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1 Algoritmos em grafos

1.1 Filas de prioridade e heaps

Uma fila de prioridade é uma estrutura de dados 1util em varios aplicagoes.
Exemplos sao arvores geradores minimas, caminhos mais curtos de um vértice
para todos outros (algoritmo de Dijkstra) e Heapsort.

Exemplo 1.1
Arvore geradora minima através do algoritmo de Prim.

Algoritmo 1.1 (Arvore geradora minima)
Entrada Um grafo conexo nao-orientado ponderado G = (V, E, c)

Saida Uma drvore T C E de menor custo total.

1 V':={vo} para um vo eV

2 T:=0

3 while V' £V do

4 escolhe e={u,v} com custo minimo

5 entre V' e VAV’ (com uwueV' veV\V)
6 V' =V'U{v}

7 T:=TU/{e}

8

end while

Algoritmo 1.2 (Prim refinado)
Implementagao mais concreta:

1 T:=0

2 for ueV\{v} do
3 if ue N(v) then
value(u) = cyuy
pred(u) :=v

(AR




1 Algoritmos em grafos

6 else

7 value(u) := oo

8 end if

9 insert(Q, (value(u), u))
10 end for

11 while Q #0 do

12 v := deletemin(Q)

13 T:=TU{pred(v)v}

14 for ue N(v) do

15 if ueQ e cyy <value(u) then
16 value(u) _cuv
17 pred(u) :=

18 update(Q,u cvu)
19 end if

20 end for

21 end while

{ pares (chave,elemento) }

Custo? n x insert + n x deletemin + m x update.

Observagao 1.1

Implementagao com vetor de distancias: insert =

update = O(1), e temos custo O(n +n? +m) =
camente Gtimo para grafos densos, i.e. m = Q(n

Observagao 1.2
Implementagao com lista ordenada: insert
O(n), e temos custo O(n? +n + mn).

Exemplo 1.2
Caminhos minimos com o algoritmo de Dijsktra

o(1)!

, deletemin = O(n),
O(n? +m). Isso é assintoti-

2)'

O

= 0O(n), deletemin = O(1), update =

O

Algoritmo 1.3 (Dijkstra)
Entrada Grafo nao-direcionado G =
tas, e um vértice s € V.

(V,E) com pesos ce, e € E nas ares-

1Com chaves compactas [1,1].



1.1 Filas de prioridade e heaps

Saida A distanica minima d, entre s e cada vértice v € V.

1 ds :=0;d, := 00,V € V\{s}
2 visited(v) := false, Vv € V
3 Q=0

4 insert(Q, (s,0))

5 while Q #0 do

6 v := deletemin(Q)

7 visited(v) = true

8 for ue N(v) do

9 if not visited(u) then
10 if dy, = o0 then
11 dy :=d, +dyu
12 insert(Q, (u,dy))
13 else
14 dy := min(d, + dyuy, du)
15 update(Q, (u, dy,))
16 end if
17 end if
18 end for

19 end while

A fila de prioridade contém pares de vértices e distancias.

Proposigao 1.1
O algoritmo de Dijkstra possui complexidade

O(n) +n x deletemin + n x insert + m x update.

Prova. O pré-processamento (1-3) tem custo O(n). O lago principal é domi-
nado por no méximo n operagoes insert, n operacoes deletemin, e m operagoes
update A complexidade real depende da implementacao desses operagoes. W

Proposigao 1.2
O algoritmo de Dijkstra é correto.

Prova. Provaremos por indugao que cada vértice v selecionado na linha 6
do algoritmo d,, é a distancia minima de s para v. Como base isso é correto
para v =s. Seja v # s um vértice selecionado na linha 6, e supde que existe
um caminho P = s---xy---v de comprimento menor que d,, tal que y é o
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primeiro vértice que nao foi processado (i.e. selecionado na linha 6) ainda. (E
possivel que y =v.) Sabemos que

dy <dy +dyy porque x ja foi processado
= dist(s, x) + dyy pela hipdtese d,, = dist(s, x)
< d(P) dp(s,x) > dist(s,x) e P passa por xy
< dy, pela hipotese

uma contradigdo com a minimalidade do elemento extraido na linha 6. (Notagao:
dist(s,x): menor distancia entre s e x; d(P) distancia total do caminho P;
dp(s,x): distancia entre s e x no caminho P.) | O

1.1.1 Heaps binarios

Teorema 1.1 (Williams (1964))

Uma fila de prioridade pode ser implementado com custo insert = O(logn),
deletemin = O(logn), update = O(logn). Portanto, uma arvore geradora
minima pode ser calculado em tempo O(nlogn + mlogn).

Um heap é uma arvore com chaves nos vértices que satisfazem um critério de
ordenagao.

e min-heap: as chaves dos filhos sao maior ou igual que a chave do pai;
e maz-heap: as chaves dos filhos sdo menor ou igual que a chave do pai.

Um heap bindrio é um heap em que cada vértice possui no maximo dois filhos.
Implementaremos uma fila de prioridade com um heap bindrio completo. Um
heap completo fica organizado de forma que possui folhas somente no tltimo
nivel, da esquerda para direita. Isso garante uma altura de O(logmn).

¢ od e o

Positivo: Achar a chave com valor minimo (operacdo findmin) custa O(1).
Como implementar a inser¢ao? Idéia: Colocar na tltima posicao e restabelecer
a propriedade do min-heap, caso a chave é menor que a do pai.

1 insert(H,c) :=
2 insere ¢ na ultima posigao p
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1.1 Filas de prioridade e heaps

heapify —up(H,p)

heapify—up(H,p) :=
if root(p) return
if key(parent(p))>key(p) then

swap (key (parent (p)) , key (p))
heapify—up(H,parent (p))

end if
Lema 1.1
Seja T um min-heap. Decremente a chave do né p. Apds heapify-up(T, P)
temos novamente um min-heap. A operagéo custa O(logn).

Prova. Por indugao sobre a profundidade k de p. Caso k = 1: p € a raiz,
apds o decremento ja temos um min-heap e heapify-up nao altera ele. Caso
k > 1: Seja ¢ a nova chave de p e d a chave de parent(p). Caso d < c ja temos
um min-heap e heapify-up nao altera ele. Caso d > ¢ heapify-up troca c e
d e chama heapify-up(T,parent(p)) recursivamente. Podemos separar a troca
em dois passos: (i) copia d para p. (ii) copia ¢ para parent(p). Apds passo
(i) temos um min-heap T’ e passo (ii) diminui a chave de parent(p) e como
a profundidade de parent(p) é k — 1 obtemos um min-heap apds da chamada
recursiva, pela hipétese da indugao.

Como a profundidade de T é O(logn), o nimero de chamadas recursivas
também, e como cada chamada tem complexidade O(1), heapify-up tem com-
plexidade O(logn). |
Como remover? A idéia bésica é a mesma: troca a chave com o menor filho.
Para manter o heap completo, colocaremos primeiro a chave da tltima posigao
na posigao do elemento removido.

delete (H,p):=
troca ultima posigao com p
heapify —down(H ,p)

heapify —down(H ,p):=
if (p nao possui filhos) return
if (p possui um filho) then
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if key(left (p))<key(p)) then swap(key(left(p)),key(p))
end if

{ p possui dois filhos }
if key(p)>key(left(p)) or key(
if (key(left (p))<key(right(p
swap (key (left (p)), key(p))
heapify—down(H,left (p))
else

swap (key (right (p)) ,key(p))
heapify —down(H,right (p))

p)>key(right (p)) then
)) then

end if
end if
/.
o ® O
Lema 1.2

Seja T um min-heap. Incremente a chave do né p. Apds heapify-down(T, p)
temos novamente um min-heap. A operacao custa O(logn).

Prova. Por inducao sobre a altura k de p. Caso k =1, p é uma folha e apéds o
incremento ja temos um min-heap e heapify-down nao altera ele. Caso k > 1:
Seja ¢ a nova chave de p e d a chave do menor filho f. Caso ¢ < d ja temos
um min-heap e heapify-down nao altera ele. Caso ¢ > d heapify-down troca c
e d e chama heapify-down(T,f) recursivamente. Podemos separar a troca em
dois passos: (i) copia d para p. (ii) copia ¢ para f. Apds passo (i) temos um
min-heap T’ e passo (ii) aumenta a chave de f e como a altura de f é k — 1,
obtemos um min-heap apds da chamada recursiva, pela hipétese da indugao.
Como a altura de T é O(logmn) o nimero de chamadas recursivas também, e
como a cada chamada tem complexidade O(1), heapify-up tem complexidade
O(logmn). |
Ultima operagao: atualizar a chave.

update (H,p,v) :=
if v<key(p) then

key (p):=v

heapify —up(H,p)
else

key (p)i=v
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heapify —down(H ,p)
end if

Sobre a implementacao Uma &drvore binaria completa pode ser armazenado
em um vetor v que contém as chaves. Um pontador p a um elemento é
simplesmente o indice no vetor. Caso o vetor contém mn elementos e possui
indices a partir de 0 podemos definir

root (p) := return p=20

pai(p) := return |(p—1)/2]

key (p) := return v[p]

left (p) := return 2p+1

right (p) := return 2p+2

numchildren (p) := return max(min(n — left(p),2),0)

Outras observagoes:

e Para chamar update, temos que conhecer a posi¢ao do elemento no heap.
Para um conjunto de chaves compactos [0, n) isso pode ser implementado
usando um vetor pos, tal que pos|c] é o indice da chave ¢ no heap.

e A fila de prioridade ndo possui teste u € Q (linha 15 do algoritmo 1.2)
eficiente. O teste pode ser implementado usando um vetor visited, tal
que visited[u] sse u & Q.

1.1.2 Heaps binomiais

Um heap binomial é um colecao de drvores binomiais que satisfazem a or-
denacao de um heap. A arvore binomial By consiste de um vértice s6. A
4rvore binomial B; possui uma raiz com filhos Bo,...,Bi_1. A ordem de By é
k. Um heap binomial contém no maximo uma arvore binomial de cada ordem.

Bo By B B3 B4
Q.)\’ ./?\ﬂ. ﬂ
¢
. . ..’
o
Lema 1.3

Uma édrvore binomial tem as seguintes caracteristicas:
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1. B, possui 2™ vértices, 2! folhas (para n > 0), e tem altura n + 1.

2. O nivel k de By, (a raiz tem nivel 0) tem () vértices. (Isso explica o
nome.)

Prova. Exercicio. | |

Observagao 1.3

Podemos combinar dois B; obtendo um B; 1 e mantendo a ordenagao do heap:
Escolhe a arvore com menor chave na raiz, e torna a outra filho da primeira.
Chamaremos essa operagdo “link”, e ela tem custo O(1) (veja observagoes
sobre a implementagao).

Observagao 1.4

Um B; possui 2 vértices. Um heap com n chaves consiste em O(logn) drvores.
Isso permite juntar dois heaps binomiais em tempo O(logn). A operagao é
semelhante a soma de dois nimeros binarios com “carry”. Comega juntar os
Bo. Caso tem zero, continua, case tem um, inclui no heap resultante. Caso
tem dois o heap resultante nao recebe um By. Define como “carry” o link dos
dois By’s. Continua com os By. Sem tem zero ou um ou dois, procede como
no caso dos Bg. Caso tem trés, incluindo o “carry”, inclui um no resultado, e
define como “carry” o link dos dois restantes. Continue desse forma com os
restantes drvores. Para heaps hy, h, chamaremos essa operagao meld(hy,h;).

O
Com a operagao meld, podemos definir as seguintes operagoes:
e makeheap(c): Retorne um By com chave c¢. Custo: O(1).
e insert(h,c): meld(h,makeheap(c)). Custo: O(logn).
e getmin(h): Mantendo um link para a drvore com o menor custo: O(1).

o deletemin(h): Seja By a arvore com o menor chave. Remove a raiz.
Define dois heaps: h; é h sem By, h, consiste dos filhos de By, i.e.
Bo, ..., Bk—1. Retorne meld(hy,h;). Custo: O(logn).

10



1.1 Filas de prioridade e heaps

e updatekey(h,p): Como no caso do heap binério completo com custo
O(logmn).

Em comparagao com um heap binario completo ganhamos nada no caso pessi-
mista. De fato, a operagao insert possui complexidade pessimista O(1) amor-
tizada. Um insert individual pode ter custo O(logn). Do outro lado, isso
acontece raramente. Uma andalise amortizada mostra que em média sobre
uma séria de operagoes, um insert s6 custa O(1). Observe que isso ndo é uma
analise da complexidade média, mas uma analise da complexidade pessimista
de uma séria de operagoes.

Analise amortizada

Exemplo 1.3

Temos um contador bindrio com k bits e queremos contar de 0 até 2% — 1.
Analise “tradicional”: um incremento tem complexidade O(k), porque no caso
pior temos que alterar k bits. Portanto todos incrementos custam O(k2¥).
Andlise amortizada: “Poupamos” operagoes extras nos incrementos simples,
para “gasté-las” nos incrementos caros. Concretamente, setando um bit, gas-
tamos duas operacoes, uma para setar, outra seria “poupado”. Incremen-
tando, usaremos as operacgoes “poupadas” para zerar bits. Desta forma, um
incremento custa O(1) e temos custo total O(2%).

Outra forma de andlise amortizada, é usando uma funcdo potencial @, que
associa a cada estado de uma estrutura de dados um valor positivo (a “pou-
panca”). O custo amortizado de uma operagio que transforma uma estrutura
e1 em uma estrutura e; e ¢ — @(e7) + @(ez), com ¢ o custo de operacdo. No
exemplo do contador, podemos usar como @(i) o nimero de bits na repre-
sentacgao binario de i. Agora, se temos um estado e;

—— ~—
P bits um g bits um

com @(e1) =p + g, o estado apés de um incremento é

00---01 ---
T ~—
q

com @(ez) =14 q. O incremento custa ¢ = p 4+ 1 operagdes e portanto o
custo amortizado é

c—oler)+ole2)=p+1—p—q+1+qg=2=0(1).

11
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Resumindo: Dado um série de operagoes com custos c1,...,Cn 0 custo amor-
tizado dessa operacdo é ) ;_ i, Ci/n. Se temos m operacoes diferentes, o
custo amortizado da operacao que ocorre nos indices J C [1,m] é Zie] ci/l]l.
As somas podem ser dificeis de avaliar diretamente. Um método para simpli-
ficar o cédlculo do custo amortizado é o método potencial. Acha uma funcdo
potencial @ que atribui cada estrutura de dados antes da operagao i um va-
lor ndo-negativo @; > 0 e normaliza ela tal que @7 = 0. Atribui um custo
amortizado
ai =Ci — @i+ it

a cada operagao. A soma dos custos nao ultrapassa os custos originais, porque

D ai=) Gi—Pit Q=@ —@1+) =) o

Portanto, podemos atribuir a cada tipo de operacao ] C [1, m] o custo amorti-
zado Zie] ai/|J|. Em particular, se cada operacao individual 1 € J tem custo
amortizado a; < F, o custo amortizado desse tipo de operacao é F.

Custo amortizado do heap binomial Nosso potencial no caso do heap bi-
nomial é o nimero de arvores no heap. O custo de getmin e updatekey nao
altera o potencial e por isso permanece o mesmo. makeheap cria uma arvore
que custa mais uma operagao, mas permanece O(1). deletemin pode criar
O(logn) novas arvores, porque o heap contém no maximo um Bpogn) que
tem Of(logn) filhos, e permanece também com custo O(logn). Finalmente,
insert reduz o potencial para cada link no meld e portanto agora custa somente
O(1) amortizado, com o0 mesmo argumento que no exemplo 1.3.
Desvantagem: a complexidade (amortizada) assintética de calcular uma drvore
geradora minima permanece O(nlogn + mlogn).

Meld preguicosa Ao invés de reorganizar os dois heaps em um meld, pode-
mos simplesmente concatend-los em tempo O(1). Isso pode ser implementado
sem custo adicional nas outras operagoes. A tnica operacao que nao tem com-
plexidade O(1) é deletemin. Agora temos uma colecdo de arvores binomiais
nao necessariamente de ordem diferente. O deletemin reorganiza o heap, tal
que obtemos um heap binomial com arvores de ordem tnica novamente. Para
isso, mantemos um vetor com as arvores de cada ordem, inicialmente vazio.
Seqiiencialmente, cada arvore no heap, sera integrado nesse vetor, executando
operagoes link sé for necessario. O tempo amortizado de deletemin permanece
O(logmn).

Usaremos um potencial ¢ que é o dobro do nimero de arvores. Supondo que
antes do deletemin temos t arvores e executamos | operagoes link, o custo

12



1.1 Filas de prioridade e heaps

amortizado é
t+1)—2t+2t—-1)=t—1L

Mas t — 1 é o nimero de drvores depois o deletemin, que é O(logn), porque
todas arvores possuem ordem diferente.

