1.20) um aumento com o maior conjunto
de caminhos M-alternantes disjuntos resolve o problema imediatamente, mas
nao sabemos como encontrar esse conjunto de forma eficiente. Portanto, pro-
curamos somente um conjunto maximal de caminhos M-alternantes disjuntos
de menor comprimento.

Podemos encontrar um tal conjunto apds uma busca em profundidade usando
o DAG (grafo direcionado aciclico) definido pela busca por profundidade. (i)
Escolhe um vértice livre em V5. (ii) Segue os predecessores para encontrar um

87

1. Algoritmos em grafos

caminho aumentante. (iii) Coloca todos vértices em uma fila de delegdo. (iv)
Processa a fila de delecao: Até que a fila esteja vazia, remove um vértice dela.
Remove todos arcos adjacentes no DAG. Caso um vértice sucessor apés de
remogao de um arco possui grau de entrada 0, coloca ele na fila. (v) Repete
o procedimento no DAG restante, para encontrar outro caminho, até nao
existem mais vértices livres em V>. A nova busca ainda possui complexidade

O(m). O

O que ganhamos com essa nova busca? Os seguintes dois lemas dao a resposta:

Lema 1.29
Em cada fase o comprimento de um caminho aumentante minimo aumenta
por pelo menos dois.

Lema 1.30
O algoritmo termina em no maximo /n fases.

Teorema 1.22

O problema do emparelhamento maximo nao-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(m/1).

Prova. Pelas lemas 1.29 e 1.30 e a observagao que toda fase pode ser com-
pletada em O(m). []

Usaremos outro lema para provar os dois lemas acima.

Lema 1.31

Seja M um emparelhamento, P um caminho M-aumentante minimo, e Q um
caminho M @ P-aumentante. Entdo |Q| > [P|+ 2[P N Q|. (PN Q denota as
arestas em comum entre P e Q.)

Prova. Caso P e Q nfo possuem vértices em comum, Q é M-aumentante,
PN Q = 0 e a desigualdade é consequéncia da minimalidade de P. Caso
contrario, P e Q possuem um vértice em comum, e logo também uma aresta,
sendao M @ P @ Q possui um vértice de grau dois. P @& Q consiste em dois
caminhos, e eventualmente um colegdo de ciclos. Os dois caminhos sdo M-
aumentantes, pelas seguintes observagoes:

1. Cada caminho inicia numa ponta de Q e termina numa ponta de P.
Além disso, em M as pontas de P sdo livres, porque P é M-aumentante;
as pontas de Q também sao livres em M: sdo livres M @ P, e logo nao
pertencem a P. (Nenhum outro vértice de P @ Q é livre em relagdo a
M: P s6 contém dois vértices livres e Q sé contém dois vértices livres

em Q\P.)

88

1.7. Emparelhamentos

U —] —] O

U (—1 (—] U
(a) Grafo com emparelhamento M (em negrito) e um caminho
M-aumentante P (em vermelho).

o—0 - —0 - O—_

] (—] (—] U
(b) O mesmo grafo com emparelhamento M @ P (em negrito) e um caminho
M @& P-aumentante Q (em vermelho).

i

) O conjunto de arestas P @ Q (em negrito).

Figura 1.23.: Ilustracao do lema 1.31.

2. Os dois caminhos sdo M-alternantes. Comegando com um vértice livre
em Q, a parte do caminho Q em Q\ P é M-alternante, porque as arestas
livres em M @P sdo exatamente as arestas livres em M. O caminho entra
em P com uma aresta livre, porque todo vértice em P ja esta emparelhado
em M @ P. A parte de P em P @ Q tem que continuar com aresta livre
em M @ P, e logo aresta emparelhada em M. Logo, temos um caminho
M-alternante.

Os dois caminhos M-aumentantes em P& Q tem que ser maiores que |P|. Com
isso temos [P @ Q| > 2|P| e

QI=P&Ql+2[PNQI—[P>[P|+2[PN QI

|
Prova. (dolema 1.29). Seja S o conjunto de caminhos M-aumentantes da fase
anterior, e P um caminho aumentante. Caso P é disjunto de todos caminhos
em S, ele deve ser mais comprido, porque S é um conjunto maximo de caminhos
aumentantes. Caso P possui um vértice em comum com algum caminho em
S, ele possui também um arco em comum (por qué?) e podemos aplicar
lema 1.31. |
Prova. (do lema 1.30). Seja M* um emparelhamento méaximo e M o empa-
relhamento obtido apds de /n/2 fases. O comprimento de qualquer caminho
M-aumentante é no minimo /n, pelo lema 1.29. Pelo teorema 1.20 existem

89

© 00O Ui Wi+

— =
N = O

— =
= W

1. Algoritmos em grafos

pelo menos [M*| — |M| caminhos M-aumentantes disjuntos de vértices. Mas
entdo [M*| — M| < /1, porque no caso contrrio eles possuem mais que n
vértices em total. Como o emparelhamento cresce pelo menos um em cada
fase, o algoritmo executa no méximo mais y/n fases. Portanto, o niimero total
de fases é no maximo 3/2y/n = O(y/n). []
O algoritmo de Hopcroft-Karp é o melhor algoritmo conhecido para encontrar
emparelhamentos maximos em grafos bipartidos ndo-ponderados esparsos®.
Para subclasses de grafos bipartidos existem algoritmos melhores. Por exem-
plo, existe um algoritmo randomizado para grafos bipartidos regulares com
complexidade de tempo esperado O(nlogn) (Goel et al., 2010).

Sobre a implementacdo A seguir supomos que o conjunto de vértices é
V = [1,n] e um grafo G = (V, A) bi-partido com particio V7 U V3. Podemos
representar um emparelhamento usando um vetor mate, que contém, para
cada vértice emparelhado, o indice do vértice vizinho, e 0 caso o vértice é
livre.

O nucleo de uma implementacao do algoritmo de Hopcroft e Karp é descrito
na observacao 1.20: ele consiste numa busca por largura até encontrar um ou
mais caminhos M-alternantes minimos e depois uma fase que extrai do DAG
definido pela busca um conjunto maximo de caminhos disjuntos (de vértices).
A busca por largura comega com todos vértices livres em V;. Usamos um
vetor H para marcar os arcos que fazem parte do DAG definido pela busca
por largura® e um vetor m para marcar os vértices visitados.

search_paths (M) :=
for all veV do m, :=false

U :={veV;|v livre}
for all uel; do dy =0

do
{ determina vizinhos em U, via arestas livres}
UZ ZZ(Z)
for all ue U; do

my = true
for all wwe A, w¢M do
if not m, then
d,:=d,+1

5Feder e Motwani (1991) e Feder e Motwani (1995) propuseram um algoritmo em
O(y/nm(2 — log,, m)) que é melhor em grafos densos.
6H, porque o DAG se chama drvore Hingara na literatura.

90

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

W, :=UUv
end if
end for
end for

1.7. Emparelhamentos

{ determina vizinhos em U; via arestas emparelhadas 1}

found := false
U] = (Z)
for all ue U, do
my = true
if (u livre) then
found := true
else
v := mate[u]
if not m, then

dy, :=d, +1
U; :=uU;uv
end if
end for
end for

while (not found)
end

{ pelo menos um caminho encontrado? }

0 O Ui Wi

Apés da busca, podemos extrair um conjunto maximo de caminhos M-alternantes
minimos disjuntos. Enquanto existe um vértice livre em V;, nos extraimos um
caminho alternante que termina em v como segue:

extract_paths() :=
while existe vértice v livre em V; do
aplica um busca em profundidade a partir de v em H
(procurando um vértice livre em Vi)
remove todos vértices visitados durante a busca
caso um caminho alternante P foi encontrado: M:=M®®P
end while
end

Exemplo 1.7
Segue um exemplo da aplicacdo do algoritmo de Hopcroft-Karp.

Grafo original, arvore Hungara primeira iteracdo e emparelhamento
resultante:

91

1. Algoritmos em grafos

:

Arvore Hungara segunda iteracio e emparelhamento resultante:

it

Arvore Hungara terceira iteragdo e emparelhamento resultante:

e

Emparelhamentos, coberturas e conjuntos independentes

csess

Proposicao 1.6

Seja G = (S U T,A) um grafo bipartido e M C A um emparelhamento em G.
Seja R o conjunto de todos vértices livres em S e todos vértices alcangaveis
por uma busca na arvore Hungara (i.e. via arestas livres de S para T e arestas
emparelhadas de T para S). Entao (S\R)U(TNR) é uma cobertura de vértices
em G.

Prova. Seja uv € A uma aresta nao coberta. Logo u € S\ (S\R) =SNR
eveT\(TNR) =T\R. Caso uv € M, uv é parte da arvore Hingara é

92

1.7. Emparelhamentos

]
O v
]
v
]
]
[|]
Ml—v{ | O
[| L]

Figura 1.24.: Tlustragdo da prova da proposigao 1.7.

v € R, uma contradi¢do. Mas caso uv € M, vu é parte da arvore Hungara e v
precede u, logo v € R, novamente uma contradigao. |

A proéxima proposicdo mostra que no caso de um emparelhamento méaximo
obtemos uma cobertura minima.

Proposicao 1.7
Seja G = (S U TA). Caso M é um emparelhamento maximo o conjunto
(S\R)U (TNR) é uma cobertura minima.

Prova. O tamanho de qualquer emparelhamento M é um limite inferior para
o tamanho de qualquer cobertura, porque uma cobertura tem que conter pelo
menos um vértice da cada aresta emparelhada. Logo é suficiente demonstrar
que (S\R)U(TNR)| =|M|.

Temos (S\R)U (TNR)| =[S\ R+ |TNR| porque S e T sdo disjuntos. Vamos
demonstrar que |T N R| = v implica |S \ R| = [M| —v.

Supoe [TNR| =v. Como M é méximo néo existe caminho M-aumentante,
e logo TN R contém somente vértices emparelhados. Por isso o niimero de

vértices emparelhados em S N R também é v. Além disso S N R contém todos
IS| — IM| vértices livres em S. Logo [S\R|=|S|—(|S|—M|]) —=v=|M|—v. R

Observagao 1.21

O complemento V \ C de uma cobertura C é um conjunto independente (por
qué?). Logo um emparelhamento M que define um conjunto R de acordo com
a proposigao (1.6) corresponde com um conjunto independente (SNR)U(T\R),
e caso M é méaximo, o conjunto independente também. O

93

1. Algoritmos em grafos

Solucdo ponderada em grafos bi-partidos Dado um grafo G = (S U T, A)
bipartido com pesos ¢ : A — Q. queremos achar um emparelhamento de
maior peso. Escrevemos V =S UT para o conjunto de todos vértices em G.

Observacgao 1.22

O caso ponderado pode ser restrito para emparelhamentos perfeitos: caso
S e T possuem cardinalidade diferente, podemos adicionar vértices, e depois
completar todo grafo com arestas de custo 0. O problema de encontrar um
emparelhamento perfeito maximo (ou minimo) em grafos ponderados é conhe-
cido pelo nome “problema de alocagdo” (ingl. assignment problem). O

Observacgao 1.23

A redugao do teorema 1.18 para um problema de fluxo médximo nao se aplica
no caso ponderado. Mas, com a simplificagdo da observacao 1.22, podemos
reduzir o problema no caso ponderado para um problema de fluxo de menor
custo: a capacidade de todas arestas é 1, e o custo de transportagdo sdo os
pesos das arestas. Como o emparelhamento é perfeito, procuramos um fluxo
de valor |[V|/2, de menor custo. O

O dual do problema 1.22 é a motivagao para

Definicao 1.4

Um rotulamento é uma atribui¢do y : V — R,.. Ele é vidvel caso Yy +Yy > Cq
para todas arestas a = {u,v}. (Um rotulamento vidvel é uma c-cobertura de
vértices.) Uma aresta é apertada (ingl. tight) caso yy + Yy, = cq. O subgrafo
de arestas apertadas é Gy = (V,A’,c) com A’ ={a € A | a apertada em y}.

Pelo teorema forte de dualidade e o fato que a relaxacao linear dos sistemas
acima possui uma solugdo integral (ver observagio 1.15) temos

Teorema 1.23 (Egervary (1931))

Para um grafo bi-partido G = (S U T, A,c) com pesos nio-negativos ¢ : A —
Q. nas arestas, o maior peso de um emparelhamento perfeito é igual ao peso
da menor c-cobertura de vértices.

O método hiingaro Aplicando um caminho M-aumentante P = (viv2...V2n41)
produz um emparelhamento de peso ¢(M)+3_; (1 0ar Cvivier — 21 par Cviviar -
Isso motiva a definicio de uma arvore Hingara ponderada. Para um empa-
relhamento M, seja Haq o grafo direcionado com as arestas e € M orientadas
de T para S com peso l. := we, e com as restantes arestas a € A\ M ori-
entadas de S para T com peso 1, := —wq. Com isso a aplicacdo do caminho
M-aumentante P produz um emparelhamento de peso ¢c(M) — I(P) em que
L(P) =) ;<i<on Wivi,s ¢ 0 comprimento do caminho P.

Com isso podemos modificar o algoritmo para emparelhamentos méaximos para

94

1.7. Emparelhamentos

Algoritmo 1.8 (Emparelhamento de peso maximo)
Entrada Um grafo nao-direcionado ponderado G = (V, E, c).

Saida Um emparelhamento de maior peso ¢(M).

1 M=0

while (existe um caminho M-aumentante P) do
encontra o caminho M-aumentante minimo P em Hm
caso L(P)>0: return M;
M:=MagP

end while

N O UL W N

return M

Chamaremos um emparelhamento M eztremo caso ele possui o maior peso
entre todos emparelhamentos de tamanho |M|.

Observagao 1.24

O grafo Hyy de um emparelhamento extremo M néo possui ciclo (par) ne-
gativo. Isso seria uma contradicdo com a maximalidade de M. Portanto
podemos encontrar o caminho minimo no passo 3 do algoritmo usando o al-
goritmo de Bellman-Ford em tempo O(mn). Com isso a complexidade do
algoritmo é O(mn?). O

Observagao 1.25
Lembrando Bellman-Ford: Seja dy(t) a distancia minima entre s e t com um
caminho usando no méximo k arcos ou oo caso tal caminho néo existe. Temos

dic+1(t) = min{dy(t), (mgnA di(w) + 1w,)Vt € V,
u,t)e

com do(t) =0 caso t é um vértice livre em S e do(t) = oo caso contrério. (O
algoritmo se aplica igualmente para as distancias de um conjunto de vértices,
como o conjunto de vértices livres em S.) A atualizacdo de k para k + 1 é
possivel em O(m) e como k < n o algoritmo possui complexidade O(nm). ¢

Teorema 1.24
Cada emparelhamento encontrado no Algoritmo 1.8 é extremo.

Prova. Por indugio sobre |M|. Para M =) o teorema é correto. Seja
M um emparelhamento extremo, P o caminho aumentante encontrado pelo
algoritmo 1.8 ¢ N um emparelhamento de tamanho M|+ 1 arbitrério. Como
IN| > M|, pelo teorema (1.20) M @ N contém um caminho M-aumentante Q.
Sabemos 1(Q) > 1(P) pela minimalidade de P. N & Q é um emparelhamento

95

1. Algoritmos em grafos

de cardinalidade M| (Q é um caminho com arestas em N e M com uma aresta
em N a mais), logo ¢(N @ Q) < ¢(M). Com isso temos

c(N)=c(N® Q) -UQ) <c(M)=UP)=c(M&P)

(observe que o comprimento 1(Q) é definido no emparelhamento M). |

Proposicao 1.8
Caso nao existe caminho M-aumentante com comprimento negativo no Algo-
ritmo 1.8, M é méaximo.

Prova. Supde que existe um emparelhamento N com ¢(N) > ¢(M). Logo
IN| > |[M| porque M é possui o maior peso entre todos emparelhamentos de
cardinalidade no mdximo |M|. Pelo teorema de Hopcroft-Karp, existem |[N| —
IM| caminhos M-aumentantes disjuntos de vértices em N @& M. Nenhum deles
tem comprimento negativo, pelo critério de parada do algoritmo. Portanto
¢(N) < ¢(M), uma contradicdo. [|

Fato 1.1

E possivel encontrar o caminho minimo no passo 3 em tempo O(m +nlogn)
usando uma transformacgao para distancias positivas e aplicando o algoritmo
de Dijkstra. Com isso um algoritmo em tempo O(n(m + nlogn)) é possivel.

1.7.3. Emparelhamentos em grafos nao-bipartidos

O teorema de Berge 1.16 (ou e de Hopcroft & Karp 1.20) vale em qualquer
grafo.

Exemplo 1.8 (Caminhos M-aumentantes em grafos nao-bipartidos)
Consequéncia: dado um caminho M-aumentante, a sua aplicagdo produz em-
parelhamentos maiores.

et ALL

Portanto, o problema central em grafos gerais ainda é

Problema 1.1 (Encontra um caminho M-aumentante)
Dado um emparelhamento M, retorne um caminho M-aumentante, caso exis-
tir.

96

1.7. Emparelhamentos

Dado uma solugdo em tempo T(n), o algoritmo canénico (inicia com M =
(; repetidamente resolve Problema 1.1; caso tem caminho M-aumentante P,
M := M @ P e repete; sendo: para) termina em no méximo [n/2| = O(n)
iteragoes em tempo O(nT(n)).

O caso nao-ponderado

Primeiramente vamos entender porque a abordagem utilizada em grafos bi-
partidos G = (S U T E) falha. Sejam X os vértices livres em G. Em grafos
bipartidos encontramos um caminho M-aumentante por uma busca em lar-
gura:

Algoritmo 1.9 (Busca caminho M-aumentante)

Inicia em Sy = SN X. Dado S; sejam T; os vértices ainda néo
explorados alcancaveis por S; via arestas livres. Caso T; contém
um vértice livre, termina, sendo sejam Si;1 os vértices ainda nao
explorados alcancaveis por T; via arestas emparelhadas. Repete.

Proposicao 1.9
Algoritmo 1.9 sempre encontra pelo menos um caminho mais curto M-aumentante
em grafos bipartidos.

Prova. Para todo caminho M-aumentante mais curto P = (vo,Vv1,...,V¢),
vértice v; é encontrado na iteragdo i. Pela existéncia do caminho P, é claro
que vértice vi é descoberto em no maximo 1 iteragoes. Agora assume v; é
o vértice de menor indice descoberto numa iteracao j < i, por um caminho
alternante Q = (uo, u1,...,u; = v;) iniciando em uy livre. Temos os seguintes
casos:

a) jépar,eiépar. Logouj_1vi € M, evi_1vi € M, e porisso uj_1 =vi_j
em contradicdo com a minimalidade de 1.

b) j é fmpar, i é impar. Logo uj_1vi € M, vivi;1 € M e Q junto com o
caminho (vi,Viy1,...,V¢) ¢ um caminho M-aumentante de comprimento

j+ (t—1) < t, em contradigdo com a minimalidade de P.

c) j é par, eié impar. Logo vi € Sj/5 e vi € T|j,2), em contradi¢do com G
sendo bipartido.

d) j é impar, i é par. Similar ao caso c) temos vi € T|j,2) e vi € Si/, uma
contradigao.

97

1. Algoritmos em grafos

|
Num grafo geral ndo temos a particio em S e T. Uma possivel alternativa é ini-
ciar a busca em Ry = X e aplicar a mesma busca alternante para descobrir uma
sequéncia de conjuntos R;. Mas mesmo em grafos bipartidos, Algoritmo 1.9
entao falha: em

P
e—0@—0@ 0@ 0—0@ O

Q

os caminhos alternantes P e Q se encontram. Nota que isso corresponde com
o caso d) da Proposigdo 1.9, mas ndo é mais uma contradigdo, porque os
conjuntos R; contém vértices de S e T.

Esse problema pode ser resolvido por i) modificar o Algoritmo 1.9 para com-
binar caminhos encontrados em buscas iniciados em vértices livres diferentes,
ou, mais simples, mas menos eficiente, ii) buscar a partir de cada vértice x € X
separadamente.

Por ser mais simples considera a solugdo ii): mesmo procurando a partir de
um tnico vértice x € X falha em grafos gerais. Por exemplo:

P

T ——

Note que isso corresponde com o caso c¢) da Proposi¢ao 1.9 é nao é mais uma
contradi¢do, porque em grafos gerais podemos ter lagos impares.

O exemplo acima sugere que ciclos impares formam o nticleo do Problema 1.1.
A arvore de busca do exemplo anterior pode ser visualizado como

Isso é o motivo para:

Definicao 1.5 (Flor)
Seja P = (vo,v1,...,v¢) uma caminhada M-alternante. Caso (i) vo € X, (ii)
todos vértices vy, ..., vi_1 sdo distintos, (iii) t é impar, e (iv) existe um i < t,

98

1.7. Emparelhamentos

i par, tal que vi = vy, P é chamado uma flor, com caule (vo,...,Vi), base vy,
e blossom B = (Vi,Vigf1,...,V¢).

