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1.1.1 Heaps binários . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Heaps binomiais . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3 Heaps Fibonacci . . . . . . . . . . . . . . . . . . . . . . 13
1.1.4 Rank-pairing heaps . . . . . . . . . . . . . . . . . . . . . 18
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1 Algoritmos em grafos

1.1 Filas de prioridade e heaps

Uma fila de prioridade é uma estrutura de dados útil em vários aplicações.
Exemplos são árvores geradores mı́nimas, caminhos mais curtos de um vértice
para todos outros (algoritmo de Dijkstra) e Heapsort.

Exemplo 1.1
Árvore geradora mı́nima através do algoritmo de Prim.

Algoritmo 1.1 (Árvore geradora mı́nima)
Entrada Um grafo conexo não-orientado ponderado G = (V, E, c)

Sáıda Uma árvore T ⊆ E de menor custo total.

1 V ′ := {v0} para um v0 ∈ V
2 T := ∅
3 while V ′ 6= V do
4 e s c o l h e e = {u, v} com custo mı́nimo
5 ent re V ′ e V \ V ′ (com u ∈ V ′, v ∈ V \ V ′ )
6 V ′ := V ′ ∪ {v}

7 T := T ∪ {e}

8 end while

Algoritmo 1.2 (Prim refinado)
Implementação mais concreta:

1 T := ∅
2 for u ∈ V \ {v} do
3 i f u ∈ N(v) then
4 value(u) := cuv
5 pred(u) := v
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1 Algoritmos em grafos

6 else
7 value(u) :=∞
8 end i f
9 insert(Q, (value(u), u)) { pares (chave , elemento) }

10 end for
11 while Q 6= ∅ do
12 v := deletemin(Q)
13 T := T ∪ {pred(v)v}
14 for u ∈ N(v) do
15 i f u ∈ Q e cvu < value(u) then
16 value(u) := cuv
17 pred(u) := v

18 update(Q,u, cvu)
19 end i f
20 end for
21 end while

Custo? n× insert + n× deletemin +m× update.
♦

Observação 1.1
Implementação com vetor de distâncias: insert = O(1)1, deletemin = O(n),
update = O(1), e temos custo O(n+ n2 +m) = O(n2 +m). Isso é assintoti-
camente ótimo para grafos densos, i.e. m = Ω(n2). ♦

Observação 1.2
Implementação com lista ordenada: insert = O(n), deletemin = O(1), update =

O(n), e temos custo O(n2 + n+mn). ♦

Exemplo 1.2
Caminhos mı́nimos com o algoritmo de Dijsktra

Algoritmo 1.3 (Dijkstra)
Entrada Grafo não-direcionado G = (V, E) com pesos ce, e ∈ E nas ares-

tas, e um vértice s ∈ V.

1Com chaves compactas [1, n].
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1.1 Filas de prioridade e heaps

Sáıda A distânica mı́nima dv entre s e cada vértice v ∈ V.

1 ds := 0;dv :=∞, ∀v ∈ V \ {s}

2 visited(v) := false,∀v ∈ V
3 Q := ∅
4 insert(Q, (s, 0))
5 while Q 6= ∅ do
6 v := deletemin(Q)
7 visited(v) := true
8 for u ∈ N(v) do
9 i f not visited(u) then

10 i f du =∞ then
11 du := dv + dvu
12 insert(Q, (u,du))
13 else
14 du := min(dv + dvu, du)
15 update(Q, (u, du))
16 end i f
17 end i f
18 end for
19 end while

A fila de prioridade contém pares de vértices e distâncias.

Proposição 1.1
O algoritmo de Dijkstra possui complexidade

O(n) + n× deletemin + n× insert +m× update.

Prova. O pré-processamento (1-3) tem custo O(n). O laço principal é domi-
nado por no máximo n operações insert, n operações deletemin, em operações
update A complexidade real depende da implementação desses operações. �

Proposição 1.2
O algoritmo de Dijkstra é correto.

Prova. Provaremos por indução que cada vértice v selecionado na linha 6
do algoritmo dv é a distância mı́nima de s para v. Como base isso é correto
para v = s. Seja v 6= s um vértice selecionado na linha 6, e supõe que existe
um caminho P = s · · · xy · · · v de comprimento menor que dv, tal que y é o

5



1 Algoritmos em grafos

primeiro vértice que não foi processado (i.e. selecionado na linha 6) ainda. (É
posśıvel que y = v.) Sabemos que

dy ≤ dx + dxy porque x já foi processado
= dist(s, x) + dxy pela hipótese dx = dist(s, x)
≤ d(P) dP(s, x) ≥ dist(s, x) e P passa por xy
< dv, pela hipótese

uma contradição com a minimalidade do elemento extráıdo na linha 6. (Notação:
dist(s, x): menor distância entre s e x; d(P) distância total do caminho P;
dP(s, x): distância entre s e x no caminho P.) � ♦

Observação 1.3
Podemos ordenar n elementos usando um heap com n operações “insert”
e n operações “deletemin”. Pelo limite de Ω(n logn) para ordenação via
comparação, podemos concluir que o custo de “insert” mais “deletemin” é
Ω(logn). Portanto, ao menos uma das operações é Ω(logn). ♦

1.1.1 Heaps binários

Teorema 1.1 (Williams (1964))
Uma fila de prioridade pode ser implementado com custo insert = O(logn),
deletemin = O(logn), update = O(logn). Portanto, uma árvore geradora
mı́nima pode ser calculado em tempo O(n logn+m logn).

Um heap é uma árvore com chaves nos vértices que satisfazem um critério de
ordenação.

• min-heap: as chaves dos filhos são maior ou igual que a chave do pai;

• max-heap: as chaves dos filhos são menor ou igual que a chave do pai.

Um heap binário é um heap em que cada vértice possui no máximo dois filhos.
Implementaremos uma fila de prioridade com um heap binário completo. Um
heap completo fica organizado de forma que possui folhas somente no último
ńıvel, da esquerda para direita. Isso garante uma altura de O(logn).
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1.1 Filas de prioridade e heaps

Positivo: Achar a chave com valor mı́nimo (operação findmin) custa O(1).
Como implementar a inserção? Idéia: Colocar na última posição e restabelecer
a propriedade do min-heap, caso a chave é menor que a do pai.

1 i n s e r t (H ,c) :=
2 i n s e r e c na ú l t ima pos i ç ã o p

3 heapi fy−up(H ,p)
4
5 heapi fy−up(H ,p) :=
6 i f root (p) return
7 i f key ( parent (p))>key (p) then
8 swap ( key ( parent (p ) ) , key (p ) )
9 heapi fy−up(H , parent (p ) )

10 end i f

Lema 1.1
Seja T um min-heap. Decremente a chave do nó p. Após heapify-up(T, P)
temos novamente um min-heap. A operação custa O(logn).

Prova. Por indução sobre a profundidade k de p. Caso k = 1: p é a raiz,
após o decremento já temos um min-heap e heapify-up não altera ele. Caso
k > 1: Seja c a nova chave de p e d a chave de parent(p). Caso d ≤ c já temos
um min-heap e heapify-up não altera ele. Caso d > c heapify-up troca c e
d e chama heapify-up(T ,parent(p)) recursivamente. Podemos separar a troca
em dois passos: (i) copia d para p. (ii) copia c para parent(p). Após passo
(i) temos um min-heap T ′ e passo (ii) diminui a chave de parent(p) e como
a profundidade de parent(p) é k− 1 obtemos um min-heap após da chamada
recursiva, pela hipótese da indução.
Como a profundidade de T é O(logn), o número de chamadas recursivas
também, e como cada chamada tem complexidade O(1), heapify-up tem com-
plexidade O(logn). �
Como remover? A idéia básica é a mesma: troca a chave com o menor filho.
Para manter o heap completo, colocaremos primeiro a chave da última posição
na posição do elemento removido.

1 d e l e t e (H ,p):=
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1 Algoritmos em grafos

2 t roca ú l t ima pos i ç ã o com p

3 heapi fy−down(H ,p)
4
5 heapi fy−down(H ,p):=
6 i f (p não pos su i f i l h o s ) return
7 i f (p pos su i um f i l h o ) then
8 i f key ( l e f t (p))<key (p ) ) then swap ( key ( l e f t (p ) ) , key (p ) )
9 end i f

10 { p possui dois f i lhos }
11 i f key (p)>key ( l e f t (p ) ) or key (p)>key ( r i g h t (p ) ) then
12 i f ( key ( l e f t (p))<key ( r i g h t (p ) ) then
13 swap ( key ( l e f t (p ) ) , key (p ) )
14 heapi fy−down(H , l e f t (p ) )
15 else
16 swap ( key ( r i g h t (p ) ) , key (p ) )
17 heapi fy−down(H , r i g h t (p ) )
18 end i f
19 end i f

Lema 1.2
Seja T um min-heap. Incremente a chave do nó p. Após heapify-down(T, p)
temos novamente um min-heap. A operação custa O(logn).

Prova. Por indução sobre a altura k de p. Caso k = 1, p é uma folha e após o
incremento já temos um min-heap e heapify-down não altera ele. Caso k > 1:
Seja c a nova chave de p e d a chave do menor filho f. Caso c ≤ d já temos
um min-heap e heapify-down não altera ele. Caso c > d heapify-down troca c
e d e chama heapify-down(T ,f) recursivamente. Podemos separar a troca em
dois passos: (i) copia d para p. (ii) copia c para f. Após passo (i) temos um
min-heap T ′ e passo (ii) aumenta a chave de f e como a altura de f é k − 1,
obtemos um min-heap após da chamada recursiva, pela hipótese da indução.
Como a altura de T é O(logn) o número de chamadas recursivas também, e
como a cada chamada tem complexidade O(1), heapify-up tem complexidade
O(logn). �
Última operação: atualizar a chave.
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1.1 Filas de prioridade e heaps

1 update (H ,p ,v) :=
2 i f v < key(p) then
3 key (p):=v
4 heapi fy−up(H ,p)
5 else
6 key (p):=v
7 heapi fy−down(H ,p)
8 end i f

Sobre a implementação Uma árvore binária completa pode ser armazenado
em um vetor v que contém as chaves. Um pontador p a um elemento é
simplesmente o ı́ndice no vetor. Caso o vetor contém n elementos e possui
ı́ndices a partir de 0 podemos definir

1 root (p) := return p = 0

2 pai (p) := return b(p− 1)/2c
3 key (p) := return v[p]
4 l e f t (p) := return 2p+ 1
5 r i g h t (p) := return 2p+ 2
6 numchildren (p) := return max(min(n− left(p), 2), 0)

Outras observações:

• Para chamar update, temos que conhecer a posição do elemento no heap.
Para um conjunto de chaves compactos [0, n) isso pode ser implementado
usando um vetor pos, tal que pos[c] é o ı́ndice da chave c no heap.

• A fila de prioridade não possui teste u ∈ Q (linha 15 do algoritmo 1.2)
eficiente. O teste pode ser implementado usando um vetor visited, tal
que visited[u] sse u 6∈ Q.

1.1.2 Heaps binomiais

Um heap binomial é um coleção de árvores binomiais que satisfazem a or-
denação de um heap. A árvore binomial B0 consiste de um vértice só. A
árvore binomial Bi possui uma raiz com filhos B0, . . . , Bi−1. O posto de Bk é
k. Um heap binomial contém no máximo uma árvore binomial de cada posto.
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1 Algoritmos em grafos

B0 B1 B2 B3 B4

Lema 1.3
Uma árvore binomial tem as seguintes caracteŕısticas:

1. Bn possui 2n vértices, 2n−1 folhas (para n > 0), e tem altura n+ 1.

2. O ńıvel k de Bn (a raiz tem ńıvel 0) tem
(
n
k

)
vértices. (Isso explica o

nome.)

Prova. Exerćıcio. �

Observação 1.4
Podemos combinar dois Bi obtendo um Bi+1 e mantendo a ordenação do heap:
Escolhe a árvore com menor chave na raiz, e torna a outra filho da primeira.
Chamaremos essa operação “link”, e ela tem custo O(1) (veja observações
sobre a implementação).

Bi + Bi = Bi

Bi

♦

Observação 1.5
Um Bi possui 2i vértices. Um heap com n chaves consiste emO(logn) árvores.
Isso permite juntar dois heaps binomiais em tempo O(logn). A operação é
semelhante à soma de dois números binários com “carry”. Começa juntar os
B0. Caso tem zero, continua, case tem um, inclui no heap resultante. Caso
tem dois o heap resultante não recebe um B0. Define como “carry” o link dos
dois B0’s. Continua com os B1. Sem tem zero ou um ou dois, procede como
no caso dos B0. Caso tem três, incluindo o “carry”, inclui um no resultado, e
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1.1 Filas de prioridade e heaps

define como “carry” o link dos dois restantes. Continue desse forma com os
restantes árvores. Para heaps h1, h2 chamaremos essa operação meld(h1,h2).

♦

Com a operação meld, podemos definir as seguintes operações:

• makeheap(c): Retorne um B0 com chave c. Custo: O(1).

• insert(h,c): meld(h,makeheap(c)). Custo: O(logn).

• getmin(h): Mantendo um link para a árvore com o menor custo: O(1).

• deletemin(h): Seja Bk a árvore com o menor chave. Remove a raiz.
Define dois heaps: h1 é h sem Bk, h2 consiste dos filhos de Bk, i.e.
B0, . . . , Bk−1. Retorne meld(h1,h2). Custo: O(logn).

• updatekey(h,p): Como no caso do heap binário completo com custo
O(logn).

Em comparação com um heap binário completo ganhamos nada no caso pessi-
mista. De fato, a operação insert possui complexidade pessimista O(1) amor-
tizada. Um insert individual pode ter custo O(logn). Do outro lado, isso
acontece raramente. Uma análise amortizada mostra que em média sobre
uma séria de operações, um insert só custa O(1). Observe que isso não é uma
análise da complexidade média, mas uma análise da complexidade pessimista
de uma séria de operações.

Análise amortizada

Exemplo 1.3
Temos um contador binário com k bits e queremos contar de 0 até 2k − 1.
Análise “tradicional”: um incremento tem complexidade O(k), porque no caso
pior temos que alterar k bits. Portanto todos incrementos custam O(k2k).
Análise amortizada: “Poupamos” operações extras nos incrementos simples,
para “gastá-las” nos incrementos caros. Concretamente, setando um bit, gas-
tamos duas operações, uma para setar, outra seria “poupado”. Incremen-
tando, usaremos as operações “poupadas” para zerar bits. Desta forma, um
incremento custa O(1) e temos custo total O(2k).
Outra forma de análise amortizada, é usando uma função potencial ϕ, que
associa a cada estado de uma estrutura de dados um valor positivo (a “pou-
pança”). O custo amortizado de uma operação que transforma uma estrutura
e1 em uma estrutura e2 e c−ϕ(e1) +ϕ(e2), com c o custo de operação. No
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1 Algoritmos em grafos

exemplo do contador, podemos usar como ϕ(i) o número de bits na repre-
sentação binário de i. Agora, se temos um estado e1

11 · · · 1︸ ︷︷ ︸
p bits um

0 · · ·︸︷︷︸
q bits um

com ϕ(e1) = p+ q, o estado após de um incremento é

00 · · · 0︸ ︷︷ ︸
0

1 · · ·︸︷︷︸
q

com ϕ(e2) = 1 + q. O incremento custa c = p + 1 operações e portanto o
custo amortizado é

c−ϕ(e1) +ϕ(e2) = p+ 1− p− q+ 1+ q = 2 = O(1).

♦

Resumindo: Dado um série de operações com custos c1, . . . , cn o custo amor-
tizado dessa operação é

∑
1≤i≤n ci/n. Se temos m operações diferentes, o

custo amortizado da operação que ocorre nos ı́ndices J ⊆ [1,m] é
∑
i∈J ci/|J|.

As somas podem ser dif́ıceis de avaliar diretamente. Um método para simpli-
ficar o cálculo do custo amortizado é o método potencial. Acha uma função
potencial ϕ que atribui cada estrutura de dados antes da operação i um va-
lor não-negativo ϕi ≥ 0 e normaliza ela tal que ϕ1 = 0. Atribui um custo
amortizado

ai = ci −ϕi +ϕi+1

a cada operação. A soma dos custos não ultrapassa os custos originais, porque∑
ai =

∑
ci −ϕi +ϕi+1 = ϕn+1 −ϕ1 +

∑
ci ≥

∑
ci

Portanto, podemos atribuir a cada tipo de operação J ⊆ [1,m] o custo amorti-
zado

∑
i∈J ai/|J|. Em particular, se cada operação individual i ∈ J tem custo

amortizado ai ≤ F, o custo amortizado desse tipo de operação é F.

Custo amortizado do heap binomial Nosso potencial no caso do heap bi-
nomial é o número de árvores no heap. O custo de getmin e updatekey não
altera o potencial e por isso permanece o mesmo. makeheap cria uma árvore
que custa mais uma operação, mas permanece O(1). deletemin pode criar
O(logn) novas árvores, porque o heap contém no máximo um Bdlogne que
tem O(logn) filhos, e permanece também com custo O(logn). Finalmente,
insert reduz o potencial para cada link no meld e portanto agora custa somente
O(1) amortizado, com o mesmo argumento que no exemplo 1.3.
Desvantagem: a complexidade (amortizada) assintótica de calcular uma árvore
geradora mı́nima permanece O(n logn+m logn).
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1.1 Filas de prioridade e heaps

Meld preguiçosa Ao invés de reorganizar os dois heaps em um meld, pode-
mos simplesmente concatená-los em tempo O(1). Isso pode ser implementado
sem custo adicional nas outras operações. A única operação que não tem com-
plexidade O(1) é deletemin. Agora temos uma coleção de árvores binomiais
não necessariamente de posto diferente. O deletemin reorganiza o heap, tal
que obtemos um heap binomial com árvores de posto único novamente. Para
isso, mantemos um vetor com as árvores de cada posto, inicialmente vazio.
Seqüencialmente, cada árvore no heap, será integrado nesse vetor, executando
operações link só for necessário. O tempo amortizado de deletemin permanece
O(logn).
Usaremos um potencial ϕ que é o dobro do número de árvores. Supondo que
antes do deletemin temos t árvores e executamos l operações link, o custo
amortizado é

(t+ l) − 2t+ 2(t− l) = t− l.

Mas t − l é o número de árvores depois o deletemin, que é O(logn), porque
todas árvores possuem posto diferente.

Sobre a implementação Um forma eficiente de representar heaps binomiais,
é em forma de apontadores. Além das apontadores dos filhos para o os pais,
cada pai possui um apontador para um filho e os filhos são organizados em
uma lista encadeada dupla. Mantemos uma lista encadeada dupla também
das ráızes. Desta forma, a operação link pode ser implementada em O(1).

