Prof. Marcus Ritt

Algoritmos avançados – Exemplo de um plano de teste

1 Complexidade das operações

Objetivo: Verificar a complexidade das operações experimentalmente.

Vamos medir o tempo e o número de operações elementares. Uma operação elementar no heap binário é um swap, i.e. uma troca de chaves no sift-up ou sift-down.

Inserções (operação "insert") Fixa, por exemplo, $n=2^{30}-1$. Insere chaves $n,n-1,\ldots,1$. Grava o tempo TA_i e o número SA_i de swaps depois de inserir $2^i-1,\ i=0,\ldots,30$ chaves.

Para $i=1,\ldots,30$ o i-ésimo lote de inserções consiste da inserções $2^{i-1},\ldots,2^i-1$. O número esperado de swaps para o lote é $SE_i=2^{i-1}\,(i-1)$ e o tempo esperado $TE_i=O(SE_i)$. O número real de swaps para o lote é $S_i=SA_i-SA_{i-1}$ e o tempo real $T_i=TA_i-TA_{i-1}$.

Compara as quantidades empíricas e esperadas: S_i com SE_i e T_i com TE_i (por exemplo por plotar S_i/SE_i e T_i/TE_i) em função de 2^{i-1} e conclui.

Atualizações (operação "update") Para $i \geq 1$, insere $2^i - 1$ chaves de valor $2^i + 1$, seguido por 2^i chaves de valor $2^i + 2$. Depois atualiza as 2^i chaves de $2^i + 2$ para $2^i, 2^i - 1, \dots 1$. Mede o tempo T_i e o número de swaps S_i das atualizações. Repete para $i = 1, \dots, 20$.

O tempo esperado e o número esperado de swaps é $E_i = 2^i i$.

Compara S_i com E_i , plota T_i/E_i como função de 2^i , e conclui.

Deleções (operação "deletemin") Para $i \geq 1$, insere $n = 2^i - 1$ chaves aleatórias. Grava o tempo T_i e o número de swaps D_i para remover 2^{i-1} chaves. Repete para $i = 1, \ldots, 20$.

O tempo (pessimista) esperado e o número esperado de swaps é $E_i = 2^{i-1}(i-1)$.

Compara D_i com E_i , plota T_i/E_i como função de 2^i , e conclui.

2 Complexidade do algoritmo de Dijkstra

Objetivo: Comparar a complexidade teórica pessimista com a complexidade real. Em particular verificar que a complexidade real respeita o limite teórico.

Variação do número de arestas Fixa $n=2^{20}$. Para $m=2^i$, $i=0,\ldots,19$ roda o algoritmo de Dijkstra 30 vezes com um vértice inicial aleatória (sem parar no vértice destino) e grava n, m, o número de operações "insert" I, "deletemin" D e "update" U e o tempo num arquivo A.

Para avaliar verifica se $I \leq n, \, D \leq n, \, U \leq m,$ e plota $T/(n+m)\log(n)$ em função de m e conclui.

Variação do número de arestas Fixa $m=2^{20}$. Para $n=2^i$, $i=11,\ldots,20$ roda o algoritmo de Dijkstra 30 vezes (nas mesmas condições do item anterior) e grava a mesmas quantidades num arquivo B.

Para avaliar verifica se $I \leq n, \, D \leq n, \, U \leq m, \, {\rm plota} \, T/(n+m) \log(n)$ em função de n e conclui.

Aplica uma regressão linear $T(n,m) \sim an^b m^c$ nos dados completos dos arquivos $A \in B$.

3 Comportamento em instâncias grandes

Objetivo: Avaliar o escalonamento do algoritmo Dijkstra. Roda o algoritmo de Dijkstra 30 vezes com um vértice inicial aleatória nos grafos NY e EUA. Relata o tempo médio e o consumo médio de memoria e conclui.