INF05010 - Algoritmos avancados
Notas de aula

Marcus Ritt
mrpritt@inf.ufrgs.br

18 de Novembro de 2010

Universidade Federal do Rio Grande do Sul
Instituto de Informética
Departamento de Informatica Tedrica

Versao 3530 do 2010-11-18, compilada em 18 de Novembro de 2010. Obra
estd licenciada sob uma Licenga Creative Commons (Atribuigdo—Uso Nao-
Comercial-N&o a obras derivadas 3.0 Brasil).

iii

http://creativecommons.org/licenses/by-nc-nd/3.0/br

Conteudo

1

2

Algoritmos em grafos

1.1 Representacao eficiente de grafos
1.2 Caminhos e ciclos Eulerianos

1.3 Filas de prioridade e heaps
1.3.1 Heaps binérios . .
1.3.2 Heaps binomiais .
1.3.3 Heaps Fibonacci .
1.3.4 Rank-pairing heaps
1.3.5 Tépicos
1.3.6 Exercicios

1.4 Fluxos em redes.

1.4.1 Algoritmo de Ford-Fulkerson
1.4.2 O algoritmo de Edmonds-Karp
1.4.3 O algoritmo de Dinic
1.4.4 Algoritmo de escalonamento
1.4.5 Variacoes do problema

1.4.6 Aplicagbes

1.4.7 Outros problemas de fluxo

1.5 Emparelhamentos
1.5.1 Aplicagdes
1.5.2 Grafos bi-partidos

1.5.3 Emparelhamentos em grafos nao-bipartidos

1.5.4 Tépicos avancados
1.5.5 Exercicios

Tabelas hash

2.1 Hashing com listas encadeadas
2.2 Hashing com enderegcamento aberto.

2.3 Cuco hashing
2.4 Filtros de Bloom

Algoritmos de aproximacao

3.1 Aproximagao para o problema da drvore de Steiner minima . .

3.2 Aproximacoes para o PCV

69
69
73
[0)
7

79
79
81

Contetido

3.3 Algoritmos de aproximagao para cortes. 82
3.4 Programacao inteira para aproximacao 86
3.5 Exercicios L L 88
4 Algoritmos randomizados 89
4.1 Corteminimo Lo 94
4.2 Teste de primalidade 0oL, 98
4.3 O problema ¢é achar “a agulha no palheiro” 102
4.4 FEncontrar a mediana 102
5 Complexidade e algoritmos parametrizados 103
6 Modelos computacionais avancados 107
6.1 Algoritmos cache-eficientes 107
A Técnicas para a analise de algoritmos 109

© 00 3O Ui Wi+

—
o

1 Algoritmos em grafos

1.1 Caminhos e ciclos Eulerianos

Um caminho Euleriano passa por toda arestas de grafo exatamente uma vez.
Um caminho Euleriano fechado é um ciclo Euleriano. Um grafo é Fuleriano
caso ele possui um ciclo Euleriano que passa por cada vértice (ao menos uma
vez).

Proposicao 1.1
Uma grafo nao-direcionado G = (V, E) é Euleriano sse G é conectado e cada
vértice tem grau par.

Prova. Por indugao sobre o niimero de arestas. A base da indugdo, um grafo
com um vértice e nenhuma aresta, claramente satisfaz a proposigao. Supode
que todos grafos com m arestas satisfazem a proposicao e temos um grafo
G com m + 1 arestas. Comegando por um vértice v arbitrario, procura um
caminho que nunca passa duas vezes por uma aresta até voltar para v. Isso
sempre é possivel porque o grau de cada vértice é par: entrando num vértice
sempre podemos sair novamente. Removendo este caminho do grafo, obtemos
uma colecao de componentes conectados com menos que m arestas, e pela
hipétese da indugao existem ciclos Eulerianos em cada componente. Podemos
obter um ciclo Euleriano para o grafo original pela concatencao desses ciclos
Eulerianos. |
Pela construcéo da prova temos o seguinte algoritmo com complexidade O(|E|)
para encontrar um ciclo Euleriano em G = (V, E) da componente que contém
vev:

Euler (G=(V,E),veV) =
if |[E/=0 return v
procura um caminho come¢ando em v
sem repetir arestas voltando para v
seja v=v1,v2,...,vhp =V esse caminho
remove as arestas Viva, Vavi, ..., Vp_1vnp de G
para obter G;
return Euler(Gq,v1) + Euler(Gz,v2) + -+ + Euler(Gn_1,nvn 1) + v
// Usamos + para concatena¢ao de caminhos.
// Gi € Gi_1 com as arestas do

11
12

1 Algoritmos em grafos

// caminho Euler(Gi_1,vi—1) removidos, i.e
// Gi=(V,E(Gi_1) \ E(Euler(Gi_1,vi_1))

1.2 Filas de prioridade e heaps

Uma fila de prioridade é uma estrutura de dados 1til em varios aplicagoes.
Exemplos sao arvores geradores minimas, caminhos mais curtos de um vértice
para todos outros (algoritmo de Dijkstra) e Heapsort.

Exemplo 1.1
Arvore geradora minima através do algoritmo de Prim.

Algoritmo 1.1 (Arvore geradora minima)
Entrada Um grafo conexo nao-orientado ponderado G = (V,E, c)

Saida Uma arvore T C E de menor custo total.

1 V/':={vy} para um vo €V

2 T:=0

3 while V' #V do

4 escolhe e={u,v} com custo minimo

5 entre V' e VAV’ (com ueV' veV\V')
6 V' =V u{v}

7 T:=TU/{e}

8

end while

Algoritmo 1.2 (Prim refinado)
Implementacao mais concreta:

1 T:=0
2 for ueV\{v} do

3 if ue N(v) then
4 value(u) := cyy

5 pred(u) :=v

6 else

7

value(u) := oo

1.2 Filas de prioridade e heaps

8 end if
9 insert(Q, (value(u),u)) { pares (chave,elemento) }
10 end for

11 while Q #0 do

12 v := deletemin(Q)
13 T :=TU{pred(v)v}
14 for ue N(v) do

15 if ueQ e cyu <value(u) then
16 value(u) —Cuv

17 pred(u) :=

18 update(Q,u cvu)

19 end if

20 end for
21 end while

Custo? n X insert + n x deletemin + m x update.

Observagao 1.1

Implementacdo com vetor de distincias: insert = O(1)!, deletemin = O(n),
update = O(1), e temos custo O(n +n? +m) = O(n? + m). Isso é assintoti-
camente 6timo para grafos densos, i.e. m = Q(n?). O

Observagao 1.2
Implementagao com lista ordenada: insert = O(n), deletemin = O(1), update =
O(n), e temos custo O(n? +n + mn). O

Exemplo 1.2
Caminhos minimos com o algoritmo de Dijsktra

Algoritmo 1.3 (Dijkstra)
Entrada Grafo nao-direcionado G = (V, E) com pesos c., e € E nas ares-
tas, e um vértice s € V.

Saida A distanica minima d, entre s e cada vértice v € V.

1Com chaves compactas [1,m].

1 Algoritmos em grafos

1 ds :=0;d, :=c0,Vv e V\{s}
2 visited(v) := false, Vv € V
3 Q:=0
4 insert(Q, (s,0))
5 while Q #0 do
6 v := deletemin(Q)
7 visited(v) := true
8 for ue N(v) do
9 if not visited(u) then
10 if dy = then
11 dy :=dy + dyy
12 insert(Q, (u,dy))
13 else
14 dy := min(dy + dyy, du)
15 update(Q, (u,dy))
16 end if
17 end if
18 end for
19 end while

A fila de prioridade contém pares de vértices e distancias.

Proposicao 1.2
O algoritmo de Dijkstra possui complexidade

O(n) +n x deletemin + n x insert + m x update.

Prova. O pré-processamento (1-3) tem custo O(n). O lago principal é domi-
nado por no maximo n operagoes insert, n operagoes deletemin, e m operagoes
update A complexidade real depende da implementacao desses operagoes. W

Proposigao 1.3
O algoritmo de Dijkstra é correto.

Prova. Provaremos por indugao que cada vértice v selecionado na linha 6
do algoritmo d, ¢é a distancia minima de s para v. Como base isso é correto
para v = s. Seja v # s um vértice selecionado na linha 6, e supde que existe
um caminho P = s---xy---v de comprimento menor que d,, tal que y é o
primeiro vértice que néo foi processado (i.e. selecionado na linha 6) ainda. (E

1.2 Filas de prioridade e heaps

possivel que y =v.) Sabemos que

dy <dy +dyy porque x ja foi processado
= dist(s,x) 4 dyy pela hipétese dx = dist(s, x)
< d(P) dp(s,x) > dist(s,x) e P passa por xy
< dy, pela hipétese

uma contradicdo com a minimalidade do elemento extraido na linha 6. (Notagao:
dist(s,x): menor distancia entre s e x; d(P) distancia total do caminho P;
dp(s,x): distancia entre s e x no caminho P.) | O

Observagao 1.3

Podemos ordenar n elementos usando um heap com m operacoes “insert”
e n operacoes “deletemin”. Pelo limite de Q(nlogn) para ordenacéo via
comparagao, podemos concluir que o custo de “insert” mais “deletemin” é
Q(logn). Portanto, a0 menos uma das operagoes é Q(logmn). O

1.2.1 Heaps binarios

Teorema 1.1 (Williams (1964))

Uma fila de prioridade pode ser implementado com custo insert = O(logn),
deletemin = O(logn), update = O(logn). Portanto, uma &rvore geradora
minima pode ser calculado em tempo O(nlogn + mlogn).

Um heap é uma arvore com chaves nos vértices que satisfazem um critério de
ordenagao.

e min-heap: as chaves dos filhos sdo maior ou igual que a chave do pai;
e maz-heap: as chaves dos filhos sao menor ou igual que a chave do pai.

Um heap bindrio é um heap em que cada vértice possui no maximo dois filhos.
Implementaremos uma fila de prioridade com um heap binédrio completo. Um
heap completo fica organizado de forma que possui folhas somente no tltimo
nivel, da esquerda para direita. Isso garante uma altura de O(logn).

e, “ o

—_

S © 00 O UL W -

1

1 Algoritmos em grafos

Positivo: Achar a chave com valor minimo (operacdo findmin) custa O(1).
Como implementar a inser¢ao? Idéia: Colocar na tltima posicao e restabelecer
a propriedade do min-heap, caso a chave é menor que a do pai.

insert (H,c) :=
insere ¢ na ultima posicao p
heapify —up(H,p)

heapify—up(H,p) :=
if root(p) return
if key(parent(p))>key(p) then
swap (key (parent (p)),key(p))
heapify—up(H,parent (p))
end if

¢ od oe

Seja T um min-heap. Decremente a chave do né p. Apéds heapify-up(T, P)
temos novamente um min-heap. A operacdo custa O(logn).

Prova. Por indugao sobre a profundidade k de p. Caso k = 1: p é a raiz,
apos o decremento ja temos um min-heap e heapify-up nao altera ele. Caso
k > 1: Seja ¢ a nova chave de p e d a chave de parent(p). Caso d < ¢ ja temos
um min-heap e heapify-up nao altera ele. Caso d > c heapify-up troca c e
d e chama heapify-up(T,parent(p)) recursivamente. Podemos separar a troca
em dois passos: (i) copia d para p. (ii) copia ¢ para parent(p). Apds passo
(i) temos um min-heap T’ e passo (ii) diminui a chave de parent(p) e como
a profundidade de parent(p) é k — 1 obtemos um min-heap apds da chamada
recursiva, pela hipétese da inducao.

Como a profundidade de T é O(logn), o nimero de chamadas recursivas
também, e como cada chamada tem complexidade O(1), heapify-up tem com-
plexidade O(logn). |
Como remover? A idéia bésica é a mesma: troca a chave com o menor filho.
Para manter o heap completo, colocaremos primeiro a chave da tltima posi¢ao
na posi¢ao do elemento removido.

delete (H,p):=

00 O Ui W N

11
12
13
14
15
16
17
18
19

1.2 Filas de prioridade e heaps

troca ultima posicao com p
heapify —down(H ,p)

heapify —down (H,p):=
if (p nao possui filhos) return
if (p possui um filho) then
if key(left (p))<key(p)) then swap(key(left(p)),key(p))
end if
{ p possui dois filhos }
if key(p)>key(left(p)) or key(
if (key(left (p))<key(right (p
swap (key (left (p)), key(p))
heapify —down(H,left (p))
else
swap (key (right (p)) ., key(p))
heapify —down(H,right (p))
end if
end if

p)>key(right (p)) then
)) then

]
\u\(.\u(h

Seja T um min-heap. Incremente a chave do né p. Apds heapify-down(T,p)
temos novamente um min-heap. A operagao custa O(logn).

Prova. Por indugao sobre a altura k de p. Caso k =1, p é uma folha e apés o
incremento ja temos um min-heap e heapify-down nao altera ele. Caso k > 1:
Seja ¢ a nova chave de p e d a chave do menor filho f. Caso ¢ < d ja temos
um min-heap e heapify-down nao altera ele. Caso ¢ > d heapify-down troca c
e d e chama heapify-down(T,f) recursivamente. Podemos separar a troca em
dois passos: (i) copia d para p. (ii) copia ¢ para f. Apds passo (i) temos um
min-heap T’ e passo (ii) aumenta a chave de f e como a altura de f é k— 1,
obtemos um min-heap apds da chamada recursiva, pela hipdtese da indugao.
Como a altura de T é O(logn) o nimero de chamadas recursivas também, e
como a cada chamada tem complexidade O(1), heapify-up tem complexidade
O(logmn). []
Ultima operacao: atualizar a chave.

OO U W N+

O W N

1 Algoritmos em grafos

update (H,p,v) :=
if v<key(p) then

key (p):=v

heapify —up(H,p)
else

key (p):=v

heapify —down(H ,p)
end if

Sobre a implementacao Uma drvore binaria completa pode ser armazenado
em um vetor v que contém as chaves. Um pontador p a um elemento é
simplesmente o indice no vetor. Caso o vetor contém n elementos e possui
indices a partir de 0 podemos definir

root(p) := return p=20
pai(p) := return |(p—1)/2]
key(p) := return v[p]

left (p) := return 2p+1
right (p) := return 2p+2
numchildren(p) := return max(min(n — left(p),2),0)

Outras observagoes:

e Para chamar update, temos que conhecer a posi¢gao do elemento no heap.
Para um conjunto de chaves compactos [0, n) isso pode ser implementado
usando um vetor pos, tal que pos|c] é o indice da chave ¢ no heap.

e A fila de prioridade ndo possui teste u € Q (linha 15 do algoritmo 1.2)
eficiente. O teste pode ser implementado usando um vetor visited, tal
que visited[u] sse u & Q.

1.2.2 Heaps binomiais

Um heap binomial é um colecao de drvores binomiais que satisfazem a or-
denacdo de um heap. A &rvore binomial By consiste de um vértice s6. A
arvore binomial B; possui uma raiz com filhos By,...,Bi_1. O posto de By é
k. Um heap binomial contém no maximo uma arvore binomial de cada posto.

10

1.2 Filas de prioridade e heaps

Lema 1.3
Uma arvore binomial tem as seguintes caracteristicas:

1. By, possui 2™ vértices, 2" ! folhas (para n > 0), e tem altura n + 1.

2. O nivel k de By, (a raiz tem nivel 0) tem () vértices. (Isso explica o
nome.)

Prova. Exercicio. |

Observagao 1.4

Podemos combinar dois B; obtendo um B; 1 e mantendo a ordenagao do heap:
Escolhe a arvore com menor chave na raiz, e torna a outra filho da primeira.
Chamaremos essa operagao “link”, e ela tem custo O(1) (veja observagoes
sobre a implementagao).

Observagao 1.5

Um Bj; possui 2! vértices. Um heap com n chaves consiste em O(logn) drvores.
Isso permite juntar dois heaps binomiais em tempo O(logn). A operagao é
semelhante & soma de dois nimeros bindrios com “carry”. Comeca juntar os
Byo. Caso tem zero, continua, case tem um, inclui no heap resultante. Caso
tem dois o heap resultante nao recebe um By. Define como “carry” o link dos
dois By’s. Continua com os By. Sem tem zero ou um ou dois, procede como
no caso dos By. Caso tem trés, incluindo o “carry”, inclui um no resultado, e

11

1 Algoritmos em grafos

define como “carry” o link dos dois restantes. Continue desse forma com os
restantes drvores. Para heaps hy, h, chamaremos essa operagao meld(hq,h;).

%
Com a operagao meld, podemos definir as seguintes operagoes:
e makeheap(c): Retorne um By com chave c¢. Custo: O(1).
e insert(h,c): meld(h,makeheap(c)). Custo: O(logn).
e getmin(h): Mantendo um link para a drvore com o menor custo: O(1).

o deletemin(h): Seja By a arvore com o menor chave. Remove a raiz.
Define dois heaps: h; é h sem By, h, consiste dos filhos de By, i.e.
Bo, ..., Bk—1. Retorne meld(hy,h;). Custo: O(logn).

e updatekey(h,p): Como no caso do heap bindrio completo com custo
O(logn).

Em comparagao com um heap binario completo ganhamos nada no caso pessi-
mista. De fato, a operacao insert possui complexidade pessimista O(1) amor-
tizada. Um insert individual pode ter custo O(logn). Do outro lado, isso
acontece raramente. Uma andlise amortizada mostra que em média sobre
uma séria de operagoes, um insert sé custa O(1). Observe que isso ndao é uma
analise da complexidade média, mas uma andlise da complexidade pessimista
de uma séria de operagoes.

Analise amortizada

Exemplo 1.3

Temos um contador bindrio com k bits e queremos contar de 0 até 2% — 1.
Anélise “tradicional”: um incremento tem complexidade O(k), porque no caso
pior temos que alterar k bits. Portanto todos incrementos custam O(k2%).
Andlise amortizada: “Poupamos” operacoes extras nos incrementos simples,
para “gastd-las” nos incrementos caros. Concretamente, setando um bit, gas-
tamos duas operacoes, uma para setar, outra seria “poupado”. Incremen-
tando, usaremos as operagoes “poupadas” para zerar bits. Desta forma, um
incremento custa O(1) e temos custo total O(2*).

Outra forma de andlise amortizada, é usando uma fung¢do potencial @, que
associa a cada estado de uma estrutura de dados um valor positivo (a “pou-
panga”). O custo amortizado de uma operagao que transforma uma estrutura
e; em uma estrutura e; e ¢ — @(eq) + @(ez2), com ¢ o custo de operacdo. No

12

1.2 Filas de prioridade e heaps

exemplo do contador, podemos usar como @(i) o nimero de bits na repre-
sentacao binario de i. Agora, se temos um estado e;

~—— ~~—
P bits um g bits um

com @(e;) =p + g, o estado apds de um incremento é

00---01 ---
\T/ ~—
q

com @(ez) =14 g. O incremento custa ¢ = p 4+ 1 operagoes e portanto o
custo amortizado é

c—oler)+olez)=p+1—-p—q+1+qg=2=0(1).
O

Resumindo: Dado um série de operagoes com custos cy,...,Cn 0 custo amor-
tizado dessa operagao é Z1§i§n ci/n. Se temos m operagoes diferentes, o
custo amortizado da operagao que ocorre nos indices] C [1,m] é Zie] ci/l]l.
As somas podem ser dificeis de avaliar diretamente. Um método para simpli-
ficar o cédlculo do custo amortizado é o método potencial. Acha uma funcdo
potencial @ que atribui cada estrutura de dados antes da operagao i um va-
lor nao-negativo @; > 0 e normaliza ela tal que @; = 0. Atribui um custo
amortizado
ai =Ci — @i + @iy

a cada operagdo. A soma dos custos ndo ultrapassa os custos originais, porque

Y ai=) @it Qi =Pni— @1+ =) C

Portanto, podemos atribuir a cada tipo de operacao J C [1, m] o custo amorti-
zado Zie] ai/|J|. Em particular, se cada operacao individual 1 € J tem custo
amortizado a; < F, o custo amortizado desse tipo de operagao é F.

Custo amortizado do heap binomial Nosso potencial no caso do heap bi-
nomial é o nimero de arvores no heap. O custo de getmin e updatekey nao
altera o potencial e por isso permanece o mesmo. makeheap cria uma arvore
que custa mais uma operagdo, mas permanece O(1). deletemin pode criar
O(logn) novas arvores, porque o heap contém no maximo um Bpgn que
tem Of(logn) filhos, e permanece também com custo O(logmn). Finalmente,
insert reduz o potencial para cada link no meld e portanto agora custa somente
O(1) amortizado, com o mesmo argumento que no exemplo 1.3.
Desvantagem: a complexidade (amortizada) assintética de calcular uma arvore
geradora minima permanece O(nlogn + mlogn).