. QSSO1M

flor

base

Caminhadas M-alternantes. Como encontrar caminhos M-alternantes fa-
lha, uma outra ideia, que vamos discutir agora, é buscar caminhadas M-
alternantes. Para conseguir isso, vamos introduzir um grafo direcionado au-
xiliar D = (V,;A), onde A = {uv | ux € E, xv € M para um x € V}. A ideia é

substituir @-@-@ por ®—0.

Essa construcao tem a seguinte caracteristica

Proposigcao 1.10
Sejam N(X) todos vértices vizinhos de vértices livres X. Entdo D possui um
caminho X-N(X) sse G possui uma caminhada X—X.

Prova. “=7: é suficiente expandir os arcos e adicionar uma aresta final para
um vértice livre.

“<”: dado W = (vg,...,Vv¢) remove o vértice livre v¢ para obter uma cami-
nhada terminando em N(X). Podemos assumir que v¢_7 é o tnico vértice em
N(X), sendo um prefixo de W serve. Contrai arestas vyiVvaii1 para arcos e
remove eventuais ciclos para obter um caminho. Como o vértice inicial é livre
e o vértice final v{_; ndo tem sucessor, ambos nao fazem parte de um ciclo.
Logo o caminho resultante é X-—N(X). |
Isso nos permite, em tempo O(m) usar uma busca por profundidade em D
iniciando em X e terminando em algum vértice em N(X) para encontrar uma
caminhada M-alternante X—X. Porém o seguinte exemplo mostra que as flores
ainda sao uma fonte de problemas para caminhadas M-alternantes.

Exemplo 1.9

Considere o exemplo da Figure 1.25. O caminho v{v3Vv5v;Vve corresponde com
o caminho M-aumentante V1V2V3V4V5V5V7VeVoV,. Mas caminho V1V8CsV5V7Vo
que corresponde com o caminhada v1voVvgV7VgVaV5VeV7VgVoV, que nao é M-
aumentante, mesmo sendo M-alternante entre dois vértices livres. O problema
novamente é o lagco impar vgv4vsve. O

99

1. Algoritmos em grafos

R akcte
LT

Figura 1.25.: Grafo com emparelhamento, grafo auxiliar e duas caminhadas
M-alternantes.

Nota que no Exemplo 1.9 o prefixo vivovgv;vgvsV5ve da segunda caminhada
é uma flor. Isso de fato sempre é o caso:

Proposigao 1.11

Seja P = (vo,V1,...,V¢) uma caminhada M-alternante X—X mais curta. Entao
ou (i) P é um caminho M-aumentante, ou (ii) o prefixo (vo,v1,...,Vvj) para
algum j <t é uma flor.

Prova. Assume que P ndo é um caminho. Seleciona i < j tal que vi =vj e
j minimo. Ent&o todos vértices vo,...,vj_1 sdo distintos. A diferenca j —1
nao pode ser par, sendo podemos remover (vi,...,Vvj) para obter a caminhada
(voy...,vi) M-alternante X-X mais curta que P, em contradi¢do com a mi-
nimalidade de P. Ainda, caso i é impar e j é par, temos viviy1 € M, e
vj—1vj € M e como v{ = vj também Vi1 = vj_1, em contradi¢do com a mi-
nimalidade de j. Logo i é par, j é impar, e (vo,...,Vv;) satisfaz todos critérios
da Defini¢ao 1.5 é por isso é uma flor. |

Lidar com flores. O problema central entdo é como lidar com flores. Esse
problema tem uma solucdo simples: ao encontrar uma flor, contrai a sua
blossom B. Vamos escrever G/B para o grafo resultante, e assumir que ele
tem vértices G \ B U{B} (ou seja o vértice B representa a blossom contraida).
Ao contrair, vamos descartar lagos. Ainda dado um emparelhamento M, M /B
é o emparelhamento apds a contracio. (Nota que somente caso [IMN§(B)| < 1
onde §(B) = {uv | u € B,v ¢ B}, M/B é um emparelhamento; por exemplo

produz e—e—o que nao é.)

100

1.7. Emparelhamentos

O seguinte teorema nos garante a corretude dessa estratégia.

Teorema 1.25
M ¢é um emparelhamento maximo em G sse M/B é um emparelhamento mé-
ximo em G/B.

Prova. Seja B = (Vi,Vig1y...,Vt)-

“=": Assume M/B ndo é maximo, e seja P um caminho M/B-aumentante.
Vamos mostrar que entdo existe um caminho M-aumentante, logo M também
ndo é méximo. Caso B ¢ P, P j4 é M-aumentante. Caso contrario, seja uB
a aresta em P que entra em B. Podemos assumir que uB é livre em M/B
(sendo inverte P). Seja uvj, i <j < t, a aresta correspondente em G. Caso j é
impar, podemos expandir B para vj,Vji1,...,Vt para obter um caminho M-
aumentante (nota que vjvj;1 € M) em G. Similarmente, caso j é par, podemos
expandir B para vj,vj_1,...,V; para obter um caminho M-aumentante.
“&”: Assume M nao é maximo. Para caule Q, M@ Q é um emparelhamento
da mesma cardinalidade porque v; tem indice par, pela Definicao 1.5. Entao
podemos supor que i = 0; nota que isso torna v; livre em M, e logo B é
libre em M/B. Dado um caminho M-aumentante P = (ug,...,us), entdo
vamos construir um caminho M/B-aumentante em G/B, mostrando que M /B
nio é maximo. Caso PN B = (), P j4 é um caminho M/B-aumentante. Caso
contrério, podemos assumir 1y ¢ B (sendo inverte P). Seja u;, j > 0 o primeiro
vértice em P em B. O caminho (ug,...,u;) é M/B-alternante, e como B é
libre em G/B, também aumentante. |

Combinando as pecas. Com isso podemos resolver o Problema 1.1, como
segue.

Algoritmo 1.10 (Busca caminho M-aumentante)
1) Encontra um caminho P M-alternante X-X mais curto. Caso
nao tenha: para, nao existe caminho M-aumentante. (Propo-
sigao 1.10).

2) Pela Proposigao 1.11 ou
a) P é um caminho M-aumentante: retorna P; ou

b) um prefixo de P é uma flor com blossom B: recursivamente
encontra um caminho P/ M/B-aumentante em G/B. De-
pois expande P’ para um caminho M-aumentante P em
G, de acordo com Teorema 1.25. retorna P”.

101

1. Algoritmos em grafos

Tabela 1.4.: Resumo emparelhamentos. Aqui C = maxgea [Cql-

Cardinalidade Ponderado

Bi-partido O(ny/mn/logn) (Alt et al, O(mm + n?logn) (Kuhn, 1955;
log(n /m M k 195
1991) O(my/n glogn) (Feder e unkres, 1957)
Motwani, 1995)
Geral O(mym) (Micali e Vazirani, O(n?®) (Edmonds, 1965)
1980)

mfloglg T{m)) (Goldberg e O(mn+mn?logn) (Gabow, 1990)
Karzanov, 2004 Fremuth-Paeger
e Jungnickel, 2003)

O(mymnlognC) (Duan et al,

2018)

A corretude do algoritmo segue das proposi¢oes e teoremas mencionadas. A
complexidade de encontrar o caminho P no passo 1, bem como a complexi-
dade da contragdo para G/B no passo 2¢ é O(m). Por isso, todas chamadas
recursivas nao custam mais que O(nm), porque em cada recursao temos pelo
menos um vértice a menos. Logo, o algoritmo canénico termina em tempo
O(n?m).

1.7.4. Notas
Duan et al. (2011) apresentam técnicas de aproximagao para emparelhamen-

tos.

1.7.5. Exercicios

Exercicio 1.7
E possivel somar uma constante ¢ € R para todos custos de uma instancia do
EPM ou EPPM, mantendo a otimalidade da solugao?

Exercicio 1.8
Prove a proposicao 1.5.

102

2. Tabelas hash

Em hashing nosso interesse é uma estrutura de dados H para gerenciar um
conjunto de chaves sobre um universo U e que oferece as operagdes de um
dicionario:

o Inser¢ao de uma chave ¢ € U: insert(c,H)
e Delegdo de uma chave ¢ € U: delete(c,H)
o Teste da pertinéncia: Chave ¢ € H? lookup(c,H)

Uma caracteristica do problema é que tamanho [U| do universo de chaves
possiveis pode ser grande, por exemplo o conjunto de todos strings ou todos
numeros inteiros. Portanto usar a chave como indice de um vetor de booleano
nao é uma opcdo. Uma tabela hash é um alternativa para outros estruturas de
dados de dicionarios, p.ex. arvores. O principio de tabelas hash: aloca uma
tabela de tamanho m e usa uma fung¢do hash h : U — [m] para calcular a
posicao de uma chave na tabela.

Como o tamanho da tabela hash é menor que o niimero de chaves possiveis,
existem chaves ci,c2 com h(ci) = h(cz), que geram colisoes. Logo uma
tabela hash precisa definir um método de resolucao de colisoes. Uma solucao
é Hashing perfeito: escolhe uma funcao hash, que para um dado conjunto de
chaves nao tem colisoes. Isso é possivel se o conjunto de chaves é conhecido e
estatico.

2.1. Hashing com listas encadeadas

Seja h : U — [m] uma func¢do hash. Mantemos uma colecio de m listas
loy...,lim_1 tal que a lista 1; contém as chaves ¢ com wvalor hash h(c) = i.
Supondo que a avaliacdo de h é possivel em O(1), a insercao custa O(1), e o
teste é proporcional ao tamanho da lista.

Para obter uma distribui¢do razoavel das chaves nas listas, supomos que h é
uma funcdo hash simples e uniforme:

Pr(h(c) =1i) = 1/m. (2.1)

Seja ny := [l;| o tamanho da lista i e cj; a varidvel aleatéria que indica se chave
j pertence a lista i. Temos Pr(cj; = 1) = Pr(h(j) =1). Aindan; = Z1<].<n Cji

103

O O U W N+

2. Tabelas hash

e com isso

E[ni] = EI Z cjil = Z Elcjil = Z Pr(h(c;) =1) =n/m.

1<j<n 1<j<n 1<j<n

O valor ac:=n/m é o fator de ocupagdo da tabela hash.

insert(c,H) :=
insert (c,ln(c))

lookup(c,H) :=
lookup (c,ln(c))

delete(c,H) :=
delete (c,ly())

Teorema 2.1
Uma busca sem sucesso precisa tempo esperado O(1 + o).

Prova. A chave ¢ tem a probabilidade 1/m de ter um valor hash i. O
tamanho esperado da lista i é «. Uma busca sem sucesso nessa lista precisa
tempo O(«). Junto com a avaliacdo da funcao hash em ©(1), obtemos tempo
esperado total ©(1 + «). []

Teorema 2.2
Uma busca com sucesso precisa tempo esperado O(1 + o).

Prova. Supomos que a chave ¢ é uma das chaves na tabela com probabilidade
uniforme. Entdo, a probabilidade de pertencer a lista i (ter valor hash i) é
ni/n. Uma busca com sucesso toma tempo O(1) para avaliacio da funcao
hash, e mais um ntmero de operagdes proporcional a posi¢do p da chave na
sua lista. Com isso obtemos tempo esperado ©(1 + E[p]).

Para determinar a posigao esperada na lista, Elp], seja c1,...,cn a sequéncia
na qual as chaves foram inseridas. Supondo que inserimos as chaves no inicio
da lista, E[p] é um mais que o nimero de chaves inseridos depois de ¢ na
mesma lista.

Seja Xi; um varidvel aleatéria que indica se chaves ¢ e ¢j tem o mesmo valor
hash. E[Xi;] = Pr(h(ci) = h(c)) = Z1§k§m Pr(h(ci) = k) Pr(h(c;) = k) =
1/m. Seja p; a posicdo da chave c; na sua lista. Temos

Elpd =E[1+) Xyl=T1+) EXyl=1+n—i)/m

ji>1i jii>i

104

2.1. Hashing com listas encadeadas

e para uma chave aleatdria c

Epl=) 1/mEpd=)Y 1/n(l+Mm—1i)/m)

1<i<n 1<i<n
=T4+n/m—n+1)/2m)=14+«/2 — /(2n).
Portanto, o tempo esperado de uma busca com sucesso é
O(1+Ep)) =02+ «/2 — a/2n) = O(1 +).
]

Selecdo de uma funcdo hash Para implementar uma tabela hash, temos
que escolher uma fungao hash, que satisfaz (2.1). Para facilitar isso, supomos
que o universo de chaves é um conjunto U = [u] de nimeros inteiros. (Para
tratar outros tipos de chaves, costuma-se converté-los para nimeros inteiros.)
Se cada chave ocorre com a mesma probabilidade, h(i) = 1 mod m é uma
funcdo hash simples e uniforme. Essa abordagem é conhecida como método
de divisdo. O problema com essa fungdo na pratica é que ndo conhecemos a
distribuicao de chaves, e ela provavelmente nao é uniforme. Por exemplo, se
m é par, o valor hash de chaves pares é par, e de chaves impares é impar, e se
m = 2¥ o valor hash consiste nos primeiros k bits. Uma escolha que funciona
na pratica é um nimero primo “suficientemente” distante de uma poténcia de
2.

O método de multiplicacio define
h(c) = [m{Ac}|.

O método funciona para qualquer valor de m, mas depende de uma escolha
adequada de A € R. Knuth propés A ~ (v/5—1)/2.

Hashing universal Outra idéia: Para qualquer fun¢do hash h fixa, sempre
existe um conjunto de chaves, tal que essa funcdo hash gera muitas colisoes.
(Em particular, um “adversdrio” que conhece a fungao hash pode escolher
chaves ¢ € h™'(i) para qualquer posicéo i € [m], tal que h(c) =i é constante.
Para evitar isso podemos escolher uma func¢ao hash aleatéria de uma familia
de fungoes hash.

Uma familia H de fungdes hash U — [m] é universal se

lth € H | h(ct) =h(c2)}l = [H|/m

ou equivalente
Pr(h(c1) =h(cz)) =1/m

para qualquer par de chaves cq,cC3.

105

2. Tabelas hash

Teorema 2.3
Se escolhemos uma funcao hash h € ‘H uniformemente, para uma chave arbi-
traria ¢ o tamanho esperado de lp (¢ ¢

e a,casoc € H,e
e 14+ «, caso c € H.

Prova. Para chaves c1,c; seja Xij; = [h(cq1) = h(c2)] e temos
E[Xij] = Pr(Xy; = 1) = Pr(h(c1) = h(c2)) =1/m

pela universalidade de H. Para uma chave fixa c seja Y. o nimero de colisoes.

E[Yc] —E[Z ch’:| = Z E[ch’] < Z 1/m-

c’eH c’eH c’eH
c’#c c’'#c c’#c

Para uma chave ¢ ¢ H, o tamanho da lista é Y., e portanto de tamanho
esperado E[Y.] < n/m = «. Caso ¢ € H, o tamanho da lista é 1+ Y, e com
E[Y.] = (n — 1)/m esperadamente

T+n—1)/m=T4+a—1/m<1+ .

Um exemplo de um conjunto de fungdes hash universais: Sejac = (co,...,Cr)m
uma chave na base m, escolhe a = (ag,..., a;)m randomicamente e define

hg = Z cia; mod m.

0<i<r

Hashing perfeito Hashing é perfeito sem colisdes. Isso podemos garantir so-
mente caso conhegcemos as chaves a serem inseridos na tabela. Para uma fun-
¢ao aleatoria de uma familia universal de func¢ées hash para uma tabela hash
de tamanho m, o niimero esperado de colisoes é E[Zwéj Xyl = Zi# E[Xy] <

2 o ntimero

n?/m. Portanto, caso escolhemos uma tabela de tamanho m > n
esperado de colisdes é menos que um. Em particular, para m > cn? com ¢ > 1
a probabilidade de uma colisao é Pr(zi?éj Xy >1) < E[Z#j Xy] < n?/m<

1/c onde a primeira desigualdade segue da desigualdade de Markov.

106

0 O Uik WK

—
W= OO

2.2. Hashing com endere¢camento aberto

2.2. Hashing com enderecamento aberto

Uma abordagem para resolugao de colisdes, chamada enderecamento aberto, é
escolher uma outra posi¢io para armazenar uma chave, caso h(c) é ocupada.
Uma estratégia para conseguir isso é procurar uma posicao livre numa permu-
tacdo de todos indices restantes. Assim garantimos que um insert tem sucesso
enquanto ainda existe uma posi¢éo livre na tabela. Uma fun¢ao hash h(c,1)
com dois argumentos, tal que h(c,1),...,h(c, m) é uma permutacdo de [m],
representa essa estratégia.

insert(c,H) :=
for i in [m]
if Hlh(c,1)] = free
H[h(c,i)]=c
return

lookup(c,H) :=
for i in [m]
if Hlh(c,1)] = free
return false
if H[h(c,1)] =c¢
return true
return false
A funcgao h(c,1) é uniforme, se a probabilidade de uma chave randémica ter
associada uma dada permutacdo é 1/m!. A seguir supomos que h é uniforme.

Teorema 2.4
As funcgoes lookup e insert precisam no maximo 1/(1 — «) testes caso a chave
nao estd na tabela.

Prova. Seja X o ntmero de testes até encontrar uma posigao livre. Temos

EX =) iPr(X=1)=)) Pr(X=j)=) Pr(X>1i).

i>1 i>1§>1 i>1

Com T; o evento que o teste 1 ocorre e a posicao 1 é ocupada, podemos escrever

PI’(X > i) = PI‘(T] n-- -ﬂTi,ﬂ = PY(T1) PI"(T2|T1) PI"(T3|T1 R Tz) s Pr(Ti,1 [Ty yoee

Agora Pr(T;) = n/m, e como h é uniforme Pr(T2|T;) =n—1/(m—1) e em
geral
Pr(TTh,... Tkcy) =(m—k+1)/(m—k+1) <n/m=«.

107

»T172)-

2. Tabelas hash

Portanto Pr(X > 1) < ot~ ' e

XI=) PriXx>1) <) o T=) ot =1/(1—w).

i>1 i>1 i>0
| |
Lema 2.1
Para i <j, temos H; —H; <Inj —Ini.
Prova.
I
H; —H; <J dx =Inj—Ini
i
| |

Teorema 2.5

Caso o < 1 a funcdo lookup precisa esperadamente 1/0cIn1/(1 — «) testes
caso a chave esteja na tabela, e cada chave tem a mesma probabilidade de ser
procurada.

Prova. Seja c a i-gésima chave inserida. No momento de insercdo temos
a = (1—1)/m e o nimero esperado de testes T até encontrar a posigao livre
foi 1/(1—(i—1)/m) = m/(m — (i —1)), e portanto o nimero esperado de
testes até encontrar uma chave arbitraria é

T=1/n > m/(m—({i-1)=1/a > 1/(m—1i)=1/a(Hpn—Hpn n)

1<i<n 0<i<n
ecom Hy, —H_, <In(m) —In(m—mn) temos
T =1/a(Hm —Hm_n) < 1/x(In(m) —In(m—n)) = 1/xIn(1/(1 — «)).

|
Remover elementos de uma tabela hash com enderecamento aberto é mais
dificil, porque a busca para um elemento termina ao encontrar uma posicao
livre. Para garantir a corretude de lookup, temos que marcar posi¢bes como
“removidas” e continuar a busca nessas posi¢des. Infelizmente, nesse caso,
as garantias da complexidade ndo mantem-se — ap6s uma série de delegoes
e insergoes toda posicao livre serd marcada como “removida” tal que delete
e lookup precisam n passos. Portanto o enderegcamento aberto é favoravel
somente se temos poucas delecoes.

108

O © 00O ULk W

—_

Tt W N =

2.3. Cuco hashing

Funcdes hash para enderecamento aberto
e Linear: h(c,i) = h(c) +1 mod m
o Quadratica: h(c,i) = h(c)+ci1i+ c2i? mod m
¢ Hashing duplo: h(c,i) = hy(c) +1ihz(c) mod m

Nenhuma das fungoes é uniforme, mas o hashing duplo mostra um bom de-
sempenho na pratica.