Sobre a implementacdo Um forma eficiente de representar heaps binomiais,
é em forma de apontadores. Além das apontadores dos filhos para o os pais,
cada pai possui um apontador para um filho e os filhos sdo organizados em
uma lista encadeada dupla. Mantemos uma lista encadeada dupla também
das raizes. Desta forma, a operacdo link pode ser implementada em O(1).

I
¢ ==

o o =0
o
1.1.3 Heaps Fibonacci

Um heap Fibonacci é uma modificacao de um heap binomial, com uma operagao
decreasekey de custo O(1). Com isso, uma arvore geradora minima pode ser
calculada em tempo O(m+mnlogn). Para conseguir decreasekey em O(1) néo
podemos mais usar heapify-up, porque heapify-up custa O(logn).

Primeira tentativa:

e delete(h,p): Corta p de h e executa um meld entre o resto de h e os filhos
de p. Uma alternativa é implementar delete(h,p) como decreasekey(h,p,—o0)
e deletemin(h).

o decreasekey(h,p): A ordenacgdo do heap pode ser violada. Corta p é
execute um meld entre o resto de h e p.

Problema com isso: apds de uma série de operagoes delete ou decreasekey, a
arvore pode se tornar “esparso”, i.e. o numero de vértices nao é mais expo-
nencial na ordem da arvore. A andlise da complexidade de operacbes como
deletemin depende desse fato para garantir que temos O(logn) arvores no
heap. Conseqiiéncia: Temos que garantir, que uma arvore nao fica “podado”

13
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demais. Solugao: Permitiremos cada vértice perder no maximo dois filhos.
Caso o segundo filho é removido, cortaremos o préprio vértice também. Para
cuidar dos cortes, cada né mantém ainda um valor booleana que indica, se ja
foi cortado um filho. Observe que um corte pode levar a uma série de cortes
e por isso se chama de corte em cascatas (ingl. cascading cuts). Um corte
em cascata termina na pior hipdtese na raiz. A raiz é o tnico vértice em que
permitiremos cortar mais que um filho. Observe também que por isso nao
mantemos flag na raiz.

Implementacoes Denotamos com h um heap, ¢ uma chave e p um elemento
do heap. minroot(h) é o elemento do heap que correspondo com a raiz da
chave minima, e cut(p) é uma marca que verdadeiro, se p jd perdeu um filho.

insert (h, ¢) :=
meld (makeheap (c))

getmin (h) :=
return minroot (h)

delete (h,p) :=
decreasekey (h,p,—o0)
deletemin (h)

meld(m J’Lz) =
h := lista com raizes de hy e hy (em O(1))
minroot (h) := if key(minroot(hy))<key(minroot(hy)) h; else |

decreasekey (h,p,c) :=
key(p):= ¢
if ¢ < key(minRoot(h))
minRoot (h) = p
if not root(p)
if key(parent(p))>key(p)
corta p e adiciona na lista de raizes de h
cut(p) := false
cascading—cut (h,parent (p))

cascading—cut (h,p) :=
{ p perdeu um filho }
if root(p)
return

14
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if (not cut(p)) then

cut(p) := true
else
corta p e adiciona na lista de raizes de h
cut(p) := false
cascading—cut (h,parent (p))
end if

deletemin (h) :=
remover minroot (h)
juntar as listas do resto de h e dos filhos de minroot(h)
{ reorganizar heap }
determina a ordem mdxima M =M(n) de h
for 0<i<M
ri:= undefined
for toda raiz r do
remove da lista de raizes
d := degree(r)
while (rq not undefined) do

r := link(r,7q)
Tq := undefined
d ;= d+1

end while

Tqg ‘= T

definir a lista de raizes pelas entradas definidas 7
determinar o novo minroot

link (h] ,hz) =
if (key(hi)<key(hz))
h := makechild (h; ,h;)

else

h := makechild (hy,h)
cut (hy) := false
cut (hy) := false
return h

Para concluir que a implementacao tem a complexidade desejada temos que
provar que as arvores com no maximo um filho cortado nao ficam esparsos
demais e analisar o custo amortizado das operacoes.
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Custo amortizado Para anélise usaremos um potencial de c¢it + com sendo
t o nimero de arvores, m o nimero de vértices marcados e c1,c, constantes.
As operagoes makeheap, insert, getmin e meld (preguigoso) possuem com-
plexidade (real) O(1). Para decreasekey temos que considerar o caso, que o
corte em cascata remove mais que uma subdrvore. Supondo que cortamos
n arvores, o numero de raizes é t + n apds dos cortes. Para todo corte em
cascata, a arvore cortada é desmarcada, logo temos no méximo m — (n — 1)
marcas depois. Portanto custo amortizado é

Omn)—(cit+com)+ (ci(t+n)+c2(im—(n—1)))=con—(c2—c1)m+c2

e com Cy — €1 > ¢o temos custo amortizado constante ¢co = O(1).
A operagao deletemin tem o custo real O(M + t), com as seguintes contri-
buicoes

e Linhas 42-43: O(M).

e Linhas 44-52: O(M + t) com t o ndmero inicial de drvores no heap. A
lista de raizes contém no méaximo as t arvores de h e mais M filhos da
raiz removida. O laco total nao pode executar mais que M+t operagoes
link, porque cada um reduz o ntimero de raizes por um.

e Linhas 53-54: O(M).

Seja m o ntimero de marcas antes do deletemin e o niimero m’ depois. Como
deletemin marca nenhum vértice, temos m’ < m. O nudmero de 4rvores t’
depois de deletemin satisfaz t’ < M porque deletemin garante que existe no
maximo uma arvore de cada ordem. Portanto, o potencial depois de deletemin
e @' =cit+cym’ <cyM + cam, e o custo amortizado é

OM+1t)—(cit+com)+ @' <OM+1t) —(crt+com) + (c1M +com)
=(co+c1)M+(co —cq)t

e com cj > co temos custo amortizado O(M).

Um limite para M Para provar que deletemin tem custo amortizado logn,
temos que provar que M = M(n) = O(logn). Esse fato segue da maneira
” cautelosa” com que cortamos vértices das arvores.

Lema 1.4
Seja p um vértice arbitrario de um heap Fibonacci. Considerando os filhos na
ordem temporal em que eles foram introduzidos, filho i possui ao menos i — 2

filhos.

16



1.1 Filas de prioridade e heaps

Prova. No instante em que o filho i foi introduzido, p estava com ao menos
i1—1 filhos. Portanto 1 estava com ao menos i — 1 filhos também. Depois filho
i perdeu no méaximo um filho, e portanto possui ao menos i — 2 filhos. |
Quais as menores arvores, que satisfazem esse critério?

Fo B R F3 Fa

* 30 ./3\ //‘\\

1N
Lema 1.5

Cada subarvore com uma raiz p com k filhos possui ao menos Fy 2 vértices.

Prova. Seja Sy o nimero minimo de vértices para uma subérvore cuja raiz
possui k filhos. Sabemos que So =1, S; = 2. Define S_, =S 7 =1. Com
isso obtemos para k > 1

Z Sk—2=Sk—2+Sk—3+---+S_2=Sk_2+ Sk_1.
0<i<k

Comparando Sk com os numeros Fibonacci

F k se0<k<1

kT Fre_o2+Fr1 sek>2
e observando que So = F2 e S; = F3 obtemos Sy = Fy.2. Usando que
F. € ©(O") com @ = (14 /5)/2 (exercicio!) conclui a prova. |

Corolario 1.1
A ordem méxima de um heap Fibonacci com n elementos é O(logn).

Sobre a implementacao A implementagao da arvore é a mesmo que no caso
de binomial heaps. Uma vantagem do heap Fibonacci é que podemos usar os
noés como ponteiros — lembre que a operacao decreasekey precisa isso, porque
os heaps nao possuem uma operacao de busca eficiente. Isso é possivel, porque
sem heapify-up e heapify-down, os ponteiros mantem-se validos.

1.1.4 Rank-pairing heaps

Haeupler et al. (2009) propéem um rank-pairing heap com as mesmas garantias
de complexidade que um heap Fibonacci e uma implementacao simplificada.
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Figura 1.1: Representagoes de heaps.

Torneios Um torneio é uma forma alternativa de representar heaps. Comecando
com todos elementos, vamos repetidamente comparar pares de elementos, e
promover o vencedor para o préximo nivel (Fig. 1.1(a)). Uma desvantagem
de representar torneios explicitamente é o espago para chaves redundantes.
Por exemplo, o campedo (i.e. o0 menor elemento) ocorre O(logn) vezes. A
figura 1.1(b) mostra uma representagao sem chaves repetidas. Cada chave é
representado somente na comparagdo mais alta que ele ganhou, as outras com-
paragoes ficam vazias. A figura 1.1(c) mostra uma representacdo compacta
em forma de semi-drvore. Numa semi-arvore cada elemento possui um filho
ordenado e um filho nao-ordenado. O filho ordenado é o perdedor da com-
paracao direta com o elemento, enquanto o filho nao-ordenado é o perdedor
da comparacao com o irmao vazio. A raiz possui somente um filho ordenado.
Cada elemento de um torneio possui um rank. O rank de uma folha é 0. Uma
comparacao justa entre dois elementos do mesmo rank resulta num elemento
com um rank por um maior no préximo nivel . Numa comparacao injusta
entre dois elementos com ranks diferentes, o rank do vencedor é definido pelo
maior dois ranks dos participantes (uma alternativa é que o rank ndo muda).

18
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1.1 Filas de prioridade e heaps

O rank de um elemento representa um limite inferior do niimero de elementos
que perderam contra-lo:

Lema 1.6
Um torneio com campedo de rank k possui ao menos 2* elementos.

Prova. Por indugao. Caso um vencedor possui rank k temos duas possibi-
lidades: (i) foi o resultado de uma comparagao justa, com dois participantes
com rank k — 1 e pela hipétese da inducdo com ao menos 25! elementos, tal
que o vencedor ganhou contra ao menos 2% elementos. (ii) foi resultado de
uma comparacao injusta. Neste caso um dos participantes possuiu rank k e o
vencedor novamente ganhou contra ao menos 2% elementos. |
Cada comparagao injusta torna o limite inferior dado pelo rank menos preciso.
Por isso uma regra na constru¢ao de torneios é fazer o maior nimero de
comparagoes justas possiveis. Podemos implementar as operagoes de uma fila
de prioridade (sem update ou decreasekey) como segue:

link (t1 ,tz) =
if t7.¢c < t2.c then
return makechild (t;,tz)
else
return makechild (t2,t)
end if

makechild(s,t) :=
t.u := s.o

S.0 (=t
setrank (t)
return s

setrank (t) :=
if t.o.r = t.u.r
t.r =t.o.r + 1
else
t.r = max(t.o.r,t.u.r)
end if

make—heap (¢) := return t;

insert (h,c) := link (h,make—heap(c))
meld(]’n ,hz) = link (h] ,h.z)

getmin(h) := return h

deletemin (h) :=

19
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aloca array T1o...Th.o.rtl

t =h.o

while t not undefined do
t' = t.u
t.u := undefined
insert (t,r)
ti=t'

end while

h’ := undefined

for i=0,...,h.or.+1 do
if r; not undefined

h' := link (h/,r1;)

end if

end for

return h’

end

insert (t,r) :=
if ryory1 is undefined then

Ttort+l = t

else
t:=link (t,Tt.0r41)
Tt.ort1 := undefined
insert (t,r)

end if

end

Observagao 1.5
“insert” faz somente comparagoes justas. As comparagdes injustas ocorrem
na construcao da arvore final nas linhas 35-39. O

Lema 1.7
Num torneio balanceado o custo amortizado de “make-heap”, “insert”, “meld”
e “getmin” é O(1), o custo amortizado de “deletemin” é O(logn).

Lema 1.8

Usaremos o nimero de comparacoes injustas no torneio como potencial. “make-
heap” e “getmin” nao alteram o potencial, “insert” e “meld” aumentam o
potencial por no maximo um. Portanto a complexidade amortizada dessas
operacoes é O(1). Para analisar “deletemin” da raiz v do torneio vamos su-
por que obtemos o torneio com k comparagoes injustas com r. Além disso

20



N O U W N

0 O Uik WK

19

1.1 Filas de prioridade e heaps

participou em no maximo logn comparagoes justas pelo lema 1.6. Em soma
vamos liberar no maximo k+logn arvores reduzindo o potencial por k, e com
no maximo k +logm comparagoes produzir um novo torneio. Dessas k+logn
comparagoes no maximo logmn sao comparagoes injustas. Portanto o custo
amortizado é k+logn —k +logn = 2logn = O(logn).

Heaps binomiais com varredura tnica Ao inves de reconstruir uma tnica
arvore que representa todo heap, podemos manter uma cole¢do de O(logn)
arvores s6 permitir comparagoes justas. A estrutura de dados resultante é
similar com os heaps binomiais: manteremos uma lista de raizes das arvores,
junto com um ponteiro para a arvore com a raiz de menor valor:

insert (h,c) :=
insere make—heap(c) na lista de raizes
atualize a 4rvore minima

meld (hy ,hy) :=
concatena as lista de h; e hy
atualize a arvore minima
Somente “deletemin” opera diferente agora:

deletemin (h) :=
aloca um array de listas To...T[ogn]
remove a Arvore minima da lista de raizes
distribui as restantes arvores sobre r

t =h.o

while t not undefined do
t/ = t.u
t.u := undefined
insere t na lista T¢o.r41
t=t'

end while

{ executa o maior numero possivel }
{ de comparagées justas num tnico passo }

h := undefined { lista final de raizes }
for i=0,...,[logn] do
while |ri| > 2
t := link(r;.head,r;.head.next)
insere t na lista h
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remove Ti.head ,r;.head.next da lista r;
end if
end for
return h

Observagao 1.6
Continuando com “link”s justas até sobrar somente uma arvore de cada rank,

obteremos um heap binomial. O
Lema 1.9

Num heap binomial com varredura tinica o custo amortizado de “make-heap”,
“insert”, “meld”, “getmin” é O(1), o custo amortizado de “deletemin” é
O(logmn).

Prova. Usaremos o dobro do ntimero de arvores como potencial. “getmin”
nao altera o potencial. “make-heap”, “insert” e “meld” aumentam o potencial
por no maximo dois (uma drvore), e portanto possuem custo amortizado O(1).
“deletemin” libera no maximo logn arvores, porque todas comparagoes foram
justas. Com um numero total de h arvores, o custo de deletemin é O(h).
Sem perda de generalidade vamos supor que o custo é h. A varredura final
executa ao menos (h—logn)/2—1 comparacoes justas, reduzindo o potencial
por ao menos h —logn — 2. Portanto o custo amortizado de “deletemin” é
h—(h—logn—2)=logn+2=0(logn). |

rp-heaps O objetivo do rp-heap é adicionar ao heap binomial de varredura
Unica uma operacao “decreasekey” com custo amortizado O(1). A idefa e
os problemas sdo os mesmos do heap Fibonacci: (i) para tornar a operagao
eficiente, vamos cortar a sub-drvore do elemento cuja chave foi diminuida. (ii)
o heap Fibonacci usava cortes em cascata para manter um numero suficiente
de elementos na arvore; no rp-heap ajustaremos os ranks do heap que perde
uma sub-arvore. Para tornar o ajuste dos ranks eficiente, vamos permitir uma
folga nos ranks. Num heap binomial a diferenca do rank de um elemento com
o rank do seu pai (caso existe) sempre é um. Num rp-heap do tipo 1, exigimos
somente que os dois filhos de um elemento possuem diferenca do rank 1 e
1, ou 0 e ao menos 1. Num rp-heap do tipo 2, exigimos que os dois filhos
de um elemento possuem diferenca do rank 1 e 1, 1T e 2 ou 0 e ao menos 2.
(Figura 1.2.)

Com isso podemos implementar o “decreasekey” (para rp-heaps do tipo 2)
como segue:

decreasekey (h,e,A) :=
e.c ;= e.c — A
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1.1 Filas de prioridade e heaps

Figura 1.2: Diferengas no rank de rp-heaps do tipo 1 (a) e tipo 2 (b).

if root(e)
return
if parent(e).o = e then
parent (e).o := e.u
else
parent(e).u := e.u
end if
e.u := undefined
u := parent(e)
parent (e) := undefined

insere e na lista de raizes de h
decreaserank (u)

rank (e) :=
if e is undefined
return —1
else
return e.r

decreaserank (u) :=

if root(u)
return

if rank(u.o) > rank(u.u)+1 then
k := rank(u.o)

else if rank(u.u) > rank(u.o)+1 then
k := rank(u.u)

else
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k = max(rank(u.o),rank(u.u))+1

end if

if u.r = k then
return

else
u.r := k

decreaserank (parent (u))

delete (h,e) :=
decreasekey (h,e,—o0)
deletemin (h)

Observagao 1.7
A (suposta) eficiéncia do rp-heap vem do fato que o decreasekey altera os
ranks do heap, e pouco da estrutura dele (como no caso do heap Fibonacci).