13

1 Algoritmos em grafos

Meld preguicosa Ao invés de reorganizar os dois heaps em um meld, pode-
mos simplesmente concatend-los em tempo O(1). Isso pode ser implementado
sem custo adicional nas outras operagoes. A tUnica operagao que nao tem com-
plexidade O(1) é deletemin. Agora temos uma colecdo de arvores binomiais
nao necessariamente de posto diferente. O deletemin reorganiza o heap, tal
que obtemos um heap binomial com arvores de posto tinico novamente. Para
isso, mantemos um vetor com as arvores de cada posto, inicialmente vazio.
Seqiiencialmente, cada arvore no heap, sera integrado nesse vetor, executando
operagoes link sé for necessario. O tempo amortizado de deletemin permanece
O(logmn).

Usaremos um potencial @ que é o dobro do ntimero de arvores. Supondo que
antes do deletemin temos t arvores e executamos 1 operagoes link, o custo
amortizado é

(t+1)—2t+2(t—1)=t—1

Mas t — 1 é o ntimero de arvores depois o deletemin, que é O(logn), porque
todas arvores possuem posto diferente.

Sobre a implementacao Um forma eficiente de representar heaps binomiais,
é em forma de apontadores. Além das apontadores dos filhos para o os pais,
cada pai possui um apontador para um filho e os filhos sao organizados em
uma lista encadeada dupla. Mantemos uma lista encadeada dupla também
das raizes. Desta forma, a operacdo link pode ser implementada em O(1).

A

o o =0
[
1.2.3 Heaps Fibonacci

Um heap Fibonacci é uma modificagao de um heap binomial, com uma operagao
decreasekey de custo O(1). Com isso, uma arvore geradora minima pode ser
calculada em tempo O(m+mnlogn). Para conseguir decreasekey em O(1) nao
podemos mais usar heapify-up, porque heapify-up custa O(logn).

Primeira tentativa:

14

0O Uik Wi

== s e e e
DU WD = OO

17

1.2 Filas de prioridade e heaps

e delete(h,p): Corta p de h e executa um meld entre o resto de h e os filhos

de p. Uma alternativa é implementar delete(h,p) como decreasekey(h,p,—o0)

e deletemin(h).

e decreasekey(h,p): A ordenacdo do heap pode ser violada. Corta p é
execute um meld entre o resto de h e p.

Problema com isso: apds de uma série de operagoes delete ou decreasekey, a
arvore pode se tornar “esparso”, i.e. o numero de vértices ndo é mais expo-
nencial no posto da drvore. A analise da complexidade de operacoes como
deletemin depende desse fato para garantir que temos O(logn) arvores no
heap. Conseqiiéncia: Temos que garantir, que uma arvore nao fica “podado”
demais. Solugao: Permitiremos cada vértice perder no maximo dois filhos.
Caso o segundo filho é removido, cortaremos o préprio vértice também. Para
cuidar dos cortes, cada né mantém ainda um valor booleana que indica, se ja
foi cortado um filho. Observe que um corte pode levar a uma série de cortes
e por isso se chama de corte em cascatas (ingl. cascading cuts). Um corte
em cascata termina na pior hipétese na raiz. A raiz é o unico vértice em que
permitiremos cortar mais que um filho. Observe também que por isso nao
mantemos flag na raiz.

Implementagdes Denotamos com h um heap, ¢ uma chave e p um elemento
do heap. minroot(h) é o elemento do heap que correspondo com a raiz da
chave minima, e cut(p) é uma marca que verdadeiro, se p j& perdeu um filho.

insert (h, ¢) :=
meld (makeheap (c))

getmin (h) :=
return minroot (h)

delete (h,p) :=
decreasekey (h,p,—o0)
deletemin (h)

meld(]’u ,hz) =
h := lista com raizes de hy e hy (em O(1))
minroot (h) :=
if key(minroot(hy))<key(minroot(hz)) hy else hy

decreasekey (h,p,c) :=
key(p):= ¢

15

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
95
o6
o7
58

1 Algoritmos em grafos

if ¢ < key(minRoot(h))
minRoot (h) = p
if not root(p)
if key(parent(p))>key(p)
corta p e adiciona na
cut(p) := false

lista de raizes de h

cascading—cut (h,parent (p))

cascading—cut (h,p) :=

{ p perdeu um filho }
if root(p)

return
if (not cut(p)) then
cut(p) := true
else

corta p e adiciona na lista de raizes de h

cut(p) := false

cascading—cut (h,parent (p))

end if

deletemin (h) :=

remover minroot (h)

juntar as listas do resto de h e dos filhos de minroot(h)

{ reorganizar heap }

determina o posto mdximo M =M(n) de h

for 0 <i<M
ri:= undefined
for toda raiz r do

remove da lista de raizes

d := degree(r)
while (rq not undefined)

r := link (r,1q)
rq := undefined
d := d+1

end while

Tqg = T

definir a lista de raizes
determinar o novo minroot

link (h] J’Lz) =

16

if (key(hy)<key(hz))

do

pelas entradas definidas 7

99
60
61
62
63
64

1.2 Filas de prioridade e heaps

h := makechild (hy ,hy)

else

h := makechild (hy,hy)
cut (hy) := false
cut (hy) := false
return h

Para concluir que a implementacao tem a complexidade desejada temos que
provar que as arvores com no maximo um filho cortado nao ficam esparsos
demais e analisar o custo amortizado das operacoes.

Custo amortizado Para anélise usaremos um potencial de ¢it + com sendo
t o niimero de arvores, m o numero de vértices marcados e cq,cy constantes.
As operagoes makeheap, insert, getmin e meld (preguigoso) possuem com-
plexidade (real) O(1). Para decreasekey temos que considerar o caso, que o
corte em cascata remove mais que uma subarvore. Supondo que cortamos
n arvores, o numero de raizes é t + n apds dos cortes. Para todo corte em
cascata, a drvore cortada é desmarcada, logo temos no maximo m — (n — 1)
marcas depois. Portanto custo amortizado é

OMm) —(crt+com)+ (cri(t+n)+cafm—(n—1))) =con—(c2 —ci)n+cz

e com Cy — €1 > ¢ temos custo amortizado constante co = O(1).
A operagao deletemin tem o custo real O(M + t), com as seguintes contri-
buigoes

e Linhas 42-43: O(M).

e Linhas 44-52: O(M + t) com t o ntimero inicial de arvores no heap. A
lista de raizes contém no méximo as t arvores de h e mais M filhos da
raiz removida. O laco total ndo pode executar mais que M+t operagoes
link, porque cada um reduz o niimero de raizes por um.

e Linhas 53-54: O(M).

Seja m o nimero de marcas antes do deletemin e o nimero m’ depois. Como
deletemin marca nenhum vértice, temos m’ < m. O ntmero de arvores t’
depois de deletemin satisfaz t’ < M porque deletemin garante que existe no
maximo uma arvore de cada posto. Portanto, o potencial depois de deletemin
e ' =cit+com’ <c¢iM+com, e o custo amortizado é
OM+1t)—(cr1t+com)+ @ <OM+1)— (crt+com) + (ciM +com)
=(co+c1)M+(co—cr)t

e com Cq > ¢ temos custo amortizado O(M).

17

1 Algoritmos em grafos

Um limite para M Para provar que deletemin tem custo amortizado logn,
temos que provar que M = M(n) = O(logn). Esse fato segue da maneira
” cautelosa” com que cortamos vértices das arvores.

Lema 1.4

Seja p um vértice arbitrario de um heap Fibonacci. Considerando os filhos na
ordem temporal em que eles foram introduzidos, filho i possui ao menos i — 2
filhos.

Prova. No instante em que o filho 1 foi introduzido, p estava com ao menos
i—1 filhos. Portanto 1 estava com ao menos i— 1 filhos também. Depois filho
i perdeu no maximo um filho, e portanto possui ao menos i — 2 filhos. |
Quais as menores arvores, que satisfazem esse critério?

Fo B Fa F3 F4
y ?o/\ A.
® ® e o ¢ o o o
® o o0
Lema 1.5

Cada subarvore com uma raiz p com k filhos possui ao menos Fy 2 vértices.

Prova. Seja Sy o nimero minimo de vértices para uma subarvore cuja raiz
possui k filhos. Sabemos que So =1, S; = 2. Define S_, =S_7 =1. Com
isso obtemos para k > 1

Sy = Z Sk—2=S5x2+Sk—3+---+S5_2=Sk 2+ S 1.
0<i<k

Comparando Sy com os nimeros Fibonacci

o k se 0 <k<1
kT kaz-i-Fk,] Sekzz
e observando que So = F, e S; = F3 obtemos Sy = Fyi2. Usando que
Fn € O(O™) com @ = (14 1/5)/2 (exercicio!) conclui a prova. []

Corolario 1.1
O posto méximo de um heap Fibonacci com 1 elementos é O(logn).

18

1.2 Filas de prioridade e heaps

Sobre a implementacao A implementagio da arvore é a mesmo que no caso
de binomial heaps. Uma vantagem do heap Fibonacci é que podemos usar os
nds como ponteiros — lembre que a operacao decreasekey precisa isso, porque
o0s heaps nao possuem uma operacgao de busca eficiente. Isso é possivel, porque
sem heapify-up e heapify-down, os ponteiros mantem-se validos.

1.2.4 Rank-pairing heaps

() propdem um rank-pairing heap (um heap “empare-
lhando postos”) com as mesmas garantias de complexidade que um heap Fi-
bonacci e uma implementagio simplificada e mais eficiente na pratica (ver
observagao 1.8).

Torneios Um torneio é uma representacao alternativa de heaps. Comecando
com todos elementos, vamos repetidamente comparar pares de elementos, e
promover o vencedor para o préximo nivel (Fig. 1.1(a)). Uma desvantagem
de representar torneios explicitamente é o espago para chaves redundantes.
Por exemplo, o campedo (i.e. o menor elemento) ocorre O(logn) vezes. A
figura 1.1(b) mostra uma representagdo sem chaves repetidas. Cada chave
é representado somente na comparacao mais alta que ele ganhou, as outras
comparagoes ficam vazias. A figura 1.1(c) mostra uma representagdo compacta
em forma de semi-drvore. Numa semi-arvore cada elemento possui um filho
ordenado (na figura o filha da esquerda) e um filho ndo-ordenado (na figura
o filho da direita). O filho ordenado é o perdedor da comparacao direta com
o elemento, enquanto o filho nao-ordenado é o perdedor da comparagao com
o irméo vazio. A raiz possui somente um filho ordenado.

Cada elemento de um torneio possui um posto. Por definicao, o posto de uma
folha é 0. Uma comparagao justa entre dois elementos do mesmo posto r
resulta num elemento com posto r+ 1 no préximo nivel. Numa comparacao
injusta entre dois elementos com postos diferentes, o posto do vencedor é
definido pelo maior dois postos dos participantes (uma alternativa é que o
posto fica 0 mesmo). O posto de um elemento representa um limite inferior
do nuimero de elementos que perderam contra-lo:

Lema 1.6
Um torneio com campedo de posto k possui ao menos 2* elementos.

Prova. Por indugao. Caso um vencedor possui posto k temos duas possibi-
lidades: (i) foi o resultado de uma comparacio justa, com dois participantes
com posto k — 1 e pela hipétese da inducdo com ao menos 25! elementos,
tal que o vencedor ganhou contra ao menos 2* elementos. (ii) foi resultado de

19

1 Algoritmos em grafos

RS

()

Figura 1.1: Representagoes de heaps.

20

0O Ui Wi+

O I R R N T T N T N T N N G S G gy G S g S
S OO TN E WNRFREOO©W-IOU A WNRF=O O

1.2 Filas de prioridade e heaps

uma comparagao injusta. Neste caso um dos participantes possuiu posto k e
o vencedor novamente ganhou contra ao menos 2% elementos. |
Cada comparacao injusta torna o limite inferior dado pelo posto menos preciso.
Por isso uma regra na constru¢ao de torneios é fazer o maior nimero de
comparagoes justas possiveis. A representacao de um elemento de heap é
possui quatro campos para a chave (c¢), o posto (r), o filho ordenado (o) e o
filho nao-ordendo (u):

def Node(c,r,o,u)
Podemos implementar as operagoes de uma fila de prioridade (sem update ou
decreasekey) como segue:

{ compara duas &rvores }
link (t1 7t2) =
if t7.¢ < tp.c then
return makechild (t;,t3)
else
return makechild (t2,t1)
end if

makechild (s, t) :=
t.u 1= s.o

s.0 (=t
setrank (t)
return s

setrank (t) :=
if t.o.r = t.u.r
t.r =t.o.r + 1
else
t.r = max(t.o.r,t.u.r)

end if

{ cria um heap com um tnico elemento com chave c }
make—heap (c¢) := return Node(c,0,undefined ,undefined)

{ inserte chave c no heap }
insert (h,c) := link (h,make—heap(c))

{ uniao de dois heaps }
meld(]’u ,hz) = link (h] ,hz)

21

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
93
54
95
56
o7
o8
99
60
61

1 Algoritmos em grafos

{ elemento minimo do heap }
getmin (h) := return h

{ dele¢do do elemento minimo do heap }
deletemin (h) :=
aloca array T1o...Th.o.ril
t =h.o
while t not undefined do
t' = t.u
t.u := undefined
register (t,r)
t:=t
end while
h’ := undefined
for i=0,...,hor+1 do
if r; not undefined
h = link (h' 1)
end if
end for
return h’
end

register (t,r) :=

if ryory1 is undefined then
Ttort+l = t

else
t:=link (t,Tt.0r41)
Tt.ors1 := undefined
insert (t,r)

end if

end

(A figura 1.2 visualiza a operagao “link”.)

Observagao 1.6
Todas comparacoes de “register” sao justas. As comparagoes injustas ocorrem
na construcao da arvore final nas linhas 35-39. O

Lema 1.7
Num torneio balanceado o custo amortizado de “make-heap”, “insert”, “meld”
e “getmin” é O(1), o custo amortizado de “deletemin” é O(logn).

22

1
2

1.2 Filas de prioridade e heaps

ra¥a

/\

Figura 1.2: A operacdo “link” para semi-arvores no caso ty.c < ts.c.

last

SR OO OO

Figura 1.3: Representacao de um heap binomial.

Prova. Usaremos o nimero de comparagoes injustas no torneio como poten-
cial. “make-heap” e “getmin” nao alteram o potencial, “insert” e “meld” au-
mentam o potencial por no maximo um. Portanto a complexidade amortizada
dessas operagoes é O(1). Para analisar “deletemin” da raiz r do torneio vamos
supor que houve k comparacoes injustas com r. Além dessas comparacoes in-
justas, v participou em no maximo logn comparacoes justas pelo lema 1.6.
Em soma vamos liberar no maximo k + logn arvores, que reduz o potencial
por k, e com no maximo k + logn comparagoes podemos produzir um novo
torneio. Dessas k+logn comparagoes no maximo log n sao comparacoes injus-
tas. Portanto o custo amortizado é k+logn —k+logn = 2logn = O(logn).
|

Heaps binomiais com varredura tnica O custo de representar o heap numa
arvore Unica é permitir comparagoes injustas. Uma alternativa é permitir
somente comparacoes justas, que implica em manter uma cole¢do de O(logn)
arvores. A estrutura de dados resultante é similar com os heaps binomiais:
manteremos uma lista (simples) de raizes das drvores, junto com um ponteiro
para a arvore com a raiz de menor valor. O heap é representado pela raiz de
menor valor, ver Fig. 1.3.

insert (h,c) :=
insere make—heap(c) na lista de raizes

23

N O U W

CO O U W N+

DN NN N NN o = = = = e e e
DU W R OO0 Uk W~ OO

1 Algoritmos em grafos

atualize a arvore minima

meld(m ,hz) =
concatena as listas de h; e hy
atualize a arvore minima
Somente “deletemin” opera diferente agora:

deletemin (h) :=
aloca um array de listas To...T[ogn]
remove a arvore minima da lista de raizes
distribui as restantes Arvores sobre T

t =h.o

while t not undefined do
t' = t.u
t.u := undefined
insere t na lista Tio.r41
ti=1t'

end while

{ executa o maior nimero possivel }
{ de comparagbes justas num tunico passo }

h := undefined { lista final de raizes }
for i=0,...,[logn] do
while [ri| > 2
t := link (r;.head,r;.head . next)
insere t na lista h
remove Ti.head,r;.head.next da lista r;
end if
if |rjl=1 insere rihead na lista h
end for
return h

Observagao 1.7

Continuando com comparagoes justas até sobrar somente uma arvore de cada

posto, obteremos um heap binomial. O
Lema 1.8

Num heap binomial com varredura tinica o custo amortizado de “make-heap”,
“insert”, “meld”, “getmin” é O(1), o custo amortizado de “deletemin” é
O(logmn).

24

© 00 O U Wi+

e e N e T
U W N = O

1.2 Filas de prioridade e heaps

Prova. Usaremos o dobro do niimero de arvores como potencial. “getmin”
nao altera o potencial. “make-heap”, “insert” e “meld” aumentam o potencial
por no méximo dois (uma arvore), e portanto possuem custo amortizado O(1).
“deletemin” libera no maximo logn arvores, porque todas comparagoes foram
justas. Com um numero total de h drvores, o custo de deletemin é O(h).
Sem perda de generalidade vamos supor que o custo é h. A varredura final
executa ao menos (h—1logn)/2 —1 comparacoes justas, reduzindo o potencial
por ao menos h —logn — 2. Portanto o custo amortizado de “deletemin” é
h—(h—logn—2)=logn+ 2= 0(logn). |

rp-heaps O objetivo do rp-heap é adicionar ao heap binomial de varredura
unica uma operacao “decreasekey” com custo amortizado O(1). A idefa e
os problemas sdo os mesmos do heap Fibonacci: (i) para tornar a operagio
eficiente, vamos cortar a sub-drvore do elemento cuja chave foi diminuida. (ii)
o heap Fibonacci usava cortes em cascata para manter um ntmero suficiente
de elementos na arvore; no rp-heap ajustaremos os postos do heap que perde
uma sub-arvore. Para poder cortar sub-arvores temos que permitir uma folga
nos postos. Num heap binomial a diferenga do posto de um elemento com o
posto do seu pai (caso existe) sempre é um. Num rp-heap do tipo 1, exigimos
somente que os dois filhos de um elemento possuem diferenga do posto 1 e
1, ou 0 e ao menos 1. Num rp-heap do tipo 2, exigimos que os dois filhos
de um elemento possuem diferenca do posto 1 e 1, 1 e 2 ou 0 e ao menos 2.
(Figura 1.4.)

Com isso podemos implementar o “decreasekey” (para rp-heaps do tipo 2)
como segue:

decreasekey (h,e ,A) :=

e.c := e.c — A
if root(e)
return
if parent(e).o = e then
parent(e).o = e.u
else
parent (e).u := e.u
end if
e.u := undefined
u := parent(e)
parent (e) := undefined

insere e na lista de raizes de h
decreaserank (u)

25

1 Algoritmos em grafos

N T T
/ \ / N / \
_— _— r+0 >r+1 >r+41 r+0
(a)
T T T
/N VRN VRN
r+1 r+1 r+1 T+2 142 r+1
(b)
T T
VR RN

Figura 1.4: Diferengas no posto de rp-heaps do tipo 1 (a) e tipo 2 (b).

KY e Y\L/@

/4

Figura 1.5: A operacao “decreasekey”.

26

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

1.2 Filas de prioridade e heaps

rank (e) :=
if e is undefined
return —1
else
return e.r

decreaserank (u) :=
if root(u)
return
if rank(u.o) > rank(u.u)+1 then
k := rank(u.o)
else if rank(u.u) > rank(u.o)+1 then
k := rank(u.u)

else
k = max(rank(u.o),rank(u.u))+1
end if
if u.r = k then
return
else
u.r = k

decreaserank (parent (u))

delete (h,e) :=
decreasekey (h,e,—o0)
deletemin (h)

Observagao 1.8

Para implementar o rp-heap precisamos além dos ponteiros para o filho or-
denado e nao-ordenado um ponteiro para o pai do elemento. A (suposta)
eficiéncia do rp-heap vem do fato que o decreasekey altera os postos do heap,
e pouco da estrutura dele e do fato que ele usa somente trés ponteiros por
elemento, e nao quatro como o heap Fibonacci. %

Lema 1.9
Uma semi-drvore do tipo 2 com posto k contém ao menos ¢ elementos, sendo

¢ = (1 ++/5)/2 a razio durea.