1.1.3 Heaps Fibonacci

Um heap Fibonacci é uma modificação de um heap binomial, com uma operação
decreasekey de custo O(1). Com isso, uma árvore geradora mı́nima pode ser
calculada em tempo O(m+n logn). Para conseguir decreasekey em O(1) não
podemos mais usar heapify-up, porque heapify-up custa O(logn).
Primeira tentativa:
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1 Algoritmos em grafos

• delete(h,p): Corta p de h e executa um meld entre o resto de h e os filhos
de p. Uma alternativa é implementar delete(h,p) como decreasekey(h,p,−∞)
e deletemin(h).

• decreasekey(h,p): A ordenação do heap pode ser violada. Corta p é
execute um meld entre o resto de h e p.

Problema com isso: após de uma série de operações delete ou decreasekey, a
árvore pode se tornar “esparso”, i.e. o número de vértices não é mais expo-
nencial no posto da árvore. A análise da complexidade de operações como
deletemin depende desse fato para garantir que temos O(logn) árvores no
heap. Conseqüência: Temos que garantir, que uma árvore não fica “podado”
demais. Solução: Permitiremos cada vértice perder no máximo dois filhos.
Caso o segundo filho é removido, cortaremos o próprio vértice também. Para
cuidar dos cortes, cada nó mantém ainda um valor booleana que indica, se já
foi cortado um filho. Observe que um corte pode levar a uma série de cortes
e por isso se chama de corte em cascatas (ingl. cascading cuts). Um corte
em cascata termina na pior hipótese na raiz. A raiz é o único vértice em que
permitiremos cortar mais que um filho. Observe também que por isso não
mantemos flag na raiz.

Implementações Denotamos com h um heap, c uma chave e p um elemento
do heap. minroot(h) é o elemento do heap que correspondo com a raiz da
chave mı́nima, e cut(p) é uma marca que verdadeiro, se p já perdeu um filho.

1 i n s e r t (h , c) :=
2 meld ( makeheap (c ) )
3
4 getmin (h) :=
5 return minroot (h)
6
7 d e l e t e (h ,p) :=
8 decreasekey (h ,p ,−∞)
9 de letemin (h)

10
11 meld (h1 ,h2 ) :=
12 h := l i s t a com r a ı́ z e s de h1 e h2 (em O(1))
13 minroot (h) :=
14 i f key ( minroot (h1))<key ( minroot (h2 ) ) h1 else h2
15
16 decreasekey (h ,p ,c) :=
17 key (p):= c

14



1.1 Filas de prioridade e heaps

18 i f c < key ( minRoot (h ) )
19 minRoot (h) := p

20 i f not root (p)
21 i f key ( parent (p))>key (p)
22 cor ta p e ad i c i ona na l i s t a de r a ı́ z e s de h

23 cut (p) := f a l s e
24 cascading−cut (h , parent (p ) )
25
26 cascading−cut (h ,p) :=
27 { p perdeu um fi lho }
28 i f root (p)
29 return
30 i f ( not cut (p ) ) then
31 cut (p) := true
32 else
33 cor ta p e ad i c i ona na l i s t a de r a ı́ z e s de h

34 cut (p) := f a l s e
35 cascading−cut (h , parent (p ) )
36 end i f
37
38 de letemin (h) :=
39 remover minroot (h)
40 juntar as l i s t a s do r e s t o de h e dos f i l h o s de minroot (h)
41 { reorganizar heap }
42 determina o posto máximo M = M(n) de h

43 for 0 ≤ i ≤M
44 ri := undef ined
45 for toda r a ı́ z r do
46 remove da l i s t a de r a ı́ z e s
47 d := degree(r)
48 while (rd not undef ined ) do
49 r := l i n k (r, rd )
50 rd := undef ined
51 d := d+ 1
52 end while
53 rd := r

54 d e f i n i r a l i s t a de r a ı́ z e s pe l a s entradas d e f i n i d a s ri
55 determinar o novo minroot
56
57 l i n k (h1 ,h2 ) :=
58 i f ( key (h1)<key (h2 ) )

15
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59 h := makechild (h1 ,h2 )
60 else
61 h := makechild (h2 ,h1 )
62 cut (h1 ) := f a l s e
63 cut (h2 ) := f a l s e
64 return h

Para concluir que a implementação tem a complexidade desejada temos que
provar que as árvores com no máximo um filho cortado não ficam esparsos
demais e analisar o custo amortizado das operações.

Custo amortizado Para análise usaremos um potencial de c1t+ c2m sendo
t o número de árvores, m o número de vértices marcados e c1, c2 constantes.
As operações makeheap, insert, getmin e meld (preguiçoso) possuem com-
plexidade (real) O(1). Para decreasekey temos que considerar o caso, que o
corte em cascata remove mais que uma subárvore. Supondo que cortamos
n árvores, o número de ráızes é t + n após dos cortes. Para todo corte em
cascata, a árvore cortada é desmarcada, logo temos no máximo m − (n − 1)
marcas depois. Portanto custo amortizado é

O(n) − (c1t+ c2m) + (c1(t+ n) + c2(m− (n− 1))) = c0n− (c2 − c1)n+ c2

e com c2 − c1 ≥ c0 temos custo amortizado constante c2 = O(1).
A operação deletemin tem o custo real O(M + t), com as seguintes contri-
buições

• Linhas 42–43: O(M).

• Linhas 44–52: O(M + t) com t o número inicial de árvores no heap. A
lista de ráızes contém no máximo as t árvores de h e mais M filhos da
raiz removida. O laço total não pode executar mais que M+t operações
link, porque cada um reduz o número de ráızes por um.

• Linhas 53–54: O(M).

Seja m o número de marcas antes do deletemin e o número m ′ depois. Como
deletemin marca nenhum vértice, temos m ′ ≤ m. O número de árvores t ′

depois de deletemin satisfaz t ′ ≤ M porque deletemin garante que existe no
máximo uma árvore de cada posto. Portanto, o potencial depois de deletemin
e ϕ ′ = c1t+ c2m

′ ≤ c1M+ c2m, e o custo amortizado é

O(M+ t) − (c1t+ c2m) +ϕ ′ ≤ O(M+ t) − (c1t+ c2m) + (c1M+ c2m)

= (c0 + c1)M+ (c0 − c1)t

e com c1 ≥ c0 temos custo amortizado O(M).
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Um limite para M Para provar que deletemin tem custo amortizado logn,
temos que provar que M = M(n) = O(logn). Esse fato segue da maneira
”cautelosa”com que cortamos vértices das árvores.

Lema 1.4
Seja p um vértice arbitrário de um heap Fibonacci. Considerando os filhos na
ordem temporal em que eles foram introduzidos, filho i possui ao menos i− 2
filhos.

Prova. No instante em que o filho i foi introduzido, p estava com ao menos
i− 1 filhos. Portanto i estava com ao menos i− 1 filhos também. Depois filho
i perdeu no máximo um filho, e portanto possui ao menos i− 2 filhos. �
Quais as menores árvores, que satisfazem esse critério?

F0 F1 F2 F3 F4

Lema 1.5
Cada subárvore com uma raiz p com k filhos possui ao menos Fk+2 vértices.

Prova. Seja Sk o número mı́nimo de vértices para uma subárvore cuja raiz
possui k filhos. Sabemos que S0 = 1, S1 = 2. Define S−2 = S−1 = 1. Com
isso obtemos para k ≥ 1

Sk =
∑
0≤i≤k

Sk−2 = Sk−2 + Sk−3 + · · ·+ S−2 = Sk−2 + Sk−1.

Comparando Sk com os números Fibonacci

Fk =

{
k se 0 ≤ k ≤ 1
Fk−2 + Fk−1 se k ≥ 2

e observando que S0 = F2 e S1 = F3 obtemos Sk = Fk+2. Usando que
Fn ∈ Θ(Φn) com Φ = (1+

√
5)/2 (exerćıcio!) conclui a prova. �

Corolário 1.1
O posto máximo de um heap Fibonacci com n elementos é O(logn).
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Sobre a implementação A implementação da árvore é a mesmo que no caso
de binomial heaps. Uma vantagem do heap Fibonacci é que podemos usar os
nós como ponteiros – lembre que a operação decreasekey precisa isso, porque
os heaps não possuem uma operação de busca eficiente. Isso é posśıvel, porque
sem heapify-up e heapify-down, os ponteiros mantem-se válidos.

1.1.4 Rank-pairing heaps

Haeupler et al. (2009) propõem um rank-pairing heap (um heap “empare-
lhando postos”) com as mesmas garantias de complexidade que um heap Fi-
bonacci e uma implementação simplificada e mais eficiente na prática (ver
observação 1.8).

Torneios Um torneio é uma representação alternativa de heaps. Começando
com todos elementos, vamos repetidamente comparar pares de elementos, e
promover o vencedor para o próximo ńıvel (Fig. 1.1(a)). Uma desvantagem
de representar torneios explicitamente é o espaço para chaves redundantes.
Por exemplo, o campeão (i.e. o menor elemento) ocorre O(logn) vezes. A
figura 1.1(b) mostra uma representação sem chaves repetidas. Cada chave
é representado somente na comparação mais alta que ele ganhou, as outras
comparações ficam vazias. A figura 1.1(c) mostra uma representação compacta
em forma de semi-árvore. Numa semi-árvore cada elemento possui um filho
ordenado (na figura o filha da esquerda) e um filho não-ordenado (na figura
o filho da direita). O filho ordenado é o perdedor da comparação direta com
o elemento, enquanto o filho não-ordenado é o perdedor da comparação com
o irmão vazio. A raiz possui somente um filho ordenado.
Cada elemento de um torneio possui um posto. Por definição, o posto de uma
folha é 0. Uma comparação justa entre dois elementos do mesmo posto r
resulta num elemento com posto r + 1 no próximo ńıvel. Numa comparação
injusta entre dois elementos com postos diferentes, o posto do vencedor é
definido pelo maior dois postos dos participantes (uma alternativa é que o
posto fica o mesmo). O posto de um elemento representa um limite inferior
do número de elementos que perderam contra-lo:

Lema 1.6
Um torneio com campeão de posto k possui ao menos 2k elementos.

Prova. Por indução. Caso um vencedor possui posto k temos duas possibi-
lidades: (i) foi o resultado de uma comparação justa, com dois participantes
com posto k − 1 e pela hipótese da indução com ao menos 2k−1 elementos,
tal que o vencedor ganhou contra ao menos 2k elementos. (ii) foi resultado de
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(a)

3

3

4

13 4

3

3 8

5

5

5 17

7

11 7

(b)

3

4

13 8

5

17

7

11

(c)

3

5

7

11 17

4

13 8

Figura 1.1: Representações de heaps.
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uma comparação injusta. Neste caso um dos participantes possúıu posto k e
o vencedor novamente ganhou contra ao menos 2k elementos. �
Cada comparação injusta torna o limite inferior dado pelo posto menos preciso.
Por isso uma regra na construção de torneios é fazer o maior número de
comparações justas posśıveis. A representação de um elemento de heap é
possui quatro campos para a chave (c), o posto (r), o filho ordenado (o) e o
filho não-ordendo (u):

1 de f Node ( c , r , o , u )
Podemos implementar as operações de uma fila de prioridade (sem update ou
decreasekey) como segue:

1 { compara duas árvores }
2 l i n k (t1 ,t2 ) :=
3 i f t1 . c < t2 . c then
4 return makechild (t1 ,t2 )
5 else
6 return makechild (t2 ,t1 )
7 end i f
8
9 makechild ( s , t ) :=

10 t . u := s . o
11 s . o := t
12 se t rank ( t )
13 return s
14
15 se t rank ( t ) :=
16 i f t . o . r = t . u . r
17 t . r = t . o . r + 1
18 else
19 t . r = max( t . o . r , t . u . r )
20 end i f
21
22 { cria um heap com um único elemento com chave c }
23 make−heap ( c ) := return Node ( c , 0 , undef ined , undef ined )
24
25 { inserte chave c no heap }
26 i n s e r t (h , c ) := l i n k (h , make−heap ( c ) )
27
28 { união de dois heaps }
29 meld (h1 ,h2 ) := l i n k (h1 ,h2 )
30
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31 { elemento ḿınimo do heap }
32 getmin (h) := return h
33
34 { deleção do elemento ḿınimo do heap }
35 de letemin (h) :=
36 a loca array r0 . . . rh.o.r+1
37 t = h . o
38 while t not undef ined do
39 t ′ := t . u
40 t . u := undef ined
41 r e g i s t e r ( t , r )
42 t := t ′

43 end while
44 h ′ := undef ined
45 for i = 0, . . . , h.o.r+ 1 do
46 i f ri not undef ined
47 h ′ := l i n k (h ′ ,ri )
48 end i f
49 end for
50 return h ′

51 end
52
53 r e g i s t e r ( t , r ) :=
54 i f rt.o.r+1 i s undef ined then
55 rt.o.r+1 := t
56 else
57 t := l i n k ( t , rt.o.r+1 )
58 rt.o.r+1 := undef ined
59 i n s e r t ( t , r )
60 end i f
61 end

(A figura 1.2 visualiza a operação “link”.)

Observação 1.6
Todas comparações de “register” são justas. As comparações injustas ocorrem
na construção da árvore final nas linhas 35–39. ♦

Lema 1.7
Num torneio balanceado o custo amortizado de “make-heap”, “insert”, “meld”
e “getmin” é O(1), o custo amortizado de “deletemin” é O(logn).
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link( t1 t2 ) = t1

t2

Figura 1.2: A operação “link” para semi-árvores no caso t1.c < t2.c.

h,min

last

t1 t2 t3 t4

Figura 1.3: Representação de um heap binomial.

Prova. Usaremos o número de comparações injustas no torneio como poten-
cial. “make-heap” e “getmin” não alteram o potencial, “insert” e “meld” au-
mentam o potencial por no máximo um. Portanto a complexidade amortizada
dessas operações é O(1). Para analisar “deletemin” da raiz r do torneio vamos
supor que houve k comparações injustas com r. Além dessas comparações in-
justas, r participou em no máximo logn comparações justas pelo lema 1.6.
Em soma vamos liberar no máximo k + logn árvores, que reduz o potencial
por k, e com no máximo k + logn comparações podemos produzir um novo
torneio. Dessas k+logn comparações no máximo logn são comparações injus-
tas. Portanto o custo amortizado é k+ logn− k+ logn = 2 logn = O(logn).
�

Heaps binomiais com varredura única O custo de representar o heap numa
árvore única é permitir comparações injustas. Uma alternativa é permitir
somente comparações justas, que implica em manter uma coleção de O(logn)
árvores. A estrutura de dados resultante é similar com os heaps binomiais:
manteremos uma lista (simples) de ráızes das árvores, junto com um ponteiro
para a árvore com a ráız de menor valor. O heap é representado pela ráız de
menor valor, ver Fig. 1.3.

1 i n s e r t (h , c ) :=
2 i n s e r e make−heap ( c ) na l i s t a de r a i z e s
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3 a t u a l i z e a á rvore mı́nima
4
5 meld (h1 ,h2 ) :=
6 concatena as l i s t a de h1 e h2
7 a t u a l i z e a á rvore mı́nima

Somente “deletemin” opera diferente agora:

1 de letemin (h) :=
2 a loca um array de l i s t a s r0 . . . rdlogne
3 remove a á rvore mı́nima da l i s t a de r a i z e s
4 d i s t r i b u i as r e s t a n t e s á rvo re s sobre r

5
6 t = h . o
7 while t not undef ined do
8 t ′ := t . u
9 t . u := undef ined

10 i n s e r e t na l i s t a rt.o.r+1
11 t := t ′

12 end while
13
14 { executa o maior número poss ı́vel }
15 { de comparações justas num único passo }
16
17 h := undef ined { l i s t a f ina l de raizes }
18 for i = 0, . . . , dlogne do
19 while |ri| ≥ 2
20 t := l i n k (ri . head , ri . head . next )
21 i n s e r e t na l i s t a h

22 remove ri . head , ri . head . next da l i s t a ri
23 end i f
24 i f |ri| = 1 i n s e r e ri.head na l i s t a h

25 end for
26 return h

Observação 1.7
Continuando com comparações justas até sobrar somente uma árvore de cada
posto, obteremos um heap binomial. ♦

Lema 1.8
Num heap binomial com varredura única o custo amortizado de “make-heap”,
“insert”, “meld”, “getmin” é O(1), o custo amortizado de “deletemin” é
O(logn).
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Prova. Usaremos o dobro do número de árvores como potencial. “getmin”
não altera o potencial. “make-heap”, “insert” e “meld” aumentam o potencial
por no máximo dois (uma árvore), e portanto possuem custo amortizado O(1).
“deletemin” libera no máximo logn árvores, porque todas comparações foram
justas. Com um número total de h árvores, o custo de deletemin é O(h).
Sem perda de generalidade vamos supor que o custo é h. A varredura final
executa ao menos (h− logn)/2− 1 comparações justas, reduzindo o potencial
por ao menos h − logn − 2. Portanto o custo amortizado de “deletemin” é
h− (h− logn− 2) = logn+ 2 = O(logn). �

rp-heaps O objetivo do rp-heap é adicionar ao heap binomial de varredura
única uma operação “decreasekey” com custo amortizado O(1). A idéıa e
os problemas são os mesmos do heap Fibonacci: (i) para tornar a operação
eficiente, vamos cortar a sub-árvore do elemento cuja chave foi diminúıda. (ii)
o heap Fibonacci usava cortes em cascata para manter um número suficiente
de elementos na árvore; no rp-heap ajustaremos os postos do heap que perde
uma sub-árvore. Para poder cortar sub-árvores temos que permitir uma folga
nos postos. Num heap binomial a diferença do posto de um elemento com o
posto do seu pai (caso existe) sempre é um. Num rp-heap do tipo 1, exigimos
somente que os dois filhos de um elemento possuem diferença do posto 1 e
1, ou 0 e ao menos 1. Num rp-heap do tipo 2, exigimos que os dois filhos
de um elemento possuem diferença do posto 1 e 1, 1 e 2 ou 0 e ao menos 2.
(Figura 1.4.)
Com isso podemos implementar o “decreasekey” (para rp-heaps do tipo 2)
como segue:

1 decreasekey (h , e ,∆) :=
2 e . c := e . c − ∆

3 i f root ( e )
4 return
5 i f parent ( e ) . o = e then
6 parent ( e ) . o := e . u
7 else
8 parent ( e ) . u := e . u
9 end i f

10 e . u := undef ined
11 u := parent ( e )
12 parent ( e ) := undef ined
13 i n s e r e e na l i s t a de r a ı́ z e s de h

14 decreaserank (u)
15
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(a)

r

r+ 1 r+ 1

r

r+ 0 ≥ r+ 1

r

≥ r+ 1 r+ 0

(b)

r

r+ 1 r+ 1

r

r+ 1 r+ 2

r

r+ 2 r+ 1

r

r+ 0 ≥ r+ 2

r

≥ r+ 2 r+ 0

Figura 1.4: Diferenças no posto de rp-heaps do tipo 1 (a) e tipo 2 (b).

e

→ + e

e

→ + e

Figura 1.5: A operação “decreasekey”.
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16 rank ( e ) :=
17 i f e i s undef ined
18 return −1
19 else
20 return e . r
21
22 decreaserank (u) :=
23 i f root (u)
24 return
25 i f rank (u . o ) > rank (u . u)+1 then
26 k := rank (u . o )
27 else i f rank (u . u) > rank (u . o)+1 then
28 k := rank (u . u)
29 else
30 k = max( rank (u . o ) , rank (u . u))+1
31 end i f
32 i f u . r = k then
33 return
34 else
35 u . r := k
36 decreaserank ( parent (u ) )
37
38 d e l e t e (h , e ) :=
39 decreasekey (h , e , −∞)
40 de letemin (h)

Observação 1.8
Para implementar o rp-heap precisamos além dos ponteiros para o filho or-
denado e não-ordenado um ponteiro para o pai do elemento. A (suposta)
eficiência do rp-heap vem do fato que o decreasekey altera os postos do heap,
e pouco da estrutura dele e do fato que ele usa somente três ponteiros por
elemento, e não quatro como o heap Fibonacci. ♦

Lema 1.9
Uma semi-árvore do tipo 2 com posto k contém ao menos φk elementos, sendo
φ = (1+

√
5)/2 a razão áurea.