2.3. Cuco hashing

Cuco hashing é outra abordagem que procura posigoes alternativas na tabela
em caso de colisdes, com o objetivo de garantir um tempo de acesso constante
no pior caso. Para conseguir isso, usamos duas funcoes hash h; e hy, e inse-
rimos uma chave em uma das duas posigdes hq(c) ou hy(c). Desta forma a
busca e a dele¢ao possuem complexidade constante O(1):

lookup(c,H) :=
if H[hi(c)] =c or H[ha(c)l =c

return true

return false

delete(c,H) :=
if Hlh(c)]l=c
H[hq(c)] := free
if H[hy(c)] =c¢
Hlhy(c)] := free
Inserir uma chave é simples, caso uma das posicoes alternativas é livre. No
caso contrario, a solugdo do cuco hashing é comportar-se como um cuco com
ovos de outras aves que joga-los fora do seu “ninho”: “insert” ocupa a posicao
de uma das duas chaves. A chave “jogada fora” serd inserida novamente na
tabela. Caso a posicdo alternativa dessa chave é livre, a inser¢do termina.
Caso contrario, o processo se repete. Esse procedimento termina apds uma
série de reinsercoes ou entra num laco infinito. Nesse tltimo caso temos que
realocar todas chaves com novas fungoes hash.

insert(c,H) :=
if H[hi(c)] =c or H[ha(c)l =c
return

p:=hi(c)
do n vezes

109

2. Tabelas hash

if Hp] = free
Hlpl :=c¢
return

swap (c,H[p])

{ escolhe a outra posigdo da chave atual }

if p=hy(c)
p:=hz(c)
else
p = hi(c)
rehash (H)

insert (c,H)

Uma maneira de visualizar uma tabela hash com cuco hashing, é usar o
grafo cuco: caso foram inseridas as chaves cj,...,cn na tabela nas posi-
¢Oes P1y...,Pn, 0 grafo é G = (V,A), com V = [m] é (pi,ha(ci)) € A caso
hi(ci) = pi e (pi,hi(ci)) € A caso ha(ci) = pi, i.e., 0s arcos apontam para
a posicao alternativa. O grafo cuco é um grafo direcionado e eventualmente
possui ciclos. Uma caracteristica do grafo cuco é que uma posicao p é eventu-
almente analisada na insercao de uma chave c somente se existe um caminho
de hy(c) ou hy(c) para p. Para a analise é suficiente considerar o grafo cuco

nao-direcionado.

Exemplo 2.1

Para chaves de dois digitos cic2 seja hy(c) = 3¢c; + ¢z mod m e hy(c) =
4¢q1 + c3. Para m = 10 obtemos para uma sequencia aleatéria de chaves

c 31 41 59 26 bH3 B8 97

hi(¢c) 0 3 4 2 8 3 4

hafe) 3 7 9 4 3 8 3

e a seguinte sequencia de tabelas hash
O (1] 2|3 |4]|5|6|7]|8]|09
Inicial

31 Insercao 31
31 41 Insercao 41
31 41 | 59 Insercao 59
31 26 | 41 | 59 Insercao 26
31 26 | 41 | 59 53 Insercao 53
31 26 | 58 | 59 41 | 53 Insercdo 58
31 26 | 58 | 97 41 | 53 | 59 | Insercao 59

O grafo cuco correspondente é

110

2.4. Filtros de Bloom

OJOROAOS

.0 008 6

Lema 2.2
Para posi¢oes i e j e um ¢ > 1 tal que m > 2cn, a probabilidade de existir
um caminho minimo de i para j de comprimento d > 1 é no maximo ¢~ ¢/m.

Prova. Observe que a probabilidade de um item c ter posi¢oes i e j como
alternativas é no maximo Pr(hi(c) = i,ha(c) = j) + Pr(hy(c) = j,hal(c) =
i) = 2/m?2. Portanto a probabilidade de pelo menos uma das n chaves ter
posicoes alternativas i e j é no maximo 2n/m? = ¢~ ' /m.

A prova do lema é por indugao sobre d. Para d = 1 a afirmagao esta correto
pela observacao acima. Para d > 1 existe um caminho minimo de compri-
mento d — 1 de 1 para um k. A probabilidade disso ¢ no maximo ¢~ (=1 /m
e a probabilidade de existir um elemento com posigoes alternativas k e j no
méximo ¢~'/m. Portanto, para um k fixo, a probabilidade existir um cami-
nho de comprimento d é no maximo ¢~4/m? e considerando todas posicoes k
possiveis no maximo c¢~4/m. |
Com isso a probabilidade de existir um caminho entre duas chaves i e j, é
igual a probabilidade de existir um caminho comegando em hq (i) ou h(i) e
terminando em hy(j) ou hz(j), que é no maximo 4 .o, ¢ /m < 4/m(c —
1) = O(1/m). Logo o ntimero esperado de itens visitados numa insercio é
In/m(c—1) = O(1), caso ndo é necessario reconstruir a tabela hash.

2.4. Filtros de Bloom

Um filtro de Bloom armazena um conjunto de n chaves, com as seguintes
restricoes:

e Nao é mais possivel remover elementos.

« E possivel que o teste de pertinéncia tem sucesso, sem o elemento fazer
parte do conjunto (“false positive”).

Um filtro de Bloom consiste em m bits B;, 1 <1 < m, e usa k func¢ées hash
hiy.ooy hi.

111

© 00 O UL W N+

—
o

2. Tabelas hash

insert (c,B) :=
for i in 1...k
Oni(e) =1
end for

lookup(c,B) :=
for i in 1...k
if bpe) =0
return false
return true
Apés de inserir n chaves, um dado bit é ainda 0 com probabilidade

kn kn
e 1-3)" = (5 e

que é igual ao valor esperado da fracdo de bits ndo setados'. Sendo p a fracdo
de bits nao setados realmente, a probabilidade de erradamente classificar um
elemento como membro do conjunto é

(-0~ (1 —p)w (1 e /m)”

porque p é com alta probabilidade perto do seu valor esperado (Broder e
Mitzenmacher, 2003). Broder e Mitzenmacher (2003) também mostram que
o numero 6timo k de funcoes hash para dados valores de n,m é m/nln2 e
com isso temos um erro de classificacdo ~ (1/2).

Aplicacoes:

1. Hifenacao: Manter uma tabela de palavras com hifenacdo excepcional
(que ndo pode ser determinado pelas regras).

2. Comunicagao efetiva de conjuntos, p.ex. selecdo em bancos de dados
distribuidas. Para calcular um join de dois bancos de dados A, B, pri-
meiramente A filtra os elementos, manda um filtro de Bloom S para B
e depois B executa o join baseado em Sa. Para eliminagdo de eventuais
elementos classificados erradamente, B manda os resultados para A e A
filtra os elementos errados.

Lembrando que e* > (1 +x/n)™ para n > 0.

112

2.4. Filtros de Bloom

Tabela 2.1.: Complexidade das operagoes em tabelas hash. Complexidades
em negrito sdo amortizados.

insert lookup delete
Listas encadeadas 0(1) 01+ «) O(1 + «)
Enderecamento aberto O(1/(1 — «)) o(1/(1 —) -
(com/sem sucesso) O(1/aln1/(1—«)) O(1/axln1/(1 —«)) -
Cuco 0(1) o) (1)

113

3. Algoritmos de aproximacao

Para véarios problemas nao conhecemos um algoritmo eficiente. Para proble-
mas NP-completos, em particular, uma solugao eficiente é pouco provavel. Um
algoritmo de aproximagdo calcula uma solucdo aproximada para um problema
de otimizacao. Diferente de uma heuristica, o algoritmo garante a qualidade
da aproximacao no pior caso. Dado um problema e um algoritmo de aproxima-
¢do A, escrevemos A(x) =y para a solugdo aproximada da instancia x, @(x,y)
para o valor dessa solugdo, y* para a solugdo 6tima e OPT(x) = @(x,y*) para
o valor da solucdo 6tima.

3.1. Problemas, classes e reducoes

Definicao 3.1
Um problema de otimizagio TT = (P, @, opt) é uma relagdo bindria P C I x S
com instancias x € I e solugbes y € S, junto com

o uma fungdo de otimizagdo (func¢do de objetivo) ¢ : P = N (ou Q).
e um objetivo: Encontrar minimo ou maximo
OPT(x) = opt{e(x,y) | (x,y) € P}
junto com uma solugéo y* tal que f(x,y*) = OPT(x).
O par (x,y) € P caso y é uma solugdo para x.

Uma insténcia x de um problema de otimizagdo possui solugdes S(x) = {y |
(x,y) € P}

Convencao 3.1
Escrevemos um problema de otimizacao na forma

NOME
Instancia x

Solucdo y

115

3. Algoritmos de aproximag¢ao

Objetivo Minimiza ou maximiza @(x,y).

Com um dado problema de otimizagdo correspondem trés problemas:
o Construcao: Dado x, encontra a solugao étima y* e seu valor OPT(x).
e Avaliacdo: Dado x, encontra valor étimo OPT(x).
o Decisao: Dado x e k, decide se OPT(x) > k (maximizacdo) ou OPT(x) <

k (minimizagao).

Definicao 3.2
Uma relacgao binaria R é polinomialmente limitada se

Ip € poly: V(x,y) € R: [yl < p(Ix]).

Definicao 3.3 (Classes de complexidade)

A classe PO consiste dos problemas de otimizacao tal que existe um algoritmo
polinomial A com @(x,A(x)) = OPT(x) para x € L.

A classe NPO consiste dos problemas de otimizacao tal que

(i) As instancias x € I sdo reconheciveis em tempo polinomial.
(ii) A relagdo P é polinomialmente limitada.

(iii) Para y arbitrario, polinomialmente limitado: (x,y) € P é decidivel em
tempo polinomial.

(iv) @ é computéivel em tempo polinomial.

Definicao 3.4

Uma redugdo preservando a aproximacao entre dois problemas de minimizagao
TTy e TT, consiste num par de fungdes f e g (computédveis em tempo polinomial)
tal que para instancia xq de TTq, x3 := f(x7) é instancia de TT; com

OPTh, (x2) < OPTyy, (x1) (3.1)
e para uma solugdo y, de TT, temos uma solugéo y; := g(x1,y2) de TT; com

o, (x1,y1) < @om, (x2,Y2) (3.2)

Uma redugdo preservando a aproximacao fornece uma x-aproximacao para Iy
dada uma o-aproximacao para TT;, porque

o, (x1,Y1) < @, (x2,Y2) < aOPTyy, (x2) < aOP Ty, (x1).

Observe que essa definigdo é vale somente para problemas de minimizagdo. A
defini¢do no caso de maximizacao é semelhante.

116

3.2. Medidas de qualidade

3.2. Medidas de qualidade

Uma aprozimagio absoluta garante que D(x,y) = |OPT(x) — @(x,y)| < D
para uma constante D e todo x, enquanto uma aprorimacdo relativa garante
que o erro relativo E(x,y) = D(x,y)/ max{OPT(x), (x,y)} < € < 1 todos
x. Um algoritmo que consegue um aproximacao com constante € também
se chama e-aproximativo. Tais algoritmos fornecem uma solugdo que difere
no maximo um fator constante da solugao étima. A classe de problemas de
otimizacao que permitem uma e-aproximacio em tempo polinomial para uma
constante € se chama APX.

Uma defini¢do alternativa é a taza de aproximagio R(x,y) =1/(1—E(x,y)) >
1. Um algoritmo com taxa de aproximagao 1 se chama r-aproximativo. (Nao
tem perigo de confusdo com o erro relativo, porque r > 1.)

Aproximacao relativa

+ OPT(x) - 9xy)
D(x,y) D(x,y)
+ exy) 1+ OPT(x)
_ D(xy)
E(x,y) = 22 E(0Y) = 55y

Exemplo 3.1

Coloragao de grafos planares e a problema de determinar a arvore geradora e
a arvore Steiner de grau minimo (Fiirer e Raghavachari, 1994) permitem uma
aproximagao absoluta, mas nao o problema da mochila.

Os problemas da mochila e do caixeiro viajante métrico permitem uma apro-
ximagao absoluta constante, mas nao o problema do caixeiro viajante. O

3.3. Técnicas de aproximacao

3.3.1. Algoritmos gulosos

Cobertura de vértices

117

3. Algoritmos de aproximag¢ao

Algoritmo 3.1 (Cobertura de vértices)
Entrada Grafo nao-direcionado G = (V, E).

Saida Cobertura de vértices C C V.

1 VC-GV(G) :=

2 (C,G) := Reduz(G)

3 if V=0 then

4 return C

5 else

6 escolhe v € V:deg(v) =A(G) { grau maximo }
7 return CU{v}UVC-GV(G —v)

8 end if

Proposicao 3.1

O algoritmo VC-GV é uma O(log|V|)-aproximacao.

Prova. Seja G; o grafo apds iteragao i e C* uma cobertura étima, i.e., ¢ :=
|IC*| = OPT(G).

A cobertura 6tima C* todos Gi. Logo, a soma dos graus dos vértices em C*
(contando somente arestas em Gji) é pelo menos o ntimero de arestas em Gj

Z 6Gi(v) > ||Gl||)
veC*
e o grau médio dos vértices C* em G; satisfaz
Y 86, (v)/c>||Gif/c.
veC*
Como o grau maximo do grafo é pelo menos o grau médio em C* temos
A(Gi) = ||Gil/c,
0 que permite estimar
D AG)=) IGill/e= Y [IGel/e=Gell =G~ Y AlGy)
0<i<c 0<i<ce 0<i<c 0<i<c

e logo

> A(Gi) > Gll/2,

0<i<c

i.e. 0 algoritmo remove em c iteragoes pelo menos a metade das arestas. Essa
estimativa continua a ser vélida, logo apds

c[lg|GI1 < ¢ [2log|G[] = Ofc log|Gl)

118

3.3. Técnicas de aproximacao

iteracOes nao tem mais arestas. Como em cada iteracdo foi escolhido um
vértice, a taxa de aproximacao é log|G]|.]

Algoritmo 3.2 (Cobertura de vértices)
Entrada Grafo nao-direcionado G = (V,E).

Saida Um cobertura de vértices C C V.

1

[\V]

0 O Ok W

VC-GE(G) :=
(C,G) := Reduz(G)
if E=0 then
return C
else
escolhe e={u,viek
return CU{u,v}UVC-GE(G — {u,Vv})
end if

Proposicao 3.2
Algoritmo VC-GE é uma 2-aproximagao para VC.

Prova. Cada cobertura C contém pelo menos um dos dois vértices escolhidos,
logo temos ¢ve.ge(G) < 2|C|, e no caso particular da solu¢do 6tima também
dvece(G) <20PT(G). u

Algoritmo 3.3 (Cobertura de vértices)
Entrada Grafo ndo-direcionado G = (V, E).

Saida Cobertura de vértices C C V.

1
2
3
4
5
6
7
8

9
10
11
12
13

VC-B(G) :=
(C,G) := Reduz(G)
if V=0 then
return C
else
escolhe ve V:deg(v) =A(G) { grau maximo }
Cy:=CU{V}UVC-B(G —v)
Cz:=CUN(v)UVC-B(G—v—N(v))
if |Cy| < |C2| then
return C;
else
return C;
end if

119

© 00 O Ui Wi+

3. Algoritmos de aproximag¢ao

14 end if

Problema da mochila
KNAPSACK

Instancia Um nimero n de itens com valores vi € N e tamanhos t; € N,
para i € [n], um limite M, tal que t; < M (todo item cabe na
mochila).

Solucdo Uma selegao S C [n] tal que) ; ¢ty <M.

Objetivo Maximizar o valor total } ;¢ vi.

Observagao: O problema da mochila é NP-completo.

Como aproximar?

o Idéia: Ordene por vi/t; (“valor médio”) em ordem decrescente e enche
o mochila o mais possivel nessa ordem.

Abordagem
K—G (Vi_ ,ti) =
ordene os itens tal que vi/t; >vj/t;, Vi<j.
for 1€ X do
if t{ <M then
S:=SuUf{i}
M:=M-— ti
end if
end for
return S

Aproximacao boa?
e Considere
vi=1...,vho1=1Lvp, =M—1
th=1..,tha=Lt, =M=kn k € N arbitrario
o Entao:

V]/t1 Z],...,Vn,1/tn,1 :1)Vn/tn: (M_1)/M<]

120

S Tk W N

3.3. Técnicas de aproximacao

¢ K-G acha uma solugdo com valor @(x) =n—1, mas o 6timo é OPT(x) =
M—1.

o Taxa de aproximacao:

M—-1 kn-—1 S kn—k

n—-1 n—-17"n-1

OPT(x)/@(x) = =k

¢ K-G néo possui taxa de aproximacao fixa!

o Problema: Nao escolhemos o item com o maior valor.

Tentativa 2: Modificacdo

K—G' (vi,t;) :=
S1 = K—G(vi,ty) // solugdo gulosa
Vi o= Ziesﬂ’i
S, := {argmax;vi} // maior item
V2 = Zieszvi

retorna a maior das duas solugdes

Aproximacao boa?
¢ O algoritmo melhorou?

e Surpresa
Proposicao 3.3
K-G’ é uma 2-aproximacao, i.e. OPT(x) < 2@x_qg’(x).

Prova. Seja j o primeiro item que K-G nao coloca na mochila. Nesse ponto
temos valor e tamanho

v = Z vi < px-a(x) (3.3)
1<i<j

=) t<M (3.4)
1<i<i

Afirmacao: OPT(x) < vj +vj. Nesse caso
(a) Seja v; <vj.

OPT(x) < vj +v; < 2vj < 2¢xk.¢(x) < 20k g’

121

3. Algoritmos de aproximag¢ao

(b) Seja vj > vj

OPT(x) < vj +vj < 2vj < 2Viax < 20k.G”

Prova da afirmacdo: No momento em que item j ndo cabe, temos espago
M — t; < tj sobrando. Como os itens sdo ordenados em ordem de densidade
decrescente, obtemos um limite superior para a solugdo étima preenchendo
esse espaco com a densidade vj/t;:

OPT(x) < v +(M—t})lﬁ <V +v;.
j

3.3.2. Aproximacdes com randomizacao
Randomizacao
o Idéia: Permite escolhas randémicas (“joga uma moeda”)
o Objetivo: Algoritmos que decidem correta com probabilidade alta.
e Objetivo: Aproximagoes com valor esperado garantido.
e Minimizacao: E[pa (x)] < 20PT(x)

o Maximizacao: 2E[@a (x)] > OPT(x)

Randomizacao: Exemplo

SATISFATIBILIDADE MAXIMA, MAXIMUM SAT

Instancia Uma férmula ¢ € £L(V) sobre varidveis V = {v1,...,vin}, @ =
CiANCaA---ANCy em FNC.

Solucdo Uma atribuicao de valores de verdade a:V — B.

Objetivo Maximiza o numero de cldusulas satisfeitas

HCi [[CiI, = 1.

122

T W N

© 00 3O Uk Wi+

3.3. Técnicas de aproximacao

Nossa solucdo

SAT—R(@) :=
seja (P:(P(Vh---,vk)
for all i€ [l,k] do
escolhe vi =1 com probabilidade 1/2
end for

Observagao 3.1
A quantidade [C] é o valor da cldusula C na atribuicao a. O

Aproximacao?
e Surpresa: Algoritmo SAT—R é 2-aproximacao.

Prova. O valor esperado de uma cldusula C com 1 varidveis é E[[C]]
Pr([C] =1) =1—2"' > 1/2. Logo o valor esperado do ntimero total T
Zie[n] [C;] de cldusulas satisfeitas é

ET=E[) [Cdl=) EC) >n/2> OPT/2
ien]

ie[n]

pela linearidade do valor esperado. |

Outro exemplo
Cobertura de vértices guloso e randomizado.

VC—RG(G) :=
seja wi=) . deg(v)
C=10
while E#(do
escolhe VEV com probabilidade deg(v)/w
C:=CuU{v}
G=G—v
end while
return CUV
Resultado: E[pve.ra(x)] < 20PT(x).

3.3.3. Programacao linear

Técnicas de programacao linear sdo frequentemente usadas em algoritmo de
aproximagao. Entre eles sdo o arredondamento randomizado e algoritmos
primais-duais.

123

3. Algoritmos de aproximag¢ao

Exemplo 3.2 (Arredondamento para cobertura por conjuntos)
Considere o problema de cobertura por conjuntos

minimiza Z WiXi, (3.5)
i€[n]

sujeito a Z xi > 1, vu e U,
ien]lueCy
x; € {0, 1}, Vie nl.

Seja f. a frequéncia de um elemento e, i.e. 0 nimero de conjuntos que contém
e e f a maijor frequéncia. Um algoritmo de arredondamento simples é dado
por

Teorema 3.1
A selegdo dos conjuntos com x; > 1/f na relaxagdo linear de (3.5) é uma
f-aproximacao do problema de cobertura de conjuntos.

Prova. Como [{i € [n] | u € Ci}| < f, temos x; > 1/f em média sobre esse
conjunto. Logo existe, para cada u € U um conjunto com x; > 1/f que cobre
u e a selegdo é uma solugao vélida. O arrendondamento aumenta o custo por
no maximo um fator f, logo temos uma f-aproximagao. | O

3.4. Esquemas de aproximacao

Novas consideracoes

o Frequentemente uma r-aproximacao nao é suficiente. r = 2: 100% de
erro!

o Existem aproximacoes melhores? p.ex. para SAT? problema do mochila?

e Desejavel: Esquema de aproximacao em tempo polinomial (EATP);
polynomial time approximation scheme (PTAS)

— Para cada entrada e taxa de aproximacao 1:

— Retorne r-aproximacao em tempo polinomial.

Um exemplo: Mochila maxima (Knapsack)

o Problema da mochila (veja pdgina 120):

o Algoritmo MM-PD com programacao dindmica (pag. 172): tempo O(n 3_; ()0

124

ST W N

3.4. Esquemas de aproximacgao

e Desvantagem: Pseudo-polinomial.

Denotamos uma instancia do problema da mochila com I = ({vi},{t;i}). Seja
r > 1 uma qualidade de aproximacao desejada.