Prova. Por indugao. Para folhas o lema é valido. Caso a raiz com posto k
nao é folha podemos obter duas semi-arvores: a primeira é o filho da raiz sem
o seu filho nao-ordenado, e a segunda é a raiz com o filho ndo ordenado do
seu filho ordenado (ver Fig. 1.6). Pelas regras dos postos de arvores de tipo

27

1 Algoritmos em grafos

= +

Figura 1.6: Separar uma semi-arvore de posto k em duas.

insert getmin deletemin update decreasekey delete
Vetor O(1) O(1) O(n) O(1) (update) o(1)
Lista ordenada O(n) O(1) O(1) O(n) (update) o(1)
Heap binério O(logn) O(1) O(logn) O(logn) (update) O(logmn)
Heap binomial O(1) o(1) O(logn) O(logn) (update) O(logm)
Heap binomial(1) Oo(1) o(1) O(logn) O(logn) (update) O(logmn)
Heap Fibonacci O(1) O(1) O(logn) - O(1) O(logm)
rp-heap O(1) O(1) O(logn) - O(1) O(logn)

Tabela 1.1: Complexidade das operagdes de uma fila de prioridade. Comple-
xidades em negrito sdo amortizados. (1): meld preguigoso.

dois, essas duas drvores possuem postos k—Tek—T,ouk—lek—2ouke
no maximo k — 2. Portanto, o menor nimero de elementos ny contido numa
semi-arvore de posto k satisfaz a recorréncia

Ny = Ng—1 + Ny,

que é a recorréncia dos nimeros Fibonacci. |

Lema 1.10
As operagoes “decreasekey” e “delete” possuem custo amortizado O(1) e
O(logn)

Prova. Ver (,). |

Resumo: Filas de prioridade

1.2.5 Tépicos

O algoritmo (assintoticamente) mais rédpido para drvores geradoras minimas
usa soft heaps é possui complexidade O(ma(m,n)), com « a funcéo inversa
de Ackermann (, ; ,

28

1.2 Filas de prioridade e heaps

1.2.6 Exercicios

Exercicio 1.1
Prove lema 1.3. Dica: Use indugao sobre n.

Exercicio 1.2
Prove que um heap binomial com n vértices possui O(logn) drvores. Dica:
Por contradigao.

Exercicio 1.3 (Laboratério 1)
1. Implementa um heap binario. Escolhe casos de teste adequados e verifica
o desempenho experimentalmente.

2. Implementa o algoritmo de Prim usando o heap binario. Novamente
verifica o desempenho experimentalmente.

Exercicio 1.4 (Laboratério 2)
1. Implementa um heap binomial.

2. Verifica o desempenho dele experimentalmente.

3. Verifica o desempenho do algoritmo de Prim com um heap Fibonacci
experimentalmente.

29

1 Algoritmos em grafos

Figura 1.7: Grafo (esquerda) com circulacdo (direita)

1.3 Fluxos em redes

Definicao 1.1

Para um grafo direcionado G = (V, E) (E C VX V) escrevemos 81 (v) = {(v,u) |
(v,u) € E} para os arcos saintes de v e 8 (v) = {(u,v) | (u,v) € E} para os
arcos entrantes em v.

Seja G = (V,E,c) um grafo direcionado e capacitado com capacidades c :
E — R nos arcos. Uma atribui¢ao de fluxos aos arcos f : E — R em G se
chama circulagdo, se os fluxos respeitam os limites da capacidade (fo < c.) e
satisfazem a conservagao do fluxo

=) fe— Z fe=0 (1.1)

e€d* (v) ecs—(v)
(ver Fig. 1.7).

Lema 1.11

Qualquer atribuicao de fluxos f satisfaz)_ f(v) =0.

veVv

Prova.

Si-r - ¥

vev veVeedt (v ecd(v)
= § f (vyu) — E f (uw,v) =
(v,u)€E (u,v)eE

|
A circulagao vira um fluzo, se o grafo possui alguns vértices que sao fontes
ou destinos de fluxo, e portanto nao satisfazem a conservacao de fluxo. Um

30

1.3 Fluxos em redes

fluxo s—t possui um tnico fonte s e um tnico destino t. Um objetivo comum
(transporte, etc.) é achar um fluxo s—t maximo.

FLUXO s—t MAXIMO

Instancia Grafo direcionado G = (V,E,c) com capacidades ¢ nos arcos,
um vértice origem s € V e um vértice destino t € V.

Solucao Um fluxo f, com f(v) =0, Vv € V\ {s, t}.

Objetivo Maximizar o fluxo f(s).

Lema 1.12
Um fluxo s—t satisfaz f(s) + f(t) = 0.

Prova. Pelo lema 1.11 temos) .\ f(v) = 0. Mas 3 ., f(v) = f(s) +f(t)
pela conservagao de fluxo nos vértices em V \ {s, t}. |
Uma formulagao como programa linear é

(s)

(v)=0 Yv e V\{s,t}
0< fe <ce Ve € E.

maximiza

f (1.2)
sujeito a f

Observagao 1.9

O programa (1.2) possui uma solugdo, porque fo = 0 é uma solugao vidvel. O
sistema nao é ilimitado, porque todas varidveis sao limitadas, e por isso possui
uma solugao 6tima. O problema de encontrar um fluxo s—t maximo pode ser
resolvido em tempo polinomial via programagcao linear. %

1.3.1 Algoritmo de Ford-Fulkerson

Nosso objetivo: Achar um algoritmo combinatorial mais eficiente. Idéia

basica: Comegar com um fluxo vidvel f, = 0 e aumentar ele gradualmente.

Observacao: Se temos um s—t-caminho P = (vg = s,vq,...,Vn_1,Vn = t),

podemos aumentar o fluxo atual f um valor que corresponde ao “gargalo”
g(f,P):== min ce—fe.

e=(vi,viy1)
0<i<n

31

1 Algoritmos em grafos

30
10 10
20
2 ®

Figura 1.8: Esquerda: Grafo com capacidades. Centro: Fluxo com valor 30.
Direita: O grafo residual correspondente.

I
SXA]

Figura 1.9: Manter a conservagao do fluxo.

Observagao 1.10

Repetidamente procurar um caminho com gargalo positivo e aumentar nem
sempre produz um fluxo méaximo. Na Fig. 1.8 o fluxo méximo possivel é
40, obtido pelo aumentos de 10 no caminho P; = (s,u,t) e 30 no caminho
P, = (s,w,t). Mas, se aumentamos 10 no caminho Py = (s,u,w,t) e depois
20 no caminho P, = (s,w,t) obtemos um fluxo de 30 e o grafo ndo possui
mais caminho que aumenta o fluxo. O

Problema no caso acima: para aumentar o fluxo e manter a conservagao do
fluxo num vértice interno v temos quatro possibilidades: (i) aumentar o fluxo
num arco entrante e sainte, (ii) aumentar o fluxo num arco entrante, e diminuir
num outro arco entrante, (iii) diminuir o fluxo num arco entrante e diminuir
num arco sainte e (iv) diminuir o fluxo num arco entrante e aumentar num
arco entrante (ver Fig. 1.9).

Isso é a motivacao para definir para um dado fluxo f o grafo residual G¢ com

o Vértices V

e Arcos para frente (“forward”) E com capacidade ce — fe, caso fe < ce.

32

1.3 Fluxos em redes

e Arcos para atras (“backward”) E' ={(v,u) | (u,v) € E} com capacidade
Clviu) = f(u,v)a caso f(u,v) > 0.

Observe que na Fig. 1.8 o grafo residual possui um caminho P = (s, w,u, t) que
aumenta o fluxo por 10. O algoritmo de Ford-Fulkerson (,

) consiste em, repetidamente, aumentar o fluxo num caminho s—t no grafo
residual.

Algoritmo 1.4 (Ford-Fulkerson)
Entrada Grafo G = (V,E,c) com capacidades c. no arcos.

Saida Um fluxo f.

1 for all ecE: f.:=0

while existe um caminho s—t em Gf do
Seja P um caminho s—t simples
Aumenta o fluxo f um valor ¢(f,P)

end while

return f

SO W N

Andlise de complexidade Na andlise da complexidade, consideraremos so-
mente capacidades em N (ou equivalente em Q: todas capacidades podem ser
multiplicadas pelo menor miltiplo em comum das denominadores das capaci-
dades.)

Lema 1.13
Para capacidades inteiras, todo fluxo intermedidrio e as capacidades residuais
sao inteiros.

Prova. Por indugao sobre o nimero de iteragoes. Inicialmente f. = 0. Em
cada iteracdo, o “gargalo” g(f,P) é inteiro, porque as capacidades e fluxos sao
inteiros. Portanto, o fluxo e as capacidades residuais apés do aumento sao
novamente inteiros. |

Lema 1.14
Em cada iteragao, o fluxo aumenta ao menos 1.

Prova. O caminho s—t possui por defini¢ao do grafo residual uma capacidade
“gargalo” g(f,P) > 0. O fluxo f(s) aumenta exatamente g(f,P). |

33

1 Algoritmos em grafos

Lema 1.15
O niimero de iteracdes do algoritmo Ford-Fulkerson ¢ limitado por C =) .5+ (s) Ce-
Portanto ele tem complexidade O((n + m)C).

Prova. C é um limite superior do fluxo maximo. Como o fluxo inicial-
mente possui valor 0 e aumenta ao menos 1 por iteragao, o algoritmo de
Ford-Fulkerson termina em no méximo C iteragbes. Em cada iteragao temos
que achar um caminho s—t em G¢. Representando G por listas de adjacéncia,
isso é possivel em tempo O(n+m) usando uma busca por profundidade. O au-
mento do fluxo precisa tempo O(n) e a atualizacéo do grafo residual é possivel
em O(m), visitando todos arcos. |

Corretude do algoritmo de Ford-Fulkerson

Definicao 1.2

Seja X := V' \ X. Escrevemos F(X,Y) := {(x,y) | x € X,y € Y} para os arcos
passando do conjunto X para Y. O fluxo de X para Y é f(X,Y) := ZeeF(X,Y) fe.
Ainda estendemos a notagao do fluxo total de um vértice (1.1) para conjuntos:
f(X) == f(X,X) — f(X, X) é o fluxo neto do saindo do conjunto X.
Analogamente, escrevemos para as capacidades ¢(X,Y) :=3 eF(x,y) Ce- Uma
particao (X, X) é um corte s-t,se s € Xete X.

Um arco e se chama saturado para um fluxo f, caso fo = ce.

Lema 1.16 -
Para qualquer corte (X, X) temos f(X) = f(s).

Prova.
f(X) = (X, X) = f(X,X) =) _f(v)

veX

(O ultimo passo é correto, porque para todo v € X, v # s, temos f(v) = 0 pela
conservagao do fluxo.) |

Lema 1.17
O valor ¢(X, X) de um corte s—t é um limite superior para um fluxo s—t.

Prova. Seja f um fluxo s—t. Temos
f(s) = f(X) = f(X,X) = f(X,X) < (X, X) < ¢(X,X).

|
Consequéncia: O fluxo maximo é menor ou igual a o corte minimo. De fato,
a relacao entre o fluxo maximo e o corte minimo é mais forte:

34

1.3 Fluxos em redes

Teorema 1.2 (Fluxo maximo — corte minimo)
O valor do fluxo maximo entre dois vértices s e t é igual a do corte minimo.

Lema 1.18
Quando o algoritmo de Ford-Fulkerson termina, o valor do fluxo é maximo.

Prova. O algoritmo termina se nao existe um caminho entre s e t em Ggy.
Podemos definir um corte (X, X), tal que X é o conjunto de vértices alcancéveis
em Gy a partir de s. Qual o valor do fluxo nos arcos entre X e X? Para um
arco e € F(X,X) temos fe = ce, senio G¢ terd um arco “forward” e, uma
contradicdo. Para um arco e = (u,v) € F(X,X) temos f. = 0, sendo Gy terd
um arco “backward” e’ = (v,u), uma contradigdo. Logo

f(s) = f(X) = f(X,X) — f(X, X) = £(X,X) = (X, X).

Pelo lema 1.17, o valor de um fluxo arbitrario é menor ou igual que c(X, X),
portanto f é um fluxo méaximo. [|
Prova. (Do teorema 1.2) Pela andlise do algoritmo de Ford-Fulkerson. []

Desvantagens do algoritmo de Ford-Fulkerson O algoritmo de Ford-Fulkerson
tem duas desvantagens:

1. O numero de iteracoes C pode ser alto, e existem grafos em que C
iteragoes sao necessdrias (veja Fig. 1.10). Além disso, o algoritmo com
complexidade O((n + m)C) é somente pseudo-polinomial.

2. E possivel que o algoritmo ndo termina para capacidades reais (veja
Fig. 1.10). Usando uma busca por profundidade para achar caminhos
s—t ele termina, mas é ineficiente (,).

1.3.2 O algoritmo de Edmonds-Karp

O algoritmo de Edmonds-Karp elimina esses problemas. O principio dele é
simples: Para achar um caminho s—t simples, usa busca por largura, i.e. sele-
cione o caminho mais curto entre s e t. Nos temos (sem prova)

Teorema 1.3
O algoritmo de Edmonds-Karp precisa O(nm) iteracoes, e portanto termina

em O(nm?).

Lema 1.19
Seja d¢(v) a distancia entre s e v em G¢. Durante a execugdo do algoritmo de
Edmonds-Karp 8¢(v) cresce monotonicamente para todos vértices em V.

35

1 Algoritmos em grafos

Figura 1.10: Esquerda: Pior caso para o algoritmo de Ford-Fulkerson com pe-
sos inteiros aumentando o fluxo por 2N vezes por 1 nos caminhos
(s,u,v,t) e (s,v,u,t). Direita: Menor grafo com pesos irracionais em
que o algoritmo de Ford-Fulkerson falha (Zwick, 1995). M > 3, e
r=(14++vT—=4A)/2 com A ~ 0.217 a tnica raiz real de 1 —5x + 2x* —
x>. Aumentar (s,v1,vs,t) e depois repetidamente (s,v2,va4,Vv1,Vv3,t),
(s,v2,v3,v1,va,t), (s,vi,v3,v2,va,t), e (s,v1,v4,v2,v3,t) converge
para o fluxo méximo 2 4+ r 4+ v~ sem terminar.

Prova. Para v = s o lema é evidente. Supoe que uma iteracao modificando o
fluxo f para f’ diminuird o valor de um vértice v e V\{s}, i.e., 5¢(v) > 8¢/ (v).
Supde ainda que v é o vértice de menor distancia d¢/(v) em Gyf, com essa
caracteristica. Seja P = (s,...,u,v) um caminho mais curto de s para v
em Gy¢s. O valor de u nao diminuiu nessa iteracao (pela escolha de v), i.e.,
of(u) < d¢/(u) ().

O arco (u,v) nao existe in G¢, sendo a distancia do v in G¢ é no maximo a
distancia do v in G¢/: Supondo (u,v) € E(G¢) temos

8¢(v) < 8¢(u) +1 pela desigualdade triangular
<dpr(u) +1 (*)
< b4/ (v) porque uv estd num caminho minimo em Gy,

uma contradicao com a hipétese que a distancia de v diminuiu. Portanto,
(u,v) € E(G¢) mas (u,v) € E(G¢/). Isso s6 é possivel se o fluxo de v para u
aumentou nessa iteracdo. Em particular, vu foi parte de um caminho minimo
de s para u. Para v =1t isso é uma contradigao imediata. Caso v # t, temos

o¢(v) = 8¢(u) —1
<8¢ (u)—1 (*)
=6¢/(v)—2 porque uv estd num caminho minimo em Gy,

36

1.3 Fluxos em redes

novamente uma contradicao com a hipdtese que a distancia de v diminuiu.
Logo, o vértice v nao existe. |
Prova. (do teorema 1.3)

Chama um arco num caminho que aumenta o fluxo com capacidade igual
ao gargalo critico. Em cada iteracao existe ao menos um arco critico que
disparece do grafo residual. Provaremos que cada arco pode ser critico no
méximo n/2 — 1 vezes, que implica em no mdximo m(n/2 — 1) = O(mn)
iteragoes.

No grafo G¢ em que um arco uv € E é critico pela primeira vez temos 6¢(u) =
d¢(v)—1. O arco s6 aparece novamente no grafo residual caso alguma iteracao
diminui o fluxo em uv, i.e., aumenta o fluxo vu. Nessa iteracao, com fluxo f’,
d¢r(v) = d¢/(u) — 1. Em soma temos

éf/(u) = 5{/(\)) + 1
>0¢(v)+1 pelo lema 1.19
=d¢(u) +2,

i.e., a distancia do u entre dois instantes em que uv é critico aumento por
pelo menos dois. Enquanto u é alcancével por s, a sua distancia é no maximo
n — 2, porque a caminho ndo contém s nem t, e por isso a aresta uv pode ser
critico por no méximo (n —2)/2=n/2 —1 vezes. [|
Outras solugoes (Goldberg 2008):

1.3.3 Variacoes do problema

Fontes e destinos miiltiplos Para G = (V, E, ¢) define um conjunto de fontes
S C V e um conjunto de destinos T C V, com SNT = (), e considera

f(S)
sujeito a flv) =0 YweV\(SUT) (1.3)
fe <ce Ve € E.

maximiza

O problema (1.3) pode ser reduzido para um problema de fluxo méximo sim-
ples em G’ = (V/,E’,c’) (veja Fig. 1.11(a)) com
V' =V uU{s* t*}
E'=EU{(s*s)|seSTU{(t,t)|teT} (1.4)
Ce eckE
ce = clish{s}) e=(s"s)
c({th{th) e=(t,t7)

~

37

1 Algoritmos em grafos

Ano Referéncia Complexidade Obs

1951 Dantzig O(m?mCQC) Simplex

1955 Ford & Fulkerson (nmC) Cam. aument.

1970 Dinitz O(m?m) Cam. min. aument

1972 Edmonds & Karp O(m?log C) Escalonamento

1973 Dinitz O(nmlog C) Escalonamento

1974 Karzanov Oo(n? Preflow-Push

1977 Cherkassky O(m?m!/ 2) Preflow-Push

1980 Galil & Naamad O(nmlog®n)

1983 Sleator & Tarjan O(nmlogn)

1986 Goldberg & Tarjan O(nmlog(n?/m)) Push-Relabel

1987 Ahuja & Orlin O(mm+n?logC)

1987 Ahuja et al. O(nmlog(n\/log C/m))

1989 Cheriyan & Hagerup O(nm + n?log?n)

1990 Cheriyan et al. O(n3/logn)

1990 Alon O(nm +n83logn)

1992 King et al. O(nm +n?+e)

1993 Phillips & Westbrook — O(nm(log,, ,, n + log”™¢n))

1994 King et al. O(mmlog,, /(miogn) ™)

1997 Goldberg & Rao 0O(m3/21og(n?/m)log C)
0(n?3mlog(n?/m)log C)

Tabela 1.2: Complexidade para diversos algoritmos de fluxo méximo (

, 2003).

38

1.3 Fluxos em redes

Figura 1.11: Reducoes entre variagoes do problema do fluxo maximo. Es-
querda: Fontes e destinos multiplos. Direita: Limite inferior e
superior para a capacidade de arcos.

Lema 1.20
Se f’ é solugdo méxima de (1.4), f = f'|[g é uma solucdo maxima de (1.3).
Conversamente, se f é uma solugdo maxima de (1.3),

¢ uma solugao maxima de (1.4).

Prova. Supoe f é solucio méxima de (1.3). Seja f’ uma solucao de (1.4)
com valor f'(s*) maior. Entao f’[¢ é um fluxo védlido para (1.3) com solugao
f'g(S) = f'(s*) maior, uma contradicao.

Conversamente, para cada fluxo valido f em G, a extenséo f’ definida acima
¢ um fluxo vélido em G’ com o mesmo valor. Portanto o valor do maior fluxo
em G’ é maior ou igual ao valor do maior fluxo em G. |

Limites inferiores Para G = (V,E,b,c) com limites inferiores b : E — R
considere o problema

maximiza f(s)
sujeito a f(v) =0 Vv e V\{s,t} (1.5)
be <fe <ce ec k.

O problema (1.5) pode ser reduzido para um problema de fluxo méximo sim-

39

1 Algoritmos em grafos

ples em G’ = (V/,E’ ¢’) (veja Fig. 1.11(b)) com

V' =V

E'=Eu{v,t) | (v,u) € BE}U{(s,u) | (v,u) € E} (1.6)
Cc—Db. eckE

Ce=4brpw e=MWt)
b e=(s,u)

Lema 1.21

Problema (1.5) possui uma vidvel sse (1.6) possui uma solugdo méxima com
todos arcos auxiliares E’ \ E saturados. Neste caso, se f é um fluxo méximo
em (1.5),

fe—b. ecktE
fl =< bs e = (v, t) criado por f = (v,u)
oF e = (s,u) criado por f = (v,u)

¢ um fluxo méximo de (1.6) com arcos auxiliares saturados. Conversamente,
se T’ é um fluxo méximo para (1.6) com arcos auxiliares saturados, f. = f,+b,
é um fluxo méximo em (1.5).

Prova. (Exercicio.) [|

Existéncia de uma circulacdo Para G = (V,E,c) com demandas d,, com
d, > 0 para destinos e d, < 0 para fontes, considere

existe f
s.a f(v) = —d, YweVv (1.7)
fe <ce ec L.