Prova. Por indução. Para folhas o lema é válido. Caso a raiz com posto k
não é folha podemos obter duas semi-árvores: a primeira é o filho da raiz sem
o seu filho não-ordenado, e a segunda é a raiz com o filho não ordenado do
seu filho ordenado (ver Fig. 1.6). Pelas regras dos postos de árvores de tipo
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r

f

r f

= +

Figura 1.6: Separar uma semi-árvore de posto k em duas.

insert getmin deletemin update decreasekey delete
Vetor O(1) O(1) O(n) O(1) (update) O(1)
Lista ordenada O(n) O(1) O(1) O(n) (update) O(1)
Heap binário O(logn) O(1) O(logn) O(logn) (update) O(logn)
Heap binomial O(1) O(1) O(logn) O(logn) (update) O(logn)
Heap binomial(1) O(1) O(1) O(log n) O(logn) (update) O(logn)
Heap Fibonacci O(1) O(1) O(logn) - O(1) O(logn)
rp-heap O(1) O(1) O(log n) - O(1) O(log n)

Tabela 1.1: Complexidade das operações de uma fila de prioridade. Comple-
xidades em negrito são amortizados. (1): meld preguiçoso.

dois, essas duas árvores possuem postos k− 1 e k− 1, ou k− 1 e k− 2 ou k e
no máximo k − 2. Portanto, o menor número de elementos nk contido numa
semi-árvore de posto k satisfaz a recorrência

nk = nk−1 + nk2

que é a recorrência dos números Fibonacci. �

Lema 1.10
As operações “decreasekey” e “delete” possuem custo amortizado O(1) e
O(logn)

Prova. Ver (Haeupler et al., 2009). �

Resumo: Filas de prioridade

1.1.5 Tópicos

O algoritmo (assintoticamente) mais rápido para árvores geradoras mı́nimas
usa soft heaps é possui complexidade O(mα(m,n)), com α a função inversa
de Ackermann (Chazelle, 2000; Kaplan and Zwick, 2009).
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1.1.6 Exerćıcios

Exerćıcio 1.1
Prove lema 1.3. Dica: Use indução sobre n.

Exerćıcio 1.2
Prove que um heap binomial com n vértices possui O(logn) árvores. Dica:
Por contradição.

Exerćıcio 1.3 (Laboratório 1)
1. Implementa um heap binário. Escolhe casos de teste adequados e verifica

o desempenho experimentalmente.

2. Implementa o algoritmo de Prim usando o heap binário. Novamente
verifica o desempenho experimentalmente.

Exerćıcio 1.4 (Laboratório 2)
1. Implementa um heap binomial.

2. Verifica o desempenho dele experimentalmente.

3. Verifica o desempenho do algoritmo de Prim com um heap Fibonacci
experimentalmente.

28



1.2 Fluxos em redes

Figura 1.7: Grafo (esquerda) com circulação (direita)

1.2 Fluxos em redes

Definição 1.1
Para um grafo direcionado G = (V, E) (E ⊆ V×V) escrevemos δ+(v) = {(v, u) |

(v, u) ∈ E} para os arcos saintes de v e δ−(v) = {(u, v) | (u, v) ∈ E} para os
arcos entrantes em v.

Seja G = (V, E, c) um grafo direcionado e capacitado com capacidades c :
E → R nos arcos. Uma atribuição de fluxos aos arcos f : E → R em G se
chama circulação, se os fluxos respeitam os limites da capacidade (fe ≤ ce) e
satisfazem a conservação do fluxo

f(v) :=
∑

e∈δ+(v)

fe −
∑

e∈δ−(v)

fe = 0 (1.1)

(ver Fig. 1.7).

Lema 1.11
Qualquer atribuição de fluxos f satisfaz

∑
v∈V f(v) = 0.

Prova. ∑
v∈V

f(v) =
∑
v∈V

∑
e∈δ+(v)

fe −
∑

e∈δ−(v)

fe

=
∑

(v,u)∈E

f(v,u) −
∑

(u,v)∈E

f(u,v) = 0

�
A circulação vira um fluxo, se o grafo possui alguns vértices que são fontes
ou destinos de fluxo, e portanto não satisfazem a conservação de fluxo. Um
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fluxo s–t possui um único fonte s e um único destino t. Um objetivo comum
(transporte, etc.) é achar um fluxo s–t máximo.

Fluxo s–t máximo

Instância Grafo direcionado G = (V, E, c) com capacidades c nos arcos,
um vértice origem s ∈ V e um vértice destino t ∈ V.

Solução Um fluxo f, com f(v) = 0, ∀v ∈ V \ {s, t}.

Objetivo Maximizar o fluxo f(s).

Lema 1.12
Um fluxo s–t satisfaz f(s) + f(t) = 0.

Prova. Pelo lema 1.11 temos
∑
v∈V f(v) = 0. Mas

∑
v∈V f(v) = f(s) + f(t)

pela conservação de fluxo nos vértices em V \ {s, t}. �

Uma formulação como programa linear é

maximiza f(s) (1.2)
sujeito a f(v) = 0 ∀v ∈ V \ {s, t}

0 ≤ fe ≤ ce ∀e ∈ E.

Observação 1.9
O programa (1.2) possui uma solução, porque fe = 0 é uma solução viável. O
sistema não é ilimitado, porque todas variáveis são limitadas, e por isso possui
uma solução ótima. O problema de encontrar um fluxo s–t máximo pode ser
resolvido em tempo polinomial via programação linear. ♦

1.2.1 Algoritmo de Ford-Fulkerson

Nosso objetivo: Achar um algoritmo combinatorial mais eficiente. Idéia
básica: Começar com um fluxo viável fe = 0 e aumentar ele gradualmente.
Observação: Se temos um s–t-caminho P = (v0 = s, v1, . . . , vn−1, vn = t),
podemos aumentar o fluxo atual f um valor que corresponde ao “gargalo”

g(f, P) := min
e=(vi,vi+1)

0≤i<n

ce − fe.
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Figura 1.8: Esquerda: Grafo com capacidades. Centro: Fluxo com valor 30.
Direita: O grafo residual correspondente.
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Figura 1.9: Manter a conservação do fluxo.

Observação 1.10
Repetidamente procurar um caminho com gargalo positivo e aumentar nem
sempre produz um fluxo máximo. Na Fig. 1.8 o fluxo máximo posśıvel é
40, obtido pelo aumentos de 10 no caminho P1 = (s, u, t) e 30 no caminho
P2 = (s,w, t). Mas, se aumentamos 10 no caminho P1 = (s, u,w, t) e depois
20 no caminho P2 = (s,w, t) obtemos um fluxo de 30 e o grafo não possui
mais caminho que aumenta o fluxo. ♦

Problema no caso acima: para aumentar o fluxo e manter a conservação do
fluxo num vértice interno v temos quatro possibilidades: (i) aumentar o fluxo
num arco entrante e sainte, (ii) aumentar o fluxo num arco entrante, e diminuir
num outro arco entrante, (iii) diminuir o fluxo num arco entrante e diminuir
num arco sainte e (iv) diminuir o fluxo num arco entrante e aumentar num
arco entrante (ver Fig. 1.9).
Isso é a motivação para definir para um dado fluxo f o grafo residual Gf com

• Vértices V

• Arcos para frente (“forward”) E com capacidade ce − fe, caso fe < ce.
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1 Algoritmos em grafos

• Arcos para atras (“backward”) E ′ = {(v, u) | (u, v) ∈ E} com capacidade
c(v,u) = f(u,v), caso f(u,v) > 0.

Observe que na Fig. 1.8 o grafo residual possui um caminho P = (s,w, u, t) que
aumenta o fluxo por 10. O algoritmo de Ford-Fulkerson (Ford and Fulkerson,
1956) consiste em, repetidamente, aumentar o fluxo num caminho s–t no grafo
residual.

Algoritmo 1.4 (Ford-Fulkerson)
Entrada Grafo G = (V, E, c) com capacidades ce no arcos.

Sáıda Um fluxo f.

1 for a l l e ∈ E : fe := 0

2 while e x i s t e um caminho s−−t em Gf do
3 Se ja P um caminho s−−t s imp le s
4 Aumenta o f l u x o f um va lo r g(f, P)
5 end while
6 return f

Análise de complexidade Na análise da complexidade, consideraremos so-
mente capacidades em N (ou equivalente em Q: todas capacidades podem ser
multiplicadas pelo menor múltiplo em comum das denominadores das capaci-
dades.)

Lema 1.13
Para capacidades inteiras, todo fluxo intermediário e as capacidades residuais
são inteiros.

Prova. Por indução sobre o número de iterações. Inicialmente fe = 0. Em
cada iteração, o “gargalo” g(f, P) é inteiro, porque as capacidades e fluxos são
inteiros. Portanto, o fluxo e as capacidades residuais após do aumento são
novamente inteiros. �

Lema 1.14
Em cada iteração, o fluxo aumenta ao menos 1.

Prova. O caminho s–t possui por definição do grafo residual uma capacidade
“gargalo” g(f, P) > 0. O fluxo f(s) aumenta exatamente g(f, P). �
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1.2 Fluxos em redes

Lema 1.15
O número de iterações do algoritmo Ford-Fulkerson é limitado por C =

∑
e∈δ+(s) ce.

Portanto ele tem complexidade O((n+m)C).

Prova. C é um limite superior do fluxo máximo. Como o fluxo inicial-
mente possui valor 0 e aumenta ao menos 1 por iteração, o algoritmo de
Ford-Fulkerson termina em no máximo C iterações. Em cada iteração temos
que achar um caminho s–t em Gf. Representando G por listas de adjacência,
isso é posśıvel em tempo O(n+m) usando uma busca por profundidade. O au-
mento do fluxo precisa tempo O(n) e a atualização do grafo residual é posśıvel
em O(m), visitando todos arcos. �

Corretude do algoritmo de Ford-Fulkerson

Definição 1.2
Seja X̄ := V \ X. Escrevemos F(X, Y) := {(x, y) | x ∈ X, y ∈ Y} para os arcos
passando do conjunto X para Y. O fluxo de X para Y é f(X, Y) :=

∑
e∈F(X,Y) fe.

Ainda estendemos a notação do fluxo total de um vértice (1.1) para conjuntos:
f(X) := f(X, X̄) − f(X̄, X) é o fluxo neto do saindo do conjunto X.
Analogamente, escrevemos para as capacidades c(X, Y) :=

∑
e∈F(X,Y) ce. Uma

partição (X, X̄) é um corte s–t, se s ∈ X e t ∈ X̄.
Um arco e se chama saturado para um fluxo f, caso fe = ce.

Lema 1.16
Para qualquer corte (X, X̄) temos f(X) = f(s).

Prova.
f(X) = f(X, X̄) − f(X̄, X) =

∑
v∈X

f(v) = f(s).

(O último passo é correto, porque para todo v ∈ X, v 6= s, temos f(v) = 0 pela
conservação do fluxo.) �

Lema 1.17
O valor c(X, X̄) de um corte s–t é um limite superior para um fluxo s–t.

Prova. Seja f um fluxo s–t. Temos

f(s) = f(X) = f(X, X̄) − f(X̄, X) ≤ f(X, X̄) ≤ c(X, X̄).

�
Consequência: O fluxo máximo é menor ou igual a o corte mı́nimo. De fato,
a relação entre o fluxo máximo e o corte mı́nimo é mais forte:
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1 Algoritmos em grafos

Teorema 1.2 (Fluxo máximo – corte mı́nimo)
O valor do fluxo máximo entre dois vértices s e t é igual a do corte mı́nimo.

Lema 1.18
Quando o algoritmo de Ford-Fulkerson termina, o valor do fluxo é máximo.

Prova. O algoritmo termina se não existe um caminho entre s e t em Gf.
Podemos definir um corte (X, X̄), tal que X é o conjunto de vértices alcançáveis
em Gf a partir de s. Qual o valor do fluxo nos arcos entre X e X̄? Para um
arco e ∈ F(X, X̄) temos fe = ce, senão Gf terá um arco “forward” e, uma
contradição. Para um arco e = (u, v) ∈ F(X̄, X) temos fe = 0, senão Gf terá
um arco “backward” e ′ = (v, u), uma contradição. Logo

f(s) = f(X) = f(X, X̄) − f(X̄, X) = f(X, X̄) = c(X, X̄).

Pelo lema 1.17, o valor de um fluxo arbitrário é menor ou igual que c(X, X̄),
portanto f é um fluxo máximo. �
Prova. (Do teorema 1.2) Pela análise do algoritmo de Ford-Fulkerson. �

Desvantagens do algoritmo de Ford-Fulkerson O algoritmo de Ford-Fulkerson
tem duas desvantagens:

1. O número de iterações C pode ser alto, e existem grafos em que C
iterações são necessárias (veja Fig. 1.10). Além disso, o algoritmo com
complexidade O((n+m)C) é somente pseudo-polinomial.

2. É posśıvel que o algoritmo não termina para capacidades reais (veja
Fig. 1.10). Usando uma busca por profundidade para achar caminhos
s–t ele termina, mas é ineficiente (Dean et al., 2006).

1.2.2 O algoritmo de Edmonds-Karp

O algoritmo de Edmonds-Karp elimina esses problemas. O prinćıpio dele é
simples: Para achar um caminho s–t simples, usa busca por largura, i.e. sele-
cione o caminho mais curto entre s e t. Nos temos (sem prova)

Teorema 1.3
O algoritmo de Edmonds-Karp precisa O(nm) iterações, e portanto termina
em O(nm2).

Lema 1.19
Seja δf(v) a distância entre s e v em Gf. Durante a execução do algoritmo de
Edmonds-Karp δf(v) cresce monotonicamente para todos vértices em V.
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Figura 1.10: Esquerda: Pior caso para o algoritmo de Ford-Fulkerson com pe-
sos inteiros aumentando o fluxo por 2N vezes por 1 nos caminhos
(s, u, v, t) e (s, v, u, t). Direita: Menor grafo com pesos irracionais em
que o algoritmo de Ford-Fulkerson falha (Zwick, 1995). M ≥ 3, e
r = (1+

√
1− 4λ)/2 com λ ≈ 0.217 a única raiz real de 1− 5x+ 2x2 −

x3. Aumentar (s, v1, v4, t) e depois repetidamente (s, v2, v4, v1, v3, t),
(s, v2, v3, v1, v4, t), (s, v1, v3, v2, v4, t), e (s, v1, v4, v2, v3, t) converge
para o fluxo máximo 2+ r+ r2 sem terminar.

Prova. Para v = s o lema é evidente. Supõe que uma iteração modificando o
fluxo f para f ′ diminuirá o valor de um vértice v ∈ V \ {s}, i.e., δf(v) > δf ′(v).
Supõe ainda que v é o vértice de menor distância δf ′(v) em Gf ′ com essa
caracteŕıstica. Seja P = (s, . . . , u, v) um caminho mais curto de s para v
em Gf ′ . O valor de u não diminuiu nessa iteração (pela escolha de v), i.e.,
δf(u) ≤ δf ′(u) (*).
O arco (u, v) não existe in Gf, senão a distãncia do v in Gf é no máximo a
distância do v in Gf ′ : Supondo (u, v) ∈ E(Gf) temos

δf(v) ≤ δf(u) + 1 pela desigualdade triangular
≤ δf ′(u) + 1 (*)
≤ δf ′(v) porque uv está num caminho mı́nimo em Gf ′ ,

uma contradição com a hipótese que a distância de v diminuiu. Portanto,
(u, v) 6∈ E(Gf) mas (u, v) ∈ E(Gf ′). Isso só é posśıvel se o fluxo de v para u
aumentou nessa iteração. Em particular, vu foi parte de um caminho mı́nimo
de s para u. Para v = t isso é uma contradição imediata. Caso v 6= t, temos

δf(v) = δf(u) − 1

≤ δf ′(u) − 1 (*)
= δf ′(v) − 2 porque uv está num caminho mı́nimo em Gf ′ ,
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novamente uma contradição com a hipótese que a distância de v diminuiu.
Logo, o vértice v não existe. �
Prova. (do teorema 1.3)
Chama um arco num caminho que aumenta o fluxo com capacidade igual
ao gargalo cŕıtico. Em cada iteração existe ao menos um arco cŕıtico que
disparece do grafo residual. Provaremos que cada arco pode ser cŕıtico no
máximo n/2 − 1 vezes, que implica em no máximo m(n/2 − 1) = O(mn)
iterações.
No grafo Gf em que um arco uv ∈ E é cŕıtico pela primeira vez temos δf(u) =
δf(v)−1. O arco só aparece novamente no grafo residual caso alguma iteração
diminui o fluxo em uv, i.e., aumenta o fluxo vu. Nessa iteração, com fluxo f ′,
δf ′(v) = δf ′(u) − 1. Em soma temos

δf ′(u) = δf ′(v) + 1

≥ δf(v) + 1 pelo lema 1.19
= δf(u) + 2,

i.e., a distância do u entre dois instantes em que uv é cŕıtico aumento por
pelo menos dois. Enquanto u é alcancável por s, a sua distância é no máximo
n− 2, porque a caminho não contém s nem t, e por isso a aresta uv pode ser
cŕıtico por no máximo (n− 2)/2 = n/2− 1 vezes. �
Outras soluções (Goldberg 2008):

1.2.3 Variações do problema

Fontes e destinos múltiplos Para G = (V, E, c) define um conjunto de fontes
S ⊆ V e um conjunto de destinos T ⊆ V, com S ∩ T = ∅, e considera

maximiza f(S)

sujeito a f(v) = 0 ∀v ∈ V \ (S ∪ T) (1.3)
fe ≤ ce ∀e ∈ E.