¢

Lema 1.10
Uma semi-arvore do tipo 2 com rank k contém ao menos ¢* elementos, sendo

¢ = (1++/5)/2 a razao durea.

Prova. Por indugao. Para folhas o lema é valida. Caso a raiz com rank k
nao é folha podemos obter duas semi-arvores: a primeira é o filho da raiz sem
o seu filho nao-ordenado, e a segunda é a raiz com o filho nao ordenado do
seu filho ordenado. Pelas regras dos ranks de drvores de tipo dois, essas duas
arvores possuem ranks k—Tek—1, ouk—1ek—2 ouk e no maximo k — 2.
Portanto, o menor niimero de elementos Ny contido numa semi-arvore de rank
k satisfaz a recorréncia

Ny = Ng—1 + Ny,

que é a recorréncia dos numeros Fibonacci. |
Lema 1.11
As operacoes “decreasekey” e “delete” possuem custo amortizado O(1) e

O(logn)

Prova. Ver ( , ). |

Resumo: Filas de prioridade
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insert getmin  deletemin update decreasekey  delete
Vetor o(1) o(1) o) o(1) (update) o(m)
Lista ordenada O(n) o(1) o(1) O(n) (update) o(1
Heap bindrio O(logn) O(1) O(logn) O(logn) (update) O(logn
Heap binomial O(1) o(1) O(logn) O(logn) (update) O(logn
Heap binomial(1) O(1) o) O(logn) O(logn) (update) O(logn
Heap Fibonacci 0(1) o(1) O(logn) - O(1) O(logn
rp-heap o(1) o(1) O(logn) - O(1) O(logn

Tabela 1.1: Complexidade das operagoes de uma fila de prioridade. Comple-
xidades em negrito sdo amortizados. (1): meld preguigoso.

1.1.5 Tépicos

O algoritmo (assintoticamente) mais rédpido para drvores geradoras minimas
usa soft heaps é possui complexidade O(mo(m,n)), com « a funcio inversa
de Ackermann ( , ; ,

1.1.6 Exercicios

Exercicio 1.1
Prove lema 1.3. Dica: Use inducao sobre n.

Exercicio 1.2
Prove que um heap binomial com n vértices possui O(logn) drvores. Dica:
Por contradigao.

Exercicio 1.3 (Laboratério 1)
1. Implementa um heap bindrio. Escolhe casos de teste adequados e verifica
o desempenho experimentalmente.

2. Implementa o algoritmo de Prim usando o heap binario. Novamente
verifica o desempenho experimentalmente.

Exercicio 1.4 (Laboratério 2)
1. Implementa um heap binomial.

2. Verifica o desempenho dele experimentalmente.

3. Verifica o desempenho do algoritmo de Prim com um heap Fibonacci
experimentalmente.
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1 Algoritmos em grafos

Figura 1.3: Grafo (esquerda) com circulacéo (direita)

1.2 Fluxos em redes

Definicao 1.1

Para um grafo direcionado G = (V, E) (E C VX V) escrevemos 81 (v) = {(v,u) |
(v,u) € E} para os arcos saintes de v e 8 (v) = {(u,v) | (u,v) € E} para os
arcos entrantes em v.

Seja G = (V,E,c) um grafo direcionado e capacitado com capacidades c :
E — R nos arcos. Uma atribui¢ao de fluxos aos arcos f : E — R em G se
chama circulagdo, se os fluxos respeitam os limites da capacidade (fo < c.) e
satisfazem a conservagao do fluxo

= ) fe— Z fe=0 (1.1)

e€d* (v) ecs—(v)
(ver Fig. 1.3).

Lema 1.12

Qualquer atribuicao de fluxos f satisfaz )_ f(v) =0.

veVv

Prova.

Si-r - ¥

vev veVeedt (v ecd(v)
= § f (vyu) — E f (uw,v) =
(v,u)€E (u,v)eE

|
A circulagao vira um fluzo, se o grafo possui alguns vértices que sao fontes
ou destinos de fluxo, e portanto nao satisfazem a conservacao de fluxo. Um
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fluxo s—t possui um tnico fonte s e um tnico destino t. Um objetivo comum
(transporte, etc.) é achar um fluxo s—t maximo.

FLUXO s—t MAXIMO

Instancia Grafo direcionado G = (V,E,c¢) com capacidades ¢ nos arcos,
um vértice origem s € V e um vértice destino t € V.

Solugdo Um fluxo f, com f(v) =0, Vv € V'\ {s, t}.

Objetivo Maximizar o fluxo f(s).

Lema 1.13
Um fluxo s—t satisfaz f(s) + f(t) = 0.

Prova. Pelo lema 1.12 temos ) .\ f(v) = 0. Mas } ., f(v) = f(s) +f(t)
pela conservagao de fluxo nos vértices em V \ {s, t}. |

Uma formulagao como programa linear é

(

f(s)
sujeito a f(v) =
0<fe

maximiza
Yv e V\{s,t}
Ce Ve € E.

IN <

Observagao 1.8

O programa (1.2) possui uma solugdo, porque fo = 0 é uma solugao vidvel. O
sistema nao é ilimitado, porque todas varidveis sao limitadas, e por isso possui
uma solugao 6tima. O problema de encontrar um fluxo s—t maximo pode ser
resolvido em tempo polinomial via programacao linear. %

1.2.1 Algoritmo de Ford-Fulkerson

Nosso objetivo: Achar um algoritmo combinatorial mais eficiente. Idéia
basica: Comegar com um fluxo vidvel f, = 0 e aumentar ele gradualmente.
Observacao: Se temos um s—t-caminho P = (vg = s,vq,...,Vn_1,vn = t),
podemos aumentar o fluxo atual f um valor que corresponde ao “gargalo”

g(f,P):= min c.—fe.
e=(vi,viy1)
0<i<n
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30
10 10
20
2 ®

Figura 1.4: Esquerda: Grafo com capacidades. Centro: Fluxo com valor 30.
Direita: O grafo residual correspondente.

I
SXA]

Figura 1.5: Manter a conservagao do fluxo.

Observagao 1.9

Repetidamente procurar um caminho com gargalo positivo e aumentar nem
sempre produz um fluxo méaximo. Na Fig. 1.4 o fluxo méximo possivel é
40, obtido pelo aumentos de 10 no caminho P; = (s,u,t) e 30 no caminho
P, = (s,w,t). Mas, se aumentamos 10 no caminho Py = (s,u,w,t) e depois
20 no caminho P, = (s,w,t) obtemos um fluxo de 30 e o grafo ndo possui
mais caminho que aumenta o fluxo. O

Problema no caso acima: para aumentar o fluxo e manter a conservagao do
fluxo num vértice interno v temos quatro possibilidades: (i) aumentar o fluxo
num arco entrante e sainte, (ii) aumentar o fluxo num arco entrante, e diminuir
num outro arco entrante, (iii) diminuir o fluxo num arco entrante e diminuir
num arco sainte e (iv) diminuir o fluxo num arco entrante e aumentar num
arco entrante (ver Fig. 1.5).

Isso é a motivacao para definir para um dado fluxo f o grafo residual G¢ com

o Vértices V

e Arcos para frente (“forward”) E com capacidade ce — fe, caso fe < ce.
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e Arcos para atras (“backward”) E' ={(v,u) | (u,v) € E} com capacidade
Clviu) = f(u,v)a caso f(u,v) > 0.

Observe que na Fig. 1.4 o grafo residual possui um caminho P = (s, w,u, t) que
aumenta o fluxo por 10. O algoritmo de Ford-Fulkerson ( ,

) consiste em, repetidamente, aumentar o fluxo num caminho s—t no grafo
residual.

Algoritmo 1.4 (Ford-Fulkerson)
Entrada Grafo G = (V,E,c) com capacidades ¢, no arcos.

Saida Um fluxo f.

1 for all ecE: f.:=0

while existe um caminho s—t em G; do
Seja P um caminho s—t simples
Aumenta o fluxo f um valor ¢(f,P)

end while

return f

SO W N

Andlise de complexidade Na analise da complexidade, consideraremos so-
mente capacidades em N (ou equivalente em Q: todas capacidades podem ser
multiplicadas pelo menor miltiplo em comum das denominadores das capaci-
dades.)

Lema 1.14
Para capacidades inteiras, todo fluxo intermediario e as capacidades residuais
sao inteiros.

Prova. Por indugao sobre o nimero de iteragoes. Inicialmente f. = 0. Em
cada iteracdo, o “gargalo” g(f,P) é inteiro, porque as capacidades e fluxos sao
inteiros. Portanto, o fluxo e as capacidades residuais apds do aumento sao
novamente inteiros. ]

Lema 1.15
Em cada iteragao, o fluxo aumenta ao menos 1.

Prova. O caminho s—t possui por defini¢do do grafo residual uma capacidade
“gargalo” g(f,P) > 0. O fluxo f(s) aumenta exatamente g(f,P). |
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Lema 1.16
O niimero de iteracdes do algoritmo Ford-Fulkerson ¢ limitado por C = ) .5+ (s) Ce-
Portanto ele tem complexidade O((n + m)C).

Prova. C é um limite superior do fluxo maximo. Como o fluxo inicial-
mente possui valor 0 e aumenta ao menos 1 por iteragao, o algoritmo de
Ford-Fulkerson termina em no méximo C iteragbes. Em cada iteragao temos
que achar um caminho s—t em G¢. Representando G por listas de adjacéncia,
isso é possivel em tempo O(n+m) usando uma busca por profundidade. O au-
mento do fluxo precisa tempo O(n) e a atualizacéo do grafo residual é possivel
em O(m), visitando todos arcos. |

Corretude do algoritmo de Ford-Fulkerson

Definicao 1.2

Seja X := V' \ X. Escrevemos F(X,Y) := {(x,y) | x € X,y € Y} para os arcos
passando do conjunto X para Y. O fluxo de X para Y é f(X,Y) := ZeeF(X,Y) fe.
Ainda estendemos a notagao do fluxo total de um vértice (1.1) para conjuntos:
f(X) == f(X,X) — f(X, X) é o fluxo neto do saindo do conjunto X.
Analogamente, escrevemos para as capacidades ¢(X,Y) :=3 eF(x,y) Ce- Uma
particao (X, X) é um corte s-t,se s € Xete X.

Um arco e se chama apertado para um fluxo f, caso f. = ce.

Lema 1.17 -
Para qualquer corte (X, X) temos f(X) = f(s).

Prova.
f(X) = (X, X) = f(X,X) = ) _f(v)

veX

(O ultimo passo é correto, porque para todo v € X, v # s, temos f(v) = 0 pela
conservagao do fluxo.) |

Lema 1.18
O valor ¢(X, X) de um corte s—t é um limite superior para um fluxo s—t.

Prova. Seja f um fluxo s—t. Temos
f(s) = f(X) = f(X,X) = f(X,X) < (X, X) < ¢(X,X).

|
Consequéncia: O fluxo maximo é menor ou igual a o corte minimo. De fato,
a relacao entre o fluxo maximo e o corte minimo é mais forte:
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Teorema 1.2 (Fluxo maximo — corte minimo)
O valor do fluxo maximo entre dois vértices s e t é igual a do corte minimo.

Lema 1.19
Quando o algoritmo de Ford-Fulkerson termina, o valor do fluxo é maximo.

Prova. O algoritmo termina se nao existe um caminho entre s e t em Gy.
Podemos definir um corte (X, X), tal que X é o conjunto de vértices alcancéveis
em Gf a partir de s. Qual o valor do fluxo nos arcos entre X e X? Para um
arco e € F(X,X) temos fo = Ce, sendo G terd um arco “forward” e, uma
contradicdo. Para um arco e = (u,v) € F(X,X) temos f. = 0, sendo Gy terd
um arco “backward” e’ = (v,u), uma contradigao. Logo

f(s) = f(X) = f(X,X) — f(X, X) = f(X, X) = c(X, X).

Pelo lema 1.18, o valor de um fluxo arbitrario é menor ou igual que c(X, X),
portanto f é um fluxo maximo. |
Prova. (Do teorema 1.2) Pela andlise do algoritmo de Ford-Fulkerson. |

Desvantagens do algoritmo de Ford-Fulkerson O algoritmo de Ford-Fulkerson
tem duas desvantagens:

1. O numero de iteracoes C pode ser alto, e existem grafos em que C
iteragoes sdo necesséarias (veja Fig. 1.6). Além disso, o algoritmo com
complexidade O((n + m)C) é somente pseudo-polinomial.

2. E possivel que o algoritmo nédo termina para capacidades reais (veja
Fig. 1.6). Usando uma busca por profundidade para achar caminhos s—t
ele termina, mas ¢ ineficiente ( ) )-

1.2.2 Algoritmo de Edmonds-Karp

O algoritmo de Edmonds-Karp elimina esses problemas. O principio dele é
simples: Para achar um caminho s—t simples, usa busca por largura, i.e. sele-
cione o caminho mais curto entre s e t. Nos temos (sem prova)

Teorema 1.3
O algoritmo de Edmonds-Karp precisa O(nm) iteracoes, e portanto termina
em O(nm?).
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Figura 1.6: Esquerda: Pior caso para o algoritmo de Ford-Fulkerson com pe-
sos inteiros aumentando o fluxo por 2N vezes por 1 nos caminhos
(s,u,v,t) e (s,v,u,t). Direita: Menor grafo com pesos irracionais em
que o algoritmo de Ford-Fulkerson falha (Zwick, 1995). M > 3, e
r=(14+T—=4A)/2 com A =~ 0.217 a tnica raiz real de 1 — 5x + 2x* —
x3. Aumentar (s,v1,v4,t) e depois repetidamente (s,v2,v4,v1,v3,t),
(s,v2,v3,v1,va,t), (s,vi,v3,v2,va,t), e (s,vi,va,Vv2,v3,t) converge
para o fluxo maximo 2 4+ r 4+ v~ sem terminar.

1.2.3 Variacoes do problema

Fontes e destinos miiltiplos Para G = (V, E, ¢) define um conjunto de fontes
S C V e um conjunto de destinos T C V, com SNT = (), e considera

maximiza f(S
f(v

fe <

)
sujeito a )=0 YweV\(SUT) (1.3)
Ce

Ve € E.

O problema (1.3) pode ser reduzido para um problema de fluxo méximo sim-
ples em G’ = (V' E’,c’) (veja Fig. 1.7(a)) com
V' =Vus* t*}
E'=EBEU{(s*s)|scSTU{(t,t*) |t T} (1.4)
Ce eckt
ce =< cl{sh{s}) e=(s*s)
c({th{t) e=(t,t")

Lema 1.20
Se f’ é solugdo méxima de (1.4), f = f’[g é uma solucdo méxima de (1.3).
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1.2 Fluxos em redes

Figura 1.7: Redugoes entre variagoes do problema do fluxo maximo. Esquerda:
Fontes e destinos multiplos. Direita: Limite inferior e superior
para a capacidade de arcos.

Conversamente, se f é uma solugdo méxima de (1.3),

é uma solugao méxima de (1.4).

Prova. Supoe f é solucao méxima de (1.3). Seja f’ uma solucao de (1.4)
com valor f'(s*) maior. Entao f’[¢ é um fluxo védlido para (1.3) com solugao
f'g(S) = f'(s*) maior, uma contradicao.

Conversamente, para cada fluxo vélido f em G, a extensao f’ definida acima
¢ um fluxo vélido em G’ com o mesmo valor. Portanto o valor do maior fluxo
em G’ é maior ou igual ao valor do maior fluxo em G. |

Limites inferiores Para G = (V,E,b,c) com limites inferiores b : E — R
considere o problema

maximiza f(s)
sujeito a f(v) =0 Yv e V\{s,t} (1.5)
be < fe <ce eckE.

O problema (1.5) pode ser reduzido para um problema de fluxo méximo sim-
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ples em G’ = (V/,E’,¢’) (veja Fig. 1.7(b)) com

V' =V

E'=Eu{v,t) | (v,u) € BE}U{(s,u) | (v,u) € E} (1.6)
Cc—Db. eckE

Ce=4brpw e=MWt)
b e=(s,u)

Lema 1.21

Problema (1.5) possui uma vidvel sse (1.6) possui uma solugdo méxima com
todos arcos auxiliares E’ \ E apertados. Neste caso, se f é um fluxo méximo
em (1.5),

fe—b. ecktE
fl =< bs e = (v, t) criado por f = (v,u)
oF e = (s,u) criado por f = (v,u)

¢ um fluxo méximo de (1.6) com arcos auxiliares apertados. Conversamente,
se f/ é um fluxo mdximo para (1.6) com arcos auxiliares apertados, fe = f.+b.
é um fluxo méximo em (1.5).