MM—PTAS (I,r) :=
Vnax = maxi{vi}
t = |logy " Vpax/n |
v{:=|vi/2'] para i=1,...,n
Define a nova instancia I'= ({v{},{ti})
return MM-PD(I’)
Teorema 3.2
MM-PTAS ¢é uma r-aproximacio em tempo O(rn3/(r —1)).

Prova. A complexidade da preparagdo nas linhas 1-3 é O(n). A chamada
para MM-PD custa

7\ Vi
O(“ 2 “) - O<” 2 oo n/r)(vmax/n)>

ien] ien]
_ T2) _ r .3
= O(T 7 Z vl/vmax> = O<r1n)
i€n]

Seja S = MM-PTAS(I) a solugdo obtida pelo algoritmo e S* uma solucio
otima.

omm-pras(l, S) = Z\’i > Zzt [vi/24] definigdo de |-|
ies ies
> Z 2% |vi/2¢] otimalidade de MM-PD sobre v/
ies
>y w2 (A.2)
ies*
= (> vi) — 2487
ies
> OPT(I) — 2tn
Portanto
OPT(I
OPT(I) < mm-pras(,S) +2'n < eav-pras(L, S) + vi()ztn
2tn
&~ OPT(I) (1 — " < @vm-pras(], S)

125

3. Algoritmos de aproximag¢ao

ecom 2" /vy, < (r—1)/r

& OPT(I) <remm-pras(L,S).

|
Um EATP frequentemente ndo é suficiente para resolver um problema ade-
quadamente. Por exemplo temos um EATP para

« o problema do caixeiro viajante euclidiano com complexidade O(n3°00/¢)
(Arora, 1996);

e 0 problema do mochila multiplo com complexidade O(n'?llog1/¢€)/ eg)
(Chekuri, Kanna, 2000);

e 0o problema do conjunto independente maximo em grafos com complexi-
dade O(n“‘/“]“/ez“)2“/52”]2) (Erlebach, 2001).

Para obter uma aproximacao com 20% de erro, i.e. € = 0.2 obtemos algoritmos
com complexidade O(n'°°00), O(n375000) ¢ O(n>238%4) respectivamente!

3.5. Aproximando o problema da arvore de Steiner minima

Seja G = (V, A) um grafo completo, ndo-direcionado com custos ¢, > 0 nos
arcos. O problema da arvore Steiner minima (ASM) consiste em achar o
subgrafo conexo minimo que inclui um dado conjunto de vértices necessdrios
ou terminais R C V. Esse subgrafo sempre é uma arvore (ex. 3.1). O conjunto
V\ R forma os vértices Steiner. Para um conjunto de arcos A, define o custo

c(A) =3 4caCa

Observagao 3.2

ASM é NP-completo. Para um conjunto fixo de vértices Steiner V' C V\R, a
melhor solucio é a drvore geradora minima sobre RUV'. Portanto a dificuldade
é a selecdo dos vértices Steiner da solugdo dtima. O

Definigao 3.5
Os custos s@o métricos se eles satisfazem a desigualdade triangular, i.e.

Cij < Cik + Cij
para qualquer tripla de vértices i, j, k.

Teorema 3.3
Existe uma redugdo preservando a aproximacao de ASM para a versao métrica
do problema.

126

3.5. Aproximando o problema da arvore de Steiner minima

2

Figura 3.2.: AGM sobre R e melhor solucio. @: vértice em R, ©: vértice
Steiner.

Prova. O fecho métrico de G = (V,A) é um grafo G’ completo sobre vértices
e com custos c{j := dyj, sendo dij o comprimento do menor caminho entre i
e j em G. Evidentemente c{j < c¢yj e portanto (3.1) é satisfeita. Para ver que
(3.2) é satisfeita, seja T’ uma solugdo de ASM em G’. Define T como unido de
todos caminhos definidos pelos arcos em T’, menos um conjunto de arcos para
remover eventuais ciclos. O custo de T é no méximo ¢(T’) porque o custo de
todo caminho é no maximo o custo da aresta correspondente em T’. |

Consequéncia: Para o problema do ASM é suficiente considerar o caso métrico.

Teorema 3.4
O AGM sobre R é uma 2-aproximacao para o problema do ASM.

Prova. Considere a solucio 6tima S* de ASM. Duplica todas arestas® tal
que todo vértice possui grau par. Encontra um ciclo Euleriano nesse grafo.
Remove vértices duplicados nesse caminho. O custo do caminho C obtido
dessa forma nao é mais que o dobro do custo original: o grafo com todas
arestas custa 2¢(S*) e a remocio de vértices duplicados ndo aumenta esse
custo, pela metricidade. Como esse caminho é uma arvore geradora, temos
c(A) < c(C) < 2¢(S*) para AGM A. [|

sso transforma G num multigrafo.

127

3. Algoritmos de aproximag¢ao

3.6. Aproximando o PCV

Teorema 3.5
Para qualquer funcao «(n) computével em tempo polinomial o PCV néo pos-
sui o(n)-aproximacio em tempo polinomial, caso P # NP.

Prova. Via redugdo de HC para PCV. Para uma instdncia G = (V, A) de HC
define um grafo completo G’ com

1 €A
Ca—{’ a)

a(n)n, caso contrério.

Se G possui um ciclo Hamiltoniano, entdo o custo da menor rota é n. Caso
contrario qualquer rota usa ao menos uma aresta de custo a(n)n e portanto
o custo total é > a(n)n. Portanto, dado uma «(n)-aproximagdo de PCV
podemos decidir HC em tempo polinomial. |

Caso métrico No caso métrico podemos obter uma aproximacao melhor.
Determina uma rota como segue:

1. Determina uma AGM A de G.
2. Duplica todas arestas de A.
3. Acha um ciclo Euleriano nesse grafo.

4. Remove vértices duplicados.

Teorema 3.6
O algoritmo acima define uma 2-aproximagao.

Prova. A melhor solugdo do PCV menos uma aresta é uma arvore geradora
de G. Portanto c(A) < OPT. A solugao S obtida pelo algoritmo acima satisfaz
c(S) < 2¢(A) e portanto c(S) < 20PT, pelo mesmo argumento da prova do
teorema 3.4. |
O fator 2 dessa aproximagao é resultado do passo 2 que duplica todas arestas
para garantir a existéncia de um ciclo Euleriano. Isso pode ser garantido
mais barato: A AGM A possui um nimero par de vértices com grau impar
(ver exercicio 3.2), e portanto podemos calcular um emparelhamento perfeito
minimo E entre esse vértices. O grafo com arestas AUE possui somente vértices
com grau par e portanto podemos aplicar os restantes passos nesse grafo.

Teorema 3.7 (Cristofides)
A algoritmo usando um emparelhamento perfeito minimo no passo 2 é uma
3/2-aproximacao.

128

3.7. Aproximando problemas de cortes

Prova. O valor do emparelhamento E ndo é mais que OPT/2: remove vértices
nao emparelhados em E da solugdo 6tima do PCV. O ciclo obtido dessa forma
é a unido dois emparelhamentos perfeitos E; e E; formados pelas arestas pares
ou fmpares no ciclo. Com E; o emparelhamento de menor custo, temos

c(BE) < c(k1) < (c(Eq) +c(E2))/2=OPT/2
e portanto

¢(S) = c(A) + ¢(E) < OPT + OPT/2 = 3/20PT.

3.7. Aproximando problemas de cortes

Seja G = (V, A,c) um grafo conectado com pesos ¢ nas arestas. Lembramos
que um corte C é um conjunto de arestas que separa o grafo em dois partes
SUV\S. Dado dois vértices s,t € V, o problema de achar um corte minimo
que separa s e t pode ser resolvido via fluxo médximo em tempo polinomial.
Generalizac¢oes desse problema sdo:

¢ Corte multiplo minimo (CMM): Dado terminais st,..., sk determine o
menor corte C que separa todos.

e k-corte minimo (k-CM): Mesmo problema, sem terminais definidos. (Ob-
serve que todos k componentes devem ser nao vazios).

Fato 3.1
CMM é NP-dificil para qualquer k > 3. k-CM possui uma solu¢ao polinomial

em tempo O(nkz) para qualquer k, mas é NP-dificil, caso k faz parte da
entrada (Goldschmidt e Hochbaum, 1988).

Solucdo de CMM Chamamos um corte que separa um vértice dos outros um
corte isolante. Idéia: A unido de cortes isolantes para todo s; é um corte mul-
tiplo. Para calcular o corte isolante para um dado terminal s;, identificamos
os restantes terminais em um tnico vértice S e calculamos um corte minimo
entre s; e S. (Na identificagdo de vértices temos que remover self-loops, e
somar os pesos de multiplas arestas.)

Isso leva ao algoritmo

129

3. Algoritmos de aproximag¢ao

Figura 3.3.: Identificagdo de dois terminais e um corte no grafo reduzido. Vér-
tices em verde, terminais em azul. O grafo reduzido possui mil-
tiplas arestas entre vértices.

Algoritmo 3.4 (CI)
Entrada Grafo G = (V, A, c) e terminais sq,..., Sk.

Saida Um corte multiplo que separa os s;.

1 Para cada i€ [l,k]: Calcula o corte isolante C; de s;.
2 Remove o maior desses cortes e retorne a unifo dos
restantes.

Teorema 3.8
Algoritmo 3.4 é uma 2 — 2/k-aproximacao.

Prova. Considere o corte minimo C*. De acordo com a Fig. 3.4 ele pode ser
representado pela unido de k cortes que separam os k componentes individu-

almente:
= U<
ie(k]

Cada aresta de C* faz parte das cortes das duas componentes adjacentes, e
portanto

> w(Ci) =2w(C)

ie(k]

e ainda w(C;i) < w(C7) para os cortes Cy do algoritmo 3.4, porque usamos o
corte isolante minimo de cada componente. Logo, para o corte C retornado
pelo algoritmo temos

w(C) < (1=1/k) Y w(Cy) < (1—1/k) 3 w(CP) < 2(1—1/k)w(C).

i€[k] ie[k]

130

3.7. Aproximando problemas de cortes

Figura 3.5.: Exemplo de um grafo em que o algoritmo 3.4 retorna uma 2—2/k-
aproximagao.

|
A andlise do algoritmo é 6timo, como o exemplo da Fig. 3.5 mostra. O menor
corte que separa s; tem peso 2 — €, portanto o algoritmo retorne um corte de
peso (2—e)k—(2—¢€) = (k—1)(2 — €), enquanto o menor corte que separa
todos terminais é o ciclo interno de peso k.

Solucdo de k-CM Problema: Como saber a onde cortar?

Fato 3.2

Existem somente n—1 cortes diferentes num grafo. Eles podem ser organizados
numa arvore de Gomory-Hu (AGH) T = (V,T). Cada aresta dessa &rvore
define um corte associado em G pelos dois componentes apds a sua remogao.

1. Para cada u,v € V o menor corte u-v em G € igual a o menor corte u-v
em T (i.e. a aresta de menor peso no caminho unico entre w e v em T).

131

3. Algoritmos de aproximag¢ao

2. Para cada aresta a € T, w/(a) é igual a valor do corte associado.

Por consequéncia, a AGH codifica o valor de todos cortes em G.
Ele pode ser calculado determinando n — 1 cortes s—t minimos:

1. Define um grafo com um tnico vértice que representa todos vértices do
grafo original. Chama um vértice que representa mais que um vértice
do grafo original gordo.

2. Enquanto existem vértices gordos:

a) Escolhe um vértice gordo e dois vértices do grafo original que ele
representa.

b) Calcula um corte minimo entre esses vértices.

¢) Separa o vértice gordo de acordo com o corte minimo encontrado.

Observagdo: A unido dos cortes definidos por k — 1 arestas na AGH separa G
em pelo menos k componentes. Isso leva ao seguinte algoritmo.

Algoritmo 3.5 (KCM)
Entrada Grafo G = (V, A, c).

Saida Um k-corte.

1 Calcula uma AGH T em G.
2 Forma a unido dos k—1 cortes mais leves
definidos por k—1 arestas em T.

Teorema 3.9
Algoritmo 3.5 é uma 2 — 2/k-aproximacio.

Prova. Seja C* = Uie[k] C! um corte minimo, decomposto igual a prova
anterior. O nosso objetivo é demonstrar que existem k — 1 cortes definidos
por uma aresta em T que sdo mais leves que os C}.

Removendo C* de G gera componentes Vi,...,Vk: Define um grafo sobre
esses componentes contraindo os vértices de uma componente, com arcos da
AGH T entre os componentes, e eventualmente removendo arcos até obter
uma nova arvore T’. Seja Cj o corte de maior peso, e define Vi como raiz
da arvore. Desta forma, cada componente Vi,...,Vyx_1 possui uma aresta
associada na direcdo da raiz. Para cada dessas arestas (u,v) temos

w(Ci) = w'(u,v)

132

3.8. Aproximando empacotamento unidimensional

porque C7 isola o componente Vi do resto do grafo (particularmente separa u
ev), e w (u,v) é o peso do menor corte que separa u e v. Logo

w(C) < Y wi@) < Y w(C) <=1/ Y w(C) =2(1-1/kjw(C").
ielk]

aeT’ 1<i<k

3.8. Aproximando empacotamento unidimensional

Dado n itens com tamanhos s; € Zy, 1 € [n] e contéineres de capacidade
S € Z, o problema do empacotamento unidimensional é encontrar o menor
nimero de contéineres em que os itens podem ser empacotados.

EMPACOTAMENTO UNIDIMENSIONAL (MIN-EU) (BIN PACKING)

Entrada Um conjunto de n itens com tamanhos s; € Z,, 1 € [n] e o
tamanho de um contéiner S.

Solucdo Uma parti¢do de [n] = C;U---UCyy, tal que Zieck si < S para
k € [ml].

Objetivo Minimiza o nimero de partes (“contéineres”) m.

A versdo de decisdo do empacotamento unidimensional (EU) pede decidir se
os itens cabem em m contéineres.

Fato 3.3
EU é fortemente NP-completo.

Proposigcao 3.4 s
Para um tamanho S fixo EU pode ser resolvido em tempo O(ns").

Prova. Podemos supor, sem perda de generalidade, que os itens possuem
tamanhos 1,2,...,S — 1. Um padrio de alocagdo de um contéiner pode ser
descrito por uma tupla (t7,...,ts_1) sendo t; o ntiimero de itens de tamanho
i. Seja T o conjunto de todos padrdes que cabem num contéiner. Como
0 < t; < S o ntmero total de padroes T é menor que (S +1)5~1 = O(S3S).

Uma ocupacio de m contéineres pode ser descrito por uma tupla (nq,...,nr)
com Nn; sendo o nimero de contéineres que usam padrao i. O ntmero de
contéineres é no méaximo n, logo 0 < n; < n e o nimero de alocacoes diferentes
é no maximo (n+1)T = O(n'). Logo podemos enumerar todas possibilidades
em tempo polinomial. |

133

3. Algoritmos de aproximag¢ao

Proposicao 3.5
Para um m fixo, EU pode ser resolvido em tempo pseudo-polinomial.

Prova. Seja B(Sq,...,Sm,1) € {falso, verdadeiro} a resposta se itens i,1 +
1,...,m cabem em m contéineres com capacidades Sy,...,Sn. B satisfaz
j m DECEEY i — 3 .o i i <
B(S1,...,Smy1) = V]sii)ﬁgsj B1 -5 =8y Syl 1), By
verdadeiro, i>n,

e B(S,...,S,1) é a solucdo do EU2. A tabela B possui no maximo n(S +1)™
entradas, cada uma computavel em tempo O(m), logo o tempo total é no
méaximo O(mn(S + 1)™).]

Observagao 3.3
Com um fator adicional de O(log m) podemos resolver também MIN-EU, pro-
curando o menor 1 tal que B(S,...,S,0,...,0,n) é verdadeiro. %

i vezes

A proposicao 3.4 pode ser melhorada usando programagao dindmica.

Proposicao 3.6
Para um ntmero fixo k de tamanhos diferentes, min-EU pode ser resolvido
em tempo O(n?*).

Prova. Seja B(iy,...,1x) o menor ntimero de contéineres necessario para
empacotar ij itens do j-ésimo tamanho e T o conjunto de todas padroes de
alocacao de um contéiner. B satisfaz

. . 1+mint€T B(i; —t1,...,ik — tx), caso (i1,...,1ix) €T,
B(lh-")lk) = L=t

1, caso contrario,

e B(nq,...,n) é a solucdo do EU, com n; o nimero de itens de tamanho i
na entrada. A tabela B tem no maximo n* entradas. Como o nimero de itens
em cada padrao de alocacdo é no maximo n, temos |T| < n¥ e logo o tempo
total para preencher B é no maximo O(n?¥). |

Corolario 3.1
Para um tamanho S fixo min-EU pode ser resolvido em tempo O(n?S).

20bserve que a disjuncio vazia é falsa.

134

3.8. Aproximando empacotamento unidimensional

Abordagem pratica?
o Idéia simples: Préximo que cabe (PrC).

e Por exemplo: Itens 6,7,6,2,5,10 com limite 12.

Aproximacao?
¢ Interessante: PrC é 2-aproximacao.

e Observagao: PrC é um algoritmo on-line.

Prova. Seja B o niimero de contéineres usadas, V = } ; (,;si. Como dois
contéineres consecutivos contém uma soma > 1, temos |B/2] < V e com
B/2—1/2 < |B/2] ainda B—1 < 2V ou B < 2V. Mas precisamos pelo menos
[V] contéineres, logo [V] < OPT(x). Portanto, @p,c(x) < 2V < 2[V] <
20PT(x). |

Aproximacao melhor?
e Isso é a melhor estimativa possivel para este algoritmo!
o Considere os 4n itens

1/2,1/20,1/2,1/2n,...,1/2,1/2n

2n vezes

e O que faz PrC? @p,c(x) = 2n: contéineres com

135

3. Algoritmos de aproximag¢ao
1/t2n)[1/2n
1

)

« Otimo: n contéineres com dois elementos de 1/2 + um com 2n elementos
de 1/2n. OPT(x)=n=1.

l

(x)
1/(2n)
12 1/(2n)

o Portanto: Assintoticamente a taxa de aproximacédo 2 é estrito.

Melhores estratégias
o Primeiro que cabe (PiC), on-line, com “estoque” na memdria
e Primeiro que cabe em ordem decrescente: PiCD, off-line.
e Taxa de aproximagao?
@ric(x) < [1.70PT()]
@picp(x) < 1.50PT(x) +1
Prova. (Da segunda taxa de aproximagdo.) Considere a partigio AUBUCU
D ={v1,...,vn} com

AZ{Vi |V;L >2/3}
B :{Vi |2/3 > v >]/2}
C={vi|1/2>vy{>1/3}
D={vi[1/3>vi}
PiCD primeiro vai abrir |A| contéineres com os itens do tipo A e depois |B|

contéineres com os itens do tipo B. Temos que analisar o que acontece com
os itens em C e D.

136

3.8. Aproximando empacotamento unidimensional

Supondo que um contéiner contém somente itens do tipo D, os outros contéi-
neres tem espaco livre menos que 1/3, sendo seria possivel distribuir os itens
do tipo D para outros contéineres. Portanto, nesse caso

\Y
B < {2/3—‘ <3/2V+1<3/20PT(x) + 1.

Caso contrario (nenhum contéiner contém somente itens tipo D), PiCD en-
contra a solugdo 6tima. Isso pode ser justificado pelas seguintes observagoes:

1) O ntimero de contéineres sem itens tipo D é o mesmo (eles sdo os tltimos
distribuidos em nao abrem um novo contéiner). Logo é suficiente mostrar

@picp(x \ D) = OPT(x\ D).

2) Os itens tipo A nao importam: Sem itens D, nenhum outro item cabe
junto com um item do tipo A. Logo:

@ricp(x\ D) =|A|+ @picp(x \ (AUD)).

3) O melhor caso para os restantes itens sdo pares de elementos em B e C:
Nessa situacao, PiCD encontra a solucao étima.

Garantia ou aproximacao melhor?
o Johnson (1973, Tese de doutorado)

@picp(x) < 11/90PT(x) +4

o Baker (1985)
@picp(x) < 11/90PT(x) + 3

e Uma variante de PiCD (Johnson e Garey, 1985):

epicpm(x) < 71/600PT(x) +31/6

3.8.1. Um esquema de aproximacdo assintético para min-EU

Duas ideias permitem aproximar min-EU em (1+€)OPT(I)+1 para € € (0, 1].

137

3. Algoritmos de aproximag¢ao

Ideia 1: Arredondamento Para uma instancia I, define uma instancia R
arredondada como segue:

1. Ordene os itens de forma nado-decrescente e forma grupos de k itens.

2. Substitui o tamanho de cada item pelo tamanho do maior elemento no
seu grupo.

Lema 3.1
Para uma instancia I e a instancia R arredondada temos

OPT(R) < OPT(I) + k

Prova. Supde que temos uma solugdo étima para 1. Os itens do i-ésimo
grupo de R cabem nos lugares dos itens do i+ 1-ésimo grupo dessa solucao.
Para o tltimo grupo de R temos que abrir no maximo k contéineres. |

Ideia 2: Descartando itens menores

Lema 3.2

Supde temos temos um empacotamento para itens de tamanho maior que sg
em B contéineres. Entao existe um empacotamento de todos itens com no
maximo

max{B, Z si/(S—so)+ 1}

i€n]
contéineres.