O problema (1.3) pode ser reduzido para um problema de fluxo máximo sim-
ples em G ′ = (V ′, E ′, c ′) (veja Fig. 1.11(a)) com

V ′ = V ∪ {s∗, t∗}

E ′ = E ∪ {(s∗, s) | s ∈ S} ∪ {(t, t∗) | t ∈ T } (1.4)

c ′e =


ce e ∈ E
c({s}, ¯{s}) e = (s∗, s)

c( ¯{t}, {t}) e = (t, t∗)
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Ano Referência Complexidade Obs
1951 Dantzig O(n2mU) Õ(n2mU)

1955 Ford & Fulkerson O(m2U) Õ(m2U)
1970 Dinitz O(n2m) Õ(n2m)

1972 Edmonds & Karp O(m2 logU) Õ(m2)

1973 Dinitz O(nm logU) Õ(nm)

1974 Karzanov O(n3)

1977 Cherkassky O(n2m1/2)

1980 Galil & Naamad O(nm log2 n)
1983 Sleator & Tarjan O(nm logn)

1986 Goldberg & Tarjan O(nm log(n2/m))

1987 Ahuja & Orlin O(nm+ n2 logU)
1987 Ahuja et al. O(nm log(n

√
logU/m))

1989 Cheriyan & Hagerup E(nm+ n2 log2 n)

1990 Cheriyan et al. O(n3/ logn)

1990 Alon O(nm+ n8/3 logn)
1992 King et al. O(nm+ n2+ε)

1993 Phillips & Westbrook O(nm(logm/n n+ log2+ε n))

1994 King et al. O(nm logm/(n logn) n)

1997 Goldberg & Rao O(m3/2 log(n2/m) logU) Õ(m3/2)

O(n2/3m log(n2/m) logU) Õ(n2/3m)

Tabela 1.2: Complexidade para diversos algoritmos de fluxo máximo
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Figura 1.11: Reduções entre variações do problema do fluxo máximo. Es-
querda: Fontes e destinos múltiplos. Direita: Limite inferior e
superior para a capacidade de arcos.

Lema 1.20
Se f ′ é solução máxima de (1.4), f = f ′|E é uma solução máxima de (1.3).
Conversamente, se f é uma solução máxima de (1.3),

f ′e =


fe e ∈ E
f(s) e = (s∗, s)

−f(t) e = (t, t∗)

é uma solução máxima de (1.4).

Prova. Supõe f é solução máxima de (1.3). Seja f ′ uma solução de (1.4)
com valor f ′(s∗) maior. Então f ′|E é um fluxo válido para (1.3) com solução
f ′|E(S) = f ′(s∗) maior, uma contradição.
Conversamente, para cada fluxo válido f em G, a extensão f ′ definida acima
é um fluxo válido em G ′ com o mesmo valor. Portanto o valor do maior fluxo
em G ′ é maior ou igual ao valor do maior fluxo em G. �

Limites inferiores Para G = (V, E, b, c) com limites inferiores b : E → R
considere o problema

maximiza f(s)

sujeito a f(v) = 0 ∀v ∈ V \ {s, t} (1.5)
be ≤ fe ≤ ce e ∈ E.

O problema (1.5) pode ser reduzido para um problema de fluxo máximo sim-

38



1.2 Fluxos em redes

ples em G ′ = (V ′, E ′, c ′) (veja Fig. 1.11(b)) com

V ′ = V

E ′ = E ∪ {(v, t) | (v, u) ∈ E} ∪ {(s, u) | (v, u) ∈ E} (1.6)

c ′e =


ce − be e ∈ E
b(v,u) e = (v, t)

b(v,u) e = (s, u)

Lema 1.21
Problema (1.5) possui uma viável sse (1.6) possui uma solução máxima com
todos arcos auxiliares E ′ \ E saturados. Neste caso, se f é um fluxo máximo
em (1.5),

f ′e =


fe − be e ∈ E
bf e = (v, t) criado por f = (v, u)

bf e = (s, u) criado por f = (v, u)

é um fluxo máximo de (1.6) com arcos auxiliares saturados. Conversamente,
se f ′ é um fluxo máximo para (1.6) com arcos auxiliares saturados, fe = f ′e+be
é um fluxo máximo em (1.5).

Prova. (Exerćıcio.) �

Existência de uma circulação Para G = (V, E, c) com demandas dv, com
dv > 0 para destinos e dv < 0 para fontes, considere

existe f

s.a f(v) = −dv ∀v ∈ V (1.7)
fe ≤ ce e ∈ E.

Evidentemente
∑
v∈V dv = 0 é uma condição necessária (lema (1.11)). O

problema (1.7) pode ser reduzido para um problema de fluxo máximo em
G ′ = (V ′, E ′) com

V ′ = V ∪ {s∗, t∗}

E ′ = E ∪ {(s∗, v) | v ∈ V, dv < 0} ∪ {(v, t∗) | v ∈ V, dv > 0} (1.8)

ce =


ce e ∈ E
−dv e = (s∗, v)

dv e = (v, t∗)
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Lema 1.22
Problema (1.7) possui uma solução sse problema (1.8) possui uma solução com
fluxo máximo D =

∑
v:dv>0

dv.

Prova. (Exerćıcio.) �

Circulações com limites inferiores Para G = (V, E, b, c) com limites inferio-
res e superiores, considere

existe f

s.a f(v) = dv ∀v ∈ V (1.9)
be ≤ fe ≤ ce e ∈ E.

O problema pode ser reduzido para a existência de uma circulação com so-
mente limites superiores em G ′ = (V ′, E ′, c ′, d ′) com

V ′ = V

E ′ = E (1.10)
ce = ce − be

d ′v = dv −
∑

e∈δ−(v)

be +
∑

e∈δ+(v)

be (1.11)

Lema 1.23
O problema (1.9) possui solução sse problema (1.10) possui solução.

Prova. (Exerćıcio.) �

1.2.4 Aplicações

Projeto de pesquisa de opinião O objetivo é projetar uma pesquisa de
opinião, com as restrições

• Cada cliente i recebe ao menos ci perguntas (para obter informação sufi-
ciente) mas no máximo c ′i perguntas (para não cansar ele). As perguntas
podem ser feitas somente sobre produtos que o cliente já comprou.

• Para obter informações suficientes sobre um produto, entre pi e p ′i cli-
entes tem que ser interrogados sobre ele.

Um modelo é um grafo bi-partido entre clientes e produtos, com aresta (ci, pj)
caso cliente i já comprou produto j. O fluxo de cada aresta possui limite
inferior 0 e limite superior 1. Para representar os limites de perguntas por
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produto e por cliente, introduziremos ainda dois vértices s, e t, com arestas
(s, ci) com fluxo entre ci e c ′i e arestas (pj, t) com fluxo entre pj e p ′j e uma
aresta (t, s).

Segmentação de imagens O objetivo é segmentar um imagem em duas
partes, por exemplo “foreground” e “background”. Supondo que temos uma
“probabilidade” ai de pertencer ao “foreground” e outra “probabilidade” de
pertencer ao “background” bi para cada pixel i, uma abordagem direta é
definir que pixels com ai > bi são “foreground” e os outros “background”. Um
exemplo pode ser visto na Fig. 1.13 (b). A desvantagem dessa abordagem é que
a separação ignora o contexto de um pixel. Um pixel, “foreground” com todos
pixel adjacentes em “background” provavelmente pertence ao “background”
também. Portanto obtemos um modelo melhor introduzindo penalidades pij
para separar (atribuir à categorias diferentes) pixel adjacentes i e j. Um
partição do conjunto de todos pixels I em A

.
∪ B tem um valor de

q(A,B) =
∑
i∈A

ai +
∑
i∈B

bi −
∑

(i,j)∈A×B

pij

nesse modelo, e o nosso objetivo é achar uma partição que maximiza q(A,B).
Isso é equivalente a minimizar

Q(A,B) =
∑
i∈I

ai + bi −
∑
i∈A

ai −
∑
i∈B

bi +
∑

(i,j)∈A×B

pij

=
∑
i∈B

ai +
∑
i∈A

bi +
∑

(i,j)∈A×B

pij.

A solução mı́nima de Q(A,B) pode ser visto como corte mı́nimo num grafo.
O grafo possui um vértice para cada pixel e uma aresta com capacidade pij
entre dois pixels adjacentes i e j. Ele possui ainda dois vértices adicionais
s e t, arestas (s, i) com capacidade ai para cada pixel i e arestas (i, t) com
capacidade bi para cada pixel i (ver Fig. 1.12).

Seqüenciamento O objetivo é programar um transporte com um número k
de véıculos dispońıveis, dado pares de origem-destino com tempo de sáıda e
chegada. Um exemplo é um conjunto de vôos é

1. Porto Alegre (POA), 6.00 – Florianopolis (FLN), 7.00

2. Florianopolis (FLN), 8.00 – Rio de Janeiro (GIG), 9.00

3. Fortaleza (FOR), 7.00 – João Pessoa (JPA), 8.00
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a 30 19 12 10
b 20 15 16 25

Figura 1.12: Exemplo da construção para uma imagem 2× 2. Direita: Tabela
com valores pele/não-pele. Esquerda: Grafo com penalidade fixa
pij = 10.

Figura 1.13: Segmentação de imagens com diferentes penalidades p. Acima:
(a) Imagem original (b) Segmentação somente com probabilida-
des (p = 0) (c) p = 1000 (d) p = 10000. Abaixo: (a) Walter
Gramatté, Selbstbildnis mit rotem Mond, 1926 (b) Segmentação
com p = 5000. A probabilidade de um pixel representar pele foi
determinado conforme Jones and Rehg (1998).
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1.2 Fluxos em redes

4. São Paulo (GRU), 11.00 – Manaus (MAO), 14.00

5. Manaus (MAO), 14.15 – Belem (BEL), 15.15

6. Salvador (SSA), 17.00 – Recife (REC), 18.00

O mesmo avião pode ser usado para mais que um par de origem e destino, se
o destino do primeiro é o origem do segundo, em tem tempo suficiente entre
a chegada e sáıda (para manutenção, limpeza, etc.) ou tem tempo suficiente
para deslocar o avião do destino para o origem.
Podemos representar o problema como grafo direcionado aćıclico. Dado pa-
res de origem destino, ainda adicionamos pares de destino-origem que são
compat́ıveis com as regras acimas. A idéia é representar aviões como fluxo:
cada aresta origem-destino é obrigatório, e portanto recebe limites inferiores
e superiores de 1, enquanto uma aresta destino-origem é facultativa e recebe
limite inferior de 0 e superior de 1. Além disso, introduzimos dois vértices s
e t, com arcos facultativos de s para qualquer origem e de qualquer destino
para t, que representam os começos e finais da viagem completa de um avião.
Para decidir se existe um solução com k aviões, finalmente colocamos um arco
(t, s) com limite inferior de 0 e superior de k e decidir se existe uma circulação
nesse grafo.

1.2.5 Outros problemas de fluxo

Obtemos um outro problema de fluxo em redes introduzindo custos de trans-
porte por unidade de fluxo:

Fluxo de menor custo

Entrada Grafo direcionado G = (V, E) com capacidades c ∈ R|E|
+ e custos

r ∈ R|E|
+ nos arcos, um vértice origem s ∈ V, um vértice destino

t ∈ V, e valor v ∈ R+.

Solução Um fluxo s-t f com valor v.

Objetivo Minimizar o custo
∑
e∈E cefe do fluxo.

Diferente do problema de menor fluxo, o valor do fluxo é fixo.
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1.3 Emparelhamentos

Dado um grafo não-direcionado G = (V, E), um emparelhamento é uma seleção
de arestas M ⊆ E tal que todo vértice tem no máximo grau 1 em G ′ = (V,M).
(Notação: M = {u1v1, u2v2, . . .}.) O nosso interesse em emparelhamentos é
maximizar o número de arestas selecionados ou, no caso as arestas possuem
pesos, maximizar o peso total das arestas selecionados.
Para um grafo com pesos c : E → Q, seja c(M) =

∑
e∈M ce o valor do

emparelhamento M.

Emparelhamento máximo (EM)

Entrada Um grafo G = (V, E) não-direcionado.

Solução Um emparelhamento M ⊆ E, i.e. um conjunto de arcos, tal que
para todos vértices v temos |N(v) ∩M| ≤ 1.

Objetivo Maximiza |M|.

Emparelhamento de peso máximo (EPM)

Entrada Um grafo G = (V, E, c) não-direcionado com pesos c : E → Q
nas arestas.

Solução Um emparelhamento M ⊆ E.

Objetivo Maximiza o valor c(M) de M.

Um emparelhamento se chama perfeito se todo vértice possui vizinho em M.
Uma variação comum do problema é

Emparelhamento perfeito de peso ḿınimo (EPPM)

Entrada Um grafo G = (V, E, c) não-direcionado com pesos c : E → Q
nas arestas.

Solução Um emparelhamento perfeito M ⊆ E, i.e. um conjunto de arcos,
tal que para todos vértices v temos |N(v) ∩M| = 1.
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Objetivo Minimiza o valor c(M) de M.

Observe que os pesos em todos problemas podem ser negativos. O problema de
encontrar um emparelhamento de peso mı́nimo em G = (V, E, c) é equivalente
com EPM em −G := (V, E,−c) (por quê?). Até EPPM pode ser reduzido para
EPM.

Teorema 1.4
EPM e EPPM são problemas equivalentes.

Prova. Seja G = (V, E, c) uma instância de EPM. Define um conjunto de
vértices V ′ que contém V e mais |V | novos vértices e um grafo completo G ′ =
(V ′, V ′ × V ′, c ′) com

c ′e =

{
−ce caso e ∈ E
0 caso contrário

.

Todo emparelhamento M em G de valor c(M) define um emparelhamento
perfeito M ′ em G ′ de valor c ′(M ′) = −c(M): M ′ consiste das arestas em M.
Além disso, todo vértice não emparelhado em V será emparelhado com o novo
vértice correspondente em M ′ com uma aresta de custo 0. Similarmente, os
restantes novos vértices não emparelhados em V ′ são emparelhados em M ′

com arestas de custo 0 entre si. Portanto, um EPPM em G ′ é um EPM em
G.
Conversamente, seja G = (V, E, c) uma instância de EPPM. Define C :=
1 +
∑
e∈E |ce|, novos pesos c ′e = C − ce e um grafo G ′ = (V, E, c ′). Para

emparelhamentos M1 e M2 arbitrários temos

c(M2) − c(M1) ≤
∑
e∈E

ce>0

ce −
∑
e∈E

ce<0

ce =
∑
e∈E

|ce| < C.

Portanto, um emparelhamento de peso máximo em G ′ também é um empa-
relhamento de cardinalidade máxima: Para |M1| < |M2| temos

c ′(M1) = C|M1| − c(M1) < C|M1| + C− c(M2) ≤ C|M2| − c(M2) = c ′(M2).

Se existe um emparelhamento perfeito no grafo original G, então o EPM em
G ′ é perfeito e as arestas do EPM em G ′ definem um EPPM em G. �
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Formulações com programação inteira A formulação do problema do em-
parelhamento perfeito mı́nimo para G = (V, E, c) é

minimiza
∑
e∈E

cexe (1.12)

sujeito a
∑

u∈N(v)

xuv = 1, ∀v ∈ V

xe ∈ B.

A formulação do problema do emparelhamento máximo é

maximiza
∑
e∈E

cexe (1.13)

sujeito a
∑

u∈N(v)

xuv ≤ 1, ∀v ∈ V

xe ∈ B.

Observação 1.11
A matriz de coeficientes de (1.12) e (1.13) é totalmente unimodular no caso bi-
partido (pelo teorema de Hoffman-Kruskal). Portanto: a solução da relaxação
linear é inteira. (No caso geral isso não é verdadeiro, K3 é um contra-exemplo,
com solução ótima 3/2.). Observe que isso resolve o caso ponderado sem custo
adicional. ♦

Observação 1.12
O dual da relaxação linear de (1.12) é

maximiza
∑
v∈V

yv (1.14)

sujeito a yu + yv ≤ cuv, ∀uv ∈ E
yv ∈ R.

e o dual da relaxação linear de (1.13)

minimiza
∑
v∈V

yv (1.15)

sujeito a yu + yv ≥ cuv, ∀uv ∈ E
yv ∈ R+.

Com pesos unitários cuv = 1 e restringindo yv ∈ B o primeiro dual é a
formulação do conjunto independente máximo e o segundo da cobertura por
vértices mı́nima. Portanto, a observação 1.11 rende no caso não-ponderado:
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Teorema 1.5 (Berge, 1951)
Em grafos bi-partidos o tamanho da menor cobertura por vértices é igual ao
tamanho do emparelhamento máximo.

♦

1.3.1 Aplicações

Alocação de tarefas Queremos alocar n tarefas a n trabalhadores, tal que
cada tarefa é executada, e cada trabalhador executa uma tarefa. O custos de
execução dependem do trabalhar e da tarefa. Isso pode ser resolvido como
problema de emparelhamento perfeito mı́nimo.

Particionamento de poĺıgonos ortogonais

Teorema 1.6
(Sack and Urrutia, 2000, cap. 11,th. 1) Um poĺıgono ortogonal com n vértices
de reflexo (ingl. reflex vertex, i.e., com ângulo interno maior que π), h buracos
(ingl. holes) pode ser minimalmente particionado em n− l−h+ 1 retângulos.
A variável l é o número máximo de cordas (diagonais) horizontais ou verticais
entre vértices de reflexo sem intersecção.

O número l é o tamanho do conjunto independente máximo no grafo de in-
tersecção das cordas: cada corda é representada por um vértice, e uma aresta
representa a duas cordas com interseção. Um conjunto independente máximo
é o complemento de uma cobertura por vértices mı́nima, o problema dual
(1.15) de um emparelhamento máximo. Portanto, o tamanho de um empa-
relhamento máximo é igual n − h. Podemos obter o conjunto independente
que procuramos usando “a metade” do emparelhamento (os vértices de uma
parte só) e os vértices não emparelhados. Podemos achar o emparelhamento
em tempo O(n5/2) usando o algoritmo de Hopcroft-Karp, porque o grafo de
intersecção é bi-partido (por quê?).

1.3.2 Grafos bi-partidos

Na formulação como programa inteira a solução do caso bi-partido é mais fácil.
Isso também é o caso para algoritmos combinatoriais, e portanto começamos
estudar grafos bi-partidos.