Prova. (Exercicio.) [ |

Existéncia de uma circulacdo Para G = (V,E,c) com demandas d,, com
d, > 0 para destinos e d, < 0 para fontes, considere

existe f
s.a f(v) = —d, YweVv (1.7)
fe <ce ec L.

Evidentemente ) .\ d, = 0 é uma condicdo necesséria (lema (1.12)). O
problema (1.7) pode ser reduzido para um problema de fluxo méximo em
G’ = (V/,E’) com

V' =Vus* t*}

E'=EBU{(s*,v)|veV,d, <0lU{(v,t*)|veVd, >0 (1.8)
Ce eckt

Ce=< —d, e=(s*"V)
dv e:(vat*)
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Lema 1.22
Problema (1.7) possui uma solugao sse problema (1.8) possui uma solugdo com

fluxo maximo D =} .4 _, dv.

Prova. (Exercicio.) [ ]

Circulacdes com limites inferiores Para G = (V,E, b, c) com limites inferio-
res e superiores, considere

existe f
s.a flv) =d, YweV (1.9)
be < fe < ce ecE.

O problema pode ser reduzido para a existéncia de uma circulacdo com so-
mente limites superiores em G’ = (V/,E’,¢’,d’) com

V=V

E'=E (1.10)

Ce:Ce_be

_d—Zb+Zb (1.11)

ecd(v) ecdt(v)

Lema 1.23
O problema (1.9) possui solugdo sse problema (1.10) possui solugao.

Prova. (Exercicio.) |

1.2.4 AplicacGes

Projeto de pesquisa de opiniao O objetivo é projetar uma pesquisa de
opiniao, com as restricoes

e Cada cliente i recebe ao mesmo c¢; perguntas (para obter informacao sufi-
ciente) mas no maximo c{ perguntas (para nao cansar ele). As perguntas
podem ser feitas somente sobre produtos que o cliente ja comprou.

e Para obter informagdes suficientes sobre um produto, entre p; e p{ cli-
entes tem que ser interrogados sobre ele.

Um modelo é um grafo bi-partido entre clientes e produtos, com aresta (ci, p;)
caso cliente i ja comprou produto j. O fluxo de cada aresta possui limite
inferior O e limite superior 1. Para representar os limites de perguntas por
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1 Algoritmos em grafos

produto e por cliente, introduziremos ainda dois vértices s, e t, com arestas
li /

(s,ci) com fluxo entre c; e ¢ e arestas (pj,t) com fluxo entre p; e pj e uma

aresta (t,s).

Segmentacao de imagens O objetivo é segmentar um imagem em duas
partes, por exemplo “foreground” e “background”. Supondo que temos uma
“probabilidade” a; de pertencer ao “foreground” e outra “probabilidade” de
pertencer ao “background” b; para cada pixel i, uma abordagem direta é
definir que pixels com a; > b; sao “foreground” e os outros “background”. Um
exemplo pode ser visto na Fig. 1.9 (b). A desvantagem dessa abordagem é que
a separacao ignora o contexto de um pixel. Um pixel, “foreground” com todos
pixel adjacentes em “background” provavelmente pertence ao “background”
também. Portanto obtemos um modelo melhor introduzindo penalidades pj;
para separar (atribuir & categorias diferentes) pixel adjacentes i e j. Um
particao do conjunto de todos pixels I em A U B tem um valor de

q(A,B):Zai‘i‘Zbi* Z Pij
ieA ieB (1,j)EAXB

nesse modelo, e 0 nosso objetivo é achar uma partigdo que maximiza q(A, B).
Isso é equivalente a minimizar

QAB)=) ai+bi—) ai—) bi+ >  py

iel i€A ieB (i,j)EAXB
TarYue T o
icB i€A (i,j)EAXB

A solucao minima de Q(A, B) pode ser visto como corte minimo num grafo.
O grafo possui um vértice para cada pixel e uma aresta com capacidade pj;
entre dois pixels adjacentes i e j. FEle possui ainda dois vértices adicionais
s e t, arestas (s,1) com capacidade a; para cada pixel i e arestas (i,t) com
capacidade b; para cada pixel i (ver Fig. 1.8).

Seqiienciamento O objetivo é programar um transporte com um nimero k
de veiculos disponiveis, dado pares de origem-destino com tempo de saida e
chegada. Um exemplo é um conjunto de voos é

1. Porto Alegre (POA), 6.00 — Florianopolis (FLN), 7.00
2. Florianopolis (FLN), 8.00 — Rio de Janeiro (GIG), 9.00
3. Fortaleza (FOR), 7.00 — Jodo Pessoa (JPA), 8.00
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1.2 Fluxos em redes

i3 k1
a 30 19 12 10
b 20 15 16 25

Figura 1.8: Exemplo da construcao para uma imagem 2 x 2. Direita: Tabela
com valores pele/ndo-pele. Esquerda: Grafo com penalidade fixa
Pij = 10.

ﬁ'a P
L

Figura 1.9: Segmentacdo de imagens com diferentes penalidades p. Acima:
(a) Imagem original (b) Segmentacdo somente com probabilida-
des (p = 0) (¢) p = 1000 (d) p = 10000. Abaixo: (a) Walter
Gramatté, Selbstbildnis mit rotem Mond, 1926 (b) Segmentagao
com p = 5000. A probabilidade de um pixel representar pele foi
determinado conforme Jones and Rehg (1998).
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4. Sao Paulo (GRU), 11.00 — Manaus (MAO), 14.00
5. Manaus (MAO), 14.15 — Belem (BEL), 15.15
6. Salvador (SSA), 17.00 — Recife (REC), 18.00

O mesmo aviao pode ser usado para mais que um par de origem e destino, se
o destino do primeiro é o origem do segundo, em tem tempo suficiente entre
a chegada e saida (para manutengao, limpeza, etc.) ou tem tempo suficiente
para deslocar o aviao do destino para o origem.

Podemos representar o problema como grafo direcionado aciclico. Dado pa-
res de origem destino, ainda adicionamos pares de destino-origem que sao
compativeis com as regras acimas. A idéia é representar avides como fluxo:
cada aresta origem-destino é obrigatorio, e portanto recebe limites inferiores
e superiores de 1, enquanto uma aresta destino-origem é facultativa e recebe
limite inferior de O e superior de 1. Além disso, introduzimos dois vértices s
e t, com arcos facultativos de s para qualquer origem e de qualquer destino
para t, que representam os comecos e finais da viagem completa de um aviao.
Para decidir se existe um solugao com k avioes, finalmente colocamos um arco
(t,s) com limite inferior de 0 e superior de k e decidir se existe uma circulacao
nesse grafo.

1.2.5 Outros problemas de fluxo

Obtemos um outro problema de fluxo em redes introduzindo custos de trans-
porte por unidade de fluxo:

FLUXO DE MENOR CUSTO

Entrada Grafo direcionado G = (V, E) com capacidades ¢ € RIE e custos

E - . - .
T E R‘Jrl nos arcos, um vértice origem s € V, um vértice destino
teV,evalorveRy.

Solugao Um fluxo s-t f com valor v.

Objetivo Minimizar o custo Y_ cefe do fluxo.

ecE

Diferente do problema de menor fluxo, o valor do fluxo ¢ fixo.
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1.3 Emparelhamentos

Dado um grafo nao-direcionado G = (V, E), um emparelhamento é uma selecao
de arestas M C E tal que todo vértice tem no méximo grau 1 em G’ = (V, M).
(Notagao: M = {u3vy,uyvy,...}.) O nosso interesse em emparelhamentos é
maximizar o nimero de arestas selecionados ou, no caso as arestas possuem
pesos, maximizar o peso total das arestas selecionados.

Para um grafo com pesos ¢ : E — Q, seja ¢c(M) = } ..y Ce 0 walor do
emparelhamento M.

EMPARELHAMENTO MAXIMO (EM)
Entrada Um grafo G = (V, E) nao-direcionado.

Solucao Um emparelhamento M C E, i.e. um conjunto de arcos, tal que
para todos vértices v temos |[N(v) N M| < 1.

Objetivo Maximiza |M]|.

EMPARELHAMENTO DE PESO MAXIMO (EPM)

Entrada Um grafo G = (V,E, c) ndo-direcionado com pesos ¢ : E — Q
nas arestas.

Solucao Um emparelhamento M C E.

Objetivo Maximiza o valor ¢(M) de M.

Um emparelhamento se chama perfeito se todo vértice possui vizinho em M.
Uma variagao comum do problema é

EMPARELHAMENTO PERFEITO DE PESO MINIMO (EPPM)

Entrada Um grafo G = (V,E, c) ndo-direcionado com pesos ¢ : E — Q
nas arestas.

Solucao Um emparelhamento perfeito M C E, i.e. um conjunto de arcos,
tal que para todos vértices v temos [N(v) " M| = 1.
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Objetivo Minimiza o valor ¢(M) de M.

Observe que os pesos em todos problemas podem ser negativos. O problema de
encontrar um emparelhamento de peso minimo em G = (V, E, ¢) é equivalente
com EPM em —G := (V, E, —c) (por qué?). Até EPPM pode ser reduzido para
EPM.

Teorema 1.4
EPM e EPPM sao problemas equivalentes.

Prova. Seja G = (V,E,c) uma instancia de EPM. Define um conjunto de
vértices V' que contém V e mais |V| novos vértices e um grafo completo G’ =
(V, V' x V' ¢’) com
_J—cCe casoec E

0 caso contrario
Todo emparelhamento M em G de valor ¢(M) define um emparelhamento
perfeito M’ em G’ de valor ¢/(M’) = —¢(M): M’ consiste das arestas em M.
Além disso, todo vértice ndo emparelhado em V serd emparelhado com o novo
vértice correspondente em M’ com uma aresta de custo 0. Similarmente, os
restantes novos vértices nao emparelhados em V' sdo emparelhados em M’
com arestas de custo 0 entre si. Portanto, um EPPM em G’ é um EPM em
G.
Conversamente, seja G = (V,E,c) uma instancia de EPPM. Define C :=
T4+ ) .celcel, novos pesos ¢, = C —ce e um grafo G’ = (V,E,c’). Para
emparelhamentos M e M, arbitrarios temos

C(MZ)_C(M1) < Z Ce — Z Ce:Z‘Ce‘<C'

eck eck ect
ce>0 ce<O0

Portanto, um emparelhamento de peso mdximo em G’ também é um empa-
relhamento de cardinalidade méxima: Para [Mi| < |[M;| temos

¢'(My) = CIMy|— (M) < CIM4|+ C —¢(M;) < CIM3| — ¢(M;) = ¢(M,).

Se existe um emparelhamento perfeito no grafo original G, entao o EPM em
G’ é perfeito e as arestas do EPM em G’ definem um EPPM em G. |

40



1.3 Emparelhamentos

Formulagdes com programacao inteira A formulacdo do problema do em-
parelhamento perfeito minimo para G = (V,E,c) é

minimiza Z CeXe (1.12)
eckE

sujeito a Z Xuv = 1, Yvev
ueN(v)
Xe € B.

A formulacao do problema do emparelhamento maximo é

maximiza Z CeXe (1.13)
ecE
sujeito a Z Xuw < 1, Ywev
UuEN(v)
Xe € B.

Observagao 1.10

A matriz de coeficientes de (1.12) e (1.13) é totalmente unimodular no caso bi-
partido (pelo teorema de Hoffman-Kruskal). Portanto: a solucao da relaxagéo
linear é inteira. (No caso geral isso ndo é verdadeiro, K3 é um contra-exemplo,
com solugao étima 3/2.). Observe que isso resolve o caso ponderado sem custo
adicional. O

Observagao 1.11
O dual da relaxacao linear de (1.12) é

maximiza Z Yy (1.14)
vev
sujeito a  yu + Yy < cuv, Vuv € E
Yy € R,

e o dual da relaxacgao linear de (1.13)

minimiza Z Yy (1.15)
vev
sujeito a Yu +Yv = Cuv, Yuv € E
Yy € Ry.
Com pesos unitdrios cy, = 1 e restringindo y, € B o primeiro dual é a

formulacao do conjunto independente maximo e o segundo da cobertura por
vértices minima. Portanto, a observagao 1.10 rende no caso nao-ponderado:
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Teorema 1.5 (Berge, 1951)
Em grafos bi-partidos o tamanho da menor cobertura por vértices é igual ao
tamanho do emparelhamento maximo.

O

1.3.1 Aplicacoes

Alocacao de tarefas Queremos alocar n tarefas a n trabalhadores, tal que
cada tarefa é executada, e cada trabalhador executa uma tarefa. O custos de
execucao dependem do trabalhar e da tarefa. Isso pode ser resolvido como
problema de emparelhamento perfeito minimo.

Particionamento de poligonos ortogonais

Teorema 1.6

( , , cap. 11,th. 1) Um poligono ortogonal com n vértices
de reflexo (ingl. reflex vertex, i.e., com angulo interno maior que 7t), h buracos
(ingl. holes) pode ser minimalmente particionado em n—1—h+1 retangulos.
A varidvel 1 é o nimero méximo de cordas (diagonais) horizontais ou verticais
entre vértices de reflexo sem intersecgao.

O nidmero 1 é o tamanho do conjunto independente maximo no grafo de in-
tersecgao das cordas: cada corda é representada por um vértice, e uma aresta
representa a duas cordas com intersecao. Um conjunto independente maximo
é o complemento de uma cobertura por vértices minima, o problema dual
(1.15) de um emparelhamento maximo. Portanto, o tamanho de um empa-
relhamento maximo ¢é igual n — h. Podemos obter o conjunto independente
que procuramos usando “a metade” do emparelhamento (os vértices de uma
parte s6) e os vértices ndo emparelhados. Podemos achar o emparelhamento
em tempo O(n°/?) usando o algoritmo de Hopcroft-Karp, porque o grafo de
intersecgéo é bi-partido (por qué?).

1.3.2 Grafos bi-partidos

Na formulacao como programa inteira a solugao do caso bi-partido é mais facil.
Isso também € o caso para algoritmos combinatoriais, e portanto comegamos
estudar grafos bi-partidos.

Reducao para o problema do fluxo maximo

Teorema 1.7
Um EM em grafos bi-partidos pode ser obtido em tempo O(mmn).
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e

Figura 1.10: Esquerda: Poligono ortogonal com vértices de reflexo (pontos) e
cordas (pontilhadas). Direita: grafo de intersec¢ao.

“ir

o

Figura 1.11: Reducao do problema de emparelhamento méaximo para o pro-
blema do fluxo maximo

Prova. Introduz dois vértices s, t, liga s para todos vértices em V7, os vértices
em V7 com vértices em V, e os vértices em V, com t, com todos os pesos
unitarios. Aplica o algoritmo de Ford-Fulkerson para obter um fluxo méximo.
O nimero de aumentos é limitado por n, cada busca tem complexidade O(m),
portanto o algoritmo de Ford-Fulkerson termina em tempo O(mn). |

Teorema 1.8
O valor do fluxo méximo é igual a cardinalidade de um emparelhamento
maximo.

Prova. Dado um emparelhamento maximo M = {vi1v21,...,VinVan}, pode-
mos construir um fluxo com arcos svii, v1iv2i e v2it com valor |M|.

Dado um fluxo méximo, existe um fluxo integral equivalente (veja lema (1.14)).
Na construcao acima os arcos possuem fluxo 0 ou 1. Escolhe todos arcos entre
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V7 e V5 com fluxo 1. Nao existe vértice com grau 2, pela conservacao de fluxo.
Portanto, os arcos formam um emparelhamento cuja cardinalidade é o valor
do fluxo. |

Solucdo ndo-ponderado combinatorial Um caminho P = vivovs ... v é
alternante em relagdo a M (ou M-alternante) se vivi11 € M sse vip1viy2 € M
para todos 1 < 1 < k—2. Um vértice v € V é livre em relagdo a M se ele
tem grau 0 em M, e emparelhado caso contrario. Um arco e € E é livre em
relacdo a M, se e € M, e emparelhado caso contrario. Escrevemos |[P| =k — 1
pelo comprimento do caminho P.

Observagao 1.12

Caso temos um caminho P = vivovs...var1 que é M-alternante com vy é

Vok+1 livre, podemos obter um emparelhamento M \ (PN M) U (P \ M) de

tamanho M| —k + (k — 1) = I[M| + 1. Notacao: Diferenca simétrica M & P =

(M\P)U(P\M). A operacdo M & P é um aumento do emparelhamento M.
O

Teorema 1.9 ( ( ))

Seja M* um emparelhamento méaximo e M um emparelhamento arbitrario. O
conjunto M @& M* contém ao menos k = |[M*|—|M| caminhos M-aumentandos
distintos. Um deles possui comprimento menor que |V|/k — 1.