Evidentemente) .\ d, = 0 é uma condicao necesséria (lema (1.11)). O
problema (1.7) pode ser reduzido para um problema de fluxo méximo em
G’ = (V/,E’) com

V' =Vus* t*}

E'=EBU{(s*,v)|veV,d, <0lU{(v,t*)|veVd, >0 (1.8)
Ce eckt

Ce=< —d, e=(s*"V)
dv e:(vat*)

40

1.3 Fluxos em redes

Lema 1.22
Problema (1.7) possui uma solugao sse problema (1.8) possui uma solugdo com

fluxo maximo D =} .4 _, dv.

Prova. (Exercicio.) []

Circulacdes com limites inferiores Para G = (V,E, b, c) com limites inferio-
res e superiores, considere

existe f
s.a flv) =d, YweV (1.9)
be < fe < ce ecE.

O problema pode ser reduzido para a existéncia de uma circulacdo com so-
mente limites superiores em G’ = (V/,E’,¢’,d’) com

V=V

E'=E (1.10)

Ce:Ce_be

_d—Zb+Zb (1.11)

ecd(v) ecdt(v)

Lema 1.23
O problema (1.9) possui solugdo sse problema (1.10) possui solugao.

Prova. (Exercicio.) |

1.3.4 AplicacGes

Projeto de pesquisa de opiniao O objetivo é projetar uma pesquisa de
opiniao, com as restricoes

e Cada cliente i recebe ao menos c¢; perguntas (para obter informagao sufi-
ciente) mas no maximo c{ perguntas (para nao cansar ele). As perguntas
podem ser feitas somente sobre produtos que o cliente ja comprou.

e Para obter informagdes suficientes sobre um produto, entre p; e p{ cli-
entes tem que ser interrogados sobre ele.

Um modelo é um grafo bi-partido entre clientes e produtos, com aresta (ci, p;)
caso cliente i ja comprou produto j. O fluxo de cada aresta possui limite
inferior O e limite superior 1. Para representar os limites de perguntas por

41

1 Algoritmos em grafos

produto e por cliente, introduziremos ainda dois vértices s, e t, com arestas
li /

(s,ci) com fluxo entre c; e ¢ e arestas (pj,t) com fluxo entre p; e pj e uma

aresta (t,s).

Segmentacao de imagens O objetivo é segmentar um imagem em duas
partes, por exemplo “foreground” e “background”. Supondo que temos uma
“probabilidade” a; de pertencer ao “foreground” e outra “probabilidade” de
pertencer ao “background” b; para cada pixel i, uma abordagem direta é
definir que pixels com a; > b; sao “foreground” e os outros “background”. Um
exemplo pode ser visto na Fig. 1.13 (b). A desvantagem dessa abordagem é que
a separacao ignora o contexto de um pixel. Um pixel, “foreground” com todos
pixel adjacentes em “background” provavelmente pertence ao “background”
também. Portanto obtemos um modelo melhor introduzindo penalidades pj;
para separar (atribuir & categorias diferentes) pixel adjacentes i e j. Um
particao do conjunto de todos pixels I em A U B tem um valor de

q(A,B):Zai‘i‘Zbi* Z Pij
ieA ieB (1,j)EAXB

nesse modelo, e 0 nosso objetivo é achar uma partigdo que maximiza q(A, B).
Isso é equivalente a minimizar

QAB)=) ai+bi—) ai—) bi+ > py

iel i€A ieB (i,j)EAXB
TarYue T o
icB i€A (i,j)EAXB

A solucao minima de Q(A, B) pode ser visto como corte minimo num grafo.
O grafo possui um vértice para cada pixel e uma aresta com capacidade pj;
entre dois pixels adjacentes i e j. FEle possui ainda dois vértices adicionais
s e t, arestas (s,1) com capacidade a; para cada pixel i e arestas (i,t) com
capacidade b; para cada pixel i (ver Fig. 1.12).

Seqiienciamento O objetivo é programar um transporte com um nimero k
de veiculos disponiveis, dado pares de origem-destino com tempo de saida e
chegada. Um exemplo é um conjunto de voos é

1. Porto Alegre (POA), 6.00 — Florianopolis (FLN), 7.00
2. Florianopolis (FLN), 8.00 — Rio de Janeiro (GIG), 9.00
3. Fortaleza (FOR), 7.00 — Jodo Pessoa (JPA), 8.00

42

1.3 Fluxos em redes

101 1

’\6\}5

Figura 1.12: Exemplo da construg@ao para uma imagem 2 x 2. Direita: Tabela
com valores pele/nao-pele. Esquerda: Grafo com penalidade fixa
Pij = 10.

i3 k1
a 30 19 12 10
b 20 15 16 25

ﬁ'a P
L

Figura 1.13: Segmentacdo de imagens com diferentes penalidades p. Acima:
(a) Imagem original (b) Segmentacao somente com probabilida-
des (p = 0) (¢) p = 1000 (d) p = 10000. Abaixo: (a) Walter
Gramatté, Selbstbildnis mit rotem Mond, 1926 (b) Segmentacao
com p = 5000. A probabilidade de um pixel representar pele foi
determinado conforme Jones and Rehg (1998).

43

1 Algoritmos em grafos

4. Sao Paulo (GRU), 11.00 — Manaus (MAO), 14.00
5. Manaus (MAO), 14.15 — Belem (BEL), 15.15
6. Salvador (SSA), 17.00 — Recife (REC), 18.00

O mesmo aviao pode ser usado para mais que um par de origem e destino, se
o destino do primeiro é o origem do segundo, em tem tempo suficiente entre
a chegada e saida (para manutengao, limpeza, etc.) ou tem tempo suficiente
para deslocar o aviao do destino para o origem.

Podemos representar o problema como grafo direcionado aciclico. Dado pa-
res de origem destino, ainda adicionamos pares de destino-origem que sao
compativeis com as regras acimas. A idéia é representar avides como fluxo:
cada aresta origem-destino é obrigatorio, e portanto recebe limites inferiores
e superiores de 1, enquanto uma aresta destino-origem é facultativa e recebe
limite inferior de O e superior de 1. Além disso, introduzimos dois vértices s
e t, com arcos facultativos de s para qualquer origem e de qualquer destino
para t, que representam os comecos e finais da viagem completa de um aviao.
Para decidir se existe um solugao com k avioes, finalmente colocamos um arco
(t,s) com limite inferior de 0 e superior de k e decidir se existe uma circulacao
nesse grafo.

1.3.5 Outros problemas de fluxo

Obtemos um outro problema de fluxo em redes introduzindo custos de trans-
porte por unidade de fluxo:

FLUXO DE MENOR CUSTO

Entrada Grafo direcionado G = (V, E) com capacidades ¢ € RIE e custos

E - . - .
T E R‘Jrl nos arcos, um vértice origem s € V, um vértice destino
teV,evalorveRy.

Solugao Um fluxo s-t f com valor v.

Objetivo Minimizar o custo Y_ cefe do fluxo.

ecE

Diferente do problema de menor fluxo, o valor do fluxo ¢ fixo.

44

1.4 Emparelhamentos

1.4 Emparelhamentos

Dado um grafo nao-direcionado G = (V, E), um emparelhamento é uma selecio
de arestas M C E tal que todo vértice tem no méximo grau 1 em G’ = (V,M).
(Notagao: M = {ujvq,uzva,...}.) O nosso interesse em emparelhamentos é
maximizar o nimero de arestas selecionados ou, no caso as arestas possuem
pesos, maximizar o peso total das arestas selecionados.

Para um grafo com pesos ¢ : E — Q, seja ¢(M]) = } ..y Ce 0 valor do
emparelhamento M.

EMPARELHAMENTO MAXIMO (EM)
Entrada Um grafo G = (V, E) nao-direcionado.

Solugcao Um emparelhamento M C E, i.e. um conjunto de arcos, tal que
para todos vértices v temos |[N(v) N M| < 1.

Objetivo Maximiza |M]|.

EMPARELHAMENTO DE PESO MAXIMO (EPM)

Entrada Um grafo G = (V,E, c) ndo-direcionado com pesos ¢ : E — Q
nas arestas.

Solucao Um emparelhamento M C E.

Objetivo Maximiza o valor ¢(M) de M.

Um emparelhamento se chama perfeito se todo vértice possui vizinho em M.
Uma variacao comum do problema é

EMPARELHAMENTO PERFEITO DE PESO MINIMO (EPPM)

Entrada Um grafo G = (V,E, c) ndo-direcionado com pesos ¢ : E — Q
nas arestas.

Solugcao Um emparelhamento perfeito M C E, i.e. um conjunto de arcos,
tal que para todos vértices v temos [N(v) " M| = 1.

45

1 Algoritmos em grafos

Objetivo Minimiza o valor ¢(M) de M.

Observe que os pesos em todos problemas podem ser negativos. O problema de
encontrar um emparelhamento de peso minimo em G = (V, E, ¢) é equivalente
com EPM em —G := (V, E, —c) (por qué?). Até EPPM pode ser reduzido para
EPM.

Teorema 1.4
EPM e EPPM sao problemas equivalentes.

Prova. Seja G = (V,E,c) uma instancia de EPM. Define um conjunto de
vértices V' que contém V e mais |V| novos vértices e um grafo completo G’ =
(V, V' x V' ¢’) com

—Ce casoe€kE
0 caso contrario

Dado um emparelhamento M em G podemos definir um emparelhamento per-
feito M’ em G’: M’ inclui todas arestas em M. Além disso, um vértice em
V nao emparelhado em M serda emparelhado com o novo vértice correspon-
dente em V' com uma aresta de custo 0 em M’. Similarmente, os restantes
vértices nao emparelhados em V'’ sao emparelhados em M’ com arestas de
custo 0 entre si. Pela construcao, o valor de M’ é ¢/(M’) = —¢(M). Dado
um emparelhamento M’ em G’ podemos obter um emparelhamento M em G
com valor —c(M’) removendo as arestas que nao pertencem a G. Portanto,
um EPPM em G’ é um EPM em G.

Conversamente, seja G = (V,E,c) uma instancia de EPPM. Define C :=
T+) .celcel, novos pesos ¢, = C —ce e um grafo G’ = (V,E,c’). Para
emparelhamentos M e M, arbitrarios temos

C(MZ)*C(M” < Z Ce — Z Ce:Z‘Ce‘<C'

e€E e€E ecE
ce=>0 ce<O0

Portanto, um emparelhamento de peso mdximo em G’ também é um empa-
relhamento de cardinalidade mdxima: Para [M7| < |M3| temos

c'(My) =CIMy| —¢(M7) < CIMy] 4+ C —c(M2) < CIM3| — ¢(M3) = ¢'(M2).

Se existe um emparelhamento perfeito no grafo original G, entao o EPM em
G’ é perfeito e as arestas do EPM em G’ definem um EPPM em G. |

46

1.4 Emparelhamentos

Formulagdes com programacao inteira A formulacdo do problema do em-
parelhamento perfeito minimo para G = (V,E,c) é

minimiza Z CeXe (1.12)
eckE

sujeito a Z Xuv = 1, Yvev
ueN(v)
Xe € B.

A formulacao do problema do emparelhamento maximo é

maximiza Z CeXe (1.13)
ecE
sujeito a Z Xuw < 1, Ywev
UuEN(v)
Xe € B.

Observagao 1.11

A matriz de coeficientes de (1.12) e (1.13) é totalmente unimodular no caso bi-
partido (pelo teorema de Hoffman-Kruskal). Portanto: a solucao da relaxagéo
linear é inteira. (No caso geral isso ndo é verdadeiro, K3 é um contra-exemplo,
com solugao étima 3/2.). Observe que isso resolve o caso ponderado sem custo
adicional. O

Observagao 1.12
O dual da relaxacao linear de (1.12) é

maximiza Z Yy (1.14)
vev
sujeito a yu + Yy < cuv, Vuv € E
Yy € R,

e o dual da relaxacgao linear de (1.13)

minimiza Z Yy (1.15)
vev
sujeito a Yu +Yv = Cuv, Yuv € E
Yy € Ry.
Com pesos unitdrios cy, = 1 e restringindo y, € B o primeiro dual é a

formulacao do conjunto independente maximo e o segundo da cobertura por
vértices minima. Portanto, a observagao 1.11 rende no caso nao-ponderado:

47

1 Algoritmos em grafos

Teorema 1.5 (Berge, 1951)
Em grafos bi-partidos o tamanho da menor cobertura por vértices é igual ao
tamanho do emparelhamento maximo.

O

1.4.1 Aplicacoes

Alocacao de tarefas Queremos alocar n tarefas a n trabalhadores, tal que
cada tarefa é executada, e cada trabalhador executa uma tarefa. O custos de
execucao dependem do trabalhar e da tarefa. Isso pode ser resolvido como
problema de emparelhamento perfeito minimo.

Particionamento de poligonos ortogonais

Teorema 1.6

(, , cap. 11,th. 1) Um poligono ortogonal com n vértices
de reflexo (ingl. reflex vertex, i.e., com angulo interno maior que 7t), h buracos
(ingl. holes) pode ser minimalmente particionado em n—1—h+1 retangulos.
A varidvel 1 é o nimero méximo de cordas (diagonais) horizontais ou verticais
entre vértices de reflexo sem intersecgao.

O nidmero 1 é o tamanho do conjunto independente maximo no grafo de in-
tersecgao das cordas: cada corda é representada por um vértice, e uma aresta
representa a duas cordas com intersecao. Um conjunto independente maximo
é o complemento de uma cobertura por vértices minima, o problema dual
(1.15) de um emparelhamento maximo. Portanto, o tamanho de um empa-
relhamento maximo ¢é igual n — h. Podemos obter o conjunto independente
que procuramos usando “a metade” do emparelhamento (os vértices de uma
parte s6) e os vértices ndo emparelhados. Podemos achar o emparelhamento
em tempo O(n°/?) usando o algoritmo de Hopcroft-Karp, porque o grafo de
intersecgéo é bi-partido (por qué?).

1.4.2 Grafos bi-partidos

Na formulacao como programa inteira a solugao do caso bi-partido é mais facil.
Isso também € o caso para algoritmos combinatoriais, e portanto comegamos
estudar grafos bi-partidos.

Reducao para o problema do fluxo maximo

Teorema 1.7
Um EM em grafos bi-partidos pode ser obtido em tempo O(mmn).

48

1.4 Emparelhamentos

e

Figura 1.14: Esquerda: Poligono ortogonal com vértices de reflexo (pontos) e
cordas (pontilhadas). Direita: grafo de intersec¢ao.

“ir

o

Figura 1.15: Reducao do problema de emparelhamento méaximo para o pro-
blema do fluxo maximo

Prova. Introduz dois vértices s, t, liga s para todos vértices em V7, os vértices
em V7 com vértices em V, e os vértices em V, com t, com todos os pesos
unitarios. Aplica o algoritmo de Ford-Fulkerson para obter um fluxo méximo.
O nimero de aumentos é limitado por n, cada busca tem complexidade O(m),
portanto o algoritmo de Ford-Fulkerson termina em tempo O(mn). |

Teorema 1.8
O valor do fluxo méximo é igual a cardinalidade de um emparelhamento
maximo.

Prova. Dado um emparelhamento maximo M = {vi1v21,...,VinVan}, pode-
mos construir um fluxo com arcos svii, v1iv2i e v2it com valor |M|.

Dado um fluxo méximo, existe um fluxo integral equivalente (veja lema (1.13)).
Na construcao acima os arcos possuem fluxo 0 ou 1. Escolhe todos arcos entre

49

1 Algoritmos em grafos

V7 e V5 com fluxo 1. Nao existe vértice com grau 2, pela conservacao de fluxo.
Portanto, os arcos formam um emparelhamento cuja cardinalidade é o valor
do fluxo. |

Solucdo ndo-ponderado combinatorial Um caminho P = vivovs ... v é
alternante em relagdo a M (ou M-alternante) se vivi11 € M sse vip1viy2 € M
para todos 1 < 1 < k—2. Um vértice v € V é livre em relagdo a M se ele
tem grau 0 em M, e emparelhado caso contrario. Um arco e € E é livre em
relacdo a M, se e € M, e emparelhado caso contrario. Escrevemos |[P| =k — 1
pelo comprimento do caminho P.

Observagao 1.13

Caso temos um caminho P = vivovs...var1 que é M-alternante com vy é

Vok+1 livre, podemos obter um emparelhamento M \ (PN M) U (P \ M) de

tamanho M| —k + (k — 1) = I[M| + 1. Notacao: Diferenca simétrica M & P =

(M\P)U(P\M). A operacdo M & P é um aumento do emparelhamento M.
O

Teorema 1.9 (())

Seja M* um emparelhamento méaximo e M um emparelhamento arbitrario. O
conjunto M @ M* contém ao menos k = [M*| —|M| caminhos M-aumentantes
disjuntos (de vértices). Um deles possui comprimento menor que [V|/k — 1.
Prova. Considere os componentes de G em relagao aos arcos M .= M &
M*. Cada vértice possui no maximo grau 2. Portanto, cada componente
é ou um vértice livre, ou um caminhos simples ou um ciclo. Os caminhos
e ciclos possuem alternadamente arcos de M e M*. Portanto os ciclos tem
comprimento par. Os caminhos de comprimento impar sdo ou M-aumentantes
ou M*-aumentantes, mas o segundo caso é impossivel, porque M* é maximo.
Agora

M\ M|=M*|—IM*NM|=M|-IM"NM|+k =M\ M"+k

e portanto M @& M* contém k arcos mais de M* que de M. Isso mostra que
existem ao menos |[M*| — [M| caminhos M-aumentantes, porque somente os
caminhos de comprimento impar possuem exatamente um arco mais de M*.
Ao menos um desses caminhos tem que ter um comprimento menor ou igual
que [V|/k — 1, porque no caso contrario eles contém em total mais que [V|
vértices. |

Corolério 1.2 (()

Um emparelhamento é maximo sse nao existe um caminho M-aumentante.

50

1.4 Emparelhamentos

Rascunho de um algoritmo:

Algoritmo 1.5 (Emparelhamento maximo)
Entrada Grafo nao-direcionado G = (V, E).

Saida Um emparelhamento maximo M.

1 M=90

2 while (existe um caminho M—aumentante P) do
3 M:=MaP

4 end while

5 return M

Problema: como achar caminhos M-aumentantes de forma eficiente?

Observagao 1.14

Um caminho M-aumentante comega num vértice livre em Vi e termina num
vértice livre em V5. Idéia: Comega uma busca por largura com todos vértices
livres em Vj. Segue alternadamente arcos livres em M para encontrar vizi-
nhos em V5 e arcos em M, para encontrar vizinhos em V7. A busca para ao
encontrar um vértice livre em V, ou apds de visitar todos vértices. Ela tem
complexidade O(m). O

Teorema 1.10
O problema do emparelhamento maximo nao-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(mn).

Prova. Ultima observagao e o fato que o emparelhamento maximo tem ta-
manho O(n). |

Observagao 1.15
O ultimo teorema é o mesmo que teorema (1.7). O

Observagao 1.16

Pelo teorema (1.9) sabemos que em geral existem vérios caminhos M-alternantes
disjuntos (de vértices) e nos podemos aumentar M com todos eles em paralelo.
Portanto, estruturamos o algoritmo em fases: cada fase procura um conjunto
de caminhos aumentantes disjuntos e aplica-los para obter um novo empare-
lhamento. Observe que pelo teorema (1.9) um aumento com o maior conjunto
de caminhos M-alternantes disjuntos resolve o problema imediatamente, mas

o1

1 Algoritmos em grafos

nao sabemos como achar esse conjunto de forma eficiente. Portanto, procu-
ramos somente um conjunto maximo de caminhos M-alternantes disjuntos de
menor comprimento.

Podemos achar um conjunto desse tipo apds uma busca por profundidade
da seguinte maneira usando o DAG (grafo direcionado aciclico) definido pela
busca por profundidade. (i) Escolhe um vértice livre em V,. (ii) Segue os
predecessores para achar um caminho aumentante. (iii) Coloca todos vértices
em uma fila de delecdo. (iv) Processa a fila de delecio: Até a fila é vazia,
remove um vértice dela. Remove todos arcos adjacentes no DAG. Caso um
vértice sucessor apds de remogao de um arco possui grau de entrada 0, coloca
ele na fila. (v) Repete o procedimento no DAG restante, para achar outro
caminho, até nao existem mais vértices livres em V>. A nova busca ainda
possui complexidade O(m). O

O que ganhamos com essa nova busca? Os seguintes dois lemas dao a resposta:

Lema 1.24
Apés cada fase, o comprimento de um caminho aumentante minimo aumenta
ao menos dois.

Lema 1.25
O algoritmo termina em no méximo /n fases.

Teorema 1.11

O problema do emparelhamento maximo nao-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(my/n).

Prova. Pelas lemas 1.24 e 1.25 e a observagao que toda fase pode ser com-
pletada em O(m). |

Usaremos outro lema para provar os dois lemas acima.

Lema 1.26

Seja M um emparelhamento, P um caminho M-aumentante minimo, e Q um
caminho M @ P-aumentante. Entao [Q| > [P+ 2PN Q|. (PN Q denota as
arestas em comum entre P e Q.)