Redução para o problema do fluxo máximo

Teorema 1.7
Um EM em grafos bi-partidos pode ser obtido em tempo O(mn).
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Figura 1.14: Esquerda: Poĺıgono ortogonal com vértices de reflexo (pontos) e
cordas (pontilhadas). Direita: grafo de intersecção.

s t

Figura 1.15: Redução do problema de emparelhamento máximo para o pro-
blema do fluxo máximo

Prova. Introduz dois vértices s, t, liga s para todos vértices em V1, os vértices
em V1 com vértices em V2 e os vértices em V2 com t, com todos os pesos
unitários. Aplica o algoritmo de Ford-Fulkerson para obter um fluxo máximo.
O número de aumentos é limitado por n, cada busca tem complexidade O(m),
portanto o algoritmo de Ford-Fulkerson termina em tempo O(mn). �

Teorema 1.8
O valor do fluxo máximo é igual a cardinalidade de um emparelhamento
máximo.

Prova. Dado um emparelhamento máximo M = {v11v21, . . . , v1nv2n}, pode-
mos construir um fluxo com arcos sv1i, v1iv2i e v2it com valor |M|.
Dado um fluxo máximo, existe um fluxo integral equivalente (veja lema (1.13)).
Na construção acima os arcos possuem fluxo 0 ou 1. Escolhe todos arcos entre
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V1 e V2 com fluxo 1. Não existe vértice com grau 2, pela conservação de fluxo.
Portanto, os arcos formam um emparelhamento cuja cardinalidade é o valor
do fluxo. �

Solução não-ponderado combinatorial Um caminho P = v1v2v3 . . . vk é
alternante em relação aM (ouM-alternante) se vivi+1 ∈M sse vi+1vi+2 6∈M
para todos 1 ≤ i ≤ k − 2. Um vértice v ∈ V é livre em relação a M se ele
tem grau 0 em M, e emparelhado caso contrário. Um arco e ∈ E é livre em
relação a M, se e 6∈M, e emparelhado caso contrário. Escrevemos |P| = k− 1
pelo comprimento do caminho P.

Observação 1.13
Caso temos um caminho P = v1v2v3 . . . v2k+1 que é M-alternante com v1 é
v2k+1 livre, podemos obter um emparelhamento M \ (P ∩M) ∪ (P \M) de
tamanho |M| − k+ (k− 1) = |M| + 1. Notação: Diferença simétrica M⊕ P =
(M \ P) ∪ (P \M). A operação M⊕ P é um aumento do emparelhamento M.

♦

Teorema 1.9 (Hopcroft and Karp (1973))
Seja M∗ um emparelhamento máximo e M um emparelhamento arbitrário. O
conjunto M⊕M∗ contém ao menos k = |M∗|− |M| caminhos M-aumentandos
distintos. Um deles possui comprimento menor que |V |/k− 1.
Prova. Considere os componentes de G em relação aos arcos M := M ⊕
M∗. Cada vértice possui no máximo grau 2. Portanto, cada componente
é ou um vértice livre, ou um caminhos simples ou um ciclo. Os caminhos
e ciclos possuem alternadamente arcos de M e M∗. Portanto os ciclos tem
comprimento par. Os caminhos de comprimento impar são ouM-aumentandos
ou M∗-aumentandos, mas o segundo caso é imposśıvel, porque M∗ é máximo.
Agora

|M∗ \M| = |M∗| − |M∗ ∩M| = |M| − |M∗ ∩M| + k = |M \M∗| + k

e portanto M ⊕M∗ contém k arcos mais de M∗ que de M. Isso mostra que
existem ao menos |M∗| − |M| caminhos M-aumentandos, porque somente os
caminhos de comprimento impar possuem exatamente um arco mais de M∗.
Ao menos um desses caminhos tem que ter um comprimento menor ou igual
que |V |/k − 1, porque no caso contrário eles contém em total mais que |V |

vértices. �

Corolário 1.2 (Berge (1957))
Um emparelhamento é máximo sse não existe um caminho M-aumentando.
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Rascunho de um algoritmo:

Algoritmo 1.5 (Emparelhamento máximo)
Entrada Grafo não-direcionado G = (V, E).

Sáıda Um emparelhamento máximo M.

1 M = ∅
2 while ( e x i s t e um caminho M−aumentando P ) do
3 M := M⊕ P
4 end while
5 return M

Problema: como achar caminhos M-aumentandos de forma eficiente?

Observação 1.14
Um caminho M-aumentando começa num vértice livre em V1 e termina num
vértice livre em V2. Idéia: Começa uma busca por largura com todos vértices
livres em V1. Segue alternadamente arcos livres em M para encontrar vizi-
nhos em V2 e arcos em M, para encontrar vizinhos em V1. A busca para ao
encontrar um vértice livre em V2 ou após de visitar todos vértices. Ela tem
complexidade O(m). ♦

Teorema 1.10
O problema do emparelhamento máximo não-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(mn).
Prova. Última observação e o fato que o emparelhamento máximo tem ta-
manho O(n). �

Observação 1.15
O último teorema é o mesmo que teorema (1.7). ♦

Observação 1.16
Pelo teorema (1.9) sabemos que em geral existem vários caminhosM-alternantes
disjuntos (de vértices) e nos podemos aumentarM com todos eles em paralelo.
Portanto, estruturamos o algoritmo em fases: cada fase procura um conjunto
de caminhos aumentandos disjuntos e aplica-los para obter um novo empare-
lhamento. Observe que pelo teorema (1.9) um aumento com o maior conjunto
de caminhos M-alternantes disjuntos resolve o problema imediatamente, mas
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não sabemos como achar esse conjunto de forma eficiente. Portanto, procu-
ramos somente um conjunto máximo de caminhos M-alternantes disjuntos de
menor comprimento.
Podemos achar um conjunto desse tipo após uma busca por profundidade
da seguinte maneira usando o DAG (grafo direcionado aćıclico) definido pela
busca por profundidade. (i) Escolhe um vértice livre em V2. (ii) Segue os
predecessores para achar um caminho aumentando. (iii) Coloca todos vértices
em uma fila de deleção. (iv) Processa a fila de deleção: Até a fila é vazia,
remove um vértice dela. Remove todos arcos adjacentes no DAG. Caso um
vértice sucessor após de remoção de um arco possui grau de entrada 0, coloca
ele na fila. (v) Repete o procedimento no DAG restante, para achar outro
caminho, até não existem mais vértices livres em V2. A nova busca ainda
possui complexidade O(m). ♦

O que ganhamos com essa nova busca? Os seguintes dois lemas dão a resposta:

Lema 1.24
Após cada fase, o comprimento de um caminho aumentando mı́nimo aumenta
ao menos dois.

Lema 1.25
O algoritmo termina em no máximo

√
n fases.

Teorema 1.11
O problema do emparelhamento máximo não-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(m

√
n).

Prova. Pelas lemas 1.24 e 1.25 e a observação que toda fase pode ser com-
pletada em O(m). �

Usaremos outro lema para provar os dois lemas acima.

Lema 1.26
Seja M um emparelhamento, P um caminho M-aumentando mı́nimo, e Q um
caminho M ⊕ P-aumentando. Então |Q| ≥ |P| + 2|P ∩ Q|. (P ∩ Q denota as
arestas em comum entre P e Q.)

Prova. Caso P e Q náo possuem vértices em comum, Q é M-aumentando,
P ∩Q = ∅ e a desigualdade é conseqüência da minimalidade de P.
Caso contrário: P⊕Q consiste em dois caminhos, e eventualmente um coleção
de ciclos. Os dois caminhos são M-aumentandos, pelas seguintes observações:

1. O ińıcio e termino de P é livre em M, porque P é M-aumentando.
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2. O ińıcio e termino de Q é livre em M: eles não pertencem a P, porque
são livres em M ′.

3. Nenhum outro vértice de P ou Q é livre em relação a M: P só contém
dois vértices livres e Q só contém dois vértices livres em Q mas não em
P.

4. Temos dois caminhos M-aumentandos, começando com um vértice livre
em Q e terminando com um vértice livre em P. O caminho em Q \ P é
M-alternante, porque as arestas livres em M ′ são exatamente as arestas
livres em M. O caminho Q entra em P sempre após uma aresta livre
em M, porque o primeiro vértice em P já é emparelhado em M e sai
de P sempre antes de uma aresta livre em M, porque o último vértice
em P já é emparelhado. Portanto os dois caminhos em P ⊕ Q são M-
aumentandos.

Os dois caminhos M-aumentandos em P⊕Q tem que ser maiores que |P|. Com
isso temos |P ⊕Q| ≥ 2|P| e

|Q| = |P ⊕Q| + 2|P ∩Q| − |P| ≥ |P| + 2|P ∩Q|.

�
Prova. (do lema 1.24). Seja S o conjunto de caminhos M-aumentandos
da fase anterior, e P um caminho aumentando. Caso P é disjunto de todos
caminhos em S, ele deve ser mais comprido, porque S é um conjunto máximo
de caminhos aumentandos. Caso P possui um vértice em comum com algum
caminho em S, ele possui também um arco em comum (por quê?) e podemos
aplicar lema 1.26. �
Prova. (do lema 1.25). Seja M∗ um emparelhamento máximo e M o empa-
relhamento obtido após de

√
n/2 fases. O comprimento de qualquer caminho

M-aumentando é no mı́nimo
√
n, pelo lema 1.24. Pelo teorema 1.9 exis-

tem ao menos |M∗| − |M| caminhos M-aumentandos disjuntos. Mas então
|M∗| − |M| ≤

√
n, porque no caso contrário eles possuem mais que n vértices

em total. Como o emparelhamento cresce ao menos um em cada fase, o algo-
ritmo executar no máximo mais

√
n fases. Portanto, o número total de fases

é O(
√
n). �

O algoritmo de Hopcroft-Karp é o melhor algoritmo conhecido para encontrar
emparelhamentos máximos em grafos bipartidos não-ponderados. Para sub-
classes de grafos bipartidos existem algoritmos melhores. Por exemplo, existe
um algoritmo randomizado para grafos bipartidos regulares com complexidade
de tempo esperado O(n logn) (Goel et al., 2010).
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Sobre a implementação A seguir supomos que o conjunto de vértices é
V = [1, n] e um grafo G = (V, E) bi-partido com partição V1

.
∪ V2. Podemos

representar um emparelhamento usando um vetor mate, que contém, para
cada vértice emparelhado, o ı́ndice do vértice vizinho, e 0 caso o vértice é
livre.
O núcleo de uma implementação do algoritmo de Hopcroft e Karp é descrito na
observação 1.16: ele consiste em uma busca por largura até encontrar um ou
mais caminhos M-alternantes mı́nimos e depois uma fase que extrai do DAG
definido pela busca um conjunto máximo de caminhos disjuntos (de vértices).
A busca por largura começa com todos vértices livres em V1. Usamos um
vetor H para marcar os arcos que fazem parte do DAG definido pela busca
por largura2 e um vetor m para marcar os vértices visitados.

1 search paths (M) :=
2 for a l l v ∈ V do mv := false
3 for a l l e ∈ E do He := false
4
5 U1 := {v ∈ V1 | v livre}
6
7 do
8 { determina vizinhos em U2 via arestas l ivres}
9 U2 := ∅

10 for a l l u ∈ U1 do
11 mu := true
12 for a l l uv ∈ E , uv 6∈M do
13 i f not mv then
14 Huv := true
15 U2 := U2 ∪ v
16 end i f
17 end for
18 end for
19
20 { determina vizinhos em U1 via arestas emparelhadas }
21 found := f a l s e { ao menos um caminho encontrado? }
22 U1 := ∅
23 for a l l u ∈ U2 do
24 mu := true
25 i f (u l i v r e ) then
26 found := true
27 else

2H, porque o DAG se chama árvore Hungariano na literatura.
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Cardinalidade Ponderado

Bi-partido O(n
q

mn
log n

) (Alt et al., 1991)

O(m
√
n

log(n2/m)
log n

) (Feder and
Motwani, 1995)

O(nm + n2 logn) (Kuhn, 1955;
Munkres, 1957)

Geral O(m
√
n

log(n2/m)
log n

) (Goldberg
and Karzanov, 2004; Fremuth-
Paeger and Jungnickel, 2003)

O(n3) (Edmonds, 1965) O(mn+

n2 logn) (Gabow, 1990)

Tabela 1.3: Resumo emparelhamentos

28 v := mate[u]
29 i f not mv then
30 Huv := true
31 U1 := U1 ∪ v
32 end i f
33 end for
34 end for
35 while ( not found )
36 end

Após da busca, podemos extrair um conjunto máximo de caminhosM-alternantes
mı́nimos disjuntos. Enquanto existe um vértice livre em V2, nos extraimos um
caminho alternante que termina em v como segue:

1 extract path (v) :=
2 P := v

3 while not (v ∈ V1 and v l i v r e ) do
4 i f v ∈ V1
5 v := mate [ v ]
6 else
7 v := e s c o l h e {u | Huv, uv 6∈M}

8 end i f
9 P := vP

10 end while
11
12 remove o caminho e todos v é r t i c e s sem predec e s s o r
13 end while
14 end
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1.3.3 Exerćıcios

Exerćıcio 1.5
É posśıvel somar uma constante c ∈ R para todos custos de uma instância do
EPM ou EPPM, mantendo a otimalidade da solução?
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2 Tabelas hash

Em hashing nosso interesse é uma estrutura de dados H para gerenciar um
conjunto de chaves sobre um universo U e que oferece as operações de um
dicionário:

• Inserção de uma chave c ∈ U: insert(c,H)

• Deleção de uma chave c ∈ U: delete(c,H)

• Teste da pertinência: Chave c ∈ H? lookup(c,H)

Uma caracteŕıstica do problema é que tamanho |U| do universo de chaves
posśıveis pode ser grande, por exemplo o conjunto de todos strings ou todos
números inteiros. Portanto usar a chave como ı́ndice de um vetor de booleano
não é uma opção. Uma tabela hash é um alternativa para outros estruturas
de dados de dicionários, p.ex. árvores. O prinćıpio de tabelas hash: aloca
uma tabela de tamanho m e usa uma função hash para calcular a posição de
uma chave na tabela. Como o tamanho da tabela hash é menor que o número
de chaves posśıveis, existem chaves com h(c1) = h(c2), que geram colisões.
Temos dois métodos para lidar com isso:

• Hashing perfeito: Escolhe uma função hash, que para um dado conjunto
de chaves não tem colisões. Isso é posśıvel se o conjunto de chaves é
conhecido e estático.

• Invento outro método de resolução de colisões.

2.1 Hashing com listas encadeadas

Define uma função hash h : U → [m]. Mantemos uma coleção de m listas
l0, . . . , lm−1 e a lista li contém as chaves c com valor hash h(c) = i. Supondo
que a avaliação de h é posśıvel em O(1), a inserção custa O(1), e o teste é
proporcional ao tamanho da lista.
Para obter uma distribuição razoável das chaves nas listas, supomos que h é
uma função hash simples e uniforme:

Pr[h(c) = i] = 1/m. (2.1)
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Seja ni := |li| o tamanho da lista i e cji := Pr[h(i) = j] a variável aleatória
que indica se chave j pertence a lista i. Temos ni =

∑
1≤j≤n cji e com isso

E[ni] = E[
∑
1≤j≤n

cji] =
∑
1≤j≤n

E[cji] =
∑
1≤j≤n

Pr[h(cj) = i] = n/m.

O valor α := n/m é a fator de ocupação da tabela hash.

1 i n s e r t (c ,H) :=
2 i n s e r t (c ,lh(c) )
3
4 lookup (c ,H) :=
5 lookup (c ,lh(c) )
6
7 d e l e t e (c ,H) :=
8 d e l e t e (c ,lh(c) )

Teorema 2.1
Uma busca sem sucesso precisa tempo esperado de Θ(1+ α).

Prova. A chave c tem a probabilidade 1/m de ter um valor hash i. O
tamanho esperado da lista i é α. Uma busca sem sucesso nessa lista precisa
tempo Θ(α). Junto com a avaliação da função hash em Θ(1), obtemos tempo
esperado total Θ(1+ α). �

Teorema 2.2
Uma busca com sucesso precisa tempo esperado de Θ(1+ α).

Prova. Supomos que a chave c é uma das chaves na tabela com probabilidade
uniforme. Então, a probabilidade de pertencer a lista i (ter valor hash i) é
ni/n. Uma busca com sucesso toma tempo Θ(1) para avaliação da função
hash, e mais um número de operações proporcional à posição p da chave na
sua lista. Com isso obtemos tempo esperado Θ(1 + E[p]). Para determinar a
posição esperada na lista, E[p], seja c1, . . . , cn a seqüencia em que a chaves
foram inseridas. Supondo que inserimos a chaves no inicio da lista, E[p] é um
mais o número de chaves inseridos depois de c na mesma lista.
Seja Xij um variável aleatória que indica se chaves ci e cj tem o mesmo valor
hash. E[Xij] = Pr[h(ci) = h(cj)] =

∑
1≤k≤m Pr[h(ci) = k] Pr[h(cj) = k] =

1/m. Para a chave ci, seja pi a posição dela na sua lista. Temos

E[pi] = E[1+
∑
j<i

Xij] = 1+
∑
j<i

E[Xij] = 1+ (i− 1)/m
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e para uma chave aleatória c

E[p] =
∑
1≤i≤n

1/nE[pi] =
∑
1≤i≤n

1/n(1+ (i− 1)/m)

= 1− 1/m+ (n+ 1)/2m = 1+ α/2− α/2n.

Portanto, o tempo esperado de uma busca com sucesso é

Θ(1+ E[p]) = Θ(2+ α/2− α/2n) = Θ(1+ α).

�

Seleção de uma função hash Para implementar uma tabela hash, temos
que escolher uma função hash, que satisfaz (2.1). Para facilitar isso, supomos
que o universo de chaves é um conjunto U = [u] de números inteiros. (Para
tratar outro tipos de chave, costuma-se convertê-los para números inteiros.)
Se cada chave ocorre com a mesma probabilidade, h(i) = i mod m é uma
função hash simples e uniforme. Essa abordagem é conhecida como método
de divisão. O problema com essa função na prática é que não conhecemos a
distribuição de chaves, e ela provavelmente não é uniforme. Por exemplo, se
m é par, o valor hash de chaves pares é par, e de chaves impares é impar, e se
m = 2k o valor hash consiste nos primeiros k bits. Uma escolha que funciona
na prática é um número primo “suficientemente” distante de uma potência de
2.
O método de multiplicação define

h(c) = bm {Ac}c .

O método funciona para qualquer valor de m, mas depende de uma escolha
adequada de A ∈ R. Knuth propôs A ≈ (

√
5− 1)/2.