Prova. Considere os componentes de G em relagao aos arcos M .= M &
M*. Cada vértice possui no maximo grau 2. Portanto, cada componente
é ou um vértice livre, ou um caminhos simples ou um ciclo. Os caminhos
e ciclos possuem alternadamente arcos de M e M*. Portanto os ciclos tem
comprimento par. Os caminhos de comprimento impar sdo ou M-aumentandos
ou M*-aumentandos, mas o segundo caso é impossivel, porque M* é maximo.
Agora

M\ M|=M*—IM*NM|=M|—IM"NM|+k =M\ M"+k

e portanto M @ M* contém k arcos mais de M* que de M. Isso mostra que
existem ao menos |M*| — [M| caminhos M-aumentandos, porque somente os
caminhos de comprimento impar possuem exatamente um arco mais de M*.
Ao menos um desses caminhos tem que ter um comprimento menor ou igual
que [V|/k — 1, porque no caso contrario eles contém em total mais que [V|
vértices. |

Corolério 1.2 ( ( )

Um emparelhamento é méaximo sse nao existe um caminho M-aumentando.
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Rascunho de um algoritmo:

Algoritmo 1.5 (Emparelhamento maximo)
Entrada Grafo nao-direcionado G = (V, E).

Saida Um emparelhamento maximo M.

1 M=90

2 while (existe um caminho M—aumentando P) do
3 M:=MaP

4 end while

5 return M

Problema: como achar caminhos M-aumentandos de forma eficiente?

Observagao 1.13

Um caminho M-aumentando comega num vértice livre em Vj e termina num
vértice livre em V5. Idéia: Comega uma busca por largura com todos vértices
livres em Vj. Segue alternadamente arcos livres em M para encontrar vizi-
nhos em V5 e arcos em M, para encontrar vizinhos em V7. A busca para ao
encontrar um vértice livre em V, ou apds de visitar todos vértices. Ela tem
complexidade O(m). O

Teorema 1.10
O problema do emparelhamento maximo nao-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(mn).

Prova. Ultima observagao e o fato que o emparelhamento maximo tem ta-
manho O(n). |

Observagao 1.14
O ultimo teorema é o mesmo que teorema (1.7). O

Observagao 1.15

Pelo teorema (1.9) sabemos que em geral existem vérios caminhos M-alternantes
disjuntos (de vértices) e nos podemos aumentar M com todos eles em paralelo.
Portanto, estruturamos o algoritmo em fases: cada fase procura um conjunto
de caminhos aumentandos disjuntos e aplica-los para obter um novo empare-
lhamento. Observe que pelo teorema (1.9) um aumento com o maior conjunto
de caminhos M-alternantes disjuntos resolve o problema imediatamente, mas
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nao sabemos como achar esse conjunto de forma eficiente. Portanto, procu-
ramos somente um conjunto maximo de caminhos M-alternantes disjuntos de
menor comprimento.

Podemos achar um conjunto desse tipo apds uma busca por profundidade
da seguinte maneira usando o DAG (grafo direcionado aciclico) definido pela
busca por profundidade. (i) Escolhe um vértice livre em V,. (ii) Segue os
predecessores para achar um caminho aumentando. (iii) Coloca todos vértices
em uma fila de delecdo. (iv) Processa a fila de delecio: Até a fila é vazia,
remove um vértice dela. Remove todos arcos adjacentes no DAG. Caso um
vértice sucessor apds de remogao de um arco possui grau de entrada 0, coloca
ele na fila. (v) Repete o procedimento no DAG restante, para achar outro
caminho, até nao existem mais vértices livres em V>. A nova busca ainda
possui complexidade O(m). O

O que ganhamos com essa nova busca? Os seguintes dois lemas dao a resposta:

Lema 1.24
Apés cada fase, o comprimento de um caminho aumentando minimo aumenta
ao menos dois.

Lema 1.25
O algoritmo termina em no méximo /n fases.

Teorema 1.11

O problema do emparelhamento maximo nao-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(my/n).

Prova. Pelas lemas 1.24 e 1.25 e a observagao que toda fase pode ser com-
pletada em O(m). |

Usaremos outro lema para provar os dois lemas acima.

Lema 1.26

Seja M um emparelhamento, P um caminho M-aumentando minimo, e Q um
caminho M @ P-aumentando. Entéo [Q| > [P|+ 2PN Q]. (PN Q denota as
arestas em comum entre P e Q.)

Prova. Caso P e Q ndo possuem vértices em comum, Q é M-aumentando,
PN Q =0 e a desigualdade é conseqiiéncia da minimalidade de P.

Caso contrério: P@® Q consiste em dois caminhos, e eventualmente um colegao
de ciclos. Os dois caminhos sao M-aumentandos, pelas seguintes observagoes:

1. O inicio e termino de P é livre em M, porque P é M-aumentando.
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2. O inicio e termino de Q é livre em M: eles nao pertencem a P, porque
sa0 livres em M.

3. Nenhum outro vértice de P ou Q é livre em relagao a M: P s6 contém
dois vértices livres e Q sé contém dois vértices livres em Q mas nao em

P.

4. Temos dois caminhos M-aumentandos, comecando com um vértice livre
em Q e terminando com um vértice livre em P. O caminho em Q \ P é
M-alternante, porque as arestas livres em M’ sao exatamente as arestas
livres em M. O caminho Q entra em P sempre apds uma aresta livre
em M, porque o primeiro vértice em P ji é emparelhado em M e sai
de P sempre antes de uma aresta livre em M, porque o tltimo vértice
em P ja é emparelhado. Portanto os dois caminhos em P & Q sao M-
aumentandos.

Os dois caminhos M-aumentandos em P& Q tem que ser maiores que |P|. Com
isso temos [P & Q| > 2|P| e

QI=P&Q[+2[PNQ[—[P| = [P|+2[PN Q]

|
Prova. (do lema 1.24). Seja S o conjunto de caminhos M-aumentandos
da fase anterior, e P um caminho aumentando. Caso P é disjunto de todos
caminhos em S, ele deve ser mais comprido, porque S é um conjunto maximo
de caminhos aumentandos. Caso P possui um vértice em comum com algum
caminho em S, ele possui também um arco em comum (por qué?) e podemos
aplicar lema 1.26. [ ]
Prova. (do lema 1.25). Seja M* um emparelhamento méximo e M o empa-
relhamento obtido apds de 4/n/2 fases. O comprimento de qualquer caminho
M-aumentando é no minimo \/n, pelo lema 1.24. Pelo teorema 1.9 exis-
tem ao menos |[M*| — [M| caminhos M-aumentandos disjuntos. Mas entao
IM*| — IM| < y/n, porque no caso contrario eles possuem mais que N vértices
em total. Como o emparelhamento cresce ao menos um em cada fase, o algo-
ritmo executar no maximo mais /1 fases. Portanto, o nimero total de fases
é O(y/m). ]
O algoritmo de Hopcroft-Karp é o melhor algoritmo conhecido para encontrar
emparelhamentos maximos em grafos bipartidos nao-ponderados. Para sub-
classes de grafos bipartidos existem algoritmos melhores. Por exemplo, existe
um algoritmo randomizado para grafos bipartidos regulares com complexidade
de tempo esperado O(nlogn) ( , ).
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1 Algoritmos em grafos

Sobre a implementacao A seguir supomos que o conjunto de vértices é
V =[1,n] e um grafo G = (V, E) bi-partido com particio V; U V,. Podemos
representar um emparelhamento usando um vetor mate, que contém, para
cada vértice emparelhado, o indice do vértice vizinho, e 0 caso o vértice é
livre.
O nicleo de uma implementagao do algoritmo de Hopcroft e Karp é descrito na
observagao 1.15: ele consiste em uma busca por largura até encontrar um ou
mais caminhos M-alternantes minimos e depois uma fase que extrai do DAG
definido pela busca um conjunto maximo de caminhos disjuntos (de vértices).
A busca por largura comeca com todos vértices livres em V7. Usamos um
vetor H para marcar os arcos que fazem parte do DAG definido pela busca
por largura® e um vetor m para marcar os vértices visitados.

search_paths (M)

fo
fo

(o

do

r all veV do m, :=false
r all eeE do H. :=false

={v e Vy|vlivre}

{ determina vizinhos em U,
uz = @
for all ueU; do
my = true
for all wek, w¢M do
if not m, then
H.,y := true
Ww=UuUv
end if
end for
end for

{ determina vizinhos em U,
found false { ao
U] Z:@
for all ue U, do

m, = true

if (u livre) then

found true
else

via arestas livres}

via arestas emparelhadas }

menos un caminho encontrado? }

2H, porque o DAG se chama drvore Hungariano na literatura.
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Ponderado

Bi-partido n\/ Tos =)

/*log n /m
'ITL logn

Geral m\flog n?/m)

logn

)

O(nm + n?logn) ( , ;
; )

o(n?) ( , ) O(mn +
n’logn) ( , )

Tabela 1.2: Resumo emparelhamentos

v ;= mate[u]

if not m, then

H., = true
U;=uU;uv
end if
end for
end for
while (not found)
end

Apés da busca, podemos extrair um conjunto maximo de caminhos M-alternantes
minimos disjuntos. Enquanto existe um vértice livre em V;, nos extraimos um
caminho alternante que termina em v como segue:

extract_path(v) :=

P:=v
while not (veV; and v livre) do
if veV;
v := mate[V]
else
v:= escolhe {u|Hy,uv & M}
end if
P:=vP

end while

remove o caminho e todos vértices sem predecessor

end while
end
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1.3.3 Exercicios

Exercicio 1.5
E possivel somar uma constante ¢ € R para todos custos de uma instancia do

EPM ou EPPM, mantendo a otimalidade da solugao?
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Em hashing nosso interesse é uma estrutura de dados H para gerenciar um
conjunto de chaves sobre um universo U e que oferece as operagoes de um
diciondrio:

e Inser¢ao de uma chave ¢ € U: insert(c,H)
e Delecao de uma chave ¢ € U: delete(c,H)
e Teste da pertinéncia: Chave ¢ € H? lookup(c,H)

Uma caracteristica do problema é que tamanho [U| do universo de chaves
possiveis pode ser grande, por exemplo o conjunto de todos strings ou todos
nimeros inteiros. Portanto usar a chave como indice de um vetor de booleano
nao é uma opgao. Uma tabela hash é um alternativa para outros estruturas
de dados de dicionarios, p.ex. arvores. O principio de tabelas hash: aloca
uma tabela de tamanho m e usa uma fun¢do hash para calcular a posigao de
uma chave na tabela. Como o tamanho da tabela hash é menor que o nimero
de chaves possiveis, existem chaves com h(ci) = h(cz), que geram colisdes.
Temos dois métodos para lidar com isso:

e Hashing perfeito: Escolhe uma fungao hash, que para um dado conjunto
de chaves nao tem colisoes. Isso é possivel se o conjunto de chaves é
conhecido e estatico.

e Invento outro método de resolucdao de colisées.

2.1 Hashing com listas encadeadas

Define uma fun¢do hash h : U — [m]. Mantemos uma colecdo de m listas
lo,..., Lin_1 e a lista l; contém as chaves ¢ com valor hash h(c) = 1. Supondo
que a avaliacdo de h é possivel em O(1), a inser¢do custa O(1), e o teste é
proporcional ao tamanho da lista.

Para obter uma distribuicao razoavel das chaves nas listas, supomos que h é
uma funcao hash simples e uniforme:

Prlh(c) =il = 1/m. (2.1)
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Seja ny := [li| o tamanho da lista i e ¢j; := Pr[h(i) = j] a varidvel aleatéria
que indica se chave j pertence a lista i. Temos niy =} ;;,, ¢ji e com isso

Emid=E[ ) c¢il= ) Elgil= > Prlh(c;) =il =n/m.

1<j<n 1<j<n 1<j<n

O valor o :=n/m é a fator de ocupagdo da tabela hash.

insert (c,H) :=
insert (c,lnc))

lookup (c,H) :=
lookup (c,lp(c))

delete(c,H) :=
delete (c,lh(c))

Teorema 2.1
Uma busca sem sucesso precisa tempo esperado de O(1 + «).

Prova. A chave ¢ tem a probabilidade 1/m de ter um valor hash i. O
tamanho esperado da lista 1 é . Uma busca sem sucesso nessa lista precisa
tempo O(a). Junto com a avaliacdo da func¢do hash em ©(1), obtemos tempo
esperado total O(1 + ). |

Teorema 2.2
Uma busca com sucesso precisa tempo esperado de O(1 + «).

Prova. Supomos que a chave ¢ é uma das chaves na tabela com probabilidade
uniforme. Entdo, a probabilidade de pertencer a lista i (ter valor hash i) é
n;/n. Uma busca com sucesso toma tempo (1) para avaliacdo da fungao
hash, e mais um nimero de operagoes proporcional a posicao p da chave na
sua lista. Com isso obtemos tempo esperado O(1 + E[p]). Para determinar a
posicdo esperada na lista, E[p], seja c1,...,cn a seqiiencia em que a chaves
foram inseridas. Supondo que inserimos a chaves no inicio da lista, E[p] é um
mais o numero de chaves inseridos depois de ¢ na mesma lista.

Seja Xi; um varidvel aleatéria que indica se chaves c; e ¢; tem o mesmo valor
hash. E[XU] = Pr[h(ci) = h.(C)')] = Z]gkgmpr[h(ci) = k] PI‘[h.(Cj) = k] =
1/m. Para a chave ci, seja pi a posicao dela na sua lista. Temos

Efpd =E[1+) Xyl=1+) EXyl=T+({-1)/m

j<i j<i
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e para uma chave aleatéria c

Epl= ) 1/mElpd= ) 1/m{1+(i—1)/m)

1<i<n 1<i<n

=1-1/m+n+1)/2m=1+4+ /2 — «/2n.
Portanto, o tempo esperado de uma busca com sucesso é
O(1+Ep) =02+ /2 — /2n) =O(1 + o).
|

Selecdo de uma funcao hash Para implementar uma tabela hash, temos
que escolher uma fungéo hash, que satisfaz (2.1). Para facilitar isso, supomos
que o universo de chaves é um conjunto U = [u] de nimeros inteiros. (Para
tratar outro tipos de chave, costuma-se converté-los para nimeros inteiros.)
Se cada chave ocorre com a mesma probabilidade, h(i) = 1 mod m é uma
funcao hash simples e uniforme. Essa abordagem é conhecida como método
de divisao. O problema com essa fungao na pratica é que nao conhecemos a
distribuicao de chaves, e ela provavelmente nao é uniforme. Por exemplo, se
m é par, o valor hash de chaves pares é par, e de chaves impares é impar, e se
m = 2¥ o valor hash consiste nos primeiros k bits. Uma escolha que funciona
na pratica é um numero primo “suficientemente” distante de uma poténcia de
2.

O método de multiplicacao define

h(c) = [m{Ac}].

O método funciona para qualquer valor de m, mas depende de uma escolha
adequada de A € R. Knuth propos A ~ (v/5—1)/2.

Hashing universal Outra idéia: Para qualquer funcao hash h fixa, sempre
existe um conjunto de chaves, tal que essa funcao hash tem muitas colisoes.
(Em particular, um “adversario” que conhece a func¢ao hash pode escolher
chaves c, tal que h(c) = const.. Para evitar isso podemos escolher uma funcao
hash randoémica de uma familia de funcoes hash.

Uma familia H de funcdes hash U — [m] é universal se

{h € H|h(cr) =h(ez)}l =[H|/m

ou equivalente
Prlh(c1) = h(cz)] =1/m

para qualquer par de chaves cq,c;.
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Teorema 2.3
Se escolhemos uma funcdo hash h € H uniformemente, para uma chave c
arbitrdrio o tamanho esperado de ly(¢) é

e x,casoc ¢ H, e
e 14+, casoc € H.

Prova. Para chaves c1,c2 seja Xi; = [h(c1) =h(c2)] e temos
E[Xy] = Pr[Xy; = 1] =Pr[h(c1) = h(c2)] =1/m

pela universalidade de H. Para uma chave fixa ¢ seja Y. o niimero de colisoes.

E[Y,] =E[ > x} =) EXeed< ) 1/m

c’eH c’eH c’eH

c’'#c c’'#c c’'#c
Para uma chave ¢ ¢ H, o tamanho da lista é Y., e portanto o tem tamanho
esperado E[Y.] < n/m = «. Caso ¢ € H, o tamanho da lista é 1+ Y. e com
E[Y.] = (n—1)/m esperadamente

T+m—1)/m=T+a—-T/m< 1+

|
Um exemplo de um conjunto de fungdes hash universais: Sejac = (co,...,Cr)m
uma chave na base m, escolhe a = (ay, ..., a;)m randomicamente e define

ha: Z Cciaj mod m.

o<i<r

2.2 Hashing com enderecamento aberto

Uma abordagem para resolucao de colisoes, chamada enderecamento aberto, é
escolher outra posi¢do para armazenar uma chave, caso h(c) é ocupada. Uma
estratégia para conseguir isso é procurar uma posi¢ao livre numa permutacao
de todos indices restantes. Assim garantimos que um insert tem sucesso en-
quanto ainda existe uma posi¢ao livre na tabela. Uma funcao hash h(c,1) com
dois argumentos, tal que h(c,0),...,h(c,m — 1) é uma permutagido de [m],
representa essa estratégia.

insert (c,H) :=
for i in [m]
if Hh(c,1) = free
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2.2 Hashing com enderecamento aberto

H[h(c,i)]=c
return

lookup (¢,H) :=
for i in [m]
if Hfh(c,1)] = textfree
return false
if Hlh(c, i)l =c
return true
return false

A fungao h(c,1i) é uniforme, se a probabilidade de uma chave randémica ter
associada uma dada permutagdo é 1/m!. A seguir supomos que h é uniforme.