Prova. Caso P e Q ndo possuem vértices em comum, Q é M-aumentante,
PN Q =0 e a desigualdade é conseqiiéncia da minimalidade de P.

Caso contrério: P @ Q consiste em dois caminhos, e eventualmente um colegao
de ciclos. Os dois caminhos sao M-aumentantes, pelas seguintes observagoes:

1. O inicio e termino de P é livre em M, porque P é M-aumentante.

92

1.4 Emparelhamentos

2. O inicio e termino de Q é livre em M: eles nao pertencem a P, porque
sa0 livres em M.

3. Nenhum outro vértice de P ou Q é livre em relagao a M: P s6 contém
dois vértices livres e Q s6 contém dois vértices livres em Q mas nao em

P.

4. Temos dois caminhos M-aumentantes, comecando com um vértice livre
em Q e terminando com um vértice livre em P. O caminho em Q \ P é
M-alternante, porque as arestas livres em M’ sdo exatamente as arestas
livres em M. O caminho Q entra em P sempre apds uma aresta livre em
M, porque o primeiro vértice em P ja é emparelhado em M e sai de P
sempre antes de uma aresta livre em M, porque o tltimo vértice em P ja
é emparelhado. Portanto os dois caminhos em P®Q sao M-aumentantes.

Os dois caminhos M-aumentantes em P& Q tem que ser maiores que |P|. Com
isso temos [P @ Q| > 2|P| e

QI=IP&Q[+2[PNQI—[Pl =PI+ 2PN QI

|
Prova. (dolema 1.24). Seja S o conjunto de caminhos M-aumentantes da fase
anterior, e P um caminho aumentante. Caso P ¢é disjunto de todos caminhos
em S, ele deve ser mais comprido, porque S é um conjunto maximo de caminhos
aumentantes. Caso P possui um vértice em comum com algum caminho em
S, ele possui também um arco em comum (por qué?) e podemos aplicar
lema 1.26. |
Prova. (do lema 1.25). Seja M* um emparelhamento maximo ¢ M o em-
parelhamento obtido apés de v/n/2 fases. O comprimento de qualquer ca-
minho M-aumentante é no minimo y/n, pelo lema 1.24. Pelo teorema 1.9
existem ao menos |M*| — |M| caminhos M-aumentantes disjuntos. Mas entao
IM*| — M| < y/n, porque no caso contrdrio eles possuem mais que n vértices
em total. Como o emparelhamento cresce ao menos um em cada fase, o algo-
ritmo executar no maximo mais /1 fases. Portanto, o nimero total de fases
é O(y/m). |
O algoritmo de Hopcroft-Karp é o melhor algoritmo conhecido para encontrar
emparelhamentos maximos em grafos bipartidos ndo-ponderados?. Para sub-
classes de grafos bipartidos existem algoritmos melhores. Por exemplo, existe
um algoritmo randomizado para grafos bipartidos regulares com complexidade
de tempo esperado O(nlogn) (,).

2 (,) melhoraram o algoritmo para O(y/nm(2 —log,, m)).

53

© 00 O Ui W N+

NN DN DNDNDNDN = == = = s
N Uk W N OWWWwWO Ok WD~ O

1 Algoritmos em grafos

Sobre a implementacao A seguir supomos que o conjunto de vértices é
V =[1,n] e um grafo G = (V, E) bi-partido com particio V; U V,. Podemos
representar um emparelhamento usando um vetor mate, que contém, para
cada vértice emparelhado, o indice do vértice vizinho, e 0 caso o vértice é
livre.
O nicleo de uma implementagao do algoritmo de Hopcroft e Karp é descrito na
observagao 1.16: ele consiste em uma busca por largura até encontrar um ou
mais caminhos M-alternantes minimos e depois uma fase que extrai do DAG
definido pela busca um conjunto maximo de caminhos disjuntos (de vértices).
A busca por largura comeca com todos vértices livres em V7. Usamos um
vetor H para marcar os arcos que fazem parte do DAG definido pela busca
por largura® e um vetor m para marcar os vértices visitados.

search_paths (M)

fo
fo

(o

do

r all veV do m, :=false
r all eeE do H. :=false

={v e Vy|vlivre}

{ determina vizinhos em U,
uz = @
for all ueU; do
my = true
for all wek, w¢M do
if not m, then
H.,y := true
Ww=UuUv
end if
end for
end for

{ determina vizinhos em U,
found false { ao
U] Z:@
for all ue U, do

m, = true

if (u livre) then

found true
else

via arestas livres}

via arestas emparelhadas }

menos un caminho encontrado? }

3H, porque o DAG se chama drvore hingara na literatura.

o4

28
29
30
31
32
33
34
35
36

0O Uik Wi

o S
=W N = OO

1.4 Emparelhamentos

v := mate[u]
if not m, then
H., = true
U =uU;uv
end if
end for
end for
while (not found)
end

Apo6s da busca, podemos extrair um conjunto maximo de caminhos M-alternantes

minimos disjuntos. Enquanto existe um vértice livre em V3, nos extraimos um
caminho alternante que termina em v como segue:

extract_path(v) :=

P:=v
while not (veV; and v livre) do
if veV,
v := mate[V]
else
v:= escolhe {u|Hy,,uve M}
end if
P:=vP

end while

remove o caminho e todos vértices sem predecessor
end while
end

Solucao ponderada em grafos bi-partidos Dado um grafo G = (S U T,E)
bipartido com pesos ¢ : E — Q, queremos achar um emparelhamento de maior
peso. Escrevemos V =S U T para o conjunto de todos vértice em G.

Observagao 1.17

O caso ponderado pode ser restrito para emparelhamentos perfeitos: caso
S e T possuem cardinalidade diferente, podemos adicionar vértices, e depois
completar todo grafo com arestas de custo 0. O problema de encontrar um em-
parelhamento perfeito mdximo (ou minimo) em grafos ponderados é conhecido
pelo nome “problema de alocagao” (ingl. assignment problem). %

Observagao 1.18
A reducao do teorema 1.7 para um problema de fluxo maximo nao se aplica
no caso ponderado. Mas, com a simplificacao da observacao 1.17, podemos

%)

1 Algoritmos em grafos

reduzir o problema no caso ponderado para um problema de fluxo de menor
custo: a capacidade de todas arestas é 1, e o custo de transportagdo sdo os
pesos das arestas. Como o emparelhamento é perfeito, procuramos um fluxo
de valor |V|/2, de menor custo. O

O dual do problema 1.15 é a motivagao para

Definicao 1.3

Um rotulamento é uma atribuicao y : V — R,.. Ele é vidvel caso yy +yv > ce
para todas arestas e = (u,v). (Um rotulamento vidvel é c-cobertura por
vértices.) Uma aresta é apertada (ingl. tight) caso yy + Yy = ce. O subgrafo
de arestas apertadas é Gy = (V,E’,c) com E/ ={e € E | e apertada em y}.

Pelo teorema forte de dualidade e o fato que a relaxagao linear dos sistemas
acima possui uma solugdo integral (ver observagao 1.11) temos

Teorema 1.12 (()

Para um grafo bi-partido G = (S U T, E, ¢) com pesos ndo-negativos ¢ : E — Q.
nas arestas, o maior peso de um emparelhamento perfeito é igual ao peso da
menor c-cobertura por vértices.

O método hungaro A aplicagio de um caminho M-aumentante P = (viva...van1
resulta num emparelhamento de peso ¢(M)+3_; 00 Cvivie s =21 par Cvivis -

Isso motiva a definicao de uma arvore hingara ponderada. Para um empare-
lhamento M, seja Hpm o grafo direcionado com as arestas e € M orientadas

de T para S com peso le := we, e com as restantes arestas e € E\ M ori-
entadas de S para T com peso le := —w,. Com isso a aplicacao do caminho
M-aumentante P produz um emparelhamento de peso ¢(M) — 1(P) em que

WP) =3 ;cicon Wivi,: € 0 comprimento do caminho P.

Com isso podemos modificar o algoritmo para emparelhamentos maximos para

Algoritmo 1.6 (Emparelhamento de peso maximo)
Entrada Grafo nao-direcionado ponderado G = (V,E, ¢).

Saida Um emparelhamento de maior peso c(M).

1 M=0

2 while (existe um caminho M—aumentante P) do

3 encontra o caminho M—aumentante minimo P em Hpm
4 caso L(P)>0 break;

o6

1.4 Emparelhamentos

5 M =MaoP
6 end while
7 return M

Observagao 1.19

O grafo Hy de um emparelhamento extremo M néao possui ciclo (par) nega-
tivo, que seria uma contradicdo com a maximalidade de M. Portanto podemos
encontrar a caminho minimo no passo 3 do algoritmo usando o algoritmo de
Bellman-Ford em tempo O(mn). Com isso a complexidade do algoritmo é

O(mn?). O

Observagao 1.20
Lembrando Bellman-Ford: Seja dy(t) a distdncia minimo de qualquer caminho
de s para t usando no maximo k arcos ou oo caso nao existe. Temos

di1(t) = min{di(t), min dy(u)+1(u,t)}
(u,t)eA

O

Para ver que o algoritmo é correto, chama um emparelhamento M eztremo
caso ele possui o maior peso entre todos emparelhamentos de tamanho |[M|.

Teorema 1.13
Cada emparelhamento encontrado no algoritmo 1.6 é extremo.

Prova. Por inducdo. Para M =) o teorema é correto. Seja M um empa-
relhamento extremo, P o caminho aumentante encontrado pelo algoritmo 1.6
e N um emparelhamento de tamanho [M| + 1 arbitrario. Como |[N| > [M|,
MUN contém uma componente que é um caminho Q M-aumentante (por um
argumento similar com aquele da prova do teorema de Hopcroft-Karp 1.9).
Sabemos 1(Q) > 1(P) pela minimalidade de P. N & Q é um emparelhamento
de cardinalidade [MJ, logo ¢(N & Q) < ¢(M). Com isso temos

wN)=w(N& Q)-1Q) <wM)—-1UP)=w(Me&P).
[|

Proposigao 1.4
Caso nao existe caminho M-aumentante com comprimento negativo no algo-
ritmo 1.6, M é méaximo.

o7

1 Algoritmos em grafos

/\
Vip — V9 — Vg — V7 V1o Vo

| | 7“% \

Vi — V2 — Vg — V5
V3 — V4 /

Figura 1.16: Grafo com emparelhamento e grafo auxiliar.

Prova. Supde que existe um emparelhamento N com c(N) > c¢(M). Logo
IN| > |[M| porque M é de maior peso entre todos emparelhamentos de cardi-
nalidade no méximo |[M|. Pelo teorema de Hopcroft-Karp, existem |N| — |M|
caminhos M-aumentantes disjuntos de vértices, nenhum com comprimento
negativo, pelo critério de terminacdo do algoritmo. Portanto ¢c(N) < c¢(M),
uma contradicao. |

Observagao 1.21

E possivel encontrar o caminho minimo no passo 3 em tempo O(m + nlogn)
usando uma transformacao para distancias positivas e aplicando o algoritmo
de Dijkstra. Com isso obtemos um algoritmo em tempo O(n(m + nlogn)).

¢

1.4.3 Emparelhamentos em grafos nao-bipartidos

O caso nao-ponderado Dado um grafo nao-direcionado G = (V,E) e um
emparelhamento M, podemos simplificar a arvore hungara para um grafo
direcionado D = (V,A) com A ={(u,v) | 3x € V:ux € E,xv € M}. Qualquer
passeio M-alternante entre dois vértices livres em G corresponde com um
caminho M-alternante em D.

O problema no caso nao-bipartido sao lagos impares. No caso bi-partido,
todo lago é par e pode ser eliminado sem consequéncias: de fato o caminho
M-alternante mais curto nao possui lago. No caso nao bi-partido nao todo
caminho no grafo auxiliar corresponde com um caminho M-alternante no grafo
original. O caminho v{v3Vv5v;ve corresponde com o caminho M-alternante
V1V2V3V4V5V6V7V8VoV19, Mmas o caminho vivgCgVsvsve que corresponde com
0 passeio V1VoVgV7VgVaV5VsV7VgVoVip nao é um caminho M-alternante que
aumento o emparelhamento. O problema é que o lago impar vgv4vsvg nao
pode ser eliminado sem consequéncias.

o8

1.4 Emparelhamentos

Cardinalidade Ponderado
Bi-partido n\/logn et al, 1991) O(nm + nlogn) (Kuhn, 1955
log(n?/m) Munkres, 1957)
O(mym glogn (Feder and
Motwani, 1995)
Geral mfloglz]{m (Goldberg om?) (Edmonds, 1965) O(mn +

)04; Fremuth-
2003)

and I\(n/(mu\

Paeger and .]mlg‘ni(’k(\l,

n?logn) (Gabow, 1990)

Tabela 1.3: Resumo emparelhamentos

1.4.4 Exercicios

Exercicio 1.5

E possivel somar uma constante ¢ € R para todos custos de uma instancia do
EPM ou EPPM, mantendo a otimalidade da solugao?

59

2 Tabelas hash

Em hashing nosso interesse é uma estrutura de dados H para gerenciar um
conjunto de chaves sobre um universo U e que oferece as operagoes de um
diciondrio:

e Inser¢ao de uma chave ¢ € U: insert(c,H)
e Delecao de uma chave ¢ € U: delete(c,H)
e Teste da pertinéncia: Chave ¢ € H? lookup(c,H)

Uma caracteristica do problema é que tamanho [U| do universo de chaves
possiveis pode ser grande, por exemplo o conjunto de todos strings ou todos
nimeros inteiros. Portanto usar a chave como indice de um vetor de booleano
nao é uma opgao. Uma tabela hash é um alternativa para outros estruturas
de dados de dicionarios, p.ex. arvores. O principio de tabelas hash: aloca
uma tabela de tamanho m e usa uma fun¢do hash para calcular a posigao de
uma chave na tabela. Como o tamanho da tabela hash é menor que o nimero
de chaves possiveis, existem chaves com h(ci) = h(cz), que geram colisdes.
Temos dois métodos para lidar com isso:

e Hashing perfeito: Escolhe uma fungao hash, que para um dado conjunto
de chaves nao tem colisoes. Isso é possivel se o conjunto de chaves é
conhecido e estatico.

e Invento outro método de resolucdao de colisées.

2.1 Hashing com listas encadeadas

Define uma fun¢do hash h : U — [m]. Mantemos uma colecdo de m listas
lo,..., Lin_1 e a lista l; contém as chaves ¢ com valor hash h(c) = 1. Supondo
que a avaliacdo de h é possivel em O(1), a inser¢do custa O(1), e o teste é
proporcional ao tamanho da lista.

Para obter uma distribuicao razoavel das chaves nas listas, supomos que h é
uma funcao hash simples e uniforme:

Prlh(c) =il = 1/m. (2.1)

61

OO UL W N+

2 Tabelas hash

Seja ny := [li| o tamanho da lista i e ¢j; := Pr[h(i) = j] a varidvel aleatéria
que indica se chave j pertence a lista i. Temos niy =} ;;,, ¢ji e com isso

Emid=E[) c¢il=) Elgil= > Prlh(c;) =il =n/m.

1<j<n 1<j<n 1<j<n

O valor o :=n/m é a fator de ocupagdo da tabela hash.

insert (c,H) :=
insert (c,lnc))

lookup (c,H) :=
lookup (c,lp(c))

delete(c,H) :=
delete (c,lh(c))

Teorema 2.1
Uma busca sem sucesso precisa tempo esperado de O(1 + «).

Prova. A chave ¢ tem a probabilidade 1/m de ter um valor hash i. O
tamanho esperado da lista 1 é . Uma busca sem sucesso nessa lista precisa
tempo O(a). Junto com a avaliacdo da func¢do hash em ©(1), obtemos tempo
esperado total O(1 +). |

Teorema 2.2
Uma busca com sucesso precisa tempo esperado de O(1 + «).

Prova. Supomos que a chave ¢ é uma das chaves na tabela com probabilidade
uniforme. Entdo, a probabilidade de pertencer a lista i (ter valor hash i) é
n;/n. Uma busca com sucesso toma tempo (1) para avaliacdo da fungao
hash, e mais um nimero de operagoes proporcional a posicao p da chave na
sua lista. Com isso obtemos tempo esperado O(1 + E[p]). Para determinar a
posicdo esperada na lista, E[p], seja c1,...,cn a seqiiencia em que a chaves
foram inseridas. Supondo que inserimos a chaves no inicio da lista, E[p] é um
mais o numero de chaves inseridos depois de ¢ na mesma lista.

Seja Xi; um varidvel aleatéria que indica se chaves c; e ¢; tem o mesmo valor
hash. E[XU] = Pr[h(ci) = h.(C)')] = Z]gkgmpr[h(ci) = k] PI‘[h.(Cj) = k] =
1/m. Para a chave ci, seja pi a posicao dela na sua lista. Temos

Elpd =E[1+) Xyl=T+) EXyl=1+n—1)/m

j>i ji>i

62

2.1 Hashing com listas encadeadas

e para uma chave aleatéria c

Epl=) 1nEpd=) 1/n(+n-i)/m)

1<i<n 1<i<n

=l4+n/m—n+1)/2m=1+ /2 — «/2n.
Portanto, o tempo esperado de uma busca com sucesso é
O(1+Ep) =02+ /2 —o/2n) =O(1 + o).
|

Selecdo de uma funcao hash Para implementar uma tabela hash, temos
que escolher uma fungéo hash, que satisfaz (2.1). Para facilitar isso, supomos
que o universo de chaves é um conjunto U = [u] de nimeros inteiros. (Para
tratar outro tipos de chave, costuma-se converté-los para nimeros inteiros.)
Se cada chave ocorre com a mesma probabilidade, h(i) = 1 mod m é uma
funcao hash simples e uniforme. Essa abordagem é conhecida como método
de divisao. O problema com essa fungao na pratica é que nao conhecemos a
distribuicao de chaves, e ela provavelmente nao é uniforme. Por exemplo, se
m é par, o valor hash de chaves pares é par, e de chaves impares é impar, e se
m = 2¥ o valor hash consiste nos primeiros k bits. Uma escolha que funciona
na pratica é um numero primo “suficientemente” distante de uma poténcia de
2.

O método de multiplicacao define

h(c) = [m{Ac}].

O método funciona para qualquer valor de m, mas depende de uma escolha
adequada de A € R. Knuth propos A =~ (v/5—1)/2.

Hashing universal Outra idéia: Para qualquer funcao hash h fixa, sempre
existe um conjunto de chaves, tal que essa fungao hash gera muitas colisoes.
(Em particular, um “adversario” que conhece a func¢ao hash pode escolher
chaves c, tal que h(c) = const.. Para evitar isso podemos escolher uma funcao
hash randoémica de uma familia de funcoes hash.

Uma familia H de funcdes hash U — [m] é universal se

{h € H|h(cr) =h(ez)}l =[H|/m

ou equivalente
Prlh(c1) = h(cz)] =1/m

para qualquer par de chaves cq,c;.

63

2 Tabelas hash

Teorema 2.3
Se escolhemos uma funcdo hash h € H uniformemente, para uma chave c
arbitrdrio o tamanho esperado de ly(¢) é

e x,casoc ¢ H, e
e 1+, casoc € H.
Prova. Para chaves c1, ¢z seja Xi; = [h(c1) =h(c2)] e temos
E[Xy] = Pr[Xi; = 1] = Pr[h(cq) = h(c2)] =1/m

pela universalidade de H. Para uma chave fixa ¢ seja Y. o ntimero de colisoes.

E[Y,] =E[> x} =) EXeed<) 1/m

c’eH c’eH c’eH
c’'#c c’'#c c’'#c
Para uma chave ¢ € H, o tamanho da lista é Y, e portanto o tem tamanho

esperado E[Y.] < n/m = «. Caso ¢ € H, o tamanho da lista é 14+ Y, e com
E[Y.] = (n—1)/m esperadamente

T+n—1)/m=T4+a—1/m<1+ .

Um exemplo de um conjunto de fungoes hash universais: Sejac = (co,...,Cr)m
uma chave na base m, escolhe a = (ay, ..., a;)m randomicamente e define

he = Z cia; mod m.

0<i<r

Hashing perfeito Hashing é perfeito sem colisoes. Isso podemos garantir so-
mente caso conhecemos a chaves a serem inseridos na tabela. Para uma funcao
aleatéria de uma familia universal de funcoes hash para uma tabela hash de ta-
manho m, o niimero esperado de colisoes é E[Z#j Xij = Z#j E[Xy] < n?/m.
Portanto, caso esolhemos uma tabela de tamanho m > n? o nimero esperado
de colisdes é menos que um. Em particular, para m > 2n? a probabilidade de
uma colisao é P[ZiL7éj Xy > 0] < Z#j PXiy =11 = n?/m<1/2.