Hashing universal Outra idéia: Para qualquer função hash h fixa, sempre
existe um conjunto de chaves, tal que essa função hash tem muitas colisões.
(Em particular, um “adversário” que conhece a função hash pode escolher
chaves c, tal que h(c) = const.. Para evitar isso podemos escolher uma função
hash randômica de uma famı́lia de funções hash.
Uma famı́lia H de funções hash U→ [m] é universal se

|{h ∈ H | h(c1) = h(c2)}| = |H|/m

ou equivalente
Pr[h(c1) = h(c2)] = 1/m

para qualquer par de chaves c1, c2.
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Teorema 2.3
Se escolhemos uma função hash h ∈ H uniformemente, para uma chave c
arbitrário o tamanho esperado de lh(c) é

• α, caso c 6∈ H, e

• 1+ α, caso c ∈ H.

Prova. Para chaves c1, c2 seja Xij = [h(c1) = h(c2)] e temos

E[Xij] = Pr[Xij = 1] = Pr[h(c1) = h(c2)] = 1/m

pela universalidade de H. Para uma chave fixa c seja Yc o número de colisões.

E[Yc] = E

[ ∑
c ′∈H
c ′ 6=c

Xcc ′

]
=
∑
c ′∈H
c ′ 6=c

E[Xcc ′ ] ≤
∑
c ′∈H
c ′ 6=c

1/m.

Para uma chave c 6∈ H, o tamanho da lista é Yc, e portanto o tem tamanho
esperado E[Yc] ≤ n/m = α. Caso c ∈ H, o tamanho da lista é 1 + Yc e com
E[Yc] = (n− 1)/m esperadamente

1+ (n− 1)/m = 1+ α− 1/m < 1+ α.

�
Um exemplo de um conjunto de funções hash universais: Seja c = (c0, . . . , cr)m
uma chave na base m, escolhe a = (a0, . . . , ar)m randomicamente e define

ha =
∑
0≤i≤r

ciai mod m.

2.2 Hashing com endereçamento aberto

Uma abordagem para resolução de colisões, chamada endereçamento aberto, é
escolher outra posição para armazenar uma chave, caso h(c) é ocupada. Uma
estratégia para conseguir isso é procurar uma posição livre numa permutação
de todos ı́ndices restantes. Assim garantimos que um insert tem sucesso en-
quanto ainda existe uma posição livre na tabela. Uma função hash h(c, i) com
dois argumentos, tal que h(c, 0), . . . , h(c,m − 1) é uma permutação de [m],
representa essa estratégia.

1 i n s e r t (c ,H) :=
2 for i in [m]
3 i f H[h(c, i) = free
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4 H[ h( c , i )]= c
5 return
6
7 lookup (c ,H) :=
8 for i in [m]
9 i f H[h(c, i)] = textfree

10 return f a l s e
11 i f H[h(c, i)] = c

12 return t rue
13 return f a l s e

A função h(c, i) é uniforme, se a probabilidade de uma chave randômica ter
associada uma dada permutação é 1/m!. A seguir supomos que h é uniforme.

Teorema 2.4
As funções lookup e insert precisam no máximo 1/(1− α) testes caso a chave
não está na tabela.

Prova. Seja X o número de testes até achar uma posição livre. Temos

E[X] =
∑
i≥1

iPr[X = i] =
∑
i≥1

∑
j≥i

Pr[X = i] =
∑
i≥1

Pr[X ≥ i].

Com Ti o evento que o teste i ocorre e a posição i é ocupada, podemos escrever

Pr[X ≥ i] = Pr[T1∩· · ·∩Ti−1] = Pr[T1] Pr[T2|T1] Pr[T3|T1, T2] · · ·Pr[Ti−1|T1, . . . , Ti−2].

Agora Pr[T1] = n/m, e como h é uniforme Pr[T2|T1] = n − 1/(m − 1) e em
geral

Pr[Tk|T1, . . . Tk−1] = (n− k+ 1)/(m− k+ 1) ≤ n/m = α.

Portanto Pr[X ≥ i] ≤ αi−1 e

E[X] =
∑
i≥1

Pr[X ≥ i] ≤
∑
i≥1

αi−1 =
∑
i≥0

αi = 1/(1− α).

�

Lema 2.1
Para i < j, temos Hi −Hj ≤ ln(i) − ln(j).

Prova.

Hi −Hj ≤
∫ i+1
j+1

1

x− 1
dx = ln(i) − ln(j)

�
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Teorema 2.5
A função lookup precisa no máximo 1/α ln 1/(1−α) testes caso a chave está na
tabela com α < 1, e cada chave tem a mesma probabilidade de ser procurada.

Prova. Seja c o i-gésima chave inserida. No momento de inserção o número
esperado de testes T até achar a posição livre foi 1/(1−(i− 1)/m) = m/(m−
(i−1)), e portanto o número esperado de testes até achar uma chave arbitrária
é

E[T ] = 1/n
∑
1≤i≤n

m/(m−(i− 1)) = 1/α
∑
0≤i<n

1/(m− i) = 1/α(Hm−Hm−n)

e com Hm −Hm−n ≤ ln(m) − ln(m− n) temos

E[T ] = 1/α(Hm −Hm−n) < 1/α(ln(m) − ln(m− n)) = 1/α ln(1/(1− α)).

�
Remover elementos de uma tabela hash com endereçamento aberto é mais
dif́ıcil, porque a busca para um elemento termina ao encontrar uma posição
livre. Para garantir a corretude de lookup, temos que marcar posições como
“removidas” e continuar a busca nessas posições. Infelizmente, nesse caso,
as garantias da complexidade não mantem-se – após uma série de deleções e
inserções toda posição livre será marcada como “removida” tal que delete e
lookup precisam n passos. Portanto o endereçamento aberto é favorável só se
temos nenhumas ou poucas deleções.

Funções hash para endereçamento aberto

• Linear: h(c, i) = h(c) + i mod m

• Quadrática: h(c, i) = h(c) + c1i+ c2i
2 mod m

• Hashing duplo: h(c, i) = h1(c) + ih2(c) mod m

Nenhuma das funções é uniforme, mas o hashing duplo mostra um bom de-
sempenho na prática.

2.3 Cuco hashing

Cuco hashing é outra abordagem que procura posições alternativas na tabela
em caso de colisões, com o objetivo de garantir um tempo de acesso constante
no pior caso. Para conseguir isso, usamos duas funções hash h1 e h2, e inse-
rimos uma chave em uma das duas posições h1(c) ou h2(c). Desta forma a
busca e a deleção possuem complexidade constante O(1):
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1 lookup (c ,H) :=
2 i f H[h1(c)] = c or H[h2(c)] = c

3 return t rue
4 return f a l s e
5
6 d e l e t e (c ,H) :=
7 i f H[h1(c)] = c

8 H[h1(c)] := free
9 i f H[h2(c)] = c

10 H[h2(c)] := free
Para inserir uma chave, temos que resolver o problema de que as duas posições
candidatas sejam ocupadas. A solução do cuco hashing é comportar-se como
um cuco com ovos de outras aves: jogá-los fora do seu “ninho”: insert ocupa
a posição de uma das duas chaves. A chave “jogada fora” tem que ser inserida
novamente na tabela. Caso a posição alternativa dessa chave é livre, a inserção
termina. Caso contrário, o processo se repete. Esse procedimento termina
após uma série de reinserções ou entrar num laço infinito. Nesse último caso
temos que realocar todas chaves com novas funções hash.

1 i n s e r t (c ,H) :=
2 i f H[h1(c)] = c or H[h2(c)] = c

3 return
4 p := h1(c)
5 do n vezes
6 i f H[p] = free
7 H[p] := c

8 return
9 swap ( c ,H[ p ] )

10 { escolhe a outra posição da chave atual }
11 i f p = h1(c)
12 p := h2(c)
13 else
14 p := h1(c)
15 rehash (H)
16 i n s e r t (c ,H)

2.4 Filtros de Bloom

Um filtro de Bloom armazena um conjunto de n chaves, com as seguintes
restrições:

• Não é mais posśıvel remover elementos.

63



2 Tabelas hash

• É posśıvel que o teste de pertinência tem sucesso, sem o elemento fazer
parte do conjunto (“false positive”).

Um filtro de Bloom consiste em m bits Bi, 1 ≤ i ≤ m, e usa k funções hash
h1, . . . , hk.

1 i n s e r t (c ,B) :=
2 for i in 1 . . . k

3 bhi(c) := 1

4 end for
5
6 lookup (c ,B) :=
7 for i in 1 . . . k

8 i f bhi(c) = 0

9 return f a l s e
10 return t rue

Apos de inserir todas n chaves, a probabilidade que um dado bit é ainda 0 é

p ′ =

(
1−

1

m

)kn
≈ e−kn/m

que é igual ao valor esperado da fração de bits não setados. Sendo ρ a fração
de bits não setados realmente, a probabilidade de erradamente classificar um
elemento como membro do conjunto é

(1− ρ)k ≈ (1− p ′)k ≈
(
1− e−kn/m

)k
porque ρ é com alta probabilidade perto do seu valor esperado (Broder and
Mitzenmacher, 2003). Broder and Mitzenmacher (2003) também mostram
que o número ótimo k de funções hash para dados valores de n,m é m/n ln 2
e com isso temos um erro de classificação ≈ (1/2)k.
Aplicações:

1. Hifenação: Manter uma tabela de palavras com hifenação excepcional
(que não pode ser determinado pelas regras).

2. Comunicação efetiva de conjuntos, p.ex. seleção em bancos de dados dis-
tribúıdas. Para calcular um join de dois bancos de dados A, B, primeiro
A filtro os elementos, mando um filtro de Bloom SA para B e depois B
executa o join baseado em SA. Para eliminação de eventuais elementos
classificados erradamente, B mando os resultados para A e A filtra os
elementos errados.
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Tabela 2.1: Complexidade das operações em tabelas hash. Complexidades em
negrito são amortizados.

insert lookup delete

Listas encadeadas Θ(1) Θ(1+ α) Θ(1+ α)

Endereçamento aberto O(1/(1− α)) O(1/(1− α)) -
(com/sem sucesso) O(1/α ln 1/(1− α)) O(1/α ln 1/(1− α)) -
Cucko Θ(1) Θ(1) Θ(1)
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3 Algoritmos de aproximação

(As notas seguem Vazirani (2001).)
Um algoritmo de aproximação calcula uma solução aproximada para um pro-
blema de otimização. Diferente de uma heuŕıstica, o algoritmo garante a
qualidade da aproximação no pior caso. Dado um problema e um algo-
ritmo de aproximação A, escrevemos A(x) = y para a solução aproximada
da instância x, ϕ(x, y) para o valor dessa solução, y∗ para a solução ótimo e
OPT(x) = ϕ(x, y∗) para o valor da solução ótima. Lembramos que uma apro-
ximação absoluta garante que D(x, y) = |OPT(x) −ϕ(x, y)| ≤ D para uma
constante D e todo x, enquanto uma aproximação relativa garante que o erro
relativo E(x, y) = D(x, y)/max{OPT(x), ϕ(x, y)} ≤ E para uma constante E e
todos x.

Definição 3.1
Uma redução preservando a aproximação entre dois problemas de minimização
Π1 e Π2 consiste em um par de funções f e g (computáveis em tempo polino-
mial) tal que para instância x1 de Π1, x2 := f(x1) é instância de Π2 com

OPTΠ2
(x2) ≤ OPTΠ1

(x1) (3.1)

e para uma solução y2 de Π2 temos uma solução y1 := g(x1, y2) de Π1 com

ϕΠ1
(x1, y1) ≤ ϕΠ2

(x2, y2) (3.2)

Uma redução preservando a aproximação fornece uma α-aproximação para Π1
dada uma α-aproximação para Π2, porque

ϕΠ1
(x1, y1) ≤ ϕΠ2

(x2, y2) ≤ αOPTΠ2
(x2) ≤ αOPTΠ1

(x1).

Observe que essa definição é somente para problemas de minimização. A
definição no case de maximização é semelhante.

3.1 Aproximação para o problema da árvore de Steiner
ḿınima

Seja G = (V,A) um grafo completo, não-direcionado com custos ca ≥ 0 nos
arcos. O problema da árvore Steiner mı́nima (ASM) consiste em achar o
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Figura 3.1: Grafo com fecho métrico.

subgrafo conexo mı́nimo que inclui um dado conjunto de vértices necessários
R ⊆ V. Esse subgrafo sempre é uma árvore (ex. 3.1). O conjunto V \ R forma
os vértices Steiner. Para um conjunto de arcos A, define o custo c(A) =∑
a∈A ca.

Observação 3.1
ASM é NP-completo. Para um conjunto fixo de vértices Steiner V ′ ⊆ V \R, a
melhor solução é a árvore geradora mı́nima sobre R∪V ′. Portanto a dificuldade
é a seleção dos vértices Steiner da solução ótima. ♦

Definição 3.2
Os custos são métricos se eles satisfazem a desigualdade triangular, i.e.

cij ≤ cik + ckj

para qualquer tripla de vértices i, j, k.

Teorema 3.1
Existe um redução preservando a aproximação de ASM para a versão métrica
do problema.

Prova. O “fecho métrico” de G = (V,A) é um grafo G ′ completo sobre
vértices e com custos c ′ij := dij, sendo dij o comprimento do menor caminho
entre i e j em G. Evidentemente c ′ij ≤ cij é portanto (3.1) é satisfeita. Para
ver que (3.2) é satisfeita, seja T ′ uma solução de ASM em G ′. Define T como
união de todos caminhos definidos pelos arcos em T ′, menos um conjunto de
arcos para remover eventuais ciclos. O custo de T é no máximo c(T ′) porque
o custo de todo caminho é no máximo o custo da aresta correspondente em
T ′. �
Consequência: Para o problema do ASM é suficiente considerar o caso métrico.

Teorema 3.2
O AGM sobre R é uma 2-aproximação para o problema do ASM.
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Figura 3.2: AGM sobre R e melhor solução. : vértice em R, : vértice
Steiner.

Prova. Considere a solução ótima S∗ de ASM. Duplica todas arestas1 tal
que todo vértice possui grau par. Acha um caminho Euleriano nesse grafo.
Remove vértices duplicados nesse caminho. O custo do caminho C obtido
dessa forma não é mais que o dobro do custo original: o grafo com todas
arestas custa 2c(S∗) e a remoção de vértices duplicados não aumenta esse
custo, pela metricidade. Como esse caminho é uma árvore geradora, temos
c(A) ≤ c(C) ≤ 2c(S∗) para AGM A. �

3.2 Aproximações para o PCV

Teorema 3.3
Para função polinomial α(n) o PCV não possui α(n)-aproximação em tempo
polinomial, caso P 6= NP.

Prova. Via redução de HC para PCV. Para uma instância G = (V,A) de HC
define um grafo completo G ′ com

ca =

{
1 a ∈ A
α(n)n caso contrário

Se G possui um ciclo Hamiltoniano, então o custo da menor rota é n. Caso
contrário qualquer rota usa ao menos uma aresta de custo α(n)n e portanto
o custo total é ≥ α(n)n. Portanto, dado uma α(n)-aproximação de PCV
podemos decidir HC em tempo polinomial. �

Caso métrico No caso métrico podemos obter uma aproximação melhor.
Determina uma rota como segue:

1. Determina uma AGM A de G.
1Esse transformação torna G em um multigrafo.
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2. Duplica todas arestas de A.

3. Acha um caminho Euleriano nesse grafo.

4. Remove vértices duplicados.

Teorema 3.4
O algoritmo acima define uma 2-aproximação.

Prova. A melhor solução do PCV menos uma aresta é uma árvore geradora
de G. Portanto c(A) ≤ OPT. A solução S obtida pelo algoritmo acima satisfaz
c(S) ≤ 2c(A) e portanto c(S) ≤ 2OPT, pelo mesmo argumento da prova do
teorema 3.2. �
O fator 2 dessa aproximação é resultado do passo 2 que duplica todas arestas
para garantir a existência de um caminho Euleriano. Isso pode ser garantido
mais barato: A AGM A possui um número par de vértices com grau impar
(por quê?), e portanto podemos calcular um emparelhamento perfeito mı́nimo
E entre esse vértices. O grafo com arestas A ∪ E possui somente vértices com
grau par e portanto podemos aplicar os restantes passos nesse grafo.

Teorema 3.5
A algoritmo usando um emparelhamento perfeito mı́nimo no passo 2 é uma
3/2-aproximação.

Prova. O valor do emparelhamento E não é mais que OPT/2: remove vértices
não emparelhados em E da solução ótima do PCV. O ciclo obtido dessa forma
é a união dois emparelhamentos perfeitos E1 e E2 formados pelas arestas pares
ou impares no ciclo. Com E1 o emparelhamento de menor custo, temos

c(E) ≤ c(E1) ≤ (c(E1) + c(E2))/2 = OPT/2

e portanto

c(S) = c(A) + c(E) ≤ OPT + OPT/2 = 3/2OPT.

�

3.3 Algoritmos de aproximação para cortes

Seja G = (V,A, c) um grafo conectado com com pesos c nas arestas. Lem-
bramos que um corte C é um conjunto de arestas que separa o grafo em duas
partições S

.
∪ V \ S. Dado dois vértices s, t ∈ V, o problema de achar um

corte mı́nimo que separa s e t pode ser resolvido via fluxo máximo em tempo
polinomial. Generalizações desse problema são:
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Figura 3.3: Identificação de dois terminais e um corte no grafo reduzido.
Vértices em verde, terminais em azul. A grafo reduzido possui
múltiplas arestas entre vértices.

• Corte múltiplo mı́nimo (CMM): Dado terminais s1, . . . , sk determine o
menor corte C que separa todos terminas.

• k-corte mı́nimo (k-CM): Mesmo problema, sem terminais definidos. (Ob-
serve que todos k componentes devem ser não vazios).

Fato 3.1
CMM é NP-dif́ıcil para qualquer k ≥ 3. k-CM possui uma solução polinomial
em tempo O(nk

2

) para qualquer k, mas é NP-dif́ıcil, caso k faz parte da
entrada.

Solução de CMM Chamamos um corte que separa um vértice dos outros
um corte isolante. Idéia: A união de cortes isolantes para todo si é um
corte múltiplo. Para calcular o corte isolante para um dado terminal si,
identificamos os restantes terminais em um único vértice S e calculamos um
corte mı́nimo entre si e S. (Na identificação de vértices temos que remover
self-loops, e somar os pesos de múltiplas arestas.)
Isso leva ao algoritmo

Algoritmo 3.1 (CI)
Entrada Grafo G = (V,A, c) e terminais s1, . . . , sk.

Sáıda Um corte múltiplo que separa os si.

1. Para cada i ∈ [1, k]: Calcula o corte isolante Ci de si.
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3 Algoritmos de aproximação

Figura 3.4: Corte múltiplo e decomposição em cortes isolantes.

2. Remove o maior desses cortes e retorne a união dos restantes.

Teorema 3.6
Algoritmo 3.1 é uma 2− 2/k-aproximação.