Prova. Empacota os itens menores gulosamente no primeiro contéiner com
espago suficiente. Sem abrir um novo contéiner o limite é obviamente correto.
Caso contrdrio, supoe que precisamos B’ contéineres. B’—1 contéineres contém
itens de tamanho total mais que S — sp. A ocupacao total W deles tem que
ser menor que o tamanho total dos itens, logo

(B'=1)(S—s0) W<) s

ie[n]

Juntando as ideias

Teorema 3.10
Para € € (0,1] podemos encontrar um empacotamento usando no méximo

(14 €)OPT(I) + 1 contéineres em tempo O(nw/ez).

138

3.9. Aproximando problemas de sequénciamento

Prova. O algoritmo tem dois passos:

1. Empacota todos itens de tamanho maior que so = [€/2S] usando arre-
dondamento.

2. Empacota os itens menores depois.

Seja I’ a instancia com os 1’ < n itens maiores. No primeiro passo, formamos
grupos com Ln’ e? /4J itens. Isso resulta em no maximo
n’ < 2n’ 8
[n’e2/4] — n’e?/4 €2

grupos. (A primeira desigualdade usa |x| > x/2 para x > 1. Podemos supor
que n'e?/4 > 1, ie. n’ > 4/e?. Caso contrario podemos empacotar os itens
em tempo constante usando a proposicao 3.6.)

Arredondando essa instancia de acordo com lema 3.1 podemos obter uma
solucdo em tempo O(n' 6/62) pela proposi¢ao 3.6. Sabemos que OPT(I') >
n'[e/287/S > n’e/2. Logo temos uma solugdo com no maximo

OPT(I') + |ne?/4| < OPT(I') +n'e?/4 < (1+¢€/2)OPT(I') < (1 + ¢/2)OPT(I)

contéineres.
O segundo passo, pelo lema 3.2, produz um empacotamento com no maximo

max{(1+e/z JOPT(I),) si/(S— so) +1}
ie[n]

contéineres, mas

D icn) Si < D e Si < OPT()
S—so ~ S(1—¢/2) = 1—¢/2 —

< (1+ €)OPT(I).

3.9. Aproximando problemas de sequénciamento

Problemas de sequénciamento recebem nomes da forma

o|Bly

com campos

139

3. Algoritmos de aproximag¢ao

Maéaquina o

1 Um processador

P Processadores paralelos

Q Processadores relacionados
R Processadores arbitrarios

Restrigoes

D; Prazo méximo (deadline)

di Prazo previsto (due dates)

i Tempo de liberagao (release time)
Pi=p Tempo uniforme p

prec Precedéncias

Funcdo objetivo y

Cmax Maior tempo de término (maximum completion time)
> G Tempo de término total (total completion time)

L; Atraso (lateness) Ci — d;

Ti Tardiness max{L;, 0}

Relacao com empacotamento unidimensional:

tempo ou tamanho

processadores ou contéineres

¢ Empacotamento unidimensional: Dado C,,x minimiza o nimero de pro-
cessadores.

e P || Chax: Dado um nimero de contéineres, minimiza o tamanho dos
contéineres.
SEQUENCIAMENTO EM PROCESSORES PARALELOS (P || Cpax)

Entrada O nimero m de processadores e n tarefas com tempo de execu-
¢do pi, 1 € n].

140

3.9. Aproximando problemas de sequénciamento

Solucdo Um sequenciamento, definido por uma alocacio My U --- U
M. = [n] das tarefas as maquinas.

Objetivo Minimizar o makespan (tempo de término) Cpax = maxjcim) Cj,
com Cj = ZieMj pi o tempo de término da maquina j.

Fato 3.4
O problema P || Cax € fortemente NP-completo.

Um limite inferior para C} ., = OPT ¢é

LB = max{?el%]% Z pi/m}.

ie[n]

Uma classe de algoritmos gulosos para este problema sao os algoritmos de
sequenciamento em lista (inglés: list scheduling). Eles processam as tarefas
em alguma ordem, e alocam a tarefa atual sempre a maquina de menor tempo
de término atual.

Proposicao 3.7

Sequenciamento em lista com ordem arbitraria permite uma 2—1/m-aproximagio
em tempo O(nlogn).

Prova. Seja Cpax o resultado do sequenciamento em lista. Considera uma
maquina com tempo de término Cpax. Seja j a tltima tarefa alocada nessa
méaquina e C o término da maquina antes de alocar tarefa j. Logo,

Coax =C+Pp; <) p/m+p;< Y pi/m—pj/m+p;
iefj—1] ien]

<IB+(1—-1/mLB=(2-1/m)LB< (2—-1/m)C},...
A primeira desigualdade é correta, porque alocando tarefa j a méquina tem

tempo de término minimo. Usando uma fila de prioridade a maquina com o
menor tempo de término pode ser encontrada em tempo O(logn). |

Observagao 3.4
Pela prova da proposicao 3.7 temos

LB < C; .. <2LB.

max

O

O que podemos ganhar com algoritmos off-line? Uma abordagem é ordenar
as tarefas por tempo execucao ndo-crescente e aplicar o algoritmo gulos. Essa
abordagem é chamada LPT (largest processing time).

141

3. Algoritmos de aproximag¢ao

Proposicao 3.8
LPT é uma 4/3 — m/3-aproximacao em tempo O(nlogn).

Prova. Seja p; > p2 > --- > pn € sup0de que isso é o menor contra-exemplo
em que o algoritmo retorne Cpax > (4/3 — m/3)CE ... Nao é possivel que a
alocacao do item j < n resulta numa maquina com tempo de término Cpax,
porque pi, ..., pj seria um contra-exemplo menor (mesmo Crax, menor C .).
Logo a alocagdo de py define o resultado Cax.

Caso pn < C}../3 pela prova da proposicdo 3.7 temos Cpax < (4/3 —
m/3)C} ., uma contradi¢do. Mas caso pn > C;../3 todas tarefas possuem
tempo de execugdo pelo menos C¥ /3 e no maximo duas podem ser execu-

max
tadas em cada maquina. Logo Cpax < 2/3C} ., outra contradigdo. |

3.9.1. Um esquema de aproximacao para P || Cax

Pela observacao 3.4 podemos reduzir o P || Cihax para o empacotamento unidi-
mensional via uma busca binéria no intervalo [LB,2LB]. Pela proposi¢ao 3.5
isso é possivel em tempo O(log LB mn(2LB + 1)™).

Com mais cuidado a observagdo permite um esquema de aproximacgdo em
tempo polinomial assintdtico: similar com o esquema de aproximagcao para
empacotamento unidimensional, vamos remover elementos menores e arre-
dondar a instancia.

Algoritmo 3.6 (Sequencia)
Entrada Uma instancia I de P || Chax, um término méximo C e um
parametro de qualidade €.

Sequencia(l,C,e):=

remove as tarefas menores com p; < eC, j€ [n]
3 arredonda cada pj € [eC(1+ €)%, eC(1+ e)"*") para algum i
para p/ =eC(1+ €)'

N =

4 resolve a instdncia arredondada com programacgéo
dindmica (proposigdo 3.6)
5 empacota os itens menores gulosamente, usando novas

maquinas para manter o término (1+¢€)C

Lema 3.3
O algoritmo Sequencia gera um sequenciamento que termina em no maximo

(1 4+ €)C em tempo O(nz[log“re Ve]). Ele nao usa mais mdquinas que o
minimo necessario para executar as tarefas com término C

Prova. Para cada intervalo valido temos eC(1 4 €)' < C, logo o niimero de
intervalos é no maximo k = [log; . 1/€e]. O valor k também é um limite

142

3.10. Exercicios

para o numero de valores pj’ distintos e pela proposi¢do 3.6 o terceiro passo
resolve a instancia arredondada em tempo O(n?*). Essa solucdo com os itens
de tamanho original termina em no maximo (1 + €)C, porque pj/p]-’ <l+e.
O nimero minimo de maquinas para executar as tarefas em tempo C é o valor
m := min-EU(C, (pj)jem;) do problema de empacotamento unidimensional
correspondente. Caso o ultimo passo do algoritmo ndo usa novas maquinas
ele precisa < m mdquinas, porque a instancia arredondada foi resolvida exa-
tamente. Caso contrario, uma tarefa com tempo de execucdo menor que €C
nao cabe nenhuma maéaquina, e todas maquinas usadas tem tempo de término
mais que C. Logo o empacotamento étimo com término C tem que usar pelo
menos 0 mesmo nimero de maquinas. |

Proposicao 3.9
O resultado da busca binaria usando o algoritmo Sequencia Cpax = min{C €
[LB, 2LB] | Sequencia(l, C, e) < m} é no méximo C

max"*

Prova. Com Sequencia(l, C, e) < min-EU(C, (pi)icn]) temos

Cmax = min{C € [LB, 2LB] | Sequencia(I, C,e) < m}

< min{C € [LB,2LB] | min-EU(C, (pi)iem)) < m}
= Cliax
|

Teorema 3.11
A busca binaria usando o algoritmo Sequencia para determinar determina
um sequenciamento em tempo O(n? [1og1 . 1/¢] logLB) de término maximo
(1+€e)C;

max*

Prova. Pelo lema 3.3 e proposicao 3.9. |

3.10. Exercicios

Exercicio 3.1
Por que um subgrafo conexo de menor custo sempre é uma arvore?

Exercicio 3.2
Mostra que o nimero de vértices com grau impar num grafo sempre é par.

Exercicio 3.3

Um aluno propde a seguinte heuristica para o empacotamento unidimensional:
Ordene os itens em ordem crescente, coloca o item com peso maximo junto com
quantas itens de peso minimo que é possivel, e depois continua com o segundo
maior item, até todos itens foram colocados em bins. Temos o algoritmo

143

© 00 O UL W N+

3. Algoritmos de aproximag¢ao

ordene itens em ordem crescente
m:=1; M:=n
while (m< M) do
abre novo contéiner, coloca vpm, M:=M—1
while (v, cabe e m< M) do
coloca vy, no contéiner atual
m:=m-+ 1
end while
end while
Qual a qualidade desse algoritmo? E um algoritmo de aproximacio? Caso
sim, qual a taxa de aproximacao dele? Caso nao, por qué?

Exercicio 3.4

Prof. Rapidez propde o seguinte pré-processamento para o algoritmo SAT-R de
aproximacgao para MAX-SAT (pégina 123): Caso a instdncia contém clatsulas
com um unico literal, vamos escolher uma delas, definir uma atribuicao parcial
que satisfazé-la, e eliminar a varidvel correspondente. Repetindo esse procedi-
mento, obtemos uma instancia cujas clatsulas tem 2 ou mais literais. Assim,
obtemos 1 > 2 na analise do algoritmo, o podemos garantir que E[X] > 3n/4,
i.e. obtemos uma 4/3-aproximacao.

Esta andlise estd correta ou nao?

144

4. Algoritmos randomizados

Um algoritmo randomizado usa eventos aleatérios na sua execugdo. Mo-
delos computacionais adequadas sdo maquinas de Turing probabilisticas —
mais usadas na drea de complexidade — ou maquinas RAM com um comando
random(8) que retorne um elemento aleatorio do conjunto S.

Veja alguns exemplos de probabilidades:

« Probabilidade morrer caindo da cama: 1/2x 10° (Roach e Pieper, 2007).

e Morrer abanando a maquina de venda automatica e ser espancado até
a morte: 30 pessoas por ano.

¢ Probabilidade acertar 6 niimeros de 60 na mega-sena: 1/50063860.

e Probabilidade que a memoria falha: em meméria moderna temos 1000
FIT/MBit, i.e. 6 x 10~ erros por segundo num meméria de 256 MB.!

¢ Probabilidade que um meteorito destréi um computador em cada milis-
segundo: > 271°° (supondo que cada milénio ao menos um meteorito
destr6i uma drea de 100 m?).

Portanto, um algoritmo que retorna uma resposta falsa com baixa probabi-
lidade é aceitdavel. Em retorno um algoritmo randomizado frequentemente

7

é
e mais simples;

e mais eficiente: para alguns problemas, um algoritmo randomizado é o
mais eficiente conhecido;

e mais robusto: algoritmos randomizados podem ser menos dependente
da distribuicdo das entradas.

e a Unica alternativa: para alguns problemas, conhecemos s6 algoritmos
randomizados.

LFIT é uma abreviagdo de “failure-in-time” e é o ntimero de erros cada 107 segundos. Para
saber mais sobre erros em memoria veja (Terrazon, 2004).

145

4. Algoritmos randomizados

4.1. Teoria de complexidade

Classes de complexidade

Definicao 4.1
Seja L algum alfabeto e R(«, f) a classe de linguagens L C X* tal que existe
um algoritmo de decis@o em tempo polinomial A que satisfaz

e x € L= Pr(A(x) =sim) > «.
e x €L = Pr(A(x) =néo) > p.

(A probabilidade é sobre todas sequéncias de bits aleatérios r. Como o algo-
ritmo executa em tempo polinomial no tamanho da entrada |x|, o niimero de
bits aleatérios |r| é polinomial em [x| também.)

Com isso podemos definir

o a classe RP := R(1/2,1) (randomized polynomial), dos problemas que
possuem um algoritmo com erro unilateral (no lado do “sim”); a classe
co — RP =R(1,1/2) consiste dos problemas com erro no lado de “nao”;

o a classe ZPP := RP N co — RP (zero-error probabilistic polynomial) dos
problemas que possuem algoritmo randomizado sem erro;

e a classe PP := Use(o,1/2] R(1/2+ €,1/2 + €) (probabilistic polynomial),
dos problemas com erro 1/2 4 € nos dois lados; e

o a classe BPP := R(2/3,2/3) (bounded-error probabilistic polynomial),
dos problemas com erro 1/3 nos dois lados.

Algoritmos que respondem corretamente somente com uma certa probabili-
dade também sdao chamados do tipo Monte Carlo, enquanto algoritmos que
usam randomizacdo somente internamente, mas respondem sempre correta-
mente sao do tipo Las Vegas.

Exemplo 4.1 (Teste de identidade de polindmios)

Dado dois polindémios p(x) e q(x) de grau maximo d, como saber se p(x) =
q(x)? Caso temos os dois na forma candnica p(x) = Y ;i 4 Pix' ou na forma
fatorada p(x) = []j<icq(x —7i) isso é simples responder por comparagio
de coeficientes em tempo O(n). E caso contrdario? Converter para a forma
candnica pode custar ©(d?) multiplicacées. Uma abordagem randomizada
é vantajosa, se podemos avaliar o polindmio mais rdapido (por exemplo em

O(d)):

146

=W N =

4.1. Teoria de complexidade

identico(p,q) :=

Seleciona um ntmero aleatdrio T no intervalo [1,100d].

Caso p(r) =q(r) retorne ~“sim''.

Caso p(r) #q(r) retorne ~“ndo''.
Caso p(x) = q(x), o algoritmo responde “sim” com certeza. Caso contrario
a resposta pode ser errada, se p(r) = q(r) por acaso. Qual a probabilidade
disso? p(x) — q(x) é um polinémio de grau d e possui no maximo d raizes.
Portanto, a probabilidade de encontrar um v tal que p(r) = q(r), caso p #Z q
é d/100d = 1/100. Isso demonstra que o teste de identidade pertence a classe
co — RP. O

Observacgao 4.1
E uma pergunta em aberta se o teste de identidade pertence a P. %

4.1.1. Amplificacdo de probabilidades

Caso nao estamos satisfeitos com a probabilidade de 1/100 no exemplo acima,
podemos repetir o algoritmo k vezes, e responder “sim” somente se todas k
repeticoes responderam “sim”. A probabilidade erradamente responder “nao”
para polinémios idénticos agora é (1/100), i.e. ela diminui exponencialmente
com o numero de repetigoes.

Essa técnica é uma amplificagdo da probabilidade de obter a solucdo correta.
Ela pode ser aplicada para melhorar a qualidade de algoritmos em todas clas-
ses “Monte Carlo”. Com um ntmero constante de repeti¢goes, obtemos uma
probabilidade baixa nas classes RP, co — RP e BPP. Isso nao se aplica a PP:
é possivel que € diminui exponencialmente com o tamanho da instancia. Um
exemplo de amplificacdo de probabilidade encontra-se na prova do teorema 4.6.

Teorema 4.1
R(a, 1) =R(B,1) para 0 < o, p < 1.

Prova. Sem perda de generalidade seja & < (3. Claramente R(3,1) C R(«, 1).
Supde que A é um algoritmo que testemunha L € R(x,1). Execute A no
maximo k vezes, respondendo “sim” caso A responde “sim” em alguma ite-
ragdo e “nao” caso contrario. Chama esse algoritmo A’. Caso x ¢ L temos
Pr(A’(x) = “ndo”) = 1. Caso x € L temos Pr(A’(x) = “sim”) > 1 — (1 — «)¥,
logo para k > In(1 —3)/In(1 — o), Pr(A’(x) = “sim”) > B. |

Corolario 4.1
RP =R(e, 1) para 0 < o < 1.

Teorema 4.2
R(o, &) = R(B, B) para 1/2 < «, .

147

» ZPP C H

4. Algoritmos randomizados

Prova. Sem perda de generalidade seja o« < (. Claramente R(f,B) C
R, o).

Supoe que A é um algoritmo que testemunha L € R(«,). Executa A k vezes,
responde “sim” caso a maioria de respostas obtidas foi “sim”, e “nao” caso
contrario. Chama esse algoritmo A’. Para x € L temos

Pr(A’(x) = “sim”) = Pr(A(x) = “sim” > |k/2| + 1 vezes) > 1 — e~ 2klx=1/2)?
eparak > In(p—1)/2(x—1/2)? temos Pr(A’(x) = “sim”) > B. Similarmente,
para x € L temos Pr(A’(x) = “nao”) > B. Logo L € R(B, B). []

Corolario 4.2
BPP = R(«,) para 1/2 < «.

Observacgao 4.2

Os resultados acima sdo validos ainda caso o erro dimiui polinomialmente
com o tamanho da instancia, i.e. &, 3 > n~° no caso do teorema 4.1 e &, 3 >
1/24n" ¢ no caso do teorema 4.2 para um constante ¢ (ver por exemplo Arora
e Barak (2009)). %

4.1.2. Relacdo entre as classes

Duas caracterizacoes alternativas de ZPP

Definigao 4.2
Um algoritmo A é honesto se

i) ele responde ou “sim”, ou “nao” ou “nao sei”,
ii) Pr(A(x) =nao sei) <1/2, e

iii) no caso ele responde, ele nao erra, i.e., para x tal que A(x) # “nao sei”
temos A(x) = “sim” & x € L.

Uma linguagem é honesta caso ela possui um algoritmo honesto. Com isso
também podemos falar da classe das linguagens honestas.

Teorema 4.3
ZPP é a classe das linguagens honestas.

Lema 4.1
Caso L € ZPP existe um algoritmo um algoritmo honesto para L.

Prova. Para L € ZPP existem dois algoritmos A; € RP e A, € co—RP.
Vamos construir um algoritmo

148

N O U W N

4.1. Teoria de complexidade

if A7(x) =Az(x) then
return Aj(x)

else if Aj(x) = ""ndo'' e A,(x)=""sim'' then
return "~ "n&o sei''

else if Aj(x) = ""sim'' e Aj(x) = " "n#o'' then
{ caso impossivel }

end if

O algoritmo responde corretamente “sim” e “nao”, porque um dos dois al-
goritmos nao erra. Qual a probabilidade do segundo caso? Para x € L,
Pr(A;(x) = “ndo” A Az(x) = “sim”) < 1/2 x 1 = 1/2. Similarmente, para
x €L, Pr(Aj(x) = “ndo” AN Az(x) = “sim”) < 1x 1/2=1/2. |

Lema 4.2
Caso L possui um algoritmo honesto L € RP e L € co — RP.

Prova. Seja A um algoritmo honesto. Constréi outro algoritmo que sempre
responde “nao” caso A responde “nao sei”, e sendo responde igual. No caso de
co — RP analogamente constr6éi um algoritmos que responde “sim” nos casos
“nao sei” de A. |

Definicao 4.3

Um algoritmo A é sem falha se ele sempre responde “sim” ou “nao” corre-
tamente em tempo polinomial esperado. Com isso podemos também falar de
linguagens sem falha e a classe das linguagens sem falha.

Teorema 4.4
ZPP é a classe das linguagens sem falha.

Lema 4.3
Caso L € ZPP existe um algoritmo sem falha para L.

Prova. Sabemos que existe um algoritmo honesto para L. Repete o algo-
ritmo honesto até encontrar um “sim” ou “ndo”. Como o algoritmo honesto
executa em tempo polinomial p(n), o tempo esperado desse algoritmo ainda
é polinomial:

> k27¥p(n) < 2p(n)

k>0

Lema 4.4
Caso L possui um algoritmo A sem falha, L € RP e L € co— RP.