64

0 O Uik Wi

_ =
W= OO

2.2 Hashing com enderecamento aberto

2.2 Hashing com enderecamento aberto

Uma abordagem para resolucao de colisoes, chamada enderecamento aberto, é
escolher outra posi¢do para armazenar uma chave, caso h(c) é ocupada. Uma
estratégia para conseguir isso € procurar uma posi¢ao livre numa permutacao
de todos indices restantes. Assim garantimos que um insert tem sucesso en-
quanto ainda existe uma posicao livre na tabela. Uma fungao hash h(c,1i) com
dois argumentos, tal que h(c,0),...,h(c,m — 1) é uma permutacao de [m],
representa essa estratégia.

insert (c,H) :=

for i in [m]
if Hfh(c,1) = free
Hlh(c,i)]=c¢

return

lookup (c,H) :=
for i in [m]
if H[h(c,1)] = free
return false
if H[h(c,i)] =c
return true
return false
A funcao h(c,1i) é uniforme, se a probabilidade de uma chave randémica ter
associada uma dada permutagdo é 1/m!. A seguir supomos que h é uniforme.

Teorema 2.4
As funcoes lookup e insert precisam no maximo 1/(1 — «) testes caso a chave
nao esta na tabela.

Prova. Seja X o nimero de testes até achar uma posigao livre. Temos

EIX] = ZiPr[X =il = ZZPr[X =il = ZPr[X > .

i>1 i>15>1 i>1
Com T; o evento que o teste i ocorre e a posigao i é ocupada, podemos escrever
Pr(X > 1] = Pr[TiN---NTi 1] = Pr[Th] Pr[T2[Ty] Pr[T3|Tq, T2] - - - Pr[Ti 4Ty, ..., Ti 2]

Agora Pr[T;] = n/m, e como h é uniforme Pr[Tz|Ty] =n—1/(m—1) e em
geral
PriTy|Ty,.. T 1l =n—k+1)/(m—k+1) <n/m=«.

65

2 Tabelas hash

Portanto Pr[X > 1] < at~ T e

=) PriX>il<) o '=) o =1/(1-w).

i>1 i>1 i>0
|
Lema 2.1
Para i < j, temos Hy —H; < In(i) — In(j).
Prova.
i+1 1
Hi — H; < J dx = In(i) — In(j)
1 x— 1
|

Teorema 2.5
A fungao lookup precisa no méaximo 1/aIn 1/(1—) testes caso a chave estd na
tabela com o < 1, e cada chave tem a mesma probabilidade de ser procurada.

Prova. Seja c o i-gésima chave inserida. No momento de inser¢ao o ntimero
esperado de testes T até achar a posicao livre foi 1/(1—(1—1)/m) =m/(m—
(i—1)), e portanto o nimero esperado de testes até achar uma chave arbitraria

,

e

T=1/n > m/(m—({i-1)=1/a > 1/(m—1i)=1/a(Hpn—Hpn _n)

1<i<n 0<i<n
ecom Hy, —Hp_n <In(m) —In(m —n) temos
M =1/a(Hn —Hm_n) < 1/x(In(m) —In(m —mn)) =1/aln(1/(1 — «)).

|
Remover elementos de uma tabela hash com enderecamento aberto é mais
dificil, porque a busca para um elemento termina ao encontrar uma posicao
livre. Para garantir a corretude de lookup, temos que marcar posigoes como
“removidas” e continuar a busca nessas posi¢oes. Infelizmente, nesse caso,
as garantias da complexidade nao mantem-se — apds uma série de delegoes e
insergoes toda posicao livre serd marcada como “removida” tal que delete e
lookup precisam n passos. Portanto o enderecamento aberto é favoravel s6 se
temos nenhuma ou poucas delegoes.

66

O © 00O Uk W+

—_

Tk W N =

2.3 Cuco hashing

Funcoes hash para enderecamento aberto
e Linear: h(c,i) = h(c) +1 mod m
e Quadratica: h(c,i) =h(c) 4+ cii+c2i? mod m
e Hashing duplo: h(c,i) = hq(c) +1ihz(c) mod m

Nenhuma das funcoes é uniforme, mas o hashing duplo mostra um bom de-
sempenho na pratica.

2.3 Cuco hashing

Cuco hashing é outra abordagem que procura posigoes alternativas na tabela
em caso de colisoes, com o objetivo de garantir um tempo de acesso constante
no pior caso. Para conseguir isso, usamos duas func¢ées hash h; e hy, e inse-
rimos uma chave em uma das duas posi¢oes hq(c) ou hy(c). Desta forma a
busca e a delegdo possuem complexidade constante O(1):

lookup (¢ ,H) :=
if Hhy(c)]=c or Hhy(c)l=¢c

return true

return false

delete(c,H) =
if Hhy(c)]=c
Hlh (c)] := free
if Hhy(c)] =c
Hlh, (c)] := free
Para inserir uma chave, temos que resolver o problema de que as duas posigoes
candidatas sejam ocupadas. A soluc¢do do cuco hashing é comportar-se como
um cuco com ovos de outras aves: joga-los fora do seu “ninho”: insert ocupa
a posicao de uma das duas chaves. A chave “jogada fora” tem que ser inserida
novamente na tabela. Caso a posigao alternativa dessa chave é livre, a insercao
termina. Caso contrario, o processo se repete. Esse procedimento termina
apds uma série de reinsercoes ou entra num lago infinito. Nesse tltimo caso
temos que realocar todas chaves com novas funcoes hash.

insert (c,H) :=
if Hh(c)]=c or Hlhy(c)l=¢c
return

p=hy(c)
do n vezes

67

2 Tabelas hash

6 if Hlp] = free

7 Hlp]l :=c¢

8 return

9 swap (¢ ,H[pl)

10 { escolhe a outra posicdo da chave atual }
11 if p="hy(c)

12 p:=hs(c)

13 else

14 p :=hq(c)

15 rehash (H)

16 insert (c,H)
Uma maneira de visulizar uma tabela hash com cuco hashing, é usar o grafo
cuco: Caso foram inseridos as chaves c1, ..., ,n natabela nas posicoes p1,...,Pn,
o grafo é G = (V,A), com V = [m] é pihz(ci) € A caso hi(ci) = pi e
pihi(ci) € A caso ha(ci) = pi. O grafo cuco é um grafo direcionado que
eventualmente possui ciclos. Uma caracteristica do grafo cuco é que uma
posicoes p é eventualmente analisada na insercao de uma chave ¢ somente
se existe um caminho de hy(c) ou hy(c) para p. Para a analise é suficiente
considerar o grafo cuco nao-direcionado.

Lema 2.2
Para posicoes i e j e um ¢ > 1 tal que m > 2c¢n, a probabilidade de existir um
caminho minimo de i para j de comprimento d > 1 é, no maximo, ¢~4/m.

Prova. Observe que a probabilidade de um item c¢ ter posi¢bes i e j como
alternativas no méaximo P[hi(c) = i,hz(¢c) = j + Plhi(c) = j,hz(c) =il =
2/m?. Portanto a probabilidade de existir ao menos uma das n chaves ter
essa caracterfstica é no méaximo 2n/m? =c~'/m.

A prova do lema é por indugéo sobre d. Para d = 1 a afirmagao esta correto
pela observacdo acima. Para d > 1 existe um caminho minimo de compri-
mento d — 1 de i para um k. A probabilidade disso é no méximo ¢~ (4= /m
e a probabilidade de existir um elemento com posigoes alternativas k e j no
méximo ¢~ !/m. Portanto, para um k fixo, a probabilidade existir um cami-
nho de comprimento d é no maximo ¢~4/m? e considerando todas posicoes k
possiveis no maximo ¢~ /m. |
Com isso a probabilidade de existir um caminho entre duas chaves i e j, é
igual a probabilidade de existir um caminho comegando em hq (i) ou hy(i) e
terminando em hq(j) ou hz(j), que é no mdximo 4y .. ;¢ */m < 4/m(c —
1) = O(1/m). Logo o numero esperado de itens visitados numa insercao é
In/m(c—1) = O(1), caso ndo é necessdrio reconstruir a tabela hash.

68

—_

O © 00O ULk WwWwN -

2.4 Filtros de Bloom

(TBD: Com argumentos similares é possivel demonstrar que o custo amorti-
zado da reconstrugao da tabela hash é constante.)

2.4 Filtros de Bloom

Um filtro de Bloom armazena um conjunto de n chaves, com as seguintes
restricoes:

e Nao é mais possivel remover elementos.

o E possivel que o teste de pertinéncia tem sucesso, sem o elemento fazer
parte do conjunto (“false positive”).

Um filtro de Bloom consiste em m bits By, 1 <1 < m, e usa k fungoes hash
hy, ..., hy.

insert (c,B) :=
for i in 1...k
b (c) =1
end for

lookup(c,B) :=
for i in 1...k
if by,) =0
return false
return true
Apos de inserir todas n chaves, a probabilidade que um dado bit é ainda 0 é

1 kn
p/: 1 — %efkn/m
m

que é igual ao valor esperado da fracdo de bits ndo setados'. Sendo p a fracdo
de bits nao setados realmente, a probabilidade de erradamente classificar um
elemento como membro do conjunto é

(1—p)f=01-p)~ (] - e_k“/m>k

porque p é com alta probabilidade perto do seu valor esperado (

)). () também mostram
que o nimero 6timo k de fungoes hash para dados valores de n,m é m/nln2
e com isso temos um erro de classificacio ~ (1/2)k.

Aplicacoes:

I Lembrando que ¥ = limn— 00 (1 4+ x/1)™.

69

2 Tabelas hash

Tabela 2.1: Complexidade das operagoes em tabelas hash. Complexidades em
negrito sao amortizados.

insert lookup delete
Listas encadeadas (1) 01+ «) o1+ «)
Enderegamento aberto O(1/(1 — «)) o(1/(1 —w)) -
(com/sem sucesso) O(1/aln1/(1 —«)) O(1/xlnl1/(1 —«)) -
Cuco 0(1) (1) o(1)

1. Hifenagdao: Manter uma tabela de palavras com hifenagao excepcional
(que nao pode ser determinado pelas regras).

2. Comunicagao efetiva de conjuntos, p.ex. selecdo em bancos de dados dis-
tribuidas. Para calcular um join de dois bancos de dados A, B, primeiro
A filtra os elementos, mando um filtro de Bloom S5 para B e depois B
executa o join baseado em Sa. Para eliminacao de eventuais elementos
classificados erradamente, B manda os resultados para A e A filtra os
elementos errados.

70

3 Algoritmos de aproximacao

(As notas seguem ().)

Um algoritmo de aproximacao calcula uma solugao aproximada para um pro-
blema de otimizacdo. Diferente de uma heuristica, o algoritmo garante a
qualidade da aproximagao no pior caso. Dado um problema e um algo-
ritmo de aproximagao A, escrevemos A(x) = y para a solugdo aproximada
da instancia x, @(x,y) para o valor dessa solucdo, y* para a solugdo 6timo e
OPT(x) = @(x,y*) para o valor da solugdo 6tima. Lembramos que uma apro-
ximacdo absoluta garante que D(x,y) = [OPT(x) — ¢(x,y)| < D para uma
constante D e todo x, enquanto uma aproxrimacao relativa garante que o erro
relativo E(x,y) = D(x,y)/ max{OPT(x), ¢(x,y)} < E para uma constante E e
todos x.

Definicao 3.1

Uma redugao preservando a aproximac¢ao entre dois problemas de minimizagao
T; e TT, consiste em um par de fungoes f e g (computdveis em tempo polino-
mial) tal que para instancia x; de TTy, x2 := f(x7) é instancia de TT; com

OPT]‘[2 (Xz) S OPT]‘[1 (X]) (31)
e para uma solucao yz de I, temos uma solugdo yi := ¢g(x1,y2) de TT; com
o, (x1,y1) < @, (x2,Y2) (32)

Uma reducgao preservando a aproximacao fornece uma x-aproximacao para [Ty
dada uma «-aproximacao para IT,, porque

o, (x1,91) < @, (x2,Y2) < «OPTyy, (x2) < «OPTyy, (x1).

Observe que essa definicdo é somente para problemas de minimizacdo. A
defini¢do no caso de maximizacao é semelhante.

3.1 Aproximacao para o problema da arvore de Steiner
minima

Seja G = (V,A) um grafo completo, nao-direcionado com custos cq > 0 nos
arcos. O problema da drvore Steiner minima (ASM) consiste em achar o

71

3 Algoritmos de aproximagao

3 2

Figura 3.1: Grafo com fecho métrico.

subgrafo conexo minimo que inclui um dado conjunto de wvértices necessdrios
R C V (terminais). Esse subgrafo sempre é uma drvore (ex. 3.1). O conjunto
V \ R forma os vértices Steiner. Para um conjunto de arcos A, define o custo

c(A) =) qcaCa

Observagao 3.1

ASM é NP-completo. Para um conjunto fixo de vértices Steiner V/ C V\R, a
melhor solucao é a drvore geradora minima sobre RUV’. Portanto a dificuldade
¢ a selecao dos vértices Steiner da solugao 6tima. %

Definicao 3.2
Os custos s@o métricos se eles satisfazem a desigualdade triangular, i.e.

¢ij < Cik + Cykj
para qualquer tripla de vértices 1, j, k.

Teorema 3.1
Existe um redugao preservando a aproximacgao de ASM para a versao métrica
do problema.

Prova. O “fecho métrico” de G = (V,A) é um grafo G’ completo sobre
vértices e com custos c{j := dij, sendo di; o comprimento do menor caminho
entre i e j em G. Evidentemente c{; < ci; é portanto (3.1) é satisfeita. Para
ver que (3.2) é satisfeita, seja T’ uma solu¢ao de ASM em G’. Define T como
unido de todos caminhos definidos pelos arcos em T’, menos um conjunto de
arcos para remover eventuais ciclos. O custo de T é no maximo c(T’) porque
o custo de todo caminho é no méximo o custo da aresta correspondente em
T |
Consequéncia: Para o problema do ASM é suficiente considerar o caso métrico.

Teorema 3.2
O AGM sobre R é uma 2-aproximagao para o problema do ASM.

72

3.2 Aproximacoes para o PCV

2 1
1 1
2 o e
Figura 3.2: AGM sobre R e melhor solucio. @: vértice em R, ©: vértice
Steiner.

Prova. Considere a solucio 6tima S* de ASM. Duplica todas arestas® tal
que todo vértice possui grau par. Acha um caminho Euleriano nesse grafo.
Remove vértices duplicados nesse caminho. O custo do caminho C obtido
dessa forma nao é mais que o dobro do custo original: o grafo com todas
arestas custa 2¢(S*) e a remocao de vértices duplicados ndo aumenta esse
custo, pela metricidade. Como esse caminho é uma arvore geradora, temos
c(A) < c(C) < 2¢(S*) para AGM A.]

3.2 Aproximacoes para o PCV

Teorema 3.3
Para fungéao polinomial a(n) o PCV néo possui «(n)-aproximagao em tempo
polinomial, caso P # NP.

Prova. Via redugdo de HC para PCV. Para uma instancia G = (V,A) de HC
define um grafo completo G’ com

{1 acA
Cq =

a(n)n caso contrério

Se G possui um ciclo Hamiltoniano, entao o custo da menor rota é n. Caso
contrério qualquer rota usa ao menos uma aresta de custo a(n)n e portanto
o custo total é > a(n)n. Portanto, dado uma o(n)-aproximacao de PCV
podemos decidir HC em tempo polinomial.]

Caso métrico No caso métrico podemos obter uma aproximacao melhor.
Determina uma rota como segue:

1. Determina uma AGM A de G.

Hsso transforma G num multigrafo.

73

3 Algoritmos de aproximagao

2. Duplica todas arestas de A.
3. Acha um caminho Euleriano nesse grafo.
4. Remove vértices duplicados.

Teorema 3.4
O algoritmo acima define uma 2-aproximagao.

Prova. A melhor solucao do PCV menos uma aresta é uma &rvore geradora
de G. Portanto c(A) < OPT. A solugao S obtida pelo algoritmo acima satisfaz
c(S) < 2¢(A) e portanto c(S) < 20PT, pelo mesmo argumento da prova do
teorema 3.2. |
O fator 2 dessa aproximagao é resultado do passo 2 que duplica todas arestas
para garantir a existéncia de um caminho Euleriano. Isso pode ser garantido
mais barato: A AGM A possui um nimero par de vértices com grau impar
(ver exercicio 3.2), e portanto podemos calcular um emparelhamento perfeito
minimo E entre esse vértices. O grafo com arestas A U E possui somente
vértices com grau par e portanto podemos aplicar os restantes passos nesse
grafo.

Teorema 3.5
A algoritmo usando um emparelhamento perfeito minimo no passo 2 é uma
3/2-aproximagao.

Prova. O valor do emparelhamento E nao é mais que OPT/2: remove vértices
nao emparelhados em E da solugao étima do PCV. O ciclo obtido dessa forma
¢é a uniao dois emparelhamentos perfeitos E; e E, formados pelas arestas pares
ou impares no ciclo. Com E; o emparelhamento de menor custo, temos

¢(BE) <c(BEq) < (c(Er) +c(E2))/2 = OPT/2
e portanto

¢(S) = c(A) + c(E) < OPT + OPT/2 = 3/20PT.

3.3 Algoritmos de aproximacao para cortes

Seja G = (V, A, c) um grafo conectado com pesos ¢ nas arestas. Lembramos
que um corte C é um conjunto de arestas que separa o grafo em dois partes
SUV\S. Dado dois vértices s,t € V, o problema de achar um corte minimo
que separa s e t pode ser resolvido via fluxo maximo em tempo polinomial.
Generalizagoes desse problema sao:

74

3.3 Algoritmos de aproximacao para cortes

e o

Figura 3.3: Identificagdo de dois terminais e um corte no grafo reduzido.
Vértices em verde, terminais em azul. A grafo reduzido possui
miultiplas arestas entre vértices.

e Corte multiplo minimo (CMM): Dado terminais s1,..., sk determine o
menor corte C que separa todos terminas.

e k-corte minimo (k-CM): Mesmo problema, sem terminais definidos. (Ob-
serve que todos k componentes devem ser néo vazios).

Fato 3.1

CMM é NP-dificil para qualquer k > 3. k-CM possui uma solugao polinomial
em tempo O(nkz) para qualquer k, mas é NP-dificil, caso k faz parte da
entrada.

Solugio de CMM Chamamos um corte que separa um vértice dos outros
um corte isolante. Idéia: A uniao de cortes isolantes para todo s; é um
corte multiplo. Para calcular o corte isolante para um dado terminal sj,
identificamos os restantes terminais em um unico vértice S e calculamos um
corte minimo entre s; e S. (Na identificagdo de vértices temos que remover
self-loops, e somar os pesos de miiltiplas arestas.)

Isso leva ao algoritmo

Algoritmo 3.1 (CI)
Entrada Grafo G = (V, A, c) e terminais sq,..., Sk.

Saida Um corte miiltiplo que separa os sj.

1. Para cada i € [1,k]: Calcula o corte isolante C; de s;.

(0]

3 Algoritmos de aproximagao

Figura 3.4: Corte miiltiplo e decomposigdo em cortes isolantes.

2. Remove o maior desses cortes e retorne a uniao dos restantes.

Teorema 3.6
Algoritmo 3.1 é uma 2 — 2/k-aproximacao.

Prova. Considere o corte minimo C*. Ele pode ser representado com a uniao
de k cortes que separam os k componentes individualmente:

U ¢

1<i<k

(Veja fig. 3.4.) Cada aresta de C* faz parte das cortes das duas componentes

adjacentes, e portanto
> w(CP) =2w(C)
1<i<k
e ainda w(C;) < w(C}) para os cortes C; do algoritmo 3.1, porque nos usamos
o corte isolante minimo de cada componente. Logo para o corte C retornado
pelo algoritmo temos

w(C)<(1=1/k) Y w(C)<(1-1/k) Y w(C}) <2(1—1/kjw(C*).
1<i<k 1<i<k
|
A anélise do algoritmo é étimo, como o seguinte exemplo da fig. 3.5 mostra.
O menor corte que separa s; tem peso 2 — €, portanto o algoritmo retorne um
corte de peso (2—e)k—(2—¢€) = (k—1)(2— €), enquanto o menor corte que
separa todos terminais é o ciclo interno de peso k.

76

3.3 Algoritmos de aproximacao para cortes

Figura 3.5: Exemplo de um grafo em que o algoritmo 3.1 retorne uma 2—2/k-
aproximagao.

Solucao de k-CM Problema: Como saber a onde cortar?

Fato 3.2

Existem somente n—1 cortes diferentes num grafo. Eles podem ser organizados
numa arvore de Gomory-Hu (AGH) T = (V,T). Cada aresta dessa arvore
define um corte associado em G pelos dois componentes apés a sua remogao.

1. Para cada u,v € V o menor corte u—v em G ¢ igual a o menor corte u—v
em T (i.e. a aresta de menor peso no caminho dnico entre w e v em T).