Teorema 2.4
As fungoes lookup e insert precisam no maximo 1/(1 — «) testes caso a chave
nao esta na tabela.

Prova. Seja X o nimero de testes até achar uma posigao livre. Temos
EXI=) iPriX=1i=) ) PriX=1i=) PriX>1il.
i>1 i>1 5> i>1
Com T; o evento que o teste i ocorre e a posicao i é ocupada, podemos escrever
Pr[X > i] =Pr[TiN---NTi_q] = Pr[T1] Pr[T2|T1] Pr[T3(Tq, T2] - - - Pr[Ti 4Ty, ..., Ti_2].

Agora Pr[T;] = n/m, e como h é uniforme Pr[T2[Ty] =n—1/(m—1) e em
geral
PrTy|Ty,.. Tecil=(n—=k+1)/(m—-k+1) <n/m=«.

Portanto PriX > 1] < ot~ ' e

EIX] :ZPr[Xzi] SZO&’] :Zoézvm — ).

i>1 i>1 1>0
[ |
Lema 2.1
Para i <j, temos Hy —H; < In(i) — In(j).
Prova.
i+1 1
Hi — H; < J dx = In(1) — In(j)
j+1 X —
[ |
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Teorema 2.5
A funcéo lookup precisa no maximo 1/xIn1/(1—x) testes caso a chave estd na
tabela com o < 1, e cada chave tem a mesma probabilidade de ser procurada.

Prova. Seja c o i-gésima chave inserida. No momento de inser¢ao o nimero
esperado de testes T até achar a posicao livre foi 1/(1—(1—1)/m) =m/(m—
(i—1)), e portanto o nimero esperado de testes até achar uma chave arbitraria
é

T=1/n > m/(m—({i-1)=1/a > 1/(m—1i)=1/a(Hpn—Hp _n)

1<i<n 0<i<n
e com Hy, —Hpon <In(m) —In(m —n) temos
T =1/a¢(Hn —Hm_n) < 1/x(In(m) —In(m —n)) = 1/xIn(1/(1 — «)).

|
Remover elementos de uma tabela hash com enderegamento aberto é mais
dificil, porque a busca para um elemento termina ao encontrar uma posi¢ao
livre. Para garantir a corretude de lookup, temos que marcar posi¢oes como
“removidas” e continuar a busca nessas posi¢oes. Infelizmente, nesse caso,
as garantias da complexidade nao mantem-se — apds uma série de delegoes e
insercoes toda posicao livre serd marcada como “removida” tal que delete e
lookup precisam n passos. Portanto o enderecamento aberto é favoravel s se
temos nenhumas ou poucas delegoes.

Funcoes hash para enderecamento aberto
e Linear: h(c,i) = h(c) +1 mod m
e Quadratica: h(c,i) = h(c) 4+ c1i+ c2i? mod m
e Hashing duplo: h(c,i) = hq(c) +1hz(c) mod m

Nenhuma das fungoes é uniforme, mas o hashing duplo mostra um bom de-
sempenho na préatica.

2.3 Cuco hashing

Cuco hashing é outra abordagem que procura posigoes alternativas na tabela
em caso de colisoes, com o objetivo de garantir um tempo de acesso constante
no pior caso. Para conseguir isso, usamos duas funcées hash h; e hy, e inse-
rimos uma chave em uma das duas posicoes hi(c) ou hz(c). Desta forma a
busca e a delegdo possuem complexidade constante O(1):
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2.4 Filtros de Bloom

lookup (¢ ,H) :=
if H[hy(c)]=c or Hhy(c)l=c

return true

return false

delete (c,H) :=
if Hhi(c)] =c
Hlh; (c)] := free
if Hfhy(c)]=c
Hlh,(c¢)] := free
Para inserir uma chave, temos que resolver o problema de que as duas posicoes
candidatas sejam ocupadas. A solucao do cuco hashing é comportar-se como
um cuco com ovos de outras aves: joga-los fora do seu “ninho”: insert ocupa
a posicao de uma das duas chaves. A chave “jogada fora” tem que ser inserida
novamente na tabela. Caso a posicao alternativa dessa chave € livre, a insercao
termina. Caso contrario, o processo se repete. Esse procedimento termina
apds uma série de reinsergoes ou entrar num lago infinito. Nesse tltimo caso
temos que realocar todas chaves com novas func¢ées hash.

insert (c,H) :=
if H[hy(c)]=c or Hhy(c)l=c
return
p:=hi(c)
do n vezes
if Hlp] = free
Hlpl :=c
return
swap (¢, H[p])
{ escolhe a outra posicdo da chave atual }

if p=hy(c)
p = ha(c)
else
p=hy(c)
rehash (H)

insert (c,H)

2.4 Filtros de Bloom

Um filtro de Bloom armazena um conjunto de m chaves, com as seguintes
restrigoes:

e Nao é mais possivel remover elementos.
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o possivel que o teste de pertinéncia tem sucesso, sem o elemento fazer
parte do conjunto (“false positive”).

Um filtro de Bloom consiste em m bits By, 1 <1 < m, e usa k fungoes hash
hi,..., hk.

insert (c,B) :=
for i in 1...k
h(e) =1
end for

lookup (c¢,B) :=
for i in 1...k
if bp,()=0
return false
return true
Apos de inserir todas n chaves, a probabilidade que um dado bit é ainda 0 é

1 kn
_p/ —(1-— ~ e—kn/m
m

que ¢é igual ao valor esperado da fracdo de bits nao setados. Sendo p a fragao
de bits nao setados realmente, a probabilidade de erradamente classificar um
elemento como membro do conjunto é

(1—p)~(1-p)k~ (1 _efkn/m>k

porque p é com alta probabilidade perto do seu valor esperado (

, ). ( ) também mostram
que o nimero étimo k de func¢oes hash para dados valores de n, m é m/nln2
e com isso temos um erro de classificacio ~ (1/2)%.

Aplicacoes:

1. Hifenagao: Manter uma tabela de palavras com hifenagdo excepcional
(que nao pode ser determinado pelas regras).

2. Comunicagao efetiva de conjuntos, p.ex. selecao em bancos de dados dis-
tribuidas. Para calcular um join de dois bancos de dados A, B, primeiro
A filtro os elementos, mando um filtro de Bloom S5 para B e depois B
executa o join baseado em Sa. Para eliminacao de eventuais elementos
classificados erradamente, B mando os resultados para A e A filtra os
elementos errados.
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2.4 Filtros de Bloom

Tabela 2.1: Complexidade das operagoes em tabelas hash. Complexidades em
negrito sao amortizados.

insert lookup delete
Listas encadeadas O(1) T+ «) 01+ «)
Enderegamento aberto  O(1/(1 — «)) o(1/(1 —«)) -
(com/sem sucesso) O(1/aln1/(1 —«)) O(1/xln1/(1 —a)) -
Cucko 01) o(1) (1)
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3 Algoritmos de aproximacao

(As notas seguem ( ).)

Um algoritmo de aproximacao calcula uma solugao aproximada para um pro-
blema de otimizacdo. Diferente de uma heuristica, o algoritmo garante a
qualidade da aproximagao no pior caso. Dado um problema e um algo-
ritmo de aproximagao A, escrevemos A(x) = y para a solugdo aproximada
da instancia x, @(x,y) para o valor dessa solucdo, y* para a solugdo 6timo e
OPT(x) = @(x,y*) para o valor da solugdo 6tima. Lembramos que uma apro-
ximacdo absoluta garante que D(x,y) = [OPT(x) — ¢(x,y)| < D para uma
constante D e todo x, enquanto uma aproxrimacao relativa garante que o erro
relativo E(x,y) = D(x,y)/ max{OPT(x), ¢(x,y)} < E para uma constante E e
todos x.

Definicao 3.1

Uma redugao preservando a aproximac¢ao entre dois problemas de minimizagao
T; e TT, consiste em um par de fungoes f e g (computdveis em tempo polino-
mial) tal que para instancia x; de TTy, x2 := f(x7) é instancia de TT; com

OPT]‘[2 (Xz) S OPT]‘[1 (X]) (31)
e para uma solucao yz de I, temos uma solugdo yi := ¢g(x1,y2) de TT; com
o, (x1,y1) < @, (x2,Y2) (32)

Uma reducgao preservando a aproximacao fornece uma x-aproximacao para [Ty
dada uma «-aproximacao para IT,, porque

o, (x1,91) < @, (x2,Y2) < «OPTyy, (x2) < «OPTyy, (x1).

Observe que essa definicdo é somente para problemas de minimizacdo. A
definicdo no case de maximizacao é semelhante.

3.1 Aproximacao para o problema da arvore de Steiner
minima

Seja G = (V,A) um grafo completo, nao-direcionado com custos cq > 0 nos
arcos. O problema da drvore Steiner minima (ASM) consiste em achar o
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3 Algoritmos de aproximagao

3 2

Figura 3.1: Grafo com fecho métrico.

subgrafo conexo minimo que inclui um dado conjunto de wvértices necessdrios
R C V. Esse subgrafo sempre é uma drvore (ex. 3.1). O conjunto V' \ R forma
os vértices Steiner. Para um conjunto de arcos A, define o custo c(A) =

ZaGA Ca-

Observagao 3.1

ASM é NP-completo. Para um conjunto fixo de vértices Steiner V/ C V\R, a
melhor solucao é a drvore geradora minima sobre RUV’. Portanto a dificuldade
¢ a selecao dos vértices Steiner da solugao 6tima. O

Definicao 3.2
Os custos s@o métricos se eles satisfazem a desigualdade triangular, i.e.

¢ij < Cikx + Cykj
para qualquer tripla de vértices 1, j, k.

Teorema 3.1
Existe um redugao preservando a aproximacgao de ASM para a versao métrica
do problema.

Prova. O “fecho métrico” de G = (V,A) é um grafo G’ completo sobre
vértices e com custos c{j := dij, sendo di; o comprimento do menor caminho
entre i e j em G. Evidentemente c{; < cij é portanto (3.1) é satisfeita. Para
ver que (3.2) é satisfeita, seja T’ uma solu¢ao de ASM em G’. Define T como
unido de todos caminhos definidos pelos arcos em T’, menos um conjunto de
arcos para remover eventuais ciclos. O custo de T é no maximo c(T’) porque
o custo de todo caminho é no méximo o custo da aresta correspondente em
T |
Consequéncia: Para o problema do ASM ¢ suficiente considerar o caso métrico.

Teorema 3.2
O AGM sobre R é uma 2-aproximagao para o problema do ASM.
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3.2 Aproximacoes para o PCV

2 1
1 1
2 o e
Figura 3.2: AGM sobre R e melhor solucio. @: vértice em R, ©: vértice
Steiner.

Prova. Considere a solucio 6tima S* de ASM. Duplica todas arestas® tal
que todo vértice possui grau par. Acha um caminho Euleriano nesse grafo.
Remove vértices duplicados nesse caminho. O custo do caminho C obtido
dessa forma nao é mais que o dobro do custo original: o grafo com todas
arestas custa 2¢(S*) e a remocao de vértices duplicados ndo aumenta esse
custo, pela metricidade. Como esse caminho é uma arvore geradora, temos
c(A) < c(C) < 2¢(S*) para AGM A. ]

3.2 Aproximacoes para o PCV

Teorema 3.3
Para fungéao polinomial a(n) o PCV néo possui «(n)-aproximagao em tempo
polinomial, caso P # NP.

Prova. Via redugdo de HC para PCV. Para uma instancia G = (V,A) de HC
define um grafo completo G’ com

{1 acA
Cq =

a(n)n caso contrério

Se G possui um ciclo Hamiltoniano, entao o custo da menor rota é n. Caso
contrério qualquer rota usa ao menos uma aresta de custo a(n)n e portanto
o custo total é > a(n)n. Portanto, dado uma o(n)-aproximacao de PCV
podemos decidir HC em tempo polinomial. ]

Caso métrico No caso métrico podemos obter uma aproximacao melhor.
Determina uma rota como segue:

1. Determina uma AGM A de G.

IEsse transformacio torna G em um multigrafo.
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2. Duplica todas arestas de A.
3. Acha um caminho Euleriano nesse grafo.

4. Remove vértices duplicados.

Teorema 3.4
O algoritmo acima define uma 2-aproximacao.

Prova. A melhor solu¢ao do PCV menos uma aresta é uma arvore geradora
de G. Portanto c(A) < OPT. A solugdo S obtida pelo algoritmo acima satisfaz
c(S) < 2¢(A) e portanto ¢(S) < 20PT, pelo mesmo argumento da prova do
teorema 3.2. |
O fator 2 dessa aproximagcao é resultado do passo 2 que duplica todas arestas
para garantir a existéncia de um caminho Euleriano. Isso pode ser garantido
mais barato: A AGM A possui um nimero par de vértices com grau impar
(por qué?), e portanto podemos calcular um emparelhamento perfeito minimo
E entre esse vértices. O grafo com arestas A U E possui somente vértices com
grau par e portanto podemos aplicar os restantes passos nesse grafo.

Teorema 3.5
A algoritmo usando um emparelhamento perfeito minimo no passo 2 é uma
3/2-aproximacao.

Prova. O valor do emparelhamento E ndo é mais que OPT/2: remove vértices
nao emparelhados em E da solucao 6tima do PCV. O ciclo obtido dessa forma
é a uniao dois emparelhamentos perfeitos E; e E; formados pelas arestas pares
ou impares no ciclo. Com E; o emparelhamento de menor custo, temos

¢(B) < c(BEq) < (c(Er) +c(E2))/2 = OPT/2
e portanto

c(S) =c(A)+c(E) <OPT+ OPT/2 =3/20PT.

3.3 Algoritmos de aproximacao para cortes

Seja G = (V,A,c) um grafo conectado com com pesos ¢ nas arestas. Lem-
bramos que um corte C é um conjunto de arestas que separa o grafo em duas
particdes S U V'\'S. Dado dois vértices s,t € V, o problema de achar um
corte minimo que separa s e t pode ser resolvido via fluxo méximo em tempo
polinomial. Generalizagoes desse problema sao:
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3.3 Algoritmos de aproximacao para cortes

e o

Figura 3.3: Identificagdo de dois terminais e um corte no grafo reduzido.
Vértices em verde, terminais em azul. A grafo reduzido possui
miultiplas arestas entre vértices.

e Corte multiplo minimo (CMM): Dado terminais s1,..., sk determine o
menor corte C que separa todos terminas.

e k-corte minimo (k-CM): Mesmo problema, sem terminais definidos. (Ob-
serve que todos k componentes devem ser néo vazios).

Fato 3.1

CMM é NP-dificil para qualquer k > 3. k-CM possui uma solugao polinomial
em tempo O(nkz) para qualquer k, mas é NP-dificil, caso k faz parte da
entrada.

Solugio de CMM Chamamos um corte que separa um vértice dos outros
um corte isolante. Idéia: A uniao de cortes isolantes para todo s; é um
corte multiplo. Para calcular o corte isolante para um dado terminal sj,
identificamos os restantes terminais em um unico vértice S e calculamos um
corte minimo entre s; e S. (Na identificagdo de vértices temos que remover
self-loops, e somar os pesos de miiltiplas arestas.)

Isso leva ao algoritmo

Algoritmo 3.1 (CI)
Entrada Grafo G = (V, A, c) e terminais sq,..., Sk.

Saida Um corte miiltiplo que separa os sj.

1. Para cada i € [1,k]: Calcula o corte isolante C; de s;.
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3 Algoritmos de aproximagao

Figura 3.4: Corte miiltiplo e decomposigdo em cortes isolantes.

2. Remove o maior desses cortes e retorne a uniao dos restantes.

Teorema 3.6
Algoritmo 3.1 é uma 2 — 2/k-aproximacao.