149

» H C ZPP

» ZPP C SF

» SF C ZPP

TR W N =

4. Algoritmos randomizados

Prova. Caso A tem tempo esperado p(n) executa ele para um tempo 2p(n).
Caso o algoritmo responde, temos a resposta certa. Caso contrario, responde
“nao sei”. Pela desigualdade de Markov temos uma resposta com probabilidade
Pr(T > 2p(n)) < p(n)/2p(n) = 1/2. Isso mostra que existe um algoritmo
honesto para L, e pelo lema 4.2 L € RP. O argumento para L € co—RP é
similar. |

Mais relacoes

Teorema 4.5
RP C NP eco—RP C co— NP

Prova. Supde que temos um algoritmo em RP para algum problema L. Po-
demos, nao-deterministicamente, gerar todas sequéncias r de bits aleatorios e
responder “sim” caso alguma execucao encontra “sim”. O algoritmo é correto,
porque caso para um x ¢ L, ndo existe uma sequéncia aleatéria r tal que o
algoritmo responde “sim”. A prova do segundo caso é similar. |

Teorema 4.6
RP C BPP e co — RP C BPP.

Prova. Seja A um algoritmo para L € RP. Constr6i um algoritmo A’

if A(x)=""ndo'' e A(x)=""ndo'' then
return "~ "néo''

else
return "~ "sim''

end if

Casox € L, Pr(A’(x) = “nao”) = Pr(A(x) = “nao” AA(x) = “nao”) = 1x1 =
1. Casox € L,

Pr(A’(x) = “sim”) =1 — Pr(A’(x) = “ndo”) = 1 — Pr(A(x) = “nao” A A(x) =

>1-1/2x1/2=3/4>2/3.

(Observe que para k repeticoes de A obtemos Pr(A’(x) = “sim”) > 1 —
1/2%, i.e., o erro diminui exponencialmente com o ntimero de repeticdes.) O
argumento para co — RP é similar. |

Relacdo com a classe NP e abundancia de testemunhas Lembramos que a
classe NP contém problemas que permitem uma verificacdo de uma solugao em
tempo polinomial. Nao-deterministicamente podemos “chutar” uma solugao
e verificd-la. Se o nimero de solugbes positivas de cada instdncia é mais que
a metade do nimero total de solugbes, o problema pertence a RP: podemos

150

“

nao

5

4.2. Selegao

PP =co— PP

AN

NP : BQP - co— NP
7

BPP = co — BPP

Figura 4.1.: Relacoes entre classes de complexidade para algoritmos randomi-
zados.

gerar uma solucao aleatéria e testar se ela possui a caracteristica desejada.
Um problema desse tipo possui uma abundincia de testemunhas. Isso de-
monstra a importancia de algoritmos randomizados. O teste de equivaléncia
de polinémios acima é um exemplo de abundancia de testemunhas.

4.2. Selecao

O algoritmo deterministico para selecionar o k-ésimo maior elemento de uma
sequéncia nao ordenada x1,...,x, discutido na segdo A.1 (pégina 173) pode
ser simplificado usando randomizagdo: escolheremos um elemento pivo m = x;
aleatdrio. Com isso o algoritmo A.1 fica mais simples:

Algoritmo 4.1 (Selecao randomizada)
Entrada Numeros x1,...,Xn, posicao k.

Saida O k-ésimo maior nimero.

1 S(k,{X1,...,Xn}) =
2 if n<1
3 calcula e retorna o k-ésimo elemento

151

4. Algoritmos randomizados

0~ O U

11
12
13
14
15

end if
m:=x; para um i€ [n] aleatédrio
Li={xi|xi<m1<i<n}
Ri={xi|xi >m,1 <i<n}
i:=IL+1
if i=k then
return m
else if i>k then
return S(k,L)
else
return S(k—1,R)
end if

Para determinar a complexidade podemos observar que com probabilidade
1/n temos |[L| =1 e |R| =n —1 e o caso pessimista é uma chamada recursiva
com max{i,n — i} elementos. Logo, com custo cn para particionar o conjunto
e os testes temos

Tm)<en+ Y 1/nT(max{n—i,i})
ielo,n]

—cn+1/n< Z Tn—1) + Z T(i)>
i€[0,k] ie[[n/2],n]

=cn+2/n Yy T(n—i),
ie[0,k]

onde usamos k = |n/2]. Separando o termo T(n) do lado direito obtemos

(1-2/m)TMm)<en+2/n) Tn-i)
ie[k]

&=Tn) < o (cnz +2) Tn-— i)).

n—2
ie[k]

Provaremos por indugdo que T(n) < c¢’n para uma constante c’. Para um
n < ng o problema pode ser claramente resolvido em tempo constante (por
exemplo em O(nplogmng) via ordenagdo). Logo, supde que T(i) < c¢’i para

152

4.3. Corte minimo

i < n. Demonstraremos que T(n) < ¢'n. Temos

1 5 .
Tn) < TL_Z(CTL +2.Z T(n—l))
ielk]
CICEEP
< ——(en“+2c ZTL*I
n-2 i€kl

= %(cnz +2c/(2n—k—1)k/2)

ecom2n—k—1=2n—|n/2] —-1<3/2n

n2

< (cn? +3/4c'm?) = (c +3/4c’)

n—2 n—2

Para n > ng := 16 temos n/(n—2) < 8/7 e com um ¢’ > 8¢ temos

T(n) <c’(1/8+3/4)8/7n = c'n.

4.3. Corte minimo

CORTE MINIMO

Entrada Grafo nao-direcionado G = (V;A) com pesos ¢ : A — Z, nas
arestas.

Solucdo Uma particio V=SUS onde S =V \S.

Objetivo Minimizar o peso do corte ZaeA(S,S) Ca-

Solugoes deterministicas:

¢ Calcular a arvore de Gomory-Hu: a aresta de menor peso define o corte
minimo.

e Calcular o corte minimo (via fluxo méximo) entre um vértice fixo s € V
e todos outros vértices: o menor corte encontrado é o corte minimo.

Custo em ambos casos: O(n) aplicagoes de um algoritmo de fluxo méximo,
i.e. O(mn?) usando o algoritmo de Orlin (ou O(nm'*°(1) com o algoritmo
de Chen et al. (2022)).

153

UL W N

4. Algoritmos randomizados

Solucdo randomizada para pesos unitarios No que segue supomos que 0s
pesos sdo unitarios, i.e. cq = 1 para a € A. Uma abordagem simples é
baseada na seguinte observacao: se escolhemos uma aresta que nao faz parte
de um corte minimo, e contraimo-la (i.e. identificamos os vértices adjacentes),
obtemos um grafo menor, que ainda contém o corte minimo. Se escolhemos
uma aresta aleatoriamente, a probabilidade de por acaso escolher uma aresta
de um corte minimo é baixa.

cnr (G) :=
while G possui mais que dois vértices
escolhe uma aresta {u,v} aleatoriamente
identifica u e v em G
end while
return o corte definido pelos dois vértices em G

Exemplo 4.2
Uma sequencia de contragoes (das arestas vermelhas).

O

Dizemos que uma aresta “sobrevive” uma contragao, caso ele nao foi contraido.

Lema 4.5
A probabilidade que os k arestas de um corte minimo sobrevivem n — n’
contragoes (de n para n’ vértices) é Q((n’/n)?).

Prova. Como o corte minimo é k, cada vértice possui grau pelo menos Kk,
e portanto o nimero de arestas apds da iteragdo 0 < i1 < n —n’ e maior
ou igual a k(n —1)/2 (com a convencao que a “iteracdo 0” produz o grafo
inicial). Supondo que as k arestas do corte minimo sobreviveram a iteragao 1i,
a probabilidade de nao sobreviver a proxima iteragdo é pelo menos k/(k(n —
1)/2) =2/(n —1i). Logo, a probabilidade do corte sobreviver n —n’ iteragoes

154

4.3. Corte minimo

¢é pelo menos

2 n—i—2
Il 7—7== Il ——

0<i<n—m’ 0<i<n—m’
-)m-3)) w1
|

Teorema 4.7
Dado um corte minimo C de tamanho k, a probabilidade do algoritmo cmr
retornar C é Q(n=2).

Prova. Caso o grafo possui n vértices, o algoritmo termina em n—2 iteragoes:
podemos aplicar o lema acima com n’ = 2. |

Observacgao 4.3

O que acontece se repetimos o algoritmo algumas vezes? Seja C; uma varidvel
que indica se o corte minimo foi encontrado na repeticao i. Temos Pr(C; =
1) > 2n2 e portanto Pr(C; = 0) < 1 —2n~2. Para kn? repeticdes, vamos
encontrar C =)_ C; cortes minimos com probabilidade

Pr(C>1)=1-Pr(C=0)>1—(1—2n2)*" >1_¢ 2k
Para k = logn obtemos Pr(C>1) >1—n"2. O

Logo, ao repetir o algoritmo n? logm vezes e retornar o menor corte encon-
trado, achamos o corte minimo com probabilidade razoavel. Se a implemen-
tacao realiza uma contragido em tempo O(n) o algoritmo possui complexidade
O(n?) e com as repeticdes em total O(n*logn).

Implementacao de contracées Para garantir a complexidade acima, uma
contracao tem que ser implementada em O(n). Isso é possivel tanto na repre-
sentagdo por uma matriz de adjacéncia, quanto na representacao pela listas
de adjacéncia. A contragdo de dois vértices adjacentes resulta em um novo
vértice, que é adjacente aos vizinhos dos dois. Na contracdo arestas de um
vértice com si mesmo sdo removidas. Multiplas arestas entre dois vértices tem
que ser mantidas para garantir o Lema 4.5.

Um algoritmo melhor (Karger e Stein, 1996) O problema principal com o
algoritmo acima é que nas ultimas iteragoes, a probabilidade de contrair uma
aresta do corte minimo é grande. Para resolver esse problema, executaremos o
algoritmo duas vezes para instancias menores, para aumentar a probabilidade

de néo contrair o corte minimo. Define f(n) = [1 + n/ﬁ_‘

155

OO UL W N+

4. Algoritmos randomizados

cmr2(G) :=
if (G possui menos que 6 vértices)
determina o corte minimo C por exaustédo
return C
else
n’ :=f(n)
seja Gy o resultado de n—n’ contragdes em G
seja G2 o resultado de n—n’ contragdes em G
Ci:=cmr2(Gy)
Cy:=cmr2(Gy)
return o menor dos dois cortes C; e Cy
end if
Esse algoritmo possui complexidade de tempo O(n?logn) e encontra um corte
minimo com probabilidade Q(1/logn).

Lema 4.6
A probabilidade de um corte minimo sobreviver n — f(n) contragoes é pelo
menos 1/2.

Prova. Pelo lema 4.5 a probabilidade é pelo menos

f(n)(f(n) —1) _ (T+n/vV2)n/Vv2) V2+n o1
nn-1) ~ nn-—1) S 2n—=1)"2n 2’

|
Seja P(n) a probabilidade que um corte com k arestas sobrevive caso o grafo
possui 1 vértices. Temos

1/2P(f(n))
1/2P(f(n))
(1—1/2P(f(n)))?
1—(1—1/2P(f(n)))?
P(f(n)) — 1/4P(f(n))?

Pr(o corte sobrevive em Gq) >
>

)

Pr(o corte sobrevive em G»)
Pr(o corte nao sobrevive em G; nem Gy) <
) >

P(n) = Pr(o corte sobrevive em G ou G;

Para resolver essa recorréncia, define Q(k) = P(ﬁk) com base Q(0) =1 para
obter a recorréncia simplificada

QUk+1) =P(v2") = P([14v2"]) — 1/4p([1+ V2|2
~ P(VZY) = P(VZ")2/4 = Q(k) — Q(K)2/4

156

4.4. Teste de primalidade

e depois R(k) =4/Q(k) — 1 com base R(0) = 3 para obter

4 4 4
Rk+1)+1 R(k)+1 (RK)+1)

;&= R(k+1)=R(k) +1+1/R(K).

R(k) satisfaz
k<R(k)<k+Hg_1+3

Prova. Por inducgdo. Para k = 1 temos 1 < R(1) =13/3 <1+ Hp+3 =5.
Caso a HI esté satisfeito, temos

R(k+1)=R(k)+1+1/R(K) > R(k) +1>k+1
Rk+1)=RK) +T1+1/R(K) < k+Hy 1 +3+T+1/k=(k+1)+Hy+3

]
Logo, R(k) = k + O(logk), e com isso Q(k) = O(1/k) e finalmente P(n) =
O(1/logn).
Para determinar a complexidade do algoritmo cmr2 observe que temos O(logn)
niveis de recursdo e cada contracio pode ser feita em tempo O(n?), portanto

Tn = 2T(f(n)) + O(n?).

Aplicando o teorema de Akra-Bazzi obtemos a equacéo caracteristica 2(1/v/2)P =
1 com solugdo p =2 e

cu

Th € O(n?(1 +J ?du)) =0(n?logn).
1

4.4. Teste de primalidade

Um problema importante na criptografia é encontrar niimeros primos grandes
(p-ex. RSA). Escolhendo um niimero n aleatério, qual a probabilidade de n
ser primo?

Teorema 4.8 (Hadamard (1896), Vallée Poussin (1896))
(Teorema dos nimeros primos.)
Para t(n) = [{p < n | p primo}| temos

. m(n)
lim =
n—oon/Inn

(Em particular 7t(n) = O(n/lnn).)

157

T W N =

4. Algoritmos randomizados

Portanto, a probabilidade de um niimero aleatério no intervalo [2, n] ser primo
assintoticamente é somente 1/Inn. Entdo para encontrar um nimero primo,
temos que testar se n é primo mesmo. Observe que isso nao é igual a fatoracéo
de 1. De fato, temos testes randomizados (e deterministicos) em tempo poli-
nomial, enquanto ndo sabemos fatorar nesse tempo. Uma abordagem simples
é testar todos os divisores:

Primol(n) :=

for i=2,3,5,7,...,[yn]| do

if ijn return "~ N&o''
end for
return "~ ~Sim''

O tamanho da entrada n é t = logn bits, portanto o nimero de iteragdes
é O(y/n) = B(2'/2) e a complexidade Q(2'/2) (mesmo contando o teste de
divisdo com O(1)) desse algoritmo é exponencial. Para testar a primalidade
mais eficiente, usaremos uma caracteristica particular dos niimeros primos.

Teorema 4.9 (Fermat, Euler)
Para p primo e a > 0 temos

a? =a mod p.
Prova. Por inducéo sobre a. Base: evidente. Seja aP = a. Temos
p .
I i
@er =3 (T
0<i<p

epara0<i<p

& _plp—1---(p—it])
P4 i-1)-1
porque p é primo. Portanto (a+1)P =aP +1e

(a+1)VP —(a+1)=d?+1—(a+1)=aP —a=0.

(A ultima identidade é a hip6tese da indugéo.) |

Definicao 4.4
Para a,b € Z denotamos com (a,b) o maior divisor em comum (MDC) de a
e b. No caso (a,b) =1, a e b sdo nimeros coprimos.

Teorema 4.10 (Divisdo modulo p)
Caso p é primo e (b,p) =1

ab=cb modp=a=c modp.

(Em palavras: Numa identidade modulo p podemos dividir por nimeros co-
primos com p.)

158

T W N =

4.4. Teste de primalidade

Prova.

ab=cd & Jkab+kp =cb
& Jdka+kp/b=c

Como a,c € Z, temos kp/b € Z e blk ou blp. Mas (b,p) = 1, entdao blk.
Definindo k' := k/b temos Ik’ a + k'p =¢, i.e. a =c. |
Logo, para p primo e (a,p) =1 (em particular se 1 < a < p)

a®'"=1 modp. (4.1)
Um teste melhor entédo é

Primo2(n) :=

seleciona a€ [I,n—1] aleatoriamente

if (a,n)#1 return ~"N&o''

if a®™'=1 return ~"Sim'"'

return "~ "Ndo''
Complexidade: Uma multiplicacdo e divisdo com logn digitos é possivel em
tempo O(logZ n). Portanto, o primeiro teste (o algoritmo de Euclides em logn
passos) pode ser feito em tempo O(log3 n) e o segundo teste (exponenciagao
modular) é possivel implementar com O(logn) multiplicagoes (exercicio!).
Corretude: O caso de uma resposta “Nao” é certo, porque n ndo pode ser
primo. Qual a probabilidade de falhar, i.e. do algoritmo responder “Sim”,
com n composto? O problema é que o algoritmo falha no caso de ndmeros
Carmichael.

Definicao 4.5

Um ntimero composto n que satisfaz a® ' =1 mod n é um nimero pseudo-
primo com base a. Um nidmero Carmichael é um nimero pseudo-primo para
qualquer base a com (a,n) =1.

Os primeiros nimeros Carmichael sdo 561 = 3 x 11 x 17, 1105 e 1729 (veja
OEIS A002997). Existe um numero infinito deles:

Teorema 4.11 (Alford et al. (1994))
Seja C(n) o nimero de nimeros Carmichael até n. Assintoticamente temos

C(n) >n?/".

Exemplo 4.3
C(n) até 10'° (OEIS A055553):

n 1 23 4 5 6 7 8 9 10
c(1om) 0 0 1 7 16 43 105 255 646 1547 - O
[((0M)2/7] 2 4 8 14 27 52 100 194 373 720

159

» Thus: RP.

N O Otk W N

4. Algoritmos randomizados

Caso um niimero n néo é primo, nem nimero de Carmichael, mais que n/2 dos
a € [l,n—1] com (a,n) =1 nao satisfazem (4.1) ou seja, com probabilidade
> 1/2 acharemos um testemunha que n é composto. O problema é que no
caso de nimeros Carmichael ndo temos garantia.

Teorema 4.12 (Raiz modular)
Para p primo temos

x*=1 modp=x=41 mod p.

O teste de Miller-Rabin usa essa caracteristica para melhorar o teste acima.
t 7 n—1 w2t —
Podemos escrever n — 1 = 2*u para um u impar. Temos a =(a“)* =1.

Portanto, se a™ ! =1,

i

Ou a*=1 mod p ou existe um menor i € [0,t] tal que (a*)? =1

Caso p é primo, W = ((1“)2171 = —1 pelo teorema (4.12) e a minimali-
dade de i (que exclui o caso = 1). Por isso:

Definicao 4.6
Um ntimero n é um pseudo-primo forte com base a caso

Ou a* =1 mod p ou existe um menor i € [0,t — 1] tal que (au)2i =-1
(4.2)

Primo3(n) :=
seleciona a€[l,n—1] aleatoriamente
if (a,n)# 1 return ~“N&o'!'
seja n—1=2%

if a*=1 return "~ Sim'"'
if (a%)? = -1 para um i€[0,t—1] return "~ Sim"''
return ~"N&o''

Teorema 4.13 (Monier (1980) e Rabin (1980))
Caso n e composto e impar, mais que 3/4 dos a € [1,n— 1] com (a,n) =1
nao satisfazem o critério (4.2) acima.

Portanto com k testes, a probabilidade de falhar Pr(Sim | n composto) <
(1/4)% = 272%_ De fato a probabilidade é menor:

Teorema 4.14 (Damgard et al., 1993)

A probabilidade de um tunico teste falhar para um ndmero com k bits é <

k242_\/E-

160

4.5. Notas

Exemplo 4.4
Para n € [2477,2500 _1] a probabilidade de nio detectar um n composto com
um unico teste é menor que

4992 x 42-VA99 2722
O

Teste deterministico O algoritmo pode ser convertido em um algoritmo de-
terministico, testando pelo menos 1/4 dos a com (a,n) = 1. De fato, para o
menor testemunho w(n) de um nimero n ser composto temos

Se 0 HGR é verdade: w(n) < 2log”n (4.3)

com HGR a hipétese generalizada de Riemann (uma conjetura aberta). Su-
pondo HGR, obtemos um algoritmo deterministico com complexidade O (log5 n.
Em 2002, Agrawal et al. (2004) descobriram um algoritmo deterministico (sem
a necessidade da HGR) em tempo C~)(log12 n) que depois foi melhorado para
0 (1og6 n).

4.5. Notas

Um applet com uma implementacao do teste de Miller e Rabin se encontra
aqui.

4.6. Exercicios

Exercicio 4.1
Encontre um primo p e um valor b tal que a identidade do teorema 4.10 nao
é correta.

Exercicio 4.2
Encontre um nimero p nao primo tal que a identidade do teorema 4.12 nao é
correta.

161

http://www.jjam.de/Java/Applets/Primzahlen/Miller_Rabin.html
http://www.jjam.de/Java/Applets/Primzahlen/Miller_Rabin.html

5. Complexidade e algoritmos parametrizados

A complexidade de um problema geralmente é resultado de diversos elementos.
Um algoritmo parametrizado separa explicitamente os elementos que tornam
um problema dificil, dos que sdo simples de tratar. A andlise da complezidade
parametrizada quantifica essas partes separadamente. Por isso, a complexi-
dade parametrizada é chamada uma “complexidade de duas dimensoes”.