2. Para cada aresta a € T, w/(a) é igual a valor do corte associado.

Por conseqiiéncia, a AGH codifica o valor de todos cortes em G.
Ele pode ser calculado com n — 1 cortes s—t minimos:

1. Define um grafo com um tnico vértice que representa todos vértices do
grafo original. Chama um vértice que representa mais que um vértice
do grafo original gordo.

2. Enquanto existem vértices gordos:

a) Escolhe um vértice e dois vértices do grafo original representados
por ela.
b) Caclulca um corte minimo entre esses vértices.

¢) Separa o vértice gordo de acordo com o corte minimo encontrado.

Observagdo: A unido dos cortes definidos por k — 1 arestas na AGH separa G
em ao menos k componentes. Isso leva ao seguinte algoritmo.

7

3 Algoritmos de aproximagao

Algoritmo 3.2 (KCM)
Entrada Grafo G = (V,A,c).
Saida Um k-corte.

1. Calcula uma AGH T em G.

2. Forma a uniao dos k — 1 cortes mais leves definidos por k — 1
arestas em T.

Teorema 3.7
Algoritmo 3.2 é uma 2 — 2/k-aproximacao.

Prova. Seja C* = U1§i§k C} uma corte minimo, decomposto igual & prova
anterior. O nosso objetivo e demonstrar que existem k — 1 cortes definidos
por uma aresta em T que sdo mais leves que os C}.

Removendo C* de G gera componentes Vi, ..., Vi: Define um grafo sobre esses
componentes identificando vértices de uma componente com arcos da AGH T
entre os componentes, e eventualmente removendo arcos até obter uma nova
arvore T'. Seja C} o corte de maior peso, e define Vi como raiz da arvore.
Desta forma, cada componente Vi,..., Vi_7 possui uma aresta associada na
dire¢do da raiz. Para cada dessas arestas (u,v) temos

w(Ci) > w'(u,v)

porque Cj isola o componente V; do resto do grafo (particularmente separa u
ev), e w(u,v) é o peso do menor corte que separa u e v. Logo

w(C) <) wia)< Y w(C) <(1=1/k) Y wi(CP)=2(1-1/kjw(C").

aeT’ 1<i<k 1<i<k

3.4 Exercicios

Exercicio 3.1
Por que um subgrafo de menor custo sempre é uma arvore?

Exercicio 3.2
Mostra que o nimero de vértices com grau impar num grafo sempre é par.

78

4 Algoritmos randomizados

Um algoritmo randomizado usa eventos randomicos na sua execucao. Modelos
computacionais adequadas sao maquinas de Turing randémicas — mais usadas
na area de complexidade — ou méaquinas RAM com um comando do tipo
random(8) que retorne um elemento randémico do conjunto S.

e Probabilidade morrer caindo da cama: 1/2 x 10° (,
).
e Probabilidade acertar 6 nimeros de 60 na mega-sena: 1/50063860.

e Probabilidade que a memoria falha: em memoria moderna temos 1000
FIT/MBit, i.e. 6 x 107 erros por segundo num memoria de 256 MB.!

e Probabilidade que um meteorito destréi um computador em cada milis-
segundo: > 271°° (supondo que cada milénio ao menos um meteorito
destréi uma drea de 100 m?).

Portanto, um algoritmo que retorna uma resposta falsa com baixa probabili-
dade é aceitavel. Em retorno um algoritmo randomizado em geral é

e mais simples;

e mais eficiente: para alguns problemas, o algoritmos randoémica é o mais
eficiente conhecido;

e maios robusto: algoritmos randomicos podem ser menos dependente da
distribuicao das entradas.

e a Unica alternativa: para alguns problemas, conhecemos sé algoritmos
randomicos.

Classes de complexidade

Definicao 4.1
Seja X algum alfabeto e R(«, 3) a classe de linguagens L C X* tal que existe
um algoritmo de decis@o em tempo polinomial A que satisfaz

LFIT é uma abreviacio de “failure-in-time” e é o niimero de erros cada 10? segundos. Para
saber mais sobre erros em memdria veja (,).

79

[IENEGCR N

4 Algoritmos randomizados

e x € L = Pr[A(x) =sim] > «.
e x ¢ L = Pr[A(x) =ndo] > .

(A probabilidade é sobre todas sequéncias de bits randémicos r. Como o
algoritmo executa em tempo polinomial no tamanho da entrada |x|, o nimero
de bits randomicas [r| é polinomial em |x| também.)

Com isso podemos definir

e a classe RP := R(1/2,1) (randomized polynomial), dos problemas que
possuem um algoritmo com erro unilateral (no lado do “sim”); a classe
co — RP = R(1,1/2) consiste dos problemas com erro no lado de “nao”;

e a classe ZPP := RP N co — RP (zero-error probabilistic polynomial) dos
problemas que possuem algoritmo randomizado sem erro;

e a classe PP := R(1/2 + €,1/2 + €) (probabilistic polynomial), dos pro-
blemas com erro 1/2 4+ € nos dois lados; e

e a classe BPP := R(2/3,2/3) (bounded-error probabilistic polynomial),
dos problemas com erro 1/3 nos dois lados.

Algoritmos que respondem corretamente somente com uma certa probabili-
dade também sao chamados do tipo Monte Carlo, enquanto algoritmos que
usam randomizagao somente internamente, mas respondem sempre correta-
mente sao do tipo Las Vegas.

Exemplo 4.1 (Teste de identidade de polinomios)

Dado dois polinomios p(x) e q(x) de grau méximo d, como saber se p(x) =
q(x)? Caso temos os dois na forma candnica p(x) = Y y-; 4 Pix' ou na forma
fatorada p(x) = [];<;<q(x — Ti) isso é simples responder por comparacao de
coeficientes em tempo O(n). E caso contrdrio? Uma conversao para a forma
candnica pode custar @(d?) multiplicacoes. Uma abordagem randomizada
é vantajosa, se podemos avaliar o polindémio mais rdpido (por exemplo em

O(d)):

identico(p,q) :=
Seleciona um numero randdémico T no intervalo [1,100d].

COo)

Caso p(r) =q(r) retorne sim

Caso p(r) #q(r) retorne ‘‘nédo’’.
Caso p(x) = q(x), o algoritmo responde “sim” com certeza. Caso contrario
a resposta pode ser errada, se p(r) = q(r) por acaso. Qual a probabilidade
disso? p(x) — q(x) é um polinémio de grau d e possui no maximo d raizes.
Portanto, a probabilidade de encontrar um r tal que p(r) = q(r), caso p #Z q

80

1
2
3

é d/100d = 1/100. Isso demonstra que o teste de identidade pertence a classe
co — RP. O

Amplificacao de probabilidades Caso nao estamos satisfeitos com a proba-
bilidade de 1/100 no exemplo acima, podemos repetir o algoritmo k vezes, e
responder “sim” somente se todas k repeticoes responderam “sim”. A pro-
babilidade erradamente responder “nao” para polindmios idénticos agora é
(1/100)X, i.e. ela diminui exponencialmente com o niimero de repeticdes.

Essa técnica é uma amplificacdo da probabilidade de obter a solugao correta.
Ela pode ser aplicada para melhorar a qualidade de algoritmos em todas clas-
ses “Monte Carlo”. Com um numero constante de repeticoes, obtemos uma
probabilidade baixa nas classes RP, co — RP e BPP. Isso nao se aplica a PP:
é possivel que € diminui exponencialmente com o tamanho da instancia. Um
exemplo de amplificacao de probabilidade encontra-se na prova do teorema 4.4.

Relacao entre as classes

Teorema 4.1
RP C NP.

Prova. Supde que temos um algoritmo em RP para algum problema L. Pode-
mos, nao-deterministicamente, gerar todas seqiiencias r de bits randomicos e
responder “sim” caso alguma execucao encontra “sim”. O algoritmo é correto,
porque caso para um x € L, ndo existe uma sequéncia randémica r tal que o
algoritmo responde “sim”. |

Teorema 4.2
Uma caraterizacao alternativa da classe ZPP é como classe de problemas tal
que existe um algoritmo A

e que responde ou “sim”, ou “nao” ou “nao sei”’,
e com Pr[A(x) =naosei] <1/2, e

e caso ele responde, ele ndo erra, i.e., para x tal que A(x) # néo sei temos
Alx)=1&xeL.

Prova. Para L € ZPP temos dois algoritmos A; € RP e A, € co — RP. Vamos
construir um algoritmo
if Aj(x) =nao e As(x) =nao then
return ‘‘nao’’
else if A;(x)=nado e A;z(x) =sim then

81

© 00~ O U

TR W N =

4 Algoritmos randomizados

3)

return ‘‘nao sei
else if A;(x)=sim e A;(x) =nao then

{ caso impossivel }
else if A;(x)=sim e A,(x) =sim then

return ‘‘sim’’
end if
O algoritmo responde corretamente “sim” e “nao”, porque um dos dois al-
goritmos nao erra. Qual a probabilidade do segundo caso? Para x € L,
Pr[A;(x)ndo A Az(x) = sim] < 1/2 x 1 = 1/2. Similarmente, para x € L,
PrlA;(x)nao A Az (x) =sim] <1x 1/2=1/2. [|

Teorema 4.3
ZPP C RP e ZPP C co — RP.

Prova. Seja A um algoritmo para L € ZPP. Constréi outro algoritmo que
sempre responde “nao” caso A responde “nao sei”, e senao responde igual.
No caso de co — RP analogamente constréi um algoritmos que responde “sim”
nos casos “nao sei” de A. |

Teorema 4.4
RP C BPP e co— RP C BPP.

Prova. Seja A um algoritmo para L € RP. Constréi um algoritmo A’

if A(x) =ndo e A(x) =ndo then

return ‘‘nao’’
else

return ‘‘sim’’
end if

Caso x € L, Pr[A’(x) = nao] = Pr[A(x) = nao AA(x) = nao] =1 x 1 =
Caso x € L,

Pr[A’(x) = sim] = 1 — Pr[A’(x) =nao] = 1 — Pr[A(x) = nao A A(x) = nao]
>1-1/2x1/2=3/4>2/3.
(Observe que para k repeticdes de A obtemos Pr[A’(x) = sim] > 1—1/2k i.e.,

o erro diminui exponencialmente com o ndmero de repetigoes.) O argumento
para co — RP € similar. |

Relacao com a classe NP e abundancia de testemunhas Lembramos que a
classe NP contém problemas que permitem uma verificagao de uma solugao em
tempo polinomial. Nao-deterministicamente podemos “chutar” uma solugao

82

4.1 Corte minimo

PP = co— PP

/

NP

?" .

BPP = co— BBP

/\

RP co—RP

Figura 4.1: Relacoes entre classes de complexidade para algoritmos randomi-
zados.

e verificd-la. Se o nimero de solugbes positivas de cada instancia é mais que
a metade do nuimero total de solugoes, o problema pertence a RP: podemos
gerar uma soluc¢ao randomica e testar se ela possui a caracteristica desejada.
Uma problema desse tipo possui uma abunddncia de testemunhas. Isso de-
monstra a importancia de algoritmos randomizados. O teste de equivaléncia
de polinémios acima é um exemplo de abundancia de testemunhas.

4.1 Corte minimo

CORTE MINIMO

Entrada Grafo nao-direcionado G = (V,A) com pesos ¢ : A — Z, nas
arestas.

Solucao Uma particdo V=SU (V\ S).

Objetivo Minimizar o peso do corte > (u.viea Clu,v)-
UwES,vEV\S ’

83

S T W N =

4 Algoritmos randomizados

Solugoes deterministicas:

e Calcular a drvore de Gomory-Hu: a aresta de menor peso define o corte
minimo.

e Calcular o corte minimo (via fluxo mdximo) entre um vértice fixo s € V
e todos outros vértices: o menor corte encontrado é o corte minimo.

Custo em ambos casos: O(n) aplicagoes de um algoritmo de fluxo méximo,
i.e. O(mn?log(n/m)) no caso do algoritmo de Goldberg-Tarjan.

Solucao randomizada para pesos unitarios No que segue supomos que 0s
pesos sao unitarios, i.e. ¢ = 1 para a € A. Uma abordagem simples é
baseada na seguinte observacao: se escolhemos uma aresta que nao faz parte
de um corte minimo, e contraimo-la (i.e. identificamos os vértices adjacentes),
obtemos um grafo menor, que ainda contém o corte minimo. Se escolhemos
uma aresta randomicamente, a probabilidade de por acaso escolher uma aresta
de um corte minimo é baixa.

cmr (G) :=
while G possui mais que dois vértices
escolhe uma aresta {u,v} randémicamente
identifica uw e vem G
end while
return o corte definido pelos dois vértices em G

Exemplo 4.2
TBD O

Dizemos que uma aresta “sobrevive” uma contracao, caso ele nao foi contraido.

Lema 4.1
A probabilidade que os k arestas de um corte minimo sobrevivem n — t con-
tracoes (de n para t vértices) é Q((t/n)?).

Prova. Como o corte minimo é k, cada vértice possui grau ao menos k, e
portanto o nimero de arestas apds iteragao 0 < i1 < n — t e maior ou igual
a k(n —1)/2 (com a convencdo que a “iteragdo 0” produz o grafo inicial).
Supondo que as k arestas do corte minimo sobreviveram a iteragao i, a pro-
babilidade de nao sobreviver a préxima iteragao é k/(k(n—1)/2) =2/(n—1).

84

4.1 Corte minimo

Logo, a probabilidade do corte sobreviver todas iteragoes é ao menos

2 n—i-2
Il '—7== 11 ——

0<i<n—t 0<i<n—t

Cm=2)n-3)---t—1 [t (n\ ,
o= 1) et (>/()Q((t/n)).

Teorema 4.5
Para um dado corte minimo de tamanho k, a probabilidade do algoritmo
acima retornar esse corte é Q(n=2).

Prova. Caso o grafo possui n vértices, o algoritmo termina em n—2 iteragoes:
podemos aplicar o lema acima com t = 2. [|

Observagao 4.1

O que acontece se repetirmos o algoritmo algumas vezes? Seja C; a varidvel
indicador que na repeti¢do i o corte minimo foi encontrado. Temos P[C; =
1] > 2n=2 e portanto P[C; = 0] < 1 — 2n~2. Para kn? repeticoes, vamos
encontrar C =)_ C; cortes minimos com probabilidade

PIC>1=1-P[C=0]>1—(1—2n"2) >1_¢ 2k
Para k = logn obtemos P[C > 1] > 1 —n"2. O

Logo, se repetimos esse algoritmo n? logn vezes e retornamos o menor corte
encontrado, achamos o corte minimo com probabilidade razoavel. Se a imple-
mentagao realiza uma contracdo em O(n) o algoritmo possui complexidade
O(n?) e com as repeticdes em total O(n*logn).

Implementacao de contracoes Para garantir a complexidade acima, uma
contracao tem que ser implementada em O(n). Isso é possivel tanto na repre-
sentacao por uma matriz de adjacéncia, quanto na representagao pela listas
de adjacéncia. A contracao de dois vértices adjacentes resulta em um novo
vértice, que é adjacente aos vizinhos dos dois. Na contragao arestas de um
vértice com si mesmo sao removidas. Muiltiplas arestas entre dois vértices tem
que ser mantidas para garantir a corretude do algoritmo.

85

O~ O Uk Wi+

— ==
N~ O O

4 Algoritmos randomizados

Um algoritmo melhor O problema principal com o algoritmo acima é que
nas ultimas iteragoes, a probabilidade de contrair uma aresta do corte minimo
é grande. Para resolver esse problema, executaremos o algoritmo duas vezes
para instancias menores, para aumentar a probabilidade de nao contrair o
corte minimo.

cmr2(G) =

if (G possui menos que 6 vértices)
determina o corte minimo C por exaustao

return C
else

. [1 +n/\/ﬂ

seja Gy o resultado de n—t contracoes em G
seja Gz o resultado de m—t contracoes em G
Cii=cmr2(Gy)
Cz:=cmr2(Gy)
return o menor dos dois cortes C; e C;

end if

Esse algoritmo possui complexidade de tempo O(n? logn) e encontra um corte
minimo com probabilidade Q(1/logn).

Lema 4.2
A probabilidade de um corte minimo sobreviver t = [1 +n/ ﬁ—‘ contragoes é

no minimo 1/2.

Prova. Pelo lema 4.1 a probabilidade é

[1+n/sqrt2] ([1+n/sqre2] —1) _ (1 +1n/V2)(n/V2) V2+n L
nn—1) = nn—1) " 2n—1) " 2n 2

|
Seja P(t) a probabilidade que um corte com k arestas sobrevive caso o grafo
possui t vértices. Temos

Plo corte sobrevive em H;] > 1/2P([1 + t/\ﬁb
Plo corte sobrevive em Ha] > 1/2P({1 + t/\fzb
Plo corte nao sobrevive em Hy e Hy] < (1 —1/2P([1 + t/\fZ—‘))?
P(t) = Plo corte sobrevive em Hy ou Ha] > 1— (1 —1/2P([1 + t/\fZ-‘))?

- P(ﬁ +t\f2b - 1/4P(ﬁ +t/ﬁb2

86

4.2 Teste de primalidade

Para resolver essa recorréncia, define Q(k) = P(ﬁk) com base Q(0) = 1 para
obter a recorréncia simplificada

Qe+ 1) =P(v2) = p([14+v2]) /a1 4 v2] 2
~P(VZ) — P(V2")?/4 = Q(k) — Q(k)*/4
e depois R(k) =4/Q(k) — 1 com base R(0) = 3 para obter

4 4 4
RKT T 1T RIOTT - Rz = R+ 1) =Rk 414+ 1/R(k).

R(k) satisfaz
k<R(k)<k+Hg_1+3

Prova. Por inducgdo. Para k = 1 temos 1 < R(1) =13/3 <1+ Hp+3 =5.
Caso a HI esté satisfeito, temos

R(k+1)=R(k)+14+1/R(k) >R(k) +1>k+1
Rk+1)=R(k)+1+1/R(k) <k+H_1+3+1+1/k=(k+1)+H+3

[|
Logo, R(k) = k + O(logk), e com isso Q(k) = O(1/k) e finalmente P(t) =
O(1/logt).
Para determinar a complexidade de cmr2 observe que temos O(logn) niveis
recursivos e cada contracdo pode ser feito em tempo O(n?), portanto

T, = 2T [1 +n/ﬁb +0(m2).

Aplicando o teorema de Akra-Bazzi obtemos a equacio caracteristica 2(1/v2)P =
1 com soluggo p =2 e

" cu?

Th € O(n?(1 +J ?du)) =0(n?logn).
1

4.2 Teste de primalidade
Um problema importante na criptografia é achar nimeros primos grandes

(p.ex. RSA). Escolhendo um nidmero n randémico, qual a probabilidade de n
ser primo?

87

T W N =

4 Algoritmos randomizados

Teorema 4.6 (()s ())
(Teorema dos nimeros primos.)
Para t(n) = |{p < n | p primo}| temos

7i(n)

A !

(Em particular (n) = ©(n/Inn).)

Portanto, a probabilidade de um nidmero randémico no intervalo [2,1] ser
primo assintoticamente é somente 1/lnn. Entao para achar um ntumero
primo, temos que testar se n é primo mesmo. Observe que isso nao é igual
a fatoragao de n. De fato, temos testes randomizados (e deterministicos) em
tempo polinomial, enquanto nao sabemos fatorar nesse tempo. Uma aborda-
gem simples é testar todos os divisores:

Priml(n) :=
for 1=2,3,57,...,|v/n| do
if in return ‘‘Nao’’
end for
return ‘‘Sim’
O tamanho da entrada n é t = logn bits, portanto o nimero de iteragoes
é O(y/n) = B(2Y2) e a complexidade Q(2'/2) (mesmo contando o teste de
divisao com O(1)) desse algoritmo é exponencial. Para testar a primalidade
mais eficiente, usaremos uma caracteristica particular dos ntimeros primos.

)

Teorema 4.7 (Fermat, Euler)
Para p primo e a > 0 temos

a’? =a mod p.
Prova. Por inducao sobre a. Base: evidente. Seja a? = a. Temos

(a+1)P = Z (?)ai

0<i<p

(P _plp—=1)--(p—i+1)
P\i)~ i—1)---1

porque p é primo. Portanto (a+1)P =aP +1e

epara0<i<p

0.

(a+1)P —(a+1)=a’+1—-(a+1)=a’ —a

(A ultima identidade é a hipdtese da indugdo.) |

88

T W N =

4.2 Teste de primalidade

Definicao 4.2
Para a,b € Z denotamos com (a,b) o méximo divisor em comum (MDC) de
aeb. Nocaso (a,b) =1, a e b sao coprimo.

Teorema 4.8 (Divisao modulo p)
Se p primo e (b,p) =1

ab=cb modp=a=c modp.

(Em palavras: Numa identidade modulo p podemos dividir por nimeros co-
primos com p.)