Prova. Considere o corte minimo C*. Ele pode ser representado com a uniao
de k cortes que separam os k componentes individualmente:

U ¢

1<i<k

(Veja fig. 3.4.) Cada aresta de C* faz parte das cortes das duas componentes

adjacentes, e portanto
> w(CP) =2w(C)
1<i<k
e ainda w(C;) < w(C}) para os cortes C; do algoritmo 3.1, porque nos usamos
o corte isolante minimo de cada componente. Logo para o corte C retornado
pelo algoritmo temos

w(C)<(1=1/k) Y w(C)<(1-1/k) Y w(C}) <2(1—1/kjw(C*).
1<i<k 1<i<k
|
A anélise do algoritmo é étimo, como o seguinte exemplo da fig. 3.5 mostra.
O menor corte que separa s; tem peso 2 — €, portanto o algoritmo retorne um
corte de peso (2—e)k—(2—¢€) = (k—1)(2— €), enquanto o menor corte que
separa todos terminais é o ciclo interno de peso k.
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3.3 Algoritmos de aproximacao para cortes

Figura 3.5: Exemplo de um grafo em que o algoritmo 3.1 retorne uma 2—2/k-
aproximagao.

Solucdo de k-CM  Problema: Como saber a onde cortar?

Fato 3.2

Existem somente n—1 cortes diferentes num grafo. Eles podem ser organizados
numa arvore de Gomory-Hu (AGH) T = (V,T). Cada aresta dessa &rvore
define um corte associado em G pelos dois componentes apds a sua remogao.

1. Para cada u,v € V o menor corte u—v em G ¢ igual a o menor corte u—v
em T (i.e. a aresta de menor peso no caminho unico entre w e v em T).

2. Para cada aresta a € T, w/(a) é igual a valor do corte associado.

Por conseqiiéncia, a AGH codifica o valor de todos cortes em G. Ele pode ser
calculado com n — 1 cortes s—t minimos.

Observagdo: A uniao dos cortes definidos por k — 1 arestas na AGH separa G
em ao menos k componentes. Isso leva ao seguinte algoritmo.

Algoritmo 3.2 (KCM)
Entrada Grafo G = (V,A,c).
Saida Um k-corte.

1. Calcula uma AGH T em G.

2. Forma a uniao dos k — 1 cortes mais leves definidos por k — 1
arestas em T.

Teorema 3.7
Algoritmo 3.2 é uma 2 — 2/k-aproximacao.
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3 Algoritmos de aproximagao

Prova. Seja C* = U1§i§k C} uma corte minimo, decomposto igual & prova
anterior. O nosso objetivo e demonstrar que existem k — 1 cortes definidos
por uma aresta em T que sdo mais leves que os C}.

Removendo C* de G gera componentes Vi, ..., Vi: Define um grafo sobre esses
componentes identificando vértices de uma componente com arcos da AGH T
entre os componentes, e eventualmente removendo arcos até obter uma nova
arvore T'. Seja C} o corte de maior peso, e define Vi como raiz da arvore.
Desta forma, cada componente V7,...,Vx_1 possui uma aresta associada na
dire¢do da raiz. Para cada dessas arestas (u,v) temos

w(Ci) > w'(u,v)

porque Cj isola o componente V; do resto do grafo (particularmente separa u
ev), e w(u,v) é o peso do menor corte que separa u e v. Logo

w(O) < ) wias< Y wC)<-1/k) 3 wi(C)=2(1-1/kw(C").

aeT’ 1<i<k 1<i<k

||
3.4 Exercicios

Exercicio 3.1
Por que um subgrafo de menor custo sempre é uma arvore?
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4 Algoritmos randomizados

Um algoritmo randomizado usa eventos randomicos na sua execucao. Modelos
computacionais adequadas sao maquinas de Turing randémicas — mais usadas
na area de complexidade — ou méaquinas RAM com um comando do tipo
random(8) que retorne um elemento randémico do conjunto S.

e Probabilidade morrer caindo da cama: 1/2 x 10° ( ,
).
e Probabilidade acertar 6 nimeros de 60 na mega-sena: 1/50063860.

e Probabilidade que a memoria falha: em memoria moderna temos 1000
FIT/MBit, i.e. 6 x 107 erros por segundo num memoria de 256 MB.!

e Probabilidade que um meteorito destréi um computador em cada milis-
segundo: > 271°° (supondo que cada milénio ao menos um meteorito
destréi uma drea de 100 m?).

Portanto, um algoritmo que retorna uma resposta falsa com baixa probabili-
dade é aceitavel. Em retorno um algoritmo randomizado em geral é

e mais simples;

e mais eficiente: para alguns problemas, o algoritmos randoémica é o mais
eficiente conhecido;

e maios robusto: algoritmos randomicos podem ser menos dependente da
distribuicao das entradas.

e a Unica alternativa: para alguns problemas, conhecemos sé algoritmos
randomicos.

Classes de complexidade

Definicao 4.1
Seja X algum alfabeto e R(«, 3) a classe de linguagens L C X* tal que existe
um algoritmo de decis@o em tempo polinomial A que satisfaz

LFIT é uma abreviacio de “failure-in-time” e é o niimero de erros cada 10? segundos. Para
saber mais sobre erros em memdria veja ( , ).
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e x € L = Pr[A(x) =sim] > «.
e x ¢ L = Pr[A(x) =ndo] > .

(A probabilidade é sobre todas sequéncias de bits randémicos r. Como o
algoritmo executa em tempo polinomial no tamanho da entrada |x|, o nimero
de bits randomicas [r| é polinomial em |x| também.)

Com isso podemos definir

e a classe RP := R(1/2,1) (randomized polynomial), dos problemas que
possuem um algoritmo com erro unilateral (no lado do “sim”); a classe
co — RP = R(1,1/2) consiste dos problemas com erro no lado de “nao”;

e a classe ZPP := RP N co — RP (zero-error probabilistic polynomial) dos
problemas que possuem algoritmo randomizado sem erro;

e a classe PP := R(1/2 + €,1/2 + €) (probabilistic polynomial), dos pro-
blemas com erro 1/2 4+ € nos dois lados; e

e a classe BPP := R(2/3,2/3) (bounded-error probabilistic polynomial),
dos problemas com erro 1/3 nos dois lados.

Algoritmos que respondem corretamente somente com uma certa probabili-
dade também sao chamados do tipo Monte Carlo, enquanto algoritmos que
usam randomizagao somente internamente, mas respondem sempre correta-
mente sao do tipo Las Vegas.

Exemplo 4.1 (Teste de identidade de polinomios)

Dado dois polinomios p(x) e q(x) de grau méximo d, como saber se p(x) =
q(x)? Caso temos os dois na forma candnica p(x) = Y y-; 4 Pix' ou na forma
fatorada p(x) = [ ];<;<q(x — Ti) isso é simples responder por comparacao de
coeficientes em tempo O(n). E caso contrdrio? Uma conversao para a forma
candnica pode custar @(d?) multiplicacoes. Uma abordagem randomizada
é vantajosa, se podemos avaliar o polindémio mais rdpido (por exemplo em

O(d)):

identico(p,q) :=
Seleciona um numero randdémico T no intervalo [1,100d].

COo )

Caso p(r) =q(r) retorne sim

Caso p(r) #q(r) retorne ‘‘nédo’’.
Caso p(x) = q(x), o algoritmo responde “sim” com certeza. Caso contrario
a resposta pode ser errada, se p(r) = q(r) por acaso. Qual a probabilidade
disso? p(x) — q(x) é um polinémio de grau d e possui no maximo d raizes.
Portanto, a probabilidade de encontrar um r tal que p(r) = q(r), caso p #Z q
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é d/100d = 1/100. Isso demonstra que o teste de identidade pertence a classe
co — RP. O

Amplificacao de probabilidades Caso nao estamos satisfeitos com a proba-
bilidade de 1/100 no exemplo acima, podemos repetir o algoritmo k vezes, e
responder “sim” somente se todas k repeticoes responderam “sim”. A pro-
babilidade erradamente responder “nao” para polindmios idénticos agora é
(1/100)X, i.e. ela diminui exponencialmente com o niimero de repeticdes.

Essa técnica é uma amplificacdo da probabilidade de obter a solugao correta.
Ela pode ser aplicada para melhorar a qualidade de algoritmos em todas clas-
ses “Monte Carlo”. Com um numero constante de repeticoes, obtemos uma
probabilidade baixa nas classes RP, co — RP e BPP. Isso nao se aplica a PP:
é possivel que € diminui exponencialmente com o tamanho da instancia. Um
exemplo de amplificacao de probabilidade encontra-se na prova do teorema 4.4.

Relacao entre as classes

Teorema 4.1
RP C NP.

Prova. Supde que temos um algoritmo em RP para algum problema L. Pode-
mos, nao-deterministicamente, gerar todas seqiiencias r de bits randomicos e
responder “sim” caso alguma execucao encontra “sim”. O algoritmo é correto,
porque caso para um x € L, ndo existe uma sequéncia randémica r tal que o
algoritmo responde “sim”. |

Teorema 4.2
Uma caraterizacao alternativa da classe ZPP é como classe de problemas tal
que existe um algoritmo A

e que responde ou “sim”, ou “nao” ou “nao sei”’,
e com Pr[A(x) =naosei] <1/2, e

e caso ele responde, ele ndo erra, i.e., para x tal que A(x) # néo sei temos
Alx)=1&xeL.

Prova. Para L € ZPP temos dois algoritmos A; € RP e A, € co — RP. Vamos
construir um algoritmo
if Aj(x) =nao e As(x) =nao then
return ‘‘nao’’
else if A;(x)=nado e A;z(x) =sim then
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3 )

return ‘‘nao sei
else if A;(x)=sim e A;(x) =nao then

{ caso impossivel }
else if A;(x)=sim e A,(x) =sim then

return ‘‘sim’’
end if
O algoritmo responde corretamente “sim” e “nao”, porque um dos dois al-
goritmos nao erra. Qual a probabilidade do segundo caso? Para x € L,
Pr[A;(x)ndo A Az(x) = sim] < 1/2 x 1 = 1/2. Similarmente, para x € L,
PrlA;(x)nao A Az (x) =sim] <1x 1/2=1/2. [ |

Teorema 4.3
ZPP C RP e ZPP C co — RP.

Prova. Seja A um algoritmo para L € ZPP. Constréi outro algoritmo que
sempre responde “nao” caso A responde “nao sei”, e senao responde igual.
No caso de co — RP analogamente constréi um algoritmos que responde “sim”
nos casos “nao sei” de A. |

Teorema 4.4
RP C BPP e co— RP C BPP.

Prova. Seja A um algoritmo para L € RP. Constréi um algoritmo A’

if A(x) =ndo e A(x) =ndo then

return ‘‘nao’’
else

return ‘‘sim’’
end if

Caso x € L, Pr[A’(x) = nao] = Pr[A(x) = nao AA(x) = nao] =1 x 1 =
Caso x € L,

Pr[A’(x) = sim] = 1 — Pr[A’(x) =nao] = 1 — Pr[A(x) = nao A A(x) = nao]
>1-1/2x1/2=3/4>2/3.
(Observe que para k repeticdes de A obtemos Pr[A’(x) = sim] > 1—1/2k i.e.,

o erro diminui exponencialmente com o ndmero de repetigoes.) O argumento
para co — RP € similar. |

Relacao com a classe NP e abundancia de testemunhas Lembramos que a
classe NP contém problemas que permitem uma verificagao de uma solugao em
tempo polinomial. Nao-deterministicamente podemos “chutar” uma solugao
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PP = co— PP

/

NP

?" .

BPP = co— BBP

/\

RP co—RP

Figura 4.1: Relacoes entre classes de complexidade para algoritmos randomi-
zados.

e verificd-la. Se o nimero de solugbes positivas de cada instancia é mais que
a metade do nuimero total de solugoes, o problema pertence a RP: podemos
gerar uma soluc¢ao randomica e testar se ela possui a caracteristica desejada.
Uma problema desse tipo possui uma abunddncia de testemunhas. Isso de-
monstra a importancia de algoritmos randomizados. O teste de equivaléncia
de polinémios acima é um exemplo de abundancia de testemunhas.

4.1 Corte minimo

CORTE MINIMO

Entrada Grafo nao-direcionado G = (V,A) com pesos ¢ : A — Z, nas
arestas.

Solucao Uma particdo V=SU (V\ S).

Objetivo Minimizar o peso do corte > (u.viea Clu,v)-
UwES,vEV\S ’
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Solugoes deterministicas:

e Calcular a drvore de Gomory-Hu: a aresta de menor peso define o corte
minimo.

e Calcular o corte minimo (via fluxo mdximo) entre um vértice fixo s € V
e todos outros vértices: o menor corte encontrado é o corte minimo.

Custo em ambos casos: O(n) aplicagoes de um algoritmo de fluxo méximo,
i.e. O(mn?log(n/m)) no caso do algoritmo de Goldberg-Tarjan.

Solucao randomizada para pesos unitarios No que segue supomos que 0s
pesos sao unitarios, i.e. ¢ = 1 para a € A. Uma abordagem simples é
baseada na seguinte observacao: se escolhemos uma aresta que nao faz parte
de um corte minimo, e contraimo-la (i.e. identificamos os vértices adjacentes),
obtemos um grafo menor, que ainda contém o corte minimo. Se escolhemos
uma aresta randomicamente, a probabilidade de por acaso escolher uma aresta
de um corte minimo é baixa.

cmr (G) :=
while G possui mais que dois vértices
escolhe uma aresta {u,v} randémicamente
identifica uw e vem G
end while
return o corte definido pelos dois vértices em G

Exemplo 4.2
TBD O

Dizemos que uma aresta “sobrevive” uma contracao, caso ele nao foi contraido.

Lema 4.1
A probabilidade que os k arestas de um corte minimo sobrevivem n — t con-
tracoes (de n para t vértices) é Q((t/n)?).

Prova. Como o corte minimo é k, cada vértice possui grau ao menos k, e
portanto o nimero de arestas apds iteragao 0 < i1 < n — t e maior ou igual
a k(n —1)/2 (com a convencdo que a “iteragdo 0” produz o grafo inicial).
Supondo que as k arestas do corte minimo sobreviveram a iteragao i, a pro-
babilidade de nao sobreviver a préxima iteragao é k/(k(n—1)/2) =2/(n—1).
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4.1 Corte minimo

Logo, a probabilidade do corte sobreviver todas iteragoes é ao menos

2 n—i-2
Il '—7== 11 ——

0<i<n—t 0<i<n—t

Cm=2)n-3)---t—1 [t (n\ ,
o= 1) et (>/()Q((t/n)).

Teorema 4.5
Para um dado corte minimo de tamanho k, a probabilidade do algoritmo
acima retornar esse corte é Q(n=2).

Prova. Caso o grafo possui n vértices, o algoritmo termina em n—2 iteragoes:
podemos aplicar o lema acima com t = 2. [ |

Observagao 4.1

O que acontece se repetirmos o algoritmo algumas vezes? Seja C; a varidvel
indicador que na repeti¢do i o corte minimo foi encontrado. Temos P[C; =
1] > 2n=2 e portanto P[C; = 0] < 1 — 2n~2. Para kn? repeticoes, vamos
encontrar C = )_ C; cortes minimos com probabilidade

PIC>1=1-P[C=0]>1—(1—2n"2) >1_¢ 2k
Para k = logn obtemos P[C > 1] > 1 —n"2. O

Logo, se repetimos esse algoritmo n? logn vezes e retornamos o menor corte
encontrado, achamos o corte minimo com probabilidade razoavel. Se a imple-
mentagao realiza uma contracdo em O(n) o algoritmo possui complexidade
O(n?) e com as repeticdes em total O(n*logn).

Implementacao de contracoes Para garantir a complexidade acima, uma
contracao tem que ser implementada em O(n). Isso é possivel tanto na repre-
sentacao por uma matriz de adjacéncia, quanto na representagao pela listas
de adjacéncia. A contracao de dois vértices adjacentes resulta em um novo
vértice, que é adjacente aos vizinhos dos dois. Na contragao arestas de um
vértice com si mesmo sao removidas. Muiltiplas arestas entre dois vértices tem
que ser mantidas para garantir a corretude do algoritmo.

(6]



O~ O Uk Wi+

— ==
N~ O O

4 Algoritmos randomizados

Um algoritmo melhor O problema principal com o algoritmo acima é que
nas ultimas iteragoes, a probabilidade de contrair uma aresta do corte minimo
é grande. Para resolver esse problema, executaremos o algoritmo duas vezes
para instancias menores, para aumentar a probabilidade de nao contrair o
corte minimo.

cmr2(G) =

if (G possui menos que 6 vértices)
determina o corte minimo C por exaustao

return C
else

. [1 +n/\/ﬂ

seja Gy o resultado de n—t contracoes em G
seja Gz o resultado de m—t contracoes em G
Cii=cmr2(Gy)
Cz:=cmr2(Gy)
return o menor dos dois cortes C; e C;

end if

Esse algoritmo possui complexidade de tempo O(n? logn) e encontra um corte
minimo com probabilidade Q(1/logn).

Lema 4.2
A probabilidade de um corte minimo sobreviver t = [1 +n/ ﬁ—‘ contragoes é

no minimo 1/2.