Exemplo 5.1

O problema de satisfatibilidade (SAT) é NP-completo, i.e. ndo conhecemos um
algoritmo cuja complexidade cresce somente polinomialmente com o tamanho
da entrada. Porém, a complexidade deste problema cresce principalmente com
o nimero de variaveis, e ndo com o tamanho da entrada: com k variaveis e en-
trada de tamanho n solucéo trivial resolve o problema em tempo O(2*n). Em
outras palavras, para pardmetro k fixo, a complexidade ¢é linear no tamanho
da entrada. O

Definigao 5.1

Um problema que possui um pardmetro k € N (que depende da instancia) e
permite um algoritmo de complexidade f(k)[x|°(") para entrada x e com f uma
funcao arbitraria, se chama tratdvel por pardmetro fixo (ingl. fixed-parameter
tractable, fpt). A classe de complexidade correspondente é FPT.

Um problema tratavel por pardmetro fixo se torna tratavel na pratica, se o
nosso interesse sao instancias com parametro pequeno. E importante observar
que um problema permite diferentes parametrizagées. O objetivo de projeto
de algoritmos parametrizados consiste em descobrir para quais pardmetros
que sao pequenos na pratica o problema possui um algoritmo parametrizado.
Neste sentido, o algoritmo parametrizado para SAT néo é interessante, porque
o nimero de varidveis na pratica é grande.

A seguir consideramos o problema NP-complete de cobertura de vértices. Uma
versao parametrizada é

k-COBERTURA DE VERTICES
Instancia Um grafo nido-direcionado G = (V,; A) e um ntimero k'.

Solucdo Uma cobertura C, i.e. um conjunto C C V tal que Va € A :

163

ST W N

5. Complexidade e algoritmos parametrizados

ancC#0.
Parametro O tamanho k da cobertura.

Objetivo Minimizar |C|.

Abordagem com forga bruta:

mvc (G = (VA)) :=
if A=0 return ()
seleciona aresta {u,v}€ A ndo coberta
Cr:={u}Umve(G\{u})
Cy :={viUmve(G\{v})
return a menor entre as coberturas C; e Cy
Supondo que a selecdo de uma aresta e a reducao dos grafos é possivel em
0O(n), a complexidade deste abordagem é dado pela recorréncia

Th = 2Tn71 + O(Tl)

com soluc¢ao T, = O(2™). Para achar uma solugdo com no maximo k vértices,
podemos podar a arvore de busca definido pelo algoritmo mvc na profundidade
k. Isso resulta em

Teorema 5.1
O problema k-cobertura de vértices é tratavel por pardmetro fixo em O(2%n).

Prova. Até o nivel k vamos visitar O(2%) vértices na arvore de busca, cada
um com complexidade O(n). |

O projeto de algoritmos parametrizados frequentemente consiste em

e achar uma parametrizacdo tal que o parte super-polinomial da com-
plexidade é limitada para um parte do problema que depende de um
parametro k que é pequeno na pratica;

e encontrar o melhor algoritmo possivel para o parte super-polinomial.

Exemplo 5.2
Considere o algoritmo direto (via uma arvore de busca, ou backtracking) para
SAT.

BT—SAT(@p,x) :=
if « & atribuigio completa: return @(«)

ntroduzimos k na entrada, porque k mede uma caracteristica da solucdo. Para evitar
complexidades artificias, entende-se que k nestes casos é codificado em undrio.

164

=

Figura 5.1.: Subproblemas geradas pela decisdo da inclusdo de um vértice v.
Vermelho: vértices selecionadas para a cobertura.

if alguma clausula ndo é satisfeita: return false

if BT—SAT(@,xl) return true

return BT-SAT (@, x0)
(0 e ol denotam extensdes de uma atribuicdo parcial das varidveis.)
Aplicado a 3SAT, das 8 atribuigoes por clausula podemos excluir uma que
néo a satisfaz. Portanto a complexidade de BT-SAT é O(7™/3) = O(v/7 n) =
0(1.9129™). (Exagerando — mas nao mentindo — podemos dizer que isso é
uma aceleragdo exponencial sobre a abordagem trivial que testa todas 2™
atribuigdes.)
O melhor algoritmo para 3-SAT possui complexidade O(1.324™). %

Um algoritmo melhor para cobertura de vértices Consequéncia: O projeto
cuidadoso de uma arvore de busca pode melhorar a complexidade. Vamos
aplicar isso para o problema de cobertura de vértices.

Um melhor algoritmo para a k-cobertura de vértices pode ser obtido pelas
seguintes observagoes

e Caso o grau maximo A de G é 2, o problema pode ser resolvido em
tempo O(n), porque G é uma cole¢io de caminhos simples e ciclos.

o (Caso contrario, temos pelo menos um vértice v de grau 6, > 3. Ou esse
vértice faz parte da cobertura minima, ou todos seus vizinhos N(v) (veja
figura 5.1).

165

© 00 O UL W N+

5. Complexidade e algoritmos parametrizados

mvc'(G) :=
if A(G) <2 then
determina a cobertura minima C em tempo O(n)
return C
end if
seleciona um vértice v com grau 0, >3
Cy ={v}Umvc'(G\{v})
Cz;:=N(HWw)Umvc'(G\N(v))
return a menor cobertura entre C; e C;
O algoritmo resolve o problema de cobertura de vértices minima de forma
exata. Se podamos a arvore de busca apds selecionar k vértices obtemos um
algoritmo parametrizado para k-cobertura de vértices. O ntimero de vértices
nessa arvore é

Vi<Vio1+Vig+1.
Lema 5.1

A solucdo dessa recorréncia é Vi = 0(1.38031).

Teorema 5.2
O problema k-cobertura de vértices é tratdvel por pardmetro fixo em O(1.3803%n).

Prova. Consideragoes acima com trabalho limitado por O(n) por vértice na
arvore de busca. |
Prova. (Do lema acima.) Com o ansatz V; < c¢' obtemos uma prova por
inducao se para um i > ig
Vi<Vig4+Vig+i<c T4t p1<cd

e et = -1 >1

= ct—c3-1>0
(O dltimo passo ¢ justificado porque para ¢ > 1 e i suficientemente grande o

produto vai ser > 1.) ¢* —c3 — 1 possui uma tinica raiz positiva ~ 1.32028 e
para ¢ > 1.3803 temos ¢ —c? —1>0. |

166

6. Outros algoritmos

6.1. O problema de soma de intervalos

No problema de soma de intervalos (ingl. range-sum problem) queremos man-
ter nimeros aj,...,a, sobre duas operagoes: add(i,v) aumenta a; por v e
get(k) retorna Y ;g ai. Nota que a soma sobre qualquer intervalo [j, k] con-
tiguo, Zie[j,k] ai, é get(k) —get(j —1). Numa implementagdo direta por um
vetor essas operacoes possuem complexidade O(1) e O(n).

Para uma operagao O : N — N seja Oi = {i,0(1),0(0(1)),...}Nn] o orbit de
i sobre O.

Teorema 6.1

Caso operagoes O e P satisfazem

|Ox N Py| = [x <yl (®)
as operacoes
add(i,v) := aj:=a;+v para todo j€ Oi
get(k) := return } ; p ai

resolvem o problema da soma de intervalos.

Prova. Por indugdo sobre as operagdes add. Supde get(k) = 3 i @i
Depois de uma operagao add(i,v) temos: (i) Casoi > k: get(k) =) ;cprai =
2 iepk @i = 2_icpg @i porque [OiN Pk| = 0. (i) Caso i < ki get(k) =
2 iepk U =V H D icp @i =V+ D icpg @i porque [Ox N Py| =1. [|

Exemplo 6.1

A solugdo por um vetor que armazena os a; diretamente corresponde com
O(i) =1ieP(i) =1—1. Operagdes add e get tem complexidade O(1) e O(n),
respectivamente. (Critério (®) é satisfeito porque Oi = {i}, Pi = [i].) O

Exemplo 6.2

Com O(i) = i+1 e P(i) = i obtemos uma solucao em que a; armazena as somas
parciais. As operagdes agora tem complexidade O(n) e O(1). (Critério (®) é
satisfeito porque Oi ={i,1+1,...,n}e Pi ={i}) O
Exemplo 6.3

Seja O(1) = 42"V e P(i) = i—2"M) com r(i) o indice do bit menos significativo
(LSB) na representacdo bindria de i. Por definigdo é claro que a érbita de O
cresce, i.e. O(1) > 1, e o do P decresce, i.e. P(i) < i.

167

6. Outros algoritmos

Proposicao 6.1
Critério (®) ¢ satisfeito.

Prova. Se x >y, temos |Ox N Py| = 0, pois a 6rbita de O cresce e a de P
decresce. Pelo mesmo motivo, se x =y, entdo |OxNPy| = [{x,y}| =1 é vilido.
Agora, suponha que x < y. Podemos escrever x = h+s,, y = h+2° + Sy,
onde b é o bit mais significativo diferente de x ey, h > 2% e 0 < s,, Sy < 2b,
Considere primeiro s, = 0. Entdo, x = h € Py, ja que P remove repetidamente
bit menos significativo (least significant bit, LSB) e, portanto, x € Ox N Py.
Para qualquer outro o € Ox, 0 # X, temos 0 > x+27*) > x 4-2°*+1 'mas para
PEPY, p<h+2°+sy=x+2°+sY <x+2°+2° =x+4 21 Portanto,
Ox N Py| = [p] = 1.

Agora considere s, > 0. Afirmamos que Ox N Py = {m}, onde m = h + 2P,
Novamente, é facil ver que m € Py, pois P remove repetidamente o LSB. Para

ver que m € Ox, considere as iteracdes s; = Ol(sy),1=0,1,2,.... Se s; < 2°,
entdo sy < (2P —1)—(270s¢) —1) =22 —27(54) j4 que r(s;) < b é 0 LSB. Assim,
para o primeiro iterado tal que s; > 2P, temos s; = si_j + 2"(5t-1) < 2P,

portanto s; = 2° e, assim, m = h 4+ 2 € Ox.

Agora considere o € Ox e p € Py com o,p < m. Temos 0 > x =h+ s, > h,
mas também p < m—2"™) = h, portanto, nenhum outro elemento desse tipo
estd em Ox N Py. Por fim, considere o € Ox e p € Py com o,p > m. Entao,
0>m+2"™ =m42°=h+2°4+2° =h4+2"T ep<y=h+2°"+5s,<
h+ 2% 4 2% =h 4 2P+1. Portanto, novamente, nenhum outro elemento desse
tipo estd em Ox N Py. |

Proposicao 6.2
As operacoes add and get tem complexidade O(logn).

Prova. Por inducio, O%(x) > x+ZO<]-<i 2 > 2t de modo que a 6rbita de O
tem no maximo log, n elementos. Da mesma forma, P*(y) < n— Zo<).<i 2=
n—2' +1 e a érbita de P também tem no maximo log, n elementos. As

duas operagoes podem ser implementadas de forma eficiente por O(i) = (1|
i—1)+1eP(i) =i&(i—1) em tempo O(1). [] O

Exercicio 6.1

Mostre que as operagdes O(1) =1 |i+ 1 e P(i) = (i&(i+ 1)) — 1 satisfazem o
critério do teorema 6.1. Qual a interpretagdo das operacoes na representacao
bindria? Vocé conseque dar uma defini¢do aritmética equivalente? Qual a
complexidade de add e get usando essas operagoes?

168

6.2. Amostragem discreta

6.2. Amostragem discreta

6.2.1. Amostragem sem reposicao

Queremos selecionar k nimeros de [n] sem reposicao. Uma forma simples de
conseguir isso é definir um vetor s; = i, 1 € [n] e para j € [K] trocar um
elemento aleatério em s(j) com s;. No final si) contém a amostra desejada.
O custo é O(n) tempo e espaco, porque usa um vetor de tamanho n. Uma
abordagem melhor usa uma tabela hash mapeando indices para valores, sem
armazenar os valores default i —i. Com isso o custo de tempo e espaco é
reduzido para O(k) que é essencialmente 6timo.

6.2.2. Distribuicoes discretas

Queremos amostrar de uma distribui¢do discreta com probabilidades pi, i €
[n]. Uma abordagem muito simples é rejection sampling. Sejap = maxicn] Pi-
Selecionamos um item i € [n] e um nimero em q = [0,p] uniformemente e
rejeitamos se q > pi. A taxa de aceitagdo é 1/(np).

Uma ideia melhor é tower sampling. Aqui, armazenamos as somas parciais
qi =) jeli) Py 1 € [n], amostramos um niimero aleatério uniforme r € U[0, 1]
e, em seguida, fazemos uma busca binaria pelo menor i, de modo que v > qj.
O pré-processamento leva tempo O(n), a amostragem apenas O(logn).

A solugado para o problema de soma de intervalo acima permite atualizar as
somas de prefixo no tempo O(logn). Portanto, podemos aplicar a amostragem
de torre dinamicamente com tempo de atualizagdo de O(logn) e tempo de
amostragem de O(log2 1), j4 que temos no maximo log n consultas, cada uma
de custo O(logn).

Uma ideia ainda melhor é alias sampling. Primeiro, subdivida todos os p;
em itens de baixa probabilidade L = {i | p; < 1/n}, boa probabilidade G =
{i | pi = 1/n} e alta probabilidade H = {i | p; > 1/n}. Logo, se L = H = {J,
podemos fazer uma amostragem uniforme de G. Em seguida, observamos que
L =0 sse H = (), pois as probabilidades dos 1 itens devem somar 1. Portanto,
ou somos bons ou temos um par L-H. Para esse par, crie um compartimento
“bom” combinando o item L. com uma parte adequada do item H. Lembre-se
dos compartimentos de origem e realoque a parte restante do item H para L,
G ou H. Agora ainda temos n compartimentos, mas um compartimento bom
(tipo G) a mais. Repita até que tenhamos apenas compartimentos bons. Isso
leva no méximo O(n) tempo, pois podemos ter no maximo n compartimentos
bons.

Para amostragem, armazene em s1,S3,...,S2, nimeros de itens de modo que
o compartimento i represente os itens s; € $2i41. (Para compartimentos

169

B~ W N =

6. Outros algoritmos

puramente bons, s3; = $2i4+1.) Armazene também a massa de probabilidade
do primeiro item s,; em cada compartimento em 1, q2,...,qn. (Novamente,
para compartimentos puramente bons, q; = 1).

Agora podemos fazer a amostragem da seguinte forma em tempo O(1):

x = U(0,1]

b=[nx| // localizar o compartimento

r=[nx mod 1) >qp] // localizar o item no compartimento
retornar Sypir

Vamos estudar agora a amostragem de reservatério (ingl. reservoir sampling).
Aqui, o problema é escolher um elemento da sequéncia 1,2,...,n com pro-
babilidades pi, mas on-line, ou seja, visitando a sequéncia uma vez. E claro
que poderiamos ler toda a sequéncia e fazer uma amostragem como acima.
Portanto, a restricdo aqui é que temos O(1) de memoria.

Vamos examinar primeiro o caso uniforme que possui uma solugao facil. Man-
tenha um item selecionado, inicialmente nenhum, e substitua-o pelo item 1
com probabilidade 1/i. A correcdo pode ser facilmente demonstrada por in-
dugdo. Suponha que, para n itens, tenhamos p; = 1/n. Entdo, para n + 1,
escolhemos n + 1 com probabilidade 1/(n + 1), ou qualquer um dos outros
itens com probabilidade p; -n/(n+1) =1/(n+ 1), conforme necessario.
Agora generalizamos isso para selecionar itens de m > 1 e pesos gerais Wi, ..., Wy
(ou seja, os pesos nao precisam ser normalizados). Isso funciona da seguinte
forma. Para cada item, calcule o valor U[0, 1]'/Wi ¢ mantenha os m itens de
maior valor. Podemos ver facilmente por que isso é correto no caso especial
de amostragem uniforme. Nesse caso, é melhor definir wy = - = w,, = 1.
Entao, basta sortear n ntimeros aleatérios em U[0, 1] e pegar os m itens de
maiores valores.

O algoritmo acima requer n nimeros aleatérios, e o niimero esperado de atua-
lizagdes do conjunto escolhido é O(mlogn/m). H4 uma versao que precisa de
apenas O(mlogn/m) amostras aleatérias. Esses algoritmos também podem
ser usados para criar uma amostra aleatoria de tamanho k com reposicao,
executando k instancias paralelas que selecionam m = 1 item cada.

Notas Uma boa fonte sobre amostragem é o livro de Krauth (2006). Para
amostragem sem reposigdo ver Ting (2021) e Bentley e Floyd (1987). Alias
sampling é bem explicada por Patragcu (2011). A amostragem de reservatério
ponderada ¢ de Efraimidis e Spirakis (2005).

170

A. Material auxiliar

Definicoes

Definicao A.1
Uma relagao binaria R é polinomialmente limitada se

dp € poly : V(x,y) € R: |yl < p(lx])

Definicao A.2 (Pisos e tetos)
Para x € R o piso |x] é o maior nimero inteiro menor que x e o teto [x] é o
menor nimero inteiro maior que x. Formalmente

x| =max{y € Z|y <x}
[x] =min{y € Z |y > x}

O parte fraciondrio de x é {x} =x — |x].
Observe que o parte fracionério sempre é positivo, por exemplo {—0.3} = 0.7.

Proposicao A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem

x < [x] <x+1 (A1)
x—1<[x] <x (A.2)
Defini¢ao A.3
Uma funcao f é convera se ela satisfaz a desigualdade de Jensen
f(Ox + (1 —0)y) < Of(x) + (1 —O)f(y). (A.3)

Similarmente uma fungao f é concava caso —f é convexo, i.e., ela satisfaz

f(Ox + (1 —0)y) > Of(x) + (1 —0)f(y). (A4)
Exemplo A.1
Exemplos de funcdes convexas sao x2%, 1/x. Exemplos de funcdes concavas
sao logx, v/X. O

171

A. Material auxiliar

Proposicao A.2
Para)

ien]

Z ®1X1 S Z G)if(xi)
ien]

ien]

e uma fungdo concava

Z ®1X1 > Z ®if(xi)
ien]

ien]

®; = 1 e pontos xi, i € [n] uma func¢io convexa satisfaz

(A.5)

(A.6)

Prova. Provaremos somente o caso convexo por indugdo, o caso concavo
sendo similar. Para n = 1 a desigualdade ¢ trivial, para n = 2 ela ¢ vélida

por definigdo. Para n > 2 define ©® = }_
isso temos

i€[2,n]

f(Z @ixi) = f(@]X] + Z GiXi) = f(@]X] +@y)
]

ien ie[2,n]
onde y = Zje[z,n](gj/é)xj7 logo

f() Oxi) < O:1f(xq) + Of(y)

i€[n]

=O1f(x1) +OFf(Y (6;/0)x))

jel2,m]
<OIf(x1)+0) (8;/0)f(x) =) Oix
jel2,n] i€n]

A.1. Algoritmos

Solucdes do problema da mochila com Programacdao Dinamica

Mochila méaxima (Knapsack)

1 ©1 tal que ©+0=1.

Com

e Seja S*(k,v) a solu¢do de tamanho menor entre todas solugbes que

— usam somente itens S C [1,Kk] e

— tem valor exatamente v.

172

A.1. Algoritmos

M(k,n)

Entrada |X1 X2 X3 X4 X5| X6 | | an

Medianos I:‘ I:‘ I:‘
Mediano

Particao Xi <m | m| X{ > m |
i
Recursao k<i: k=1: k>1i:
M(k,i—1) Encontrado M(k —i,n—1)

Figura A.1.: Funcionamento do algoritmo recursivo para selecéo.

e Temos

(1,v) = undef para v # vy

Mochila maxima (Knapsack)

o S$* obedece a recorréncia

N . S*(k—1,v—vi)U{k}, sevk <veS"(k—1,v—vy) definido
S*(k,v) = min
tamanho s*(kf],\))

¢ Menor tamanho entre os dois

Y o o ttt< Yt

1ES* (k—1,v—vy) 1€S* (k—1,v)

e Melhor valor: Escolhe $*(n,v) com o valor méximo de v definido.
e Tempo e espago: O(n 3 ;o Vi)
Selecao Dado um conjunto de ntimeros, o problema da sele¢do consiste em

encontrar o k-ésimo maior elemento. Com ordenagdo o problema possui so-
lugdo em tempo O(nlogn). Mas existe um outro algoritmo mais eficiente.

173

A. Material auxiliar

Podemos determinar o mediano de grupos de cinco elementos, e depois o re-
cursivamente o mediano m desses medianos. Com isso, o algoritmo particiona
o conjunto de niimeros em um conjunto L de niimeros menores que m e um
conjunto R de nimeros maiores que m. O mediano m é na posicao i:=|L|+1
desta sequéncia. Logo, caso i = k m é o k-ésimo elemento. Caso i > k te-
mos que procurar o k-ésimo elemento em L, caso i < k temos que procurar o
k — i-ésimo elemento em R (ver figura A.1).