Prova.

ab=cd & Fkab+kp =cb
<— Jka+kp/b=c

Como a,c € Z, temos kp/b € Z e blk ou blp. Mas (b,p) = 1, entao blk.
Definindo k' := k/b temos Ik’ a+ k'p = ¢, i.e. a =c. |
Logo, para p primo e (a,p) =1 (em particular se 1 < a < p)

a®'=1 modp. (4.1)

Um teste melhor entao é

Primo2(n) :=

seleciona a€[l,n—1] randémicamente

if (a,n)#1 return ‘‘Nao’’

if a»'=1 return ‘‘Sim’’

return ‘‘Nao’’
Complexidade: Uma multiplicacdo e divisao com logn digitos é possivel em
tempo O(log? n). Portanto, o primeiro teste (o algoritmo de Euclides em logn
passos) pode ser feito em tempo O(log3 n) e o segundo teste (exponenciagao
modular) é possivel implementar com O(logn) multiplicagoes (exercicio!).
Corretude: O caso de uma resposta “Nao” é certo, porque n nao pode ser
primo. Qual a probabilidade de falhar, i.e. do algoritmo responder “Sim”,
com n composto? O problema é que o algoritmo falha no caso de ndmeros
Carmichael.

Definicao 4.3

Um nimero composto n que satisfaz a mod a é um numero pseudo-
primo com base a. Um nimero Carmichael é um nimero pseudo-primo para
qualquer base a com (a,n) =1.

n-1 =1

89

N O Ok W N

4 Algoritmos randomizados

Os primeiros nimeros Carmichael sdo 561 = 3 x 11 x 17, 1105 e 1729 (veja
OEIS A002997). Existe um ndmero infinito deles:

Teorema 4.9 (()
Seja C(n) o nimero de niimeros Carmichael até n. Assintoticamente temos
C(n) >n?/7.

Exemplo 4.3
C(n) até 10'° (OEIS A055553):

n 1 2 3 4 5 6 7 8 9 10
c(1om) 0 0 1 7 16 43 105 255 646 1547 . 0
[(10™)2/7] 2 4 8 14 27 52 100 194 373 1720

Caso um nimero n nao é primo, nem nimero de Carmichael, mais que n/2 dos
a € [l,n—1] com (a,n) =1 nao satisfazem (4.1) ou seja, com probabilidade
> 1/2 acharemos um testemunha que n é composto. O problema é que no
caso de nimeros Carmichael nao temos garantia.

Teorema 4.10
Para p primo temos

x? = mod p = x=+1 mod p.

O teste de Miller-Rabin usa essa caracteristica para melhorar o teste acima.

. _ t
Podemos escrever n — 1 = 2%u para um u impar. Temos a™ ! = (a%)? = 1.
Portanto, se a™ ' =1,

Ou a"“* =1 mod p ou existe um menor 1 € [0, t] tal que (a“)2i =1
Caso p é primo, 1/ (a%)?" = (a“)2i =1 pelo teorema (4.10). Por isso:

Definicao 4.4
Um ntmero n é um pseudo-primo forte com base a caso

Ou a*'=1 mod p ou existe um menor 1 € [0,t — 1] tal que (au)zi =-1

Primo3(n) :=
seleciona a € [l,n—1] randéomicamente
if (a,n)#1 return ‘‘Nao’’
seja n—1=2%
if a*=1 return ‘‘Sim

b

)

if (au)zi =-—1 para um i€ [0,t—1] return ‘‘Sim’
return ‘‘Nao’’

90

4.2 Teste de primalidade

Teorema 4.11 ((), (
Caso n e composto e impar, mais que 3/4 dos a € [1,n— 1] com (a,n) =1
nao satisfazem o critério (4.2) acima.

Portanto com k testes randémicos, a probabilidade de falhar P[Sim | n composto] <
(1/4)k = 2-2%_ Na pratica a probabilidade é menor:

Teorema 4.12 (()
A probabilidade de um tunico teste falhar para um ntmero com k bits e <
k242*\/i.

Exemplo 4.4
Paran € [2497,2°00 _1] a probabilidade de nao detectar um n composto com
um tnico teste é menor que

4992 % 42—VA99 oy =22
O

Teste deterministico O algoritmo pode ser convertido em um algoritmo de-
terministico, testando ao menos 1/4 dos a com (a,n) = 1. De fato, temos
para menor o testemunha w(n) de um nidmero n ser composto

Se 0 HGR ¢ verdade w(n) < 2log*n (4.3)

com HGR a hipétese generalizada de Riemann (uma conjetura aberta). Su-
pondo HGR, obtemos um algoritmo deterministico com complexidade O(log® n).
Em 2002, () descobriram um algoritmo deterministico (sem

a necessidade da HGR) em tempo O(log'? n) que depois foi melhorado para
O(log®n).

Para testar: http://www.jjam.de/Java/Applets/Primzahlen/Miller_Rabin.
html.

91

http://www.jjam.de/Java/Applets/Primzahlen/Miller_Rabin.html
http://www.jjam.de/Java/Applets/Primzahlen/Miller_Rabin.html

5 Complexidade e algoritmos parametrizados

A complexidade de um problema geralmente é resultado de diversos elementos.
Um algoritmo parameterizado separa explicitamente os elementos que tornam
um problema dificil, dos que sdo simples de tratar. A anélise da complexidade
parameterizada quantifica essas partes separadamente. Por isso, a comple-
xidade parameterizada é chamada uma complexidade “de duas dimensoes”.

Exemplo 5.1

O problema de satisfatibilidade (SAT) é NP-completo, i.e. ndo conhecemos um
algoritmo cuja complexidade cresce somente polinomialmente com o tamanho
da entrada. Porém, a complexidade deste problema cresce principalmente com
o nuimero de variaveis, e nao com o tamanho da entrada: com k varidveis e en-
trada de tamanho 1 solucdo trivial resolve o problema em tempo O(2%n). Em
outras palavras, para parametro k fixo, a complexidade é linear no tamanho
da entrada. O

Definigao 5.1

Um problema que possui um pardmetro k € N (que depende da insténcia) e
permite um algoritmo de complexidade f(k)[x|°(!) para entrada x e com f uma
funcao arbitraria, se chama tratdvel por parametro fixo (ingl. fixed-parameter
tractable, fpt). A classe de complexidade correspondente é FPT.

Um problema tratdvel por parametro fixo se torna tratavel na pratica, se o
nosso interesse sao instancias com parametro pequeno. E importante observar
que um problema permite diferentes parameterizagoes. O objetivo de projeto
de algoritmos parameterizados consiste em descobrir para quais parametros
que sao pequenos na pratica o problema possui um algoritmo parameterizado.
Neste sentido, o algoritmo parameterizado para SAT néo é interessante, por-
que o numero de varidveis na pratica é grande.

A seguir consideramos o problema NP-complete de cobertura por vértices. Uma
versao parameterizada é

k-COBERTURA POR VERTICES

Instancia Um grafo ndo-direcionado G = (V, A) e um ntimero k'.

93

SO W N

5 Complexidade e algoritmos parametrizados

Solugdao Uma cobertura C, i.e. um conjunto C C V tal que Va € A :
anC#0.

Parametro O tamanho k da cobertura.

Objetivo Minimizar |C|.

Abordagem com forga bruta:

mve(G = (V,A)) =

if A=0 return 0

seleciona aresta {u,v}€ A nado coberta

Cr:={u}Umve(G \ {u})

Cy :={Umve(G\ {v})

return a menor entre as coberturas C; e Cy
Supondo que a selecdo de uma aresta e a reducao dos grafos é possivel em
O(n), a complexidade deste abordagem é dado pela recorréncia

Tn - 2Tn71 + O(Tl)

com solucdo T,, = O(2™). Para achar uma solu¢do com no méximo k vértices,
podemos poder a arvore de busca definido pelo algoritmo mvc na profundidade
k. Isso resulta em

Teorema 5.1
O problema k-cobertura por vértices é tratével por parametro fixo em O(2%n).

Prova. Até o nivel k vamos visitar O(2¥%) vértices na arvore de busca, cada
um com complexidade O(n). [|
O projeto de algoritmos parameterizados frequentemente consiste em

e achar uma parameterizacao tal que o parte super-polinomial da com-
plexidade é limitada para um parte do problema que depende de um
parametro k que é pequeno na pratica,

e encontrar o melhor algoritmo possivel para o parte super-polinomial.
Exemplo 5.2

Considere o algoritmo direto (via uma drvore de busca, ou backtracking) para
SAT.

Introduzimos k na entrada, porque k mede uma caracteristica da solucio. Para evitar
conmplexidades artificias, entende-se que k nestes casos é codificado em undrio.

94

T W N -

© 00~ O Uk Wi

BT-SAT(¢p,a) :=

if « é atribuigdo completa: return ¢(«)

if alguma clatdsula nao é satisfeita: return false

if BI-SAT(@,x1) return true

return BT-SAT (@, «0)
(x0 e ol denotam extensdes de uma atribuicao parcial das varidveis.)
Aplicado para 3SAT, das 8 atribuigbes por clatsula podemos excluir uma que
nao a satisfaz. Portanto a complexidade de BT-SAT é O(7™/3) = O(\3ﬁn) =
0(1.9129™). (Exagerando — mas nao mentindo — podemos dizer que isso é
uma aceleracao exponencial sobre a abordagem trivial que testa todas 2™
atribuigoes.)
O melhor algoritmo para 3SAT possui complexidade O(1.324™). %

Um algoritmo melhor para cobertura por vértices Consequéncia: O projeto
cuidadoso de uma &arvore de busca pode melhorar a complexidade. Vamos
aplicar isso para o problema de cobertura por vértices.

Um melhor algoritmo para a k-cobertura por vértices pode ser obtido pelas
seguintes observagoes

e Caso o grau maximo A de G é 2, o problema pode ser resolvido em
tempo O(n), porque G é uma colecdo de caminhos simples e ciclos.

e Caso contrario, temos ao menos um vértice v de grau 0o, > 3. Ou esse
vértice faz parte da cobertura minima, ou todos seus vizinhos N(v) (veja
figura 5.1).

mve’ (G) =
if A(G)<2 then
determina a cobertura minima C em tempo O(n)
return C
end if
seleciona um vértice v com grau o, >3
Ci ={Umve/(G\ {v})
Cy :=N(v)Umve/(G\ N(v))
return a menor cobertura entre C; e Cy
O algoritmo resolve o problema de cobertura por vértices minima de forma
exata. Se podamos a arvore de busca apos selecionar k vértices obtemos um
algoritmo parameterizado para k-cobertura por vértices. O ntimero de vértices
nessa arvore é

Vi=Vi_1+Vi3+1.

95

5 Complexidade e algoritmos parametrizados

0y >3

o\ /o
o
/ N\

e o e o
N Ny
C S,
A

Figura 5.1: Subproblemas geradas pela decisao da inclusao de um vértice v.
Vermelho: vértices selecionadas para a cobertura.

Lema 5.1
A solucdo dessa recorréncia é Vi = O(1.46561).

Teorema 5.2
O problema k-cobertura por vértices é tratavel por parametro fixo em O(1.4656%n).

Prova. Consideragoes acima com trabalho limitado por O(n) por vértice na
arvore de busca. |
Prova. (Do lema acima.) Com o ansatz V; < c¢' obtemos uma prova por
inducgao se para um i > ig
Vi=Vi 1 +Vis+l<c T+t 41<ct

e 321 >1

= 3—c2-1>0
(O ltimo passo é justificado porque para ¢ > 1 e ip suficientemente grande

o produto vai ser > 1.) ¢ —¢? — 1 possui uma tinica raiz positiva ~ 1.4656 e
para ¢ > 1.4656 temos ¢ —c? — 1> 0. [|

96

A Técnicas para a analise de algoritmos

Anadlise de recorréncias

Teorema A.1 (Akra-Bazzi e Leighton)
Dado a recorréncia

T(x) = (1) se x < Xp
B 2 1<i<k @iT(bix +hi(x)) + g(x) caso contrdrio

com constantes a; > 0, 0 < b; < 1 e fungodes g, h, tal que
9’00l € O(x%); [halx)] < x/log! "€ x

para um € > 0 e a constante x¢ e suficientemente grande

T(x) €O (xp (1 + JX jﬁlﬂ du>>
1

com p tal que Y ;. aib! =1.

Teorema A.2 (())
Dado a recorréncia

T(n) = e(1) n < maxj<i<k di
B > i xiT(n—di) caso contrério

seja « a raiz com a maior valor absoluto com multiplicidade 1 do polinéomio

caracteristico

d

z% — oqzd_d‘

e — (xkzd_dk
com d = maxy di. Entao

T(n) =0((ntam) = 0" («™).

97

Bibliografia

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals
of Mathematics, 160(2):781-793, 2004.

W. R. Alford, A. Granville, and C. Pomerance. There are infinitely many
Carmichael numbers. Annals Math., 140, 1994.

H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing a maximum cardi-
nality matching in a bipartite graph in time o(n'->\/mlogn. Information
Processing Letters, 37:237-240, 1991.

Sanjeev Arora and Boaz Barak. Computational Complezity: A Modern Ap-
proach. Cambridge University Press, 2009.

Claude Berge. Two theorems in graph theory. Proc. National Acad. Science,
43:842-844, 1957.

Andrei Broder and Michael Mitzenmacher. Network applications of bloom
filter: A survey. Internet Mathematics, 1(4):485-509, 2003.

Bernhard Chazelle. A minimum spanning tree algorithm with inverse-
ackermann type complexity. Journal ACM, 47:1028-1047, 2000.

Ivan Damgard, Peter Landrock, and Carl Pomerance. Average case error
estimates for the strong probable prime test. Mathematics of computation,
61(203):177-194, 1993.

C.-J. de la Vallée Poussin. Recherches analytiques la théorie des nombres
premiers. Ann. Soc. scient. Bruzxelles, 20:183-256, 1896.

Brian C. Dean, Michel X. Goemans, and Nicole Immorlica. Finite termina-
tion of "augmenting path”algorithms in the presence of irrational problem
data. In ESA’06: Proceedings of the 14th conference on Annual Euro-
pean Symposium, pages 268-279, London, UK, 2006. Springer-Verlag. doi:
http://dx.doi.org/10.1007/11841036_ 26.

Algorithm Engineering. Deutsche Forschungsgemeinschaft.
http://www.algorithm-engineering.de.

J. Edmonds. Paths, trees, and flowers. Canad. J. Math, 17:449-467, 1965.

99

Bibliografia

Jend Egervary. Matrixok kombinatorius tulajdonsdgairdl (on combinatorial
properties of matrices). Matematikai és Fizikai Lapok, 38:16—-28, 1931.

T. Feder and R. Motwani. Clique partitions, graph compression and speeding-
up algorithms. In Proceedings of the Twenty Thir Annual ACM Symposium
on Theory of Computing (23rd STOC), pages 123-133, 1991.

T. Feder and R. Motwani. Clique partitions, graph compression and speeding-
up algorithms. Journal of Computer and System Sciences, 51:261-272, 1995.

L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399-404, 1956.

Andrés Frank. On Kuhn’s Hungarian method — a tribute from hungary. Te-
chnical report, Egervary Research Group on Combinatorial Optimization,
2004.

C. Fremuth-Paeger and D. Jungnickel. Balanced network flows viii: a revised
theory of phase-ordered algorithms and the o(y/nmlog(n?/m)/logn bound
for the nonbipartite cardinality matching problem. Networks, 41:137-142,
2003.

H. N. Gabow. Data structures for weighted matching and nearest common
ancestors with linking. Proc. of the 1st Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 434-443, 1990.

Ashish Goel, Michael Kapralov, and Sanjeev Khanna. Perfect matchings in
o(nlogn) time in regular bipartite graphs. In STOC 2010, 2010.

A. V. Goldberg and A. V. Karzanov. Maximum skew-symmetric flows and
matchings. Mathematical Programming A, 100:537-568, 2004.

Ronald Lewis Graham, Donald Ervin Knuth, and Oren Patashnik. Concrete
Mathematics: a foundation for computer science. Addison-Wesley, 1988.

J. Hadamard. Sur la distribution des zéros de la fonction zeta(s) et ses
conséquences arithmétiques. Bull. Soc. math. France, 24:199-220, 1896.

Bernhard Haeupler, Siddharta Sen, and Robert E. Tarjan. Heaps simplified.
(Preprint), 2009. arXiv:0903.0116.

J. E. Hopcroft and R. Karp. An n®/2 algorithm for maximum matching in
bipartite graphs. SIAM J. Comput., 2:225-231, 1973.

100

Bibliografia

David S. Johnson. A theoretician’s guide to the experimental analysis of
algorithms. In Proceedings of the 5th and 6th DIMACS Implementation
Challenges, 2002.

Michael J. Jones and James M. Rehg. Statistical color models with applica-
tion to skin detection. Technical Report CRL 98/11, Cambridge Research
Laboratory, 1998.

Haim Kaplan and Uri Zwick. A simpler implementation and analysis of Cha-
zelle’s soft heaps. In SODA ’09: Proceedings of the Nineteenth Annual ACM
-SIAM Symposium on Discrete Algorithms, pages 477-485, Philadelphia,
PA, USA, 2009. Society for Industrial and Applied Mathematics.

H. W. Kuhn. The hungarian method for the assignment problem. Naval
Re/search Logistic Quarterly, 2:83-97, 1955.

L. Monier. Evaluation and comparison of two efficient probabilistic primality
testing algorithms. Theoret. Comp. Sci., 12:97-108, 1980.

J. Munkres. Algorithms for the assignment and transporation problems. J.
Soc. Indust. Appl. Math, 5(1):32-38, 1957.

Harald Prokop. Cache-oblivious algorithms. PhD thesis, MIT, 1999.

Michael O. Rabin. Probabilistic algorithm for primality testing. J. Number
Theory, 12:128-138, 1980.

Emma Roach and Vivien Pieper. Die Welt in Zahlen. Brand eins, 3, 2007.

J.R. Sack and J. Urrutia, editors. Handbook of computational geometry. El-
sevier, 2000.

Alexander Schrijver. Combinatorial optimization. Polyhedra and efficiency.,
volume A. Springer, 2003.

Terrazon Semiconductor. Soft errors in electronic memory. Whitepaper, 2004.
Vijay V. Vazirani. Approximation algorithms. Springer, 2001.

J. W. J. Williams. Algorithm 232: Heapsort. Comm. ACM, 7(6):347-348,
1964.

Uri Zwick. The smallest networks on which the Ford-Fulkerson maximum flow
procedure may fail to terminate. Theoretical Computer Science, 148(1):165
- 170, 1995. doi: DOI:10.1016,/0304-3975(95)00022-0.

101

Indice

algoritmo
parameterizado, 91
randomizado, 77

alternante, 49

caminho
alternante, 49
circulagao, 29
complexidade
parameterizada, 91
cuco hashing, 65

dicionério, 59

Edmonds-Karp, 34

emparelhado, 49

emparelhamento, 44
perfeito, 44

emparelhamento de peso maximo,

44

emparelhamento maximo, 44
emparelhamento perfeito de peso minimo,

45

enderegamento aberto, 63

fluxo, 30
s—t maximo, 30
de menor custo, 43

formulagao linear, 30

Ford-Fulkerson, 30, 32
funcao hash, 59
com divisao, 61

com multiplicacao, 61

universal, 62

grafo residual, 32

hashing

com enderecamento aberto, 63

com listas encadeadas, 59

perfeito, 62
universal, 61

livre, 49

método de divisao, 61

método de multiplicacao, 61

perfeito, 44
permutagao, 63

SAT, 91
satisfabilidade

de férmulas booleanas, 91

tratavel por parametro fixo, 91

uniforme, 63

vértice
emparelhado, 49
livre, 49

valor hash, 59

103

	Algoritmos em grafos
	Representação eficiente de grafos
	Caminhos e ciclos Eulerianos
	Filas de prioridade e heaps
	Heaps binários
	Heaps binomiais
	Heaps Fibonacci
	Rank-pairing heaps
	Tópicos
	Exercícios

	Fluxos em redes
	Algoritmo de Ford-Fulkerson
	O algoritmo de Edmonds-Karp
	O algoritmo de Dinic
	Algoritmo de escalonamento
	Variações do problema
	Aplicações
	Outros problemas de fluxo

	Emparelhamentos
	Aplicações
	Grafos bi-partidos
	Emparelhamentos em grafos não-bipartidos
	Tópicos avançados
	Exercícios

	Tabelas hash
	Hashing com listas encadeadas
	Hashing com endereçamento aberto
	Cuco hashing
	Filtros de Bloom

	Algoritmos de aproximação
	Aproximação para o problema da árvore de Steiner mínima
	Aproximações para o PCV
	Algoritmos de aproximação para cortes
	Programação inteira para aproximação
	Exercícios

	Algoritmos randomizados
	Corte mínimo
	Teste de primalidade
	O problema é achar ``a agulha no palheiro''
	Encontrar a mediana

	Complexidade e algoritmos parametrizados
	Modelos computacionais avançados
	Algoritmos cache-eficientes

	Técnicas para a análise de algoritmos