Prova. Considere o corte mı́nimo C∗. Ele pode ser representado com a união
de k cortes que separam os k componentes individualmente:

C∗ =
⋃

1≤i≤k

C∗i .

(Veja fig. 3.4.) Cada aresta de C∗ faz parte das cortes das duas componentes
adjacentes, e portanto ∑

1≤i≤k

w(C∗i ) = 2w(C∗)

e ainda w(Ci) ≤ w(C∗i ) para os cortes Ci do algoritmo 3.1, porque nos usamos
o corte isolante mı́nimo de cada componente. Logo para o corte C retornado
pelo algoritmo temos

w(C) ≤ (1− 1/k)
∑
1≤i≤k

w(Ci) ≤ (1− 1/k)
∑
1≤i≤k

w(C∗i ) ≤ 2(1− 1/k)w(C∗).

�
A análise do algoritmo é ótimo, como o seguinte exemplo da fig. 3.5 mostra.
O menor corte que separa si tem peso 2−ε, portanto o algoritmo retorne um
corte de peso (2− ε)k− (2− ε) = (k− 1)(2− ε), enquanto o menor corte que
separa todos terminais é o ciclo interno de peso k.
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3.3 Algoritmos de aproximação para cortes

Figura 3.5: Exemplo de um grafo em que o algoritmo 3.1 retorne uma 2−2/k-
aproximação.

Solução de k-CM Problema: Como saber a onde cortar?

Fato 3.2
Existem somente n−1 cortes diferentes num grafo. Eles podem ser organizados
numa árvore de Gomory-Hu (AGH) T = (V, T). Cada aresta dessa árvore
define um corte associado em G pelos dois componentes após a sua remoção.

1. Para cada u, v ∈ V o menor corte u–v em G é igual a o menor corte u–v
em T (i.e. a aresta de menor peso no caminho único entre u e v em T).

2. Para cada aresta a ∈ T , w ′(a) é igual a valor do corte associado.

Por conseqüência, a AGH codifica o valor de todos cortes em G. Ele pode ser
calculado com n− 1 cortes s–t mı́nimos.

Observação: A união dos cortes definidos por k− 1 arestas na AGH separa G
em ao menos k componentes. Isso leva ao seguinte algoritmo.

Algoritmo 3.2 (KCM)
Entrada Grafo G = (V,A, c).

Saida Um k-corte.

1. Calcula uma AGH T em G.
2. Forma a união dos k − 1 cortes mais leves definidos por k − 1

arestas em T .

Teorema 3.7
Algoritmo 3.2 é uma 2− 2/k-aproximação.
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3 Algoritmos de aproximação

Prova. Seja C∗ =
⋃
1≤i≤k C

∗
i uma corte mı́nimo, decomposto igual à prova

anterior. O nosso objetivo e demonstrar que existem k − 1 cortes definidos
por uma aresta em T que são mais leves que os C∗i .
Removendo C∗ de G gera componentes V1, . . . , Vk: Define um grafo sobre esses
componentes identificando vértices de uma componente com arcos da AGH T

entre os componentes, e eventualmente removendo arcos até obter uma nova
árvore T ′. Seja C∗k o corte de maior peso, e define Vk como raiz da árvore.
Desta forma, cada componente V1, . . . , Vk−1 possui uma aresta associada na
direção da raiz. Para cada dessas arestas (u, v) temos

w(C∗i ) ≥ w ′(u, v)

porque C∗i isola o componente Vi do resto do grafo (particularmente separa u
e v), e w ′(u, v) é o peso do menor corte que separa u e v. Logo

w(C) ≤
∑
a∈T ′

w ′(a) ≤
∑
1≤i<k

w(C∗i ) ≤ (1−1/k)
∑
1≤i≤k

w(C∗i ) = 2(1−1/k)w(C∗).

�

3.4 Exerćıcios

Exerćıcio 3.1
Por que um subgrafo de menor custo sempre é uma árvore?
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4 Algoritmos randomizados

Um algoritmo randomizado usa eventos randômicos na sua execução. Modelos
computacionais adequadas são máquinas de Turing randômicas – mais usadas
na área de complexidade – ou máquinas RAM com um comando do tipo
random(S) que retorne um elemento randômico do conjunto S.

• Probabilidade morrer caindo da cama: 1/2 × 106 (Roach and Pieper,
2007).

• Probabilidade acertar 6 números de 60 na mega-sena: 1/50063860.

• Probabilidade que a memória falha: em memória moderna temos 1000
FIT/MBit, i.e. 6× 10−7 erros por segundo num memória de 256 MB.1

• Probabilidade que um meteorito destrói um computador em cada milis-
segundo: ≥ 2−100 (supondo que cada milênio ao menos um meteorito
destrói uma área de 100m2).

Portanto, um algoritmo que retorna uma resposta falsa com baixa probabili-
dade é aceitável. Em retorno um algoritmo randomizado em geral é

• mais simples;

• mais eficiente: para alguns problemas, o algoritmos randômica é o mais
eficiente conhecido;

• maios robusto: algoritmos randômicos podem ser menos dependente da
distribuição das entradas.

• a única alternativa: para alguns problemas, conhecemos só algoritmos
randômicos.

Classes de complexidade

Definição 4.1
Seja Σ algum alfabeto e R(α,β) a classe de linguagens L ⊆ Σ∗ tal que existe
um algoritmo de decisão em tempo polinomial A que satisfaz
1FIT é uma abreviação de “failure-in-time” e é o número de erros cada 109 segundos. Para

saber mais sobre erros em memória veja (Semiconductor, 2004).
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4 Algoritmos randomizados

• x ∈ L⇒ Pr[A(x) = sim] ≥ α.

• x 6∈ L⇒ Pr[A(x) = não] ≥ β.

(A probabilidade é sobre todas sequências de bits randômicos r. Como o
algoritmo executa em tempo polinomial no tamanho da entrada |x|, o número
de bits randômicas |r| é polinomial em |x| também.)
Com isso podemos definir

• a classe RP := R(1/2, 1) (randomized polynomial), dos problemas que
possuem um algoritmo com erro unilateral (no lado do “sim”); a classe
co − RP = R(1, 1/2) consiste dos problemas com erro no lado de “não”;

• a classe ZPP := RP ∩ co − RP (zero-error probabilistic polynomial) dos
problemas que possuem algoritmo randomizado sem erro;

• a classe PP := R(1/2 + ε, 1/2 + ε) (probabilistic polynomial), dos pro-
blemas com erro 1/2+ ε nos dois lados; e

• a classe BPP := R(2/3, 2/3) (bounded-error probabilistic polynomial),
dos problemas com erro 1/3 nos dois lados.

Algoritmos que respondem corretamente somente com uma certa probabili-
dade também são chamados do tipo Monte Carlo, enquanto algoritmos que
usam randomização somente internamente, mas respondem sempre correta-
mente são do tipo Las Vegas.

Exemplo 4.1 (Teste de identidade de polinomios)
Dado dois polinômios p(x) e q(x) de grau máximo d, como saber se p(x) ≡
q(x)? Caso temos os dois na forma canônica p(x) =

∑
0≤i≤d pix

i ou na forma
fatorada p(x) =

∏
1≤i≤d(x − ri) isso é simples responder por comparação de

coeficientes em tempo O(n). E caso contrário? Uma conversão para a forma
canônica pode custar Θ(d2) multiplicações. Uma abordagem randomizada
é vantajosa, se podemos avaliar o polinômio mais rápido (por exemplo em
O(d)):

1 i d e n t i c o (p , q ) :=
2 S e l e c i o n a um número randômico r no i n t e r v a l o [1, 100d] .
3 Caso p(r) = q(r) r e to rne ‘ ‘ sim ’ ’ .
4 Caso p(r) 6= q(r) r e to rne ‘ ‘ não ’ ’ .

Caso p(x) ≡ q(x), o algoritmo responde “sim” com certeza. Caso contrário
a resposta pode ser errada, se p(r) = q(r) por acaso. Qual a probabilidade
disso? p(x) − q(x) é um polinômio de grau d e possui no máximo d ráızes.
Portanto, a probabilidade de encontrar um r tal que p(r) = q(r), caso p 6≡ q
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é d/100d = 1/100. Isso demonstra que o teste de identidade pertence à classe
co − RP. ♦

Amplificação de probabilidades Caso não estamos satisfeitos com a proba-
bilidade de 1/100 no exemplo acima, podemos repetir o algoritmo k vezes, e
responder “sim” somente se todas k repetições responderam “sim”. A pro-
babilidade erradamente responder “não” para polinômios idênticos agora é
(1/100)k, i.e. ela diminui exponencialmente com o número de repetições.
Essa técnica é uma amplificação da probabilidade de obter a solução correta.
Ela pode ser aplicada para melhorar a qualidade de algoritmos em todas clas-
ses “Monte Carlo”. Com um número constante de repetições, obtemos uma
probabilidade baixa nas classes RP, co − RP e BPP. Isso não se aplica a PP:
é posśıvel que ε diminui exponencialmente com o tamanho da instância. Um
exemplo de amplificação de probabilidade encontra-se na prova do teorema 4.4.

Relação entre as classes

Teorema 4.1
RP ⊆ NP.

Prova. Supõe que temos um algoritmo em RP para algum problema L. Pode-
mos, não-deterministicamente, gerar todas seqüencias r de bits randômicos e
responder “sim” caso alguma execução encontra “sim”. O algoritmo é correto,
porque caso para um x 6∈ L, não existe uma sequência randômica r tal que o
algoritmo responde “sim”. �

Teorema 4.2
Uma caraterização alternativa da classe ZPP é como classe de problemas tal
que existe um algoritmo A

• que responde ou “sim”, ou “não” ou “não sei”,

• com Pr[A(x) = não sei] ≤ 1/2, e

• caso ele responde, ele não erra, i.e., para x tal que A(x) 6= não sei temos
A(x) = 1⇐⇒ x ∈ L.

Prova. Para L ∈ ZPP temos dois algoritmos A1 ∈ RP e A2 ∈ co − RP. Vamos
construir um algoritmo

1 i f A1(x) = não e A2(x) = não then
2 return ‘ ‘ não ’ ’
3 else i f A1(x) = não e A2(x) = sim then
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4 Algoritmos randomizados

4 return ‘ ‘ não s e i ’ ’
5 else i f A1(x) = sim e A2(x) = não then
6 { caso impossı́vel }
7 else i f A1(x) = sim e A2(x) = sim then
8 return ‘ ‘ sim ’ ’
9 end i f

O algoritmo responde corretamente “sim” e “não”, porque um dos dois al-
goritmos não erra. Qual a probabilidade do segundo caso? Para x ∈ L,
Pr[A1(x)não ∧ A2(x) = sim] ≤ 1/2 × 1 = 1/2. Similarmente, para x 6∈ L,
Pr[A1(x)não ∧A2(x) = sim] ≤ 1× 1/2 = 1/2. �

Teorema 4.3
ZPP ⊆ RP e ZPP ⊆ co − RP.

Prova. Seja A um algoritmo para L ∈ ZPP. Constrói outro algoritmo que
sempre responde “não” caso A responde “não sei”, e senão responde igual.
No caso de co − RP analogamente constrói um algoritmos que responde “sim”
nos casos “não sei” de A. �

Teorema 4.4
RP ⊆ BPP e co − RP ⊆ BPP.

Prova. Seja A um algoritmo para L ∈ RP. Constrói um algoritmo A ′

1 i f A(x) = não e A(x) = não then
2 return ‘ ‘ não ’ ’
3 else
4 return ‘ ‘ sim ’ ’
5 end i f

Caso x 6∈ L, Pr[A ′(x) = não] = Pr[A(x) = não ∧ A(x) = não] = 1 × 1 = 1.
Caso x ∈ L,

Pr[A ′(x) = sim] = 1− Pr[A ′(x) = não] = 1− Pr[A(x) = não ∧A(x) = não]

≥ 1− 1/2× 1/2 = 3/4 > 2/3.

(Observe que para k repetições de A obtemos Pr[A ′(x) = sim] ≥ 1−1/2k, i.e.,
o erro diminui exponencialmente com o número de repetições.) O argumento
para co − RP é similar. �

Relação com a classe NP e abundância de testemunhas Lembramos que a
classe NP contém problemas que permitem uma verificação de uma solução em
tempo polinomial. Não-determińısticamente podemos “chutar” uma solução
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4.1 Corte mı́nimo

PP = co − PP

NP

oooooooooooo

BPP = co − BBP

oooooooooooo

QQQQQQQQQQQQ

?

RP

OOOOOOOOOOOO co − RP

mmmmmmmmmmmmm

ZPP

P

Figura 4.1: Relações entre classes de complexidade para algoritmos randomi-
zados.

e verificá-la. Se o número de soluções positivas de cada instância é mais que
a metade do número total de soluções, o problema pertence a RP: podemos
gerar uma solução randômica e testar se ela possui a caracteŕıstica desejada.
Uma problema desse tipo possui uma abundância de testemunhas. Isso de-
monstra a importância de algoritmos randomizados. O teste de equivalência
de polinômios acima é um exemplo de abundância de testemunhas.

4.1 Corte ḿınimo

Corte ḿınimo

Entrada Grafo não-direcionado G = (V,A) com pesos c : A → Z+ nas
arestas.

Solução Uma partição V = S ∪ (V \ S).

Objetivo Minimizar o peso do corte
∑

{u,v}∈A
u∈S,v∈V\S

c{u,v}.
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Soluções determińısticas:

• Calcular a árvore de Gomory-Hu: a aresta de menor peso define o corte
mı́nimo.

• Calcular o corte mı́nimo (via fluxo máximo) entre um vértice fixo s ∈ V
e todos outros vértices: o menor corte encontrado é o corte mı́nimo.

Custo em ambos casos: O(n) aplicações de um algoritmo de fluxo máximo,
i.e. O(mn2 log(n/m)) no caso do algoritmo de Goldberg-Tarjan.

Solução randomizada para pesos unitários No que segue supomos que os
pesos são unitários, i.e. ca = 1 para a ∈ A. Uma abordagem simples é
baseada na seguinte observação: se escolhemos uma aresta que não faz parte
de um corte mı́nimo, e contráımo-la (i.e. identificamos os vértices adjacentes),
obtemos um grafo menor, que ainda contém o corte mı́nimo. Se escolhemos
uma aresta randomicamente, a probabilidade de por acaso escolher uma aresta
de um corte mı́nimo é baixa.

1 cmr (G) :=
2 while G pos su i mais que do i s v é r t i c e s
3 e s c o l h e uma a r e s t a {u, v} randômicamente
4 i d e n t i f i c a u e v em G

5 end while
6 return o c o r t e d e f i n i d o pe l o s do i s v é r t i c e s em G

Exemplo 4.2
TBD ♦

Dizemos que uma aresta “sobrevive” uma contração, caso ele não foi contráıdo.

Lema 4.1
A probabilidade que os k arestas de um corte mı́nimo sobrevivem n − t con-
trações (de n para t vértices) é Ω((t/n)2).

Prova. Como o corte mı́nimo é k, cada vértice possui grau ao menos k, e
portanto o número de arestas após iteração 0 ≤ i < n − t e maior ou igual
a k(n − i)/2 (com a convenção que a “iteração 0” produz o grafo inicial).
Supondo que as k arestas do corte mı́nimo sobreviveram a iteração i, a pro-
babilidade de não sobreviver a próxima iteração é k/(k(n− i)/2) = 2/(n− i).
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4.1 Corte mı́nimo

Logo, a probabilidade do corte sobreviver todas iterações é ao menos

∏
0≤i<n−t

1−
2

n− i
=

∏
0≤i<n−t

n− i− 2

n− i

=
(n− 2)(n− 3) · · · t− 1

n(n− 1) · · · t+ 1
=

(
t

2

)
/

(
n

2

)
= Ω((t/n)2).

�

Teorema 4.5
Para um dado corte mı́nimo de tamanho k, a probabilidade do algoritmo
acima retornar esse corte é Ω(n−2).

Prova. Caso o grafo possui n vértices, o algoritmo termina em n−2 iterações:
podemos aplicar o lema acima com t = 2. �

Observação 4.1
O que acontece se repetirmos o algoritmo algumas vezes? Seja Ci a variável
indicador que na repetição i o corte mı́nimo foi encontrado. Temos P[Ci =
1] ≥ 2n−2 e portanto P[Ci = 0] ≤ 1 − 2n−2. Para kn2 repetições, vamos
encontrar C =

∑
Ci cortes mı́nimos com probabilidade

P[C ≥ 1] = 1− P[C = 0] ≥ 1− (1− 2n−2)kn
2

≥ 1− e−2k.

Para k = logn obtemos P[C ≥ 1] ≥ 1− n−2. ♦

Logo, se repetimos esse algoritmo n2 logn vezes e retornamos o menor corte
encontrado, achamos o corte mı́nimo com probabilidade razoável. Se a imple-
mentação realiza uma contração em O(n) o algoritmo possui complexidade
O(n2) e com as repetições em total O(n4 logn).

Implementação de contrações Para garantir a complexidade acima, uma
contração tem que ser implementada em O(n). Isso é posśıvel tanto na repre-
sentação por uma matriz de adjacência, quanto na representação pela listas
de adjacência. A contração de dois vértices adjacentes resulta em um novo
vértice, que é adjacente aos vizinhos dos dois. Na contração arestas de um
vértice com si mesmo são removidas. Múltiplas arestas entre dois vértices tem
que ser mantidas para garantir a corretude do algoritmo.
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Um algoritmo melhor O problema principal com o algoritmo acima é que
nas últimas iterações, a probabilidade de contrair uma aresta do corte mı́nimo
é grande. Para resolver esse problema, executaremos o algoritmo duas vezes
para instâncias menores, para aumentar a probabilidade de não contrair o
corte mı́nimo.

1 cmr2 (G) :=
2 i f (G pos su i menos que 6 v é r t i c e s )
3 determina o co r t e mı́nimo C por exaust ão
4 return C

5 else

6 t :=
⌈
1+ n/

√
2
⌉

7 s e j a G1 o r e s u l t a d o de n− t cont ra ç õ e s em G

8 s e j a G2 o r e s u l t a d o de n− t cont ra ç õ e s em G

9 C1 :=cmr2 (G1 )
10 C2 :=cmr2 (G2 )
11 return o menor dos do i s c o r t e s C1 e C2
12 end i f

Esse algoritmo possui complexidade de tempo O(n2 logn) e encontra um corte
mı́nimo com probabilidade Ω(1/ logn).

Lema 4.2
A probabilidade de um corte mı́nimo sobreviver t =

⌈
1+ n/

√
2
⌉

contrações é
no mı́nimo 1/2.

Prova. Pelo lema 4.1 a probabilidade é

d1+ n/sqrt2e (d1+ n/sqrt2e− 1)

n(n− 1)
≥ (1+ n/

√
2)(n/

√
2)

n(n− 1)
=

√
2+ n

2(n− 1)
≥ n

2n
=
1

2
.