Prova. Pelo lema 4.1 a probabilidade é

[1+n/sqrt2] ([1+n/sqre2] —1) _ (1 +1n/V2)(n/V2)  V2+n L
nn—1) = nn—1) " 2n—1) " 2n 2

|
Seja P(t) a probabilidade que um corte com k arestas sobrevive caso o grafo
possui t vértices. Temos

Plo corte sobrevive em H;] > 1/2P( [1 + t/\ﬁb
Plo corte sobrevive em Ha] > 1/2P( {1 + t/\fzb
Plo corte nao sobrevive em Hy e Hy] < (1 —1/2P( [1 + t/\fZ—‘ ))?
P(t) = Plo corte sobrevive em Hy ou Ha] > 1— (1 —1/2P( [1 + t/\fZ-‘ ))?

- P(ﬁ +t\f2b - 1/4P(ﬁ +t/ﬁb2
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4.2 Teste de primalidade

Para resolver essa recorréncia, define Q(k) = P(ﬁk) com base Q(0) = 1 para
obter a recorréncia simplificada

Qe+ 1) =P(v2) = p([14+v2]) /a1 4 v2] 2
~P(VZ) — P(V2")?/4 = Q(k) — Q(k)*/4
e depois R(k) =4/Q(k) — 1 com base R(0) = 3 para obter

4 4 4
RKT T 1T RIOTT - Rz = R+ 1) =Rk 414+ 1/R(k).

R(k) satisfaz
k<R(k)<k+Hg_1+3

Prova. Por inducgdo. Para k = 1 temos 1 < R(1) =13/3 <1+ Hp+3 =5.
Caso a HI esté satisfeito, temos

R(k+1)=R(k)+14+1/R(k) >R(k) +1>k+1
Rk+1)=R(k)+1+1/R(k) <k+H_1+3+1+1/k=(k+1)+H+3

[ |
Logo, R(k) = k + O(logk), e com isso Q(k) = O(1/k) e finalmente P(t) =
O(1/logt).
Para determinar a complexidade de cmr2 observe que temos O(logn) niveis
recursivos e cada contracdo pode ser feito em tempo O(n?), portanto

T, = 2T [1 +n/ﬁb +0(m2).

Aplicando o teorema de Akra-Bazzi obtemos a equacio caracteristica 2(1/v2)P =
1 com soluggo p =2 e

" cu?

Th € O(n?(1 +J ?du)) =0(n?logn).
1

4.2 Teste de primalidade
Um problema importante na criptografia é achar nimeros primos grandes

(p.ex. RSA). Escolhendo um nidmero n randémico, qual a probabilidade de n
ser primo?
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4 Algoritmos randomizados

Teorema 4.6 ( ( )s ( ))
(Teorema dos nimeros primos.)
Para t(n) = |{p < n | p primo}| temos

7i(n)

A !

(Em particular (n) = ©(n/Inn).)

Portanto, a probabilidade de um nidmero randémico no intervalo [2,1] ser
primo assintoticamente é somente 1/lnn. Entao para achar um ntumero
primo, temos que testar se n é primo mesmo. Observe que isso nao é igual
a fatoragao de n. De fato, temos testes randomizados (e deterministicos) em
tempo polinomial, enquanto nao sabemos fatorar nesse tempo. Uma aborda-
gem simples é testar todos os divisores:

Priml(n) :=
for 1=2,3,57,...,|v/n| do
if in return ‘‘Nao’’
end for
return ‘‘Sim’
O tamanho da entrada n é t = logn bits, portanto o nimero de iteragoes
é O(y/n) = B(2Y2) e a complexidade Q(2'/2) (mesmo contando o teste de
divisao com O(1)) desse algoritmo é exponencial. Para testar a primalidade
mais eficiente, usaremos uma caracteristica particular dos ntimeros primos.

)

Teorema 4.7 (Fermat, Euler)
Para p primo e a > 0 temos

a’? =a mod p.
Prova. Por inducao sobre a. Base: evidente. Seja a? = a. Temos

(a+1)P = Z (?)ai

0<i<p

(P _plp—=1)--(p—i+1)
P\i)~ i—1)---1

porque p é primo. Portanto (a+1)P =aP +1e

epara0<i<p

0.

(a+1)P —(a+1)=a’+1—-(a+1)=a’ —a

(A ultima identidade é a hipdtese da indugdo.) |
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Definicao 4.2
Para a,b € Z denotamos com (a,b) o méximo divisor em comum (MDC) de
aeb. Nocaso (a,b) =1, a e b sao coprimo.

Teorema 4.8 (Divisao modulo p)
Se p primo e (b,p) =1

ab=cb modp=a=c modp.

(Em palavras: Numa identidade modulo p podemos dividir por nimeros co-
primos com p.)

Prova.

ab=cd & Fkab+kp =cb
<— Jka+kp/b=c

Como a,c € Z, temos kp/b € Z e blk ou blp. Mas (b,p) = 1, entao blk.
Definindo k' := k/b temos Ik’ a+ k'p = ¢, i.e. a =c. |
Logo, para p primo e (a,p) =1 (em particular se 1 < a < p)

a®'=1 modp. (4.1)

Um teste melhor entao é

Primo2(n) :=

seleciona a€[l,n—1] randémicamente

if (a,n)#1 return ‘‘Nao’’

if a»'=1 return ‘‘Sim’’

return ‘‘Nao’’
Complexidade: Uma multiplicacdo e divisao com logn digitos é possivel em
tempo O(log? n). Portanto, o primeiro teste (o algoritmo de Euclides em logn
passos) pode ser feito em tempo O(log3 n) e o segundo teste (exponenciagao
modular) é possivel implementar com O(logn) multiplicagoes (exercicio!).
Corretude: O caso de uma resposta “Nao” é certo, porque n nao pode ser
primo. Qual a probabilidade de falhar, i.e. do algoritmo responder “Sim”,
com n composto? O problema é que o algoritmo falha no caso de ndmeros
Carmichael.

Definicao 4.3

Um nimero composto n que satisfaz a mod a é um numero pseudo-
primo com base a. Um nimero Carmichael é um nimero pseudo-primo para
qualquer base a com (a,n) =1.

n-1 =1
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Os primeiros nimeros Carmichael sdo 561 = 3 x 11 x 17, 1105 e 1729 (veja
OEIS A002997). Existe um ndmero infinito deles:

Teorema 4.9 ( ( )
Seja C(n) o nimero de niimeros Carmichael até n. Assintoticamente temos
C(n) >n?/7.

Exemplo 4.3
C(n) até 10'° (OEIS A055553):

n 1 2 3 4 5 6 7 8 9 10
c(1om) 0 0 1 7 16 43 105 255 646 1547 . 0
[(10™)2/7] 2 4 8 14 27 52 100 194 373 1720

Caso um nimero n nao é primo, nem nimero de Carmichael, mais que n/2 dos
a € [l,n—1] com (a,n) =1 nao satisfazem (4.1) ou seja, com probabilidade
> 1/2 acharemos um testemunha que n é composto. O problema é que no
caso de nimeros Carmichael nao temos garantia.

Teorema 4.10
Para p primo temos

x? = mod p = x=+1 mod p.

O teste de Miller-Rabin usa essa caracteristica para melhorar o teste acima.

. _ t
Podemos escrever n — 1 = 2%u para um u impar. Temos a™ ! = (a%)? = 1.
Portanto, se a™ ' =1,

Ou a"“* =1 mod p ou existe um menor 1 € [0, t] tal que (a“)2i =1
Caso p é primo, 1/ (a%)?" = (a“)2i =1 pelo teorema (4.10). Por isso:

Definicao 4.4
Um ntmero n é um pseudo-primo forte com base a caso

Ou a*'=1 mod p ou existe um menor 1 € [0,t — 1] tal que (au)zi =-1

Primo3(n) :=
seleciona a € [l,n—1] randéomicamente
if (a,n)#1 return ‘‘Nao’’
seja n—1=2%
if a*=1 return ‘‘Sim

b

)

if (au)zi =-—1 para um i€ [0,t—1] return ‘‘Sim’
return ‘‘Nao’’
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Teorema 4.11 ( ( ), (
Caso n e composto e impar, mais que 3/4 dos a € [1,n— 1] com (a,n) =1
nao satisfazem o critério (4.2) acima.

Portanto com k testes randémicos, a probabilidade de falhar P[Sim | n composto] <
(1/4)k = 2-2%_ Na pratica a probabilidade é menor:

Teorema 4.12 ( ( )
A probabilidade de um tunico teste falhar para um ntmero com k bits e <
k242*\/i.

Exemplo 4.4
Paran € [2497,2°00 _1] a probabilidade de nao detectar um n composto com
um tnico teste é menor que

4992 % 42—VA99 oy =22
O

Teste deterministico O algoritmo pode ser convertido em um algoritmo de-
terministico, testando ao menos 1/4 dos a com (a,n) = 1. De fato, temos
para menor o testemunha w(n) de um nidmero n ser composto

Se 0 HGR ¢ verdade w(n) < 2log*n (4.3)

com HGR a hipétese generalizada de Riemann (uma conjetura aberta). Su-
pondo HGR, obtemos um algoritmo deterministico com complexidade O(log® n).
Em 2002, ( ) descobriram um algoritmo deterministico (sem

a necessidade da HGR) em tempo O(log'? n) que depois foi melhorado para
O(log®n).

Para testar: http://www.jjam.de/Java/Applets/Primzahlen/Miller_Rabin.
html.
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5 Complexidade e algoritmos parametrizados

A complexidade de um problema geralmente é resultado de diversos elementos.
Um algoritmo parameterizado separa explicitamente os elementos que tornam
um problema dificil, dos que sdo simples de tratar. A anélise da complexidade
parameterizada quantifica essas partes separadamente. Por isso, a comple-
xidade parameterizada é chamada uma complexidade “de duas dimensoes”.

Exemplo 5.1

O problema de satisfatibilidade (SAT) é NP-completo, i.e. ndo conhecemos um
algoritmo cuja complexidade cresce somente polinomialmente com o tamanho
da entrada. Porém, a complexidade deste problema cresce principalmente com
o nuimero de variaveis, e nao com o tamanho da entrada: com k varidveis e en-
trada de tamanho 1 solucdo trivial resolve o problema em tempo O(2%n). Em
outras palavras, para parametro k fixo, a complexidade é linear no tamanho
da entrada. O

Definigao 5.1

Um problema que possui um pardmetro k € N (que depende da insténcia) e
permite um algoritmo de complexidade f(k)[x|°(!) para entrada x e com f uma
funcao arbitraria, se chama tratdvel por parametro fixo (ingl. fixed-parameter
tractable, fpt). A classe de complexidade correspondente é FPT.

Um problema tratdvel por parametro fixo se torna tratavel na pratica, se o
nosso interesse sao instancias com parametro pequeno. E importante observar
que um problema permite diferentes parameterizagoes. O objetivo de projeto
de algoritmos parameterizados consiste em descobrir para quais parametros
que sao pequenos na pratica o problema possui um algoritmo parameterizado.
Neste sentido, o algoritmo parameterizado para SAT néo é interessante, por-
que o numero de varidveis na pratica é grande.

A seguir consideramos o problema NP-complete de cobertura por vértices. Uma
versao parameterizada é

k-COBERTURA POR VERTICES

Instancia Um grafo ndo-direcionado G = (V, A) e um ntimero k'.
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Solugdao Uma cobertura C, i.e. um conjunto C C V tal que Va € A :
anC#0.

Parametro O tamanho k da cobertura.

Objetivo Minimizar |C|.

Abordagem com forga bruta:

mve(G = (V,A)) =

if A=0 return 0

seleciona aresta {u,v}€ A nado coberta

Cr:={u}Umve(G \ {u})

Cy :={Umve(G\ {v})

return a menor entre as coberturas C; e Cy
Supondo que a selecdo de uma aresta e a reducao dos grafos é possivel em
O(n), a complexidade deste abordagem é dado pela recorréncia

Tn - 2Tn71 + O(Tl)

com solucdo T,, = O(2™). Para achar uma solu¢do com no méximo k vértices,
podemos poder a arvore de busca definido pelo algoritmo mvc na profundidade
k. Isso resulta em

Teorema 5.1
O problema k-cobertura por vértices é tratével por parametro fixo em O(2%n).

Prova. Até o nivel k vamos visitar O(2¥%) vértices na arvore de busca, cada
um com complexidade O(n). [ |
O projeto de algoritmos parameterizados frequentemente consiste em

e achar uma parameterizacao tal que o parte super-polinomial da com-
plexidade é limitada para um parte do problema que depende de um
parametro k que é pequeno na pratica,

e encontrar o melhor algoritmo possivel para o parte super-polinomial.
Exemplo 5.2

Considere o algoritmo direto (via uma drvore de busca, ou backtracking) para
SAT.

Introduzimos k na entrada, porque k mede uma caracteristica da solucio. Para evitar
conmplexidades artificias, entende-se que k nestes casos é codificado em undrio.
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BT-SAT(¢p,a) :=

if « é atribuigdo completa: return ¢(«)

if alguma clatdsula nao é satisfeita: return false

if BI-SAT(@,x1) return true

return BT-SAT (@, «0)
(x0 e ol denotam extensdes de uma atribuicao parcial das varidveis.)
Aplicado para 3SAT, das 8 atribuigbes por clatsula podemos excluir uma que
nao a satisfaz. Portanto a complexidade de BT-SAT é O(7™/3) = O( \3ﬁn) =
0(1.9129™). (Exagerando — mas nao mentindo — podemos dizer que isso é
uma aceleracao exponencial sobre a abordagem trivial que testa todas 2™
atribuigoes.)
O melhor algoritmo para 3SAT possui complexidade O(1.324™). %

Um algoritmo melhor para cobertura por vértices Consequéncia: O projeto
cuidadoso de uma &arvore de busca pode melhorar a complexidade. Vamos
aplicar isso para o problema de cobertura por vértices.

Um melhor algoritmo para a k-cobertura por vértices pode ser obtido pelas
seguintes observagoes

e Caso o grau maximo A de G é 2, o problema pode ser resolvido em
tempo O(n), porque G é uma colecdo de caminhos simples e ciclos.

e Caso contrario, temos ao menos um vértice v de grau 0o, > 3. Ou esse
vértice faz parte da cobertura minima, ou todos seus vizinhos N(v) (veja
figura 5.1).

mve’ (G) =
if A(G)<2 then
determina a cobertura minima C em tempo O(n)
return C
end if
seleciona um vértice v com grau o, >3
Ci ={Umve/(G\ {v})
Cy :=N(v)Umve/(G\ N(v))
return a menor cobertura entre C; e Cy
O algoritmo resolve o problema de cobertura por vértices minima de forma
exata. Se podamos a arvore de busca apos selecionar k vértices obtemos um
algoritmo parameterizado para k-cobertura por vértices. O ntimero de vértices
nessa arvore é

Vi=Vi_1+Vi3+1.
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0y >3

o\ /o
o
/ N\

e o e o
N Ny
C S,
A

Figura 5.1: Subproblemas geradas pela decisao da inclusao de um vértice v.
Vermelho: vértices selecionadas para a cobertura.

Lema 5.1
A solucdo dessa recorréncia é Vi = O(1.46561).

Teorema 5.2
O problema k-cobertura por vértices é tratavel por parametro fixo em O(1.4656%n).

Prova. Consideragoes acima com trabalho limitado por O(n) por vértice na
arvore de busca. |
Prova. (Do lema acima.) Com o ansatz V; < c¢' obtemos uma prova por
inducgao se para um i > ig
Vi=Vi 1 +Vis+l<c T+t 41<ct

e 321 >1

= 3—c2-1>0
(O ltimo passo é justificado porque para ¢ > 1 e ip suficientemente grande

o produto vai ser > 1.) ¢ —¢? — 1 possui uma tinica raiz positiva ~ 1.4656 e
para ¢ > 1.4656 temos ¢ —c? — 1> 0. [ |
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A Técnicas para a analise de algoritmos

Anadlise de recorréncias

Teorema A.1 (Akra-Bazzi e Leighton)
Dado a recorréncia

T(x) = (1) se x < Xp
B 2 1<i<k @iT(bix +hi(x)) + g(x) caso contrdrio

com constantes a; > 0, 0 < b; < 1 e fungodes g, h, tal que
9’00l € O(x%); [halx)] < x/log! "€ x

para um € > 0 e a constante x¢ e suficientemente grande

T(x) €O (xp (1 + JX jﬁlﬂ du>>
1

com p tal que Y ;. aib! =1.

Teorema A.2 ( ( ))
Dado a recorréncia

T(n) = e(1) n < maxj<i<k di
B > i xiT(n—di) caso contrério

seja « a raiz com a maior valor absoluto com multiplicidade 1 do polinéomio

caracteristico

d

z% — oqzd_d‘

e — (xkzd_dk
com d = maxy di. Entao

T(n) =0((ntam) = 0" («™).
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