O algoritmo é eficiente, porque a selecdo do elemento particionador m garante
que o subproblema resolvido na segunda recursao é no maximo um fator 7/10
do problema original. Mais preciso, o nimero de medianos é maior que n/5,
logo o nimero de medianos antes de m é maior que n/10 — 1, o ntimero de
elementos antes de m é maior que 3n/10—3 e com isso o niimero de elementos
depois de m é menor que 7n/10+ 3. Por um argumento similar, o nimero de
elementos antes de m é também menor que 7n/10 + 3. Portanto temos um
custo no caso pessimista de

Tn) = (1) sen <5
N T([n/5]) + ©(7n/10+3) + O(n) caso contrario

ecom 5P+ (7/10)P =1 temos p = log, 7 ~ 0.84 ¢

oo {1+ v)

=OMmP(1+(n'""P/(1—p)—1/(1—p)))
=0(cinP +con) = O(n).

Algoritmo A.1 (Selecao)
Entrada Numeros x1,...,Xn, posi¢ao k.

Saida O k-ésimo maior nimero.

1 S(k,{x1,...,xn}) =
2 if n<5

calcula e retorne o k-ésimo elemento
end if
mi = median(x5i+1)---)Xmin(51+5,n)) para 0<i< [n/5].

|_|—TL/5-| /2-|)m1a--->m|'n/5'|71)
L { [xi <m,1<1i<n}
Ri={xi|xi>m,1<i<n}
=L +1

© 00 ~J O U W

174

http://www.wolframalpha.com/input/?i=solve(5**-p%2B(7/10)**p=1)

10
11
12
13
14
15
16

if i=k then
return m
else if i>k then
return S(k,L)
else
return S(k—1i,R)
end if

A.1. Algoritmos

175

B. Técnicas para a analise de algoritmos

Analise de recorréncias

Teorema B.1 (Akra-Bazzi e Leighton)
Dado a recorréncia

T(x) = e(1), se x < Xo,
N Z1§i§k aiT(bix + hi(x)) + g(x), caso contrério,

com constantes a; > 0, 0 < b; < 1 e fungodes g, h, tal que
l9'()l € O(x%); [ha(x)] < x/log' "€ x

para um € > 0 e a constante x¢ e suficientemente grande

T(x) €® (Xp (1 + J.X Esﬂ du))
1

com p tal que } ;i aib? =1.

Teorema B.2 (Graham et al. (1988))
Dado a recorréncia

T(n) = e(1), n < maxi<i<k di,
2 % T(n—di), caso contrario,

seja o a raiz com a maior valor absoluto com multiplicidade 1 do polinomio

caracteristico

D

com d = maxy di. Entao

177

Bibliografia

Manindra Agrawal, Neeraj Kayal e Nitin Saxena. “PRIMES is in P”.
Em: Annals of Mathematics 160.2 (2004), pp. 781-793.

W. R. Alford, A. Granville e C. Pomerance. “There are infinitely many
Carmichael numbers”. Em: Annals Math. 140 (1994).

Algorithm Engineering. http://www.algorithm-engineering.de. Deutsche
Forschungsgemeinschaft.

H. Alt et al. “Computing a maximum cardinality matching in a bipartite
graph in time O(n'->y/mlogn)”. Em: Information Processing Letters 37
(1991), pp. 237-240.

June Andrews e J. A. Sethian. “Fast marching methods for the continu-
ous traveling salesman problem”. Em: Proc. Natl. Acad. Sci. USA 104.4
(2007). DOI: 10.1073/pnas.0609910104.

Sanjeev Arora e Boaz Barak. Computational Complexity: A Modern Ap-
proach. Cambridge University Press, 2009.

Brenda S. Baker. “A new proof for the first fit decreasing bin packing
algorithm”. Em: J. Alg. 6 (1985), pp. 49-70. pDo1: 10 . 1016 /0196 -
6774(85)90018-5.

Jon Bentley e Bob Floyd. “Programming pearls: a sample of brilliance”.
Em: Communications of the ACM 30.9 (set. de 1987), pp. 754—757. ISSN:
1557-7317. DOI: 10.1145/30401.315746.

Claude Berge. “Two theorems in graph theory”. Em: Proc. National
Acad. Science 43 (1957), pp. 842-844.

John R. Black Jr. e Charles U. Martel. Designing Fast Graph Data
Structures: An Experimental Approach. Rel. téc. Department of Com-
puter Science, University of California, Davis, 1998.

G. S. Brodal, R. Fagerberg e R. Jacob. Cache Oblivious Search Trees
via Binary Trees of Small Height. Rel. téc. RS-01-36. BRICS, 2001.

Andrei Broder e Michael Mitzenmacher. “Network applications of Bloom
filter: A survey”. Em: Internet Mathematics 1.4 (2003), pp. 485-509.

Bernhard Chazelle. “A Minimum Spanning Tree Algorithm with Inverse-
Ackermann Type Complexity”. Em: Journal ACM 47 (2000), pp. 1028—
1047.

179

https://doi.org/10.1073/pnas.0609910104
https://doi.org/10.1016/0196-6774(85)90018-5
https://doi.org/10.1016/0196-6774(85)90018-5
https://doi.org/10.1145/30401.315746

Bibliografia

[14]

180

Li Chen et al. “Maximum Flow and Minimum-Cost Flow in Almost-
Linear Time”. Em: tbd (2022). DOI: 10 . 48550/ arxiv . 2203 . 00671.
arXiv: 2203.00671 [cs.DS].

Thomas H. Cormen et al. Introduction to Algorithms. 3rd. The MIT
Press, 2009.

Ivan Damgard, Peter Landrock e Carl Pomerance. “Average case error
estimates for the strong probable prime test”. Em: Mathematics of com-
putation 61.203 (1993), pp. 177-194.

Brian C. Dean, Michel X. Goemans e Nicole Immorlica. “Finite ter-
mination of "augmenting path”algorithms in the presence of irrational
problem data”. Em: ESA’06: Proceedings of the 14th conference on An-
nual Furopean Symposium. Zurich, Switzerland: Springer-Verlag, 2006,
pp. 268-279. DOL: 10.1007/11841036_26.

R. Dementiev et al. “Engineering a Sorted List Data Structure for 32 Bit
Keys”. Em: Workshop on Algorithm Engineering € Ezrperiments. 2004,
pp. 142-151.

Ran Duan, Seth Pettie e Hsin-Hao Su. “Scaling algorithms for approxi-
mate and exact maximum weight matching”. Em: CoRR abs/1112.0790
(2011).

Ran Duan, Seth Pettie e Hsin-Hao Su. “Scaling Algorithms for Weighted
Matching in General Graphs”. Em: ACM Trans. Algorithms 14.1 (2018),
pp. 225-231. DOL: 10.1145/3155301.

J. Edmonds. “Paths, Trees, and Flowers”. Em: Canad. J. Math 17 (1965),
pp. 449-467.

J. Edmonds e R. Karp. “Theoretical improvements in algorithmic ef-
ficiency for network flow problems”. Em: JACM 19.2 (1972), pp. 248—
264.

Pavlos S. Efraimidis e Paul G. Spirakis. “Weighted Random Sampling”.
Em: Encyclopedia of Algorithms. 2005.

Jend Egervary. “Matrixok kombinatorius tulajdonsigairél (On combi-
natorial properties of matrices)”. Em: Matematikai és Fizikai Lapok 38
(1931), pp. 16-28.

T. Feder e R. Motwani. “Clique Partitions, Graph Compression and
Speeding-Up Algorithms”. Em: Journal of Computer and System Scien-
ces 51.2 (out. de 1995), pp. 261-272. 1SsN: 0022-0000. DOI: 10. 1006/
jcss.1995.1065.

https://doi.org/10.48550/arxiv.2203.00671
https://arxiv.org/abs/2203.00671
https://doi.org/10.1007/11841036_26
https://doi.org/10.1145/3155301
https://doi.org/10.1006/jcss.1995.1065
https://doi.org/10.1006/jcss.1995.1065

T. Feder e R. Motwani. “Clique partitions, graph compression and speeding-
up algorithms”. Em: Proceedings of the Twenty Third Annual ACM
Symposium on Theory of Computing (25rd STOC). 1991, pp. 123-133.

L. R. Ford e D. R. Fulkerson. “Maximal flow through a network”. Em:
Canadian Journal of Mathematics 8 (1956), pp. 399—404.

C. Fremuth-Paeger e D. Jungnickel. “Balanced network flows VIII: a re-
vised theory of phase-ordered algorithms and the O(y/nmlog(n?/m)/logn
bound for the nonbipartite cardinality matching problem”. Em: Networks
41 (2003), pp. 137-142.

Martin Fiirer e Balaji Raghavachari. “Approximating the minimu-degree
steiner tree to within one of optimal”. Em: Journal of Algorithms (1994).

H. N. Gabow. “Data structures for weighted matching and nearest com-
mon ancestors with linking”. Em: Proc. of the 1st Annual ACM-SIAM
Symposium on Discrete Algorithms (1990), pp. 434-443.

Ashish Goel, Michael Kapralov e Sanjeev Khanna. “Perfect Matchings in
O(nlogn) Time in Regular Bipartite Graphs”. Em: STOC 2010. 2010.

A. V. Goldberg e A. V. Karzanov. “Maximum skew-symmetric flows and
matchings”. Em: Mathematical Programming A 100 (2004), pp. 537-568.

Olivier Goldschmidt e Dorit S. Hochbaum. “Polynomial Algorithm for
the k-Cut Problem”. Em: Proc. 29th FOCS. 1988, pp. 444-451.

Ronald Lewis Graham, Donald Ervin Knuth e Oren Patashnik. Concrete
Mathematics: a foundation for computer science. Addison-Wesley, 1988.

J. Hadamard. “Sur la distribution des zéros de la fonction zeta(s) et ses
conséquences arithmétiques”. Em: Bull. Soc. math. France 24 (1896),
pp. 199-220.

Bernhard Haeupler, Siddharta Sen e Robert E. Tarjan. “Heaps simpli-
fied”. Em: (Preprint) (2009). arXiv:0903.0116.

Carl Hierholzer. “Ueber die Moglichkeit, einen Linienzug ohne Wie-
derholung und ohne Unterbrechung zu umfahren”. Em: Mathematische
Annalen 6 (1873), pp. 30-32. DOIL: 10.1007/b£01442866.

J. E. Hopcroft e R. Karp. “An n°/? algorithm for maximum matching
in bipartite graphs”. Em: STAM J. Comput. 2 (1973), pp. 225-231.

David S. Johnson. “Near-optimal bin packing algorithms”. Tese de dou-
toramento. Massachusetts Institute of Technology. Dept. of Mathema-
tics, 1973. URL: http://hdl.handle.net/1721.1/57819.

181

https://doi.org/10.1007/bf01442866
http://hdl.handle.net/1721.1/57819

Bibliografia

[40]

182

David S. Johnson e Michael R. Garey. “A 71/60 theorem for bin pac-
king”. Em: J. Complez. 1.1 (1985), pp. 65-106. DOI: 10.1016/0885~
064X(85)90022-6.

Michael J. Jones e James M. Rehg. Statistical Color Models with Ap-
plication to Skin Detection. Rel. téc. CRL 98/11. Cambridge Research
Laboratory, 1998.

Haim Kaplan e Uri Zwick. “A simpler implementation and analysis of
Chazelle’s soft heaps” Em: SODA ’09: Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms. New York, New
York: Society for Industrial e Applied Mathematics, 2009, pp. 477-485.

David R. Karger e Clifford Stein. “A new approach to the minimum
cut problem”. Em: Journal of the ACM 43.4 (1996), pp. 601-640. DOI:
10.1145/234533.234534.

Werner Krauth. Statistical Mechanics: Algorithms and Computation.
OUP, 2006.

H. W. Kuhn. “The Hungarian Method for the assignment problem”. Em:
Naval Re/search Logistic Quarterly 2 (1955), pp. 83-97.

Jerry Li e John Peebles. “Replacing Mark Bits with Randomness in
Fibonacci Heaps”. Em: Int. Colog. Automata, Languages, and Progr.
Ed. por Magnuis Halldérsson et al. Vol. 9134. LNCS. 2015, pp. 886-897.

S. Micali e Vijay V. Vazirani. “An O(4/[v||E|) algorithm for finding maxi-
mum matching in general graphs”. Em: Proc. 21th FOCS. 1980, pp. 17—
27.

L. Monier. “Evaluation and comparison of two efficient probabilistic pri-
mality testing algorithms”. Em: Theoret. Comp. Sci. 12 (1980), pp. 97—
108.

J. Munkres. “Algorithms for the assignment and transporation pro-
blems”. Em: J. Soc. Indust. Appl. Math 5.1 (1957), pp. 32-38.

K. Noshita. “A theorem on the expected complexity of Dijkstra’s shor-
test path algorithm”. Em: Journal of Algorithms 6 (1985), pp. 400-408.

Joon-Sang Park, Michael Penner e Viktor K. Prasanna. “Optimizing
Graph Algorithms for Improved Cache Performance”. Em: IEEE Trans.
Par. Distr. Syst. 15.9 (2004), pp. 769-782.

Mihai Patragcu. Follow-up: Sampling a discrete distribution. 19 de set. de
2011. URL: http://infoweekly.blogspot.com/2011/09/follow-up-
sampling-discrete.html.

https://doi.org/10.1016/0885-064X(85)90022-6
https://doi.org/10.1016/0885-064X(85)90022-6
https://doi.org/10.1145/234533.234534
http://infoweekly.blogspot.com/2011/09/follow-up-sampling-discrete.html
http://infoweekly.blogspot.com/2011/09/follow-up-sampling-discrete.html

Michael O. Rabin. “Probabilistic algorithm for primality testing”. Em:
J. Number Theory 12 (1980), pp. 128-138.

Emma Roach e Vivien Pieper. “Die Welt in Zahlen”. Em: Brand eins 3
(2007).

J.R. Sack e J. Urrutia, eds. Handbook of computational geometry. Else-
vier, 2000.

Alexander Schrijver. Combinatorial optimization. Polyhedra and effici-
ency. Vol. A. Springer, 2003.

J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer Vi-
sion and Materials Science. Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press, 1999.

Terrazon. Soft Errors in Electronic Memory — A White Paper. Rel. téc.
Terrazon Semiconductor, 2004.

Daniel Ting. “Simple, Optimal Algorithms for Random Sampling Without
Replacement”. Em: (abr. de 2021). DOI: 10.48550/ARXIV.2104.05091.
arXiv: 2104.05091 [cs.DS].

C.-J. de la Vallée Poussin. “Recherches analytiques la théorie des nom-
bres premiers”. Em: Ann. Soc. scient. Bruzelles 20 (1896), pp. 183-256.
Norman Zadeh. “Theoretical Efficiency of the Edmonds-Karp Algorithm
for Computing Maximal Flows”. Em: J. ACM 19.1 (1972), pp. 184-192.

Uri Zwick. “The smallest networks on which the Ford-Fulkerson ma-
ximum flow procedure may fail to terminate”. Em: Theoretical Com-
puter Science 148.1 (1995), pp. 165-170. DoI: DOI : 10. 1016 /0304 -
3975(95)00022-0.

183

https://doi.org/10.48550/ARXIV.2104.05091
https://arxiv.org/abs/2104.05091
https://doi.org/DOI: 10.1016/0304-3975(95)00022-O
https://doi.org/DOI: 10.1016/0304-3975(95)00022-O

Indice

P || Cmax, 141
APX, 117
NPO, 116

PO, 116

admissivel, 15
Akra, Louay, 177
Akra-Bazzi
método de, 177
algoritmo
e-aproximativo, 117
r-aproximativo, 117
de aproximacao, 115
guloso, 117
parametrizado, 163
primal-dual, 123
randomizado, 145
algoritmo A*, 13
aproximacao
absoluta, 117
relativa, 117

arredondamento randomizado, 123

Baker, Brenda S., 137
Bazzi, Mohamad, 177
bin packing

empacotamento unidimensional,

133

Bloom, Burton Howard, 111

busca informada, 13

caminho
alternante, 86
Euleriano, 7

mais curto, 21, 57
algoritmo de Dijkstra, 21, 57
caminho mais gordo
algoritmo de, 65-66
circulagao, 58
cobertura de vértices, 118, 163
aproximagao, 118
complexidade
amortizada, 26
parametrizada, 163
consistente, 15
corte
em cascatas, 29
cuco hashing, 109

desigualdade

de Jensen, 171
desigualdade triangular, 126
dicionéario, 103
Dijkstra

algoritmo de, 13, 21, 57
Dijkstra, Edsger Wybe, 21

Edmonds, Jack R., 63
Edmonds-Karp

algoritmo de, 63-65
empacotamento unidimensional, 133
emparelhamento, 81

de peso méaximo, 81

méximo, 81

perfeito, 81

de peso minimo, 81

enderecamento aberto, 107

185

Indice

equacao Eikonal, 12
excesso, 66

fator de ocupagao, 104
fecho métrico, 127
fila de prioridade, 21-57
com lista ordenada, 9
com vetor, 9
filtro de Bloom, 111
fluxo, 58
s—t maximo, 59
com fontes e destinos multi-
plos, 70
de menor custo, 80
formulacao linear, 60
Ford, Lester Randolph, 60
Ford-Fulkerson
algoritmo de, 6063
forward star, 5
Fulkerson, Delbert Ray, 60
fungao
concava, 171
convexa, 171
fun¢do de otimizacgdo, 115
fun¢do hash, 103
com divisao, 105
com multiplicagao, 105
universal, 105, 106
fungdo objetivo, 115

grafo
Euleriano, 7
grafo residual, 61

hashing
com enderecamento aberto, 107
com listas encadeadas, 103
cuco, 109
perfeito, 103, 106
universal, 105

heap, 21-57

186

binomial, 24, 37, 57
custo armotizado, 28
binario, 21, 56
implementagao, 24
Fibonacci, 29
oco, 41
rank-pairing, 33, 39
Hierholzer
algoritmo de, 8
Hierholzer,Carl, 8

Jensen
desigualdade de, 171
Johnson, David Stifler, 137

Karp, Richard Manning, 63
Knapsack, 120

método de divisao, 105
método de multiplicacdo, 105

ordem
van Emde Boas, 48

permutacao, 107
piso, 171
Prim

algoritmo de, 8
Prim,Robert Clay, 8
problema

da mochila, 172

de avaliacgao, 116

de construcao, 116

de decisao, 116

de otimizacao, 115
problema da mochila, 120, 172
problema de soma de intervalos, 167
pré-fluxo, 66

relacao
polinomialmente limitada, 116

Indice

SAT, 163
satisfatibilidade
de féormulas booleanas, 163
semi-arvore, 34
sequenciamento
em processores paralelos, 141

terminal, 126

teto, 171

torneio, 33

tratavel por parametro fixo, 163

uniforme, 107

valor hash, 103
van Emde Boas, Peter, 49
vertex cover, 118
aproximagao, 118
vértice
ativo, 66
emparelhado, 86
livre, 86

Williams, J. W. J., 21

arvore

binomial, 24

van Emde Boas, 48-56
arvore geradora minima, 8

algoritmo de Prim, 8
arvore Steiner minima, 126

187

	Conteúdo
	Algoritmos em grafos
	Representação de grafos
	Amostragem de grafos aleatórios

	Caminhos e ciclos Eulerianos
	Árvores geradores
	Caminhos mais curtos
	Tópicos
	Mais sobre caminhos mais curtos
	Notas

	Filas de prioridade e heaps
	Heaps binários
	Heaps binomiais
	Heaps Fibonacci
	Rank-pairing heaps
	Heaps ocos
	Árvores de van Emde Boas
	Exercícios

	Fluxos em redes
	O algoritmo de Ford-Fulkerson
	O algoritmo de Edmonds-Karp
	O algoritmo ``caminho mais gordo'' (``fattest path'')
	O algoritmo push-relabel
	Variantes do problema
	Aplicações
	Outros problemas de fluxo
	Exercícios

	Emparelhamentos
	Aplicações
	Grafos bi-partidos
	Emparelhamentos em grafos não-bipartidos
	Notas
	Exercícios

	Tabelas hash
	Hashing com listas encadeadas
	Hashing com endereçamento aberto
	Cuco hashing
	Filtros de Bloom

	Algoritmos de aproximação
	Problemas, classes e reduções
	Medidas de qualidade
	Técnicas de aproximação
	Algoritmos gulosos
	Aproximações com randomização
	Programação linear

	Esquemas de aproximação
	Aproximando o problema da árvore de Steiner mínima
	Aproximando o PCV
	Aproximando problemas de cortes
	Aproximando empacotamento unidimensional
	Um esquema de aproximação assintótico para min-EU

	Aproximando problemas de sequênciamento
	Um esquema de aproximação para PCmax

	Exercícios

	Algoritmos randomizados
	Teoria de complexidade
	Amplificação de probabilidades
	Relação entre as classes

	Seleção
	Corte mínimo
	Teste de primalidade
	Notas
	Exercícios

	Complexidade e algoritmos parametrizados
	Outros algoritmos
	O problema de soma de intervalos
	Amostragem discreta
	Amostragem sem reposição
	Distribuições discretas

	Material auxiliar
	Algoritmos

	Técnicas para a análise de algoritmos
	Bibliografia
	Bibliografia
	Índice
	Índice