�
Seja P(t) a probabilidade que um corte com k arestas sobrevive caso o grafo
possui t vértices. Temos

P[o corte sobrevive em H1] ≥ 1/2P(
⌈
1+ t/

√
2
⌉
)

P[o corte sobrevive em H2] ≥ 1/2P(
⌈
1+ t/

√
2
⌉
)

P[o corte não sobrevive em H1 e H2] ≤ (1− 1/2P(
⌈
1+ t/

√
2
⌉
))2

P(t) = P[o corte sobrevive em H1 ou H2] ≥ 1− (1− 1/2P(
⌈
1+ t/

√
2
⌉
))2

= P(
⌈
1+ t

√
2
⌉
) − 1/4P(

⌈
1+ t/

√
2
⌉
)2
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4.2 Teste de primalidade

Para resolver essa recorrência, define Q(k) = P(
√
2
k
) com base Q(0) = 1 para

obter a recorrência simplificada

Q(k+ 1) = P(
√
2
k+1

) = P(
⌈
1+
√
2
k
⌉
) − 1/4P(

⌈
1+
√
2
⌉2

)2

≈ P(
√
2
k
) − P(

√
2
k
)2/4 = Q(k) −Q(k)2/4

e depois R(k) = 4/Q(k) − 1 com base R(0) = 3 para obter

4

R(k+ 1) + 1
=

4

R(k) + 1
−

4

(R(k) + 1)2
⇐⇒ R(k+ 1) = R(k) + 1+ 1/R(k).

R(k) satisfaz

k < R(k) < k+Hk−1 + 3

Prova. Por indução. Para k = 1 temos 1 < R(1) = 13/3 < 1 + H0 + 3 = 5.
Caso a HI está satisfeito, temos

R(k+ 1) = R(k) + 1+ 1/R(k) > R(k) + 1 > k+ 1

R(k+ 1) = R(k) + 1+ 1/R(k) < k+Hk−1 + 3+ 1+ 1/k = (k+ 1) +Hk + 3

�
Logo, R(k) = k + Θ(log k), e com isso Q(k) = Θ(1/k) e finalmente P(t) =
Θ(1/ log t).
Para determinar a complexidade de cmr2 observe que temos O(logn) ńıveis
recursivos e cada contração pode ser feito em tempo O(n2), portanto

Tn = 2T(
⌈
1+ n/

√
2
⌉
) +O(n2).

Aplicando o teorema de Akra-Bazzi obtemos a equação caracteŕıstica 2(1/
√
2)p =

1 com solução p = 2 e

Tn ∈ Θ(n2(1+

∫n
1

cu2

u3
du)) = Θ(n2 logn).

4.2 Teste de primalidade

Um problema importante na criptografia é achar números primos grandes
(p.ex. RSA). Escolhendo um número n randômico, qual a probabilidade de n
ser primo?
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Teorema 4.6 (Hadamard (1896), de la Vallée Poussin (1896))
(Teorema dos números primos.)
Para π(n) = |{p ≤ n | p primo}| temos

lim
n→∞ π(n)

n/ lnn
= 1.

(Em particular π(n) = Θ(n/ lnn).)

Portanto, a probabilidade de um número randômico no intervalo [2, n] ser
primo assintoticamente é somente 1/ lnn. Então para achar um número
primo, temos que testar se n é primo mesmo. Observe que isso não é igual
a fatoração de n. De fato, temos testes randomizados (e determińısticos) em
tempo polinomial, enquanto não sabemos fatorar nesse tempo. Uma aborda-
gem simples é testar todos os divisores:

1 Prim1 (n) :=
2 for i = 2, 3, 5, 7, . . . ,

⌊√
n
⌋

do
3 i f i|n return ‘ ‘ Não ’ ’
4 end for
5 return ‘ ‘ Sim ’ ’

O tamanho da entrada n é t = logn bits, portanto o número de iterações
é Θ(
√
n) = Θ(2t/2) e a complexidade Ω(2t/2) (mesmo contando o teste de

divisão com O(1)) desse algoritmo é exponencial. Para testar a primalidade
mais eficiente, usaremos uma caracteŕıstica particular dos números primos.

Teorema 4.7 (Fermat, Euler)
Para p primo e a ≥ 0 temos

ap ≡ a mod p.

Prova. Por indução sobre a. Base: evidente. Seja ap ≡ a. Temos

(a+ 1)p =
∑
0≤i≤p

(
p

i

)
ai

e para 0 < i < p

p|

(
p

i

)
=
p(p− 1) · · · (p− i+ 1)

i(i− 1) · · · 1
porque p é primo. Portanto (a+ 1)p ≡ ap + 1 e

(a+ 1)p − (a+ 1) ≡ ap + 1− (a+ 1) = ap − a ≡ 0.

(A última identidade é a hipótese da indução.) �
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4.2 Teste de primalidade

Definição 4.2
Para a, b ∈ Z denotamos com (a, b) o máximo divisor em comum (MDC) de
a e b. No caso (a, b) = 1, a e b são coprimo.

Teorema 4.8 (Divisão modulo p)
Se p primo e (b, p) = 1

ab ≡ cb mod p⇒ a ≡ c mod p.

(Em palavras: Numa identidade modulo p podemos dividir por números co-
primos com p.)

Prova.

ab ≡ cd⇐⇒ ∃k ab+ kp = cb⇐⇒ ∃k a+ kp/b = c

Como a, c ∈ Z, temos kp/b ∈ Z e b|k ou b|p. Mas (b, p) = 1, então b|k.
Definindo k ′ := k/b temos ∃k ′ a+ k ′p = c, i.e. a ≡ c. �
Logo, para p primo e (a, p) = 1 (em particular se 1 ≤ a < p)

ap−1 ≡ 1 mod p. (4.1)

Um teste melhor então é

1 Primo2 (n) :=
2 s e l e c i o n a a ∈ [1, n− 1] randômicamente
3 i f (a, n) 6= 1 return ‘ ‘ Não ’ ’
4 i f ap−1 ≡ 1 return ‘ ‘ Sim ’ ’
5 return ‘ ‘ Não ’ ’

Complexidade: Uma multiplicação e divisão com logn d́ıgitos é posśıvel em
tempo O(log2 n). Portanto, o primeiro teste (o algoritmo de Euclides em logn
passos) pode ser feito em tempo O(log3 n) e o segundo teste (exponenciação
modular) é posśıvel implementar com O(logn) multiplicações (exerćıcio!).
Corretude: O caso de uma resposta “Não” é certo, porque n não pode ser
primo. Qual a probabilidade de falhar, i.e. do algoritmo responder “Sim”,
com n composto? O problema é que o algoritmo falha no caso de números
Carmichael.

Definição 4.3
Um número composto n que satisfaz an−1 ≡ 1 mod a é um número pseudo-
primo com base a. Um número Carmichael é um número pseudo-primo para
qualquer base a com (a, n) = 1.
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4 Algoritmos randomizados

Os primeiros números Carmichael são 561 = 3 × 11 × 17, 1105 e 1729 (veja
OEIS A002997). Existe um número infinito deles:

Teorema 4.9 (Alford et al. (1994))
Seja C(n) o número de números Carmichael até n. Assintoticamente temos
C(n) > n2/7.

Exemplo 4.3
C(n) até 1010 (OEIS A055553):
n 1 2 3 4 5 6 7 8 9 10
C(10n) 0 0 1 7 16 43 105 255 646 1547⌈
(10n)2/7

⌉
2 4 8 14 27 52 100 194 373 720

. ♦

Caso um número n não é primo, nem número de Carmichael, mais que n/2 dos
a ∈ [1, n− 1] com (a, n) = 1 não satisfazem (4.1) ou seja, com probabilidade
> 1/2 acharemos um testemunha que n é composto. O problema é que no
caso de números Carmichael não temos garantia.

Teorema 4.10
Para p primo temos

x2 ≡ 1 mod p⇒ x ≡ ±1 mod p.

O teste de Miller-Rabin usa essa caracteŕıstica para melhorar o teste acima.
Podemos escrever n− 1 = 2tu para um u impar. Temos an−1 = (au)2

t ≡ 1.
Portanto, se an−1 ≡ 1,

Ou au ≡ 1 mod p ou existe um menor i ∈ [0, t] tal que (au)2
i

≡ 1

Caso p é primo,
√

(au)2
i

= (au)2
i−1 ≡ −1 pelo teorema (4.10). Por isso:

Definição 4.4
Um número n é um pseudo-primo forte com base a caso

Ou au ≡ 1 mod p ou existe um menor i ∈ [0, t− 1] tal que (au)2
i

≡ −1
(4.2)

1 Primo3 (n) :=
2 s e l e c i o n a a ∈ [1, n− 1] randômicamente
3 i f (a, n) 6= 1 return ‘ ‘ Não ’ ’
4 s e j a n− 1 = 2tu

5 i f au ≡ 1 return ‘ ‘ Sim ’ ’
6 i f (au)2

i ≡ −1 para um i ∈ [0, t− 1] return ‘ ‘ Sim ’ ’
7 return ‘ ‘ Não ’ ’
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4.2 Teste de primalidade

Teorema 4.11 (Monier (1980),Rabin (1980))
Caso n e composto e impar, mais que 3/4 dos a ∈ [1, n − 1] com (a, n) = 1

não satisfazem o critério (4.2) acima.

Portanto com k testes randômicos, a probabilidade de falhar P[Sim | n composto] ≤
(1/4)k = 2−2k. Na prática a probabilidade é menor:

Teorema 4.12 (Damg̊ard et al. (1993))
A probabilidade de um único teste falhar para um número com k bits e ≤
k242−

√
k.

Exemplo 4.4
Para n ∈ [2499, 2500−1] a probabilidade de não detectar um n composto com
um único teste é menor que

4992 × 42−
√
499 ≈ 2−22.

♦

Teste determińıstico O algoritmo pode ser convertido em um algoritmo de-
termińıstico, testando ao menos 1/4 dos a com (a, n) = 1. De fato, temos
para menor o testemunha w(n) de um número n ser composto

Se o HGR é verdade w(n) < 2 log2 n (4.3)

com HGR a hipótese generalizada de Riemann (uma conjetura aberta). Su-
pondo HGR, obtemos um algoritmo determińıstico com complexidadeO(log5 n).
Em 2002, Agrawal et al. (2004) descobriram um algoritmo determińıstico (sem
a necessidade da HGR) em tempo Õ(log12 n) que depois foi melhorado para
Õ(log6 n).
Para testar: http://www.jjam.de/Java/Applets/Primzahlen/Miller_Rabin.
html.
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5 Complexidade e algoritmos parametrizados

A complexidade de um problema geralmente é resultado de diversos elementos.
Um algoritmo parameterizado separa explicitamente os elementos que tornam
um problema dif́ıcil, dos que são simples de tratar. A análise da complexidade
parameterizada quantifica essas partes separadamente. Por isso, a comple-
xidade parameterizada é chamada uma complexidade “de duas dimensões”.

Exemplo 5.1
O problema de satisfatibilidade (SAT) é NP-completo, i.e. não conhecemos um
algoritmo cuja complexidade cresce somente polinomialmente com o tamanho
da entrada. Porém, a complexidade deste problema cresce principalmente com
o número de variáveis, e não com o tamanho da entrada: com k variáveis e en-
trada de tamanho n solução trivial resolve o problema em tempo O(2kn). Em
outras palavras, para parâmetro k fixo, a complexidade é linear no tamanho
da entrada. ♦

Definição 5.1
Um problema que possui um parâmetro k ∈ N (que depende da instância) e
permite um algoritmo de complexidade f(k)|x|O(1) para entrada x e com f uma
função arbitrária, se chama tratável por parâmetro fixo (ingl. fixed-parameter
tractable, fpt). A classe de complexidade correspondente é FPT.

Um problema tratável por parâmetro fixo se torna tratável na prática, se o
nosso interesse são instâncias com parâmetro pequeno. É importante observar
que um problema permite diferentes parameterizações. O objetivo de projeto
de algoritmos parameterizados consiste em descobrir para quais parâmetros
que são pequenos ná prática o problema possui um algoritmo parameterizado.
Neste sentido, o algoritmo parameterizado para SAT não é interessante, por-
que o número de variáveis na prática é grande.
A seguir consideramos o problema NP-complete de cobertura por vértices. Uma
versão parameterizada é

k-cobertura por vértices

Instância Um grafo não-direcionado G = (V,A) e um número k1.
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5 Complexidade e algoritmos parametrizados

Solução Uma cobertura C, i.e. um conjunto C ⊆ V tal que ∀a ∈ A :
a ∩ C 6= ∅.

Parâmetro O tamanho k da cobertura.

Objetivo Minimizar |C|.

Abordagem com força bruta:

1 mvc(G = (V,A)) :=
2 i f A = ∅ return ∅
3 s e l e c i o n a a r e s t a {u, v} ∈ A não coberta
4 C1 := {u} ∪mvc(G \ {u})
5 C2 := {v} ∪mvc(G \ {v})
6 return a menor ent re as cober tura s C1 e C2

Supondo que a seleção de uma aresta e a redução dos grafos é posśıvel em
O(n), a complexidade deste abordagem é dado pela recorrência

Tn = 2Tn−1 +O(n)

com solução Tn = O(2n). Para achar uma solução com no máximo k vértices,
podemos poder a árvore de busca definido pelo algoritmo mvc na profundidade
k. Isso resulta em

Teorema 5.1
O problema k-cobertura por vértices é tratável por parâmetro fixo em O(2kn).

Prova. Até o ńıvel k vamos visitar O(2k) vértices na árvore de busca, cada
um com complexidade O(n). �
O projeto de algoritmos parameterizados frequentemente consiste em

• achar uma parameterização tal que o parte super-polinomial da com-
plexidade é limitada para um parte do problema que depende de um
parâmetro k que é pequeno na prática;

• encontrar o melhor algoritmo posśıvel para o parte super-polinomial.

Exemplo 5.2
Considere o algoritmo direto (via uma árvore de busca, ou backtracking) para
SAT.
1Introduzimos k na entrada, porque k mede uma caracteŕıstica da solução. Para evitar

conmplexidades artificias, entende-se que k nestes casos é codificado em unário.
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1 BT−SAT(ϕ,α) :=
2 i f α é a t r i b u i ç ã o completa : return ϕ(α)
3 i f alguma c l a ú s u l a não é s a t i s f e i t a : return f a l s e
4 i f BT−SAT(ϕ,α1) return t rue
5 return BT−SAT(ϕ,α0)

(α0 e α1 denotam extensões de uma atribuição parcial das variáveis.)
Aplicado para 3SAT , das 8 atribuições por claúsula podemos excluir uma que
não a satisfaz. Portanto a complexidade de BT-SAT é O(7n/3) = O(

3
√
7
n
) =

O(1.9129n). (Exagerando – mas não mentindo – podemos dizer que isso é
uma aceleração exponencial sobre a abordagem trivial que testa todas 2n

atribuições.)
O melhor algoritmo para 3SAT possui complexidade O(1.324n). ♦

Um algoritmo melhor para cobertura por vértices Consequência: O projeto
cuidadoso de uma árvore de busca pode melhorar a complexidade. Vamos
aplicar isso para o problema de cobertura por vértices.
Um melhor algoritmo para a k-cobertura por vértices pode ser obtido pelas
seguintes observações

• Caso o grau máximo ∆ de G é 2, o problema pode ser resolvido em
tempo O(n), porque G é uma coleção de caminhos simples e ciclos.

• Caso contrário, temos ao menos um vértice v de grau δv ≥ 3. Ou esse
vértice faz parte da cobertura mı́nima, ou todos seus vizinhos N(v) (veja
figura 5.1).

1 mvc ’ (G) :=
2 i f ∆(G) ≤ 2 then
3 determina a cobertura mı́nima C em tempo O(n)
4 return C

5 end i f
6 s e l e c i o n a um v é r t i c e v com grau δv ≥ 3
7 C1 := {v} ∪mvc ′(G \ {v})
8 C2 := N(v) ∪mvc ′(G \N(v))
9 return a menor cobertura ent r e C1 e C2

O algoritmo resolve o problema de cobertura por vértices mı́nima de forma
exata. Se podamos a árvore de busca após selecionar k vértices obtemos um
algoritmo parameterizado para k-cobertura por vértices. O número de vértices
nessa árvore é

Vi = Vi−1 + Vi−3 + 1.
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5 Complexidade e algoritmos parametrizados

Figura 5.1: Subproblemas geradas pela decisão da inclusão de um vértice v.
Vermelho: vértices selecionadas para a cobertura.

Lema 5.1
A solução dessa recorrência é Vi = O(1.4656i).

Teorema 5.2
O problema k-cobertura por vértices é tratável por parâmetro fixo emO(1.4656kn).

Prova. Considerações acima com trabalho limitado por O(n) por vértice na
árvore de busca. �
Prova. (Do lema acima.) Com o ansatz Vi ≤ ci obtemos uma prova por
indução se para um i ≥ i0

Vi = Vi−1 + Vi−3 + 1 ≤ ci−1 + ci−3 + 1 ≤ ci⇐⇒ ci−3(c3 − c2 − 1) ≥ 1⇐⇒ c3 − c2 − 1 ≥ 0

(O último passo é justificado porque para c > 1 e i0 suficientemente grande
o produto vai ser ≥ 1.) c3 − c2 − 1 possui uma única raiz positiva ≈ 1.4656 e
para c ≥ 1.4656 temos c3 − c2 − 1 ≥ 0. �
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A Técnicas para a análise de algoritmos

Análise de recorrências

Teorema A.1 (Akra-Bazzi e Leighton)
Dado a recorrência

T(x) =

{
Θ(1) se x ≤ x0∑
1≤i≤k aiT(bix+ hi(x)) + g(x) caso contrário

com constantes ai > 0, 0 < bi < 1 e funções g, h, tal que

|g ′(x)| ∈ O(xc); |hi(x)| ≤ x/ log1+ε x

para um ε > 0 e a constante x0 e suficientemente grande

T(x) ∈ Θ
(
xp
(
1+

∫x
1

g(u)

up+1
du

))
com p tal que

∑
1≤i≤k aib

p
i = 1.

Teorema A.2 (Graham et al. (1988))
Dado a recorrência

T(n) =

{
Θ(1) n ≤ max1≤i≤k di∑
i αiT(n− di) caso contrário

seja α a raiz com a maior valor absoluto com multiplicidade l do polinômio
caracteŕıstico

zd − α1z
d−d1 − · · ·− αkzd−dk

com d = maxk dk. Então

T(n) = Θ(nlαn) = Θ∗(αn).
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Índice

alternante, 33

cuco hashing, 44

dicionário, 38

emparelhado, 33
emparelhamento, 29

perfeito, 29
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